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* A THEORY FOR THE IAMINAR SUBIAYER
OF A TURBULENT FLOW

ABSTRACT

The so-called laminar sublayer is shown to be the region where the
turbulent velocity fluctuations are directly dissipated by viscosity. A
simplified linearized form of the equations of motion for the turbulent
fluctuations is used to describe the turbulent field between the wall
and the fully turbulent part of the flow. The mean flow in the sublayer
and the turbulence field outside the sublayer are assumed to be known
from the experiments. The thickness of the sublayer arises naturally in
the theory and is-directly anslogous to the inner viscous region for the
fluctuations in a laminar flow. It is shown that the large scale fluctu-
ations containing most of the turbulent energy are convected downstream
with a velocity characteristic of the middle of the boundary layer.. Thus
Taylor's hypothesis does not apply to these large scale fluctuations near
the wall. The convective velocity found in the measurements of pressure
fluctuations at the boundaries of turbulent flows is in accord with the
theory. Calculations are given for the energy spectra and u' fluctuation
level in the sublayer and other aspects of the fluctuation field are

discussed. It is shown that the production of turbulent energy is a

-

*A preliminary account of this work was presente

d
of the Fluid Dynamics Division, American Physical
1959 at Ann Arbor, Michigan.



maximum where the laminar shearing stress is equal to the turbulent
shearing stress. The linear pressure fluctuation field at the edge

of the sublayer is calculated and found tc be much larger than the

non-linear field. Examining the effect of strong free stream turbulence
on laminar boundary layer transition, it appears that the physical model

underlying Taylor's parameter is incorrect.



1. INTRODUCTION

The laminar sublayer has been a subject of controversy and investi-
gation for mofe than 20 years. The reason for this interest is that the
nature of the flow close to the wall has an important influence on the
heat, mass, and momentum transfer from the boundary. Furthermore,
experiments have shown that the flow of energy from the mean flow to the
turbulent motion is a maximum inside the sublayer. This fact suggests
that an understanding of the structure of turbulence in a shear flow may
depend on an understanding of the flow near the wall.

an1”Z

The original idea, Taylor (1916), was that in a turbulent flow there
ought to be a thin fluld layer next to the surface free of turbulent
motion, a true laminar layer. Studies of the stability of Couette flow
(the flow between a fixed wall and a moving wall) had shown that there
was a critical Reynolds number Re s 300 below which all eddies would die
out. The critical Reynolds number Uh/v was formed using the velocity U
of the moving wall and the separation distance h where v is the kinenatic
viscosity. It was postulated that the flow next to the wall was equivalent
to a Couette flow. The laminsr sublayer thickness bs could then be
estimated by substituting 68 for the separation distance in the astability

analysis.

In 1932, Fage and Townend studied the fluctuation field close to
the surface using an ultramicroscope for following minute particles in
water., They found no evidence of an eddy-free region near the wall. An
interesting discussion of this work is given by Taylor (1932) who examined
the possible connection between special types of disturbances where the
velocity distributions were known and the turbulent fluctuation field
found by Fage and Townend. These experimental results were confirmed by
later hot-wire measurements in air by Laufer (1950, 1953) and Klebanoff
(1954). Instead of being eddy free, the turbulence level, as given by
the ratio of u' the root-mean-square value of the velocity fluctuation in

the flow direction to the local mean veloclty Ug, reached a maximum value



of approximately .4 close to the wall. Also the turbulent shear stress,
as deduced from the mean flow measurements, did not vanish in a thin
region next to the wall but instead varied continuously from zero at the
wall to the level of the wall shear. Thus it has been clear for some
time that a theory of the "laminar" sublayer must account for the fact
that the flow is turbulent all the way to the wall.

There is now a relative wealth of experimental information on the
fluctuation field close to the wall of a turbulent flow. What 1s needed
is a theoretical structure that will provide a rational foundation for
the understanding and interpretation of the experimental observations.
Several recent attempts have been made to develop phenamenological models
for the flow in the sublayer. On the basis of some observations using
dye in water, Einstein and Ii (1956) were led to postulate the periodic
growth and decay of a true laminar region near the wall. An equivalent
model has been proposed by Hanratty (1956). However, in all these cases,
agreement with the measurements of the mean and fluctuation field is
gsensitive to the cholce of critical parameters as well as to arbitrary
and sometimes inconsistent assumpticns concerning the physical processes.
The purpose of this paper is to make a start toward the development of
a theory for the sublayer which follows from the Navier-Stokes equations
without the need for phenomenological assumptions or tinkering with

adjustable parameters.

We have already suggested that the sublayer is only a special part
of the general turbulent fluctuation field in a bounded shear flow. The
aim of the theory will be to describe as far as possible the direct
influence of the wall on the fluctuation field. The turbulent field out-
side of this region of direct influence is assumed to be known on the
basls of the experimental measurements. This knowledge is essential in
the development of the sublayer analysis. Fortunately we need not be
concerned with shear flow turbulence in all its complexity, since only
certain, fairly simple, aspects of such flows are)significant for this

problem. However, some of the simple features have been obscured by



8) to justify the
W

necessary space-time transformation. Our first step will be to show that

this hypothesis, which was introduced to represent the turbulence behind
a grid in a wind tunnel, is not valid in a shear flow especially near a

wall. This analysis will provide a basis for re~interpreting the experi-
mental measurements and will make possible some important simplifications

in the subsequent development of the theory.
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2, TAYLOR'S HYPOTHESIS IN A SHEAR FLOW

Taylor's hypothesis, which has been amply verified for a uniform
low turbulence flow involves two assumptions:

a) The turbulence pattern is convected past the measuring point
with the local mean speed.

b) The turbulent fluctuating velocities are small enough compered
to the mean motion to insure little change in the shape of an eddy as
it is carried past a fixed point.

The use of this hypothesis in a shear flow has previously been
questioned by Lin (1953). Essentially, Lin investigated the conditions
for negligible eddy distortion, and showed that there is "no general
Justification of extending Taylor's hypothesis to the case of shear
flow". He found that unless an eddy component had a scale much less
than the boundary layer thiclkmess, it would suffer significant distortion
due to the mean flow shearing motion while being carried past the measuring
point by the mean flow. However, Lin's analysis did not lead to an
alternate procedure for determining the turbulence scales.

We will show that, in general, assumption (a) cannot be valid in a
turbulent shear flow. The departure from this assumption in a boundary
layer is especially significant near the wall.

Consider a turbulent boundary layer on a flat plate. At any instant
t, the turbulent fluctuation field in a boundary layer can be represented
by a distribution of disturbance vorticity components £, 7, and {
throughout the boundary layer. At the wall the vertical perturbation
velocity v must vanish. This boundary condition can be satisfied by

Now, assoclated with the vorticity at a point P' in the boundary layer,
there is an induced velocity at the point P. The tota; velocity pertur-
bation at point P at any instant can then be found by integrating over
the boundary layer and image system perturbation vorticity fields. The
extent of the region over which the integration must be carried out



depends on the scale of turbulence. If only small scale motions are
present then the region of integration can be confined to the vicinity
of P. There should not be any significant correlation between velocities
at point P and random small scale vorticity at distances from P many
times the scale of the disturbances. If large scale motions are present
then the integration must extend at least over the distances where these

large scale motions are significantly correlated.

A typical one dimensional energy spectrum for the velocity perturbation

u in the flow direction at y/S = .58 near the center of a boundary layer

is shown in Fig. 1, where y 1s the distance from the wall and 3 is the
boundsry layer thickness. If we can assume for the moment that this dis-
turbance field is being carried along by the mean flow in accordance with
Taylor's hypothesis, then the frequency can be converted into a measure

of the space scale L by the relation L = Uz/f where Uz is the velocity of
the local mean flow (we will show that this is justified in the central
region of the boundary layer).

Figure 1 also shows the contribution to the total energy ;§ as a
function of the scale of the motion. It is evident that fully half of
the energy is contributed by turbulence whose scale is more than twice
the boundary layer thickness, as first noted by Townsend (1951). Thus
the velocity perturbation at a point P does not depend significantly on
the vorticity in the immediate vicinity of P, but rather on the vorticity

over an extensive region of the boundary layer.

Since the vorticity travels with the fluid particles, the apparent
velocity with which a disturbance sweeps past the measuring point P may
therefore be substantially different from the local mean velocity at P.
For the large scale motions, this disturbance velocity will correspond
to the mean velocity near the middle of the boundary layer. Therefore
for points P close to the wall, where the mean velocity is low, we would
expect the disturbance velocity to be greater than the local mean velocity;
for points P near the outer edge of the boundafy layer, the disturbance
velocity should be less than the local mean velocity.



The space-time correlation data of Favre, Gaviglio, and Dumas
(1957, 1958) provide a basis for determining whether these deductions
are correct. If F(f) represents the percent of turbulent energy

assoclated with the frequency f, and Taylor's hypothesis 1s satisfied,

3

then the auto-correlatio

¥

1 coefficient R of the u' fluctuation at the
x

points P and (P+x), can be written as
- ©

R, =f F(f) cés {3—’;’5 f] ar

o

vhere R, = Blgl;gkgﬁfl
w(P)

The longitudinal correlation coefficient calculated in this way should
then agree with the longitudinal correlation coefficient directly measured
with two hot wires.

This autocorrelation coefficient has been calculated using the energy
spectrum measured at one of Favre's test points and is shown in Figure 2.
The integration is only carried out to fmax = 1000 c.p.s., but this
includes 98% of the energy. In Figure 2, two additional correlation
curves are shown for which the integration was terminated at smaller
values of the frequency therefore eliminating the contribution of the
small eddies. A frequency of 400 c.p.s. corresponds to a longitudinal
scale of about 2.4 centimeters which compares with a boundary thickness
of 3.4 centimeters. It is evident that the correlation coefficient at
large distances is not significantly affected by the small eddies. We
shall confine our attention to the portion of the correlation curve

determined by the large scale eddies so that R _will be less than b

If the velocity of the disturbance U*, associated with these large
scale eddies differs from the local mean velocity Uz, U& rather than UL
must be used in the formula for computing the correlation coefficient

from the energy spectrum at a fixed point. Thus, at a fixed value of
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Rx the computed correlation curve should be shifted horizontally where

EaY =AMLY

the new horizontai ecordinéte X' = X. Uw/Uz’ Only the porticn of the
curve dominated by the large eddies should be shifted in this way,
since as the eddy size is reduced, the disturbance velocity approaches

the local mean velocity.

One of the figures from Favre's paper (1958) is reproduced in Figure
3, Auto-correlation curves using Taylor's hypothesis and longitudinal
space correlations measured with two hot wires are shown for four positions
across a boundary layer. While there is the usual experimental scatter,
there is a systematic difference between the two sets of curves below
Rx N .4 depending on the location of the measuring point in the boundary
layer. Close to the wall the measured longitudinal correlation curves
are to the right of the calculated auto-correlation curves. Near the outer
edge of the boundary layer, the measured longitudinal correlation curve
is displaced in the opposite direction. At y/s = .24 the difference

between the two curves is lost in the scatter of the data.

As far as they go, these measurements are consistent with the picture
in which the large scale disturbances which contain most of the energy
move down stream at s mean velocity characteristic of the central region
of the boundary layer fluid. At y/8 = .24 in Favre's boundary layer,
the velocity U, is approximately equal to .78 of the free stream velocity
Ul' The horizgntal shift in the correlation curve that would be expected
at y/8 = .03 if the disturbance velocity were equal to .78 U, is also
shown in Figure 2. This shift is approximately the same magnitude as
the shift found in Figure 3. A similar divergence of the calculated
auto-correlation and measured longitudinal correlation coefficients at
large scales has been observed by Klebanoff and led him to remark that
"this divergence glves rise to the interesting speculation that the
large scale motions have their own characteristic velocity different

from the mean speed".
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measuring point P is in general different from the local mean velocity.

Therefore, the customary conversion of experimental spectral measurements
into wave numbers is invalid in a boundary layer anywhere near the wall

Li1LY W =82 LIVELAUW I S2g eaT 3= |9

except for the small scale structure of the turbulence.

In the following sections of this paper, many of the numerical results
will be based on the experimental measurements of Klebanoff. The limited
auto-correlation and longitudinal correlation measurements he made do not
extend to large enough scales to establish a value for the disturbance
velocity of the large eddies with any precision. Accordingly, we shall
use the general information obtained from Favre's data and somewhat
arbitrarily set Uﬁ = .8Ui for the large eddies. This is the value of the
mean velocity at y/5 = .27. We will also need to establish an approximate
upper limit to the frequency range to which this disturbance velocity
applies. Klebanoff's auto and logitudinal correlation measurements indicate
that for Rx < .5, the expected shift of the longitudinal correlation curve
with respect to the auto-correlation curve will have occurred. Calculations
for Rx as a function of frequency at different separations are shown in
Figure 4 for y/& = .05. If we consider the curve for x/Uz = 1.8, it is
evident that the frequencies > 300 make a minor contribution to the
correlation coefficient. That 1s, the frequencies between 300 and 1000
only produce a moderate oscillation about the final value of Rx = .43, A
frequency of 300 c.p.s. corresponds to an eddy scale of L = U&/f =4 cm or
approximately (1/2)6. (Frequencies between O < £ £ 300 c.p.s. account
for about 80% of the fluctuation energy). We will therefore limit the
specification Uﬁ = .8Ul to frequencies from O — 300 c.p.s. For high

frequencies, or smal

ct

with the local mean velocity. A very crude guess for the dependence of

o

disturbance velocity on frequency at y/& = .05 will be given in the section
d

on the

12



mentioned in the section on the pressure field, it may be possible to
establish the variation of disturbance velocity with frequency for the
higher fregquencies from the measurements of wall pressure fluctuations.
But at the present this information is not available and this lack of
knowledge will necessarily limit certain possible applications of the

13



3. THE FLUCTUATION FIELD OUTSIDE OF THE SUBLAYER

When the experimental measurements themselves are examined, they
reveal a rather striking similarity of the energy spectra at different
points in the fully turbulent part of the flow. The normalized energy
spectra across a boundary layer as measured by Klebanoff are shown in
Figure 5. Over the inner half of the boundary layer, in the region free
of intermittency, the spectra for the energy containing eddies appear to
agree within the experimental error. Differences in the high frequency
end of the spectra would be revealed by using a log scale rather than a
linear scale, but these portions of the spectra provide a negligible
contribution to the total fluctuation energy. The same results are
found for pipe or channel flow spectral data. This similarity of the
energy containing portion of the frequency spectra is just vhat would
be expected from the previous analysls since the disturbance velocity
for the large scale eddies should not vary significantly across the shear
flow. At each point across the boundary layer, the hot-wire probe
responds to disturbances associated with the same large scale eddy pattern
and so the spectral distribution should be similar,

On the other hand, the fluctuation energy varies from point to
point. Figure 6 shows the variation of the root-mean-sqparé fluctuation
velocities u', v', and w' across the boundary layer. It can be seen that
the u' fluctuation level increases by a factor of 2 between y/5 = .6 and
y/b = ,05., Why does the fluctuation level vary if we are measuring

perturbations due to the same large scale eddy system?

A simple explanation for these observations can be suggested by
considering the effect of the wall on the perturbation field. If no wall
were present, the induced velocity field associated with vorticity at P
would be symmetrical about P'. When the wall is present, the induced
velocity field of the image vorticity for P' must be added to the field
directly due to P'. This will cause an increase of the induced velocities
between P' and the wall and a decrease of the induced velocities beyond P',
This image effect may be the reason why the fluctuation level associated

with the same large scale vorticity increases towards the wall.

1L
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So far we have managed to avoid specifying the extent of the
sublayer. This has been a somewhat ambiguous question and has been
subject to different interpretatioﬁ by different authors. In Figure
7 the variation of the u' fluctuation and the turbulent shear stress
puv near the wall are shown for a boundary layer and a pipe flow. The
variation of puv has been calculated using the measured mean velocity
profile and the fact that the total shear stress is essentially constant
near the wall, As is customary, the dats are presented in terms of the
friction velocity U& =, /Tw/p where T is the friction at the wall and
p 1s the density. In both cases, the peak of the u' fluctuation is found
at U_.y/v = UT.r/v = 15-20. Some authors specify U y/v ~ 12 as the edge
of the laminar sublayer and consider the region 12 < UT.y/v < 60 to be
some sort of transition region between the laminar sublayer and the fully
developed turbulent part of the flow. The fact that the mean velocity
profile is nearly linear up to U&.y/v » 12 seems to support this
definition. On the other hand, at UT.y/v & 12, the turbulent shear stress
is still only about 1/2 of the levelvof shear at the wall, and only
asymptotically approaches the wall shear value somewhere around UT.y/v¢3 100 or

UTr/v R 60 according to Figure 7.

Viewing the region near the wall as a whole we can describe what is
observed in the following general terms. Outside of the wall region, the
turbulent shear stress and the u' fluctuation vary slowly compared to the
varistions that are found in the wall region. Entering the wall region
the u' fluctuation first rises. In Figure 7, the fluctuation level is
normalized in terms of the fluctuation level at the edge of the wall region.
(It is more difficult to identify the edge of the wall region for the .
boundary layer case. This is because the variation of u' outside the wall
region is much larger in the boundary layer case than in the pipe flow).
Apparently, the fluctuation level Increases more in Klebanoff's experiments
than in laufer's case. However, the fluctuation level in the sublayer
should probably be compared with an extrapolation to the wall of the u!'

variation outside the sublayers This would make a significant difference

15



in the case of the boundary layer and would suggest that the rise in
fluctuation level in the boundary layer is not as great as it first
appears to be. Approximately at the point where u' starts to rise, the
shear stress starts to decrease slowly. The rapid decrease in u' is
confined to the inner 25% of the wall region. In the theory given in
this paper, the sublayer i1s the entire region between the wall and the
fully developed turbulent part of the flow. There is no theoretical
distinction between an inner "laminar" sublayer and a transition region
although the rapid changes do primarily occur in the inner portion of
the sublayer.

The physical picture of the large scale eddies containing most of the
turbulent energy moving downstream at a velocity of the order of .8 of
the free stream velocity Ul is reminiscent of the physical picture of
oscillations in a laminar boundary layer. In that case typical waves
move downstream with a velocity U & (2/3)Ui and have wave lengths of
the order of (2-5) . 1In the equations of motion for the perturbations
in & laminar flow, the term representing the action of viscosity is
negligible except in two limited regions of the boundary layer, the
critical layer and the inner viscous layer close to the wall. We shall
show that this inner viscous layer for fluctuations in a laminar boundary
layer corresponds directly to the sublayer for a turbulent flow. Thus
the sublayer is the region where the turbulent fluctuations in the shear
flow are damped by viscosity.

The existence of a "dissipation layer" near the wall was first
suggested by Townsend on the basls of a study of the turbulent energy .
balance in the boundary layer. He concluded that the bulk of the turbu-
lent energy dissipation takes place by direct viscous action on the large
eddies in a layer which he thought was "most probably in contact with the
laminar sublayer". In the present theory we find that the sublayer itself
is a dissipative region and that its structure is primarily determined by
the large scale fluctuations in the turbulence.

16
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The equations of motion for the

EQUATIONS FOR THE FLUCTUATION FIELD

fluctuations in a turbulent field

(Iin 1959, p.246) are obtained by subtracting the well known Reynolds

equation for the mean flow from the complete Navier-Stokes equations.

We restrict our attention to a steady flow in which the mean velocity

only has a component parallel to the
and V = W = O, where U, V, and W are

motion.

flow direction, so that U = U(y)

the three components of the mean

We will also asggme that the statistical properties of the
turbulent field such as u &and uv only vary with y.

These assumptions

are reasonably well satisfied by a two dimensional boundary layer flow

or a pipe flow. Then if u, v, and w

are the disturbance velocities the

components of total velocity are u = Utu, v =v, W =w, and the pressure

is D= P + p.
the fluctuating field

(1) %% + U'%% + v %g +u g; + v g; +
(2) g% + U'gg +u g% + v g; +
(3) g% + U’%¥ +u g; +v %; +

(4) and the continuity equation g% +

We can then write down the three equations of motion for

wg%=-%g§+vvzu+%m)
W g% = - %‘g% + v §72v + gy»(;g
wgg=-%g§+vv w+§ry(?v')
%+%=a |

In each equation the mean term on the right 1s the average of the

three non-linear terms on the left,

We are in fact going to neglect these

non-linear terms but some justification for this step is certainly required.
For instance the term g; (uv) is zero at the wall and zero outside the

sublayer, but reaches a peak value in the inner portion of the sublayer at
about U_ y/v & 10, (See Figure 7). We can make this justification a

posteriori by finding a solution without the non-linear terms and then
comparing the magnitude of g; (u¥) with the linear terms that have been

retained.
term g% is the leading linear term.

17

At this point we will state the results.

The acceleration

(v
At the point vhere U, y/v =10, -é;—l




/ Su 2
is about 15% of (35) . At the same point the 1 o
terms such as U(Ju/dx) are about 40% of du/ Tt 1s evident that the
non-linear terms are significant though smaller than the linear terms.

When the balance of terms is examined over the frequency spectrum it is

—‘
,...
‘fD
®
H

convective

found that at the low end of the frequency spectrum, at say 10 c.p.s.,
the maximum value of~—1§:El may be comparable in magnitude to the terms
that are retained. But linearization of the equations appears to be a
reasonable first step towards a theory. Of course the non-linear terms
would be essential in any theory of turbulence. But here the turbulent
field at the edge of the sublayer is assumed to be known from the experi-
ments. Our purpose is merely to represent the fluctuation field between
the known field at the edge of the sublayer and the wall.

The fluctuation field can now be represented by a superposition of
Fourier components, each camponent of which can be separately analyzed.
The type of disturbance that will be used will be based on our interpre-
tation of the experimental data. As we have already suggested one result
of the analysis will be that the terms containing the viscosity are only
significant in a narrow region near the wall. It is this reglion where
the viscous terms are important, that we identify as the sublayer of the
turbulent flow. It should be emphasized that we are not concerned with
the energy balance of the frequency components as is the case for the
scillations in a laminar flow. No stability calculations are

o]
involved in the description of the sublayer.

18



5. SIMPLIFIED THEORY

A field of turbulence can be represented by a Fourler superposition
of elementary plane vorticity waves. The velocity vector associated
umber lies in a plane p
wave vector. On the other hand, we have previously shown that most of the
fluctuation energy near the wall is an induced field arising from vorticity
distributed throughout the boundary layer. The type of elementary dis-
turbance that is appropriate then depends on the nature of the large scale
vorticity in the boundary layer, and not on the vorticity field at the
edge of the sublayer.

Physically, one might expect the shearing action of the mean flow to
stretch out vortex lines in the direction of the mean flow. There might
uen\Ee a pre 0 ~tices nearly parallel
to the wall. Since the root-mean-square w' fluctuation is approximately
.7 of the root-mean-square u' fluctuation (Figure 6), some type of "three

have chosen to assume a simple form of oblique disturbance at the edge
of the sublayer & as shown in Figure 8. We might imagine this disturbance
1ormal to the direction €

a ith this disturbance is in the § direction,
rather than normal to the & direction as would be true for a shearing wave.
The velocity q varies as q = Q cos (2n/A. )&, where w/u = tan 6. As shown

£
ris v

energy containing eddies is large. Under these conditions, if we consider
a disturbance of a particular wave length, the variation of the perturbation
velocity with y in the vicinity of the sublayer ca

to the variation inside the sublayer.

bance 1s carried downstream with the vel y U

This oblique dis
in the x direction. Thus the wave length in the x direction xx = Xg/ cos 9.

Introducing complex notation, we can write with B = 2xf.

[
O



( i(x .x-pt))
u=Re dce ¥ {
L J
[ 1(x .x-pt) )
w = Re ﬂBle B r
L J

vhere U_=g/k_, tan © = B / C, and Re stand for Real Part. Similarly
W X 1 "1

the fluctuating pressure field can be represented as

I 1(k .x-Bt) l
p = Re<p.e ] where Pl is complex.

e rl
Inside the sublayer, we have
( 1(kx.x-st)\
u = Re<{ h(y)e e
L J
i(kxox-Bt)
w = Re< k(y)e
( 1(kx.x-et)1
and v = Re tg(y)e _
with u=v =w=0at the wall y = O.

Now close to the wall where u — 0, and v — O, the convective terms in the

equations of motion can be neglected. For instance, in the sublayer

du/dx = ik .u, 3u/dt = - 1pu, so that
5
_ U
[ 9uj U, °
- 1
| otl

Also from the continuity equation % il il with

y
M _ ik u, X o ik .w.tand, so that v = - [ i
X Tx’ 3z Tx ’ J

o}
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Provided the angle © does not approach 90°, v = o( Ikx.u.y ).
This limitation on © does not appear to be significant. We are interested
in the u and v components at the wave number kx as obtained in a one-
dimensional spectral analysis. The wave number for the oblique disturbance
kg = kx/cos © so that k§ —- 0 as © —-900. Since the energy spectrum for
the fluctuation field falls off very rapidly with increasing frequency,

the high frequency oblique waves where O---'9Oo Probably make a negligible

contribution to the u and v fields. With %g 0 (g), we have
U

= o)

lWIT B U,/

ot

Since Uﬁ N .8Ui for the large scale eddies the convective terms can be
neglected for y == 0. As we shall show later, the thickness of the viscous

region for a disturbance of frequency f is

B 2ﬂ)2 f.v
Oe//—- Then / ——§ = 0 ﬁ———————g . For any frequency of
oy

UW

of interest only the derivatives with respect to y need be retained. The
equations of motion can then be simplified to the following form

7=\ au . 1 aP B aeu
G) Fvs:m = vV
dy
v . 1dp v
© %55 = V7
ow , 1 Jdp ng
(7) 5 + 55 =V =7 together with the continuity equation. It is
oY

evident that to this order of simplification there is no coupling between
the u and w fluctuation fields and the u component can be solved for

separately.

21



A e & e

ARalll ui‘ er wne
(o]

approach 90 , it can now be shown that the terms in equation (6) are of

higher order compared to the terms in equation (5). For instance

|9V
g% =-1pv = 0 [(kx.a.g)(l + tan‘?g).y] 80 that:g-gl

0 (k, .l)(1+tan o)
ldtl

or a maximum of O(kxas) (provided © is reasonably limited) at the edge of

the viscous region.

25 x 10° cm/sec, k& = 3.3 x 1078

at £ = 300 c.p.s. This merely expresses the fact that near the wall v

is of higher order than u. It also follows that 22'¢<22-.

An important consequence is that the pressure field does not vary
n. We have,

1 1
% (E %) = ikx E % and since — a 0(5—)
d (1 dp 2 _u 2
= = . 1 .
S D) - ok .pp (L+ten 0).y)
3 13, e
o S oo/ ,. 2 |1+tan“o) 2
or finally m——— = 0 \kx s - “)
3‘;\35)
Similariy it can be shown that
I 211+t ol 2
"EZ = 0 (k, — . ¥)
5 | 3¢ |

Thus the pressure field associated with the disturbance is constant
through the viscous region, since kx SS << 1,
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To find the solution to equation (5), we represent the disturbance
as the sum of two camponents, where u = ul+ Uye The component u
represents the disturbance velocity before account is taken of the direct
wall effect. As previously discussed, we assume that the variation of
uy with y in the vicinity of the viscous region is negligible compared
to the variation of u that occurs inside the viscous region. Since the
convective terms have been neglected uy is not affected by the mean flow
and is constant throughout the viscous region. u, represents the dis-
turbance velocity component directly associated with the wall friction.
Thus, at the edge of the viscous region U, -0, and at the wall u, = - u -

If we write equation (5) as

N7

oyt w) 4 5 O (uy+ uy)
3 rx TV v

then the equations for and u, throughout the viscous region are
Y 2

o
——+iia£ = O
ot p OXx
2
du, . ) u,
ot ~ " 2
- oy

1
where as we have already shown, g-s- does not vary through the viscous
region.* Substituting

11 v=ﬂ+\
_ ) -I-\I-Lx.‘\. PUI
u, =h, (y)e
" iB}IQ

we have h2 + — — = O which has the simple solution

2
([ -5 v 1 .x-pt)
so that finally u =u, +u, = Re ILcl Ll-e e
¥ Thls same separation of equation {5) was used by Prandtl (1921) in
iscussing oscillations in a laminar boundary layer.
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It is evident that the region of rapid change in u is O(N-f-') as
previously asserted so that the extent of the viscous region is different
for each frequency, decreasing in size as the frequency is increased.

In order to compare these results with experiment, we calculate

=z 1 *
u” = Re h(y) h (yX. Introducing the dimensionless variable

_[B
Y '/Fv y, we f£ind

-
(8) 'iE?" = 1-2e Ycos y4e Y,
C, /2

This function is shown in Figure 9. For each frequency component
:12/(012/2)—- 1l at YN 5. The rapid decrease of ? occurs for 0<Y¥< 2.

Entering the viscous region F/ (Clz/ 2) first increases reaching a peak
value at Y = 2.2. Examination of the details of the solution shows that
this increase of disturbance level entering the viscous region arises
because near the outer edge of the viscous region w, and u, have an in-
phase component instead of being 180o out of phase as at the wall.

Figures 5 and 9 can now be used to calculate the variation of the
root-mean-square fluctuation level u' near the wall. According to
Figure 5, the energy spectra are similar between y/5 = .05 and y/8 = .58.
Then the disturbance energy for each frequency outside of the viscous

region is given by setting 012/2 =P at y/& = .05 from Figure 5. For
u

each frequency, the variation of :2 with y is obtained from Figure 9.

The u spectra for various values of y can then be computed, and are shown
in Figure 10. As y/ ® increases, the spectra approach the spectrum outside
of the sublayer. Integrating for each value of y/5 and taking the square
root, we finally obtain the variation of u' near the wall. In Figure 11l(a),
the ordinate u' /u'l is the ratio of u' inside the viscous region to the
value of u', outside. According to the calculations, u'/u’ 1™ 1 at about

1
y/8 = .035. The rise in the experimental u' fluctuation level near the
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wall appears to start for .03 < y/& < .4, but it is not possible to
establish this point with any precision because of the variation of u!'
outside the sublayer. A comparison of Iaufer's pipe data with similar
theoretical calculations is shown in Figure 11(b). In both cases the
theory correctly predicts the total extent of the sublayer, and also

the fact that there is a rapid decrease of u'/'u'l close to the wall,

On the basis of these calculations, we feel Justified in identifying the
viscous region in the theory with the sublayer in the experiments. On
the other hand, the rise in fluctuation 1evei entering the sublayer is
much greater than the small rise found in the theory. It should be noted
that by y/8 = .01, the ratio UE/UW which is a measure of the relative
magnitude of the convective terms that have been neglected is approximately
.6, increasing to .75 by y/& = .035. Thus the agreement between theory
and experiment ought to be better near the wall,

As shown in Figure 10, there is a marked change in the spectral
distribution approaching the wall. Most of the energy is taken from the
largest scale motions resulting in a fairly flat spectrum close to the
wall. One spectral measurement was élso made by Klebanoff at y/& = .0011,
deep in the sublayer. These measurements are also shown in Figure 10
where they can be compared with the calculated spectrum for y/ﬁ.; .0011.
Qualitatively, the measurements confirm the expectations of the theory.
However, there is a significant difference in magnitude between theory
and experiment at y/& = .00ll. A somewhat different way of applying the
theory suggests itself,

Since we expect theory to be better near the wall, we can calculate
the spectra in the sublayer based on the experimental spectrum at
y/8 = .0011 rather than the spectrum outside of the sublayer. That is,
using Figure 9, the variatidn of 012/2 with £ i1s chosen so that the
theoretical and experimental spectra coincide at y/8 = .001l. Then the

vi ¥

(]

corresponding spectra can be computed at other values of y/S. The results
are shown in Figure 12 and the corresponding variation of u'/u'l is shown

25



in Figure 11(a). Here of course, u'/u'l for theory and experiment have
been set equal at y/& = .001l. The theoretical variation of u'/u'l is
now in much better accord with the experiments in the inner part of the
sublayer, at least up to y/S = ,005. Beyond y/S = ,005, the theoretical
curve rapidly departs from the experimental data with the theory rising
to a much higher value of u' outside the sublayer.

A comparison of the experimental spectrum at y/& = .05 and the
theoretical spectrum at y/8 = .005 (Figure 12) indicates that the higher
fluctuation level at y/8 = .005 is due to an increase in the energy in
the large scale eddies. This 1s consistent with the theory in that at
y/® = .005, all frequencies above f = 600 c.p.s. should still be outside
of the viscous region. Therefore it seems probable that the spectra
shown in Figure 12 are a better representation of the spectra close to the
wall than the spectra in Figure 10.

While it is possible to determine the variation of ;Z in the viscous
region without specifying the way the disturbance energy varies with the
angle O, a knowledge of the three dimensional character of the field is

necessary to determine v . Suppose we consider the disturbance velocities
ug gnd vO associated with an oblique disturbance at angle ©. Since
equations (5) and (7) are identical in form and % g% = % gﬁ) tan@, the
relation wg = Yy tan® holds throughout the viscous region. We can then
readily find
i(k_.x-pt)
2 X
Vg = [l+ta.n9] Re{g(y) e }
s0 that
c 2 2
2 2xfv ,70 2
w
where T(Y) ={(l—2e-Ycos Y+e-2Y)+2Ye_Y(cosY - sinY)-2Y+2Y2}
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is the magnitude of u, at the edge of the viscous region.

Here C g

However, some remarks q?gut the application of the present theory
to the determination of the v~ field can be made. The factor f in the
equation for v2 shifts the v2 spectrum to higher frequencies as compared
with the :2 spectrum. This filtering action i1s a fundsmental aspect of
the response of the sublayer to the ;2 fluctuation field. Whereas the
one dimensional u” fluctuation field decreases monotonically from f = O,
the ;E spectpgg at the edge of the sublayer should exhibit a maximum.

That is, the v field close to the wall may have a preferred wave length.

There are two further difficulties in the theoretical determinstion
of ;E which should be mentioned. In order to compute the total ;§, the
integration would have to be carried out to fregquencies greater than
200 c.p.s. This cannot be done in a satisfactory way for the following
reasons, First the variation of U& with frequency at the higher frequencies
is not known. Second & basic limitation is imposed by the form of dis-
turbance assumed in the theory. We have assumed that for a given frequency

ddAan AF +ha mantiimhadd an

L sralAandder « +1h o«
LG VLULL UL viic yc; UUI-LUGU-I.UM voive.Ly

- vl 2 e ~ -~ -2
.y WAL Uil J Lll LIIC VALC.LIlL
viscous region can be neglected compared to the variation inside the very

small viscous region. Since the thickness of the viscous region Ss is

nlven by & = of /Y the ratio of the eddy scale to 8 is then
(=] s \v f 7 ' S
L L
= N;-Ep" « At f = 300 c.p.s., = 8150. Above 300 c.p.s., U_w_ must necessarily
v VJ.V (&)
s S

decrease below .8Ui, but there are insufficient measurements to establish
the variation of Ué with f. (This point will be mentioned again in

‘ discussing the wall pressure fluctuations.) Suppose we adopt the artificial
picture of an eddy of scale L, travelling along the wall with the average
velocity of its center located at y = L/2. Then for f = 5.5x103,

1/58 s 25, This guess suggests that while I/BS will decrease with

N
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be large enough. However

b= aagl

at say

P | =

c

8 = .008, for a frequency of 5.5x10§, the distance from the wall y
is of the same order as the eddy scale L and it is obvious that the
perturbetion velocity outside of the viscous region
would have to be taken into account. Accordingly, the theo

be limited in its application to the ;z spectra below £ = 300 c.p.s.

We also find that the determination of the shear stress depends on
a knowledge of the distribution of oblique disturbances. According to

the simplified theory

r -1 C
o _ 2 | Yo JxEv
(10) (--v)g= ={_1 + tan QJ - T [s(!)]
w
with 8(Y) = [l-2e-YcosY+e-2Y—2Ye-YsinY.|
L J

We recall that
ou,  ovy
V=V1+V2, where§<-+63r—=0

and 2;2 + g;g = 0, where we have set v, = v2 =0, at y = 0. At the

edge of the viscous region for any frequency, u, — 0, and v, — constant.
If we designate the constant by Vo o’ then the shea
of the viscous region is due to the coupling of Uy and Voo * The

0o
function S(Y) 1is shown in Figure 13 together with

/= ’ s} \
Vv u / (‘Clﬁ/E) .

It is evident that in the inner portion of the wviscous region the
tion of u' and uv with y for each frequency component is
similar to the overall variation of u’ and uv shown in Figure 7. The
increase in the shear stress lags behind the increase in the fluctuation

experiment and theory, at the peak of the u' fluctuation

.
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uv is .7 — .8 of the shear stress outside the viscous region. However,
the magnitude of Uv given by the simplified theory is definitely too
low. This can be shown in the following way.

Sufficient data are given by Klebanoff to calculate the spectral
variation of uv/u'v' at y/8 = .05. The results of the calculations are
shown in Figure 14, For camparison, the variation of uv/u'v' inside
the viscous region according to the simplified theory is shown in Figure
15. Apparently the correlation coefficient does not reach high enough
values in the viscous region at least at the lower frequencies. The
convective terms that have been neglected in the simplified theory ought
to play a significant role in controlling the phase angle between u and
v. Therefore this deficiency of the theory is not surprising.

Again the factor~/f shifts the uv spectrum to higher frequencies as
compared with the u spectrum but not as much as for the v  spectrum.
Consequently the high frequency limitations on the theory that have already
been discussed should not be so serious. But in any case, a computation
of uv would have to account for the three dimensional nature of the dis-
turbance field.
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6. MICROSCALES

Important changes in the dissipatlon derivatives or microscales
occur on entering the sublsyer. Here we will consider two of these

derivatives which can be discussed; at least to a limited extent, using

the simplified theory. The longitudinal microscale can be written as
2.2
Ju\2 K21 (2n)°f L2,
(11) ()" =% zBe {n(». Y (v)} = = (c7/2)
w

While there are no data in general for the variation of the dis-
turbance velocity U with £ above £ = 300 c.p.s. a first guess for this
veriation can bve made at y/8 = .05. For separation distances < .5 cm
the autocorrelation and longitudinal correlation curves of Klebanoff
appear to coincide. This would suggest that Uw = Uz for L = .5 cm. or

£ %42x103 . Previously, we have set an upper limit of £ = 300

CD

NN
Cejre

c.p.s., for U = .8U,. We assume then that the disturbance velocity varies

1
linearly from .8U, at £ = 300 to U, =, at 2000 c.p. 8. Above £ = 2000
C.PeSe; Uw is set equal to Uz. Integrating, we find ;—5 (:?)“ = 5.8
1

which compares with a value of 5.5 from the experiment. Deep in the
sublayer the experimental value for (52) increases by about a factor
of 2, but the uncertainty about the variation of U& with £ is too greav

to proceed with any theoretical calculations in this region.

The microscale transverse to the wall can be written as

*
1 ]
(%I—E _ % Re Lh (y).h (y}which becomes
2 B
5 C, 2 By
> C, -
(12) (%)2 = -’5—1: (%—) v eV | oOutside the sublayer, at
y/8 § .05, we have assumed & form of disturbance where %% = 0, where in
S

reality ﬁ— is small but not zero outside the viscous region. The

experimental variation of "'§ (55) is shown in Figure 16. Approaching

.
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the wall, there is a very rapid increase in the gradient normal to the
wall, A rapid increase in (%E)E is also predicted by the theory. In

nY (QUNC | o o o .
2), \Ey) will be a maximum at the wall.

Calculations have been carried out at several points in the inner part
of the sublayer based on the measured spectrum at y/& = .0011, and the

regults are ghown in Figure 16 It 1s evident that the simplie
S e N N ALV WA did A ADWA wde s @ - - I W Vil v VLICH Vv nmy-l.-'.*

underestimates the value of (3—) at y/5 = .005, the inner limit of the
experimental measurements. A possible reason for this discrepancy can be
nf

suggested. The large gradients in u in the simplified theory are c

sy 1 TR " " S SO T 1

he wall. Experimentalliy, as shown in Figure
11, substantial gradients in u are found over a much greater extent of
the sublayer. We might anticipate that the simplified theory would

1mmderectimate u\ gwaey from the wall
VAl A v ol N W W Al W N \&I =2 . ‘.J Wil WChdl o

The much greater experimental value of (55) as compared with (g;,
Anaae nat raflant At atnrtdAan AP +ha Aamall anala AR anx Thama fom o on
QOCS Ii0uv IC1alTv0 ULOS VUL LVLUILL UL WiIT plid.ll dlaltT SUQltCb. ror insvarnce
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at y/8 = .005, the theoretical spectrum for (5—) shows that practically

all the contribution to (;—) comes from frequencies < 300 c.p.s.
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7. THE PRESSURE FIELD

Extensive measurements of the pressure fluctuations at the boundaries
of turbulent flows have been made by Willmarth (1958,1959). He found that
the major contribution to the pressure fluctuations comes from large scale
fluctuations. Of particular interest, his space-time correlation measure-
ments show that the pressure pattern is convected downstream with a speed
of .82Ui. This observation is in good agreement with the present theory
where the large scale fluctuations move downstream at the mean velocity
of the middle region of the boundary layer. In fact measurements of the
wall pressure field may provide a means of experimentally establishing
the variation of disturbance velocity with frequency for the higher fre-
quencies in the sublayer. Corcos and Winkle (1960) have found that by
making a spectral resolution of the longitudinal space-time correlation
a functional relationship between convective velocity and frequency can
be found. As we would expect theoretically the higher frequenciles are
convected more slowly than the low frequencies. However, theoretical cal-
culation of the spectrum and the magnitude of the pressure fluctuations at
the boundary layer is another matter.

The pressure fluctuations in a turbulent shear flow may be much-larger
than in a field of isotropic turbulence at comparable turbulent fluctuation
lévelso This 1s the case near the edge of the laminar sublayer in a turbu-
lent boundary layer. Very large pressure fluctuations are associated with
the linear terms in the equations of motion. Just outside of the sublayer,
retaining all the linear terms, equation (1) becomes

(l}) &"FU&*‘VE-}’—:-E&

The fluctuation field at the edge of the sublayer 1s now represented by a
superposition of Fourier components. Using the same notation as in the

previous sections, we can write equation (13) as

U
" af-%
pp=rU {h(y)'[l - .Z_"] {4 (Uw)} ei(kxx Bt)

ik
v X

&
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B.2
Then the spectral variation of p /p 1is given by

~ ry 2 2
:z r 12 o :_2- 'UV rdUz-I U'Vi r 1| du,
(14) = U + - -—=|U-U  p——
(1%) ;2- F :2 !_UW !:_! (éﬁ)gfz !..d-‘r’ JI 7t !_ v o4y dy (1u)v
du

In isotropic turbulence, U = U’,~;;ﬁ = 0, and the pressure field due to

these linear terms vanishes. At hi;i frequencies, U& = Lz and the first
and third terms do not contribute to the pressure field. However, most

of the contribution to the pressure fluctuations comes fram the low fre-
quencies and these terms are important. The spectral functions F —E-and

F —2 have been measured at the edge of the sublayer at y/d = .05, "

and can be directly used in calculating p /p . An additional assumpti

must be made in order to deteyrmine B

fu)v °
For a given frequency camponent, the shear correlation coefficient

g 1

wv/u'v' = cos @ where 0‘ is the phase angle between the u and v velocities.

o

f we represent u on the positive real axis in the complex plane, then a
negative correlation coefficient indicates that v is either in the second
or third quadrants since @ must lie between 90° and 270°. Now according
to the simpli theory, 180° <p b < 270° throughout the viscous region
(measuring @ counterclockwise from u). Assuming then that v lies in the
third quadrant the correlation spectrum F o can be computed using the
variation of the experimental phase angle with frequency as given in
Figure 14. That is if y is the phase angle between iu and v, then

cosy = sin @, and F“T?T'T' is negative making the third term in equation (1k)
positive. The resultinz spectrum for p /o is shown in Figure 17 where we
have set U& = .8Ui. If v lies in the second instead of the third quadrant,
then the sign of F T—_T- is reversed although the magnitude is the same.

In that case the pressure fluctuation spectrum would be represented by

the lower boundary of the cross hatched region in Figure 17. The second
term of equation 1k, ;?>K (dUz/dy) is also given in Figure 17 to
indicate what might be expected from the linear theory at the higher

frequencies. J
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It is interesting to compare these calculations with the pressure
spectrum for an isotropic field, where the pressure fluctuations are due
to the non-linear terms. Batchelor (1956, p. 181) has given an ex-
pression for the pressure fluctuations in an isotropic field in terms
of the three dimensional energy spectrum. The first step then is to
f£ind an appropriate energy spectrum for this flow. Since the Reynolds
number of the turbulence is large, the one dimensional spectrum F _E
at y/8 = .05 can be fitted by the function

L 4
Fop = § -
u Uz 1+ hnanL

L7

where I 1is the longitudinal integral scale (Dryden 1943). Then using
the transformation between the one and three dimensional energy spectra
for isotropic turbulence, the three dimensional spectrum P(k) can be
computed using Batchelor's theory where
00
=z, 2
P(k) dk = p /p~ . Finally, the one dimensional pressure

o

>
spectrum Fﬁ” where we represent p /p2 by P, can be obtained from

oo

Ff; = f Eg{-)- dk and is also shown in Figure 17
k
X

(transformed to a frequency spectrum). The values given are appropriate
to an isotropic field with each component equal to u'. It is evident
that at the edge of the sublayer, the linear terms are the main source of

the pressure field.

The present theory provides a clear basis for having a pressure field
at the boundary. For each frequency component gi(gg)ss 0 across the
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ation components vanish at the 1.

“-sad VY e
Y j



the pressure field does not vanish with them. This is in contrast to

2
pic pressure field where p /o « (u')u; It would then follow
that the pressure fiuctuations at the boundary should be of the same

order as the pressure fluctuations at the edge of the sublayer. Using

boundary layer parameters appropriate to Klebanoff's experiment, Willmarth's

vall measurements are also shown in Figure 17. Inue ating the spectra
n Figure 17, and taking the square root, we have = ——72 19— 30, for the
pU
linear terms, 3.7 for the isotropic field and 2.4 from Willmarth. It is
apparent that the wall pre ire field is much smaller than what would bhe

expected from the present theory. Perhaps the non-linear terms that have
been neglected are essential for the computation of the pressure fluctu-
ations in the sublayer. In part this may be because a major contribution
to the pressure field comes from the lowest frequencies and at these

frequencies the non-linear terms are relatively more important.
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8. TURBULENCE PRODUCTION

A good deal of significance has been attached to the experimental
observation that the flow of turbulent energy from the mean flow to the
fluctuating field reaches a maximum in the sublayer. This observation
has suggested the following physical plcture. Adjacent to the wall, there
is a laminar flow. Moving out from the wall a region of instability

develops because of the high disturbance level of the turbulence in th

®

boundary layer. Along the outer edge of the "laminar flow", transition
to turbulence occurs, producing a region of intense turbulence and of

—alnasT Aam

course "turbulenc irther from the wall,

- aa a =3

e
the flow settles down to a reasonably well behaved fully turbulent flow.

In terms of the theory glven in thils paper, the peak in turbulence
production does not suggest such a physical model. Furthermore if we
start with the conditlon that the total shear stress for the mean flow
be constant across the sublayer, then we can readily show that there will

be a peak in turbulence production where

W= au

p dy
P dadnT alionae To L A vier L dU T = (OConestant
1Tne ovotad Shear 1S~-pD UV «+ | dy’ .w = voensanll.

The turbulence production (Pr) is given by

au au, 4du
(Pr)=-p uv el (v, - v (x5 I
2 2
) a"u du ,d°U
Then -~ (Pr) =T,— > - 2u IV (——g) = 0,
Cv " dy - 43y

and we have i gg 1? for meximum production. This result is confirmed

by the experiments of Klebanoff and Laufer. Thus while the region of
maximum turbulence production is important for determining the structure

of the turbulence, it need not be given any phenomenological significance.

Generally speaking in the fully developed part of the boundary layer,
t

he mean flow into the large scale eddies. At

.

J. - o~ ~dd o 1 1
y/8 = .05, from Kiebanoff, 70% of the shear stress is found between
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0 < £ < 300, which compares with 80% of & below £ = 300. This _
situation is altered in the sublayer. At the point where p %g- = 731

the loss in turbulent shear stress has come from the large scale eddies.
This means that the turbulence production goes into ever smaller eddies
as the wall is spproached. Therefore the region of maximum turbulence
production may not be important in determining the energy balance of

the large scale, énergy containing eddies in the boundary layer.
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9. LAMINAR~TURBULENT TRANSITION IN STRONG TURBULENCE

The most satisfactory correlation of the experimental dats for
the Reynolds number of boundary layer transition in strong free stream
turbulence has been given by Taylor (1936). Taylor derived his transition
parameter on the assumption that the fluctuating pressure gradients of the
turbulence cause momentary separation of the laminar boundary layer, thereby
leading to transition. In recent years, detalled investigations of
transition have been carried out by Schubauer and Klebanoff (1955). In
no cage do they find any experimental support for the ides that momentary

separation 1s involved in the transition phenomena.

The flow near the wall'of & laminar boundary layer with a strong
free stream turbulence is in many respects similar to the flow in the
sublayer of a turbulent flow. The scale of the free stream turbulence is
in general large compared with the thickness of the laminar boundary layer.
The free stream turbulence moves downstream with the free stream flow, and
therefore at a disturbance velocity much larger than the local mean
velocities in the boundary layer near the wall. In accordance with the
present theory, we should expect to find a "sublayer" of the eddies of
the free stream turbulence in a small region close to the wall. The
neglected non-linear terms, which are of concern in the treatment of the

sublayer of a turbulent flow, are of no importance in this case.

The present theory has been applied to the experimental conditions
given by Dryden (1936). These data are at a transition Reynolds number
baged on the displacement thickness ®* of BS* & 500, which appears to be
the lowest transition Reynolds number to be found in the literature. This
is very close to the minimum critical Reynolds number of RB* = LOO of the
Accordingly, it should not be necessary to take into account the amplifi-
cation of the disturbance level in the boundary layer in this case.
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Liepmann, Iaufer and Liepmann (1951) have measured the energy
spectrum for the free stream turbulence in a wind tunnel under experi-
mental conditions reasonably close to those of Dryden. We estimate
Lx/UlfS 1x10 =2 for Dryden where Lk/Ui = .9x10™ for Liepmann. Thus
ILiepmann's spectrum can be used to calculate the "sublayer" for Dryden's
experimental poin
stream turbulence are damped down by viscosity in a "sublayer" approximately
.15 cm thick. The close similarity between the physical pilcture for the
sublayer of a turbulent flow and the "sublayer" of the free stream tur-
bulence in a laminar boundary lasyer is shown in Figure 18. The scale
corresponding to 50% of the ;2 energy is shown in each diagram. It seems
clear that the physical model used by Taylor, in which the mean boundary
layer responds to the pressure gradients associated with the turbulence
is not applicable to the description of the laminar boundary layer in a

strong free stream turbulence.

Nevertheless, Taylor's parameter does appear to correlate the available
experimental data. We would now like to show that by introducing an
additional physical assumption we can obtain a transition parameter very
similar to that of Taylor's. No attempt will be made to justify this
assumption here although it has led to reasonable results in some pfevious
work (Lin, 1955, p.90)

We assume that the onset of transition depends on the relative
amplitude of the Reynolds stress assoclated with the turbulent fluctuations
and the shear in the mean flow. This is, we adopt as a rough criterion
for the onset of transition, the requirement that
W=t (

o U
-[.'3 I\et)c}l—s‘

r

From the simplified theory, the shear stress outside the "sublayer", 1s
of the form

S p(u')? L

U’W
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ere w U1, 4
by £ = Ul/Le where L represents the "scale" of the turbulence. Then
.2 Jv
— A2 AV
-pu® p(u') —
vUitte
Now the thickness of the laminar boundary layer at transition is
/xtrv
5, &« [—=—
vl V Ul
Substituting, we have
%
,/2
. N pe 1
p(ur)” . — = £ (Retr)’ =
Y1 e ¥
Finally,; we obtain
1
&y () b )
o) &) = Ty(Reyy
i e
Taylor's parameter 1s
1
. /=
(A'y (try 7 (Re. )
SRS T = fE‘Retr' where Ly is the lateral integral
1 7y
scale of the free stream turbulence. The available transition data are too

ke 2

scattered to make it possible to distinguish between a l/k or 1/5 pover
variation with x+r/L. From the point of view of correlating the experimental

date either parameter would be equally effective although Teylor's parameter

fde

is based on the assumption that transition is caused by the small eddies,
whereas for the new parameter it 1s assumed that transition is caused by

the large eddies.
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10. CONCLUDING REMARKS

The vorticity field responsible for the turbulent fluctuations in
a boundary layer or similar shear flow is swept along with the velocity
of the fluid elements. The velocity fluctuation fleld associated with
this vorticity field is altered by the wall in two ways. The effect of
the boundary condition v = O is to increase the magnitude of the wall
velocity fluctuations u and w in the plane of the wall. The induced
velocity at the wall associated with each element of vorticity is doubled
by the image vortex element required to cancel v at the wall, This form

b resn -l-.t

axranA 41
Syl il L.

O Tae
potential flow. As a result of the boundary conditions u = w = O the
turbulent velocity fluctuations are directly damped down by viscosity in

a thin layer, the sublayer.

The equations of motion for the turbulent velocity and pressure
fluctuations are spplied only in this narrow viscous region. The aim of
the theory is to sgy, in detail, how a known turbulent field dies out to
nothing at the wall.

A simplified form of the theory is given in this paper. Only the
leading terms in the differential equations are retained. Furthenmofe

while the three dimensional character of the fluctuation field is recog-

nized and introduced at any early stage the calculations are not carried

far enough to make the three dimensionality important.

The same basic approach can be used to develop a more accurate
description of the sublayer. The linear convective terms can be retained
in the equations and solutions are being obtained using computing machines.

'L'\

he distribution of oblique disturbances on the

arn +Than 2Pl rianrmArn ~ 3
AlSU LI i ..LU.EIJ.L Uf (%

fluctuation field is being explored. It is hoped to report the results
of these studies in the future.

Calculations with the theory could be applied to such quantities as ;E
and uv if the variation of disturbance velocity with frequency at the
higher frequencies could be established. This might be done from space-

time correlation measurements of wall pressure fluctuations.

L1



Finally there a vhich the present approach
may be useful. We have already shown that t
sublayer" of the free stream turbulence in a laminar boundary layer.

A similar approach might be useful in the description of turbulent heat

and mass transfer. V

h/v'
yJOSEPHSTERNBERG'
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