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APPRCXIMATE SOLUTIONS FOR REENTRY TRAJECTORIES

WITH AERODYNAMIC FORCES'

by

a* . Wk
Kenneth Wang and Lu Ting

Polytechnic Institute of Brooklyn

SUMMARY

When the motion of the reentry vehicle is expressed in two equa-
tions for the components in the instantaneous trajectory plane, and one for
the c ymponent normal to the plane, th: former equations are uncoupled
from the latcer. Thus, the problem of a nonplanar trajectory is reduced
to an equivalent planar trajectory.

In the present paper approximate analytic solutions for planar
irajectories with constant lift and drag coefficients are obtained by
improving and extending the analytic solution of Allen and Eggers,
and that of Lees, Hartwig, and Cohen  The present solutions are
not subjected to the restrictions of the Allen and Eggers eolution,
which is valid for drag-only vehicles at large entry angle, nor are they

subjected to that of Lees, Hartwig, and Cohen's solution, which
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authors are indebted to Dr. Ferri for his invaluable discussions.
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is valid for lifting vehicle entering the atmosphere at near circular orbit
velocity and shallow angles. They are derived in a closed form cf simple
functions expressing the relations between the velocity, the angle of
inclination and the density, or elevation. Using these relations, the
acceleration experienced by the pilot can be calculated and the peak value
determined. The numerical results calculated for these cases, where the
above restrictions are violated, show gocd agreement with thz macnine
results by direct integration ¢f the equations of motion.

Before reaching the peak acceleration the trajectory of constant
lift and drag coefficients can be changed to a trajectory with constant
designed acceleration by lift and drag modulation. When the lift-drag
ratio remains nearly constant analytic solutions are derived. For a given
range of adjustment in the lift, the maximum possible ratio of the peak

acceleration to the designed acceleration is determined.
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SECTION 1

INTRODUCTION

The problem of reentry trajectory for space vehicle subjected to the
aerodynamic forces has been investigated recently by Allen and Eggerll,
Chapman®'?, Nonweiler?, Phillips and Gokien>, Lees, Hartwigiand Cohen®,
Grant7, Moe8 and Brogliog_ In most cases a planar reentry trajectory was
censidered while .eglecting the velocity of the atmosphere due to the rota-
tion of the earth,

Allen and Eggers treated the ballistic trajectory with large entry
angle. By neglecting the effect of the gravitational and the centrifugal forces
the angle of inclination can be taken as constant and is approximated by the
entry angle, A closed form analytic solution is then obtained by integration
and is good for the drag-only vehicle entering the atmosphere at steep entry
angles. Chapman reduced the two components of the equation of motion into
one non-linear ordinary differential equation with two justifiable approxi-
mations. The numerical solution of the non-linear differential equation
obtained through numerical integraiion depends only on the ratio of lift and
drag coefficients. Therefore it is suprrior to the solution by straight
forward integration of the two equations of motion which depend on both the
lift and drag coefficients, Nonweiler used 2 similar method without
including the lift forces, Phillips and Cohen obtained an analytic solution
for a ballistic vehicle with near circular orbit velocity at the entry by
neglecting the term representing the gravitational and the centrifugal forces,
Their results are not restricted to steep entry angles as that of reference 1,

The effect of drag modulation was also discussed. Lees. Hartwig and Cchen
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treated the trajectory of vehicle with constant lift and drag coefficients and
obtained an approximate analytic solution for entry velocity clos= to the cir-
cular orbit velocity also by neglecting the gravitational and centrifugal forces
term. Their solution is valid for shallow entry with the entry velocity near
the circular orbit velocity. Grant demonstrated the possibility of reducing
the maximum acceleration by employing the high drag side of the drag poiar,
instead of the low drag side as in usual flight, Moe obtained an amalytic
solution for drag only vehicle by solving an integral ¢quation in which the
angle of inclination is replaced by the entry angle. The numerical results
indicated improvements over that of reference 1. Broglio presented the
equations ¢ motion in a non-dimensional form and similar solutions were
obtained by wvmerical integration. They depended on the peak acceleration,
the value of the density at the peak acceleration and the lift-drag ratio. An
approximate solution for circular orbit velocity was also presented.

In general, a trajectory can be divided into the following three
regions: (1) the region outside the limit of the sensible atmosphe:e, (2) the
region next to the region 1, and (3) the region well inside the atmosphere,

In region 1, the ae' ~iynamic forces are negligiole and Kepler's motion
prevails as the gravitational force dominates, In region 3 the motion in
turn is governed by the aerodynamic forces as they dominate the gravita-
tional and the centrifugal forces., Region 2 which overlups both regions 1
and 3 is the transition region in the sense that the aerodynamic forces are
significant at the beginning and become rapidly docminant as compared to the
gravitational and the centrifugal forces. In this investigation, the reentry

trajectory is considered to be in region 2.



The equations of motion in space will have three components in des-
cribing the motion of the vehicle during the reentry. In general, they will
be coupled and difficult to analyze. However, by describiny the vehicle
mction in the instantaneous plane and normal to the plane as in reference 10,
it is shown that the equations of motion are uncoupled; that is, the motion in
the instantaneous plane can be dealt with independently of the motion normal
to the plane, The problem is then greatly simplified and the analysis can be
reduced to that applied to the planar trajectory.

In the result of Allen and Eggers the effect of the change in the angle
of inclination is neglected, and the approximation is good only for large
entry angles. In the result of Lees, Hartwig, and Cohen the term rep-
resenting the gravitation and the centrifugal forces is dropped, and the
analysis is limited to entry velocity close to the circular orbit velocity, In
the previous report“’ lz, the velocity in the centrifugal force term was
approximated by the velocity at the entry, and the simple solutions obtained
are restricted to the lifting vehicle entering the atmosphere at a shallow
angle. In the present report the effect of the change in the angle of inclina-
tion on the vclocity, and the effects of the variations of the velocity in the
centrifugal forces on the variation of the angle, have been taken into
consideration, The approximate analytic solutions obtained are then valid
for the \general entry case and are derived in two simple functions relating
the velocity, the angle of inclination and the density of the atmosphere or
the elevation, For the particular case of the lifting vehicle entering the
atmosohere at shallow angle, the approximate solutions can be reduced to

simpler forms which have been presented in reference ]2 in detail and used



in the error analysis and the aerodynamic heating calculations in reference
13 ard 14, Application of the present general solutions to the error analysis

and the aerodynamic heating calculation will be reported later,



SECTION II

EQUATIONS OF MOTION AND APPROXIMA TIONS

For the description of the motion of a reentry space vehicle, a system
of moving coordinates r, a, ®, Y, based on the "instantaneous plane"” tech-
nique was used as shown in Fig, I,

The position of the reentry vehicle in the instantaneous orbital plane
is completely defined by the radial distance r and the polar angle a, whereas
the instantaneous orbital plane itself is specified by the angles y and o.

Since there are four instead of three quantities in specifying the vehicle
position, a kinematic relation involving a, v, and ® must exist among them,
This relation represents the vanishing of the velocity component normal to
the plane r-a, or

Qsinmcosa-@sina:O. (1)

The external forces acting on the reentry vehicle are the aerodynamic
and the gravitational forces, Resolving their components along the unit

vectors 7, 6, and k directions, and equating with the inertia forces, yields

the following set of equations of motion:

= =-2+gsin0. (2a)
dt m
2
Vd_e =. L (L -g) cos 8, (2b)
dt m r
vp o2 8 _ B (2¢)
cos ¢ mn

From the exponential approximate atmosphere p

pg ©xp (-fh) and



the relation between the velocity and the height g{-‘ = - V sin 8, the following

relation is obtained by ditferentiation with respect to time:

Q:ﬁpVaine {5)

dt

Together with the lift and drag forcesin the following forms:

pVIC A

1
L==pV3C. A , D=
Py L D

1
2
Eqs. (2a), (2b), and (3) consist of the governing equations for the reentry
trajectory of the vehicle in the present analysis.

Eqs. (2a) and (2b) are identical with the equations describing a planar
reentry trajectory, which indicates the independence of the motion in the
instantaneous orbital plane from the motion normal to the plane. This
result considerably simplifies the problem of reentry trajectory, and, as a
consequence, the analysis will be restricted to the investigation of Eqs. (2a)
and (2b), Since all the interested quantities, such 2s the velocity, the
acceleration and the height, etc., can be obtained without solving Eq. (2c),
it will not be considered further in the present analysis.

In deriving the equations of motion, i, e., Eqs. (2a), (2b), and (2¢),
the simplifying assumptions of a nonrctating spherical earth and constant
gravity are adopted,

Befor» going into detailed mathematical manipulations of these
equations ¢f motion some physical justification of the approximations will
be discussed, In Eq. (2a) the last term represents the gravitational forces
which is small compared with the aerodynamic forces, In Eq. (2b) the last

term represents the gravitational and the centrifugal forces which have small
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effect on the angle of inclination for the trajectory of the drag-only vehicle
entering the atmosphere at finite entry angle. For entry o litting vehicles
at shallow angle their effects are small compared with that of the lift, In the
previous report, (references 11 and 12), the velocity in the centrifugal
force term was approximated by the entry velocity, and the results are good
for lifting vehicle entering at shallow angles, In the analysis of Allen and
Eggers, gravitational and centrifugal terms in both equations have bee¢ :
neglected in their approximation, and the resulting expression for the
velocity is good for vehicle with drag-only entering at finite entry angle,
since in this case the change in the angle is small compared with the entry
angle itself, In the present analysis all terms in both equations have been
retained, while approximations have been made for the gravitational and
centrifugal terms. The velocity in the centrifugal force in Eq. (2b) is
replaced by the velocity and density relation of Allen and Eggers, This
approximation is good for the following reasons: (1) For drag-only
vehicles, entering at finite angle, the approximation is obviously good;
(2) for shallow entry, the velocity changes very little from the entry velocity
and so does the result of this approximation, as the density variation is
small; (3) for steep entry of lifting vehicles, the velocity also changes very
little in the earlier part of the trajectory and can be approximated similarly,
In the latter part of trajectory where the velocity changes considerably, the
1i {orce becomes predominant and the effect of the centritugal and the gravi-
tational forces on the angle of inclination are small by comparison,

Using the above approximation Eq. (2b) can be evaluated to yield an
algebraic relatior between the angle of inclination and the density. With
this result, Eq. (2a) is integrated to yield the expression for the velocity,

7



SECTION 1II
ANALYTIC SOLUTION

For shallow entry, the angle of inclination remains small and cos 6
is approximately equal to unity and can be approximated by cos ee in Eq. (2b).
For steep entry, the angle of inclination changes little from the entry angle,
and it can also be approximated by the entry angle, With cos 8§ replaced by
cos Be. Eqs. (2a) and (2b) are reduced to the following form, using the given

expressions for the lift and drag:

C ApV'
av St e, (4a)
dt 2m
C,ApV? 2
v a8 _ . L . (V— -g) cos ee. (4b)
dt 2m r

With Eq. (3), Eqs. (4a) and (4b) become

C. A

av .. _D__d , gdp (5)
v 2mpB sin 8 ppV?
C.A cos 8
sin 9d8=-idp-(l--!-) e dp (6
2mp ¢ V3 B P

The quantities in the parenthesis represent the terins due to the
centrifugal and the gravitational forces, TL.y were neglected in reference
6 on the assumption that the cntry velocity is close to the circular orbit
velocity and must be taken into consideration for entry velocity that differs
considerably from the circular orbit velocity.

As discussed in the preceding section, the velocity in the centrifugal

force term can be approximated with good accuracy by the velocity-density

8



relationships of Allan and Eggers' solution

C A

mY =. D (p-p,) (”
v 2mp sin 8
e e

Direct integration of Eq. {6) with the aid of Eq. (7) proves to be
difficult., The term g/V? in Eq. (6) is next expanded in terms of ln#— B
e

keeping only the first three terms

3
£ -8 4+, +ciin Yy, (8)
v? ve° v, V.2

In the above expression the constant coefficients can be determined
by the collocation method in accordance with range of the velocity change
required, For most cases the maximum acceleration is reached before the
velocity has been reduced to one-half of its value at the entry, In the
numerical computations presented later, the constant coefficients are
determined for this velocity range. They will be shown to be satisfactory
for most trajectories of interest by comparison with the exact results from
machine calculations,

With Eq. (7), Eq. (8) becomes

CpAC: CpA
g2 -8 |1 -—_(p-pe) + C3 (—————— )' (p-pe)a ]n (9)
v3 Ve’ Zmp sin 0 2mp sin 6,

and integration of Eq, (6) with 9=6._= at p=p . yialds for constant CL'sl

»”
For the case where Cl or C. is a given function of p and hence of the
altitude, Eq. (18) canlitill b? evaluated.



cos § = cos 6, + Ey \p-p,) + By ln-‘;L+ Bsfy(p) , (10)
[

where
CLA cos 6e g cos 8, CDApe
Bl S, By = 0 Ba = - , By = »
2mp pr pve' Zmp sin 8,

f1(p) = [(14B,C_+B2Cy)lnL - (B.C,+ 2B ‘c.)if’_r-.’ ' BPC_(Ezbey )
Pe Pe 2 Pe

The relationship between V and p can now be obtained by integrating

Eq. (5). With CD constant, * it becomes

v C.A o
In—% -_D fp P4 (11)
\'4 2mp sin O(n) Pe pv?

The denominator sin 8 will be expanded in terms of 8 in two different

forms according to the value of the entry angle, For entry angle less than

600, the term will be written as follows:
sin 8
1 1 1 1
& == +-=08. (12)
sin 8 ""cl ® o 6

The maximum error will be less than 3% in using Eq. (12).
For entry angle greater than 45° the scume term can be expanded in
terms of (ee- 8), which, before reaching the peak acceleration, is small in

most cases compared with Be.

*
See footnote on page 9.
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1 1 : 1

sin § sin[8.-(8_-6)] sin O _-(8_-B)cos 6

. 1 cos ee
= +———(6_-0). (13)
sin 6, sin®§ &

e

The maximum error in this case for 6e=45° with Ge-8=20. is less
than 5%.

Direct integration of Eq. (11) with the aid of Eq. (12) or Eq. (13) is
still difficult. However, inspection of Eq. (11) indicates that the first term
of the integral depends predominatel y on the minimum value of 8(p) in the
range of integration. For most cases of interest the entry velocity will be
greater than the circular nrbit velocity, The angle of inclination § will
decrease monotonously as p increases,until its minimum value is reached.
Thus, for the evaluation of the velocity at any point p = p before § reaches
its minimum value, the term In p/p in Eq. (10) can be approximated by a
series expansion in terms ofﬂé , keeping only the first two terms. With

3
cos B approximated by (1 - g-) Eq. (10) becomes

2 1
9 = ‘e°+xlg+ K'g’]s (14)
whereQ:Lé.
- ) 2CB B (p-30,)
8 - 0% ./2B - —1L3 % 4 C BB —_Z J(p-p.)
e 1 2 8 4 I e
pe e

-2[B+B+C BB +C B B JInL |,
3 2 1 3 4 2 3 Pe

@
3 8 o s '
Pe Pe

a
(p-p,) cB '(p-pe)

K =Z[Bp+B+B-CBB
1 1 3 a2 T 3 4

11



(p*-pd)

. =B +B +CBB -.CB 8
2 3 3 1 3 4 3 3 o P
e

With Eq. (14) the integration of Eq. (11), using Eq. (12), yields,

for K9 positive,

v B, B
In £ = £(P) + —2— £ (p) + £,(p),
V cosf ? .
e K
]
where
K T -K?
B, - =% e L1,
® 2msg 48K,
=3
K, +2(1-9K,+2/ KB +(K, +K,-0K,)(1-0)K
£,(0) = o In| —
2/K, 0 +K,
CnAP = -
f(0 = 4—8?\18—1(. [2K,(1-0)+K ] /B +K (1-a+K,0-0" -K T ),
[+
c=—.
P

For negative K, integration yields

\) B
InYe._ D £,(P) + —=2— 1 (o) + £5(p) ,
V cos®
e -K.

12
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where

K K. +2(l-0)K
£.(0 = p[-'m'1 N SR Pt L(_a)_'.] .

/K -4k 5" /K 24K,8°

Eq. (15) and Eq. (16) can be used to calculate the velocity at any
point between the entry and the point where 8 becomes minimum for the
entry angle less than 60°,

For entry angle greater than 45°, Eq. (13) will be used in the

integration of Eq. (11), For K, positive the integration of Eq. (11) yields

\' 8 cos B,
in £ = (—1 _a___:_,_n_(pp,-__”p)-bf,(,,,
\' sin ee sin® 9 2m§B X
' a7
where
-8
- CDA cos Ge(4K8 -K")
y l6mBlin'9eK.
For K, negative the integration of Eq. (11) yields
e -1, %08, CpA o, £, (p) - 6fy(p)
n — + - -
v une nin'e zspp K o!P P

o (18)

Maximum Acceleration:

With the velocity and the density of the air known at any point of the
trajectory, the acceleration exerted on the pilot in addition to the gravity

can be computed.

13



In unit of gsthe acceleration is

ChA C

D . L,?

Gz~ —=—pV 1 19
+(C—) (19)

(R

for the planar trajectory.

The condition for the maximum acceleration is %c:- =0, or by

Eq. (19)
v 42 4 aov Y Lo,
at at

It follows then from Eqs. (2) and (4) that at the maximum acceleration

1+ a_\zrxf) sin g = Spt . (20)
m

mgp m

It has been shown in reference 15, on the approximate technique
for variational problems, that the error in the extreme of a function is of
the order €? if the terms of the order €are omitted in the conditions of

extreme, Applying to this particular case, Eq. (20) becomes

C A
nnem-—p (21)

for the determination of the values of p and 8 at the maximum acceleration
which will be found to differ from the exact value only by the order of ¢%,

where -EEV‘T is of the order ¢.
m

14



As discussed in referencd 12, for the trajectory whose angle of
inclination 6 decreases from entry angle to zero, the first peak accelera-
tion can be approximated by the value of the acceleration at =0 with an

error of the order of G:n, where Bm is cf an order smaller than the entry

angle.

Numerical Results:

The machine results in reference 6 for the case of lifting
vehicle were used for the purpose of comparison, The nuraerical compu-
tations using the analytic solutions for the velocity and the acceleration
at the peak acceleration compare very favorably. As shown in Figs. 2
and 3 the maximum deviation in the velocity and the peak acceleration come
to less than 1% and 5%, respectively. The same entry height at 400,000
ft is used here as in reference 6,
Numerical computations were also made for the case of drag-
only vehicle entering the atmosphere at small entry angle. The example
in reference 8 for vehicle with CDA/W = .01 £t? /lb, entry velocity at
30,000 fps and entry angle at 5%, is chosen for comparison, The numerical
results from Eqs.(10) and (15) are listed below together with those of

reference 8,

15



107 ft

250
200
150
i00
50

0

Reference 8

Approx.

8 VxlO"fps
5° 30.00
4.60°  29.40
4.37°  24.66
8.19° 5.98

89.99° 0.247
90.00° 0.000

Exact
-8
8 Vvx10 fps
5° 30.00
4.60° 29.36
4.40°  24.06
8.06° 7.00
51,63° .987
89.97° .299

Results from

Eq. (10) & Eq. (15)

8 . Vx10~fps
5° 30,00
4.59°  29.28
4.34°  24.04
7.30° 6.61
43.17° 515

Note that the numerical results obtained from the approximate solution

show an improvement over that of reference 8, particularly at lower

altitude, where the changes in the velocity and angle becomes rather

large.
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SECTION IV
CONSTANT ACCELERATION TRAJECTORIES WITH
LIFT AND DRAG MODULATIONS

In this section approximate solution is presented for the constant
acceleralion trajectories with the lift and drag modu!ation for entry at
shallow angles. The constant acceleration is achieved by modulating the
lift and drag coefficients, while keeping their ratio, CL/CD' constant.
Mechanically, this type of modulation requires some auxiliary adjusting
surfaces in addition to the main body of the vehicle. By programming the
adjustment of these surfaces in concert with the an_gle of attack it is not
difficult to fulfill these requirements. In addition, from Eq. (19} it is clear
that a reasonable change in the ratio CL/CD has less effec* on the accel-
eration than the change in CD. Therefore, a constant acceleracion
trajectory can at least be approximated by modulating only the drag. For
shallow entry the last term in the Eq. (5) can be neglected in comparison

with the drag forces, and it becomes
: A
av __ D" dp (21

During the early part of the entry trajectory will be flown at
constant lift and drag coefficients until the limiting value of the accel-
eration is reached. The modulation will then take place and maintain the
acceleration at this value until it can be turned off without the acceleration

subsequently exceeding the given value. For the part of the trajectory with

17



constant lift and drag coefficients, the solutions obtained in the previous
chapter are applicable. Thus, for any given entry conditions and limiting
value of acceleration the data at the start of modulation can be determined.

In Eq. (17) the factor before the square root sign is the drag force

C. A
_?V— pV?, which may be kept constant by adjusting the drag coeffi-~
cient as p and V varies. Hence, the acceleration may be kept constant,

D=

|-

provided the modulation of C_ is such that the lift-drag ratio does not

D
change. Under these conditions the equations of motion as represented by
Eq. (6) and Eq. (2]1) may be integrated. .

Let the subscripts 1 and 2 denote the start and the end of the

modulation, respectively. The drag force, remaining constant during

the modulation period, is

CnA Cn. A

=1 D s _ 1 Dy

D= = ve = ve®=D , 22
2w e 2w AN d L)

and Eq. (6), with the help of Eq. (21), becomes

d9=-c—L av couee d_V‘_ cocee
D v Dx v grDl

vdav . (23)

With the values of 8, p, and V at the start cf the modulation, i.e.,

8=6,, p=p,, V=V,, the integration of Eq. (23) yields

C cos ee \' cos @

= .__l_‘___.__ _"_ e v _y?
68 (CD B ) In T, ve) . (24)

18



Rewrite Eq. (21) with the help of Eq. (22)
gD
evVav = - -?‘- do . (25)

With Eq. (24) the integration yields

cos V:-V‘

(&
(v2-vio, -k - —y
C D

A" k)
Al P X ot e (v:.v')',
4 Z v g

(26)

Eqs. (24) and (26) repr~:sent the relations between 8, p, and V for
the trajectory during the inodulation period with the acceleration kept
constant.

As mentioned earlier, the modulation ~an be stopped when the
subsequent. accelerstion will not exceed the limiting value or G,. In
reference 5, it was shown that with a smaller terminal lift the accelera-
tion will not :xceed the limiting value, and numerical computations con-
firmed this conclusion. In addition, from the discussion in reference 13
for the constant lift and drag coefficients trajectory the maximum accel-
eration will in general take place near the point whrre 6=0. By choosing
the point of the trajectory for the end of the modulation at 6=0 the accel-
eration certainly will not exceed the limiting value if a small positive lift
is maintained.

With the end of the modulation period thus chosen at 6=0, the
amount of acceleration that can be reduced from the maximum accelera-

tion of the constant CL and CD trajectory will be limited by the range of

19



adjustment available in the vehicle. For a given entry condition, the range
of adjustment necessary for any rzaquired reduction in acceleration can be
computed by using Eqs. (22}, (24), and (26).

In Fig. 4 the ratio of the acceleration, i.e., C’x/Gm vs. the ratio
of the drag coefficients, or CD1/CDa , is plotted for a particular entry
condilion. For the case of the drag coefficient ratio equals 44, the reduc-
tion in the acceleration comes to 61%. However, by increasing the ratio of
the drag coefficient the increase in the reduction of acceleration is rather
slight. For example, a ratio of 9 results in only 65% reduction in the

acceleration. Therefore, for this particular case, the increase in the range

of the drag coefficients will not be very profitable beyond certain limits.

Numerical Results

Ia the following example the velocity, the density, and the accel-
eration were computed for the modulated trajectory., Except where other-
wise noted, the same constants were used as in the previous numerical
examples.

Given Data: Entry velocity 36,000 fps, entry angle 9°,

C;A C_A
—L_ - R - 0,01 £#%/1b
w w

Here the maximum acceleration for the constant lift and drag
trajectory was computed to be 16.54g. Suppose it is required to limit the
acceleration to 7.89g by the modulation of lift and drag coefficients. From
Eq. (10), with the use of Eq. (15), the values of p and V at the start of

modulation are 8.969x10™" slug/ft® and 35,262 ft/ser, respectively.
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Next, the values of pand V at the end of modulation or =0 are
computed, using Eqs. (24) and (26) and arc found to be 3.057x 10°* slug/st®

and 32,420 ft/sec, respectively,
ChA

Finally, the value of at the end of modulation is found to be,

from the requirement that D‘=Da= constant,

Cp,A
—8 - 0.00347 ft*/Ib.
w

This result indicates that the ratio of the drag coefficient Cpy /Cp
1 ]
must be equal to or greater than 2.88 if the acceleration is to be limited to

7.89%.

21



SECTION V
RESULTS AND CONCLUSIONS

Approximate solutions are derived for the reentry trajectory of
space vehicle with iift and drag. The restrictions of references 1 and 6 on
the entry angle and on the entry velocity are removed in the approximation,
and the solutions are therefore applicable to trajectories in general. The
solutions are written as a set of explicit simple functions expressing the
relations between the velocity, the angle of inclination and the atmospheric
density,

For a given elevation, Eq. (10) gives the angle of inclination.

Egs. (15)-(18) give the value of velocity at any elevation according to the
value of the constant k, and the entry angle. With the velocity and the
density computed, the acceleration is calculated from Eq. (19). Eq. (20)
represents the condition for the peak acceleration in terms of the relation
between the argl: of inclination and the density. Together with Eq. (10)

the value of the density at peak acceleration can be determined. From this
the peak acceleration can be evaluated using Eq. (19).

For lifting vehicle entering the atmosphere at shallow angles and
near circular orbit velocity, the approximate solution reduces to that of
Lees. For drag-only vehicle entering the atmosphere at large angles, the
approximate solution approaches that of Allen and Eggers. Therefore, in
order to show its validity in general cases, numerical exaniples for the
trajectory of drag-only vehicle entering the atmosphere at shallow angle,
and lifting vehicle entering the atmosphere at parabolic velocity, are pre-

sented., The results are in good agreement with the exact values from the
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numerical integration.

The trajectory of lifting vehicle entering the atmosphe.e at shallow
angle is of practical importznce and interest. in this case the approximate
solutions can be simplified to the form presented in references 13 and 14.

For a vehicle with nearly constant lift-drag ratio the acceleration
18 relatively insensitive to the changes in the lift-drag ratio. An analytic
solution is therefore derived for a constant acceleration t-ajectory by
modulating the lift and the drag coefficient. Eqs. (24) and (26) express the
relations between the velocity, the angle of inclination and the elevation.
With these relations, the ratio of the constant acceleration during modu-
lation to the peak acceleration of the constant lift and drag trajectory is
determined for a given range of adjustment in the drag coefficient, For the
trajectory of a particular entry presented in Fig. 4, a ratio of 4} in the

drag coefficient, or p /CD » gives 61% reduction in the acceleration,
1 L]
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