

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto. NO WADD TECHNICAL REPORT 60-657 OOOO N THE THERMAL SOME PLAS Paul T. I C. D. Sabert O Southern Res

XEROX

THE THERMAL PROPERTIES OF SOME PLASTIC PANELS

Paul T. Howse, Jr. C. D. Pears Sabert Oglesby, Jr.

Southern Research Institute

JANUARY 1961

WRIGHT AIR DEVELOPMENT DIVISION

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

 \checkmark

Qualified requesters may obtain copies of this report from the Armed Services Technical Information Agency, (ASTIA), Arlington Hall Station, Arlington 12, Virginia.

 $\overrightarrow{\Delta}$

This report has been released to the Office of Technical Services, U. S. Department of Commerce, Washington 25, D. C., for sale to the general public.

$\overrightarrow{}$

Copies of WADD Technical Reports and Technical Notes should not be returned to the Wright Air Development Division unless return is required by security considerations, contractual obligations, or notice on a specific document. WADD TECHNICAL REPORT 60-657

THE THERMAL PROPERTIES OF SOME PLASTIC PANELS

Paul T. Howse, Jr. C. D. Pears Sabert Oglesby, Jr.

Southern Research Institute

JANUARY 1961

Materials Cent:a) Contract No. AF 33(біб)-6073 Project No. 7360

WRIGHT AIR DEVELOPMENT DIVISION AIR RESEARCH AND DEVELOPMENT COMMAND UNITED STATES AIR FORCE WRIGHT-PATTERSON AIR FORCE BASE, OHIO

800 - June 1961 - 31-1188

WADD TECHNICAL REPORT 60-657

THE THERMAL PROPERTIES OF SOME PLASTIC PANELS

Paul T. Howse, Jr. C. D. Pears Sabert Oglesby, Jr.

Southern Research Institute

JANUARY 1961

Materials Central Contract No. AF 33(616)-6073 Project No. 7360

WRIGHT AIR DEVELOPMENT DIVISION AIR RESEARCH AND DEVELOPMENT COMMAND UNITED STATES AIR FORCE WRIGHT-PATTERSON AIR FORCE BASE, OHIO

800 - June 1961 - 31-1188

FOREWORD

This work was performed by Southern Research Institute under USAF Contract No. AF 33(616)-6073. The contract was initiated under Project No. 7360, "The Chemistry and Physics of Materials", Task No. 73603, "Thermodynamics and Heat Transfer", and was administered under the direction of the Materials Central, Directorate of Advanced Systems Technology, Wright Air Development Division, with Capt. Frank Zaleski and Mr. Hyman Marcus acting as project engineers.

This report covers the work conducted from March 1, 1959, to July 31, 1960.

WADD TR 60-657

ABSTRACT

The thermal expansion, specific heat, and thermal conductivity were measured for twelve different resin-reinforcement combinations, some of which had variations in reinforcement orientations. These properties were also determined for one foam core. The temperature range was generally from -50° F to 700° F. Rather extensive physical property data are also presented on all of the materials (including flexural strength, flexural modulus, Barcol hardness, density, and resin content). Detailed descriptions of the panels and cures are given.

The specific heats of the laminates ranged from about 0.25 Btu/lb ° F to 0.47 Btu/lb ° F with most falling between about 0.25 and 0.32 Btu/lb ° F. The nylon-reinforced material had a specific heat of 0.47 Btu/lb ° F, which is consistent with the fact that the specific heat of nylon is around 0.4 Btu/lb ° F compared to 0.2 to 0.3 Btu/lb ° F for the other reinforcements.

Expansion coefficients varied considerably. The only materials with a reasonably constant slope through the entire temperature range were materials containing silicone resin. An increased expansion coefficient was found with increased deviation from the major fiber axis from 0° to 90° . A permanent change in expansion coefficient, probably due to additional curing at elevated temperatures, was also demonstrated.

The conductivity with the heat flow normal to a continuous reinforcement was influenced primarily by the resin rather than by the reinforcement, while the reinforcement was the major parameter with parallel heat flow.

PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR THE COMMANDER:

J. I. WITTEBORT Chief, Thermophysics Branch Physics Laboratory Materials Central

WADD TR 60-657

iii

TABLE OF CONTENTS

	Page
INTRODUCTION	1
MATERIALS	1
PHYSICAL PROPERTIES	1
Flexural Strength and Modulus Barcol Hardness	6 8
SPECIFIC HEAT.	8
Apparatus and Procedure	8 12
THERMAL EXPANSION	17
Apparatus and Procedure	17 19
THERMAL CONDUCTIVITY	25
Apparatus and Procedure . Data and Results	25 28
CONCLUSIONS.	32
APPEND X	35
Individual Curves for all Properties	

Individual Tables for all Properties

WADD TR 60-657

iv

LIST OF ILLUSTRATIONS

Figure N	ю.	Page
1	Orientation of Materials for Flexural Strength Determination	7
2	Barcol Hardness Conversion Table	9
3	Specific Heat Apparatus	11
4	Heat Content Curve for Copper Calibration Specimen .	14
5	Thermal Expansion Apparatus	18
6	Expansion of Calibration Specimens	20
7	Expansion of Quartz	21
8	Composite of Expansion Parallel to Panel of All Materials Run	23
9	Curve Showing the Expansion in Different Orientations of Material SRI No. 1	24
10	Thermal Conductivity Apparatus	26
11	Conductivity Original Calibration Curve	29
12	Conductivity Final Calibration Curve	29
13	Composite of All Conductivity Curves	31
14	Thermal Conductivity for Material SRI No. 6, SRI No. 7-1, and SRI No. 7-2	33
15	Heat Content Curve for Material SRI No. 1-1, 60N Roving, Epoxy Resin, Unidirectional.	36
16	Heat Content Curve for Material SRI No. 1-2, 60N Roving, Epoxy Resin, Isotropic	37

WADD TR 60-657

v

Figure N	No.	Page
17	Heat Content Curve for Material SRI No. 2, Chopped Glass, Phenolic Resin.	38
18	Heat Content Curve for Material SRI No. 3, Silicone Foam	39
19	Heat Content Curve for Material SRI No. 4, Glass Roving, Phenolic Resin	40
20	Heat Content Curve for Material SRI No. 5, Chopped Glass, Silicone Resin	41
21	Heat Content Curve for Material SRI No. 6, $\frac{1}{2}$ -inch Squares Glass, Phenolic Resin	42
22	Heat Content Curve for Material SRI No. 7-1, Refrasil Fabric, Phenolic Resin	43
23	Heat Content Curve for Material SRI No. 9, Chopped Nylon, Phenolic Resin	44
24	Heat Content Curve for Material SRI No. 10, Asbestos, Silicone Resin	45
25	Heat Content Curve for Material SRI No. 11, Glass Fabric, Phenolic Resin	46
26	Heat Content Curve for Material SRI No. 12, Glass Fabric, Epoxy Resin	47
27	Heat Content Curve for Material SRI No. 13, Asbestos, Phenolic Resin	48
28	Thermal Expansion Parallel and at 0° to Major Axis of Fibers, Material SRI No. 1-1, 60N Roving, Epoxy Resin, Unidirectional	49
29	Thermal Expansion Parallel and at 45° to Major Axis of Fibers, Material SRI No. 1-1, 60N Roving, Epoxy Resin, Unidirectional	50
WADD T	R 60-657 vi	

Figure No	Э.	Page
30	Thermal Expansion Parallel and at 90° to Major Axis of Fibers, Material SRI No. 1-1, 60N Roving, Epoxy Resin, Unidirectional	51
31	Thermal Expansion Parallel to Panel, Material SRI No. 1-2, 60N Roving, Epoxy Resin, Isotropic.	52
32	Thermal Expansion Parallel to Panel, Material SRI No. 2, Chopped Glass, Phenolic Resin.	53
33	Thermal Expansion Normal to Panel, Material SRI No. 2, Chopped Glass, Phenolic Resin.	54
34	Thermal Expansion Parallel to Panel, Material SRI No. 3, Silicone Foam	55
35	Thermal Expansion Normal to Panel, Material SRI No. 3, Silicone Foam	56
36	Enlarged View of Thermal Expansion Normal to Panel, Material SRI No. 3, Silicone Foam	57
37	Thermal Expansion Parallel to Panel, Material SRI No. 4, Glass Roving, Phenolic Resin	58
38	Thermal Expansion Normal to Panel, Material SRI No. 4, Glass Roving, Phenolic Resin	59
39	Thermal Expansion Parallel to Panel, Material SRI No. 5, Chopped Glass, Silicone Resin	60
40	Thermal Expansion Normal to Panel, Material SRI No. 5, Chopped Glass, Silicone Resin	61
41	Thermal Expansion Parallel to Panel, Material SRI No. 6, $\frac{1}{2}$ -inch Squares Glass, Phenolic Resin	62
42	Thermal Expansion Normal to Panel, Material SRI No. 6, $\frac{1}{2}$ -inch Squares Glass, Phenolic Resin	63
WADD TR	60-657 vii	

Figure No.		Page
43	Thermal Expansion Parallel to Panel, Material SRI No. 7-1, Refrasil Fabric, Phenolic Resin	64
44	Thermal Expansion Normal to Panel, Material SRI No. 7-1, Refrasil Fabric, Phenolic Resin.	65
45	Thermal Expansion Normal to Panel, Material SRI No. 9, Chopped Nylon, Phenolic Resin	66
46	Thermal Expansion Parallel to Panel, Material SRI No. 10, Asbestos, Silicone Resin	67
47	Thermal Expansion Normal to Panel, Material SRI No. 10, Asbestos, Silicone Resin	68
48	Thermal Expansion Parallel to Panel, Material SRI No. 11, Glass Fabric, Phenolic Resin	69
49	Thermal Expansion Normal to Panel, Material SRI No. 11, Glass Fabric, Phenolic Resin	70
50	Thermal Expansion Parallel to Panel, Material SRI No. 12, Glass Fabric, Epoxy Resin	71
51	Thermal Expansion Normal to Panel, Material SRI No. 12, Glass Fabric, Epoxy Resin	72
52	Thermal Expansion Parallel to Panel, Material SRI No. 13, Asbestos, Phenolic Resin.	73
53	Thermal Expansion Normal to Panel, Material SRI No. 13, Asbestos, Phenolic Resin	74
54	Thermal Conductivity Curve for Material SRI No. 1-1, 60N Roving, Epoxy Resin, Unidirectional	75
55	Thermal Conductivity Curve for Material SRI No. 1-2, 60N Roving, Epoxy Resin, Isotropic	76
WADD TR	60-657 viii	

Figure No	D.	Page
56	Thermal Conductivity Curve for Material SRI No. 2, Chopped Glass, Phenolic Resin.	77
57	Thermal Conductivity Curve for Material SRI No. 3, Silicone Foam.	78
58	Thermal Conductivity Curve for Material SRI No. 4, Glass Roving, Phenolic Resin	79
59	Thermal Conductivity Curve for Material SRI No. 5, Chopped Glass, Silicone Resin	80
60	Thermal Conductivity Curve for Material SRI No. 6, $\frac{1}{2}$ -inch Squares of Glass, Phenolic Resin.	81
61	Thermal Conductivity Curve for Material SRI No. 7-1, Refrasil Fabric, Phenolic Resin	82
62	Thermal Conductivity Curve for Material SRI No. 7-2, Edgewise Layup, Refrasil Fabric, Phenolic Resin	83
63	Thermal Conductivity Curve for Material SRI No. 8-1, Glass Fabric, Phenolic Resin	84
64	Thermal Conductivity Curve for Material SRI No. 8-2, Edgewise Layup, Glass Fabric, Phenolic Resin	85
65	Thermal Conductivity Curve for Material SRI No. 8-3, 45° Shingle Layup, Glass Fabric, Phenolic Resin	86
66	Thermal Conductivity Curve for Material SRI No. 9, Chopped Nylon, Phenolic Resin	87
67	Thermal Conductivity Curve for Material SRI No. 10, Asbestos, Silicone Resin	88
68	Thermal Conductivity Curve for Material SRI No. 11, Glass Fabric, Phenolic Resin	89
WADD TR	60-657 ix	

Figure No.		Page
69	Thermal Conductivity Curve for Material SRI No. 12, Glass Fabric, Epoxy Resin	90
70	Thermal Conductivity Curve for Material SRI No. 13, Asbestos, Phenolic Resin.	91

WADD TR 60-657

х

LIST OF TABLES

Table No.	1	Page
1	Materials Specifications	2
2	Physical Properties	4
3	Physical Appearance of Materials	5
4	Comparison of Specific Heat Values for Copper	15
5	Comparison of the Specific Heat of Sapphire Obtained by the Adiabatic Calorimeter to That of Several Other Sources	16
6	Specific Heat Data - Calorimeter Constant K = 0.2654 Btu/° F - Test Specimen; Copper Calibration Specimen	92
7	Specific Heat Data - Calorimeter Constant K = 0.2654 Btu/°F - Test Specimen; Scotchply XP-125 Special Resin Content, Unidirectional Laminate, SRI No. 1-1	93
8	Specific Heat Data - Calorimeter Constant K = 0.2654 Btu/° F - Test Specimen; Scotchply XP-125 Special Resin Content, Isotropic Laminate (Adjacent Plies at 60° to Each Other), SRI No. 1-2.	94
9	Specific Heat Data - Calorimeter Constant K = 0.2654 Btu/° F - Test Specimen; Molded Panel, Chopped 181 Glass Fabric, A-1100 Finish with CTL-91 LD Phenolic Resin, Resin Content 35 \pm 5%, SRI No. 2	95
10	Specific Heat Data - Calorimeter Constant K = 0.2654 Btu/° F - Test Specimen; Foam Core, Dow-Corning Silicone R-7002, Fully Cured, SRI No. 3	96
11	Specific Heat Data - Calorimeter Constant K = 0.2654 Btu/°F - Test Specimen; Molded Panel Fiberite 4030-190, Glass Fiber, Phenolic Resin, SRI No. 4	97
12	Specific Heat Data - Calorimeter Constant K = 0.2654 Btu/°F - Test Specimen; Molded Panel, Coast F-130 Chopped Glass Fiber, Silicone Resin, SRI No. 5	98

WADD TR 60-657

xi

Table No.

		0
1	Specific Heat Data - Calorimeter Constant K = 0.2654 Btu/° F - Test Specimen; Astrolite, Random Reinforcement, $\frac{1}{2}$ " Squares of 1201 V Cloth, SC-1008 Phenolic Resin, SRI No. 6	99
1	Specific Heat Data - Calorimeter Constant K = 0.2654 Btu/°F - Test Specimen; Astrolite, Laminar Construction, Refrasil 184 Weave, SC-1008 Phenolic Resin, SRI No. 7-1	100
1	Specific Heat Data - Calorimeter Constant K = 0.2654 Btu/°F - Test Specimen; Molded Panel, SN-19 Nylon Chopped Fabric Construction, CTL-91 LD Phenolic Resin, SRI No. 9	101
1	Specific Heat Data - Calorimeter Constant K = 0.2654 Btu/°F - Test Specimen; Laminate, 40 RPD Asbestos, DC-2106 Silicone Resin, SRI No. 10	102
1	Specific Heat Data - Calorimeter Constant K = 0.2654 Btu/°F - Test Specimen; Laminate, YM-31A Glass Fabric, CTL-91 LD Phenolic Resin, SRI No. 11	103
1	Specific Heat Data - Calorimeter Constant K = 0.2654 Btu/ [°] F - Test Specimen; Laminate, YM-31A Glass Fabric, Epon 1031 Epoxy Resin, SRI No. 12	104
1	Specific Heat Data - Calorimeter Constant K = 0.2654 Btu/ [°] F - Test Specimen; Laminate, R/M 42 RPD Asbestos, R/M High Heat Resistant Phenolic, SRI No. 13.	105
2	Thermal Expansion Data for $\frac{3}{4}$ " Diameter x 3" Long Graphite Calibration Sample	106
2	Thermal Expansion Data for $\frac{3}{4}$ " Diameter x 3" Long Nickel Calibration Sample	107
2	Thermal Expansion Data for Scotchply XP-125, Special Resin Content 30% ± 1.5%, Specimens 3" Long x 1" Wide x ±" Thick Approx.	108
WA	D TR 60-657 xii	

Page

Table No.		Page
23	Thermal Expansion Data for Molded Panel, Chopped 181 Glass Fabric, A-1100 Finish with CTL-91 LD Phenolic Resin, Resin Content 35% + 5%, SRI No. 2	109
24	Thermal Expansion Data for Foam Core, Dow-Corning Silicone R-7002, Fully Cured, SRI No. 3.	110
25	Thermal Expansion Data for Molded Panel Fiberite 4030-190, Glass Fiber, Phenolic Resin, Expansion Parallel to Panel, $1'' \times \frac{1}{4}'' \times 3''$ Long Specimen, SRI No. 4.	111
26	Thermal Expansion Data for Molded Panel Fiberite 4030-190, Glass Fiber, Phenolic Resin, Expansion Normal to Panel, $12 - \frac{3!}{4}$ Diameter Disks Stacked Up, Total Height Approximately $2\frac{15!}{16}$, SRI No. 4	112
27	Thermal Expansion Data for Molded Panel, Coast F-130 Chopped Glass Fiber, Silicone Resin, SRI No. 5	113
28	Thermal Expansion Data for Laminate, Astrolite, Random Reinforcement $\frac{1}{2}$ " Squares of 1201 V Cloth, SC-1008 Phenolic Resin, Resin Content 30-35% by Weight, SRI No. 6	114
29	Thermal Expansion Data for Laminate, Astrolite, Refrasil 184 Weave, SC-1008 Phenolic Resin, SRI No. 7-1	115
30	Thermal Expansion Data for Molded Panel, SN-19 Nylon Chopped Fabric Construction, CTL-91 LD Phenolic Resin, SRI No. 9	116
31	Thermal Expansion Data for Laminate, 40 RPD Asbestos, DC-2106 Silicone Resin, SRI No. 10	117
32	Thermal Expansion Data for Laminate, YM-31A Glass Fabric, CTL-91 LD Phenolic Resin, Resin Content 31% by Weight, SRI No. 11.	118

WADD TR 60-657

xiii

Table No.		Page
33	Thermal Expansion Data for Laminate, YM-31A Glass Fabric, Epon 1031 Epoxy Resin Resin Content 22% by Weight, SRI No. 12	119
34	Thermal Expansion Data for Laminate R/M 42 RPD Asbestos, R/M High Heat Resistant Phenolic Resin Resin Content 25-30% by Weight SRI No. 13	120
35	Thermal Conductivity Data 8" x 8" Area (64 sq. in.) Unidirectional Laminate Scotchply XP-125 Special Resin Content $30\% \pm 1\%$ by Weight, $14" \times 14"$ Specimen, Average Thickness = 0.122", SRI No. 1-1	e 121
36	Thermal Conductivity Data 8" x 8" Area (64 sq. in.) Isotrol ic Laminate Scotchply XP-125 Special Resin Content $30\% \pm 1\%$ by Weight 14" x 14" Specimen Average Thickness = 0.122", SR' No 1-2	e 1 22
37	Thermal Conductivity Data 8" x 8" Area (64 sq. in) Molded Panel, Chopped 181 Glass Fabric, A-1100 Finish, CTL-91 LD Phenolic Resin, 8" x 8" Specimen in 14" x 14" Asbestos Board, Specimen Thickness = 0.281", SRI No. 2	123
38	Thermal Conductivity Data 8" x 8" Area (64 sq. in.), Foam Core, Dow-Corning Silicone R-7002, Fully Cured, 14" x 14" Specimen, Average Thickness = 0.688", SRI No. 3	124
39	Thermal Conductivity Data 8" x 8" Area (64 sq. in.), Molded Panel, Fiberite 4030-190, Glass Fiber, Phenolic Resin, 8" x 8" Specimen in 14" x 14" Asbestos Board, Specimen Thickness = 0.230", SRI No. 4	125
40	Thermal Conductivity Data 8" x 8" Area (64 sq. in.), Molded Panel, Coast F-130 Chopped Glass Fiber, Silicone Resin, 8" x 8" Specimen in 14" x 14" Asbestos Board, Specimen Thickness = 0.273 ", SRI No. 5	126

WADD TR 60-657

xiv

Table No.

41	Thermal Conductivity Data 8" x 8" Area (64 sq. in.), Laminate, Astrolite, Random Reinforcement $\frac{1}{2}$ " Squares of 1201 V Cloth, SC-1008 Phenolic Resin, 8" x 8" Specimen in 14" x 14" Asbestos Board, Specimen Thickness = 0.132", SRI No. 6	127
42	Thermal Conductivity Data 8" x 8" Area (64 sq. in.), Laminate, Astrolite, Refrasil 184 Weave, SC-1008 Phenolic Resin, 14" x 14" Specimens x 0.126" Thick, SRI No. 7-1	128
43	Thermal Conductivity Data 8" x 8" Area (64 sq. in.), Laminate, Edgewise Layup with Thickness in Warp Direction, Astrolite, Refrasil 184 Weave, SC-1008 Phenolic Resin, 8" x 8" Specimen in 14" x 14" Asbestos Board, Specimen Thickness = 0.132", SRI No. 7-2	129
44	Thermal Conductivity Data 8" x 8" Area (64 sq. in.), Laminate, CTL 37-9X Phenolic Resin, 181 "E" Glass Fabric, Regular Layup, 14" x 14" Specimens x 0.132" Thick, SRI No. 8-1	130
45	Thermal Conductivity Data 8" x 8" Area (64 sq. in.), Laminate, 181 "E" Glass Fabric, CTL 37-9X Phenolic Resin, Edgewise Layup with Thickness in Warp Direction, 8" x 8" Specimen in 14" x 14" Asbestos Board, Average Thickness = 0.699", SRI No. 8-2	131
46	Thermal Conductivity Data 8" x 8" Area (64 sq. in.), Laminate, 181 "E" Glass Fabric, CTL 37-9X Phenolic Resin, Edgewise Layup with Thickness at 45° of Warp Direction, 10" x 10" Specimen in 14" x 14" Asbestos Board, Average Thickness = 0.708", SRI No. 8-3	132
47	Thermal Conductivity Data 8" x 8" Area (64 sq. in.), Molded Panel, SN-19 Nylon, CTL-91 LD Phenolic Resin, 8" x 8" Specimen Made of Four 4" x 4" Pieces, in 14" x 14" Asbestos Board, Average Thickness = 0.265", SRI No. 9	133

WADD TR 60-657

xv

Table No.

48

49

	Page
Thermal Conductivity Data 8" x 8" Area (64 sq. in.), Laminate, 40 RPD, DC-2106 Silicone Asbestos Laminate, 12" x 12" Specimen in 14" x 14" Asbestos Board, Specimen Thickness = 0.121", SRI No. 10	134
Thermal Conductivity Data 8" x 8" Area (64 sq. in.), Laminate, YM-31A Glass Fabric, CTL-91 LD Phenolic Resin, 14" x 14" Specimen, Average Thickness = 0.116",	

	SRI No. 11	135
50	Thermal Conductivity Data 8" x 8" Area (64 sq. in.), Laminate, YM-31A Glass Fabric, CTL-91 LD Phenolic Resin, 14" x 14" Specimen, Average Thickness = 0.110",	
	SRI NO. 12	136
51	Thermal Conductivity Data 8" x 8" Area (64 sq. in.), Laminate, R/M Style 42 RPD Asbestos Mat, R/M High Heat Resistant Phenolic, 14" x 14" Specimen x 0.147"	
	Thick, SRI No. 13	137

WADD TR 60-657

xvi

THE THERMAL PROPERTIES OF SOME PLASTIC PANELS

INTRODUCTION

This report to Wright Air Development Division under Contract No. AF 33(616)-6073 covers the determination of the thermal conductivity, capacity, and expansion of twelve plastic-reinforced panels and one foam core. The density, Barcol hardness, flexural strength, and flexural modulus were obtained from the suppliers when available and further supplemented with measurements by Southern Research Institute. In addition, information on the fabrication and curing processes was obtained on most of the materials.

The thermal properties were determined in the general range of -50° F to 700° F.

MATERIALS

The materials for which the thermal properties were measured included eight laminates, four molded panels, and one foam core. In addition, the measurements were made with several different reinforcement orientations on three of the laminates. A complete material description is given in Table 1, which lists, among other data, fabrics, resins, and fabrication and curing processes. Table 2 presents the physical properties as reported by the manufacturers or determined by Southern Research Institute.

Since part of the materials were to be run to destruction, Table 3 is included to show the degree of destruction of each material in the conductivity runs and the maximum temperature of that exposure.

PHYSICAL PROPERTIES

The flexural strength, flexural modulus, and densities of the materials were determined by Southern Research Institute in accordance with Federal specification LP-406(b). Some supplier data is also included.

Manuscript released by authors July 1960 for publication as a WADD Technical Report.

WADD TR 60-657

Table 1 Materials Specifications

	T					1			
Fabrication and Curing	Press temp. 275-280° F. Total time in press 40 min. Pressure on panel 90-95 pst. Post cure temp. 225° F. Time in	Post cure 16 hrs. Press temp. 265-270 F. Total time in press 40 min. Pressure on panel 90 psi. F. Time in post. 225 F. Time in post.	cure 16 hrs. I hr. at 275° F. Post cure 24 hrs. at 275° F.	11 hr. at 330° F. 1 hr. at 435° F. 24-48 hrs. at 435° F. 1 hr. at 435° F.) 1 hr. at 330° F.) cooling	Lur, at 130 F.) Curing in hydraulic press at 2000 psi. Cured for 20 min. at 320° F.	16 hrs. at 200° F. 2 hrs. at 200° F. 2 hrs. at 300° F. 2 hrs. at 350° F. 2 hrs. at 400° F. 2 hrs. at 440° F. 2 hrs. at 442° F. 2 hrs. at 422° F. ⊂olded to 200° F before	emoving from oven. Juring 2 hrs. at 300° F.	uring 2 hrs. at 300° F.	uring 1 hr. at 200° F. 1 hr. at 250° F. 2 hrs. at 300° F.
Panel Size and Cost Total	12 × 18 × 4 \$210	12 × 18 × 4 \$210	8 × 8 × 1 \$127.50	\$175 × 12 × 1	3 x 8 x 1 845	H x 10 x 1	× 16 × 1 0	8 x 18 x 1 140	280 × 4 O
Catalyst	3MXP-175	3MXP-175	"B" Stage Phenolic	1	C-205	Dow Corning XY-15	None	-t +	one 5
Finten	Garan	Garan	A-1100		1	1	one	one	one
and/or Fabric	30% ±1.5% Resin	30% ±1.5% Resin	35% ±5% Resin		18% 0 53% Resun	15% 15% tesin	5% to N 5% estin ontent y Wt.	0% to N 5% esin ontent	0% to Ni 5% estin ontent v. Wt.
in.	0.125	0.122	0.281	0.688	0.230	0. 273	0,132 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.126 7 7 7 7 7 7 7 7 7	0.125
Plies	20	21	Moded	F O& T	Volded	Aolded	loided		J/ Inch
	3MXP-175 Epoxy	3MXP-175 Epoxy	CTL-91 LD Phenolic Resin	R-7002 Silicone Foam	Phenolic R181	silicone 19020, 1730R DC-2106	henolic N C-1008	C-1008	C+1008
5	60N Roving	60N Roving	181 Chopped Glass	1	Glass Roving No. F846	Chopped Glass 1 B603	1 x 1 x 1 E	Refrasil F 184 S Weave	Refrasul F 184 S. Weave
	Minnesota Muning and Wanufacturing Company, St. Paul, Minn.		Reinhold Engrg. and Plastics Co., Inc., Norwalk, California	Dow Corning Corporation, Midland, Mich.	Corporation, Winona, Minn.	Manufacturing and Supply Company, Luvernia California	H. I. Thompson Fiber Glass Company. Jos Angeles, Alifornia		atte as above
Trade Name	Unidirectional Laminate Scotchply	Scotchply	Molded Panel	Core	Panel Tiberite 030-190	anel Coast 130R	Aminate A andom F etuforce C strolite C	onstruction strolite arallel ayup	agewise ayup with Nickness Warp Irection Itrolite
°2	1-1		N		- H H 4 2		JAREA -		ADESDA

WADD TR 60-657

2

Cured to 0.125" stops.
From standard Dow Corning literature.

Table 1 (Continued)

Panel Size and Cost Total	16 x 18 x 1 x 191.56	4 × 7 × 0. 7 A	0 × 10 × 0.7 A	Dia. A. M	2 × 12 × 1 Lo	Re Pr Po	x 18 x	x 18 x 4 No
Catalyst	None	None	None	- 10 49				aae 18
Finish	A-1100	A-1100	A-1100	1		- 1100	Volan A C	. No
% Resin and/or Fabric	25. 7e. Resun	31.2725 Resin	24. 3125 Resin	42% Restn by Mr.	1	36.40% Resin in Pre- preg. Prior to Molding. Mic by	Mesin 38-40% Resin Price. Price. Price. 27, by Violding.	5-30% -
Avg. Tk.	0.132	0.699	0.708	0, 265	0.121	0.116	0.110	0.147 2
No. of Plies	1	91/inch	:	1	37	1	1	0
Resin Type	CTL 37-9X	27-9×	CTL 37-9X	CTL- 01 LD Phenolic	541cone	TL- T LD henolic	pon 031 poxy	/M High 4 eat esustant henolic
Neutorcing	181 "E" Glass Fabric	181 "E" Glass Fabric	181 "E" Glass Fabric	SN-19 Nyion Heat Set and Scoured	40 RPD Asbeatos	Glass Type Van-SLA Newe Style 181	Glasa E Type I YM-31A E Weave Style 181	Asbestos R R/M Style R 42 RPD P
T II TO TO TO TO TO	Cincinnati Testing and Research Laboratories, Cincinnati, Ohio	carrie as above	Same as above	U. S. Polymeric Chemicais, Inc., Santa Ana, California	Same as above	GQVA	WADD	aybestos- lanhatten, Inc., lanheim, Pa.
Trade Name	Laminar Construction Regular Layup Parallel	Layup with Thickness in Warp Direction	Edgewise Layup with Thickness at 45° of Warp Direction	Chopped Fabric Construction (N 25	Aminate		am inate	A N N
No.	1-0		2	0	0	:	2	3 Mi

WADD TR 60-657

Table 2

Physical Properties

SRI No.	Material	Density lbs/ft ³	Barcol Hardness on Panel Face	Flexural Strength at Room Temperature psi	Flexural Modulus at Room Temperature psi x 10 ⁸
1-1	Unidirectional Laminate	114.9	62	129,000	5.39
1-2	Isotropic Laminate	114.9	69	74,000	2.61
2	Molded Panel	114.2	69	15,210	1.76
3	Foam Core	11,60	Co	ompressive Strength = 2	00 psi
4	Molded Panel Fiberite 4030-190	107.9	60	20,000	3.00
5	Molded Panel Coast F-130	106 to 109.7	53	41,800	2.90
6	Laminate Random Reinforcement	90.0	54	5,000	1.00
7-1	Laminar Construction Parallel Layup	90.0	60	25,000	3.00
7-2	Edgewise Layup with Thickness in Warp Direction	90.0	33	¹ 21,020 ² 3,300	1 2.15 2 0.85
8-1	Laminar Construction Regular Layup (Parallel)	116.5	78	Warp - 24,000 Fill - 13,200	Warp - 2,50 Fill - 1,80
8-2	Edgewise Layup with Thickness in Warp Direction	111.0	64	41,900	3.03
8-3	Edgewise Layup with Thickness at 45° of Warp Direction	111.7	62	See 8-1 and 8-2	See 8-1 and 8-2
9	Chopped Fabric Construction	72.0	16	10,750	0.397
10	Laminate	113.6	61	Warp - 27,200 Fill - 19,600	Warp - 3.89 Fill - 1.97
11	Laminate	131.0	86	Warp - 59,300 Fill - 54 800	Warp - 4.88
12	Laminate	137.5	76	Warp - 84,000 Fill - 80,100	Warp - 5.43 Fill - 5.18
13	Mat	117.0	74	Warp - 47,600 Fill - 36,400	Warp - 2.68 Fill - 2.37

Fill lengthwise (see Figure 1).
Fill across length.

WADD TR 60-657

Table 3

Physical Appearance of Materials

Material SRI No.	Before Conductivity Measurements	Top Temp.,	After Conductivity Measurements
1-1 and 1-2	Light green	527	Black and brown areas with some delamination
	Medium brown	593	Black with resin completely burned out around edges
-	Light tan	704	Medium brown to black, crushed somewhat and cracked all over
	Dark brown	780	Black with resin completely burned out in spots around edges and beneath getters
	Mottled red	633	Mottled white and human
	Mottled medium brown and tan	725	Black
-1	Tan	730	Black with resin completely burned
-2	Tan	733	Black and delaminated in several
	Dark hound	004	places
-2-	DATK Drown	701 702	Black with resin completely burned out in spots
	Brownish yellow	732	Black: completely burned up; in small pieces
0	Grey	721	Light grev
_	Chocolate brown	586	Black resin completely burned out around edges
2	Amber	599	Black, resin completely burned out around edges
	Black	706	Black, with large white areas where

WADD TR 60-657

D

Flexural Strength and Modulus

All flexural tests were made on a Tinius Olsen Universal Testing Machine at a crosshead speed of approximately **0.25** in./min and with a loading arrangement as shown in Figure 1, only modified to the reinforcement orientation as required for the different panels. See Table 2 for the strength and modulus values.

The ultimate flexural strength was calculated from the formula:

$$S = \frac{3PL}{2bd^2}$$

where

S = maximum fiber stress, psi

P = maximum load, pounds

L = distance between points of support, inches

b = width of beam as tested, inches

d = depth of beam as tested, inches

As might be expected, the laminates with either a roving or woven continuous reinforcement across the planes of principal stress had a higher flexural strength than the panels with a chopped and randomly oriented reinforcement. As seen in Table 2, one exception to this was material No. SRI 5 with a strength of 41,800 psi, which was higher than materials No. SRI 7-1 (25,000 psi), No. SRI 8-1 (warp 24,000, fill 13,200), and No. SRI 10 (warp 27,200, fill 19,600). Material No. SRI 5 had rather large flakes of glass cloth that overlapped and probably provided an interlock and continuous reinforcement.

Although material No. SRI 2 failed initially in tension, there was some indication that shear may have initiated the failure as the break was not at the loading point, but within $\frac{3}{4}$ inch of one support. The rest of the materials failed in either tension or a combination of tension and compression.

The flexural modulus was calculated from the formula:

$$E_{B} = \frac{L^{3}}{4bd^{3}} \left(\frac{P}{y}\right)$$

WADD TR 60-657

WADD TR 60-657

where

- ${\bf E}_{\bf B}$ = modulus of elasticity in bending, psi
 - \mathbf{L} = distance between points of support, inches
 - b = width of beam as tested, inches
 - d = depth of beam as tested, inches
 - \underline{P} = slope of straight line portion of load deflection curve in
 - y pounds per inch

Generally, the moduli of the materials fell within the range of 2×10^6 to 5×10^6 psi. A few materials exhibited values a little higher or lower. A correlation appeared to exist between continuous and discontinuous reinforcement across the principal plane of stress with those materials having a discontinuous reinforcement having a low modulus and those materials having a continuous reinforcement having a high modulus. Also, the modulus was generally greater when the warp was lengthwise with the beam or across the principal plane of stress. Other conditions being similar, glass reinforcement resulted in a higher modulus than asbestos, and nylon fell in between.

Barcol Hardness

The hardness of the surface finish was determined with a Barcol Impressor No. GYZJ 934-1. A curve for converting values obtained with this tester to other hardness scales is given in Figure 2.

The Barcol hardness obtained for each material is shown in Table 2 and is an average of three readings taken from each sample. The hardness values varied from a low of 16 for material No. SRI 9 to a high of 86 for material No. SRI 11. This low value for material No. SRI 9 is probably due to the short molding cycle, which did not allow time for the resin to cure sufficiently. Material No. SRI 11, which also had a 91-LD phenolic resin, was cured extensively. Most of the materials, however, fell into a range between 50 and 70.

SPECIFIC HEAT

Apparatus and Procedure

Specific heat determinations for these panels were made by means of a drop-type adiabatic calorimeter consisting of a covered

WADD TR 60-657

WADD TR 60-657

brass cup approximately $2\frac{1}{2}$ inches in diameter by 2 inches deep. Three thermocouple wells were located in the bottom wall of the cup. The cup was mounted on cork supports, which rested in a silver-plated copper jacket, the jacket being immersed in a bath of ethylene glycol. The temperature of the bath was maintained at the temperature of the cup by means of a 1000-watt nichrome wire heater and a copper cooling coil immersed in the liquid. Chilled trichloroethylene was pumped through the cooling coil to cool the bath. A double-bladed stirrer maintained uniform bath temperature.

A tubular furnace and a cold box were used to bring the specimens to temperature. When this equipment was pivoted on a common post near the calorimeter, the samples could be transferred to a position directly over the calorimeter cup. At this position the specimen was released from a suspension assembly, which was externally triggered. Thermocouples located near the specimen indicated specimen temperature.

Elevated specimen temperatures were maintained by a manual setting of a variable voltage transformer, which controlled the voltage of the furnace. Cold sample temperatures were obtained by filling the cold box with dry ice. A fan inside the box circulated the air to insure temperature uniformity. The cold box consisted of two concentric cylinders enclosed in an insulated plywood box. The smaller cylinder (3 inches in diameter by 16 inches high) was constructed of $\frac{1}{4}$ -inch mesh hardware cloth. The larger cylinder was made of galvanized sheet metal (15 inches in diameter and 16 inches high). The annulus was partially filled with dry ice.

Three copper-constantan thermocouples, differentially connected between calorimeter cup and jacket, indicated temperature differences between cup and bath. The three thermocouples enabled a difference of 0.03° F to be detected. During the test runs, this difference was maintained to within 0.15° F. Absolute temperature measurements of the cup were determined by means of three thermocouple junctions, connected in series in the bottom of the calorimeter cup. All of the thermocouple readings were taken on a Leeds and Northrup K-2 potentiometer in conjunction with a galvanometer of 0.43 microvolts per mm deflection sensitivity. This setup permitted temperature measurements within 0.01° F. This apparatus is shown in Figure 3.

Specimens of the test materials were heated or cooled to the desired temperature and, following a stabilization period, were dropped

WADD TR 60-657

WADD TR 60-657

into the calorimeter cup. Adiabatic conditions were maintained during each test by manually adjusting the temperature of the bath guarding the cup.

The foam core had such a small specific gravity that the specimens were made so that they would just fit into the cup in order to obtain the largest mass possible. Considerable difficulty was encountered in getting the specimen to drop into the cup, as it would fit in only one direction.

The foam samples were formed into cylinders, about $1\frac{3}{8}$ inches in diameter x $1\frac{3}{4}$ inches long, out of two halves that were held together by a few drops of Sauereisen DW-30 cement. These samples were then baked overnight at 215° F to remove any moisture.

The remainder of the samples were made by forming cubes approximately 1 inch x 1 inch $x\frac{1}{2}$ inch out of several thicknesses, which were pinned together using pins of the same material. Layers of material No. SRI 11 and No. SRI 12 were not pinned together because no adequate means of turning the pins out of the beryllium containing materials were available.

Data and Results

A calorimeter constant of 0.2654 Btu/ $^{\circ}$ F, which was previously determined by using an electrolytic copper specimen of known specific heat, was used in the calculations.

Determination of the specific heats consisted of measuring the enthalpy of the specimens as a function of the initial specimen temperature. A reference temperature of 85° F for the enthalpy determinations was used, and all enthalpy values were referred to this 85° F base.

The enthalpy of the specimen at any initial temperature is given by this formula:

$$h = \frac{K}{W_{S}}(t_{2} - t_{1})$$

where

K = calorimeter constant, 0.2654 Btu/° F W_S = sample weight, lbs t_1 = initial cup temperature, ° F t_2 = final cup temperature, ° F

WADD TR 60-657

The enthalpy was referred to the common base temperature of 85° F by:

 $h_{85} = h \left[1 + \frac{(t_2 - 85)}{(t_3 - t_2)} \right]$

where

 h_{85} = enthalpy above the reference temperature of 85° F, Btu/lb t_3 = initial sample temperature, °F

The specific heat is determined as the slope of the heat content curve in the temperature range for which the specific heat is desired. In the special case when the heat content curve is a straight line, the specific heat is a constant.

Because all values are calculated using a reference temperature of 85° F, the enthalpy at 85° F is zero by definition. For this reason, all heat content curves were drawn through 85° F and zero enthalpy and a best fit of the cold and hot data points.

The calibration of the apparatus was confirmed by running a copper specimen of known specific heat. The data obtained on this specimen is shown in Table 6, and the curve plotted from this data is shown in Figure 4. The specific heat, which was the slope of the enthalpy-temperature curve, was 0.093 Btu/lb ° F between 200° F and 520° F. A comparison of specific heat values obtained by others in this temperature range is shown in Table 4 and indicates general agreement. For further calibration, a specimen consisting of sapphire enclosed in a stainless steel cup was run. The specific heat of the sapphire alone was compared to several known values as shown in Table 5. The results of this comparison again indicated general agreement.

The specific heats ranged from 0.25 Btu/lb[°] F for material No. SRI 5 to 0.47 Btu/lb[°] F for material No. SRI 9, but most of the materials had a specific heat between 0.25 Btu/lb[°] F and 0.32 Btu/lb[°] F.

Upon comparing the physical make-up and properties of the materials, a correlation between the specific heats and the types of

WADD TR 60-657

WADD TR 60-657

Table 4

Comparison of Specific Heat Values for Copper

SRI			200 to 520		0 0934	1000.0	
lbel			572		0 0954		
* Schi			212		0.0928		
	te		577		0.0947		
ards	Whit		212		0.0913		
Rich	lle		572		0.0990		
74	Voi		212		0.0957		
ckel, F.	q	lerner	450		0.0960	±0.0007	
* DoeRin	an	M. W	232		0.0929	$\frac{1}{2}0.0010$	
Source			Temperature	° F	Specific	Heat	Btu/lb°F

From WADD TR 56-423, page 169. ¥

15

WADD TR 60-657
Table 5

Comparison of the Specific Heat of Sapphire Obtained by the Adiabatic Calorimeter to That of Several Other Sources

	al Tables	Specific	Heat	Btu/lb°F		0.239
Intow	Critic	Temp.	بلا ہ			922
Company	Company	Specific	Heat	Btu/Ib°F	0.2125	0.2265
I inde		Approx.	Temp.,	° F	500	1000
Besearch	dation	Specific	Heat	Btu/lb°F	0.263	0.280
Armonr	Found	Approx.	Temp.,	°F	500	1000
I Ice	imeter	Specific	Heat	Btu/lb°F	0.210	0.241
SR	Calor	Temp.,	لبر ہ		497	1008
diabatic	rimeter	Specific	Heat	Btu/lb°F	0.223	0.240
SRI A	Calor	Temp.,	۲ц о		490	966

WADD TR 60-657

reinforcement was suggested. Generally speaking, the glass-reinforced materials had the lowest specific heats, while the asbestos-reinforced materials were next, with the one nylon-reinforced material exhibiting the highest value. The foam core material had a specific heat slightly higher than the asbestos-reinforced materials.

It is not surprising that the specific heat value for the nylonreinforced material was high in comparison to the glass-reinforced materials, because nylon itself has a specific heat which is about twice that of glass. When there is little or no chemical interaction, the specific heat of a composite is anticipated to be the weighted average of the separate materials.

The specific heat data is shown in Tables 6 through 19 of the Appendix, and the specific heat curves are presented in Figures 15 through 27 of the Appendix.

THERMAL EXPANSION

Apparatus and Procedure

Thermal expansion measurements were made utilizing two quartz tube dilatometers of the Bureau of Standards design. The tubes and dial gages were mounted on a single arm to facilitate the testing of two samples simultaneously. The dial gages (B. C. Ames Co., Model 212, shockless) were graduated in 0.0001-inch divisions with a total range of 0.100 inch for specimens with low coefficients and 0.500 inch for the specimens with a higher coefficient. The manufacturer's stated mechanical accuracy for any given reading is ± 0.0001 inch at any point in the range.

The quartz dilatometers were wrapped with a layer of $\frac{1}{16}$ -inch asbestos sheet next to the tube and with alternating layers of asbestos sheet and aluminum foil until a total of three layers of each were around the tubes. This was done to minimize the temperature gradient through the samples.

The extensions from the dial, which were made of aluminum, were finned to facilitate cooling and reduce the possibility of a different expansion between the dial-gage mount and the extension; see Figure 5.

WADD TR 60-657

Figure 5. Thermal Expansion Apparatus.

WADD TR 60-657

For temperatures above room temperature, each dilatometer was heated by an individual heater. The temperature of the heater was maintained by a manual setting of a variable voltage transformer.

Cold specimen temperatures were obtained by use of a Dewar flask filled with dry ice and trichloroethylene. The flask was placed up on the dilatometer tubes to a height covering the specimens. Ironconstantan thermocouples were placed at each end and the center of the specimens to monitor the temperature throughout. This apparatus is shown in Figure 5. The specimens were 3 inches in length with the ends rounded on a 3-inch diameter. The ends of the foam core specimen were washed with Sauereisen DW-30 cement to prevent crushing.

Data and Results

The accuracy of the apparatus was checked by running a graphite and a nickel sample. The graphite was used to check the apparatus for running a material with a low coefficient of expansion. By calculation, using an equation from Kent's Mechanical Engineers Handbook, the coefficient for graphite between 70° F and 600° F is 1.19 microinches/in. ° F. This is relatively close to quartz-compared to plasticsand, as shown by Figure 6 and Table 20, the dilatometers indicated practically no motion. A curve showing the theoretical value for quartz is also included on the graphite curve. The indication of zero motion for the graphite was a good check that no severe thermal gradients existed in the tubes. Several reruns were made on the graphite to develop the heating technique that would reduce thermal gradients in the specimen. The data from these reruns is also shown in Table 20.

The nickel was used to check the apparatus for running materials with a fairly high coefficient of expansion. The data for the nickel specimen when plotted produced a curve with a slope of 7.69 microinches/in.; see Figure 6 and Table 21. This value compares favorably with the value for nickel of 7.6 microinches/in. given in the literature.

The actual data points for each run were plotted on the curves shown in Figures 28 through 53. No correction for the expansion of quartz was applied to the data because the correction would have been such a small percent of the total expansion that it would have been negligible anyway. A curve showing the expansion of quartz is given in Figure 7. For those cases requiring extreme accuracy, the expansion of quartz may be added to the expansion of the desired material in the range under consideration.

WADD TR 60-657

Figure 6. Expansion of Calibration Specimens.

WADD TR 60-657

The expansion coefficient is the slope of the expansion curve over a temperature increment. This slope is shown on those curves having a straight line portion over a reasonable temperature increment. This slope has been corrected in those cases when the expansion of quartz exceeded 5 percent of the specimen expansion.

Figure 8 shows the curves of the expansion parallel to the panel for all of the materials run in this direction. It can be seen from this figure that most of these materials had a reasonably constant expansion from -100° F to 200° F. After passing 200° F, however, the curves exhibited very little similarity. Material No. SRI 1-1, No. SRI 7-1, No. SRI 11, and No. SRI 12, all with continuous reinforcements, expanded until they reached a maximum at some temperature, and then began to contract. Material No. SRI 1-1 and No. SRI 7-1, an epoxy and a phenolic with a relatively light cure, reached this maximum at a fairly low temperature, while material No. SRI 11 and No. SRI 12, a phenolic and an epoxy with a hard cure, continued to expand to around 600° F. Material No. SRI 2 and No. SRI 10 had a plateau preceding their maximum expansions, and material No. SRI 2, after reaching its maximum and declining, began to expand again. Material No. SRI4 and No. SRI 6, with a discontinuous reinforcement, while not exhibiting this plateau before the maximum expansion was reached, did show the re-expansion after a previous increase and decrease. Material No. SRI 5 and No. SRI 13, silicones with a hard and light cure respectively, had a reasonably constant expansion to 700° F. This is typical of materials with silicone resins probably because this resin remains more stable at higher temperatures regardless of cure.

An interesting comparison of the same material expanding in different orientations is shown in Figure 9. The curves of this figure indicate an increase in expansion for the material from a minimum, oriented at 0° to the major axis of the fibers, and parallel to the plane of the reinforcement, to a maximum at 90° to the major axis of the fibers, and parallel to the plane of reinforcement. The curve for the expansion of the isotropic laminate is also included for comparison. The expansion of the isotropic laminate was somewhat greater than the minimum expansion, but closer to it than either of the other curves. This difference in expansion rates for various reinforcement configurations is an indication of the importance of the orientation in design considerations of the expansion of plastic laminates. However, this material had a roving reinforcement that caused a greater difference in expansion at different orientations than would have been exhibited for a woven reinforcement.

WADD TR 60-657

An interesting comparison that shows, in part, the influence the resin has on the over-all expansion of a plastic laminate is shown in Figure 37 of the Appendix The curves in this figure were produced by running one specimen of material No. SRI 4 to 518° F, allowing it to cool, and then exposing it to 735° F; a second specimen was then run to 774° F. The curves made by the first runs of each specimen show a similar characteristic that is inherent in many laminates with either continuous or discontinuous reinforcements and is probably caused by the resin. The material will expand to some point, level off, and then contract to a point where it levels off and begins to re-expand. This characteristic re-expansion is probably due to additional curing of the resin at the elevated temperature. When the first specimen was run a second time, there was a decrease in expansion coefficient and the characteristic hill and valley inflections were replaced by a smooth curve to the maximum expansion. This curve indicates that the chemical change was permanent and produced a permanent change in expansion properties.

THERMAL CONDUCTIVITY

Apparatus and Procedure

Thermal conductivity measurements were made with a guarded hot plate, which is a slight modification of the standard ASTM C177-45 design.

The heat for the apparatus was supplied by a central heater plate surrounded by a guard heater; each separately controlled. The guard ring was maintained at the same temperature as the central heater so that all of the heat flow from the central heater was normal to the test surfaces. The temperature difference between the guard and central sections was measured by means of 8 differential-thermocouple junctions connected in series. Moving out from the top and the bottom of the heater, the complete assembly, shown in Figure 10, was made up in the following order. Next to the heater was the assembly for measuring the temperature on the hot side of the specimen. To insure no air film between the specimen and the thermocouple as well as between the specimen and the hot plate, the ends of the thermocouples were soldered to 1 inch x 1 inch squares of brass shim stock. Also, the leads to the thermocouples were sandwiched between sheets of thin asbestos paper. Five of these thermocouples were placed at each hot face. Next to this assembly were the test panels. The cold face measuring assemblies followed next and consisted of 14-inch square copper plates through which

WADD TR 60-657

Figure 10. Thermal Conductivity Apparatus.

WADD TR 60-657

five thermocouples projected. The thermocouples were held in place by pieces of insulation bolted to the back of the copper plates. To protect them from high temperature corrosion, the copper plates were plated with nickel. Following next, to dissipate the heat was a cold source consisting of a copper coil enclosed in an aluminum box. To obtain mean sample temperatures above room temperature, water was circulated through the copper tubing of the cold plates. For mean sample temperatures below room temperature, cold trichloroethylene was pumped through the copper tubing. This coolant was chilled by circulating it through copper coils in a trichloroethylene dry-ice bath. Equilibrium conditions were verified before readings were taken.

To maintain good contact pressure, a screw loading device held the entire sandwich assembly pressed firmly together.

The assembly was arranged to operate with the specimen placed in the apparatus horizontally. as shown by Figure 10. The assembly was insulated around the edges by glass batting which can be seen on the far side of the apparatus in Figure 10.

A constant voltage transformer was used in conjunction with the variable control transformers, to assure a constant power supply at each setting. The central heater and guard heater were controlled individually by the variable control transformers

Voltage and current to the central heater were monitored by means of a voltmeter and an ammeter which were switched out of the circuit except when actually being read. The voltage to the guard heater was monitored constantly by a voltmeter, and an ammeter was switched in occasionally to confirm that the guard heater was operating.

All of the thermocouple readings were taken on a Leeds and Northrup K-2 potentiometer used in conjunction with a galvanometer of 0.43 microvolts per mm deflection sensitivity.

Due to the high cost of materials and the fact that larger dies were not available, some of the panels were less than the 14 inches x 14 inches required for this apparatus. Most of the undersized panels were 8 inches x 8 inches, although there were several panels in between the 8 inch x 8 inch and the 14 inch x 14 inch sizes.

To permit the undersized specimens to fit fully across the central and guard heaters these specimens were placed in a square

WADD TR 60-657

hole cut to their size in the center of a piece of asbestos board 14 inches x 14 inches and the same thickness as the specimen. This assembly then provided a specimen the same size as the normal 14 inch x 14 inch pieces and well guarded by the asbestos periphery.

Data and Results

Coefficients of thermal conductivity were calculated from the expression:

$$K = \frac{QX}{A\Delta t}$$

where

Q = total heat flow, Btu/hr

X = average thickness of specimens, inches

A = area of central heater section, square feet

 Δt = sum of temperature drops across each sample, **F**

Theoretically, Q, the heat input, should split, with exactly half of the input flowing through each sample. The temperature drops indicate that this condition rarely exists. Instead, there is a slight unbalance in the heat flow. The above formula then permits a calculation of the arithmetic average K for the two test panels.

The apparatus was calibrated against a calibration reference specimen used in previous work.

Figure 11 shows the curve established previously along with several data points obtained using (1) the same material but smaller specimens, (2) a modified periphery insulation, and (3) an improved temperature measuring technique. From this curve it can be seen that this preliminary data had considerable scatter. In spite of this scatter, sufficient information was obtained to establish operation procedure and techniques and to confirm the validity of using smaller specimens.

A more accurate calibration curve was subsequently established and is shown in Figure 12. From these data, it was determined that the best operating procedure was to measure the face temperature with five thermocouples mounted on small brass "getters" and held

WADD TR 60-657

against the specimen by a thin sheet of asbestos paper. Also, the copper plates on the hot side were eliminated. The results from these procedures indicated close agreement with both the previous calibrations on 14-inch specimens with 6 inches of vermiculite insulation around the apparatus, and the ASTM technique of simply laying the couples between the hot plate and the specimen. This latter technique is good for deformable materials but not advisable for rather rigid structures such as some of the molded panels. With copper plates on the hot side, the conductivity obtained was higher, indicating a radial heat loss out through the copper plates on the heater side of the specimens.

Conductivity curves for the materials are shown in Figures 54 through 70 of the Appendix and have been assembled in Figure 13 for comparison. The data from which these curves were plotted are shown in Tables 35 through 51 of the Appendix. On all of the materials, points obtained at a reduced temperature, after the material had been to the top temperature exposure, indicated a reduced conductivity. This suggests a nonreversible cure at the higher temperatures. Generally, the additional cure reduced the conductivity about 15 percent.

From Figure 13, observe that most of the materials fell within a close range with material No. SRI 1-1, No. SRI 1-2, No. SRI 2, No. SRI 11, and No. SRI 12, phenolics and epoxies, indicating a decreasing conductivity earlier during the temperature increase than most materials. This is probably the result of additional resin cure and then subsequent resin destruction. Material No. SRI 3, a foam core, had a lower conductivity than the other materials but continued to increase to the maximum temperature. This constant increase in conductivity was probably the result of increasing convection as well as the natural character of the silicone.

As was expected, the conductivity of material No. SRI 8, a phenolic-glass with a regular layup, increased as the orientation of the fabric to the heat flow direction was varied from normal to the panel, to 45° to normal, to 90° to normal or edgewise to the panel. This progression in conductivity can be noted from Figure 13. As seen in the more detailed curves on Figures 64 and 65, this material also had an unusual S-shaped character when run edgewise and at 45° to the panel. This shape has not been exhibited before by glass-reinforced laminates. Some glass does have a characteristic conductivity curve that increases sharply with temperature. It is possible that this characteristic of glass is controlling in these planes.

WADD TR 60-657

Material No. SRI9 decreased in conductivity earlier during the increasing temperature exposure than the rest of the materials probably because of the properties of the nylon reinforcement.

Because of the many varied physical constructions and fabrication procedures used in the different panels, it is difficult to correlate many of these characteristics with the conductivity. However, an interesting analysis can be made from the curves in Figures 60, 61, and 62 of the Appendix. These curves, which have been assembled in Figure 14, are for material No. SRI 6, No. SRI 7-1, and No. SRI 7-2, which are the Astrolite laminate with SC-1008 phenolic resin, a light cure, and different reinforcements. Material No. SRI 6 and No. SRI 7-1 had practically identical conductivity curves, although they contained different reinforcements. This would indicate that the conductivity normal to a panel is probably primarily influenced by the resin. The curve of material No. SRI 7-2 indicates a conductivity reasonably similar in character to that of the other two materials but somewhat higher since the conductivity was determined edgewise rather than normal. In this aspect, the glass could conduct continuously through the panel. Another interesting observation is that the curve of material No. SRI 7-1 was determined using a 14 inch x 14 inch specimen, while the one for material No. SRI 6 was determined using an 8 inch x 8 inch specimen. For these similar materials the specimen size had no appreciable influence on conductivity.

CONCLUSIONS

From the materials evaluated, the specific heat seemed to be influenced by the reinforcement materials more than any other single parameter probably because the heat capacity of the different reinforcements varied more than that of the different resins. The glassreinforced materials had the lowest specific heats, the asbestosreinforced materials were next, and the one nylon-reinforced material had the highest value.

The expansion coefficient was influenced by both the over-all composition and the orientation of the reinforcing fibers. The coefficient progressed from a minimum when determined at 0° to the major axis of the fibers, to a maximum when determined at 90° and parallel to the major axis of the fibers. The expansion properties of a material may be completely altered after the material has been exposed to a certain critical temperature.

WADD TR 60-657

Conductivity determined edgewise to a panel was influenced more by the reinforcement than by the resin. In the case of panels with glass reinforcement, the conductivity was higher edgewise than normal to the panel. In contrast to this, the conductivity normal to a panel was influenced more by the resin than the reinforcement.

WADD TR 60-657

APPENDIX

Individual Curves for all Properties Individual Tables for all Properties

WADD TR 60-657

.

• - +

46

هڻ:

ĺ

-

Figure 34. Thermal Expansion Parallel to Panel, Material SRI No. 3, Silicone Foam.

Figure 36. Enlarged View of Thermal Expansion Normal to Panel, Material SRI No. 3, Silicone Foam.

Figure 37. Thermal Expansion Parallel to Panel, Material SRI No. 4, Glass Roving, Phenolic Resin.

Figure 38. Thermal Expansion Normal to Panel, Material SRI No. 4, Glass Roving, Phenolic Resin.

Figure 39. Thermal Expansion Parallel to Panel, Material SRI No. 5, Chopped Glass, Silicone Resin.

Figure 40. Thermal Expansion Normal to Panel, Material SRI No. 5, Chopped Glass, Silicone Resin.

WADD TR 60-657

Figure 45. Thermal Expansion Normal to Panel, Material SRI No. 9, Chopped Nylon, Phenolic Resin.

Figure 46. Thermal Expansion Parallel to Panel, Material SRI No. 10, Asbestos, Silicone Resin.

Figure 47. Thermal Expansion Normal to Panel, Material SRI No. 10, Asbestos, Silicone Resin.

Figure 48. Thermal Expansion Parallel to Panel, Material SRI No. 11, Glass Fabric, Phenolic Resin.

Figure 48. Thermal Expansion Parallel to Panel, Material SRI No. 11, Glass Fabric, Phenolic Resin.

Figure 49. Thermal Expansion Normal to Panel, Material SRI No. 11, Glass Fabric, Phenolic Resin.

Figure 50. Thermal Expansion Parallel to Panel, Material SRI No. 12, Glass Fabric, Epoxy Resin.

Figure 51. Thermal Expansion Normal to Panel, Material SRI No. 12, Glass Fabric, Epoxy Resin.

Thermal Expansion Normal to Panel, Material SRI No. 13, Asbestos, Phenolic Resin.

WADD TR 60-657

t

78

. •

.

t

Thermal Conductivity Curve for Material SRI No. 8-2, Edgewise Layup, Glass Fabric, Phenolic Resin.

WADD TR 60-657

1 -

WADD TR 60-657

10 0 - I

•

Specific Heat Data

Calorimeter Constant K = 0.2654 $Btu/^{\circ} F$

			Test Specin	men; Copper	Calibration	Specimer	F	1
Run No.	Initial Cup Temp., F	Final Cup Temp., F	Change in Cup Temp., F	Initial Sample Temp., [°] F	Initial Wt. of Sample, Gm.	Final Wt. of Sample, Gm.	$h = \frac{K}{W_S}(t_2 - t_1)$ Btu/lb	Enthalpy Above 85° F Ref. Btu/lb
1 2 3 3	77.455 74.728 76.044	80.610 77.455 86.348	3 155 2 727 10.304	201 600 204.670 520.000	30.40 30.40 30.40	30.40 30.40 30.40	12.5 10.8 40.9	12.0

WADD TR 60-657

Specific Heat Data

Calorimeter Constant K = 0.2654 $Btu/^{\circ} F$

nate	Enthalpy Above 85° F Ref., Btu/lh	- 24.4 - 36.8 - 32.5 24.7 58.7 86.6 116.7
rectional Lami	$h = \frac{K}{W_S}(t_2 - t_1)$ Btu/lb	- 22.7 - 38.7 - 48.0 25.8 57.8 85.6 111.5
nt, Unidi	Final Wt. of Sample, Gm.	16.330 16.330 16.336 16.336 16.398 16.390 16.365 16.400
Resin Conte 1-1	Initial Wt. of Sample, Gm.	16.330 16.330 16.336 16.407 16.410 16.415 16.563
-125 Special SRI NO	Initial Sample Temp., °F	- 64.433 - 50.934 - 49.000 194.667 315.000 390.333 491.333
Scotchply XP.	Change in Cup Temp., °F	 - 3.090 - 5.260 - 6.543 - 6.543 3.522 7.869 11.653 15.217
Specimen;	Final Cup Temp., F	74.683 92.044 149.417 80.348 88.391 88.609 103.000
Test	Initial Cup Temp., ° F	77.773 97.304 155.960 76.826 80.522 76.956 87.783
	Run No.	1004007

WADD TR 60-657

Specific Heat Data

Calorimeter Constant K = 0. 2654 $Btu/^{\circ}$ F

	5		(Adjac	ent Plies at 6 SRI No	0 to Each C	1		
Run No.	Initial Cup Temp., °F	Final Cup Temp., ° F	Change in Cup Temp., F	Initial Sample Temp. , [*] F	Initial Wt. of Sample, Gm	Final Wt. of Sample, Gm.	$h = \frac{K}{W_S}(t_2 - t_1)$ Btu/lb	Enthalpy Above 85 F Ref. Btu/lb
-	92.348	87.218	5.130	92.900	15.477	15.477	- 39.8	- 39.3
2	87.174	82.000	- 5,174	- 62.333	15.278	15.278	- 40.7	- 41 5
3	93.545	87.391	- 6.154	- 52,500	15.281	15.281	48.5	- 47 7
4	79.318	82.913	3.595	197.333	15.195	15.187	28.5	28.0
5	83.819	91.044	7.225	302.000	15.310	15.290	56.9	58 5
9	78.653	90.391	11.738	410.333	15.443	15.402	91.5	0.50
2	90.174	104.652	14.478	494.667	15 437	15 310	113 1	110 0

WADD TR 60-657

Specific Heat Data

Calorimeter Constant K = 0.2654 $Btu/^{\circ}$ F

				SRI No	nt 35 ± 5%			
Run No.	Initial Cup Temp.,	Final Cup Temp.,	Change in Cup Temp., F	Initial Sample Temp., ° F	Initial Wt. of Sample, Gm.	Final Wt. of Sample, Gm.	$h = \frac{K}{W_S}(t_2 - t_1)$ Btu/Ib	Enthalpy Above 85° F Ref., Btu/Ib
10040	75.000 72.910 79.819 76.304 88.653	78.695 80.609 92.652 90.914 107.541	3.695 7.699 12.833 14.610 18.888	194.000 296.167 411.000 500.167 614.500	17 103 16.740 17.350 16.665	17.080 16.616 17.201 17.201 16.066	26.0 55.6 89.6 109.5	24.6 54.5 91.7 111.1

WADD TR 60-657

Above 85° F Ref. Enthalpy 40.8 67.4 103.9 131.4 184.8 Btu/lb 80 198. Test Specimen; Foam Core, Dow-Corning Silicone R-7002, Fully Cured $h = \frac{K}{W_S}(t_2 - t_1)$ 69.3 104.5 132.8 187.0 Btu/lb -43. Sample, 5.270 5.275 5.500 4.710 4.710 4.165 Wt. of Gm. Final Initial Wt. of Sample 5.275 5.300 5.535 4.770 4.540 420 Gm. 4 3 SRI No. H o 302 000 399 333 501 000 588.167 697.000 333 Sample Initial Temp., 195 Temp., °F Change in Cup 1.923 3.043 4.797 5.218 3.696 6.870 923 Final Cup Temp., 956 318 653 174 087 227 H o Initial Cup 75.304 75.913 78.521 75.435 Temp., 217 75.478 H o 78. Run No. 100400

Sample broke in half and only half fell in cup. *

Table 10

Specific Heat Data

Calorimeter Constant K = 0. 2654 $Btu/^{\circ} F$

WADD TR 60-657

Specific Heat Data

Calorimeter Constant K = 0. 2654 $Btu/^{\circ} F$

in	Enthalpy Above 85° F Ref.,	- 37.9 - 31.0 - 31.0 - 40.8 58.8 93.3 - 119.4 160.9 160.9
, Phenolic Res	$h = \frac{K}{W_S} (t_2 - t_1)$ Btu/ib	- 33.9 - 32.4 41.9 59.4 91.6 118.6 155.0 186.1
ass Fiber	Final Wt. of Sample, Gm.	13.040 13.040 13.040 12.936 11.950 12.400 12.335 11.610
030-190, GI	Initial Wt. of Sample, Gm.	13.040 13.040 12.950 12.850 12.866 12.866 12.866 12.866 12.700
el Fiberite 4 SRI No	lnitial Sample Temp , [°] F	- 50.167 28.667 207.900 294.500 408.167 499.500 619.167 704.833
, Molded Pan	Change in Cup Temp., [°] F	- 3.683 - 3.522 4.508 5.909 9.478 12.175 15.957 15.957 18.043
st Specimen	Final Cup Temp ° F	70.727 90.043 81.826 83.000 90.956 87 653 100.913 98 261
Te	Initial Cup Temp., F	74.410 93.565 77.318 77.091 81.478 84.956 80.218
ſ	No.	

WADD TR 60-657

Specific Heat Data

Calorimeter Constant K = 0.2654 $Btu/^{\circ} F$

_		
sin	Enthalpy Above 85° F Ref.,	Dtu/ID - 39.1 - 44.0 31.5 49.4 70.6 101.3 128.7 155.4
er, Silicone Re	$h = \frac{K}{W_{S}}(t_{2} - t_{1})$ Btu/lb	- 52.1 - 53.6 32.1 49.4 72.8 100.7 126.9 148.8
Glass Fibe	Final Wt. of Sample, Gm.	17.750 17.250 16.900 17.250 17.750 17.750 17.774 17.666
30 Chopped	o. J Initial Wt. of Sample, Gm.	17.750 17.750 16.900 17.250 17.750 17.795 17.795 17.795
, Coast F-1	Initial Sample Temp., F	- 24.150 - 50.000 210.434 307.000 404.833 494.000 591.333 699.667
Molded Panel	Change in Cup Temp., F	- 7. 708 - 7. 769 4. 523 7. 092 10. 759 14. 615 18. 740 21. 868
Specimen;	Final Cup Temp., F	121.375 114.416 82.610 84.956 94.304 87.479 91.914 111.042
Test	Initial Cup Temp., F	129.083 122.125 78.087 77.864 83.545 72.864 73.174 89.174
	Run No.	

WADD TR 60-657

Specific Heat Data Calorimeter Constant K = 0. 2654 Btu/° F

d Cup F F F 044 8 130 8 869 8	inal Cup Temp., F 7.348 6 522 5 826 3 136	Change in Cup Temp. F - 3 696 4 249 5 696 9 267	Initial Sample Temp., ° F - 52.467 210.634 303.333 396.000	of Sample, of Sample, Gm. 13.495 14.115	Final Wt. of Sample, Gm. 13. 495 13. 835 13. 898	$h = \frac{K}{W_{S}(t_{2} - t_{i})}$ Btu/lb - 32.9 36.8 54.0 80.4	Enthalpy Above 85° F Ref. Btu/lb - 32.4 34.5 54.2
261 8	1.348	12.087	494 667	13 375	19 740	80.4	80.9
696 8	8.174	14.478	590 667	13 495	19 755	8 961	112.9
010	0.0			DOE . 01	14. 100	130.0	136.9

WADD TR 60-657

ion, Refrasil 184 Weave, n	t. Final e. Wt. of $h = \frac{K}{W_S}(t_z - t_1)$ Enthalpy Sample, Btu/lb $85^{\circ} F Ref$, Btu/lb	13.355 -272 -32.5 13.100 33.9 -32.5 12.805 62.0 62.1 12.470 129.8 132.6
Constructi olic Resir 7-1	Initial Wt of Sample Gm	13.380 13.230 13.230 13.265 13.280 13.180
e, Laminar C SC-1008 Phen SRI No.	Initial Sample Temp., ^e F	- 58.500 204.767 295 333 422.500 555 625
nen; Astrolit S	Change in Cup Temp , ° F	- 3 026 3.696 6.610 9.621 13.478
Test Specin	Final Cup Temp. ° F	61 565 78 870 84 565 83 273 95 087
	Initial Cup Temp.	64.591 75.174 77.955 73.652 81.609
	Run No.	100400

Table 14

Specific Heat Data

	st Specim	en; Molded F CTL	anel, SN-19 -91 LD Phen SRI No	Nylon Chopp olic Resin 5. 9	oed Fabri	c Construction,	
Final Ten	. Cup F	Change in Cup Temp., ^e F	Initial Sample Temp. ° F	Initial Wt. of Sample, Gm.	Final Wt. of Sample, Gm.	$h = \frac{K}{W_S}(t_2 - t_1)$ Btu/Ib	Enthalpy Above 85° F Ref., Btu/lb
69	218	- 3, 373	- 49.450	9 385	9 385	- 42 1	40.04
74.0)45	- 2 433	- 49 850	8 969	000 0	1.01	40.8
75 5	00	A 360	910 667	0.000	0.000	0.20	- 35.5
	200	1.000	210.001	2.303	9. 323	26.4	52.7
82.6	60	7.927	319.333	8.905	8.837	108.0	106.9
85.2	19	11.435	414.333	8.720	8.405	163.5	163 5
89.8	02	15.143	498, 833	9.485	8.902	204.0	206.0

Specific Heat Data

WADD TR 60-657

. .

Specific Heat Data

Calorimeter Constant K = 0.2654 $Btu/^{\circ} F$

	- Enthalpy Above 85° F Ref., Btu/lb	- 37.5 35.6 68.2 93.0 117.2 149.6 186.1
licone Resin	$h = \frac{K}{W_{S}}(t_{2} - t_{1})$ Btu/lb	- 37.2 36.6 67.1 92.1 114.4 148.0 178.8
C-2106 Si	Final Wt. of Sample, Gm.	14.682 14.348 14.494 14.262 14.115 14.000 13.687
Asbestos, D	of Sample, Gm	14.682 14.682 14.423 14.630 14.400 14.320 14.230 14.082
ate, 40 RPD	Initial Sample Temp., ² F	- 48.700 222.000 326.000 402.333 498 500 593.333 702.000
men; Lamina	Change in Cup Temp., [°] F	- 4.541 4.361 8.087 10.909 13.477 17.217 20.377
Test Speci	Final Cup Temp., ° F	83.720 81.013 88.870 88.000 94.956 90.348 109.333
	Initial Cup Temp., ° F	88. 261 76. 652 80. 783 77. 091 81. 479 73. 131 88. 956
	Run No.	-1 0 0 4 10 0 1-
657	7	109

WADD TR 60-657

1

85° F Ref. Enthalpy - 34.9 - 23.1 38.8 59.0 89.9 145.3 113.1 Above Btu/Ib YM-31A Glass Fabric, CTL-91 LD Phenolic Resin $\frac{K}{W_S}(t_2 - t_1)$ Btu/lb - 35.9 - 23.4 38.1 58.0 89.5 141.1 н Ч Sample, $11.947 \\11.900 \\11.642 \\11.552 \\$ Wt. of 12.202 12.017 11.490 Calorimeter Constant K = 0.2654 $Btu/^{\circ} F$ Final Gm. Initial Wt. of Sample, 12.003 11.960 11.931 11.528 11.730 11.699 12.185 Specific Heat Data Gm. 11 Table 17 Sample F SRI No. 212.167 310.833 403.667 512.500 - 58.033 - 29.566 601.333 Initial Temp., Γ±ι Test Specimen; Laminate, in Cup Change $\begin{array}{c} 3.\ 652\\ 2.\ 348\\ 3.\ 783\\ 5.\ 740 \end{array}$ 8 670 10.573 13.478 Temp., r Run Initial Cup Final Cup Temp., 89. 261 86. 565 82. 783 88.696 86.261 96.834 99.913 ۲<u>ب</u> Temp., 92.913 88.913 79.000 82.956 77.591 86.261 86.435 ۲<u>ـ</u> No. 1004000 WADD TR 60-657 103

				Enthalpy	Above	85° F Ref.,	Btu/lb	- 39 1	- 20.5	23.3	46.0	64.6	84.5	107.4	139.7
			1 Epoxy Resin	k - K (+ +)	$W_{S}^{(L_{2}-L_{1})}$	Btu/lb		- 30 4	- 18.6	24.3	44.8	63.5	81.6	102.8	137.5
		Btu/°F	Epon 103	Final	Wt. of	Sample,	Gm.	12 045	12.082	11.640	11.960	11.867	11.780	11.735	11.350
18	at Data	K = 0. 2654	ass Fabric, 12	Initial Wt.	of Sample,	Gm.		12.042	12.080	11.650	11.970	11.894	11.810	11.807	11.556
Table	Specific He	ter Constant	YM-31A GI	Initial	Sample	Temp., F		- 52 835	- 38.200	192.566	202.233	319.667	407.000	505.333	598.167
		Calorime	n; Laminate,	Change	in Cup	Temp., F		- 3 050	- 1.870	2.358	4.463	6.261	8.000	10.044	13.000
			est Specime	Final Cup	Temp.,	۰ Fl		77 864	73.391	80.131	81.740	89.217	95.914	103.000	93.174
			Ĩ	Initial Cup	Temp.,	۲щ ک		80 914	75.261	77.773	77.227	82.956	87.914	92.956	80.174
				Run	No.				101	e	4	ວ	9	2	8

5	
hund	
e	
p	
g	
Н	

Specific Heat Data

Calorimeter Constant K = 0.2654 $Btu/^{\circ} F$

	Test S	pecimen; L	aminate, R/N	A 42 RPD Ask	pestos, R./M	High Hea	at Resistant Ph	enolic
				SR1 No	. 13			
Run	Initial Cup	Final Cup	Change	Initial	Initial Wt.	Final	h - K (1 + 1	Enthalpy
No.	Temp.	Temp	in Cup	Sample	of Sample,	Wt. of	$W_{\rm S}^{\rm (L_2 - L_1)}$	Above
	° F	۲ ۲	'Temp., F	Temp., °F	Gm.	Sample,	Btu/lb	85° F Ref.,
						Gm.		Btu/lb
1	100.217	94.304	- 5 913	- 57.167	18.039	18.050	- 39.4	- 37.0
2	74.819	81.130	6 311	228 000	18.341	18.295	41.5	40.4
6	81.130	91.091	9.961	315.750	18.237	18.120	66.0	67.8
4	90.696	103.740	13.044	396.750	18.070	17.960	87.1	92.7
2	73.565	91.913	18.348	501.000	18 065	17.723	124.1	126.2
9	91.609	114.208	22.599	602.750	. 18 015	17.630	154.0	163.2
5	75 348	102 500	27 152	699,667	17.952	17.258	188.8	194.3

WADD TR 60-657

ί. 1

Sample	N. O	Avg. Expansion,	μιη. / in.	C) (0.00	33	33	67	67	67	67	67	67	100	100	133
nite Calibration		Avg. Temp.,		79	102	151	206	940	309	204	000	402	450	508	549	593	660	669	759	797
er x 3" Long Graph	1 No. 2	Avg. Expansion, uin /in		0	- 33	0	33	33	33	67	001	100	100	100	133	200				
ı for <mark>3</mark> " Diamete	Rur	Avg. Temp.,		96	155	202	255	307	351	413	465	400	122	TCC	100	1.50				
nal Expansion Data	in No. 1	Avg. Expansion, μ in. / in.	c		0.0	- 33	- 67	-67	-33 .	-33	-33			-33	000	000	+33			
Thern	Ru	Avg. Temp., F	22	195	130.	001	203	251	302	349	368	415	449	501	561	201	010			

WADD TR 60-657

Avg. Temp., F	Avg. Expansion, μ in./in.
123	0
152	167
200	533
255	933
301	1300
363	1733
400	2033
447	2400
503	2867
569	3367

Thermal	Expansion	Data	for $\frac{3}{4}$	Diameter	x 3"	Long
	Nickel	Calib	ration	Sample		

WADD TR 60-657

Thermal Expansion Data for Scotchply XP-125, Special Resin Content 30% ± 1.5% Table 22

	Unidir	ectional Lamin	late, SRI No.	1-1		Isotronic Lamina	· chi · ·
Expansion and at 0 Major A	Parallel)° to Axis	Expansion I and at 4 Maior 4	Parallel 5° to	Expansion F and at 90	Jarallel J ³ to	Expansion to Pa	re, JNJ NO. <u>1</u> Parallel nel
vg. Temp.,	Avg. Exp., µin./in.	Avg. Temp.,	Avg. Exp., µin./in.	Avg. Temp.,	Avg. Exp., µin./in.	Avg. Temp.,	Avg. Exp.
78	0	74	0	74	C	02	111. / III.
48	-100	- 24	- 767	- 43	- 1967	0	0 000
4	-267	- 46	-1100	- 84	- 2533	- 28	- 300
- 35	-400	12 -	-1333	- 96	- 2700	07	- 433
- 69	-500	- 89	-1467	-106	- 2833	- 03	- 633
- 84	-533	-103	-1567		- 2633	60T-	- 293 -
-102	-600	- 82	-1467	- 54	- 2100	000	1.91
- 69	-500	- 56	-1300	- 12	- 1433	150	- 600
- 35	-400	- 15	- 933	.21	006 -		- 433
2	-333	- 2	- 767	48	- 500	78	- 133
48	-133	28	- 567	73	C		0
78	- 33	46	- 367	* 73		00	0
* 76	0	74	- 133	126	1000	174	133
119	167	* 73	0	158	1933	225	000
185	233	127	533	192	2600	251	100
247	333	167	1100	274	7867	305	000
303	433	206	1533	332	11000	347	000
367	500	294	4367	373	12367	411	0011
411	533	358	6333	424	14100	461	1011
444	367	399	6667	473	13233	501	1200
502	167	457	7167	507	9333	100	900
76	-833	512	5967	11	-13533		
		71	1013		>>>>		

WADD TR 60-657

108

* Dial gage rezeroed.

۰.

10000

Thermal Expansion Data for Molded Panel, Chopped 181 Glass Fabric, A-1100 Finish with CTL-91 LD Phenolic Resin, Resin Content 35% ±5% SRLNO. 2

on Normal to Panel	Avg. Expansion, µin. /in.	c	117	1583	2718	3135	3655	4400	00061	15540	19801	01100	19100	9830	1050	0008	0000
Expansi Shaciman 11 . 3" Dis	Avg. Temp. , * F	73	109	162	215	257	293	357	421	440	460	504	557	615	671	727	
Parallel to Panel 1" Wide x 4" Thick Annroy	Avg. Expansion, µin. /in.	0	167	200	006	1167	1500	1667	1833	2300	1867	1500	1367	1500	1733	2233	
Expansion Specimen, 3" Long x	Avg. Temp., ⁵ F	73	109	166	209	255	303	359	398	443	503	516	540	585	635	724	00

WADD TR 60-657

Expansi	on Parallel to Panel	Expansio	on Normal to Panel
1" x 1"	x 3" Long Specimen	$6 - \frac{3''}{4} \times \frac{3''}{4} \times \frac{1''}{2}$ Cubes	Stacked to Form 3" Specimen
Avg. Temp., °F	Avg. Expansion, µin./in.	Avg. Temp., °F	Avg. Expansion, µin./in.
76	0	76	0
17	- 3133	104	700
- 2	- 4233	151	2200
- 29	- 5133	215	4400
- 57	- 5800	247	5400
- 86	- 6633	294	5900
- 94	- 6833	342	5800
- 98	- 6933	367	4300
-101	- 7033	391	1800
-103	- 7100	447	- 4000
-103	- 7133	518	- 7000
- 77	- 6800	532	-11600
- 44	- 5800	611	-11500
- 15	- 4800	650	-13000
+ 2	- 4300	715	-19000
21	- 3467	75	-21800
40	- 2800		
53	- 2300		
63	- 1933		
76	- 1467		
* 78	0		
100	700		
148	3267		
197	5967		
260	8333		
304	8670		
328	8567		
345	7900		
382	2600		
395	- 1167		
447	- 5733		
492	- 6200		
547	- 8100		
554	-12467		

Thermal Expansion Data for Foam Core, Dow-Corning Silicone R-7002, Fully Cured SRI No. 3

* Dial gage rezeroed.

WADD TR 60-657

110

Thermal Expansion Data for Molded Panel Fiberite 4030-190, Glass Fiber, Phenolic Resin Expansion Parallel to Panel, 1" x 4" x 3" Long Specimen SRI No. 4

Sample No	b. 1, Run No. 1	Sample No	. 1, Run No. 2	Sam	ple No 2
Avg. Temp.,	Avg. Expansion,	Avg. Temp.,	Avg. Expansion,	Avg. Temp.	Avg. Expansion
F	μin. / in.	°F	μ in./in.	°F	uin. / in.
80	0	78	0	78	0
14	- 767	97	133	98	167
- 3	- 967	143	467	144	767
- 38	-1300	195	833	203	1567
- 50	-1433	251	1200	246	1933
- 57	-1500	312	1600	288	2333
- 70	-1667	369	2033	350	2700
- 79	-1733	434	2533	415	2133
- 83	-1767	387	1967	428	1767
- 95	-1833	428	2300	433	1433
-100	-1900	496	2800	455	733
-103	-1933	524	2900	478	467
-104	-1967	579	3000	512	533
- 88	-1800	650	3433	567	767
- 68	-1633	656	3367	638	833
- 50	-1433	683	3367	687	1033
- 27	-1267	735	3200	774	1367
12	- 767	623	1833	85	-4967
37	- 533	420	267		
51	- 367	279	- 667		
63	- 233	136	-1567		
78	- 67	78	-1900		
* 76	0				1
129	700				
148	967				
213	1867				
280	2600			•	
306	2900				
369	3430				
414	2500				
464	1667				
518	1500				
460	833				
413	200				
340	- 267				
316	- 533				
74	-2167				

* Dial gage rezeroed.

WADD TR 60-657

Thermal Expansion Data for Molded Panel Fiberite 4030-190, Glass Fiber, Phenolic Resin. Expansion Normal to Panel. $12 - \frac{3}{4}$ " Diameter Disks Stacked Up, Total Height Approximately $2\frac{15}{16}$ " SRI No 4

Avg. Temp., F			Avg. Expansion win /in
20			a sepanaton, pan. /m.
10		1	0
57			- 306
42		1	- 511
- 10	1.61	1 . A	- 1261
- 24			- 1465
- 37			- 1670
- 50			- 1875
- 65			- 2145
- 77			- 2210
- 92			- 2620
- 96			- 2600
-105			- 2027
- 78			- 2420
- 44			1010
- 15			1910
41			- 1500
59		-	- 750
76			- 545
* 75			- 170
103			0
155			400
194			1100
248			2300
261			4000
318			4600
357			7900
381			13900
423	1		20400
480			17600
530			11300
576			9000
622			7200
620			4400
714			5800
114			9800

Dial gage rezeroed. *

WADD TR 60-657

	on Normal to Panel	Avg. Expansion, µin. /in.	0	- 366	- 767	- 867	- 1133	- 1200	- 2333	- 1267	- 700	- 467	- 333	0	300	600	4267	5600	7600	9633	12067	15433	19733	23067	28500	32933	9700		
	Expansi Specimen, 11 - 3" Dia	Avg. Temp., " F	92	57	14	- 17	- 50	- 77	-105	- 5	49	68	16	* 76	113	220	285	317	364	422	481	020	589	613	200	617	76		
	1 Parallel to Panel 11" Wide x 4" Thick Approx.	Avg. Expansion, µin./in.	0	0	- 233	- 333	- 467	- 600	- 733	- 833	- 633	- 467	- 367	- 333	- 300	002 -	100	300	467	733	296	0011	1500	1667	0007	2400	2700	3000	3300
2	Expansion Specimen, 3" Long x	Avg. Temp., F	92	61	27	3	- 28	- 52	- 76	-102	- 39	- 10	13	40	00	* 76	108	157	202	263	311 350	100	437	404	010	600	608	662	76

Table 27

113

* Dial gage rezeroed.

Thermal Expansion Data for Laminate, Astrolite, Random Reinforcement 1. Squares of 1201V Cloth, SC-1008 Phenolic Resin. Resin Content 30-35% by Weight SRI No. 6

n Normal to Panel a. Disks Stacked to 3" Approx.	Avg. Expansion, min /im		- 500	000	-1233	-1500	1700	0006-	-1567	1001	- 333	000	833		2367	3733	2200	1700	033	333		- 133	0.0	22	100-	000
Expansion Spectmen, 22 - 4 Dia	Avg. Temp., F	76	50	14	- 24	- 55	- 72	- 99	- 51	4	30	57	76	* 76	145	189	257	297	353	386	504	572	266	668	723	
on Parallel to Panel Long x 1" Wide x 4" Thick Approx. mped Together	Avg. Expansion, µin./in.	0	- 233	- 400	- 200	- 633	- 700	- 633	- 467	- 267	- 33	0	167	367	33	- 333	- 400	- 600	- 533	- 567	- 633	- 867	-1033	-1600		
Expansic Specimen, 2 Pieces 3" Cla	Avg. Temp., F	26	23	- 16	- 40		-102	- 13	- 28	36	76	91. *	140	201	294	405	413	448	482	1.00	604	638	720	69		

WADD TR 60-657

114

Dial gage rezeroed.

*

ecimen, 2 Pieces 3" J Clar	1 Parallel to Panel Long x 1" Wide x 2" Thick Approx.	Expansion Specimen, 2" Dia.	Normal to Panel Disks Stacked to 3" Approx
/g. Temp., * F	Avg. Expansion, µin./in.	Avg. Temp. ° F	Ave Fundation 1
75			AVE. Expansion, Hin. /in
10	0	73	
07	- 167	51	
1	- 267	14	0.00
- 51	- 400	- 19	- 233
- 73	- 467	45	- 533
- 89	- 500	10	- 1000
-100	192	10 -	- 1667
- 43	100	-104	- 2100
- 10	101	22 -	- 967
29		15	- 300
	- 107	73	+ 167
62	- 67	* 72	0
100	0	107	600
151	133	139	1167
222	333	204	2167
280	100	259	1233
313	400	300	33
356	100	343	- 600
386	207	410	- 1033
440	10	461	- 1500
534	10	212	- 2033
544	100	584	- 1900
	107 -	635	- 1900
002	107 -	696	- 1900
200	105 -	752	- 3467
201	- 200	831	- 7800
000	-1067	74	-11333
14	-1700		nnnt t

WADD TR 60-657

Thermal Expansion Data for Mol	lded Pan	el,		
SN-19 Nylon Chopped Fabric Construction,	CTL-91	LD	Phenolic	Resin
SRI No. 9				

Expansio	n Normal to Panel
Specimen, $11 - \frac{3^{11}}{4}$ Dia.	Disks Stacked to a Height of 3"
Avg. Temp., F	Avg. Expansion, μ in./in.
74	0
33	- 800
8	- 1433
- 19	- 2033
- 55	- 2733
- 73	- 3033
-101	- 3667
- 70	- 3367
- 11	- 3067
26	- 2800
59	- 2000
75	- 1433
† 75	0
104	1166
144	3333
286	18900
205	10333
295	19500
320	31233
327	32900
356	57833
407	* 125833
76	98700

- * Limit of dial gage reached so run was stopped. Bubbles were produced in the material, and the dial gage would show a great expansion as the bubble formed and then a contraction when the bubble burst.
- † Dial gage rezeroed.

WADD TR 60-657

Normal to Panel . Disks Stacked to 3" Approx.	Avg. Expansion, µin./in.	c	- 1000	1001	1001 -	1007 -	0000	0067 -	0030	1960	- 1567	- 1000	+ 267	0	1533	4500	7833	10433	11967	14133	16533	19533	22667	26267	30333	34333	36867	4200
Expansion Specimen, 24 - 4" Dia	Avg. Temp., F	79	41	2	- 32	- 54	- 74	-102	- 51	- 13	20	39	19	* 76	110	153	203	255	295	349	394	100	500	209	000	640	730	65
Parallel to Panel long x 1" Wide x ", Thick Approx. nped Together	Avg. Expansion, µin, /in,	0	- 167	- 267	- 400	- 533	- 600	- 533	- 433	- 267	- 133	0	0	100	167	400	533	800	006	0001	1167	1961	1001	1200	1867	1867	1833	200
Specimen, 2 Pieces 3" L Clan	Avg. Temp., ° F	78	32	- 4	- 39	- 69	-102	- 69	- 33	10	50	81	* 76	111	150	199	249	301	210	925	442	489	530	587	660	711	770	506

WADD TR 60-657

117

* Dial gage rezeroed.

.041 110		
arallel to Panel ng x 4" Wide x 4" Thick Approx.	Expar Specimen, ¹ , So	asion Normal to Panel quares Stacked to 3" Appro
ed Together Avg. Expansion, μin./in.	Avg. Temp., °	F Avg. Expansion, μin./i
0	22.	0
- 67	54	- 433
- 300	33	- 733
- 633	12	- 967
- 933	- 17	-1300
-1067	- 46	-1633
- 967	- 75	-1967
- 833	-101	-2267
- 667	- 85	-2000
- 533	- 53	-1677
- 133	- 25	-1400
0	37	- 677
133	76	- 200
400	+ 74	0
733	101	300
100	2010	0001
1500	213	1933
1800	334	1933
2067	368	2100
2133	391	2000
2167	443	2867
2100	491	5467
2067	529	8167
2100	559	0006
-2700	605	6967
	643	2633
	01	cent-

118

* Dial gage rezeroed.

sion Normal to Panel uares Stacked to 3" Approx.	F Avg. Expansion, μin. /in.		0	- 233	- 433	- 633	- 767	000 -	- 1967	0011 -	- 1467	1.901 -	101	- 100	367	833	1100	733	1033	1567	1000	0014	0000	90500	43567	24133	23000	21567
Expans Specimen, ¹ " Squ	Avg. Temp., ^a F	77	16	1.2	av	94 -	-103	02 -	-103	154		26	11	* 67	112	157	213	270	361	416	444	495	546	109	670	366	281	170
1 Parallel to Panel Long x 3, Wide x 3, Thick Approx. mped Together	Avg. Expansion, Lin. /in.	0	- 167	- 367	- 633	- 833	-1000	-1033	- 967	- 667	- 367	+ 67	0	133	467	100	800	0001	1100	1267	1433	1633	1667	1600	1533			
Specimen, 2 Pieces 3" Ave Temn ^a E Cla	J fidman Bar	78	43	8	- 34	- 64	- 93	-103	- 65	97 -	18	11	10 #	156	211	258	303	364	402	452	000	100	100	000	260			

WADD TR 60-657

Thermal Expansion Data for Laminate, R/M 42 RPD Asbestos, R/M High Heat Resistant Phenolic Resin. Resin Content 25-30% by Weight SRI No. 13

ia. Disks Stacked to 3" Approx.	Avg. Expansion, µin./in.	0	- 200	- 767 -	-1233	-1600	-1833	-2067	-2300	-2167	-1767	-1038	- 500	- 333	0	667	1733	2233	2467	2700	2500	3200	4100	5000	4933	3433	3700	7733	- 66	-4267
Specimen, 20 - 4" D	Avg. Temp., [°] F	74	57	18	- 15	- 44	- 63	- 80	-100	LL -	- 30	29	60	73	* 70	113	170	198	247	304	348	404	446	499	535	595	649	669	511	322
ong x 1" Wide x 3" Thick Approx.	Avg. Expansion, µin./in.	0	- 133	- 333	- 433	- 500	- 567	- 500	- 400	- 233	- 167	- 33	0	33	267	333	467	567	733	833	933	1033	1100	1200	1367	1533	767	100	- 200	
Specimen, 2 Pieces 3" L Clam	Avg. Temp., ° F	74	34	- 27	- 63	62 -	-102	- 75	- 38	16	41	73	02 *	100	176	208	255	307	368	405	461	210	546	299	651	200	496	306	73	

WADD TR 60-657

...

120

* Dial gage rezeroed.

Traiding stigns	I Laminata Ca	stabula VD 125 Case	in 1 Pagin Contont
Unidirectiona	I Laminate, Sc	otenpiy XP-125 Spec	lai Resin Content
30% ± 1% by Wei	.ght, 14" x 14"	Specimen, Average	Thickness = $0.122''$
	S	RI No. 1-1	
Average Mean	Average Δt	Total Heat Input	К
Temp., °F	°F	Watts -	Btu/hr ft ² ° F/in.
- 55	22.0	32.7	0.714
94	28.0	52.6	0.906
196	86.0	198.5	1.107
281	128.5	331.0	1.238
357	166.5	463.0	1.335
436	74.5	185.8	1.197
527	107.5	221.7	0.989

Thermal Conductivity Data 8" x 8" Area (64 sq. in.)

WADD TR 60-657

Isotropic Laminate, Scotchply XP-125 Special Resin Content									
$30\% \pm 1\%$ by We	ight, 14" x 14"	Specimen, Average	Thickness = $0.122''$						
	S	RI No. 1-2							
Average Mean	Average ∆t	Total Heat Input	K						
Temp., F	°F	Watts	Btu/hr ft ² ° F/in.						
- 45	27.5	41.7	0.713						
108	35.0	65.0	0.872						
119	39.5	87.0	1.035						
197	75.5	176.6	1.095						
214	90.5	218.2	1.130						
300	128.5	373.0	1.361						
445	76.0	217.9	1.345						
527	100.5	274.0	1.276						
* 337	58.0	147.8	1.193						

Thermal Conductivity Data 8" x 8" Area (64 sq. in.)

* Run made after material had been to top temperature.

WADD TR 60-657

122

12 21 -
Thermal Conductivity Data 8" x 8" Area (64 sq. in.)

Molded Panel, C	Chopped 181 Gla	ss Fabric, A-1100	Finish, CTL-91 LD
Phenolic Res	in, 8" x 8" Spe	cimen in 14" x 14" A	sbestos Board,
	Specimen 7	Thickness = $0.281''$	
	S	RI No. 2	
Average Mean	Average Δt	Total Heat Input	К
Temp., °F	°F	Watts	Btu/hr ft ² ° F/in.
101	41.0	48.8	1.280
232	167.5	223.0	1.435
414	141.5	218.5	1.661
541	185.0	274.2	1.602
554	192.5	286.2	1.602
* 421	144.0	183.6	1.375
* 593	208.0	275.3	1.422
*167	46.5	50.6	1.172

* These values were obtained after material had been to highest temperature.

WADD TR 60-657

Foam Co 14" x	ore, Dow-Cornin 14" Specimen,	ng Silicone R-7002 , Average Thickness SRI No. 3	Fully Cured, = 0.688"
Average Mean	Average ∆t	Total Heat Input	K
Temp., °F	° F	Watts	Btu/hr ft² ° F/in.
122	79.5	11.2	0.371
237	256.5	55.1	0.568
311	311.5	84.7	0.718
510	428.5	167.4	1.031
553	439.0	182.0	1.094
704	475.0	266.0	1.478

Thermal Conductivity Data 8" x 8" Area (64 sq. in.)

WADD TR 60-657

Molded Pane	l, Fiberite 403	0-190, Glass Fiber.	Phenolic Resin.
8'' x	8" Specimen ir	14" x 14" Asbestos	Board
	Specimen '	Thickness = $0.230''$,
		RI No. 4	
Average Mean	Average Δt	Total Heat Input	K
Temp., °F	°F	Watts	Btu/hr ft ² ° F/in.
- 54	26.0	15.5	0.585
- 54	24.0	15.7	0.636
107	35.5	41.9	1.137
206	88.5	113.1	1.231
214	90.0	115.5	1.231
303	77.0	117.7	1.465
407	108.0	160.6	1.427
512	143.0	230.0	1.548
613	169.5	284.5	1.613
780	241.0	419.0	1.670

Thermal Conductivity Data 8" x 8" Area (64 sq. in.)

WADD TR 60-657

-- 1

Molded Panel,	Coast F-130	Chopped Glass Fiber	, Silicone Resin,
8'' x	8" Specimen i	n 14" x 14" Asbestos	s Board,
	Specimen	Thickness = 0.273 "	
		SRI No. 5	
Average Mean	Average Δt	Total Heat Input	К
Temp., °F	°F	Watts	Btu/hr ft ² ° F/in.
- 73	23.0	14.4	0.657
104	35.0	41.6	1.372
262	193.0	230.0	1.310
454	161.0	215.5	1.402
633	215.5	337.0	1.635
* 320	107.0	127.0	1.242
* 183	49.5	58.5	1.020

Thermal Conductivity Data 8" x 8" Area (64 sq. in.)

* These values were obtained after material had been to highest temperature.

WADD TR 60-657

I aminato Aatma	lite Dondom D	ainformant 111 a	
Laminate, Astronte, Random Reinforcement 2 Squares of 1201 V Cloth,			
SC-1008 Phenolic Resin, 8" x 8" Specimen in 14" x 14" Asbestos Board,			
	Specimen	Thickness = $0.132''$	
		SRI No. 6	
Average Mean	Average Δt	Total Heat Input	К
Temp., °F	°F	Watts	Btu/hr ft ² ° F/in.
- 61	18.0	26,5	0.745
105	33.0	69.3	1.061
218	99.0	239.2	1.222
333	164.5	439.0	1.351
481	105.0	264.0	1.276
627	138.0	361.5	1.328
725	162.5	439.0	1.369
* 563	130.0	306.0	1.191
* 454	105.5	242.0	1.165

Thermal Conductivity Data 8" x 8" Area (64 sq. in.)

* These values were obtained after material had been to highest temperature.

.

WADD TR 60-657

÷

- ----

• .

127

٦ź.

٠,

Laminate, Astrolite, Refrasil 184 Weave, SC-1008 Phenolic Resin,			
	14" x 14" Spee	cimens x 0.126" Thi	ick
	S	RI No. 7-1	
Average Mean	Average Δt	Total Heat Input	К
Temp., F	° F	Watts	Btu/hr ft ² ° F/in.
- 61	18.5	27.4	0.716
111	29.5	65.0	1.065
193	70.0	172.0	1.189
313	140.5	372.0	1.280
447	78.5	206.2	1.271
551	94.5	273.0	1.396
730	127.0	377.0	1.435
* 656	118.5	335.0	1.369
* 465	85.0	219.5	1.249

Thermal Conductivity Data 8" x 8" Area (64 sq. in.)

* These values were obtained after material had been to highest temperature.

WADD TR 60-657

128

• • •

Laminate, 1	Edgewise Layup	with Thickness in V	Warp Direction,
Astrolite	, Refrasil 184	Weave, SC-1008 Phe	enolic Resin.
8'' x	8" Specimen in	14" x 14" Asbestos	Board.
	Specimen'	Thickness = $0.132''$	
	S	RI No. 7-2	
Average Mean	Average Δt	Total Heat Input	К
Temp., °F	°F	Watts	Btu/hr ft ² ° F/in.
- 65	18.0	27.4	0.731
105	29.5	71.1	1.158
204	90.0	255.5	1.361
308	161.5	464.7	1.380
400	81.0	255.0	1.510
521	100.0	344.0	1.651
733	148.0	481.0	1.560
* 625	131.0	400.0	1.466
* 465	99.5	286.1	1.380

Thermal Conductivity Data $8'' \times 8''$ Area (64 sq. in.)

* These values were obtained after material had been to highest temperature.

WADD TR 60-657

Laminate,	CTL 37-9X Phe	nolic Resin, 181 "E	" Glass Fabric,
Regula	r Layup, 14" x	14" Specimens x 0.	132" Thick
	S	RI No. 8-1	
Average Mean	Average ∆t	Total Heat Input	K
Temp., °F	° F	Watts	Btu/hr ft ² ° F/in.
- 57	19.5	27.7	0.719
103	30.0	64.1	1.081
183	71.0	168.8	1.203
317	139.0	372.5	1.360
450	73.5	210.9	1.455
586	97.0	296.0	1.545
730	127.5	377.0	1.500
* 614	112.5	309.5	1.392
* 468	86.5	221.5	1,295

Thermal Conductivity Data 8" x 8" Area (64 sq. in.)

* These values were obtained after material had been to highest temperature.

WADD TR 60-657

1

ł

Laminate, 1	181 "E" Glass F	Tabric, CTL 37-9X H	Phenolic Resin,
Edgewise Layup with Thickness in Warp Direction,			
8" x 8" Specimen in 14" x 14" Asbestos Board.			
	Average T	hickness = $0.699''$	
	SF	RI No. 8-2	
Average Mean	Average Δt	Total Heat Input	K
Temp., °F	°F	Watts	Btu/hr ft ² ° F/in.
- 64	24.5	16.2	1.770
102	23.0	18.5	2.155
215	95.5	96.1	2.700
316	152.0	174.2	3.075
459	233.5	299.6	3.440
554	209.5	271.5	3.460
701	270.5	356.0	3.535
* 561	209.5	257.0	3.290
* 377	139.5	157.0	3.015

Thermal Conductivity Data 8" x 8" Area (64 sq. in.)

* These values were obtained after material had been to highest temperature.

WADD TR 60-657

131

Thermal Conductivity Data $8'' \times 8''$ Area (64 sq. in.)

Laminate, 1	81 "E" Glass 1	Fabric, CTL 37-9X	Phenolic Eesin
Edgewise Layup with Thickness at 45° of Warp Direction			
10" x 10" Specimen in 14" x 14" Asbestos Board			
	Average Thickness = 0,708"		
	SI	RI No. 8-3	
Average Mean	Average Δt	Total Heat Input	K
Temp., F	F	Watts	Btu/hr ft ² ° F/in.
- 58	35.0	18.8	1.455
116	40.5	24.3	1.628
223	113.0	76.9	1.845
330	135.8	135.8	2,245
458	167.5	171.1	2 770
572	209.0	221 5	2,870
702	255.0	283.0	3 010
* 547	193.5	197 7	2 770
* 396	139.5	131.5	2.560

* These values were obtained after material had been to highest temperature.

WADD TR 60-657

Molded Panel, SN-19 Nylon, CTL-91 LD Phenolic Resin, 8" x 8" Specimen Made of Four 4" x 4" Pieces in 14" x 14" Aspestos Board				
	Average Thickness = $0.265''$			
	S	RI No. 9		
Average Mean	Average Δt	Total Heat Input	К	
Temp., °F	<u> </u>	Watts	Btu/hr ft ² ° F/in.	
- 68	26.0	203.0	0.794	
101	43.0	54.9	1.295	
201	136.0	189.0	1.411	
298	235.5	314.0	1.360	
451	178.5	228.5	1.302	
556	241.5	295.0	1.245	
732	307.0	349.0	1.159	
* 559	242.0	188.5	0.791	
* 362	160.5	102.0	0.646	

Thermal Conductivity Data 8" x 8" Area (64 sq. in.)

* These values were obtained after material had been to highest temperature.

WADD TR 60-657

minate, [.] d,
'd,
К
$/hr ft^2 \circ F/in$
<u>,</u>
0 746
1 990
1.320
1.438
1.542
1.549
1.640
1.585
1 480
1 380
-

Thermal Conductivity Data $8'' \times 8''$ Area (64 sq. in.)

* These values were obtained after material had been to highest temperature.

WADD TR 60-657

Laminate V	M-31A Class I	Tabria COL 01 ID							
Banningte, IM-SIA Glass Fabric, CIL-91 LD Phenolic Resin,									
14" x 14" Specimen, Average Thickness = 0.116"									
SRI No. 11									
Average Mean	Average ∆t	Total Heat Input	K Btu/hr ft ² ° F/in.						
Temp., F	°F	Watts							
E 17	10.0								
- 57	19.0	35.4	0.828						
104	16.0	49.0	1.361						
222	83.0	288.0	1.545						
325	142.0	542.0	1.695						
485	55.0	236.0	1.910						
586	72.0	288.5	1.785						
* 487	58.5	216.0	1.640						
* 370	47.5	171.0	1,600						

Thermal Conductivity Data 8" x 8" Area (64 sq. in.)

* These values were obtained after material had been to highest temperature.

WADD TR 60-657

Laminate, YM-31A Glass Fabric, CTL-91 LD Phenolic Resin,										
14" x 14" Specimen, Average Thickness = 0.110"										
SRI No. 12										
Average Mean	Average Δt	Total Heat Input	K							
Temp., °F	° F	Watts	Btu/hr ft ² F/in.							
- 51	15.5	36 3	0.988							
103	14 5	49.9	1.450							
231	71.0	274.0	1.630							
347	115.0	496.0	1,825							
510	57.0	233.8	1.730							
599	80.0	288.5	1.521							
* 479	64.5	222.3	1.455							
* 374	47.0	148.8	1,335							

Thermal Conductivity Data 8" x 8" Area (64 sq. in.)

* These values were obtained after material had been to highest temperature.

WADD TR 60-657

Laminate, R/M Style 42 RPD Asbestos Mat, R/M High Heat Resistant									
Phenolic, 14 x 14 Specimen x 0. 147 Thick									
SRI No. 13									
Average Mean	verage Mean Average Δt Total Heat Input								
Temp., F	°F	Watts	Btu/hr ft ² ° F/in.						
- 51	17.0	25.7	0.854						
115	29.5	70.8	1.351						
218	76.5	206.0	1.520						
345	136.0	399.8	1.659						
477	76.5	255.5	1.881						
608	95.0	332.5	1.975						
706	114.0	394.0	1.950						
* 546	91.0	290.0	1.800						
* 406	67.0	204.5	1.723						

Thermal Conductivity Data 8" x 8" Area (64 sq. in.)

* These values were obtained after material had been to highest temperature.

WADD TR 60-657

UNCLASSIFIED			UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED
	SOUTHEAN MESEARCH INSTITUTE, Birmingham, Alabama, THE THEAVAL FROFERTIES OF SOME FLASTIC PANELS, by Faul T. Howse, Jr., C. D. Fears and Sabert Oglasby, Jr., January 1961. 137p. incl. figs. and tables. (Froject 7360; Task 73603) (WADD TR 60-657) (Contract AF 33(616)-6073) (Contract AF 33(616)-6073)	The therral expansion, specific heat, and thermal conductivity were measured for twelve different resin-reinforcement combi- nations, some of which had veriations in reinforcement orientations. These properties were also letermined for one foam core. The	(over)	temperature range was generally from -500F to 7000F. Hather extensive physical property data is also presented on all of the mate- risls (including flexure strength, flexurel modulus, Bercol hardness, density, and resin content). Detailed descriptions of the pan- els and cures are given.	
UNCLASSIFIED			UNCLASSIFIED	DINCHASSIFIED	UNCLASSIFIED
	SOUTHERN RESEARCH INSTITUTE, Birmingham, Labema, THE THENML FROFERTIES OF SOME FLASTIC PANELS, by Faul T. House, Jr., C. D. Pears and Sabert Oglesby, Jr., January 1961. 137p. incl. figs. and tables. (Froject 7360; Task 73603) (WADD TK 60-657) (Contract AF 33(616)-6073) (Contract AF 33(616)-6073)	The theyral expansion, specific heat, and thermal conductivity were measured for twelve different resin-reinforcement combi- nations, some of which hed veriations in reinforcement orientations. These properties were also determined for one foam core. The	(over)	temperature range was generally from -50°F to 7000P. Rather extensive physical property data is also presented on all of the mate- rials (including flexure strength, flexural modulus, Bercol hardness, density, and resin content). Detailed descriptions of the pan- els and cures are piven.	

UNCLASSIFIED			UNCLASSIFIED	UNCLASSIFIED		Unita TSSA LONU
	SOUTHERN RESEARCH INSTITUTE, Birmingham, .labama, THE THERVAL FROFERTIES OF SOME PLASTIC PANELS, by FBUL T. HOUSE, Jr., C. D. Fears and Sabert Oglasby, Jr., January 1961. 137p. incl. figs. and tables. (Froject 7360; Task 73603) (WADD TR 60-657) (Contract AF 33(616)-6073) (Contract AF 33(616)-6073)	The thermal expansion, specific heat, and thermal conductivity were measured for twelve different restn-reinforcement combi- nations, some of which had veriations in reinforcement orientations. These properties were also determined for one foam core. The	(over)		temperature range was generally from -500F to 7000F. Rather extensive physical property dats is also presented on all of the mate- risis (including flexure strength, flexural modulus, Barcol hardness, density, and resin content). Detailed descriptions of the pen- els and oures are given.	
UNCLASSIFIED			UNCLASS I FI ED	UNCLASSIFIED		CALVILLE
	SOUTHERN RESEARCH INSTITUTE, Birmingham, labema, THE THEEML FROFERTIES OF SOME FLASTIC PANELS, Ky Paul T. House, Jr., C. D. Fears and Sabert Oglesby, Jr., January 1961. 137p. incl. figs. and tables. (Froject 7360; Task 73603) (WADD TR 60-657) (contract AF 33(616)-6073) (contract AF 33(616)-6073)	The therral expansion, specific heat, and thermal conductivity were measured for twelve different resin-reinforcement combi- nations, some of which had verifations in reinforcement crientations. These properties were also determined for one foam core. The	(over)		temperature range was generally from -500F to 7000F. Rather extensive physical property data is also presented on sill of the mate- risis (including flexure strangth, flexural modulus, Bercol herdness, density, and resin content). Detailed descriptions of the pan- als and cures are given.	

UNCLASSIFIED			UNCLASSIFIED	DNCLASSIFIED		*		UNCLASSIFIED
-	SOUTHERN RESEARCH INSTITUTE, Birminghom, labomme, THE THEJOLL FROFENTIES OF 55ME FLASTIC FANELS, by Foul T. House, Jr., C. D. Fears and Sabert Oglessby, Jr., January 1961. 137p. incl. figs. and tableu. (Froject 7960; Task 79603) (WADD TH 60-657) (Contract AF 33(616)-6073) (Contract AF 33(616)-6073)	The therral expansion, specific heat, and thermal conductivity were measured for twelve different resin-reinforcement combi- nations, some of which had variations in reinforcement orientations. These properties were also determined for one foem core. The	()		temperature range was generally from -500F to 7000F. Rather extensive physical property data is also presented on all of the mate- risls (including flexure strength, flexural modulus, Bercol hardness, density, and resin content). Detailed descriptions of the pen- els and cures are given.		14	
UNCLASSIFIED			UNCLASS I FI ED	UNCLASSIFIED				UNCLASSIFIED
	SOUTHEAN RESEARCH INSTITUTE, Birminghom, .lebeme, THE THEAML FROFERILES OF SOME FLASTIC FAMELS, by Feul T. Howse, Jr., C. D. Fears and Sabert Ogleaby, Jr., January 1961, 1379. incl. figs. and tables. (Froject 7360; 1379. incl. figs. and tables. (Froject 7360; 1882 73603) (MADD TH 60-657) (Contract AF 33(616)-6073) (Contract AF 33(616)-6073)	The thertal expansion, specific heat, and thermal conductivity were measured for twelve different resin-reinforcement combi- istions, some of which had veriations in reinforcement orientations. These properties ere also determined for one foam core. The	(over)		emperature range was generally from -500F to 7000F. Rather extensive physical property lats is also presented on all of the mate- isls (including flexure strength, flexural odulus, Bercol hardness, density, and resin ontent). Detailed descriptions of the pan- ls and cures are given.			

1.