
I 
II 
I 

III 

AEDC- TR-61·4 

@ 

@ 

HYPERSONIC FLOW-BLAST ANALOGY 

By 

1. Lukasiewicl 

VKF, ARO, Inc. 

June 1961 

ARNOLD ENGINEERING 

D V LOPM NT· CENTER 
AIR FORCE SYSTEMS COMMAND 

u s A F 

@ 

@ 



ASTIA (TISVV) 
ARLINGTON HALL STATION 
ARliNGTON i2, VIRGINIA 

Department of Defense contractors must be 

established for ASTIA services, or have 

their need-to-know certified by the cogni

zant mi litary agency of their project or 

contract. 



AF - AEDC 
Arnold AFS Tenn 

HYPERSONIC FLOW-BLAST ANALOGY 

By 

J. Lukasiewicz 

VKF, ARO, Inc. 

June 1961 

Program Area 750A, Project 8952, Task 89512 
ARO Projects 300116, 360105, 360106 

Contract No. AF 40(600)-800 S/A 11(60-110) 

AEDC·TR.61.4 





A EDC·T R·6 1·4 

ABSTRACT 

Two-dimensional and axisymmetric1 inviscidl hyper
sonic flows about simple slender bodies are considered with 
particular reference to pressure distributions and shapes 
of shock waves. Approximate solutions l based on blast 
analogy, are derived and compared with more exact, theo
retical calculations and with experimental results. The 
validity of correlation parameters predicted by the blast 
analogy and the range of their applicability are investigated. 
Near-exact theoretical results available for real airflow at 
Mach numbers from 15 to 19 are compared with the perfect 
gas data. 
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NOMENCLA TURE 

Functions, Eq. (62) 

Velocity of sound 

Constants 

Function, Eq. (64) 

Drag coefficient 

Drag 

Plate thickness or cylinder diameter 

Explosion energy per unit area of the surface of shock 
front when R = 1 

Functions, Eq. (3) 

Constant 

Mach number 

Mach number component normal to shock front 

Shock Mach number ( = V lao.,) 

Static pressure; pressure on plate or cylinder surface 

Pitot pressure 

Shoulder pressure 

Pressure at shock 

Distance from shock to origin 

(E
a
./p",,) 1/(a + 1) 

Radial or normal co-ordinate 

Distance measured along shock 

Time 

Velocity component in the free-stream flow direction 

Velocity of blast wave 

Velocity component normal to the free-stream flow 
direction or flow velocity caused by explosion 

Distance from nose in the free-stream flow direction 

Distance from shoulder in the free-stream flow direction 
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INTRODUCTION 

This report deals with the problem of inviscid hypersonic flow of 
air over simple slender bodies. Two-dimensional and axisymmetric 
flows are considered with particular reference to pressure distributions 
and shapes of shock waves. Approximate solutions, based on blast 
analogy, are derived and compared with more exact, theoretical calcu
lations and with experimental results. The validity of correlation param
eters predicted by the blast analogy and the range of their applicability 
are investigated. Near-exact theoretical results available for real air
flow at Mach numbers from 15 to 19 are compared with the perfect gas 
data. 

The author wishes to thank Messrs. H. W. Ridyard, R. E. Geiger, 
and the General Electric Company for permission to use their unpublished 
flow field computations and Mr. Vernon Van Hise of the NASA Langley 
Research Center for making his original data available. His thanks are 
also due to Miss P. Mitchell and Mrs. B. Majors for their help with the 
preparation of this report. 

BASIS OF BLAST ANALOGY 

The equations of small disturbance theory of steady, hypersonic flow 
(Ref. 1) may be written as: 

Continuity: 

UooPx + (pv)r + apv Ir 0 

Momentum: 

o ( 1) 

Energy: 

Uoo (pp -Y)x + v (pp -Y)r = 0 

with a = 0 for plane and a = 1 for axisymmetric flow. 

As pointed out by Van Dyke (Ref. 1) and Hayes (Ref. 2). these equa
tions do not involve the streamwise velocity u, and therefore the flow in 
the transverse planes can be treated independently. 

Manuscript released by author April 1961. 
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The equations of one-dimensional, unsteady flow are: 

Continuity: 

Pt + (pv)r + apv/r 0 

Momentum: 

o (2) 

Energy: 

(PP-Y)t + v( PP-Y)r = 0 

Hay~s (Ref. 2) pointed out that the steady flow, as described by the 
small disturbance theory, is analogous to the unsteady flow, since, by 
putting Uoo = dx/dt, Eq. (1) becomes identical with Eq. (2). In other 
words, for an observer stationary with respect to the undisturbed fluid, 
the small disturbance theory flow is given by the unsteady solution in 
one fewer space co-ordinates, so that flow in the plane normal to the 
direction of motion can be treated independently of x. 

If a solution could be obtained for the simpler unsteady problem, 
then the corresponding steady-flow problem could also be solved; this 
procedure has been generally known as the blast-wave analogy method. 
Before this method is applied herein, it is pertinent to recognize the 
assumptions inherent in the steady and unsteady solutions involved and 
to examine their compatibility. 

The hypersonic small disturbance theory is applicable to slender 
bodies, such that the body thickness parameter r« 1 (since terms of 
the order of r2 are neglected), and at large Mach numbers, such that 
MooT :2: 1. Since the longitudinal velocity component is eliminated in this 
approximation, the drag of a body is given entirely by the energy of the 
transverse flow: the drag work expended by moving the body to a given 
transverse plane is equal to the increment of energy of the transverse 
flow up to that same plane. The energy of the flow in the transverse 
plane per unit length will not change when the slope of the body surface 
is zero; therefore, within the hypersonic, small disturbance approxima
tion, the energy of the transverse flow will remain constant downstream 
of the forebody or nose when it is followed by a zero-slope afterbody, 
such as a flat plate or cylinder. 

Turning now to the case of unsteady flow, approximate solutions for 
the spherical, cylindrical, and plane unsteady flows with constant energy 
have been obtained for cases in which the shock wave which contains the 
flow field is strong, the shock Mach number being large. 

12 
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Consider a configuration consisting of a blunt nose followed by a 
zero-slope, flat plate or cylindrical afterbody at a large flight Mach 
number. For such a body, the hypersonic small disturbance theory 
will not apply in the nose region, since T « 1 is violated in that region. 
Also, it will not apply far downstream, where the shock has decayed 
and flow deflections are negligible, because no longer is MooT;:: 1. There
fore, for a body of this type, the hypersonic, small disturbance theory 
will apply in a region of certain limited extent downstream of the nose. 
In this region, the body surface slope is zero, the energy in the trans
verse plane is constant. and hence the unsteady solutions are applicable. 
The success of the blast-wave analogy will thus largely depend on the 
accuracy of the solutions of unsteady, constant energy flows. 

APPROXIMATE SOLUTIONS OF UNSTEADY, PLANE AND CYLINDRICAL, 
CONSTANT ENERGY FLOW 

Following the work of Taylor (Ref. 3), Sakurai (Ref. 4) obtained first 
and second approximations to unsteady, constant energy, plane, cylin
drical, and spherical flows. In this section, Sakurai's results are sum
marized for use with the blast analogy method, and, in general, his 
notation is adhered to. 

FIRST APPROXIMATION 

Approximate blast-wave solutions are constructed in the form of 

power series in y = M;2. where MR is the shock Mach number. In the 

first approximation, all powers of y except zero are neglected; that is, 
a strong shock is assumed. The following equations result: 

(0 ) 
v/V = f(K) 

p/Poo 
(0 ) 

g (K)/Y 

(0 ) 
( 3) 

p/Poo h(K) 

(R /R) (a + 1) 

10 y 0 

with Ro = (Ea/Poo) l/(a + 1) where Ea is the explosion energy per unit area 

of the surface of the shock front when R = 1. £(0), g(o), and h (0) are 

functions of K = r/R, y and a. whereas 10 is a constant depending on 
y and a only. 
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They are given by: 

with A 

2y 
y + 1 

y + I 

Y - 1 

a + 1 

K Y - 1 

I y - I 
f n 

y y + 1 

(n -
- K 

2y2 + (3a + l)y - (a + 1) 

(1 - a)y + 3a + 1 

y 

( (n - I) ) ,J + I - ; 

(2 - a)y2 +(3a +I)y - I 

y2 _ 1 

2(2a + 1 + y) 
(1 - a)y + 3a + 1 

(4) 

The variation of shock position and pressure with time are obtained 
from Eq. (3) with V = dR/dt. Thus 

taoo = ·IJ 
R \I J o 

o 

and 

_2 __ (~) (a + 3)/2 

a + 3 Ro 
(5) 

(a + 3) I [2 (a + 1)] 

The boundary or shock conditions (K 
mation, by 

..::!...- = _.::...2 __ 
V y + 1 

P I 
p. M2 

00 R 

_-'2y'---_, ~ 
Y + 1 Poo 

(6) 

1) are given, to this approxi-

y + I 

Y - 1 ( 7) 

The values computed by Sakurai (Ref. 4) at r = 0 (K = 0) for y 1.4 

are given in Table 1. For other values of y J 10 is given in Table 2, and 
other functions can be computed from Eq. (4). 

14 
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SECOND APPROXIMATION 

In the second approximation. all powers of y except zero and one 
are neglected, and the following equations result: 

(0) (0) 
v/V £(K) + (K - f(K))<1> (K) y 

(0) 
g(K) (l + tjJ (K) y) Iy 

(0) 
h(K) (l + X (K) y) (8) 

y(Ro IR) (a + 1) -_ J ( \) 
o 1 + 1\1 Y 

where <l>. tjJ. and X are functions of K, Y. a, and \ depends on y and a • 

The shock position is again obtained in terms of time as 

R/R 

~ = fi:J 0 [(R/R )-<a + 1)_ J A ] -1/2 d(R/Ro) (9) 
Ro 0 0 0 0 1 

and the pressure ratio in terms of shock location as 

( 10) 

For R-HO or at infinitely large time, Eq. (10) gives at r 0 (K 0) 

0.692 for a = 0 } 

for a = 1 
y 1.4 ( 11) 

0.606 

For plane wave (a = 0), Eq. (9) gives 

( 12) 

where 

and 

f3 = ~ v (1 + v) - loge (.J 1 + v + ~ ) 
V = -JoA! (R/Ro ) 

( 13) 

For cylindrical wave (a = 1), 

( 14) 
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In this approximation, the exact conditions at the shock are satis
fied for velocity and pressure, that is 

• 
v = 2 (1 - y) 
v y + 1 (15) 

P 2y I Y - I = -
Poo Y + 1 Y Y + 1 ( 16) 

the above equations corresponding to Eq. (8) with 

(0) 
£(1) = __ 2_ 

y + 1 

and 
(0) (0) 

W (l) = - £(I)/(1 - £(I) 

The exact density ratio across the shock is 

P (Y+I\/( 2 ) 
Poo = Y - 1)/ 1 + y - 1 Y (17) 

This is not equivalent to the corresponding Eq. (8), except for small y 

(large MR ), when it is expanded to 

with 

and 

(0) 
h(I) 

y + I 

Y - I 

x (1) = _ 2 
Y - 1 

2 
( 18) y - 1 

The coefficients in the second approximation are given in Table 1 
for r = 0 (K = 0) and y = 1.4. 

a 

0 

1 

16 

TABLE 1 

VALUES OF COEFFICIENTS IN THE FIRST AND SECOND APPROXIMATIONS TO THE 
BLAST SOLUTION, Y = 1.4, K = 0 (SAKURAI, REFS. 4, 5) 

(0) (0) (0) 
10 W(o) tjJ(o) X(o) '\1 £(0) g(o) h(o) 

0 0.455 0 1. 696 -3.86 -0.617 3.86 -2. 138 

0 0.424 0 0.877 -3.5 -0.56 3.5 -1. 989 
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TABLE 2 

VALUES OF Jo (SAKURAI, REF.4) 

~ 0 1 

1.2 3.024 1. 547 

1.3 2. 147 1.102 

1. 667 1. 137 0.585 

SOME PROPERTIES OF APPROXIMATE SOLUTIONS 

In the first approximation, the ratio of pressures at distances Kl and K2 

is constant at all times and is given by (see Eq. (3) L 

( 19) 

For y = 1.4, the values obtained for the ratio of pressure at the shock 
to pressure at the origin are given in Table 3. 

TABLE 3 

RATIO OF PRESSURE AT SHOCK 

TO PRESSURE AT ORIGIN, y = 1.4 

a 0 1 

PR Ipo 2.56 2.68 

The difference in the pressure ratio pip, as given by the first (Eq. (3» 
00 

and second (Eq. (8» approximations, is constant at a given K and y and is 
equal to 

(20) 

At K = 0 and for y = 1.4, this amounts to 0.281 (a = 0) and 0.237 (a = 1). 

The relationship between the position of the shock and the shock pres
sure ratio is given by 

(first approximation) ( 21) 

17 
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and ( 22) 

(second approximation) 

For y 1.4, the second approximation is 

a = 0, (R/Ro) (PR /Poo - 2.33) = 0.69} 

a = 1, (R/R )2 (p /p - 2.16) = 1.33 
o R 00 

(23) 

In the first approximation, the numerical term in the bracket is omitted. 

The variation of pressure, density, and velocity with distance (K) 

from the origin can be judged from Table 4, in which values of coef
ficients for the first and second approximations are listed. It is apparent 

that pressure (g(o), t/J) exhibits negligible variation for K:::; 0.4. The density 

variation (h (0), x) is also small near the origin, whereas velocity (£(0), 1» 
varies nearly linearly with K. 

18 

TABLE 4 
VARIATION OF COEFFICIENTS FOR FIRST AND SECOND APPROXIMATIONS WITH K, 

FOR PLANE AND CYLINDRICAL FLOW, y = 1.4 

I( 

a 
0 0.2 0.4 0.6 0.8 1.0 

(0) 0 0.455 0.455 0.461 0.496 0.631 1. 167 
g 

1 0.424 0.424 0.425 0.441 0.531 1. 167 

0 -0.617 - -0.573 -0.260 0.451 -'0.143 
t/J 

1 -0.56 - - -0.45 0.092 -0. 143 

h (0) 
0 0 0.039 0.225 0.669 1. 766 6.000 

1 0 0.001 0.019 O. 153 0.783 6.000 

0 3.86 - 3.633 3. 109 1. 674 -5.000 
X 

1 3.5 - - - 3.002 -5,000 

0 0 O. 143 0.287 0.437 0.611 0.833 
£(0) 

1 0 O. 143 0.286 0.432 0.597 0.833 

0 -3.86 - -3.869 -3.803 -3.842 -5.000 
lD 

1 -3.5 - - - -3.542 -5.000 
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APPROXIMATE STEADY·FLOW SOLUTIONS BASED ON BLAST ANALOGY 

The steady, blast analogy approximations are obtained from the 
approximate constant energy, blast solutions by superposition of free
stream velocity Uo<> = x/t and by expression of the energy of unsteady 
flow in terms of body wave drag. Thus the plane blast solution is anal
ogous to two-dimensional flow over a blunted plate, and the cylindrical 
blast solution corresponds to the case of axisymmetric flow about a 
blunted cylinder. In each instance, first and second blast approxima
tions are used to obtain approximate steady-flow solutions. 

In obtaining steady-flow solutions, the shock shape, R/d, and the 
pressure distribution, Po /Po<>' on the body surface as a function of distance 
along the body, x/d, are the main concern. These solutions are strictly 
applicable only to flat plates and cylinders at zero incidence. The body 
pressure Po' denoted below by p, is taken at K = O. and the body thick
ness is thus neglected. In view of the invariance of pressure with K and 
the small density near the origin (see Table 4) this procedure seems 
reasonable. 

Static pressure and other parameters of flow in the transverse plane 
are easily obtained from blast solutions, provided the shock shape has 
been determined. Since 

(24) 

is given from the shock slope, distributions of transverse pressure, 
density, etc., follow from Eqs. (3) and (8). 

It should be noted that, although the second blast-wave approxima
tion gives essentially exact conditions at the shock surface (see Eqs. (15) 
through (18», the corresponding blast analogy gives correct values of 
pressure, etc., at the shock only when the component of Mach number, M

n
, 

normal to the shock, s, 

(25) 

closely approximates Mn' This, however, is consistent with the assump
tions of the hypersonic small disturbance theory. 

For the analogous steady-flow solutions, the blast energy, Ea , is 
expressed in terms of drag. From the definition of Ea, 

Ea=o + Da=o 

and 

19 



AE DC·TR·61.4 

where 

Da = 0 npse drag of plate per unit length of leading edge 

and 

Da = 1 = nose drag of cylinder 

In terms of drag coefficient, CD' 

E = Y d P M2 C 
a=o 4 00 00 Da=O 

and (26) 

Ea=l d2 
Poo M2 C y 16 00 Da=l 

R Ff- M 
K=l °a= 1 00 

where CD is based on plate thickness, d, or cylinder frontal area, 7Td 2/4, 
and free-stream dynamic pressure. 

FIRST APPROXIMATION 

From Eqs. (5) and (6), the following expressions for shock, shock 
slope, and pressure distribution are obtained. 

Plane flow (a = 0): 

~ = ( : 12/3 (~y/3 CD 1/3 (~12/3 

or 

for y 1.4; 

20 

Rid 
M2 C 

00 D 

dR = 
dx 

0.774 (xl d) 2/3 
C 2/3 M2 

D 00 

(~)1/3 C 1/3 
6J D 

o 

0.516 CD 1/3 (;) -1/3 

(27) 

(28) 

(29) 

( 30) 

( 31) 



and 

for y = 1.4. 

From Eqs. (29) and (33), 

p/poo = 0.0936 M!, CD / (R/d) 

for y = 1.4. 

Axisymmetric flow (a =1): 

or 

for y 1. 4; 

and 

for y = 1.4. 

= 0.795 CD 1/4 (x/d) 1/2 

~d_ = 0.795 

Moo-fC;; 

x/d 

= 0.397 CD 1/4 (x/d) - 1/2 

= 0.067 M~ ~ I(x/d) 

From Eqs. (37) and (41), 

for y = 1.4. 

A E DC -T R -6 1-4 

( 32) 

(33) 

(34) 

(35) 

(36) 

( 37) 

(38) 

(39) 

( 40) 

(41) 

( 42) 
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SECOND APPROXIMATION 

From Eqs. (10) to (14), the following expressions for shock shape 
and pressure distribution are derived: 

Plane flow (a = 0): 

In this case, explicit expressions for shock shape and pressure 
ratio were not obtained. Thus, for shock shape: 

x ~ (-A )-3/2 (3 C M!, 
d 41 1 D 

o 

0.066 (3 CD M!, 

for y = 1.4 

where (3 and v are given by Eq. (13) and 

v = -(4Jo A1 /Y) (R/d) / (M~ CD) 

for Y = 1.4. 

The shock slope is given by 

From Eq. (10), 

-""" ~.J YC
D ~ 

dx 2 10 ~Ii/d 

0.453 ~-rc ~ ~\''-'D 

= 0.973 / (p/Poo - 0.692) 

( 43) 

(44) 

(45) 

( 46) 

(47) 

( 48) 

( 49) 

(50) 

for y = 1.4 which, together with Eq. (43) gives pressure distribution. 

In the limit when (t, R, x)->oo, the pressure ratio is given by Eq. (11) 
(= 0.692 for y = 1.4). 

The function (3 (Eq. (13», when expressed in terms of pressure 
ratio p/Poo (Eq. (50», can usually be approximated to better than one per
cent by an expression of the form 

(3 = a(p/poo)b 
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where a and b are given, for y 

of p/Poo. 

1.4, in Table 5 for various ranges 

TABLE 5 

VALUES OF CONSTANTS a AND b FOR VARIOUS 
RANGES OF p/Poo 

Range of 
a b 

p/Poo 

2 - 4 1. 30 -1. 87 

4 - 20 0.87 -1. 59 

20 - 100 0.69 -1. 52 

Using this form of (-3, Equation (43) can be written 

x 

d 

for y 1.4; 

or 
p 

for y = 1.4 

= [ (I5.I5/al 

x/d 
M3 C 

00 D 

] lib 

which is analogous to the first approximation, Eq. (32). 

(51) 

(52) 

(53) 

(54) 

A more convenient form of the second approximation for pressure 
distribution can be derived as follows: 

From Eqs. (32), (43), and (49), the pressure ratio (p/Poo )', as given 
by the first approximation at a given x/d, can be expressed in terms of 
the second approximation pressure ratio (p/POO)N at the same x/d by 

(55) 

and 

(56) 

for y = 1.4 

and is therefore a function of (p/poo) N only. 
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The values of 

[ (p/poo)", (p/poo)' ] x/d 

as obtained from Eq. (56), are tabulated in Table 6 and plotted in Fig. 1 
in terms of the difference (p/Poo)" - (p/Poo)' vs (p/poo)". 

TABLE 6 

PRESSURE RATIOS AT SAME x/d 
(a", 0, y == 1.4, FIRST AND SECOND APPROXIMATIONS) 

(p/poo) "x/d 0.692 0.8 1 2 5 10 

(p/Poo)'x/d 0 0.191 0.428 1. 473 4.493 9.503 

From Fig. 1, it is evident that the simplified expression 

(57) 

2/3 

0.121 M: [ CD/Cx/d) ] + 0.56 (58) 

gives the second approximation pressure ratio to better than 1.5 percent 
when p/poo .2 1, Y = 1.4. 

For the shock shape (Eqs. (10) and (26) ), 

n 
d 

for y 1.4, and using the simplified expression (Eq. (58», 

for y = 1.4. 

n/d 
M2 C 

00 D 

0.774 

(59) 

(60) 

(61) 

For p/poo ~ 1, this equation gives values to within 4.5 percent of the second 
approximation (Eq. (44». 

Axisymmetric flow (a = 1): 

~ = A ~ : ) 1 - 2B : (62) 

with 
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and 

hence 

0.795 2 x/d 1 + 3.15 2
x

/
d 

( )
1/2 ( )1/2 

Moo rc;; Moo Fn (63) 

for y 1.4. 

dR = A[C/2 - B/C] 
dx (64) 

with 

C = ~ (1 - 2 Bx/d)/(x/d) 

(0) [I - r p fi g(o) ycr;12 2A1YY;:- x/d (0) 
D 00 g(o) (A1 - tjJ) 

Poo 8~ x/d ff M!,YC;; 

(65) 

M!,~ [I ./d ] -. 0.067 + 3.15 + 0.606 
x Id M:~ 

(66) 

Using the same procedure as in the case of plane flow, simpler 
equations for the second approximation are derived. From Eqs. (40) 
and (65), 

( ~oo ) [1 + 0.211/(p/poo)'] _1 + 0.606 

for y = 1.4. 

Numerical results are given in Table 7 and Fig. 1. 
evident that the simplified expression 

( :00 )" = ( :00 r + 0.44 

= 0.067 M!, y~ + 0.44 
x/d 

(67) 

(68) 

From Fig. 1, it is 

(69) 

(70) 

gives the second approximation pressure ratio to better than one percent 
when p/Poo > 1, y = 1.4. 
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TABLE 7 

PRESSURE RATIOS AT SAME x/d 
(a 1, y = 1.4, FIRST AND SECOND APPROXIMATIONS) 

(p/poo)" 0.606 0.958 1. 432 2.415 5.404 10.4 

(pip",,) , 0 0.5 1 2 5 10 

For the shock shape, Eqs. (10) and (26) give 

-
d 
Il = ( 71) 

(72) 

Using Eq. (69), the simplified expression is 

JL = --;=-__ 0_,7_9_5_M_oo_V_C--'D"-----:;--:--

d [Me! v'C;/{X/d)-2, 47Sl/2 (73) 

For pip > 1, this expression gives values to better than one percent of 
"" the second approximation, Eq. (63). 

SUMMARY OF BLAST ANALOGY SOLUTIONS FOR Y 1.4 

For convenience, the above-derived results for y 1.4 are listed 
as follows: 

Plane Flow 

First approximation: 

III d 

M2 C 
"" D 

= 0.774 
(x/d) 2/3 

M2 C 2/3 
00 D 

Second approximation (simplified expressions): 

26 

III d 

M2 C 
00 D 

0.121 

0,774 

+ 0.56 

(29) 

(33) 

(61) 

(58) 



Axisymmetric Flow 

First approximation: 

Rid 0.795 x/d 

Moo {S; 

Second approximation: 

Exact: 

Simplified: 

Simplified: 

0.795 (2X/d )1/2 (1 + 3.15 X/d) 1/2 
Moo Fu M!, {CD 

0.067 !vi!, ~ CD + 0.44 
x/d 

OT-HER BLAST AND STEADY-FLOW SOLUTIONS 

A E DC-TR-61-4 

( 37) 

( 41) 

(63) 

(73) 

(70) 

The original Taylor's (Ref. 3) solution (first approximation) of a 
spherical blast was extended by Lin (Ref. 6) to the case of a cylindrical 
blast. Lin also obtained the axisymmetric, steady-flow solution (first 
approximation) analogous to the cylindrical shock. At about the same 
time, Sakurai (Refs. 4, 5) published first and second approximation 
solutions of plane, cylindrical, and spherical blasts. Cheng and Pallone 
(Ref. 7) applied the plane wave, first approximation solution to the case 
of steady flow past a blunt plate, for y = 1.4 and 1.667. They also sug
gested that, in order to extend the validity of the solution to higher 
x/d values, the pressure should be interpreted as an increment over the 
free-stream pressure rather than as the absolute value. 

In Table 8, the numerical values of coefficients quoted by the above
mentioned authors are compared with the values given by Sakurai (Ref. 4) 
and used in this paper. 
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TABLE 8 

VALUES OF COEFFICIENTS 
IN THE FIRST BLAST·WAVE APPROXIMATION (y 1.4) 

Coefficient 10 
(0) 

g(o) 

a 0 1 0 1 

Sakurai (Ref. 4) 1. 696 0.877 0.455 0.424 

Cheng and Pallone (Ref. 7) 1. 121* O. 319 

Lin (Ref. 6) 0;858 0.4317 

*Cheng et al (Ref. 8) pointed out that this value is in error. 

Lees and Kubota (Refs. 9 and 10) applied Sakurai's results to obtain 
second approximation, steady-flow solutions analogous to the case of 
cylindrical blast. They derived "simplified" expressions for the case 
of a hemisphere-cylinder, as follows: 

p/Poo = 0.0655 M:/ (x/d) + 0.405 

R/d = 0.78 -,J x/d [1 + 1.62 (x/d) / M:'] 

(74) 

(75) 

These expressions correspond to the binomial expansion, of Eqs. (66) 
and (63), using the modified-Newtonian drag coefficient for a hemi
sphere at Moo = 7.7, Y = 1.4 (CD = 0.914). 

Love (Ref. 11) proposed a method of calculation of bluntness-induced, 
inviscid, steady-flow pressures downstream of hemispherical and hemi
cylindrical noses. In his method, a value of the pressure at the shoulder 
is calculated or assumed, and the pressure decay as given by the first 
approximation, blast-wave analogy is taken. Love's expression in terms 
of free-stream pressure, Poo' is as follows: 

where 

and 

(76) 

Psh shoulder pressure, i. e., pressure at the juncture of hemi
spherical (or hemicylindrical) nose to the cylindrical (or 
slab) afterbody; 

Po' stagnation point pressure; 

x'/d = dimensionless distance measured from the shoulder. 
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Theoretical calculations indicate that, at Mach numbers.::: 5, Psh Ipo' re
mains approximately constant and equal to O. 045 in axisymmetric flow 
and to O. 117 in two-dimensional flow (y = 1.4). The values of exponent a 

are taken as 1 and 2/3, respectively, in these two cases, following the 
blast analogy. Using these values, Love's expressions can be written 
as follows: 

1. hemicylinder - flat plate: 

p/poo = 0.117 [1 + (x'/d)2/3J-
1 

( '/ )+[1 + (x'/d)_2/3]-0.117 po'/Poo 
Po Poo 

2. hemisphere-cylinder: 

I ( I) 1 'I + [1 + (x'/d) -1J -0.045 Po '/poo 
P Poo = 0.045 1 + x' d - Po Poo 

The value of Po '/poo is a function of the free-stream Mach number. 

COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS 
WITH APPROXIMATE SOLUTIONS 

( 77) 

(78) 

The various blast analogy and other approximations listed above are 
compared here with three kinds of data: 

1. results of theoretical calculations of flow about simple bodies, 
for ideal and real air; 

2. measurements from wind and shock tunnel experiments; 

3. results of correlations, in terms of blast-wave analogy param
eters, of theoretically calculated flows. 

As regards experimental data, only those measurements made at 
Reynolds numbers high enough to render the viscous effects negligible 
are included. 

PLANE FLOW 

On the basis of calculation (method of characteristics) and correla
tion of flow about flat plates with sonic wedge leading edges, Baradell 
and Bertram (Ref. 12) suggested the following expression* for pressure 
distribution (y = 1.4): 

( 79) 

*This is derived from Eq. (7) of Ref. 12, with (p - Poo)/poo increased 
by 3 percent for y = 1.4, as suggested by the authors. 
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This formula is quite similar (see Figs. 2 and 8) to the simplified sec
ond approximation, Eq. (58), and gives slightly larger values of p/poo at 

small values of M~ [CDI (X/d»)2/3, and vice versa. The formula was de-
rived on the basis of two calculations, both for CD '" 1.4 and for Moo = 9.5 

and Moo = 20. 

Pressure distribution measured on a flat plate with a semi-cylindrical 
leading edge is compared with various approximations in Fig. 2. The 
experimental data extend to x/d = 10.5. Within this range, all blast-wave 
approximations calculated for the experimental pressure drag coefficient of 
CD =: 1.27 show reasonable agreement with experimental values at x/d > 1.5. 

The correlation formula of Ref. 12, Eq. (79), gives values very slightly 
larger than the second approximation. Although Love's method predicts 
correctly the shoulder pressure, it is least accurate at intermediate 
x/d values. 

Also in Fig. 2 a curve is included showing second blast approxima
tion computed for Moo = 8 and CD = 1 instead of the experimental value 
of 1. 27. The agreement with measurements, although presumably for
tuitous, is excellent. 

In Figs. 3, 4, and 5, approximations to the pressure distribution 
and shock shape in plane flow are compared with the theoretical results 
obtained from calculations using the method of characteristics. 

The superiority of the second approximation to the pressure distri
bution at large x/d values for a configuration having a high nose drag is 
very evident at Moo = 6.86 from Figs. 3a and b. The difference between 
the theoretical and approximate pressure ratios at any given x/d is sub
stantially constant, and the approximate pressure ratio is within 20 per
cent of the theoretical value even at x/d = 150. A still better agreement, 
to within 10 percent, is obtained with the correlation formula, Eq. (79). 

In Fig. 4, the corresponding theoretical and approximate shock 
shapes are shown, and the superiority of the second blast approximation 
is again evident. This is also the cas e at Moo = 12.3, Fig. 5; the second 
blast approximation gives values to better than 10 percent of the experi
mental observations. 

Results of flow field computations for real air obtained by the General 
Electric Company (Refs. 16 and 17) are shown in Figs. 6 and 7. The 
blast analogy does not predict the pressure distribution accurately for 
y = 1.4; a much better agreement was obtained for y = 1.3, Fig. 6. The 
shock slope, as in the previous cases, is well approximated by blast 
analogy for y = 1.4. In Fig. 7, the shock Mach numbers, MR, computed 
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from Eqs. (24) and (31), are shown and indicate that real gas effects 
might affect a significant portion of the flow field. 

The data shown in Figs. 2 through 7 are plotted in terms of blast 
analogy correlation parameters in Figs. 8 and 9. 

All theoretical results for pressure distribution, for y = 1.4, Fig. 8, 
correlate well with Eq. (79). The experimental data fall below the cor
relation of theoretical data. The inadequacy of the first blast approxi
mation is again clearly seen. 

Figure 8 indicates that, although blast analogy provides suitable 
correlation parameters, the range of its applicability, in terms of x/d, 

depends on values of CD and Moo' For example, with CD = 1.4, the pre
diction of pressure ratio becomes poor at Moo = 9.5 when (x/d) 2/3 / (M~ CD 2/3) 

< 0.025 (x/d < 5), whereas at Moo = 20, it is good down to about 0.004(x/d '" 3). 

Comparison of results of theoretical calculations for ideal (y = 1.4) 

and real air, for Mach numbers of 20 and 15, respectively, presumably 
indicates the already noted significant real gas effects. 

In Fig. 9, the available data on shock shape are plotted in terms of 
correlation parameters of the second approximation blast analogy, to
gether with the theoretical curve. The two sets of data correlate poorly. 
The experimental results agree well with the theoretical curve at large 
values of x/d. 

From the above review of the limited data available for plane flow, 
it is apparent that blast analogy provides useful correlation of pressure 
distributions and shock shapes. Pressures are well predicted by the 
second blast analogy approximation for ideal gas, y = 1.4; results of a 
calculation for real air at Moo = 15 indicate pressures lower by 20 per
cent or more. Shock slopes are well predicted by the second blast analogy 
approximation, whereas the shock location shows an outward displacement 
relative to blast analogy prediction. 

AXISYMMETRIC FLOW 

Experimental Data 

The available experimental pressure distributions on hemisphere 
cylinders at Mach numbers 6, 7.7, and 8 are compared with blast analogy 
and Love's (Ref. 11) predictions in Figs. lOa, b, and c. In all cases at 
x/d > 3, the second blast analogy approximation gives values much more 
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realistic than the first approximation and predicts the pressure distribu
tion accurately at Moo == 7.7 and 8. Love's method gives the pressure level 
accurately at- Moo = 6, x/d > 4, but is less accurate than the second blast 
analogy approximation at Moo = 8, 

Pressure distribution on a flat-nose cylinder at Moo = 8 is shown in 
Fig. 11. Within the limited range of measurements (x/d :::;. 5.5), both first 
and second blast analogy approximations give an accurate estimate of the 
pressure on this high drag (CD = 1.64) body. 

The experimental and blast analogy data on shock shapes are given 
in Fig. 12 for two of the cases already considered. As in the plane flow, 
the second approximation predicts closely the shock slope. 

Lees and Kubota (Refs. 9 and 10) measured the radial pitot pres
sure distribution around the hemisphere-cylinder model at Moo = 7.7 at 
station x/d = 3 and computed the corresponding distributions of other 
quantities. These results for p/Poo and p/Poo are shown in Figs. 13 and 14 
together with the corresponding blast analogy predictions. The latter were 
obtainedfromEqs. (3) and (8) with y = liMB. computedfromEqs. (24), (39), 
and (64). 

The experimental pressure distribution, Fig. 13, shows an excellent 
agreement with the second blast approximation over the whole range of 
r/R. At the shock, the observed pressure ratio is 5, whereas the one 
computed from the second approximation blast analogy is 5. 13. 

The density distributions are compared in Fig. 14. As mentioned 
previously, the second blast approximation gives the exact density ratio 
across the shock only at high shock Mach numbers. In this case, MR '" 2.13, 

and hence a rather poor agreement is obtained with the experimental dis·
tribution. However, the exact p/Poo ratio for MR = 2.13 equals 2.85 and 
agrees well with the experimental value (Fig. 14). 

Nevertheless, in view of the good agreement in the pressure distri
butions in Fig. 13, it can be considered that the flow field closely approxi
mates the second approximation blast solution. It is then possible to write, 
for the density distribution, an expression which is exact at the shock and 
to determine a function X' (K) from the experimental data, Thus, by analogy 
to Eq. (17), 

(80) 

(0) 
where h(K) is given by the first blast approximation and x' is computed to 
fit the experimental density distribution of Fig. 14. The values of x' are 
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given in Table 9 and were computed assuming MR = 2.11, which corre
sponds to the experimental pressure and density ratios across the shock. 
At higher shock Mach numbers, Eqs. (80) and (8) are in close agreement. 

TABLE 9 

VALUESOFX' (MR 2.11) 

r/R 1 0.95 0.9 0.8 O. 7 0.6 0.5 0.4 

X 
, 

5 1. 75 O. 1 -1. 45 -2.45 -3.2 -3.8 -4.25 

Theoretical Data for y = 1.4 

Van Rise (Ref. 14) published results of calculations of flow fields 
about cylinders with a variety of nose shapes, ranging in drag coefficients 
from 0.037 to 1. 37. Re used the method of characteristics to obtain sur
face pressure distributions and shock shapes in the flow of perfect gas 
with y = 1.4 and 5/3. In most cases, the nose drag coefficient was com
puted from the surface pressure distribution*. 

Pressure distributions obtained by Van Rise are shown in Figs. 15a, b, 
and c in terms of the blast analogy correlation parameter, (x/d)/(M~ {C;;). 
Also in these figures is included the curve given by 

p/Poo = 0.06 M':' Fn / (x/d) + 0.55 (81) 

which was derived by Van Rise as representing the best correlation of 
all of his results for air (y = 1.4). Equation (81) above closely approxi
mates the theoretical blast analogy expression, Eq. (70) (see Fig. 24). 

It is immediately apparent from Van Rise's results that the blast 
analogy provides an excellent means of correlating the pressure data 
over a wide range of drag and Mach numbers. It is also apparent that 
the range of validity of an expression such as Eq. (81) is limited, in each 
case, to a certain range of the correlation parameter. Based on Figs. 15b 
and c, for bodies with CD '" 1 and at Moo .::: 10, Eq. (81) predicts accurately 

the pressure distribution at x/d .::: 2. The lower limits (in terms of free
stream Mach number and correlation parameter, (x/d) / (M':' Fo), of validity 
of blast analogy correlation are indicated in more detail in Fig. 16 for 
different drag coefficients, based on agreement in the pressure ratio to 

~:<Values of CD assumed rather than computed are given in parentheses 
in Figs. 15 and 18. Only the results for y = 1.4 are here considered. 
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within 10 percent. The theoretical data of Van Hise is self-consistent, 
whereas the experimental data indicate higher limits of the correlation 
parameter for given Co and Moo' Similar data are presented in Fig. 17 
for Moo = 40 and a wide range of CD' 

As regards the upper limits of the validity of the correlation param
eter, the available data are not extensive enough to allow their determina:'" 
tiona In the majority of cases considered, good correlation was obtained 
for 

In a number of cases in which calculations have been made into the region 
of plpoo < 1 (Figs. 15b and c, at Moo = 10 and 6.9), significant deviations 
from Eq. (81) are evident at plpoo < 1, but the data appear nevertheless 
to be well correlated by the blast analogy parameter. This, however, is 
not generally true, as indicated in Fig. 15c by the pressure distribution 
at Moo = 20, CD = 1.37, which deviates from other data already at plpoo '" 1.3 

and at smaller p/poo values. As pointed out by Van Hise*, the results at 
plpoo < 1.3 may be subject to Significant cumulative errors. 

The corresponding available results for the shock shape are shown 
in Fig. 18 in terms of the blast analogy correlation parameters. The 
correlation is good considering the wide range of drag and Mach numbers 
and falls slightly above the predicted CRI d) I (Moo Fn) values. 

Theoretical Data for Real Air in Equilibrium 

Two sets of theoretical calculations of flow fields around ahemisphere
cylinder in real air in equilibrium are available for comparison with blast 
analogy predictions and correlations. Feldman (Ref. 15) published results 
of characteristic calculations for Moo '" 18 (17,500 ft/sec) at 60, OOO-ft alti
tude, and the Gener'al Electric Company (GE) (Ref. 16) computed similar 
data for Moo '" 15 to 19 at 100,000 to 200,OOO-ft altitude, using the flow 
field method of Gravalos (Ref. 17). Details of tEe conditions for the 
GE calculations are given in Table 10 on the following page. 

*Private communication. 
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TABLE 10 

GE CALCULATIONS OF FLOW FIELDS AROUND A HEMSPHERE·CYLINDER 
IN REAL AIR IN EQUILIBRIUM 

Uoo ' hoo' Poo , Poo X 106
, Too' 

M 
ft/ sec 

CD 
ft lb/ft 2 slug/ft 3 oR 00 

(15) 14,532 0.897 100, 000 23.085 32.114 418.79 

18.24 20,000 0.914 150,000 3.0597 3.5642 500.11 

18.1 20, 000 0.91 175,000 1. 2334 1. 4123 508.79 

19.25 20,000 0.908 200,000 0.47151 0.6118 449.0 

Shock shapes and pressure distributions obtained by Feldman(Ref. 15) 
and from blast analogy predictions (for y = 1.4, CD = 1) are shown in Fig. 19. 
As for the other data, the shock shape agrees well with the second blast 
approximation, except for a substantially constant, outward displacement 
of about (1/4) d. 

The pressure distribution, as given by the second blast analogy ap
proximation, shows a fair agreement with theory at large x/d values. 

The GE data are shown in Figs. 20 through 23 for Moo = 15 and 18.1. 

The shock shapes and, more particularly, the shock slopes are well pre
dicted. At Moo = 15 (Fig. 21), the pressure distribution agrees well with 
all blast analogy approximations for y = 1.4 at x/ d Z 3. At Moo = 18.1 (Fig. 23), 
the agreement is somewhat poorer at x/ d < 4, probably indicating a 
stronger influence of real gas effects. However, compared to the results 
obtained by Feldman (Fig. 19b), a much better agreement with the blast 
analogy is evident at small x/d values. 

For comparison, results for y = 1.3 are also included in Figs. 21 
and 23. It is apparent that a change in y does not account for the dif
ferences between the calculated and predicted pressure distributions. 

The real air data are shown in terms of the blast analogy parameters 
in Figs. 24, 25, and 26, together with the experimental results and curves 
representing blast analogy solutions and other correlations. 

At lower values of the pressure ratio (Fig. 24) the real air results 
show a fair agreement with the other data. At pressure ratios above 
about 4, the real air results for Moo = 18 to 20 show a marked divergence 
from the blast analogy and the correlation of theoretical data for y = 1.4. 

Also, unlike the theoretical computations for cone-cylinders and cone
sphere-cylinders (Fig. 15), the pressure distributions at lVl, = 18 to 20 

in real air correlate well from the shoulder (x/d = 0.5) downstream. 
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These trends are more clearly shown in Fig. 25. It is evident that, 
whereas the Moo = 15 results in real air are in fair agreement with the 
y = 1.4 characteristic and blast analogy correlations, the Mx, = 18 to 20 
data correlation shows a large change in slope, which cannot result 
from a simple change in the value of y. 

Shock shapes for real air are compared in Fig. 26 with the theoreti
cal blast analogy approximations (y = 1.4) and experimental data (y = 1.4). 

At larger values of x/d [( x/d) / (M!, Fn) > 0.01], the real air results closely 

approach the second approximation blast analogy prediction for y = 1.4. 
As indicated in Fig. 26, the agreement would be worse for y < 1.4. The 
only available experimental data fall above the blast analogy prediction, 
as already indicated (Fig. 12b). At small x/d values, smaller R/d values 
and smaller shock slope than predicted are found. This trend for real 
air coincides with results of the characteristic computations for y = 1.4 
(Fig. 18). 

The radial pressure and density distributions computed by GE (Ref. 16) 
at Moo = 18.1 are compared with blast analogy predictions for y = 1.4 in 
Figs. 27 and 28. 

As already observed, the pressure distribution (Fig. 27) is well pre
dicted at larger x/d values; in all cases, the first approximation agrees 
better with the theoretical results than the second approximation. This 
would be expected in view of the similarly better agreement in shock 
slope (Fig. 22). 

The density distribution (Fig. 28) is in all cases well predicted at 
r/R > 0.8. At the shock, the second approximation gives more accurate 
values, and still closer ones are obtained using Eq. (80). At r/R < 0.8, 
the predicted density is much smaller than the computed one. 

CONCLUDING REMARKS 

Comparison of blast analogy (second approximation) solutions with 
correlations based on characteristic calculations for plane and axisym
metric flows shows good agreement between the two and thus provides a 
confirmation of the validity of the blast analogy method. The range of 
applicability of the blast analogy solutions depends on the values of param
eters (e. g., Moo and CD) which define the flow field; however, in general, 
at high Mach numbers and for ideal gas (y = 1.4), the blast analogy pre
dicts rather accurately the pressure distributions and shock shapes from 
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2 to 3 diameters downstream of the nos e to downstream stations at which 
the pressure has decayed to the free-stream value. Although the shock 
is displaced from the body more than predicted by blast analogy, the 
latter gives accurate values of shock slope. 

As regards application of the blast analogy method to flow of real air, 
the available data are limited to semi-cylinder-plate and hemisphere
cylinder configurations at Moo '" 15 to 19, at altitudes from 60, 000 to 
200, 000 ft. Comparisons indicate that blast analogy for y '" 1.4 predicts 
accurately the shock slope; the pressure distribution is predicted about 
as well as for experimental measurements made at lower Mach num
bers (6 to 8) and temperatures. 
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