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A number of readers of [2] have written the author inquiring
about the possibility of generalizing the results presented there.
It therefore seemed worthwhile to prepare the present brief note
indicating how some of the results in [2] can be generalized.

Let Xq s x2, P be K random variables. Let us denote
the expected value of x, by E(x,) = X; , the variance of x,
by V; , and the square of the coefficlent of variation of Xy
by vi/x;.L =G; . (For the sake of simplicity, we assume that

Xy # 0 , although some of the results presented do not require

this assumption.,) We shall malks ge of the simple identity

K K I ¢

(1) T I_T x, 1T (51+1)=W(Ai+x1) ,
1= 1=l 1=1 1=1

where 6, = (xi - x_,_)/xi and &.i = (xjL - xi) o If the x,

are mutually indepsndsnt, we find using identity (1) that the
K

variance of ]—[ x; will be equal to
i=1

K

(2) v(ﬂ x4 )= {11 } TKT ﬁx[]i(e +1)~1:|,

i=1 i=1 i=1

which can also be written as

K
VL xg) = vy +xE) - 1U1 1

= + 2 -
(3) g:y 441;1§E:%2%¥-LL1A2 %;;4 11 2%33*& J +oe0 Wﬂ%Z.VK
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where the summation, s ls over all values of

%{’12"”" !is

il # 12 * 13 eso * is ranging over 1,2, ooey K 9 end where

];[ is the product over the K-S values differasant
j .”.1’12’ LA B ] is

from the S values 1,,1,, «vo, ig o FEquation (3) herc is a

generalization of equations (2) and (15) in [2] and equation {a)

in [7]); equation (2) hers appesred earlier in [3] where it was
K

used to study the case where the distribution of || xy was
i=1

(approxinately) logarithmic-ncrmal.

» /
e now present an unblased sstimator of V(] =x,) v

K
i=1

based on unbiased estimatois, 3':1 and L of Xi and Vi »

respectively, where ii is the sample msan and vy is the

sample variance in a sample of ng ovservations each having

mean Xi and variance Vi(i=l,2,... ,K) . UWhen the K samples

(1=1,2, ..., K) are mutually independent, wse find thet

K K K
) v Tx)= TT (ve+z,) -
i) v 1=1x1 = Vet EL 3y

jis 2 K >
= Il [;';1 * vy (ni"l)/ni:' - E [ii - vi/ni]

o

is an unblased estimator of V(” x

2
o 1) » Where z,=X, -vi/ni s
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This follows from the fact that E(ii)-x = vi/ni o« Equation

(L) here is a generalization of equation (5) in (2] .
The case where the x4y are not mutually independent is

more complicated., From ildentity (1) we see that the variance

K

of TT Xy is
i=1

X
) vl =) =
i=1

n
P
s

N
‘—.C—-'J-—]
f\_/\"‘
b
(]
~
+
s
N
N
§
@
N
——d

(5) where K = 7 was studied in LZ]‘ o« UWe now conszide: the case

where K = 2 . By straightforvard calculation, we find that,

when K = 3 , squation (5) can boc raurition o-

3 o3 23 5
() V(ﬁlxi)zﬂXi!:ZGi+(B'1)(3"B)+Z E {63 6¥ 5‘4}\! (J,kl)] -
= 2 3

=1 1=1 j ,k ,f 1l
where the indices j, k,«Z range over the valuwes 0,1,2, and
where h(j,k,-£ ) is a symmetric functlon of §,k,.L having

the following values:

0 for (j,k,£) = (0,0,0),(0,0,1),(0,1,1)
. _ 1 for (j,k,£ ) = {0,2,2),(2,2,2)
h(j.x, L) = 2 for (3,kx,£) = {0,1,2),(1,2,2)
4 for (j,k, £) = (1,1,1),(1,1,2) .
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Equation (6) here 15 a generalization of equation (18) in [2],

the formula given there for the wvariance of the product of two
rendom variables (not neocessarily indepondent). In the same

way that equation (18) uas used in [2] to derive other variance
formulas fecr warious product estimators (e.g., equations (20)

and (21) ir [2] ), equation (6) hers can elso ke used to derive v
other verisnce formulas for product estimators where, for exanple,
thres estiratores (rathsr than two) are multipliod together., e

shall not eo into thesc details 1In this brlefl note.
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