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APPRCXIMATE SOLUTIONS FOR REENTRY TRAJECTORIES 

WITH AERODYNAMIC FORCES + 

by 

Kenneth Wang    and Lu Ting 

Polytechnic Institute of Brooklyn 

SUMMARY 

When the motion of the reentry vehicle is expressed in two equa- 

tions for the components in the instantaneous trajectory plane,  and one for 

the c )mponent normal to the plane, th>> former equations are uncoupled 

from the latter.    Thus, the problem of a nonplanar trajectory is reduced 

to an equivalent planar trajectory. 

In the present paper approximate analytic solutions for planar 

trajectories with constant lift and drag coefficients are obtained by 

improving and extending the analytic solution of Allen and Eggers, 

and that of Lees, Hartwig,  and Cohen       Th« present solutions are 

not subjected to the restrictions of the   Allen and Eggers solution, 

which is valid for drag-only vehicles at large entry angle, nor are they 

subjected   to that of Lees,   Hartwig,   and Cohen's solution,   which 
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Command, under Contract No. AF 49(638)-445, Project No. 9781.    The 
authors are indebted to Dr.   Ferri for his invaluable üiscussions. 

Research Associate 
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is valid for lifting vehicle entering the atmosphere at near circular orbit 

velocity and shallow angles.    They are derived in a closed form c£ simple 

function"; expressing the relations between the velocity, the angle of 

inclination and the density, or elevation.    Using these relations, the 

acceleration experienced by the pilot can be calculated and the peak value 

determined.    The numerical results calculated for these cases, where the 

above restrictions are violated,  show gocd agreement with thi macnine 

results by direct integration of the equations of motion. 

Before reaching the peak acceleration the trajectory of constant 

lift and drag coefficients can be changed to a trajectory with constant 

designed acceleration by lift and drag modulation.    When the lift-drag 

ratio remains nearly constant analytic solutions are derived.    For a given 

range of adjustment in the lift,  the maximum possible ratio of the peak 

acceleration to the designed acceleration   is  determined. 
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LIST OF SYMBOLS 

A reference area for drag and lift,  ft8 

C— drag coefficient 

C, lift coefficient 

D drag, ^ pVaACD,  lb 

g gravitation of the earth,  ft/sec/sec 

h altitude, ft 
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q heat flux,   b.t.u./ft8 
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t time,  sec 

V vehicle velocity,  ft/sec 

X,Y,Z inertial coordinates,   rectangular 

a, YiT Eulerian Angles 

0 1/23.000, ft'1 

A W/CDA,  lb/ft8 

0 angle of inclination 

p atmospheric density,  «lug/ft 
(atmospheric density at sea level, 0.0034 shig/ft*) 

Ui angular velocity,  radian/sec 

Subac'ipts 

e value at the entry 

ex value at the exit 

m maximum value 

o value at 1=0 



SECTION I 

INTRODUCTION 

The  problem of reentry trajectory for space vehicle subjected to the 

aerodynamic forces has been investigated recently by Allen and Eggers   , 

2   3 4 5 6 Chapman        ,   Nonweiler   ,   Phillips and Cohen   ,   Lees, Hartwig and Cohen   , 
7 8^9 

Grant   ,  Moe    and  Broglio  .     In most cases a planar reentry trajectory was 

considered while .ieglecting the velocity of the atmosphere due to the rota- 

tion  of   the   earth, 

Allen and Eggers treated the ballistic trajectory with large entry 

angle.    By neglecting the effect of the gravitational and the centrifugal forces 

the angle of inclination can be taken as constant and is approximated by the 

entry angle.    A closed form analytic solution is then obtained by integration 

and is good for the drag-only vehicle entering the atmosphere at steep entry 

angles.    Chapman reduced the two components of the equation of motion into 

one  non-linear ordinary differential equation with two justifiable approxi- 

mations.     The numerical solution of the non-linear differential equation 

obtained through numerical integration depends only on the ratio of lift and 

drag coefficients.    Therefore it is superior to the solution by straight 

forward integration of the two equations of motion which depend on both the 

lift and drag coefficients.    Nonweiler used a similar method without 

including the lift forces.    Phillips and Cohen obtained an analytic solution 

for a ballistic vehicle with near circular orbit velocity at the entry by 

neglecting the term representing the gravitational and the centrifugal forces. 

Their results are not restricted to steep entry angle» as that of reference 1. 

The effect of drag modulation was also discussed.     Lees    Hartwig and Cr-hen 
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treated the trajectory of vehicle with constant lift and drag coefficients and 

obtained an approximate analytic solution for entry velocity clos« to the cir- 

cular otbit velocity also by neglecting the gravitational and centrifugal forces 

term.    Their solution is valid for shallow entry with the entry velocity near 

the circular orbit velocity.    Grant demonstrated the possibility of reducing 

the maximum acceleration by employing the high drag side of the drag polar, 

instead of the low drag side as in usual flight.    Moe obtained an analytic 

solution for drag only vehicle by solving an integral equation in which the 

angle of inclination is replaced by the entry angle.    The numerical results 

indicated improvements over that of reference 1.    Broglio presented the 

equations oi motion in a non-dimensional form and similar solutions were 

obtained by -ivmerical integration.    They depended on the peak acceleration, 

the value of the density at the peak acceleration and the lift-drag ratio.   An 

approximate solution for circular orbit velocity was also presented. 

In general, a trajectory can be divided into the following three 

regions:    (1) the region outside the limit of the sensible atmospheie, (2) the 

region next to the region 1, and (3) the region well inside the atmosphere. 

In region 1, the ae   .dynamic forces are negligible and Kepler's motion 

prevails as the gravitational force dominateb.    In region 3 the motion in 

turn is governed by the aerodynamic forces as they dominate the gravita- 

tional and the centrifugal forces.    Region 2 which overlups both regions 1 

and 3 is the transition region in the sense that the aerodynamic forces are 

significant at the beginning and become rapidly dominant as compared to the 

gravitational and the centrifugal forces.    In this investigation, the reentry 

trajectory is considered to be in region 2. 



The equations of motion in space will have three components in des- 

cribing the motion of the vehicle during the reentry.    In general, they will 

be coupled and difficult to analyze.    However, by describing the vehicle 

motion in the instantaneous plane and normal to the plane as in reference 10, 

it is shown that the equations of motion are uncoupled;  that is, the motion in 

the instantaneous plane can be dealt with independently of the motion normal 

to the plane.    The problem is then greatly simplified and the analysis can be 

reduced to that applied to the planar trajectory. 

In the result of Allen and Eggers the effect of the change in the angle 

of inclination is neglected, and the approximation is good only for large 

entry angles.    In the result of Lees, Hartwig, and Cohen the term rep- 

resenting the gravitation and the centrifugal forces is dropped, and the 

analysis is limited to entry velocity close to the circular orbit velocity.     In 

the  previous report     '      ,   the velocity in the centrifugal force term was 

approximated by the velocity at the entry, and the simple solutions obtained 

are restricted to the lifting vehicle entering the atmosphere at a shallow 

angle.     In the present report the effect of the change in the angle of inclina- 

tion on the velocity, and the effects of the variations of the velocity in the 

centrifugal forces on the variation of the angle, have been taken into 

consideration.    The approximate analytic solutions obtained are then valid 

for the igeneral entry case and are derived in two simple functions relating 

the velocity, the angle of inclination and the density of the atmosphere or 

the elevation.    For the particular case of the lifting vehicle entering the 

atmosphere at shallow angle, the approximate solutions can be reduced to 

simpler forms which have been presented in reference 12 in detail and used 



in the error analysis and the aerodynamic heating calculations in reference 

13 and 14.    Application of the present general solutions to the error analysis 

and the aerodynamic heating calculation will be reported later. 



SECTION II 

EQUATIONS OF MOTION AND APPROXIMATIONS 

For the description of the motion of a reentry space vehicle, a system 

of moving coordinates r ,  a, cp,   Y. based on the  "instantaneous plane" tech- 

nique was  used as shown in Fig.   I. 

The position of the reentry vehicle in the instantaneous orbital plane 

is completely defined by the radial distance r and the polar angle a, whereas 

the instantaneous  orbital plane itself is specified by the angles y and cp. 

Since there are four instead of three quantities in specifying the vehicle 

position, a kinematic   relation involving a, y, and cp must exist among them. 

This relation represents the vanishing of the velocity component normal to 

the plane r-a,   or 

Y sin  tp cos a - it  sin a ~ 0   . (1) 

The external forces acting on the reentry vehicle are the aerodynamic 

and the gravitational forces.    Resolving their components along the unit 

vectors T,  6, and k directions, and equating with the inertia forces, yields 

the following set of equations of motion: 

*1   = - 2. + gsin 0, (2a) 
dt m 

V Ü   * . k . (£. -g) tos 6, (2b) 
dt m r 

,r •   cos   9       B ... Vcp    « — . (2c) 
cos  a      in 

From the exponential approximate atmosphere p   = p    exp (-ßh) and 



the  relation between the velocity and the height-rr-   = - V »in 9, the following 

relation is obtained by differentiation with respect to time: 

££  =  p p V »in 8 (J) 
dt 

Together wiih the lift and drag forces in the following forms: 

L  = i pVsCI A    ,    D  = i pV"Cr.A 
Z *- 2 

Eqs.  (2a), (2b), and (3) consist of the governing equations for the reentry 

trajectory of the vehicle in the present analysis. 

Eqs. (2a) and (2b) are identical with the equations describing a planar 

reentry trajectory, which indicates the independence of the motion in the 

instantaneous orbital plane from the motion normal to the plane.    This 

result considerably simplifies the problem of reentry trajectory, and, as a 

consequence, the analysis will be restricted to the investigation of Eqs. (2a) 

and (2b).    Since all the interested quantities, such as the velocity, the 

acceleration and the height, etc. , can be obtained without solving Eq.  (2c), 

it will not be considered further in the present analysis. 

In deriving the equations of motion, i.e. , Eqs. (2a), (2b), and (2c), 

the simplifying assumptions of a nonrotating spherical earth and constant 

gravity are adopted. 

Befot» going into detailed mathematical manipulations of these 

equations of motion some physical justification of the approximations will 

be discussed.    In Eq.  (2a) the last term represents the gravitational forces 

which is small compared with the aerodynamic forces.    In Eq.  (2b) the last 

term represents the gravitational and the centrifugal forces which have small 
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effect  on the angle of inclination for the trajectory of the drag-only vehicle 

entering the atmosphere at finite entry angle.    For entry c£ lifting vehicles 

at shallow angle their effects are small compared with that of the lift.    In the 

previous report, (references   11  and 1Z), the velocity in the centrifugal 

force term was approximated by the entry velocity, and the results are good 

for lifting vehicle entering at shallow angles.    In the analysis of Allen and 

Eggers, gravitational and centrifugal terms in both equations have bet i 

neglected in their approximation, and the resulting expression for the 

velocity is good for vehicle with drag-only entering at finite entry angle, 

since in this case the change in the angle is small compared with the entry 

angle itself.    In the present analysis all terms in both equations have been 

retained, while approximations have been made for the gravitational and 

centrifugal terms.    The velocity in the centrifugal force in Eq,  (2b) is 

replaced by the velocity and density relation of Allen and Eggers.    This 

approximation is good for the following reasons:   (1) For drag-only 

vehicles, entering at finite angle, the approximation is obviously good; 

(2) for shallow entry, the velocity changes very little from the entry velocity 

and so does the result of this approximation, as the density variation is 

small;    (3) for steep entry of lifting vehicles, the velocity also changes very 

little in the earlier part of the trajectory and can be approximated similarly. 

In the latter part of trajectory where the velocity changes considerably, the 

lif' i'orce becomes predominant and the effect of the centriiugal and the gravi- 

tational forces on the angle of inclination are small by comparison. 

Using the above approximation Eq. (2b) can be evaluated to yield an 

algebraic relation between the angle of inclination and the density.    With 

this   result,  Eq.  (2a) is integrated to yield the expression for the velocity. 

7 



SECTION III 

ANALYTIC SOLUTION 

For shallow entry, the angle of inclination remains small and cos 8 

is approximately equal to unity and can be approximated by cos 9    in Eq,  (2b). 

For steep entry, the angle of inclination changes little from the entry angle, 

and it can also be approximated by the entry angle.   With cos 8 replaced by 

cos 8   ,   Eqs. (2a) and (2b) are reduced to the following form, using the given 

expressions for the lift and drag: 

C   ApVa 

°1   = - _°   + gsin8. (4a) 
dt 2m 

• a C.ApV» v, 
V Ü   « - -t    .  (I_ -g) co. 8  . (4b) 

dt 2m r 

With Eq.  (3), Eqs.   (4a) and (4b) become 

IX = - f^ _i£_ + JlEL (5) 
V 2mP   sin 9        ßpV1 

C. A , cos 8      . 
sin  8d8   = - -±-  dp -  (i - -i-)  1 °£ (6) 

2mp r       V» ß p 

The quantities in the parenthesis represent the terms due to the 

centrifugal and the gravitational forces,    Thjy were neglected in reference 

6 on the assumption that the entry velocity is close to the circular orbit 

velocity and must be taken into consideration for entry velocity that differs 

considerably from the circular orbit velocity. 

As discussed in the preceding section, the velocity in the centrifugal 

force term can be approximated with good accuracy by the velocity-density 
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relationships ol Allen and Eggers '  solution 

in -L   = 2  (p.p   ) (7) 
V Zmß sin 9 e r e 

Direct integration of Eq.   (6) with the aid of Eq.  (7) proves to be 

difficult.    The term g/Va in Eq.  (6) is next expanded in terms of Iny-   , 
e 

keeping only the first three terms 

-S_  = _S_ ! 1 + d In Ji + Cailn — )"-} . (8) 
V«        v 8 V V e e e 

In the above expression the constant coefficients can be determined 

by the collocation method in accordance with range of the velocity change 

required.    For most cases the maximum acceleration is reached before the 

velocity has been reduced to one-half of its value at the entry.    In the 

numerical computations presented later, the constant coefficients are 

determined for this velocity range.    They will be shown to be satisfactory 

for most trajectories of interest by comparison with the exact results from 

machine calculations. 

With Eq.  (7), Eq    (8) becomes 

C   AC C   A 
J_=_i_ |l-_° 1 (p-p  ) + C8( 2 )8  (p-pJ8 J.      (9) 
V8      V 8 2mß sin ee * 2mß sin 9e 

* 
and integration of Eq.  (6) with 6=9    at p=p   , yields for constant C. 

For the case where C.   or C- is a given function of p and hence of the 
altitude, Eq.  (18) can still be evalvated 



co» 6   = co« ee + Ei (p-pe) + B, ln-^-+ Bafjip) . (10) 

where 

Pe 

C.A coi 9 g co« 0, Cr-Ap, 
Li        „ •       m e      „ U   "e Bi   =  , Bj  =   , B,   = - _      . B« 

2mß "        ßr ßV » 2mß tin 9. 

£,(0) = rd+B C   +B,C,)ln-£- - (B Cit 2B SC8) iül^ f -1-B8 C   (£!££)• ] 
414 Pe ' * Pe 2    4     *    P. 

The relationihip between V and p can now be obtained by integrating 

£q.  (5).   With C-. constant,    it become« 

mll.^. f    dP     . 1 rp-äL. ,11) 
V       2mß    p    «in 6(0)        ß  Jpm   pV* 

The denominator «ii. 6 will be expanded in term« of 9 in two different 

form« according to the value of the entry angle.    For entry angle less than 

60   , the term will be written a« follows: 
•in 9 

1       . 
^ -i— *—j— =i + i e. (12) 

sine      «-■£ 9'      e      6 

The maximum error will be less than 3% in using Eq.  (12), 

For entry angle greater than 45    the «cme term can be expanded in 

terms of (6-6), which, before reaching the peak acceleration, is omall in 

most case« compared with 6  . 

See footnote on page 9. 
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sin 9    sin [6 -(9  -9)]       «in 9 -(9  -9)co8 6 

, cos 9 
1       + 1(8  -9) . (13) 

sin 9 sin89 e 
e e 

The maximum error in this case for 9  =45   with 9-6=2   .is less e e 

than 5%. 

Direct integration of £q.  (11) with the aid of Eq.  (12) or Eq.  (13) is 

still difficult.    However,  inspection of Eq.  (11) indicates that the first term 

of the integral depends predominately on the minimum value of 9(p) in the 

range of integration.    For most cases of interest the entry velocity will be 

greater than the circular orbit velocity.    The angle of inclination 9 will 

decrease monotonously as p increases .until its minimum value is reached. 

Thus, for the evaluation of the velocity at any point p = p before 6 reaches 

its minimum value, the term In p/p in Eq.  (10) can be approximated by a 

series expansion in terms of P'P , keeping only the first two terms.    With 

9a 
cos 6 approximated by (1 - •--) Eq.   (10) becomes 

6 =   I 98 + K ? + K ?» la (M) 
1 3 

where ? = £^£- . 
P 

2C B   B                          (p-3o  ) 
98 =   68 - :2B i   *   *   + C  B B8 —]{p-p   ) 

- 2 [B  +B +C  B  B  +C  B B8 ] ln-£- . 
3aiS4S*4 Pe 

K    =2Bp+B+B-CBB    —  +C  B  B8 1— ], 
i i »ai»4 a«4aJ 

Ke pe 

U 



„ (P8-Pe
8) 

K    =B    +B    +CBB    - C  B  &    — 
a 3 3 l      S     ♦ 3*4 „3 

With Eq. (14) the integration of Eq. (11), using Eq. (12), yields, 

for K    positive. 

V           B, B. 
In -£ =  i— f (P) +   —S— f (p) + Up) , 

v       mm A      i r—    ■ • v     cos e A 
where 

CDA 4K^'-K» 
BB = -fi- (U—! -) , 

6       2m0 48K. 

(15) 

K .♦ 2(1 -ctK.-t- 2 /K-S " ♦ (K, +K,-0K,)(1 -0)K , 
f,(p) = P in[-i ! -1 ^i—^ ! L] 

2/Kte+K1 

f,(c» = -^2--— j^d-rt+Kj /■e,+Ki(i-(»+Kt(i-oi'-KxI I , 

o  =    . 
p 

For negative K^, integration yields 

V Bu B 
In -£ • —5- fJP) +   S- f .(p) ♦ f.(e) . 

v   cos e   l       rzr * 
(16) 

12 



where 

fjd = p[.m      ä-—— - .In  X     i _*] . 

Eq. (15) and Eq. (16) can be used to calculate the velocity at any 

point between the entry and the point where 6 becomei minimum for Hie 

entry angle lest than 60 . 

For entry angle greater than 45°, Eq. (13) will be used in the 

integration of Eq. (11),    For K    positive the integration of Eq. (11) yields 

V . 9   cos 6       Cj-A B, 
In -£ = (—*— t -ß-r ß-) -E_ (p-pj — f.(p) - 6f,(p) , 

V sine sin^e 2mß e        /—   * 
4 K, e e 

(17) 

where 

C^A cos 6 («CS'-K*) 
B    = 

6 Ibmßsln'e K, 

For Ka negative the integration of Eq. (11) yields 

V . 9   cos 6       C-.A B, 
ln Tf = (—V ♦ Vr; C) -p-o ^-^ - -i= f*(p) - 6f«(p) 

V sin 6 sin" 6 2mß e /~~    * 
Z-*. (18) 

Maximum Acceleration: 

With the velocity and the density of the air known at any point of the 

trajectory, the acceleration exerted on the pilot in addition to the gravity 

can be computed. 

13 



In unit of gbthe acceleration is 

2      W 

,y'f*W G= - -2_ PV1   / U(^r (19) 

for the planar trajectory. 

The condition for the maximum acceleration la -r- = 0i or by 
dt 

Eq. (19) 

v« !£ + 2PV ^. = o 
dt dt 

It follows then from Eqa. (?) and (4) that at the maximum acceleration 

(1+ -^y «in 8    = S- 0     . (20) 
BY ' 'n       mB    m 

m 

It has been shown in reference 15, on the approximate technique 

for variational problems, that the error in the extreme of a function is of 

the order c* if the terms of the order Care omitted In the conditions of 

extreme.   Applying to this particular case, Eq. (20) becomes 

C   A 

"»       mB     m 

for the deiermination of the values of p and 6 at the maximum acceleration 

which will be found to differ from the exact value only by the order of Ca, 

where —i—■ la of the order C. 
BV ■ m 

14 



As discassed in referencd 12,  for the trajectory whose angle of 

inclination 9 decreases from entry angle to zero, the first peak accelera- 

tion can be approximated by the value of the acceleration at 9=0 with an 

error of the order of 9s , where 9     is of an order smaller than the entry m' m ' 

angle. 

Numerical Results: 

The machine results in reference 6 for the case of lifting 

vehicle were used for the purpose of comparison.    The numerical compu- 

tations using the analytic solutions for the velocity and the acceleration 

at the peak acceleration compare very favorably.    As shown in Figs. Z 

and 3 the maximum deviation in the velocity and the peak acceleration come 

to less than 1% and 5%,  respectively.    The same entry height at 400,000 

ft is used here as in reference 6. 

Numerical computations were also made for the case of drag- 

only vehicle entering the atmosphere at small entry angle.   The example 

in reference 8 for vehicle with C_A/W = .01 fta/lb,  entry velocity at 

30,000 fps and entry angle at 5   , is chosen for comparison.   The numerical 

results from £qa.(10) and (15) are listed below together with those of 

reference 8, 

15 



Reference 8 Resu Its from 

h App rox. Exact Eq. (10) b Eq. (15) 

.Oaft 9 Vxl0'*fps e Vxl0"'fp8 .6    , Vxl0"afp8 

250 5° 30.00 5° 30.00 5° 30.00 

200 4.60° 29.40 4.60° 29.36 4.59° 29.28 

150 4.37° 24.66 4.40° 24.06 4.34° 24.04 

100 8.19° 5.98 8.06° 7.00 7.30° 6.61 

50 89.99° 0.247 51.63° .987 43.17° .515 

0 90.00° 0.000 89.97° .299 

Note that the numerical results obtained from the approximate solution 

show an improvement over that of reference 8, particularly at lower 

altitude, where the changes in the velocity and angle becomes rather 

large. 

16 



SECTION IV 

CONSTANT ACCELERATION TRAJECTORIES WITH 

LIFT AND DRAG MODULATIONS 

In this section approximate solution is presented for the constant 

acceleration trajectories with the lift and drag modulation for entry at 

shallow angles.    The constant acceleration is achieved by modulating the 

lift and drag coefficients, while keeping their ratio, C./C-.,  constant. 

Mechanically, this type of modulation requires some auxiliary adjusting 

surfaces in addition to the main body of the vehicle.   By programming the 

adjustment of these surfaces in concert with the angle of attack it is not 

difficult to fulfill these requirements.    In addition,  from Eq. (19) it is clear 

that a reasonable change in the ratio C. /Cn has less effec* on the accel- 

eration than the change in Cn.   Therefore, a constant acceleration 

trajectory can at least be approximated by modulating only the drag.    For 

shallow entry the last term in the Eq. (5) can be neglected in comparison 

with the drag forces, and it becomes 

^ = - ^  ^ (21) 
v        2i-»e  e 

During the early part of the entry trajectory will be flown at 

constant lift and drag coefficients until the limiting value of the accel- 

eration is reached.   The modulation will then take place and maintain the 

acceleration at this value until it can be turned off without the acceleration 

subsequently exceeding the given value.    For the part of the trajectory with 

17 



constant lift and drag coefficients, the solutions obtained in the previous 

chapter are applicable.   Thus, for any given entry condition« and limiting 

value of acceleration the data at the start of modulation can be determined. 

In Eq. (17) the factor before the square root sign Is the drag force 

1 CDA 
D= - pV*, which may be kept constant by adjusting the drag coeffi 

2 W 
cient as p and V varies.   Hence, the acceleration may be kept constant, 

provided the modulation of C_ Is such that the lift-drag ratio does not 

change.    Under these conditions the equations of motion as represented by 

Eq. (6) and Eq. (21) may be Integrated. 

Let the subscripts 1 and 2 denote the start and the end of the 

modulation, respectively.   The drag force, remaining constant during 

the modulation period,  is 

D = i -0^ pV« = 1 -ßi- o  V * = D,   , (22) 
2      W 2      W        1    1 1 

and Eq. (6), with the help of Eq. (21), becomes 

CL   t-V       "^ 9
e   dV       coa e

e de = -^ - -^-2- 5V. t __L vdV . (23) 
CD    V D1 V grDl 

With the values of 8,  p, and V at the start of the modulation. I.e., 

il, P=P1. V=VX ,   the Integration of Eq. (23) yields 

C.        cos 9 V        cos 6 
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Rewrite Eq. (21) with the help of Eq. (22) 

8D,    J- 
GVdV = 1 21 . (25) 

B      0 

With Eq. (24) the integration yields 

D g        „       , CT       cos 6     V-V» .       v       cos 9        ... 
:ji In .£. = 1 (V» -V^B, -(-^ ft-X-i XI In -i.) S. (V.'-V*)8. 

ß pi      2     l CD      Di 4 2        V      8grDi 

(26) 

Eq». (24) and (26) represent the relations between 6,   p, and V for 

the trajectory during th* modulation period with the acceleration kept 

constant. 

As mentioned earlier, the modulation can be stopped when the 

subsequent   accelerstion will not exceed the limiting value or Cl.   In 

reference a,  it was shown that with a smaller terminal lift the accelera- 

tion will not exceed the limiting value, and numerical computations con- 

firmed this conclusion.   In addition, from the discussion In reference 13 

for the constant lift and drag coefficients, trajectory the maximum accel- 

eration will in general take place near tSe point wh-re 9=0.    By choosing 

the point of the trajectory for the end of the modulation at 6=0 the accel- 

eration certainly will not exceed the limiting value if a small positive lift 

is maintained. 

With the end of the modulation period thus chosen at 6=0, the 

amount of acceleration that can be reduced from the maximum accelera- 

tion of the constant C.   and C-. trajectory will be limited by the range of 
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adjustment available in the vehicle.    For a given entry condition, the range 

of adjustment necessary for any required reduction in acceleration can be 

computed by using Eqs. (22),  (24),  and (26). 

In Fig. 4 the ratio ot the acceleration, i.e. , G,/G_ *•• the ratio o i     m 

of the drag coefficients, or C— /C_   , i» plotted for a particular entry 
1 a 

conJlUon.   For the case of the drag coefficient ratio equal« 4^ , the reduc- 

tion in the acceleration comes to 61%.    However, by increasing the ratio of 

the drag coefficient the increase in the reduction of acceleration is rather 

slight.    For example, a ratio of 9 results in only 65% reduction in the 

acceleration.   Therefore, for this particular case, the increase in the range 

of the drag coefficients will not be very profitable beyond certain limits. 

Numerical Results 

In the following example the velocity, the density, and the accel- 

eration were computed for the modulated trajectory.    Except where other- 

wise noted, the same constants were used as in the previous numerical 

examples. 

Given Data:    Entry velocity 36,000 fps, entry angle 9   , 

C. A       C-.A 
—I*- = -fi- = 0.01 ft»/lb 

W W ' 

Here the maximum acceleration for the constant lift and drag 

trajectory was computed to be I6.54g.   Suppose it is required to limit the 

acceleration to 7.89g by the modulation of lift and drag coefficients.    From 

Eq. (10), with the use of Eq. (15), the values of p and V at the start of 

modulation are 8.969x 10*   slug/ft' and 35,262 ft/ser,  respectively. 
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Next, the values of pand V at the end of modulation or 6=0 are 

computed, using Eqs. (24) and (26) and arc found to be 3.057x10'   slug/ft 

and 32,420 ft/sec, respectively 
CE Finally, the value of — 

V 
from the requirement that O =D  = constant 

C   A 
Finally, the value of   at the end oi modulation is found to be, 

W 

UM      = 0.00347 ft'/lb. 
W 

This result indicates that the ratio of the drag coefficient C_.  /C_ 

must be equal to or greater than 2.88 if the acce'erat'.on is to be limited to 

7.89g. 
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SECTION V 

RESULTS AND CONCLUSIONS 

Approximate solutions are derived for the reentry trajectory of 

space vehicle with lift and drag.   The restrictions of references 1 and 6 on 

the entry angle and on the entry velocity are removed in the approximation, 

and the solutions are therefore applicable to trajectories In general.   The 

solutions are written as a set of explicit simple functions expressing the 

relations between the velocity, the angle of inclination and the atmospheric 

density. 

For a given elevation, Eq. (10) gives the angle of Inclination. 

Eqs. (15)-(18) give the value of velocity at any elevation according to the 

value of the constant k   and the entry angle.    With the velocity and the 

density computed, the acceleration is calculated from Eq. (19).    Eq. (20) 

represents the condition for the peak acceleration in terms of the relation 

between the angl; of Inclination and the density.   Together with Eq. (10) 

the value of the density at peak acceleration can be determined.    From this 

the peak acceleration can be evaluated using Eq. (19). 

For lifting vehicle entering the atmosphere at shallow angles and 

near circular orbit velocity, the approximate solution reduces to that of 

Lees.    For drag-only vehicle entering the atmosphere at large angles, the 

approximate solution approaches that of Allen and Eggers.   Therefore, In 

order to jhow it* validity in general cases, numerical examples for the 

trajectory of drag-only vehicle entering the atmosphere at shallow angle, 

and lifting vehicle entering the atmosphere at parabolic velocity, are pre- 

sented.   The results are in good agreement with the exact values from the 

22 



numerical irtegration. 

The trajectory of lifting vehicle entering the atmosphe. e at shallow 

angle is of practical imporlrnce and interest, in this case the approximate 

solutions can be simplified to the form presented in references 13 and 14. 

For a vehicle with nearly constant lift-drag ratio the acceleration 

is relatively insensitive to the changes in the lift-drag ratio.    An analytic 

solution is therefore derived for a constant acceleration trajectory by 

modulating the lift and the drag coefficient.   Eqs. (24) and (26) express the 

relations between the velocity, the angle of inclination and the elevation. 

With these relations, the ratio of the constant acceleration during modu- 

lation to the peak acceleration of the constant Lift and drag trajectory Is 

determined for a given range of adjustment la the drag coefficient.   For the 

trajectory of a particular entry presented in Fig. 4, a ratio of 4j in the 

drag coefficient, or C_ /C— , gives 61% reduction in the acceleration. 
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