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BALLISTIC RESEARCH LABORATORIES 

REPORT NO. 1127 

JSternberg/sec 
Aberdeen Proving GrOl.md, Md. 
April 1961 

*A THEORY FOR THE lAMINAR SUBIAYER 
OF A 'IURBULENT FLOW 

ABSTRACT 

The so-called laminar sublayer is shown to be the region where the 

turbulent velocity fluctuations are directly dissipated by viscosity. A 

simplified linearized form of the equations of motion for the turbulent 

fluctuations is used to describe the turbulent field between the wall 

and the fully turbulent part of the flow. The mean flow in the sublayer 

and the turbulence field outside the sublayer are assumed to be known 

from the experiments. The thickness of the sublayer arises naturally in 

the theory and is directly analogous to the inner viscous region for the 

fluctuations in a laminar flow. It is shown that the large scale fluctu­

ations containing most of the turbulent energy are convected downstream 

with a velocity characteristic of the middle of the boundary layer._ Thus 

Taylor's hypothesis does not apply to these large scale fluctuations near 

the wall. The convective velocity found in the measurements of pressure 

fluctuations at the boundaries of turbulent flows is in accord with the 

theory. Calculations are given for the energy spectra and u' fluctuation 

level in the sublayer and other aspects of the fluctuation field are 

discussed. It is shown that the production of turbulent energy is a 

*A preliminary account of this work was presented to the ftJrnnual Meeting 
of the Fluid Dynamics Division, American Physical Society, in November 
1959 at Ann Arbor, Michigan. 
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maximum where the laminar shearing stress is equal to the turbulent 

shearing stress. The linear pressure fluctuation field at the edge 

of the sublayer is calculated and found to be much larger than the 

non-linear field. Examining the effect of strong free stream turbulence 

on laminar boundary layer transition, it appears that the physical model 

underlying Taylor's parameter is incorrect. 
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1. INTRODUCTION 

The laminar sublayer bas been a subject of controversy and investi­

gation for more than 20 years. The reason for this interest is that the 

nature of the flow close to the wall :b..as a.n important ir..fluence on the 

heat, mass, and momentum transfer from the boundary. Furthermore, 

experiments have shown that the flow of energy from the mean flow to the 

turbulent motion is a. :m.a.ximum inside the sublayer. This fact suggests 

that an understanding of the structure of turbulence in a shear flow may 

depend on an understanding of the flow near the wall. 

The original idea, Taylor { 1916), was tba t in a turbulent flow there 

ought to be a thin fluid layer next to the surface free of turbulent 

motion, a true laminar layer. Studies of the stability of Couette flow 

(the flow betWeen a fixed wcUl and a mov~ng wall) had shown that there 

was a pritical Reynolds number Re ~ 300 below which all eddies would die 

out. The critical Reynolds number Uh/v was formed using the velocity U 

of the moving w~ll and the separation distance h where v is the kiner~tic 

viscosity. It was postulated tha~ the flow next to the wall was equivalent 

to a Couette flow. The laminar sublayer thickness 8 could then be s 
estimated bv substitutin2 8 for the separation distAnce in the etab!l!tv., 

~ ~ a -
analysis. 

In 1932, Fage and Tbwnend studied the fluctuation field close to 

the surface using an ultramicroscope for following minute particles in 

water. They found no evidence of an eddy-free region near the wall. An 

interesting discussion of this work is given by Taylor (1932) who examined 

the possible connection between special types of disturbances where -the 

velocity distributions were known and the turbulent fluctuation field 

found by Fage and Townend. 'lbese experimental resul.ts were confirmed by 

later hot-wire measurements in air by Iauf'er (1950, 1953) and IQ.ebanoff 

(1954). Instead of being~ free, the turbulence level, as given by 

the ratio of u• the root-mean-square value of the velocity fluctuation in 

the flow direction to the local mean velocity u1, reached a maximum value 
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of' approximately • 4 close to the wall. Also the turbulent shear stress, 

as deduced from the mean flow measurements, did not vanish in a thin 

region next to the wall but instead varied continuously from zero at the 

wa11 to the level of' the wall shear. Thus it has been clear for same 

time that a theory of the "laminar" sublayer must account for the fact 

that the flow is turbulent all the way to the wall. 

There is now a relative wealth of' experimental information on the 

fluctuation field close to the wall of a turbulent flow. What is needed 

is a theoretical structure that will provide a rational foundation for 

the understanding and interpretation of the experimental observations. 

Several recent attempts have been made to develop phenomenological models 

for the flow in the sub layer. On the basis of same observations using 

dye in water, Einstein and Li (1956) were led to postulate the periodic 

growth and decay of a true laminar region near the wall.. An equivalent 

model has been proposed by Hanratty (1956). However, in a.ll ~"'lese cases, 

agreement with the measurements of the mean and fluctuation field is 

sensitive to the choice of critical parameters as well as to arbitrary 

and sometimes inconsistent assumptions concerning the physical processes. 

The purpose of this paper is to make a. start toward the developnent of 

a theory for the sublayer which follows from the Navier-Stokes equations 

without the need for phenomenological assumptions or tinkering with 

adjustable parameters. 

We have already suggested tha.t the sublayer is only a special part 

of the general turbulent fluctuation field in a. bounded shear flow. The 

aim of the theory will be to describe as far as possible the direct 

influence of the wall on the fluctuation field. The turbulent field out-

side of this region of direct influence is assumed to be known on the 

basis of the experimental measurements. This knowledge is essential in 

the development of the sublayer analysis. Fortunately we need not be 

concerned with shear flow turbulence in all its complexity, since only 
I 

certain, fairly simple, aspects of such flows are· significant for this 

problem. However, some of the simple features have been obscured by 
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the accepted methods for presenting the experimental results. It is 

customa..s.--1 to or ~"ave numbers for the turbulent 

measurements by using Taylor's hypothesis (Taylor 1938) to justify the 

necessary space-time transformation. Our first step will be to show that 

this ~~othesis, which was introduced to represent the turbulence behind 

a grid in a wind tunnel, is not valid in a shear flow especially near a 

wall. This analysis will provide a basis for re~interpreting the experi-

mental measurements and Will make possible some importAnt simplifications 

in the subsequent development of the theory. 
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2. TAYLOR'S HYPOTHESIS IN A SHEAR FLOW 

Taylor's hypothesis, which has been ~ly verified for a uniform 

low turbulence flaw involves two assumptions: 

a) The turbulence pattern is convected past the measuring point 

with the local mean speed. 

b) The turbuJ.ent fluctuating velocities are sma.ll enough compared 

to the mean motion to insure little cbange in the shape of an eddy as 

it is carried past a fixed point. 

The use of this hypothesis in a shear flow has previously been 

questioned by Lin ( 1953) • Essentially, Lin investigated the condi tiona 

for negligible eddy distortion, and showed that there is "no general 

justification of extending Taylor's ~~thesis to the case of shear 

flow" • He found that unless an eddy canponent had a scale much less 

than the boundary layer thickness, it would suffer significant distortion 

due to the mean flow shearing motion while being carried past the measuring 

point by the mean flow. However, Lin ' s analysis did not lead to an 

alternate procedure for determining the turbulence scales. 

We will show that, in general, assumption (a) cannot be valid in a 

turbulent shear flow. The departure fran this assumption in a boundary 

layer is especially significant near the wall. 

Consider a turbuJ.ent boundary layer on a flat plate. At any instant 

t, the turbulent fluctuation field in a boundary layer can be represented 

by a distribution of disturbance vorticity components ~' T}, and ~ 

throughout the bo1.mdary layer. At the wall the vertical perturbation 

velocity v must vanish. This boundary condition can be satisfied by 

adding an image vorticity distribution on the opposite side of the wall. 

Now, associated with the vorticity at a point pr in the bo1.mdary layer, 

there is an induced velocity at the point P. The total velocity pertur­

bation at point P at any instant can then be found by integrating over 

the boundary layer and image system perturbation vorticity fields. The 

extent of the region over which the integration must be carried out 

8 



depends on the scale of turbulence. If only small scale moti.l)ns are 

present then the region of integration can be confined to the vicinity 

of P. There should not be any significant correlation between velocities 

at point P and random small scale vorticity at distances from P many 

times the scale of the disturbances. If large scale motions are present 

then the integration must extend at least over the distances where these 

large scale motions are significantly correlated. 

A typical one dimensional energy spectrum for the velocity perturbation 

u in the flow direction at y/8 = .58 near the center of a boundary layer 

is shown in Fig. l, where y is the distance from the wall and 8 is the 

boundary layer thickness. If we can assume for the moment that this dis­

turbance field is being carried along by the mean flow in accordance with 

Taylor's hypothesis, then the frequency can be converted into a measure 

of the space scale L by the relation L = U£/f where U£ is the velocity of 

the local mean flow (we will show that this is justified in the central 

region of the boundary layer) • 

Figure 1 also shows the contribution to the total energy u2 as a 

function of the scale of the motion. It is evident that fully half of 

the energy is contributed by turbulence whose scale is more ~han twice 

the boundary layer thickness, as first noted by Townsend (1951). Thus 

the velocity perturbation at a point P does not depend significantly on 

the vorticity in the immediate vicinity of P, but rather on the vorticity 

over an extensive region of the boundary layer. 

Since the vorticity travels with the fluid particles, the apparent 

velocity with which a disturbance sweeps past the measuring point P may 

therefore be substantially different from the local mean velocity at PG 

For the large scale motions, this disturbance velocity will correspond 

to the mean velocity near the middle of the boundary layer. Therefore 

for points P close to the wall, where the mean velocity is low, we would 

expect the disturbance velocity to be greater than the local mean velocity; 

for points P near the outer edge of the boundary layer, the disturbance 

velocity should be less than the local mean velocityo 
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The space-time correlation data of Favre, Gaviglio, and Dumas 

(1957, 1958) provide a basis for determining whether these deductions 

are correct. If F(f) represents the percent of turbulent energy 

associated with the frequency f, and Taylor's hypothesis is satisfied, 

then the auto-correlation coefficient R of the u' fluctuation at the 
X 

points P and (P+x), can be written as 
00 

Rx =f F(f) c~s (~x r] df 

0 

where = u(P) .u(P+x) 
Rx 

~(P) 
T.he longitudinal correlation coefficient calculated in this way should 

then agree with the longitudinal correlation coefficient directly measured 

with two hot wires. 

This autocorrelation coefficient has been calculated using the energy 

spectrum measured at one of Favre's test points and is shown in Figure 2. 

The integration is only carried out to f = 1000 c.p.s., but this max: 
includes 9&'f, of the energyo In Figure 2, two additional correlation 

curves are shown for which the integration was terminated at smaller 

values of the frequency therefore eliminating the contribution of the 

small eddies. A frequency of 400 c.p.s. corresponds to a longitudinal 

scale of about 2.4 centimeters which compares with a boun~j thickness 

of 3.4 centimeters. It is evident that the correlation coefficient at 

large distances is not significantly affected by the small eddies. We 

shall confine our attention to the portion of the correlation curve 

determined by the large scale eddies so that R will be less than .4. 
X 

If the velocity of the disturbance U , associated with these large w 
scale eddies differs from the local mean velocity UJ' Uw rather than Ut 
must be used in the formula for computing the correlation coefficient 

from the energy spectrum at a. fixed point. Thus, at a fixed value of 
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R the computed correlation curve should be shifted horizontally where 
X 

the new horizontal coordinate x' = x. uw/Ul. Only the portion of the 

curve dominated by the large eddies should be shifted in this way, 

since as the eddy size is reduced, the disturbance velocity approaches 

the local mean velocity. 

One of the figures from Favre's paper (1958) is reproduced in Figure 

:;. Auto-correlation curves using Taylor's hypothesis and longitudinal 

space correlations measured with two hot wires are shown for four positions 

across a boundary layer. While there is the usual experimental scatter, 

there is a systematic difference between the two sets of curves below 

R P::l .4 depending on the location of the measuring point in the boundary 
X 

layer. Close to the wall the measured longitudinal correlation curves 

are to the right of the calculated auto-correlation curves. Near the outer 

edge of the boundary layer, the measured longitudinal correlation curve 

is displaced in the opposite direction. At y/5 = .24 the difference 

between the two curves is lost in the scatter of the data. 

As far as they go, these meas~ements are consistent with the picture 

in which the large scale disturbances which contain most of the energy 

move down stream at a mean velocity characteristic of the central region 

of the boundary layer fluid. At y/8 = .24 in Favre's boundary layer, 

the velocity Ul is approximately equal to .78 of the free stream velocity 

u1 • The horizontal shift in the correlation curve tba t would be expected 

at y/5 = .03 if the disturbance velocity were equal to .78 u1 is also 

shown in Figure 2. This shift is approximately the same magnitude as 

the shift found in Figure 3. A similar divergence of the calculated_ 

auto-correlation and measured longitudinal correlation coefficients at 

large scales has been observed by IO.ebanoff and led him to remark that 

"this divergence gives rise to the interesting speculation that the 

large scale motions have their own characteristic velocity different 

from the mean speed" • 
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We conclude, on the basis of this analysis, that in a boundary 

layer, or in fact, in any shear flow, the disturbance velocity at a 

measuring point P is in general different from the local mean velocity. 

Therefore, the customary conversion of experimental spectral measurements 

into wave numbers, is invalid in a boundAry 1Ryer Rnywhere near the wall 

except for the small scale structure of the turbulence. 

In the following sections of this paper, many of' the numerical results 

will be based on the experimental measurements of Klebanoff. The limited 

auto-correlation and longitudinal correlation measurements he made do not 

extend to large enough scales to establish a value for the disturbance 

velocity of the large eddies with any precision. Accor~ingly, we shall 

use the general information obtained from Favre's data and somewhat 

arbitrarily set Uw = • Bu1 for the large eddies. This is the value of the 
me_An v.e_loc_ity.at v.,

1
15: .,-27

1 
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upper limit to the frequency range to which this disturbance velocity 

applies. Klebanoff's auto and logitudinal correlation measurements indicate 

that for R < .5, the expected shift of the longitudinal correlation curve 
X 

with respect to the auto-correlation curve will have occurre~ Calculations 

for R as a function of frequency at different separations are shown in 
X 

Figure 4 for y/8 = .05o If we consider the curve for x/Ul = 1.8, it is 

evident that the frequencies > 300 make a minor contribution to the 

correlation coefficient. That is, the frequencies between 300 and 1000 

only produce a moderate oscillation about the final value of R = .43. A 
X 

frequency of 300 c.p.s. corresponds to an eddy scale of L = uwfr = 4 em or 

approximately (1/2)8. (Frequencies between 0 < f ~ 300 c.p.s. account 

for about 8o~ of the fluctuation energy). We will therefore limit the 

specification Uw = .Bu1 to frequencies from 0-300 c.p.s. For high 

frequencies, or small scale motions, the disturbances move do~~stream 

with the local mean velocity. A very crude guess for the dependence of 

disturbance velocity on frequency at y/8 = o05 will be given in the section 

on the mi croscales o But !O.ebanoff' s experimental data do not provide any 

clear basis for guessing at this dependence in the sublayer. As will be 

12 



mentioned in the section on the pressure field, it may be possible to 

establish the variation of disturbance velocity with frequency for the 

higher frequencies from the measurements of wall pressure fluctuations. 

But at the present this information is not available and this lack of 

knowledge will necessarily limit certain possible applications of the 

present theory. 
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3. THE FLUCTUATION FIELD OUTSIDE OF THE SUBIAYER 

When the experimental measurements themselves are examined, they 

reveal a rather striking similarity of the energy spectra at different 

points in the fully turbulent part of the flow. The normalized energy 

spectra across a boundary layer as measured by lQ.ebanof'f are shown in 

Figure 5. OVer the inner ha.lf of the boundary layer, in the region free 

of intermittency, the spectra for the energy containing eddies appear to 

agree within the experimental error. Differences in the high frequency 

end of the spectra would be revealed by using a log scale rather than a 

linear scale, but these portions of the spectra provide a negligible 

contribution to the total fluctuation energy. The same results are 

found for pipe or channel flow spectral data. This similar! ty of the 

energy containing portion of the frequency spectra is just what would 

be expected from the previous analysis since the disturbance velocity 

for the large scale eddies should not vary significantly across the shear 

flow. At each point across the boundary layer, the hot-wire probe 

responds to disturbances associated with the same large scale eddy pattern 

and so the spectral distribution should be similar. 

On the other hand, the fluctuation energy varies from poi_nt to 

point. Figure 6 shows the variation of the root-mean-square fluctuation 

velocities u', v', and w' across the boundary layer. It can be seen that 

the u' fluctuation level increases by a factor of 2 between y/o = .6 and 

y/B = .05. Why does the fluctuation level vary if we are measuring 

perturbations due to the same large scale eddy system? 

A simple explanation for these observations can be suggested by 

considering the effect of the wall on the perturbation field. If no wall 

were present, the induced velocity field associated with vorticity at P' 

would be symmetrical about P', When the wall is present, the induced 

velocity field of the image vorticity for P' must be added to the field 

directly due toP'. This will cause an increase of the induced velocities 

between P' and the wall and a decrease of the induced velocities beyond P', 

This image effect may be the reason why the fluctuation level associated 

with the same large scale vorticity increases towards the wall. 
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So far we have managed to avoid specifying the extent of the 

subla.yer. This bas been a somewhat ambiguous question and has been 

subject to different interpretation by different authors. In Figure 

7 the variation of the u' fluctuation and the turbulent shear stress 

puv nea.r the wall are shown for a boundary la.yer and a :pi:pe flow. The 

variation of puv has been calculated using the measured mean velocity 

profile and the fact that the total shear stress is essential.ly constant 

near the wall. As is customary, the data. are :presented in terms of the 

friction velocity UT ~where Tw is the friction at the wall and 

p is the density. In both cases, the peak of the u' fluctuation is found 

at U • y I v = U • r I v = 15-20. Some authors specify U y I v R$ 12 as the edge T T T 
of the laminar subla.yer and consider the region 12 < U .ylv < 60 to be 

T 

some sort of trans! tion region between the l.am.inar sub layer and the fully 

developed turbulent part of the flow. The fact that the mean velocity 

:profile is nearly linear up to UT.ylv ~ 12 seems to support this 

definition. On the other hand, at U~·Yiv ~ 12, the turbulent shear stress 

is still only about 112 of the level of shear at the wall, and only 

asymptotically a:pproaches the vall shear value somewhere around U .ylv ~ 100 or 'T 
U'Tr/v ~ 60 according to Figure 7• 

Viewing the region near the wall as a whole we can describe what is 

observed in the following general terms. Outside of the wall region, the 

turbulent shear stress and the u' fluctuation vary slowly compared to the 

~~riations that are found in the wall region. Entering the wall region 

the u' fluctuation first rises. In FigUre 7, the fluctuation level is 

normalized in terms of the fluctuation level at the edge of the wall region. 

(It is more difficult to identify the edge of the wall region for the 

boundary layer case. This is because the variation of u' outside the wall 

region is much larger in the boundary layer case than in the pipe flow). 

Apparently, the fluctuation level increases more in Klebanoff's experiments 

than in Laufer ' s case. However, the fluctuation level in the sub layer 

should probably be canpared with an extrapolation to the wall of the u' 

variation outside the sublaye~ This would make a significant difference 
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in the case of the boundary layer and would suggest that the rise in 

fluctuation level in the boundary layer is not as great as it first 

appears to be. Approximately at the point where u' starts to rise, the 

shear stress starts to decrease slowly. The rapid decrease in u' is 

confined to the inner 25% of the wall region. In the theory given in 

this paper, the sublayer is the entire region between the wall and the 

fully developed turbulent part of the flow. There is no theoretical 

distinction between an inner "laminar" sublayer and a transition region 

although the rapid changes do primarily occur in the inner portion of 

the sub layer o 

The physical picture of the large scale eddies containing most of the 

turbulent energy moving downstream at a velocity of the order of .8 of 

the free stream velocity u1 is reminiscent of the physical picture of 

oscillations in a laminar boundary layer. In that case typical waves 

move downstream with a velocity Uw~ (2/3)U1 and have wave lengths of 

the order of (2-5) 5. In the equations of motion for the perturbations 

in a laminar flow, the term representing the action of viscosity is 

negligible except in two limited regions of the boundary layer, the 

critical layer and the inner viscous layer close to the wall. We shall 

show that this inner viscous layer for fluctuations in a laminar boundary 

layer corresponds directly to the sublayer for a turbulent flow. Thus 

the sublayer is the region where the turbulent fluctuations in the shear 

flow are damped by viscosity. 

The existence of a "dissipation layer" near the wall was first 

suggested by Townsend on the basis of a study of the turbulent energy _ 

balance in the boundary layer. He concluded that the bulk of the turbu­

lent energy dissipation takes place by direct viscous action on the large 

eddies in a layer which he thought was "most probably in contact with the 

la.minar sublayer". In the present theory we find that the sublayer itself 

is a dissipative region and that its structure is primarily determined by 

the large scale fluctuations in the turbulence. 
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4. EQUATIONS FOR THE FLUCTUATION FIElD 

The equations of motion for the fluctuations in a turbulent field 

(Lin 1959, p.246) are obtained by subtracting the well known Reynolds 

equation for the mean flow from the complete Navier-Stokes equations. 

We restrict our attention to a steady flow in which the mean velocity 

only bas a component parallel to the flow direction, so that U = U(y) 

a.nd V = W = o, where U, V, and W are the three components of the mean 

motion. We will also assume that the statistical properties of the 
2 -turbulent field such as u and uv only vary with y. These assumptions 

are reasonably well satisfied by a two dimensional boundary layer flow 

or a pipe flow. Then if u, v, and w are the disturbance velocities the 

components of total velocity are ~ = U+u, ! = v, ! = w, and the pressure 

is ~ = P + p. We can then write down the three equations of motion for 

the fluctuating field 

(1 ) ou u ou au + au ou ou 1 op + 
dt+ di+vdy uey:+vey:+wdz=--pdi 

~ ~ ~ ~ ~ 1~ 
(2) dt + u dx + u dx + v dy + w dz = - p dy + 

2 0 
v v u + 'dY (uv) 

2 0 2 
v v v + 'dy (v ) 

( ) aw dW' Ow Ow Ow 1 0p v "2w + o (-wv) 3 dt+Udi +udi+vey:+wdz=-p-'dz+ v 'dy 

ou ~ dw (4) and the continuity equation dX' + c;y + dz = 0. 

In each equation the mean term on the right is the average of the 

three non-linear terms on the left. We are in fact going to neglect these 

non-linear terms but same justification for this step is certainly required. 

For instance the term ~ (uv) is zero at the wall and zero outside the 

sublayer, but reaches a peak value in the inner portion of the sublayer at 

about UT y/v~ 10, (See Figure 7). We~ can make this justification a 

posteriori by finding a solution without the non-linear terms and then 

comparing the magnitude of ~ (iN) With the linear tenns that have been 

retained. At this point we will state the results. The acceleration 

term~ is the leading linear term. At the point where U-r y/v ~10, 0i~v) 
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is about 151> of R> . At the same point the linear convective 

terms such as U(dl!/dx) are about 40.~ of <m/et. It is evident that the 

non-linear ter.ms· are significant though smaller than the linear terms. 

When the balance of terms is examined over the frequency spectrum it is 

found that at the low end of the frequency spectrum, at say 10 c.p.s., 
0 (UV) 

the maximum value of dy may be comparable in magnitude to the terms 

that are retained. But linearization of the equations appears to be a 

reasonable first step towards a theory. Of course the non-linear terms 

would be essential in any theory of turbulence. But here the turbulent 

field at the edge of the sublayer is assumed to be known from the experi­

ments. Our purpose is merely to represent the fluctuation field between 

the lm.own field at the edge of the sublayer a.nd the wall. 

Tne fluctuation field can now be represented by a superposition of 

Fourier components, each component of which can be separately analyzed. 

The type of disturbance that will be used will be based on our interpre­

tation of the experimental data. As we have already suggested one resul.t 

of the analysis will be that the terms containing the viscosity are only 

significant in a narrow region near the wall. It is this region where 

the viscous terms are important) that we identify as the sublayer of' the 

turbulent flow. It should be emphasized that we are not concerned with 

the energy balance of the frequency components as is the case for the 

study of oscillations in a lam1r~r flow. No stability calculations are 

involved in the description of the sublayer. 
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5. SJMPLIFIED THEORY 

A field of turbulence can be represented by a Fourier superposition 

of elementary plane vorticity waves. The velocity vector associated 

with a given in a pUL~e perpendicular to the 

wave vector. On the other hand, we have :previously shown that most of the 

fluctuation energy near the wall is an induced field arising from vorticity 

distributed t:h..roug._h.out the botulnR.ry 1 R.yer. The type of elementary dis-

turbance that is appropriate then depends on the nature of the large scale 

vorticity in the boundary layer, and not on the vorticity field at the 

edge of the sub layer. 

Physically, one might expect the shearing action of the mean flow to 

stretch out vortex lines in the direction of the mean flow. There might 

then~e a preference in the large scale motions for vortices nearly pa,ra..l.J..el 

to the wall. Since the root-mean-square w' fluctuation is approximately 

.7 of the root-mean-square u' fluctuation (Figure 6), some type of "three 

dimensional" disturbance would Accordingly, we 

have chosen to assume a simple form of oblique disturbance at the edge 

of the sublayer 5
8 

as shown in Figure 8. We might imagine this disturbance 

to be associated with a periodic vorticity normal to the direction ~~ 

Then the velocity q associated with this disturbance is in the s direction, 

rather than normal to the ; direction as would be true for a shearing wave. 

The velocity q varies as q = Q cos (2~/~t);, where w/u tan Q. As shown 
~ - -- . . s. - . 

energy containing eddies is largeo Uhder these conditions, if we consider 

a disturbance of a particular wave length, the variation of the :perturbation 

ve~ocity with y in the vicinity of the sublayer can be neglected compared 

to the variation inside the sublayer. 

This oblique diatturbAnce is carried downstream with ~he velocity Uw 

in the x direction. - - I 
~nus the wave length in the x direction ~x = ~;I cos Q. 

Introducing complex notation, we can write with ~ = 2~f. 
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r 
u = Re tcle 

r i(ky.x-~t) 1 
1 Ble -- f 
l J 

w = Re 

where U = f3/k , tan 
W X 

Q = B1/c1 and Re stand for Real Part. Similarly 

the fluctuating pressure field can be represented as 

J i(kx.x-f3t) l 
p = Re lple r where p

1 
is complex. 

..... ""' 
Inside the sub layer, we have 

( i(kx.x-~t)) 
u = Re~h(y)e r 

l ) 

w = Re k(y)e x 
{ 

i(k .x-~t)} 

( 1 (k __ .x-f:}t) I 
v = Re tg(y}e x J and 

with u = v = w = 0 a.t the wall y = 0. 

Now close to the wall where u -o, and v- o, the convective terms in the 

equations of motion can be neglected. For instance, in the subla.yer 

'~' I aut 
I d-tl 

u 
- uw 

Also from the continuity equation~ = 

ik .w.tanQ, 
X 

so that v 
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Provided the angle Q does not approach 90°, v = 0( I k o u.y I ) . 
X 

This limitation on Q does not appear to be significant. We are interested 
in the u and v components at the wave number k as obtained in a one-x 
dimensional spectral analysis. The wave number for the oblique disturbance 

k~ = kx/ cos Q so that k~ - oo as Q - 90°. Since the energy spectrum for 
the fluctuation field falls off very rapidly with increasing frequency, 

0 the high frequency oblique waves where Q - 90 probably make a negligible 
dU U contribution to the u and v fields. With-.-= 0 (-). we have a.y 'Y', 

0 (gw) 

Since Uw ~ • Bu
1 

for the large scale eddies the convect! ve terms can be 
neglected for y- 0. As we shall show later, the thickness of' the viscous 

region for a disturbance of' frequency f' is 

2 2 
Th 

ou;(ju 
en~ ::-2 

dx dy 
For any frequency of' 

of' interest only the derivatives with respect to y need be retained. The 

equations of motion can then be simplified to the following form 

OU . 1 Qp o2
u 

(5) dt T p dX V :2' 
dy 

(6) 

(7) 

cw 1 ap 
dt+pdy 

d2w v ~ together with the continuity equation. 
cy 

It is 

evident that to this order of simplification there is no coupling between 

the u and w fluctuation fields and the u component can be solved for 

separately. 

21 



Again under the restriction that the disturbance angle Q does not 
1"'\ 

approach 90-, it can now be shown tha. t the terms in equa. tion ( 6) are of 

higher order compared to the terms in equation {5). For instance 

or a maximum of O(k 8 ) {provided Q is reasonably limited) at the edge of 
X S 

the viscous region. 

t.r-f +'h n = 1 _ ?r:; v 1 o3 Mn,/ sec , k 8 = 
n .... .., ........ w--"-""''"___ , xs 

-2 3.3 X 10 

at f = 300 c.p.s. This merely expresses the fact that near the wa.l1 v 

is of higher order tb.a.n u = It also follows tba. t ~ << ~ • 
ay ox 

An important consequence is that the pressure field does not vary 

with y in the viscous region~ We have, 

or finally 

0 1 dp 1 dp 1 dp Ov) 
dY (-p di) = ikx P ey and since P dY = o(dt 

~ (~ ~) = O(kx2 .~.~ (l+tan
2
Q),y) 

d (1.01>) 
ey pdX 

~ <M> 
Simiiarly it can be show that 

Thus the pressure field associated with the disturbance is constant 

through the viscous region, since k 2 8 2 << 1. 
X s 
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To find the solution to equation (5), we represent the disturbance 

as the sum of t-.;o ccmponents, where u = u
1
+ u2 • T'ne component ~ 

represents the disturbance velocity before account is taken of the direct 

wall effect. As previously discussed, we assume that the variation of 

u1 with y in the ~~cinity of the viscous region is negligible compared 

to the variation of u that occurs inside the viscous region. Since the 

convective terms have been neglected u
1 

is not affected by the mean flow 

and is constant throughout the viscous region. u
2 

represents the dis­

turbance velocity component directly associated with the wall friction. 

Thus, at the edge of the viscous region u2 - 0, and at the wall u
2 

= - '\. 

If we write equation (5) as 

then the equations for ~ and u
2 

throughout the viscous region are 

where as we have already shown, ! ~ does not vary through the viscous p ox 
region.* Substituting 

" 

U-. = h c 2 

if3b? 

(y)e 
iflr 'V'-o+\ ... , ... "'x·..,.-J.JU' 

+ ~ = 0 which has the simple solution v 

- [ ~-ijj~ y 
e v 

so that finally u = u1 + u2 = Re 
r [ - r1-1l if3_ y]e i(k .x-At)"'l 
tc1 1-e L J./ 2v . x '"' } 

* This same separation of equation (5) was used by Prandtl (1921) in 
discussing oscillations in a laminar boundary layer. 
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It is evident that the region of rapid change in u is 0{~) as 

previously asserted so that the extent of the viscous region is different 

tor each frequency, decreasing in size as the frequency is increased. 

In order to compare these results with experiment, we calculate 

7 = ~ Re [h(y) h*(yJ Introducing the dimensionless variable 

Y J'f.v y, we find 

-Y -2Y = 1-2e cos Y+e • 

This f'tmction is shown in Figure 9. For each frequency canponent 

~ 2 2 
u l(c1 I 2)- 1 at Y ~ 5· The rapid decrease of' u occurs for 0 <. Y< 2. 

~ 2 
Entering the viscous region u l(c1 12) first increases reaching a peak 

value at Y = 2.2. Examination of the details of the solution shows that 

this increase of disturbance level entering the viscous region arises 

because near the outer edge of the viscous region ~ and ~ have an in­

phase component instead of being 18o0 out of phase as at the wall. 

Figures 5 and 9 can now be used to calculate the variation of the 

root-mean-square fluctuation level U 1 near the wall. According to 

Figure 5, the energy spectra are similar between y/o = .05 and yl8 = .58. 

Then the disturbance energy for each frequency outside of the viscous 

2 
region is given by setting c1 I 2 = ~ at Yl8 = .05 from Figure 5· For 

u 
~ 

each frequency, the variation of u with y is obtained from Figure 9. 
~ The u spectra for various values of y can then be computed, and are shown 

in Figure 10. As y/8 increases, the spectra approach the spectrum outside 

of the sublayer. Integrating for each value of y/8 and taking the square 

root, we finally obtain the variation of u' near the wall. In Figure 11(a), 

the ordinate u'/u•1 is the ratio of U 1 inside the viscous region to the 

value of u 11 outside. According to the calculations, u 1 /u' 
1 

-t 1 at about 

yl8 = .035. The rise in the experimental u' fluctuation level near the 
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wall appears to start for .03 < y/o < .4, but it is not possible to 

establish this point with any precision because of the variation of u' 

outside the sublayer. A comparison of I.aufer' s pipe data with similar 
theoretical calcula. tiona is shown in Figure ll(b). In both cases the 

theory correctly predicts the total extent of the sublayer, and also 

the fact that there is a rapid decrease of u•/u• 1 close to the wall. 

On the basis of these calculations, we feel justified in identifying the 

viscous region in the theory with the sublayer in the experiments. On 
the other- t~d, the rise in fluctuation level entering the sublayer is 
much greater than the small rise found in the theory. It should be noted 

that by y/o = .01, the ratio ul/Uw which is a measure of the relative 
magnitude of the convective terms that r~ve been neglected is approximately 

.6, increasing to .75 by y/o = .035. Thus the agreement between theory 
and experiment ought to be better near the wall. 

As shown in Figure 10, there is a marked change in the spectral 

distribution approaching the wall. Most of the energy is taken from the 

largest scale motions resulting in a fairly flat spectrum close to the 
wall. One spectral measurement was also made by IQ.ebanoff at y/5 = .0011, 

de~p in the sublayer. These measurements are a1 so shown in Figure 1-0 

where they can be compared with the calculated spect~~ for y/5. = .0011. 

Qualitatively, the measurements confirm the expectations of the theory. 
However, there is a significant difference in magnitude between theory 

and experiment at y/8 = .0011. A scmewhat different way of applying the 

theory suggests itself. 

Since we expect 'theory to be better near the wall, we can calculate 

the spectra in the sublRyer based on the experimental spectr~ at 

y/o = .0011 rather than the spectrum outside of the sublayer. That is, 
. 2 

using Figure 9, the variation of c1 /2 with f is chosen so that the 

theoretical and experimental spectra coincide a.t y/o = .0011. Then the 
corresponding spectra can be computed at other values of y/5. The results 
are shown in Figure 12 and the corresponding variation of u '/u '1 is shown 
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in Figure ll(a). Here of course, u•/u• 1 for theory and experiment have 

been set equal at y/B = .0011. The theoretical variation of u'/u' 1 
is 

now in much better accord with the experiments in the inner part of the 

sublayer, at least up to y/B = .005. Beyond y/8 = .005, the theoretical 

curve rapidly departs fran the experimental data with the theory rising 

to a much higher value of u' outside the sublayer. 

A comparison of the experimental spectrum at y/B = .05 and the 

theoretical spectrum at y/B = .005 (Figure 12) indicates that the higher 

fluctuation level at y/B = .005 is due to an increase in the energy in 

the large scale eddies. This is consistent with the theory in that at 

y/B = .005, all frequencies above f = 600 c.p.s. should still be outside 

of the viscous region. Therefore it seems probable that the spectra 

shown in Figure 12 are a better representation of the spectra close to the 

wall than the spectra in Figure 10. 

~ 
While it is possible to determine the variation of u in the viscous 

region without specifying the way the disturbance energy varies with the 

angle Q, a knowledge of the three dimensional character of the field is 
2 

necessary to·determine v • Suppose we consider the disturbance velocities 

uQ ~nd vQ associated with an oblique disturbance at angle Q. Since 

equations (5) and (7) are identical in form and ! ~ = (! ~) tanQ, the 
p az p ax 

relation wQ = u9 tanQ holds throughout the viscous region. We can then 

readily find 

so that 
c 2 2 

vQ
2 = ~ (+) [ l + tan

2
Q] T(Y) 

uw 
(9) 

where T(Y) ={ ( l-2e -Yeas Y+e -2Y) +2Ye -Y(cosY - sinY)-2Y+~} 
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Here CQ is the magnitude of uQ at the edge of the viscous region. 

Since the problem of properly accounting for the distribution of 

the oblique disturbances will not be considered in this paper, we are 
? 

not able to compute v~ from the theory. 

However, some remarks about the application of the present theory 
9 

to the determination of the v~ field can be made. The factor f in the 
2 2 

equation for v shifts the v spectrum to higher frequencies as compared 
~ with the u spectrum. T.his filtering action is a fundamental aspect of 

~ . 

the response of the sublayer to the u- fluctuation field. Whereas the 
~ c 

one dimensional u fluctuation field decreases monotonically from f = 0, 
2 the v spectrum at the edge of the sublayer should exhibit a maximum. 

- -- 2 - -That is, the v field close to the wall may have a preferred wave length. 

There are two further difficulties in the theoretical determination 
~. - --- - - .. . 2 of v which should be mentioned. In order to compute the total v , the 

integration would have to be carried out to frequencies greater than 

300 c.poso This cannot be done in a satisfactory way for the following 

reasonso First the variation of U with frequency at the higher frequencies w 
is not lmown. Second a basic limitation is imposed by the form of dis-

turbance assumed in the theory. We have assumed that for a given frequency 

viscous region can be neglected compared to the variation inside the very 

small viscous region. Since the thickness of the viscous region 5 is 
s 

aivP.n hv ~ = o(~fv ,) the ratio of the eddv" scale ~n ~ is then o---- -~ -s ~ -- -s ... u 
~~~ s 

L At f = 300 c.p.s., s;: ~150. Above 300 cop.s., U .. must necessarily 
u w s 

decrease below .8u1 , but there are insufficient measurements to establish 

the variation of U .. _,. with f. (This point will be mentioned again in 
,.-

discussing ~he WRll pressure fluctuations.) Suppose we adopt the artificial 

picture of an eddy of scale L, travelling along the wall with the average 
7 

velocity of its center located at y = L/2. Then for f = 5.5x10J, 

L/8
8 
~ 25. This guess suggests that while L/5s will decrease with 
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increasing frequency, it may still be large enough. However, at say 

y/8 = .oo8, for a frequency of 5.5x103, the distance from the wally 

is of the same order as the eddy scale L and it is obvious that the 

vGriation of the perturbation velocity outside of the viscous region 

would have to be taken into account. Accordingly, the theo.~:-.f may have to 
2 

be limited in its application to the v spectra below f = 300 c.p.s. 

We also find that the determination of the shear stress depends on 

a knowledge of the distribution of oblique disturbances. According to 

the simplified theory 

to:=\ - i ~1=+~;:;===== 
\ u.v 'g - L- Re { g(y) h*(y)} from which we obtain 

,., "\ 
\.LV} 

r.::;, - r, .._ +An 2o 1 CQ 

2 

..;;;; Lr_P-f,v_ )] 
\U.VJg- ""l-'- ' -..-.., J 2 U . 

w 

with S(Y) = [l-2e-YcosY+e-2Y-2Ye-YsinY] 

We recall that 
""-- ~-oul ov1 v = v1 + v2, where "dj{ + ey = 0 

Ou2 dv-2 
and ~ + ~ = 0, where we have set v1 = v? = 0, at y = 0. At the 

OX O:J 
edge of the viscous region for any frequency, u2 - 0, and v 2 - constant. 

If we designate the constant by v2 00 , then the shear stress 

of the viscous region is due to the coupling of u1 and v
200 

• 

function S(Y) is shown in Figure 13 together with 
I~ I I"') ' 

V Uc: / ( C
1 
c/2 ) • 

\ ...._ I 

The 

It is evident that in the inner portion of the viscous region the 

relative ~~ri&tion of u' and uv with y for each frequency component is 

similar to the overall variation of u' and uv shown in Figure 7. The 

increase in the shear stress lags behind the increase in the fluctuation 

level. In both experiment and theory, at the peak of the u' fluctuation 
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uv is .7-- .8 of the shear stress outside the viscous region. However, 

the magnitude of U:V given by the simplified theory is definitely too 

low. This can be shown in the following way. 

Sufficient data are given by Klebanoff to calculate the spectral 

variation of uv/u'v' at y/B = .05. The results of the calculations are 

shown in Figure 14. For comparison, the variation of uv/u'v' inside 

the viscous region according to the simplified theory is shown in Figure 

15. Apparently the correlation coefficient does not reach high enough 

values in the viscous region at least at the lower frequencies. The 

convective terms that have been neglected in the simplified theory ought 

to play a significant role in controlling the phase angle between u and 

v. Therefore this deficiency of the theory is not surprising. 

Again the factor~ shifts the uv spectrum to higher frequencies as 
2 2 compared with the u spectrum but not as much as for the v spectrum. 

Consequently the high frequency limitations on the theory that have already 

been discussed should not be so serious. But in any case, a computation 

of uv would have to account for the three dimensional nature of the dis­

turbance field. 
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6o MICROSCALES 

Important changes in the dissipation derivatives or microsc&les 

occur on entering the sublayer. Here we will consider two of these 

derivatives vrdch can be discussed, at least to a limited extent, using 

the simplified theory. The longitudinal microscale can be written as 

(11) ~)' 2 1 (' < .. *c >} ( dX = ~"< ~ Re { h y). h y = (C 2/2) 
1 

While there are no data in general for the variation of the dis­

turbance velocity U with f above f = 300 c.p.s. a first guess for this 
w 

variation can be made at y/8 = .05. For seps.ration distances S .5 em 

the autocorrelation and longitudinal correlation curves of Klebanoff 

appear to coincide. This would suggest that Uw = U.e for L = .5 em. or 

f ~ 2x1.03 c .p. s. Previous1y, we have set an upper lim.i t of f = 300 

c .p.s. for Uw = .Bu1 • We assume then that the disturbance velocity varies 

linearly from .8u1 at f = 300 to U = U.£ at 2000 c.p.s. Above f = 2000 
.... w B au- 2 -

c .p .. s., Uw ia set equal to U ... Integrating, we find ---,- (~) = 5.8 
X, u - --

1 
which compares with a ~-lue of 5e5 from the experimento Deep in the 

~ 
sublayer the experimental value for (di) increases by about a factor 

o:t 2, but the uncertainty about the variation of U with f is too ts-L-eat 
w 

to proceed with RnY theoretical calculations in this regiono 

The microscale transverse to the wall can be written as 

~ 1 (I ,* l 
(~) = 2 Re~ h (y).h (y~which becomes 

Vf" L ...,J 

2 13 
~ 2~t cl -2~2v Y 

(12) (dY) = v (2) e • Outside the s~layer, at 

y/8 ' .05, we have assumed a form of disturbance where ~ = O, where in 
~, ey 

reality ~ is small but not zero outside the v~scous region. The 
oY ~2 ~ 

experimental variation of ~ (ey)e- is shown in Figure 16. Approaching 
2U

1 
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the wall, there is a very rapid increase in the gradient normal to the 
~ wall. A rapid increase in {-ey) is also predicted by the theory. T11 

+>--+ .................. .::a.r ....... .._,.. ............ +.r .... - /,1')\ I~.,..,,, 'L.. ... - ____ .. ___ -..L .,L,_ ____ ,, 

.l.a.\,; u, a,\,;\,;U.l.-U.J..L.Le!> uU cqu.a.\.I.LUU \ .J..C.. J, \ "dY' WJ...J...J.. Ut: l:l. u.Jlj,.JU.JD.Wll l:l.v -vne Wa.J..l.. 

Calculations have been carried out at several points in the inner part 

of the sublayer based on the measured spectrum at y/8 = .0011, and the 
,..~Qn1 +.Q g,-.~ Qnn't.m in li1i a11,..A 1 t:. ..LT+v ..Li ~ f=",.rf..._npn+v +'ha+ +'h .... ~-'-.,..,., ".P.r .... .::a .&-\.. ...... __ _ ..._ ..... ...,.....,._,._..,a.J '-"".a.'- ...,..,..,""'",. ........... ..&.:.a.'!)~'- ...a..'-'• - - --- u.L.I.QoV ll.l~ D..&.I.UJ:I...L~.L..LCU ""'Ut::U~~:f 

- . . . . - - - ~~ - /_ ---- --una.erest:una. te s tne va.Lue or ( ~ J at y 1 5 = • 005, the inner lim! t of the 

experimental measurements. A possible reason for this discrepancy can be 

suggested. The la.rge gradients in u in the simplified +.heory are confined 

to the region very close to the wall. Experimentally, as shown in Figure 

ll, substantial gradients in u are found over a much greater extent of 

the sublayer. We might anticipate that the simplified theory woul.d 

'
au,2 -

1H' .. tnP-,.. ... e..,Q+.i!!".B.'tf~ - a'Ll'ICI,r .P,...nw~ +'ho ,,.,.,.1 1 ---- ------ 'ow' ~"~J ·~~ u~ .... "~~· 

The much greater experimental value of (~)2 as compared with (~)2 

does not reflect a distortion of the small scale eddies. For instance 
I .~ 

at yf8 = .005, the theoretical spectrum for {~)- shows that practically 
~ oy 

all the contribution to (~) comes from frequencies < 300 c.p.s. 
V.J 
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7. THE PRESSURE FIELD 

Extensive measurements of the pressure fluctuations at the boundaries 

of turbulent flows have been made by Willmarth (1958,1959). He found that 

the major contribution to the pressure fluctuations comes from large scale 

fluctuations. Of particular interest, his space-time correlation measure­

ments show that the pressure pattern is convected downstream with a speed 

of • 82u1• This observation is in good agreement with the present theory 

where the large scale fluctuations move downstream at the mean velocity 

of the middle region of the boundary layer. In fact measurements of the 

wall pressure field may provide a means of experimentally establishing 

the variation of disturbance velocity with frequency for the higher fre­

quencies in the sublayer. Corcos and Winkle (1960) have found that by 

making a spectral resolution of the longitudinal space-time correlation 

a functional relationship between convective velocity and frequency can 

be found. As we would expect theoretically the higher frequencies are 

convected more slowly than the low frequencies. However, theoretical cal­

culation of the spectrum and the magnitude of the pressure fluctuations at 

the bo1.mdary layer is another matter. 

The pressure fluctuations in a turbulent shear flow may be much larger 

than in a field of isotropic turbulence at comparable turbulent fluctuation 

levelso This is the case near the edge of the laminar sublayer in a turbu­

lent boundary layer. Very large pressure fluctuations are associated with 

the linear ter.ms in the equations of motion. Just outside of the sublayer, 

retaining all the linear ter.ms, equation (1) becomes 

(13) 

The fluctuation field at the edge of the sublayer is now represented by a 

superposition of Fourier components. Using the same notation as in the 

previous sections, we can write equation (13) as 

(
u 

. d_! 

P = P u { h(y)~[l - u.e J - g(y) u,Jl 
1 w u ik dy Jr 

W X 

i(k x-~t) 
e x 
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....,. . ~ 
Then the spectral variation of p-/p~ is given by 

+ 

'1'!'1 u2 
~-2 ·w ... 

y 

dU. 

2 
fdu.l 
l;r,fl 
L-tT ..J 

U r l dU .. w ~ -- u -u .- F ..,..p I 'U • ;a.. I j .. ' -
n.a. l " XI j U.J \ .LUJY 

In isotronic turbulence, U = U , ~ = O, and the pressure field due to :r w !: dy 
these linear terms vanishes. At high frequencies, Uw = u1 ~nd the first 
and third te~s do not contribute to the pressure field. However, most 
of the contribution to the pressure fluctuations comes from the low fre­
quencies and these terms are important. The spectral functions F ~and 
F ~ have been measured at the edge of the subla.yer at y/8 = .05, u 

v ~ 2 
and can be directly used in calculating p /P • An additional assumption 

must be ma.de in order to determine F (iu}v • 

For a given frequency component, the shear correlation coefficient 

uv/u'v' = cos ~ where ~ is the phase angle between the u and v velocities. 
If we represent u on the positive real axis in the complex plane, then a 
negative correlation coefficient indicates that v is either in the second 

A · 0 0 or third quadrants since 'P must lie between 90 and 270 • 

to the simplified theory·, 180° .C. ~ "'-..270° throughout the viscous region 
(measuring ~ counterclockwise from u). Assuming then that v lies in the 
third quadrant the correlation spectrum F ~ can be computed using the - \1UJV 
variation of the experimental phase angle ~ with frequency as given in 
Figure 14. That is if 7 is the phase angle between iu and v, then 
cosr = sin ¢, and F r in lv is negative making the third term in equation (14) 

,--,· '"""'2' 2 
positive. The resulting spectrum f'or p fp is shown in Figure 17 where we 
have set Uw = • Bu1 . I:f v lies in the second instead of the third quadrant, 

then the sign ofF {iu)v is reversed although. the magnitude is the same. 
In that case the pressure fluctuation spectrum would be represented by 
the lower boundary of the cross hatched region in Figure 17. The second 
.... ..t3 .. _. .. I. ~ '· 2 , --- ,_ ' 2 " al i 7 uerm OI eqw -c~on J.Lf., v 1 x.x ~ d.U 11 d:y) is so g ven in Figure 1 to 
indicate what might be expected :from the linear theory at the higher 
:frequencies. 
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It is interesting to compare these calculations with the pressure 

spectrum for an isotropic field, where the pressure fluctuations are due 

to the non-linear terms. Batchelor (1956, p. 181) has given an ex­

pression for the pressure fluctuations in an isotropic field in terms 

of the three dimensional energy spectrum. The first step then is to 

find an appropriate energy spectrum for this flow. Since the Reynolds 

number of the tlU"bulence is large, the one dimensional spectrum F ~ 

at y/8 = .05 can be fitted by the function u 

F J! = ~: r-1-+ _____ _ 

L 
where L is the longitudinal integral scale {Dryden 1943). Then using 

X 

the transformation between the one and three dimensional energy spectra 

for isotropic turbulence, the three dimensional spectrum P(k) can be 

computed using Batchelor's theory where 

00 

P(k) dk = p fp • f ~2 
Finally, the one dimensional pressure 

0 

~/2 -spectrum Fp' where we represent p p by p, can be obtained from 

F ... 
p 

=!00 
k 

X 

(transformed to a frequency spectrum). The values given are appropriate 

to an isotropic field with each component equal to u'. It is evident 

that at the edge of the sublayer, the linear terms are the main source of 

the pressure field. 

The present theory provides a clear basis for having a pressure field 

at the boundary. For each frequency component ~(!) ~ 0 across the 

the fluctuation .. components vanish at the wall, 



the pressure field does not vanish with them. This is in contrast to 
~ 2 4 an isotropic pressure field where p fp « (u') • It would then follow 

that the pressure fluctuations at the boundary should be of the same 

order as the pressure fluctuations at the edge of the sublayer. Using 

boundary layer parameters appropriate to lO.ebanof"f' s experiment, Will.marth 's 
.,,....,,, _,.......,_, .. _____ +_ ....,_~ _, ___ ..... _.,.._ 4- ~~- .. -- ,r'l T-.L.----""-~-- .I.'-- -----'----
WCI...L.L W.CCLl:) u.L·cw.c.u l.lb a..1.·c G..LbU l:).UUWll J..ll .r ..L.tsu.L-c ..I.. f • .l.ll ll~ts.L"tio ll.l.llg Wle B!Jt::CllrB. 

T'lf 

in Figure 17, and taking the square root, we have ~ = 19-+ 30, for the 
pU,_ 

linear terms, 3.7 for the isotropic field and 2.4 from Willmarth. It is 

apparent that the wall pressu~e field is much smRller thRn WPRt would be 

expected from the present theory. Perhaps the non-linear terms that have 

been neglected are essential for the computation of the pressure fluctu­

ations in the sublayer. In part this may be because a major contribution 

to the pressure field comes from the lowest frequencies and at these 

frequencies the non-linear terms are relatively more important. 
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8$ TliRBUIF.l\lCE PRODUCTION 

A good deal of significance ha.s been attached to the experimental 

observation that the flow of turbulent energy from the mean flow to the 

fluctuating field reaches a maximum in the subla.ye:r. T'-.u.is observation 

has suggested the following physical picture. Adjacent to the wall, there 

is a l.amii"..ar flow. Moving out frOlil the wall a region of insta.bili ty 

develops because of the high disturbance level of the turbulence in the 

boundary layer. Along the outer edge of the n lam.:tnar flow:~, tra.nsi tion 

to turbulence occurs, producing a region of intense turbulence and of 

cou.rse "tu1·bulence productionn. Fim,1 1y going still further from the WRll; 

the flow settles down to a reasonably well behaved f~y turbulent flow. 

In terms of the theory given in tr..is paper, the peak in turbulence 

production does not suggest such a physical model. Furthermore if we 

start with the condition that the total shear stress for the mean flow 

be constant across the sublayer, then we can readily show that there will 

be a peak in turbulence production where 

The 

dU 
- p uv = J.l dy 

total shear is - p uy + = 1' w 

The turbulence production (Pr) is given by 

( ~ dU . - II (·dU·} dU Pr)=- p uv- = (-r ,.... -
dy w dy dy 

Then d ey (Pr) 

'r 

o, 

dU w 
and we have i..i. dy = 2 for maximum production. This result is conf'inned 

by the experiments of Klebanoff' and Laufer. Thus while the region of 

maximum turbulence production is important for determining the structure 

of the turbulence, it need not be given any phenomenological significance. 

Generally speaking in the fully developed part of the boundary layer, 

flows from the mean flow into the large scale eddies. At 
~ 

y/5 = .05, from Kleba.noff, 70% of the shear stress is found between 



0 < f < 300, which compares with Bo~ of ~ below f = 300. This T 
dU w 

situation is altered in the sublayer. At the point where ~ dy = ~ 

the loss in turbulent shear stress has came from the large scale eddies. 

This means that the turbulence production goes into ever smaller eddies 

as the wall is approached. Therefore the region of maximum turbulence 

production may not be important in determining the energy balance of 

the large scale, energy containing eddies in the boundary layer. 
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9. IAMIN..A..R-TURBUT-ENT TRA..WSITION IN STRONG TURBUlENCE 

The most satisfactory correlation of the experimental data for 

the Reynolds number of boundary layer transition in strong free stream 

turbulence bas been given by Taylor (1936). Taylor derived his transition 

parameter on the assumption that the fluctuating pressure gradients of the 

turbulence cause ~omentary separation of the laminar boundary layer, thereby 

leading to transition. In recent years, detailed investigations of 

transition have been carried out by Schubauer and Klebanoff (1955). In 

no case do they find any experimental support for the ides that momentary 

separation is involved in the t~~sition phenomer~. 

The flow near the wa.ll of a laminar boundary layer with a strong 

free stream turbulence is in many respects similar to the flow in the 

sublayer of a turbulent flow. The scale of' the free stream turbulence is 

in general large compared with the thickness of the laminar boundary layer. 

The free stream turbulence moves downstream with the free stream flow, and 

therefore at a disturbance velocity much larger than the local mean 

velocities in the boundary layer near the wall. In accordance with the 

present theory, we should expect to find a "sublayer" of the eddies of 

the free stream turbulence in a small region close to the wa.llo The 

neglected non-linear terms, which are of concern in the treatment of the 

sublayer of a turbulent flow, are of no importance in this case. 

The present theory has been applied to the experimental conditions 

given by Dryden (1936). These data are at a transition Reynolds number 

based on the displacement thickness o* of R8* ~ 500, which appears to be 

the lowest transition Reynolds number to be found in the literature. This 

is very close to the minimum critical Reynolds number of R8* = 400 of the 

small disturbance stability curve for laminar boundary layer oscillations. 

Accordingly, it should not be necessary to take into account the amplifi­

cation of the disturbance level in the boundary layer in this case. 
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Liepm.ann, IB.ufer and Liepm.ann (1951) have measured the energy 

spectrum for the free stream turbulence in a wind tunnel under experi-

mental conditions reasor~bly close to those of Dr~den. We estimate 

Lx/u
1 
~ lxlO -:3 for Dryden where Lx/u1 = .9xJ.O-3 for Liepm.ann. 'nlus 

Liepmann' s spectrum can be used to calculate the "sub layer" for Dryden's 

experL~ental pointo It is found trat the disturb~~ces due to the free 

stream turbulence are damped down by viscosity in a "sublayer" approximately 

.15 em thicko The close similarity between the physical picture for the 

sub layer of a turbulent flow and the "sub layer" of the free stream tur­

bulence in a laminar boundary layer is shown in Figure 18. The scale 

corresponding to 50% of the ~ energy is shown in each diagram. It seems 

clear that the physical model used by Taylor, in which the mean boundary 

layer responds to the pressure gradients associated with the turbulence 

is not applicable to the description of the laminar boundary layer in a 

strong free stream turbulence. 

Nevertheless, Taylor's parameter does appear to correlate the available 

experimental data. We would now like to show that by introducing an 

additional physical assumption we can obtain a transition parameter very 

similar to that of Taylor's. No attempt will be made to justify this 

assumption here although it has led to reasonable results in some previous 

work (Lin, 1955, p.90) 

We assume that the onset of transition depends on the relative 

amplitude of the Reynolds stress associated with the turbulent fluctuations 

and the shear in the mean flow. This is, we adopt as a rough criterion 

for the onset of transition, the requirement that 

From the simplified theory, the shear stress outside the "sublayer", is 

of the form 
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Here Uw = u
1

, the free stream velocity. The frequency f can be replaced 

by f = u1/L where L represents the "scale" of the turbulence. Then 
e e 

- P u:v~ p(u•)2 Jv 
./ul.ie 

Now the thickness of the laminar boundary layer at transition is 

Substituting, we have 

2 p(u') 

Finally 1 we obtain 

Taylor's parameter is 

= 

= 

scale of the stream turbulence~ The available transition data are too 

scattered to make it possible to distinguish between a 1/4 or 1/5 power 

variation with xt.JL. From the point of view of correlating the experimental 

data either parameter would be equally effective although Taylor's pa~eter 

is based on the assumption that transition is caused by the small eddies, 

whereas for the new parameter it is assumed that transition is caused by 

the large eddies. 
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10. CONCLUDTiiG REMARKS 

The vorticity field responsible for the turbulent fluctuations in 

a boundary layer or similar shear flow is swept along with the velocity 

of the fluid elements. The velocity fluctuation field associated with 

this vorticity field is altered by the wall in two wayso The effect of 

the boundary cond~tion v = 0 is to increase the magnitude of the wall 

velocity fluctuations u and w in the plane of the wall. T.he induced 

velocity at the wall associated with each element of vorticity is doubled 

by the image vortex element required to cancel v at the wallo This form 

of extends across the bound.a.r.r layer and beyond into the 
potential flow. As a result of the boundary conditions u = w = 0 the 

turbulent velocity fluctuations are directly damped down by viscosity in 

a thin layer, the sublayer. 

The equations of motion for the turbulent velocity and pressure 

fluctuations are applied only in this narrow viscous region. The aim of 

the theory is to sey, in detail, how a known turbulent field dies out to 

nothing at the wallo 

A simplified form of the theory is given in this papero Only the 

leading terms in the differential equations are retainedo Furthermore 

while the th-ree dimensioP~l chR.racter of the fluctuation field is recog~ 

nized and introduced at any early stage the calculations are not carried 

far enough to make the three dimensionality important. 

The same basic approach can be used to develop a more accurate 

description of the sublayer. The linear convective terms can be retained 

in the equations and solutions are being obtained using computing machines. 

Also the influence of the distribution of oblique disturbances on the 

fluctuation field is being explored. It is hoped to report the results 

of these studies in the future. 

2 Calculations with the theory could be applied to such quantities as v 

and uv if the variation of disturbance velocity with frequency at the 

higher frequencies could be establishedo This might be done from space­

time correlation measurements of wall pressure fluctuations. 
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Finally there are related problema in which the present approach 

may be useful. We have already shown that the theory applies to the 

"sublayer" of the free stream turbulence in a. laminar boundary layer. 

A sim11ar approach mi~~t be useful in the description of turbulent heat 

and mass transfer. 
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Figure 8. Assumed Form of Oblique Disturbance at Edge of Sublayer. 
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