SATISTAL SATISFACE OF SATISFACE

UNCL SIFIED

AD.

250 925

duced the

ATHED SERVICES ARUM ARM

CAL INFORMATION AGENCY ALL STATION 2, VIRGINIA

UNC.

SIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatscever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

. \$

いない

AD No. 25/2

DEVELOPMENT OF TITANIUM ALLOY CASTING METHOD

R. V. Carter

KERC

AERO-SPACE DIVISION
BOEING AIRPLANE COMPANY
Contract: AF33(600)-36450
AMC Project: 7-656

FINAL TECHNICAL ENGINEERING REPORT

March 1958-May 1960

A commercially feasible process was developed for production of titanium alloy castings for high performance aerospace vehicle applications. The recommended practice utilized a vacuum consumable-electrode arc furnace, a water cooled copper, tilt-pour crucible, expendable rammed graphite molds, and centrifuge casting techniques. The Ti-6A1-4V alloy is the best casting alloy presently available, with as-cost tensile strength in excess of 150,000 psi and excellent surface finish.

METALLIC MATERIALS BRANCH
MANUFACTURING AND MATERIALS TECHNOLOGY DIVISION

AMC Aeronautical Systems Center
United States Air Force
Wright-Patrerson Air Force Base, Ohio

AMC TR 60-7-656 ASTIA NR:

AMC TECHNICAL REPORT 60-7-656 September 1960

DEVELOPMENT OF TITANIUM ALLOY CASTING METHOD

R. V. Carter

AERO-SPACE DIVISION
BOEING AIRPLANE COMPANY
Contract: AF33(600)-36450
AMC Project: 7-656

FINAL TECHNICAL ENGINEERING REPORT

March 1958-May 1960

A commercially feasible process was developed for production of titanium alloy castings for high performance aerospace vehicle applications. The recommended practice utilized a vacuum consumable-electrode arc furnace, a water cooled copper, tilt-pour crucible, expendable rammed graphite molds, and centrifuge casting techniques. The Ti-6A1-4V alloy is the best casting alloy presently available, with as-cast tensile strength in excess of 150,000 psi and excellent surface finish.

METALLIC MATERIALS BRANCH
MANUFACTURING AND MATERIALS TECHNOLOGY DIVISION

MMC Aeronautical Systems Center Unitar State: All Force Wright-Patterson Colfo on Base, Othe

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies of this report from the ASTIA Document Service Center, Arlington Hall Station, Arlington 12, Virginia.

Copies of AMC Technical Reports should not be returned to AMC Aeronautical Systems Center unless return is required by security considerations, contractual obligations, or notice on a specific document.

This is the final technical engineering report covering all work performed under Contract AF33 (500)–36450 from March 1958 to May 1960. The manuscript was released by the author on May 30, 1960 for publication as an AMC Technical Report.

W

This contract is a continuation of the work started by National Research Corporation to develop titanium casting fundamentals under Contract AF33(600)-32801, Project 7-216-n.

This contract with Boeing Airplane Company was initiated under AMC Manufacturing Methods project number 7-656, *Development of Titanium Alloy Casting Method.* The contract was administered under the direction of Mr. A. H. Langenheim of the Metallic Materials Branch (LMBML-1), Manufacturing and Materials Technology Division, AMC Aeronautical Systems Center, Wright Patterson Air Force Base, Ohio.

Mr. R. V. Carter, Research Engineer, Aero-Space Division of Boeing Airplane Company was the engineer in charge of the program. The work was supervised by Mr. J. W. Sweet, Chief Metallurgist, Materials and Processes Staff, Aero-Space Division, Boeing Airplane Company.

The primary objective of the Air Force Manufacturing Methods Program is to increase producibility and improve quality and efficiency of fabrication of aircraft and missiles and components thereof. This report is being disseminated in order that the methods and/or processes developed may be used throughout industry, thereby reducing production costs and obtaining "MORE AIR FORCE PER DOLLAR".

Your comments are solicited on the potential utilization of the data and information contained in this report as applied to your present or future production program. In addition, any suggestions concerning additional Manufacturing Methods developments required on this or similar subjects will be appreciated.

PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR THE COMMANDER

FUNCTION I MALE CAME A USAF

Dr. 2"85 6

ACKNOWLEDGEMENTS

The subcontractor for this developmental contract was Oregon Metallurgical Corporation, Albany, Oregon. The author particularly wishes to acknowledge the major contributions made to this program by Messrs. R. G. Hardy, J. A. Smith, T. A. Hamm, F. Caputo, and J. L. Gunter.

The author also acknowledges the technical assistance and guidance provided by Messrs. J. T. Stacy, R. C. Huttinger, C. S. Summers, A. R. Lunde, R. E. Stewart, and E. Kalns and the preparation of drawings and illustrations by Messrs. M. W. Anderson and N. J. Munsey, all of Boeing Airplane Company Staffs.

CONTENTS

		Page
A.	Introduction	Αì
В.	Casting Practice Development	в 1
	Melting Practice Development	B 2
	Furnace Characteristics and Operation	B 2
	Electrode Preparation	В 4
	Recycling of Scrap	B 5
	Mold Development	В 15
	Machined Graphite Molds	B 15
	Metal Molds	В 15
	Rammed Graphite Molds	B 16
	Shell Graphite Mold: and Cores	B 20
	Investment Molds	B 22
	Recycling of Mold Materials	B 24
	Feeding Studies	B 30
	Feeding Distance in Flat Sections Cast in Machined Graphite Molds	B 30
	Feeding Distance in Tapered Sections Cast in Machined and in Fammed Graphite Molds	B 31
	Feeding Distance in Shell Graphite : Molds	В 33
	Leeding Distance in Centrifuge Casting	R 3/i

D2-2786-8		CONTENTS	vii
			Page
	Sarfaca Troum .	of thedica Codings	B56
	Removal of (Baics and Risers	B56
	Classing of	Ceri 👵	B57
	Chemical Re	moval of Surface Maiorial	B58
c.	Allo, Developme	nt	C 1
	Development	of Ti -6Al -4V Alloy	C 2
	Developmer:	of Other Alloys	C 7
D.	Custing of Shapes		DΙ
	Selection of	Shapes	D 2
	Casting of th	e Developmental Bracket	D 4
	Casting of th	e Flap Track Link	D26
	Casting of th	e Sway Brace Case	D47
	Casting of th	e Elevator Torsion Fitting	D55
	Casting of th	e Horizontal Stubilizer Fitting	D74
E.	Evaluation Testing	3	E 1
	Conventional Mot	rerials Tests	E 2
	Component Tests		E 4
	Development	a! Bracket	E 4
	Flap Track Li	nk	E10
	Sway Brace (Case	E13
	Elevator Tors	ion Fitting	E15
	Horizontal SI	abilizer Rib	E18

viii	CONTENTS	D22786-3
		Page
F.	Specifications, Standards, and Allowables	F 1
	Casting Specification	F 2
	Design Allowables	F 7
	Reference Radiographs	F10
	Dimensional Tolerances	FII
G.	Conclusions	G 1
н.	Recommendations	н 1
J.	Tables	J 1
к.	Appendix	к 1

TABLES

		Pagis
J 1	Multing Record	J 1
J 2	Mechanical Properties of Recycled Low Interstitial 6Al-4V	J19
13	Experimental Rammed Graphite Mold Mixtures	J21
J 4	Grain Size Distributions of Graphite Base Materials	J25
J 5	Properties of Rammed Graphite Mold Mixtures	J26
J 6	Shrinkage of Rammed Graphite Molds	J33
J 7	Experimental Shell Graphite Mold Mixtures	J34
1 8 L	Experimental Investment Mold Mixtures	J35
J 9	Grain Size Distribution of Recycled Mold Materials	J36
J10	Feeding Distances in Un-tappered Machined Graphite Molds	J37
וונ	Feeding Distances in Tapered Machined Graphite Molds	J 3 8
Jl2	Feeding Distance in Tapered Rammed Graphite Molds	J42
113	Feeding Distances in Heated Machined Graphite Molds	J47
J14	Feeding Distances in Heated Rammed Graphite Molds	J50
J15	Feeding Distances in Centrifuged Discs	J53
J16	Results of Ter.sion Fatigue Tests	J 54
J17	Mechanical Properties of As-Cast Ti-6AI-4V	J55
J18	Elevated Temperature Properties of AsCast Ti6A14V	J60
J19	Mechanical Properties of Heat Treated Cast Ti-6Al-4V	161
J20	Mechanical Properties of As-Cast Experimental Alloys	j64

x	TABLES	D2 1,86-8
		Paje
J21	Mechanical Properties of Heat Treated Experimental Alloys	J71
J22.	Heat Analyses	J80
J23	Results of Developmental Bracket Fatigue Tests	J9 0
J24	Results of Statistical Evaluation of Dimensions	J91

.

D2-2786-8 A

SECTION A

INTRODUCTION

This is the final report on Contract AF 33(600)-36450. This research and development contract was initiated approximately 1 March 1958 and had the following objectives:

- (a) Develop a complete commercially feasible process, on a non-proprietary basis, capable of producing closetolerance titanium-alloy castings of the type, size, and quality required for aircraft application.
- (b) As a practical demonstration of the validity of the developed process, produce and evaluate pilot production quantities of several different casting designs.
- (c) Establish procurement specifications, quality control procedures, inspection methods and standards, and design criteria necessary for extensive application of titanium designs.

This program consisted of four phases summarized as follows:

Phase I - Preliminary.

Establish the present state of the art; select components for development as titanium castings.

Phase II - Process Development.

Develop a practicable casting process; investigate melting and pouring procedures, mold materials, mold design, casting alloys, surface treatments, and casting design.

Phase III - Trial Production.

Produce and evaluate test parts; develop quality control methods, inspection standards, procurement specifications, design procedures, heat treatment procedures; establish design allowables by test. Phase IV - Pilot Production.

Produce pilot production lots of several casting designs in accordance with specifications, etc. developed in Phase III.

Oregon Metallurgical Corporation was selected as subcontractor for this program, and conducted the necessary foundry research and development work.

SECTION B

CASTING PROCESS DEVELOPMENT

MELTING PRACTICE DEVELOPMENT

Because of the extreme reactivity of titanium at and above its melting point, an entirely new melting process has been developed specifically for casting titanium and similar metals. The rapid contamination of titanium at elevated temperature by oxygen and nitrogen and the severe damage to ductility by small percentages of such contaminants requires that all high temperature processing of titanium be done in the absence of air. Also, since molten titanium reacts readily with almost all crucible materials, the problem of containing the heat until enough stock is melted to make a nour has required special attention. The only satisfactory furnace for production casting of titanium was developed previous to this program by the Albany, Oregon experimental station of the U.S. Bureau of Mines. The equipment used in this program is patterned after the Bureau of Mines furnace, with improvements in the mechanisms and controls. Briefly, the furnace consists of a cylindrical tank with a tower for containing and feeding the electrade, a water cooled copper crucible supported on trunnions inside the tank, provisions for centrifuge casting, and the necessary vacuum pumps and controls. A sketch of the vertical axis centrifuge furnace is presented as Figure B1.

Furnace Characteristics and Operation

Two furnaces were used during this program. One was a static casting furnace with provisions for horizontal axis centrifugal casting. The econd was a vertical axis centrifugal casting furnace designed and built by the subcontractor to meet requirements developed during this program. Both units operate with the electrode at negative polarity.

All experimental melting and casting was done under a dynamic vacuum. Melting was started by striking an arc between the electrode and a small quantity of sponge or solids placed in the copper crucible or against the skull from a previous melt. Melting power was then rapidly increased to the desired level where it maintained until the electrode was consumed and the molten pool adequately superheated. Upon accumulation of the proper amount of molten metal in the crucible, the power is cut, the electrode is

rapid retracted by an oneumatic cylinder, and the crucible tipped to make the pour. Pouring of the mold is completed in four to six seconds after the arc is extinguished. Table J1 lists the melting conditions recorded for each heat made in this program. The maximum poured weight during this program was 340 pounds.

Cooling of the molds and furnace is usually accomplished by backfilling the furnace chamber with inert gas, or occasionally by allowing slow cool in vacuum.

Electrode Preparation

Electrodes for melting were prepared from ingot, wrought products scrap, or casting recycle material such as gates, risers, and rejected castings. An electrode prepared from ingot requires only the welding of the stub (which is attached to the stinger) to the ingot. The preparation of an electrode from scrap as shown in Figure B2 requires additional fabrication of the electrode by welding.

The general procedure for preparation of an electrode from casting recycle material is as follows. The gates and risers are removed from the castings by power saw, abrasive cut-off, or by oxyacelylene torch. The material is then cleaned by shot blast. The scrap is segregated to permit control of chemical analysis by blending. The cleaned material is next assembled into an electrode by Heliarc welding in air atmosphere. Figure B2 is a photograph of an electrode of commercially pure titanium which was used to pour experimental castings. This electrode was made from sprues, gates, and risers from previous heats plus a slab of wrought scrap plate which was added to dilute oxygen to an acceptable level. The entire electrode, except the attachment stub, is melted in one pour.

The welds must be large, since they must carry the entire current load being used to melt the electrode. In some instances, inadequate welds have resulted in electrodes being prematurely dropped into the crucible. As the consumable electrode is melted, hot spots occasionally occur on the electrode, requiring that the power be reduced. If welding cracking is a problem in fabrication of alloy electrodes, commercially sure weld filler wire can be used to dilute the alloy content in the weld. The electrodes are welded as symetrically as possible to avoid notices which could are to the crucible.

Recycling of Foundry Scrap

It was decided that maximum recycle of gates, risers, and other foundry scrap would be utilized to gain experience on the effects of melting on chemical analysis and the effects of analysis on mechanical properties.

Three series of heats were poured to experimentally dedetermine the sources of melting contamination of the cast titanium alloy. The variables in each series were as follows:

Series 1 - Control of melting at the normal operating standards, with electrode preparation by welding in an inert-gas (helium) tank using carbon welding electrode.

Series 2 - Melt under varying furnace vacuum (simulating poor melting practice), with electrode preparation as in Series 1.

Series 3 - Controlled melting as in Series 1, with electrode preparation by cutting and welding (Heliarc) in air atmosphere.

The results of these trials are shown in the series of graphs comparing each of three series of casting conditions. Each of the three casting conditions are plotted on the same graph for comparing the interstitial rise in each controlled series.

Figure B3 illustrates the vacuum control held during the three casting series. The three curves plotted on each graph (Series 1, 2, and 3) are drawn to show the starting vacuum reading, the vacuum reading during the melting cycle, and the vacuum reading directly after pouring. The vacuum is measured in microns of pressure contained in the furnace chamber. It is evident from the "during" melting curve that outgassing occurs from the melting of the ingot and as continued recycling is conducted, the amount of outgassing increases. The "after" pouring reading follows very closely the "during" melting vacuum readings, demonstrating that little gas is liberated by pouring metal into the graphite mold.

The vacuum pressure in Series 2 deliberately varies over a large range as this series was conducted to determine the effect of varied melting conditions. The first recycle heat of the Series 2 tests was started at 50 microns and the remaining heats were varied to complete the recycle experiment. The conditions in the furnace were varied by backfilling to maintain the desired vacuum reading. The second recycle heat in Series 2 illustrates that although the furnace was backfilled to 200 microns, vacuum condition improved during the run due to the continuous pumping of the furnace atmosphere.

The casting trials in Series 3 were conducted to determine the effect of welding the electrodes in air. As the vacuum curve shows, control of atmosphere during the entire series closely parallels Series 1, illustrating that normal vacuum control was held. The "during" and "after" vacuum readings vary over a wide range relative to the initial micron readings, due to welding of the electrodes in air. Because of the method in which the electrode was made for the continuous recycle heats, little welding was necessary. To determine the effect of conventional welding requirements on interstitial contamination, additional welding was performed by welding beacs along the side of the ingot. It is evident from the graphs that outgassing occurred during the melting stage in larger proportion than in the other two series. It was concluded that the welding in air does increase gas evolution during melting.

The series of graphs in Figure B4 illustrate the increase in interstitials in the recycled 6Al-4V. The graphs show carbon, oxygen, hydrogen, nitrogen, and iron content. Each of the series of casting conditions plotted on the same graph illustrates by comparison, the increases in interstitials due to different melting conditions.

The carbon percentage graph demonstrates that in the original heat, carbon increased as the recycle heats continued. Carbon in recycle heat five is low, probably because that electrode was pickled prior to casting. In recycle heat six the carbon content again increases. It is evident that the increase in carbon is a function of the number of times the material is cast in the graphite mold. Melting conditions in Series 2 evidently did not have a separate effect upon carbon increase. The rate of carbon increase is similar to that of Series 1.

The increase in oxygen does not show a great deal of variation, there being a slight increase in all the heats as recycling continued. Poor atmosphere control and welding in air are both detrimental to oxygen control. Since oxygen must be maintained within close limits, the foundry has the option of tight process controls to minimize oxygen pickup during the process cycle or addition of higher purity raw stock to the heat to dilute the contamination to the proper level.

The hydrogen curve illustrates a rapid increase in hydrogen when electrode is fabricated in air by welding with Heliarc.

The increase in nitrogen occurs slowly as recycling continued. In heat five of Series 1, a reduction in nitrogen is noted on the graph. The reason is not known. Series 2 increases in nitrogen are gradual and uniform and increases in nitrogen, therefore, seem to be consistent with uncontrolled furnace conditions.

The increase in iron in recycling titanium does not seem to be separately influenced by furnace conditions. It is expected that the iron content would not increase appreciably as recycling continued. The source of iron contamination was shot blasting of the ingot material for cleaning and, as very little cleaning was necessary for recycling, the contamination level was kept quite low.

Mechanical property tests of each of the recycled heats are reported in Table J2 and are plotted on graphs in Figure B5. Yield strength, ultimate tensile strength, elongation, reduction of area, and Brinell hardness are included. Each plotted point is based on the average of three tensile specimens tested. Series I strength curves show a small increase in strength over the period of recycle heats. The second series strength curves show higher, but consistent strength in recycle heats except for heat four, where the specimens falled without yield.

The Series 3 conditions resulted in a gradual increase in strength as recycling continued.

The ultimate strength curves are generally similar to those shown for yield strengths. The average ultimate tensile strength of the fourth heat of Series 2 dropped to 81,000 psi, with no ductility.

B8 D2-2786-8

After recycle heat three, the chemical analyses and properties showed greatest variation between the three practices investigated. This indicates that recycling of selected foundry scrap is acceptable If the scrap is properly diluted with new metal.

FIGURE B2

TYPICAL ELECTRODE

FIGURE B3

FURNACE PRESSURES DURING EXPERIMENTAL RECYCLE TRIALS

Recycle Heut Humber

FIGURE B4

INTERSTITIAL ANALYSES OF RECYCLE HEATS

marginia (Amina) South of

D2-2786-8

FIGURE B4 (Continued)

INTERSTITIAL ANALYSES OF RECYCLE HEATS

FIGURE B5

PROPERTIES OF RECYCLED Ti-6AI-4V

Recycle Heat Number

FIGURE B5 (Continued)

PROPERTIES OF RECYCLED TI-6AI-4V

Recycle Heat Number

MOLD DEVELOPMENT

A major problem in the development of a practical process for casting of the reactive metals has been that of finding a suitable mold. The conventional mold materials used for casting of steels (such as sand, shell, or ceramic molds) are completely unsatisfactory for titanium, since titanium above or near its melting point will violently react with those materials. The only materials which have been found to satisfactorily withstand contact with molten titanium are metals or graphite. Of these, graphite has been the most satisfactory.

Machined Graphite Molds

At the time of initiation of this contract, usable titanium castings of simple geometry had been produced in machined graphite molds. This material was used for much of the early work in this program, such as the first trial casting of the developmental bracket and the first feeding studies. It was soon found to be unsatisfactory for the developmental bracket, because the high strength of the mold would not allow proper contraction of the casting during cooling, and consequently would cause hot tearing in the restricted web area and mold spailing, particularly at corners and restricted areas. Mold life can be extended by use of replaceable mold inserts.

In general, machined graphite molds are useful for simple shapes, where the mold does not restrict contraction of the metal during cooling. Reproduction of surface detail is good, and close dimensional tolerances can be maintained. Some loss of dimensional tolerance capability occurs if mold inserts are used.

Metal Molds

Metal molds are satisfactory for only the simplest of shapes. Any restriction of contraction during cooling of the casting will cause rupturing of the restricted areas. The cost of preparing a metal includes high.

B16 D2-2705-8

Rammed Grashite Molds

Shortly before initiation of this program, details were published on research work on rammed graphite mold mixtures carried out by A.L. Feild, Jr. at the E.I. du Pont de Nemours experimental station at Wilmington, Delaware. The mold mixture consisted of powder graphite as a base, corn starch for a green binder, pitch and carbonaceous cement for a high-temperature binder, and water with a wetting agent to provide molding plasticity. Further development of the mold was done by Andes, Norton, and Edelman at Frankford Arsenal. This work provided a starting point for development of a suitable rammed-graphite mold for production casting of titanium.

A total of 133 experimental mold mixtures were prepared and tested during this program. Parameters used in judging the mixtures were mold shrinkage; presence or lack of reaction with titanium; carbon contamination of the titanium; green strength, permeability, and hardness; and general handling and casting characteristics.

All batches were mixed in a Carver Muller, Model I-GF. The general mixing procedure was:

- (a) mull graphite (or other base) and starch dry for two minutes,
- (b) add pitch and mull for two minutes,
- (c) add water and cement and mull for four minutes.

Samples of each batch were hand screened through an eight-mesh riddle for testing. In most cases, molds were prepared from the remaining material for shrinkage determinations and casting trials. Compositions of the various mixes are in Table J3. Grain size distributions of the graphite base materials are i. Table J4.

Two-Inch diameter by two-inch length standard American Foundrymen Society briquette specimens and standard A.F.S. tensile specimens were prepared from the screened material. These specimens were hand rammed to a hardness of A.F.S. 80 when mix properties permitted.

After the properties of the green specimens had been determined, specimens were air dried for a minimum of 16 hours at 250°F and then fired. Firing was accomplished by packing the specimens in graphite powder in corrosion resistant steel boxes, and placing the box in an electric-resistance heated furnace at 1200°F. The temperature of the furnace was raised to 1600°F for three hours and the furnace then turned off and allowed to slowly cool. The specimens were removed after the furnace had cooled to 1200°F. After air cooling to room temperature, the specimens were tested using standard foundry sand-testing equipment. The results of tests on the trial mold mixtures are given in Table J5.

Next, rammed molds for casting 5/8-inch thickness by six-inch diameter plates were prepared from the experimental mix-tures. These molds were used to determine mold shrinkage during firing and to determine carbon pickup, resistance of the mold to reaction with the titanium, and surface quality of the cast part. Most of the molds were produced using a split core box technique where the pattern halves could be assembled to form the completed mold. Molds were bench rammed to a mold hardness of A.F.S. 80 using a pneumatic hand rammer. The patterns were drawn using a vibrator draw machine.

The molds were partially dried at room temperature and finish dried at 250°F, usually for 16 hours. They were then packed in graphite powder in corrosion resistant steel boxes and placed in an electric-resistance heated furnace at 1200°F. The furnace was then raised to 1600°F, held for three hours, and the power shut off. The molds were removed when the furnace had cooled to 1200°F. The firing cycle required approximately 24 hours. Fired molds were stored at 250°F until about two hours before pouring, when they were assembled. It is desirable to keep the molds hot until they are placed into the casting chamber, to avoid moisture pickup from the atmosphere. This is difficult since the external gating and the mold halves and cores must be manually assembled after the mold is fired. Later in the program, molds for production castings were heated to 1650°F instead of 1600°F, in an attempt to reduce gas porosity defects.

The results of hardness tests on the experimental rammed molds are in Table 15. The shrinkage measurements (made by measuring outside dimensions of molds before and after firing) are given in Table 16.

B18 D2-2786-8

Carbon contamination adjacent to the surface of Ti-6Al-4V castings produced in rammed-graphite and machined-graphite molds was determined by machining 0.003-inch successive cuts from the face of cast discs and analyzing the cuttings obtained. The edges of the discs had been previously machined so that contamination at the edge would not influence the analyses. Results of these tests are plotted in Figure B6. As shown by this graph, the carbon contamination is high adjacent to the surface, but decreases rapidly as depth increases, and at .025 to .030-inch has leveled off to the base carbon content of the casting. This depth of contamination was confirmed by hardness traverse technique.

Mixtures 7 through 15 were produced to evaluate binders. Observations of interest are that laundry starch provides fired strength, pitch provides fair green strength and best fired strength, carbonaceous cement contributes only to baked strength, and foundry corn flour provides good baked strength but is weak after firing. Starch-pitch and starch-cement combinations provide good green and fired properties.

Mixtures 19 through 29 evaluate the use of raw linseed oil as a substitute for carbonaceous cement. Three and four percent additions of linseed oil produced good molds without detriment to castings poured in these mixtures. However, the mixtures containing linseed oil were difficult to handle because of "stickiness". Costs of the two materials were found to be about equal.

Mixtures 34 through 38 were made with varying amounts of carbonaceous cement and with corn flour as a substitute for laundry starch. Although the tests of the low cement mixtures indicated desirable properties, the molds tended to be weak and broke casily at corners.

Mixtures 39 through 133 were made to Investigate substitute materials such as coke for graphite, to test a wetting agent, and to find mixtures that would decrease mold shrinkage.

The addition of "Duponal G" (du Pont), a wetting agent, to the rammed graphite mold mixture caused significant increase in fired tensile strength, but caused stickiness of the mixture making preparation of molds more difficult.

The use of conventional liquid foundry binders in the mixture (Mixtures 61 - 64) severely aggravated the gas porosity problem and caused poor surface quality in the casting. Soluble aminoaldehyde thermosetting resin (a high solid urea type of water soluble binder), and a phenol-formaldehyde water dispersed binder were used. In conventional foundry practice, these are used mainly as core binders. It is probable that the gas porosity and surface quality problems were the result of incomplete removal of volatiles during firing of the molds, and that modified firing practice including higher firing temperature could be developed for these binders.

Mixtures 71, 72, and 73 were made using "Slurry" (a petroleum residual available from Union Oil Company, Los Angeles) in place of water. As in other series, the percentages of pitch were varied. These mixtures exhibited low green strength making pattern withdrawal difficult, particularly with complex molds. Mixtures 74, 75, and 76 also included Slurry, but no starch or cement. These mixtures also exhibited low green strength. Additional mixtures were made without starch, cement, or Slurry; with varying amounts of pitch and water; and with additions of coke flour.

Some of the mixtures made contained coke as a substitute for granular graphite in an effort to reduce mold cost. However, coke was unsatisfactory because of severe reaction with the molten titanium, apparently because of high sulfur in the coke.

Mixtures 1 and 17 were considered the best of those tested. They handled well during ramming, provided good casting surfaces and had desirable strength levels. Mixture 17, with less moisture than mixture 1, had superior flowability and produced the better casting surface of the two but because of its lower green and fired strength, required more careful handling of the mold. Mixture 17 was selected as the most satisfactory mold material and was used for the pilot production phase.

Shell Graphite Molds and Cores

A partially successful program was conducted to develop a shell process for making graphite molds and cores. The resulting shell was used primarily for cores, and was satisfactory except when exposed to a large volume of metal or when a sharp corner of the core was exposed to metal on both sides, in which cases penetration of metal into the shell occurred.

The experimental shell graphite mixes used in this work are listed in Table J7. The mixture selected as best and used in production of Phase IV castings is mixture 4.

The mixtures which contained calcined coke as a substitute for granular graphite produced excellent surface finishes but sometimes caused reaction with the molten titanium, apparently because of sulfur in the coke.

The investment cycle found to be best was 8 seconds, with a one minute cure. Variation in investment time directly causes variation in thickness of the shell. Curing longer than one minute does no harm but was unnecessary. After a one minute cure, the shell was quite strong and was durable enough to be handled without undue breakage. Investing and curing are accomplished at 350° F. At temperatures above 350° F, the shell adhered tightly to the pattern and was difficult to remove. Various parting agents were tried but did not eliminate the stickiness problem at high curing temperatures.

Air pressure used to force the mixture into the corebox was found to be an important factor in producing good shells. To obtain consistently strong and dense shells, it was necessary to use an air pressure of 20 - 25 psig. A problem was experienced in some trials, because of the rapid set-up of the mixture. During the build-up of the shell, a bridging of the initial layer over parts of the corebox was observed, particularly over sections that had re-entrants such that the mixture entering did not impinge directly on all portions of the corebox. Venting along the parting line of the corebox aided in reducing this problem. When molds or cores containing bridged areas were fired and used, metal penetration occurred into the bridged partiens of the mold.

Sheil cores were experimentally used to core the cavities in the Sway Brace Case, the Torsion Fitting, and the Flap Track Link, and to form the pockets in the Developmental Bracket. These experiments demonstrated that the shell cores are not suitable adjacent to heavy sections or to form sharp fillets, because of penetration of metal into the core. The heavier volume of metal around the shell apparently does not permit the initial chilled skin to remain in place next to the core wall. Consequently, molten metal remains in contact with the shell and penetrates into it.

Coreboxes were machined from aluminum or block graphite. The shells prepared in graphite coreboxes were equal in quality to those made in the conventional aluminum coreboxes. Graphite coreboxes were preferred for experimental work because of the ease of making dimensional changes. The graphite and aluminum boxes were initially prepared for investing by application of a silicone parting compound (grease) and then spraying with a silicon-water emulsion to facilitate shell removal. The silicon-water emulsion was re-applied before each investment cycle.

The shell graphite process was further studied to determine if complete molds could be produced in multiple stacks. A corebox was prepared to make multiple molds for casting discs. The pattern equipment consisted of two 1/2" x 9" x 10" aluminum plates separated by a 3/4" x 1" frame work around three sides to make the box. The cavity for the casting was a 5/8" x 6" diameter disc, half of the disc on the interior of each of the box halves. A central 1" diameter core was also located to provide the sprue in each of the molds. The graphite material was invested from the bottom of the box in the shell core machine. The completed mold was then fired at 1650°F in the standard manner. The shell molds, when stacked together, formed a complete 5/8" x 6" diameter disc with one-half of the disc in the cope section of each mold and one-half of the disc in the drag section; the parting line of the casting being between the two surfaces of the molds. The sprue was centrally located to permit a single gate at the bottom to feed the entire stack of castings. Twelve 5/8" x 6" diameter discs were to be cast in a single stack. Two attempts were made to pour the stack of molds. The first attem: t failed because of severe mold reaction between titanium and coke molds. The second pour was partially successful but Insufficient metal was poured to fill the entire set of plates and only ten of the twelve B22 D2-2786-8

discs filled. The second series of molds was made of granular graphite material. There was no penetration into the graphite material and the castings were relatively clean with no surface burning.

Conclusions reached as a result of the shell mold studies are as follows:

- (a) The shell molding process offers excellent potential for production use.
- (b) At the present stage of development, shell graphite molds or cores are not suitable for shapes with relatively large volume concentration or with sharp fillets, because penetration of metal into the shell occurs in these areas.
- (c) The feeding distance in shell graphite molds appears to be approximately 1.5 times that typical of rammed graphite molds.

Investment Molds

The Initial experiments with Investment casting techniques were conducted with a proprietary Investment mold developed by Misco Precision Company, Muskegon, Michigan.

The results of the first investment casting trial are shown in Figure B7. The castings had good reproduction of detail, but rough surface and some surface burn-in. The major defect was the severe gas porosity in the casting. Figure B8 is a print of the x-ray of the tensile test specimens and clearly shows the extreme porosity.

Figure B9 is a photograph of a casting made in another type of investment mold which was made with a graphite primary coat. Gas porosity was extensive throughout the castings, but surface finish was excellent. The mold was centrifugally cast in the vertical axis centrifugal furnace in an attempt to eliminate the gas porosity problem. The ingates into each of the molds broke and complete mold filling did not occur. The threaded portions of the test hars showed evidence of reaction between the mold material and the metal.

Castings made in a third type of Misco Proprietary investment mold showed severe surface reaction and gas porosity. The primary surface of this mold was composed of graphite and zirconium oxide. The type of binder used is not known. The photograph in Figure B10 illustrates the severity of reaction.

A general observation in connection with experimental casting of these molds is: to obtain a gas free casting, a binder that does not retain oxide materials must be used to prevent reaction and subsequent gas in the castings.

Additional investment casting trials were conducted using molds developed by Oregon Metallurgical Corporation. The program was aimed at producing an experimental mix that would not react with the metal and that would produce gas-free castings. The mixtures tried are listed in Table J8. Casting trials were conducted on only those mixtures that showed promise as an investment material.

Castings were poured into simple bar molds made from mixtures 11, 14, 15, and 16.

The molds made from mixtures 11 and 15 exhibited violent reaction with the molten titanium, only about half the metal remaining in the mold. It is believed that moisture in the second coat caused the reaction. The mold made from mixture 14 also reacted violently, with no metal remaining in the mold. This is believed due to the oxides and silicates in the second coat.

Mold mixture 16 was used to make four trial castings with no evidence of reaction. A problem of mold-face porosity was caused by bubbles in the mixture and resulted in rough surface on the casting. It is expected that further development of the process (such as mixing of the ingredients in a vacuum chamber and mechanical vibration during investment) would solve this problem.

In general, the development of a satisfactory investment mold for casting of titanium appears feasible if based on the use of graphite.

D2-2786-8

Recycling of Mold Materials

The object of this study was to determine if mold materials could satisfactorily be reused to make new molds and, if so, to establish suitable preparation methods to obtain proper grain size and distribution in the recycle materials.

The process for reclaiming the rammed graphite molds involves crushing, pulverizing, and screening. The crushing operation was to reduce the size of mold fragments broken from the castings to approximately 1/2-inch size for feeding to the pulverizer (a hammer mill) which then reduced the material to the proper grain size for making new molds. In some instances when crushing machined graphite, a large proporation of fines were produced and screen classification was necessary to separate the useful portion from the fines.

To establish a procedure for obtaining material of proper grain size from the pulverizer, several samples were processed using different rotor speeds and screens, these being the variables most effective in adjusting grain size. Table 19 is a tabulation of grain size distributions of the test samples. The rotor speed of the pulverizer was varied between 14000 and 6070 RPM. The higher rotor speeds produce larger proporations of fines. The rotor speed of 6070 RPM combined with the 1/8-inch mesh herringbone screen produced the lowest percentage of fines.

The present stage of reclamation of the pulverized graphite mold material involves a screen classification process to obtain the desirable portion of the pulverized material. The material as recovered from the pulverizer can be used in two different ways. The first is to use that material which will pass through the No. 20 screen of a vibratory shaking unit. The distribution of the material is listed as Sweco No. 20 in Table 14. This material was somewhat coarse, but produced acceptable molds where fine surface finish was not essential. The most satisfactory combination of classified material has been found to be 60 percent Sweco No. 20 and 40 percent Sweco No. 40 mixed together and used with the standard mix ingredients. This combination contains a higher portion of fines that is compality desired in general foundry molding fractice, but has been found to be satisfactory for the rammed graphite mold practice.

FIGURE B6

CARBON CONTAMINATION DEPTH IN TI-6AI-4V CASTINGS

D2-2786-8

FIGURE B 7 INVESTMENT CASTING

FIGURE B8 X-RAY OF INVESTMENT CASTING

B28 D2-2786-8

FIGURE B9 INVESTMENT CAST TI-6Al-4V

FIGURE B10 INVESTMENT CAST TI-6A1-4V

B30 D2-2786-8

FEEDING STUDIES

Feeding Distance in Flat Sections Cast In Machined-Graphite Molds

An early study in this program consisted of the casting of Ti-6Al-4V titanium alloy into a series of round, flat discs of various diameters, thicknesses, and riser sizes, using machined graphite molds. The purpose of the study was to become familiar with the feeding characteristics of titanium alloy castings.

The specific objectives of the study were:

- (a) to determine minimum riser diameters required to prevent under-riser shrinkage porosity,
- (b) to determine the "edge effect", or soundness contributed by faster cooling adjacent to the disc edge,
- (c) to determine feeding distance changes caused by risering variations,
- (d) to measure the total effective feeding distance contributed by the riser and by edge effect.

Plate diameters of five and six Inches were cast, with thicknesses from 3/8 to one inch in 1/8-inch increments. Riser diameters were equal to their heights and were varied from one to 2 1/2 Inches. In all cases, the risers were concentric to the plates. A typical casting heat is shown in Figure B11. One inch gates were used. All molds for this series were machined from graphite block. A typical mold setup is shown in Figure B12.

After casting, the plates were x-rayed and examined for under-riser shrinkage, shrinkage beyond the riser, and soundness adjacent to the edge and riser. The total soundness is expressed as "T" and is equal to D/t where D is the sum of the sound distance measured radially from the edge of the riser and from the edge of the plate, and t is the thickness of the plate.

The results of the study are tabulated in Table 110.

After the first three trial pours, It was established that bottom gating, as shown in Figure B11, produced the best casting detail. This general setup was used for making all subsequent static pours of this type.

Examples of extreme conditions of shrinkage observed are Illustrated in Figures B12, B13, and B14. These Illustrations are photographic prints made directly from x-ray films.

The following was concluded from this study:

- (a) Feeding distance in flat sections (no taper) in unheated machined-graphite molds does not exceed 17 for consistently sound castings.
- (b) Riser diameter at its junction with the casting must be not less than two times the casting thickness, to prevent under-riser shrinkage in castings made in unheated machined-graphite molds.
- (c) Bottom gating provides casting detail superior to top gating.

Feeding Distance In Tapered Sections Cast in Machined and In Rammed Graphite Molds

A second feeding distance study was conducted to evaluate the effect of taper on soundness of cast titanium discs. In this study, both rammed-graphite and machined-graphite molds were used. All discs were tapered such that thickness increased from edge to center, and were cast in edge thicknesses of 1/8 to one-Inch In 1/8-Inch Increments. The following types of static molds were used:

- (a) unheated machined-graphite,
- (b) unheated rammed-graphita,
- (c) heated machined-graphite,
- (d) heated rammed-graphite.

The results obtained on study of x-rays of the castings made in unheated machined-graphite and rammed-graphite molds are presented in Tables J11 and J12. The parameter "T" (defined on page B30 is plotted against taper for various disc edge thicknesses in Figures B15 through B17. Figure B18 relates the taper required for sound castings to the edge thickness of the discs, for castings made in machined or in rammed-graphite molds.

The results obtained in similar trials using heated machined-graphite molds are in Table J13. These tests were made using discs of 1/8 to one Inch edge thicknesses with zero, one, three, five, and seven-degree tapers. The mold temperature at the time of pouring varied from 210 to 355 degrees fahrenheit. The parameter "T" for the heated molds is plotted against taper for various edge thicknesses in Figures B19 through B21, along with the "T" values obtained from the similar tests of unheated machined-graphite molds.

A similar series of trials was conducted using heated rammed graphite molds. The mold temperature at the time of pouring varied from 200 to 400 degrees fahrenheit. The results obtained are tabulated in Table J14 and plotted in Figure B22 to B24.

The following observations were made from this study:

- (a) Increased taper in unheated machined-graphite molds Improves soundness primarily by increasing the edge effect. Increased taper in unheated rammed-graphite molds improves soundness primarily by increasing riser effect. Less taper is generally required in rammed-graphite molds than in machined-graphite molds, for equivalent soundness.
- (b) Shrinkage porosity in cost titanium appears as distinct voids rather than as aloudy low-density areas on the x-ray film. Microshrinkage has not been observed.
- (c) In cast tapered discs of 1/8-inch edge thickness, riser feeding distances were greater in machinedgraphite mobile, however, for all other thicknesses hand the promod greatest mode provided the greater and terminations.

- (d) Increasing the amount of taper progressively improves feeding distances in rammed molds. In the case of muchined-graphite molds the feeding distance decreases until taper exceeds three or four degrees, and then increases.
- (e) The effectiveness of taper decreases as the section thickness is increased.
- (f) The tapers required to cast sound sections have been established in relation to thickness, and are shown in Figure B18 in graphical form for machined and rammed-graphite molds.
- (g) The use of heated molds did not appreciably improve the feeding of cast Ti-6Al-4V alloy but did decrease the gas porosity problem, apparently because of reduced moisture pickup during mold assembly.

Feeding Distance in Shell Graphite Molds

The experimental castings of plates in shell graphite molds exhibit greater areas of soundness than castings in the other mold materials. The initial casting of the plates was primarily for determination of carbon contamination from the shell graphite material. Due to excessive distortion of the shells during casting, the plates were not used for carbon contamination studies. X-rays of these plates revealed only small dispersed shrinkage areas, as contrasted to general heavily dispersed shrinkage in previous castings produced in rammed graphite and machined graphite in the 5/8" plate thicknesses without taper. There was evidence of gassing occurring in two of the four plates cast in the heat. The second experimental casting of shell graphite plates was made with a supporting arrangement to prevent sagging about the periphery of the plate. The casting experiment was not successful due to inadequate support on the surface of the cope, resulting in mold rupture. The chilling effect was sufficient to prevent loss of metal through the cracks in the molds even though the plates were much thicker than desired, because of the mold deformation. It appears that slight tapers in plates cast in shell graphite nolds would greatly extend feeding distance, because the absence of an effective amount of chilling permits the metal to solidify in a down and more directional manner toward the casting risers.

Feeding Distance In Centrifuge-Casting

A comparative study of feeding distance in centrifuge-cast discs was conducted using 1/2-inch thickness by six inch diameter disc molds mounted on a central sprue. Four plates were cast in machined-graphite molds in each of six heats. The casting setup is shown in Figure B25.

The object of the study was to determine the effect of ingate size and centrifuge speed on the feeding distance. The data obtained are in Table 115.

The feeding characteristics in these discs were not significantly different from the similar discs which were statically cast, except the edge effect on soundness was somewhat less in the centrifuge-cast plates. There was not an appreciable difference in soundness when rotation speed was increased.

It was noted that the portion of disc which was forward of the gate during centrifuging had improved soundness over the trailing section. A second group of centrifuge-cast discs were made with the gates at the trailing edge. This modification did not improve casting soundness.

Several casting trials were made to investigate gating techniques in centrifuge casting. Molds were prepared to produce 1/4 by three by five Inch plates, and were arranged so that the plate mold could be filled either from the leading or trailing edge, by reversing the direction of rotation of the centrifugal casting apparatus. A photograph of a typical casting produced during these trials is shown as Figure B26. When the centrifuge was rotated counterclockwise the plate molds were effectively "top filled", and were "bottom filled" when rotated clockwise. A comparison of surface qualities of castings produced at various rotation speeds (200, 700, and 1600 rpm) and directions demonstrated considerably superior surface quality in the "bottom filled" plates at all centrifuge speeds. Comparison of x-ray quality showed little difference in clockwise or counterclockwise rotation at low rotation speed (200 rpm) but considerable advantage in "bottom filling" at the higher relation speeds.

The centrifuge casting of up to twelve 1/2-inch thickness by five inch diameter discs in a single pour was investigated to determine the practicability of the proposed multiple centrifuge casting technique. A machined-graphite mold setup was prepared as shown in Figure B27. Figure B28 is a photograph of a typical trial heat, showing the arrangement of molds, gating, and central sprue. The gates were one inch in diameter from the sprue to the two inch diameter In gates feeding the casting.

Examination of the X-rays of these plates revealed that the gating size was not sufficient to provide soundness in the discs. The locations and sizes of the shrinkage voids in the twelve discs were very consistent. Additional trials were made using three-cavity mold setups such as shown in Figure B29. Larger and smaller diameter gate and ingate diameters were tried with some improvement in soundness but complete absence of shrinkage porosity was not obtained.

There was no evidence of turbulent metal flow on the casting surface, except for a very slight surface ripple near the ingate. As the radius at this junction was increased, the surface ripple appearance decreased. The entire set of castings had consistently good surface finish.

B36 D2-2786-S

FIGURE B11 TYPICAL FEEDING STUDY ARRANGEMENT

B38 D2-2786-8

FIGURE B12a

GENERAL DISPERSED SHRINKAGE - FEEDING DISTANCE EXCEEDED GREATLY

FIGURE B12

TYPICAL PLATE MOLD SETUP

FIGURE B13

SHRINKAGE IN SLIGHTLY EXCEEDED FEEDING DISTANCE

B40 D2-2786-8

FIGURE B14
FEEDING REQUIREMENT SATISFIED

FIGURE B15
FEEDING DISTANCE IN 6" DIAMETER DISCS

TAPER, DEGREES

O RAMMED GRAPHITE MOLDS

III MACHINED GRAPHITE MOLDS

FIGURE B16 FEEDING DISTANCE IN 6" DIAMETER DISCS

O MACHINED GRAPHITE MOLDS

FIGURE B17

FEEDING DISTANCE IN 6" DIAMETER DISCS

TAPER, DEGREES

O RAMMED GRAPHITE MOLDS

II MACHINED GRAPHITE MOLDS

D2-2786-8

FIGURE B18

TAPERS REQUIRED TO CAST SOUND 6" DIAMETER DISCS

FIGURE B19
FEEDING DISTANCE IN 6" DIAMETER DISCS

- O UNHEATED MACHINED GRAPHITE MOLDS
- HEATED MACHINED GRAPHITE MOLD

FIGURE B20
FEEDING DISTANCE IN 6" DIAMETER DISCS

FIGURE B21
FEEDING DISTANCE IN 6" DIAMETER DISCS

----- UNHEATED MACHINED GRAPHITE MOLDS
----- HEATED MACHINED GRAPHITE MOLDS

FIGURE B22
FEEDING DISTANCE IN 6" DIAMETER DISCS

FIGURE B 23
FEEDING DISTANCE IN 6* DIAMETER DISCS

B50 D2-2786-8

FIGURE B24
FEEDING DISTANCE IN 6" DIAMETER DISCS

FIGURE B 25

TYPICAL SETUP FOR CENTRIFUGED PLATE CASTING TRIALS

B52 D2-2786-8

FIGURE B26

CENTRIFUGALLY CAST PLATES

FIGURE B27

TYPICAL MOLD SETUP FOR CENTRIFUGALLY CASTING DISCS

FIGURE B28

CENTRIFUGALLY CAST DISCS

FIGURE B29

CENTRIFUGALLY CAST DISCS

B56 D2-2786-8

SURFACE TREATMENT OF TITANIUM CASTINGS

Removal of Gates and Risers

Gates and risers were removed from the castings by oxyacetylene torch cutting, power hack-sawing, and abrasive cut-off wheel.
Of these the use of the abrasive cut-off wheel was found to be the most
satisfactory. The oxy-acetylene torch cut-off increases oxygen contamination of the foundry scrap and requires excessive hand grinding to
clean up the casting. Although power sawing produces a satisfactory
cut, the abrasive cut-off wheel can trim closer to the casting and is
much faster than sawing. The cost of the abrasive discs was compensated
by lower labor cost compared to power sawing.

Grinding and belt sanding of cast titanium was used for primary cleaning. Rough grinding to remove material at gate, risers, and flash points was the most effective method of metal removal. Aluminum axide wheels were used and are operated at approximately 3,030 surface feet per minute. All castings were hand held.

The grinding belt was used for finishing the cast titanium to remove rough grinding marks and for slight blending and flash removal. Material removal was fast and efficient, with metal removal efficiency increased by using a white-tallow base belt lubricant. Belt operating speed was 1100 surface feet per minute with average belt life of 8 hours. The belts were made of silicon carbide abrasive bonded to heavy cloth. The most efficient sanding was accomplished using a ribbed hard rubber wheel at the point of pressure contact. The ribbed-rubber wheel gives maximum life to the sanding belt coupled with efficient metal removal.

Using present methods of grinding, there has not been any evidence of grinding damage of cast surfaces. An attempt was made to damage a cast titanium specimen by poor grinding techniques. The experiment consisted of hand finishing the specimen on a grinding belt using abnormally high hand pressures. Microstructural examination of the surface did not reveal any discontinuities in the ground surface. The experiment resulted in destruction of the grinding belt.

Cleaning of Castings

The use of a shot type abrasive was not suitable for cleaning castings. Shot blasting does not adequately remove surface oxides or fused graphite. The shot provided a surface deformation action whereas titanium castings require an abrasive that will produce a cutting action to remove the surface contaminants.

Grit blasting of castings with an angular abrasive material was a satisfactory method of cleaning. The angular grit cleaning material produced a cutting action and readily removed surface oxides and graphite from titanium alloy castings. The most satisfactory cleaning material of those used has been a chilled iron blasting grit. The material continually breaks up to produce new cutting edges and as used, a finer surface finish was obtained. Adding a small quantity of new material at frequent intervals maintains the cleaning action and surface finish at acceptable standards. A detrimental effect of using the sharp cast iron material is the coating of the cleaned part with finely divided iron particles, which later rust with detriment to appearance. A second although not serious effect of the use of iron shot is possible slow build-up of the iron level in chemical analysis of the cast titanium due to use of shot blasted scrap. This effect is not serious as additions of new material dilute the Iron to acceptable levels. If necessary, surface contamination by iron dust can be removed by light pickling of the scrap.

Other types of grit used were "malleabrasive" grits of various grain sizes. The malleabrasive grit is more ductile than the chilled Iron grit and wears by deformation rather than by breakdown. The wearing action causes the sharp angular structure to become round and Ineffective In removal of surface oxides and fused material. The material gradually performs as shot in reduced cleaning effectiveness.

Sand blasting of cast titanium has been effective in producing a fine surface finish with small metal removal rate. Three types of sands that have been used are Garnet sand, Banding sand, and Flint sand obtained from Idaho Garnet Company, Spokane, Washington, and Ottawa Silica Company, Ottawa, Illinois.

The Garnet sand is the tougher abrasive and holds up well during use. Metal removal is slow, therefore, primary cleaning of surfaces with this material is not recommended. The material used was fairly coarse and did not give a fine appearing surface finish.

The Flint sand and Banding sand provided a relatively fine surface finish. These were used as a secondary cleaning medium to remove any iron contamination caused by the initial cleaning with the chilled iron grit. The Flint and Banding sands have rapid breakdown characteristics and, after one hour's use the major portion of the abrasive is reduced to fines.

Abrasive tumbling has not been found an acceptable method of cleaning cast titanium. The abrasive material evaluated was Tumblex "a" No. 3, an Alundum material. The cast titanium specimens were tumbled in the abrasive media for 24 hours to determine the effectiveness in surface cleaning. At the end of 10 hours, no removal of the oxide discoloration layer on the cast surface was evident. Surface roughness was reduced at 16 hours with an acceptable product at 24 hours. The flash and burrs on the specimen were not removed during the tumbling cycle but instead had a polished appearance. It should be noted that this was a limited study and more favorable results might be obtained through more trials using other equipment and abrasives.

Chemical Removal of Surface Material

A satisfactory acid solution and processing techniques were developed for chemical removal of surface material from the castings. Fatigue tension tests were used to determine the necessity of this step and to establish the amount of material which should be removed.

The chemical removal solution developed is as follows:

Nitric Acid	15 to 25 oz./gallon
Hydrochloric Acid	5 to 9 oz./gallon
Ratio HNO3 HCL	2 to 3
Free Hydrofluoric Acid	3 to 8 oz, Gallan
Acetic Acid or	3 in 4 nz. gallon
Oxalic Acid (option)	. 10 4 az, gallar
Disodiera Stead hat	Branch Branch
Wetting the others	🧢 . Bujust surface legst in to
"Chow it a " , a star was	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Reference Company 2	

This solution may be maintained until 20 ounces of titanium per gallon of solution has been dissolved. It can be operated at 90°F to 130°F to adjust metal removal rate, which varies from .0003 to .0015 inches per minute over this temperature range. To maintain a reasonably constant specific removal rate, the temperature should not vary more than five degrees from nominal during the removal operation.

Before being chemically cleaned or pickled, the castings must be abrasive blasted to remove any mold particles or oxidation. During chemical removal several dimensions on the parts should be frequently spot checked for thickness control. After pickling, the castings must be water rinsed.

A series of tension-tension fatigue tests were conducted to establish the proper amount of surface removal depth. Specimens were 1/2-inch gage diameter and were tested in the following conditions:

- (a) As-cast, with normal abrasive cleaning,
- (b) As above plus chemical removal of .005-inches per surface.
- (c) Same as (a) plus chemical removal of .010-inches per surface,
- (d) Same as (a) plus chemical removal of .015-inches per surface.

The specimens were tested in a conventional Sonntag SF - 10U universal fatigue testing machine at 1800 cycles per minute and a stress ratio of R=.06. The specimens were all from the same heat, were x-ray inspected, and the acceptable specimens selected to randomize quality.

The results of the fatigue tests are tabulated in Table J16 and illustrated by S - N curves In Figure B3Q. In general, removing only .005 Inches per surface damaged fatique life, removing .010 inches per surface restored the fatigue life to that of the as-cast condition, and removal of .015 Inches per surface provided significant in rovement over the ascast condition.

It is recommended that, In titanium alloy casting applications requiring best fatigue properties, .015-inches per surface be chemically removed using the solution and process described.

FATIGUE PROPERTIES OF AS-CAST AND PICKLED TI-6AI-4V CAST SPECIMENS

D2-2786-8 C1

SECTION C

ALLOY DEVELOPMENT

Development of Ti-6Al-4V Alloy

Early in this program, it was necessary to choose an alloy for use in casting trials, mold development trials, and other work which could not be delayed until alloy development studies were completed. Because of the general acceptance of the 6Al-4V titanium alloy for wrought products, that alloy was chosen for these studies with the intention of substituting a more suitable casting alloy when one was found. As discussed in the portion of this report which discusses general alloy development, a casting alloy significantly better than Ti-6Al-4V was not found.

A series of approximately 440 heats of Ti-6Al-4V was studied to establish effect of analysis on mechanical properties, practical analysis limits, practical guaranteed minimum mechanical properties, and correlations of processing variables with resulting interstitial levels.

First, frequency distribution bar charts (histograms) were prepared to show the distributions of oxygen, nitrogen, hydrogen, carbon, Iron, aluminum, and vanadium which were characteristic of the equipment and practice developed in this program. The histograms are presented as Figures C1 through C7. Much of the early work in the program was done without concentrated effort to maintain close control of chemical analysis, since other variables received the main focus of attention. As a result, a fairly wide spread of analyses was obtained which proved of benefit in studying effects of analysis on properties.

As shown in Figure C1, the oxygen content varied from .08 to .37 per cent and averaged approximately .21 per cent. This high oxygen range is the result of recycling of foundry scrap, since from .02 to .05 per cent oxygen is picked up during each melt and recycling of material from previous heats compounds the pick up. Because of the economic necessity to use foundry and other titanium alloy scrap in the casting process, high interstitial oxygen contamination has been a problem. To maintain oxygen at acceptable levels, it is necessary to occasionally discard a portion of the normal foundry scrap (gates, risers, etc.) and dilute the oxygen content by adding low-oxygen sponge or electrode stock to the heat. Therefore, the amount of oxygen that can be tolerated as a maximum in situnium alloy castings has a significant bearing on the cost of the tiral product.

For study of effects of each specific element on mechanical properties, the analysis ranges of the other alloying and interstitial elements were restricted to closer-than-normal tolerances, to minimize obscuring the effects of the element in question by effects of scatter of the other elements. In the case of oxygen, only those heats were used which were within the following analysis limits:

Nitrogen	.021032 per cent .10 per cent maximum			
Carbon				
Hydrogen	.010 per cent maximum			
Aluminum	5.8 - 6.2 per cont			
Vanadium	3.8 - 4.2 per cent			

This left 135 heats within these analysis limits having mechanical properties available, with oxygen ranging from .07 to .37 per cent.

Oxygen was then plotted against ultimate tensile strength (Figure C8) and against reduction of area (Figure C9) as scatter diagrams. As shown in the figures, increased oxygen increases strength with fair correlation and decreases ductility with considerable scatter in individual values. As also may be noted in the scatter diagram for oxygen versus reduction of area, average reduction of area decreases as oxygen is increased, but the minimum reduction of area does not appear to decrease in the range of oxygen covered (i.e. up to about .25 per cent oxygen). Next, to establish the allowable production maximum for oxygen, all heats which fell in the normal analysis range (Al 5.5 - 6.5, V 3.5 - 4.5, N .07 max., C .10 max., H .015 max., Fe .30 max.) except for oxygen were separated into groups according to oxygen content, as follows:

Group A	less than .16 per cent oxygen
Group B	.1621 per cent oxygen
Group C	.2126 per cent oxygen
Group D	.2631 per cent oxygen

Histograms for ultimate strength, elongation, and reduction of area were then plotted for these groups and are presented as Figures C10, C11, C12 and C13. Averages and standard deviations (σ) were computed for each curve using the conventional statistical analysis method for the "normal" frequency curve. (It should be noted that the histograms for mechanical properties are not "normal" distributions but are skewed slightly toward the high-value ends of the curves, resulting In conservative minimum properties since the standard deviation is slightly enlarged by the high values which are not undesirable except for this influence). Two standard

deviations were subtracted from the average values for each curve to establish "minimums" for this study. Dusign allowable minimums are discussed later in this report. This analysis method is explained in the appendix. As is shown by the histograms and the scatter diagrams, the average and minimum values for ultimate strength are increased as oxygen increases, but for both elongation and reduction of area the averages decrease but the minimum values either remain fairly constant or actually increase due to lesser amounts of scatter in all properties as oxygen is increased. As a result it is advantageous to allow .25 per cent as a maximum for oxygen in titanium castings compared to the .20 per cent maximum usually allowed in wrought products. The minimum ultimate strength is increased without loss in ductility. Consequently, .25 per cent has been established as a maximum for oxygen in the specification for Ti-6AI-4V castings.

The scatter diagrams for nitrogen show that it strengthens Ti-6Al-4V considerably without detriment to ductility, and that the correlation between analysis and properties is better for nitrogen than for oxygen. It may be desirable to establish a minimum as well as the present maximum analysis value for nitrogen to take advantage of its strengthening effect. This was not done since nitrogen independently is difficult to control but as is shown in Figure C16, tends to be high when oxygen is high. Since recycling of foundry scrap is desirable, oxygen content will normally be near the high limiting value, and nitrogen will be also maintained at a relatively high value. As a result, the minimum design values established for Ti-6Al-4V during this program may possibly be increased as more production experience is gained with heats approaching the higher analysis limits for oxygen and nitrogen.

The scatter diagrams and analysis comparisons for aluminum and variadium show negligible effect of analysis on strength or ductility for the composition ranges typical of the process. For these histograms, ranges for the other elements were selected to the following limits:

tor study of aluminum,

Vanadium	1.8 - 4.2 per cent
Oxygen	13 + .25 per cent
Carbos	0 - 10 per cent
Pyth jet	in a Marie 10

for study of vanadium,

Aluminum	5.8 - 6.2 per cent
Oxygen	.1326 per cent
Carbon	010 per cent
Hydrogen	001 per cent

The study of carbon showed that Increasing carbon provides slight strengthening effect with no significant effect on ductility over the normal analysis range.

Considering past experience with wrought alloys, the normal analysis distributions characteristic of this process, the economics of using foundry and other scrap in the casting process, and the influence of analysis on mechanical properties, the following analysis limits were established as controls for production castings of the Ti-6Al-4V alloy:

Aluminum	5.5 - 6.5 per cent
Vanadium	3.5 - 4.5 per cent
Oxygen	.25 per cent maximum
Nitrogen	.07 per cent maximum
Carbon	.10 per cent maximum
Iron	.30 per cent maximum
Hydrogen	.015 per cent maximum.

A brief study of the effect of grain size of cast Ti-6Al-4V as affected by cooling rate during solidification consisted of pouring a heat of Ti-6Al-4V into four tensile coupon molds, made of rammed graphite, shell graphite, machined graphite, and copper. A macrophotograph of the sectioned coupons is shown as Figure CI7. The properties of tensile tests of these coupons were as follows:

Mold Material	U.T.S. psi	Y.T.S. (.2%) psi	Elong.,	R.A.,	Notch * Tensile Strength
Machined GraphIte	135,000	116,000	7.6	13.0	205,000
Rammed Graphite	135,000	115,000	7.6	13.0	194,000
Shell Graphite	137,600	120,000	5.5	10.1	198,000
Copper	137,500	118,000	7.1	8.3	205,000

^{*} Kt = 3,37 Hoot 14), 27,3 = 1251

It was concluded that the various molds had insignificant effect on mechanical properties.

The as-cast properties of the 1 sts of Ti-6Al-4V are tabulated in Table 117.

Elevated temperature properties of as-cast Ti-6Al-4V were determined and presented in Table J18 and Figure C18.

Several attempts were made to improve the strength and ductility of the Ti-6Al-4V alloy by heat treatments. The first trials were attempts to modify the cast structure by cycling through the beta-alpha transformation temperature. Next, attempts were made to homogenize the structure by longer solution times than are used for forgings. Neither of these treatments produced improvement over conventional heat treatments. In general, greater strength with concomitant lower ductility was obtained at higher solution temperatures and lower aging temperatures. As solution temperatures were progressively reduced to 1550° F and aging temperatures were increased to 1100° F in attempting to obtain better ductility, ultimate strength increase over the as-cast condition was in the order of 15,000 psi with an accompanying loss of ductility to about one half the as-cast ductility values. Furnace cooling from 1500° F to 1000° F followed by air cooling resulted in reduced ductility with no increase in strength, as compared to as-cast properties.

Further attempts to improve the ductility of cast Ti-6Al-4V consisted of annealing for two to eight hours at 1000°F to 1200°F. Although the results were erratic, the annealing at 1150°F was generally slightly beneficial to ductility without affecting strength. At the other temperatures tried, no advantage in annealing was found. If annealing of Ti-6Al-4V castings is desired as a stress relief or for other reasons, the 1150°F treatment is recommended. The carbon, oxygen, nitrogen, iron, and chromium analyses of the heats used for the annealing treatment investigation were studied to determine if there was a correlation between the amounts these elements and the tendency for ductility to be increased or decreased by annealing. Such correlation was the found.

A heat treatment was developed which simultaneously increased strength and ductility by significant amounts, however the heat treatment was considered too difficult or impossible to accomplish on cast shapes.

The hear treatment consisted of holding at 1900°F for 30 minutes, quenching to 1250°F in less than six records, hold at 1250°F for 8 hours, air cool to room temperature, heat to 1500°F and hold for 2 hours, furnace cool at not more than 5F per minute to 1000, and air cool. This treatment provided approximately 3000 psi strength increase with an increase of reduction of area of 5 per cent. A further solution and aging treatment consisting of 1650°F for 20 minutes, water quench, 1000°F for 4 hours, and air cool resulted in a strength increase over as-cast of 19,000 psi with reduction of area loss of 3.5 per cent.

The results of all heat treatment trials on the Ti-6Al-4V alloy are in Table 119.

Development of Casting Alloys Other Than Ti-6Al-4V

The purpose of this portion of the work was to develop titanium casting alloys with properties superior to those of Ti-6Al-4V.

The as-cast mechanical properties of the experimental alloys are in Table J20.

Since the experimental alloys were produced from new sponge and high purity alloying elements, the carbon, oxygen, and nitrogen contents are generally lower than normally present in the Ti-6Al-4V heats which were produced from recycled foundry returns. Consequently, in some instances the experimental alloys are of lower strength and higher ductility than would be expected if they were used in normal production.

Several elements that can be alloyed with titanium to strengthen the alpha phase without producing the beta phase in the room-temperature microstructure are: aluminum, silicon, carbon, oxygen, nitrogen, tin, and zirconium. Since alpha alloys do not respond to heat-treatment, they have good weldability. Also because of the relatively small temperature difference between the liquidus and solidus of alloys of titanium and these elements, it would be expected that these alloys would have good fluidity in the sense of ability to run a thin section without cold shuts or misruns; and also have good feeding characteristics in the sense of enabling risers to feed relatively long distances without shrinkage porosity. Hence, it was hoped that an alpha alloy would be found useful as a low-strength weldable alloy of good castability.

Elements known to be soluble in beta titanium and which tend to make the beta phase stable and strengthen it are: vanadium, manganese, chromium, iron, columbium, molybdenum, nickel, and hydrogen.

Alloys containing manganese, chromium, iron, and nickel undergo a eutectoid transformation from the beta phase to alpha and form inter-metallic compounds as the alloys are cooled to room temperature. In general, as the rate of transformation increases, the transformation temperature and the alloy content of the eutectoid composition decreases for alloying elements toward the right side of the periodic table and having greater differences in atomic diameter as compared to titanium. With the elements vanadium, columbium, and molybdenum, which are not as far to the right of titanium in the periodic table and have atomic diameters more nearly equal to that of titanium, the eutectoid transformation has not been found to occur.

The 5Al, 2 1/2Sn alloy and the 8Al, 2Cb, 1Ta alloys were tried because they were well-known standard alpha alloys at the time.

The 6Al and 8Al alloys were tried because investigations by others had indicated that aluminum strengthens titanium in additions up to approximately 8 per cent.

The 2Cu and the 6Al-2Cu alloys were tried because the equilibrium diagram for Ti-Cu Indicates that TI₂Cu can be precipitated from alpha titanium. It was hoped that age hardening could be obtained in these alloys and that in the second alloy, additional solid solution hardening would be obtained. The 3Mo-1/2Be alloy was tried for this same reason.

The 6Al-1Si alloy was tried in a follow-on of work performed at Watertown Arsenal.

Where a high docinity and little allow is desired, TI-2Cu (alloy 41) appears to have properties a perior to an illoyed internim-

To stabilize the meta phase, atticlerally so that no alpha is present at room temperature, approximately 15 per and variations of per cent molybrane attachment of a series in Variable 12M alloys are most to determ a series of a series of a series of the first the other flag through the series of the series of

these relatively large additions, it was believed that vanadium would be preferred to molybdenum because of density considerations.

To gain additional hardening by means of the eutectoid reaction, a Ti-15Mo-6V-2Ni alloy was cast. In an attempt to speed up the eutectoid reaction rate, a Ti-5Mo-6V-2Ni-2Al alloy was cast and tested.

To investigate the possibility of decreasing the required aging time of the B 120 VCA type of alloy by changes in the aluminum content, the following alloys were cast:

```
Ti-13V-11Cr
Ti-13V-11Cr-1.5Al
Ti-13V-11Cr-2.5Al
Ti-13V-11Cr-4Al
```

Considering as-cast properties only, the following alloys had properties similar to Ti-6Al-4V:

```
5AI-2.5Sn (Alloy 6)
13V-11Cr-1.5AI (Alloy 11)
13V-11Cr-2.5AI (Alloy 12)
13V-11Cr-4AI (Alloy 13)
5.5AI-5.5V-.5Fe-2Sn-.25Cu (Alloy 16)
7AI-3Mo (Alloy 19)
6.5AI-3.5Mo-1V (Alloy 29)
6AI-1Si (Alloy 47)
6AI-6V-2Sn (Alloy 49)
2AI-9Zr-13Sn (Alloy 50)
```

The following alloys could be expected to be in the same properties class as TI-6Al-4V, if at the normal interstitial levels:

```
4Al-3Mo-1V (Alloy 27)
8Al-8Zr-.5Cb-.5Ta (Alloy 45)
6Al-1Si (Alloy 47)
6Al-4V-.5W (Alloy 55)
6Al-4V-.5Ta (Alloy 56)
```

Since these alloys did not appear to be superior to the 6Al-4V alloy, work on these alloys was discontinued. It appears that the alloys of the following types may be superior to Ti-6Al-4V:

```
4AI-4Sn-8Zr-1Fe-1V-1Cr (Alloy 60)

4AI-4Sn-8Zr (Alloys 59 and 64)

4AI-4Sn-8Zr-1.5Fe-1.5V-1.5Cr (Alloy 105)

4AI-4Sn-8Zr-.5Fe-.5V-.5Cr (Alloy 106)

4AI-4Sn-8Zr-2V (Alloy 108)

4Ai-4Sn-10Zr-2V (Alloy 110)

4AI-6Sn-8Zr-2V (Alloy 111)

6AI-4Sn-8Zr-2V (Alloy 112)
```

Additional study will be required to determine the best range of elements for this type of alloy.

The results of mechanical property tests on heat treated experimental alloys are given in Table 321.

Most of the beta and alpha-beta alloys could be strengthened by solution treat and age type of heat treatments. However the increase in strength was accompanied by loss in ductility. In general, at any given strength level an as-cast alloy can be found that is as strong and is more ductile than an alloy that was strengthened by heat treatment. Therefore, hardening heat treatments are not recommended for the cast titanium alloys.

Near the end of the program, alloys which appeared to be good candidates were further screened by a heat treatment to test "thermal stability". This consisted of heating for up to 80 hours at temperatures from 600 to 1000°F. The following were embrittled by these treatments and were eliminated from further consideration because they would not be suitable for service in this temperature range:

```
13V-11Cr-1.5Al (Alloy 11)
8V-5Fe-1Al (Alloy 15)
4Al-8Sn-8Zr-1Fe 1V-1C - Facy 50)
4Al-4Sn-8Zr-1.0Fe-1.0Z + of r (Alloy 195)
4Al-4Sn-8Zr-1.0Fe-1.0Z + of r (Alloy 196)
```

The 6Al AV, 2Capally 4 to 7 to 100 May style and 4M 456 to 2M (arroy 108) alloys were one constrained to describe an arrow to describe an arrow to describe an arrow to describe a strengthern 15th data to 100 May 100 May 100.

The chemical analyses of all heats in this program are given in Table J22.

The following conclusions were reached as results of the alloy development studies:

- (a) At the present stage of development, unalloyed titanium and Ti-6Al-4V are suitable for "standard" casting alloys.
- (b) Ti-2Cu has ductility superior to unalloyed titanium which has been hardened to the same strength level through interstitial additions.
- (c) The properties of an alloy of titanium containing four to six per cent aluminum, four to six per cent tin, eight to ten per cent zirconium, and two to four per cent vanadium are slightly better than those of Ti-6Al-4V. Additional work is needed to establish the best composition and interstitial levels of this type of alloy.

FIGURE C1

OXYGEN ANALYSIS DISTRIBUTION IN CAST Ti-6AÎ-4V

FIGURE C2

NITROGEN ANALYSIS DISTRIBUTION IN CAST TI-6Al-4V

NITROGEN, PER CENT

FIGURE C3

HYDROGEN ANALYSIS DISTRIBUTION IN CAST TI-6AI-4V

HYDROGEM, PER CENT

FIGURE C4

CARBON ANALYSIS DISTRIBUTION IN CAST TI-6AI-4V

CARBON, PER CENT

FIGURE C5

IRON ANALYSIS DISTRIBUTION IN CAST Ti-6Ai-4V

1 (14)

FIGURE C6

ALUMINUM ANALYSIS DISTRIBUTION IN CAST TI-6AI-4V

FIGURE C7

VANADIUM ANALYSIS DISTRIBUTION IN CAST TI-6A1-4V

VANADIUM, PER CENT

FIGURE C8 SCATTER DIAGRAM - OXYGEN VS. ULTIMATE STRENGTH

OXYGEN, PER CENT

FIGURE C9

SCATTER DIAGRAM - OXYGEN VS. REDUCTION OF AREA

OXYGEN, PER CENT

FIGURE C10

FREQUENCY DISTRIBUTIONS FOR ULTIMATE

ULTIMATE TENSILE STRENGTH, KSI

FIGURE C11

FREQUENCY DISTRIBUTIONS FOR REDUCTION OF AREA FOR VARIOUS OXYGEN RANGES

REDUCTION OF AREA, PER CENT

FIGURE C12

FREQUENCY DISTRIBUTIONS FOR ELONGATION FOR VARIOUS OXYGEN RANGES

FIGURE C13

(FIGURE 12 CONTINUED)

FIGURE C14

SCATTER DIAGRAM - NITROGEN VS. ULTIMATE STRENGTH

NITROGEN, PER CENT

FIGURE C15

SCATTER DIAGRAM - NITROGEN VS. REDUCTION OF AREA

NITROGEN, PER CENT

FIGURE C16

SCATTER DIAGRAM - NITROGEN VS. OXYGEN

NITROGEN, PER CENT

FIGURE C17 EFFECT OF COOLING RATE ON MACROSTRUCTURE

Copper Mold

Ranmed Graphite Mold

Shell Mold Machined Grapnite Mold

Samples: Test coupons of 6-4 alloy cast in different mold materials.

Mag. 1 X

Structure: Note refinement of grain resulting from fast cooling in copper mold and directional solidification developed in slower cooling of rameed graphite material.

FIGURE C18

ELEVATED TEMPERATURE PROPERTIES OF AS-CAST TI-6AI-4V

ELONG. AND R.A., PER CENT Ey x 10-6, psi TEMPERATURE, "F 99 3 120 8 ္ထ 8 \$ 8 STRENGTH, KSI

D2-2786-8 D1

SECTION D

CASTING OF SHAPES

Ŷ

Selection of Components

Five parts were selected for use as developmental shapes in this program. The parts represent a variety of casting problems and are considered typical of structural members which would be desirable as castings.

The following parts were selected:

(1) Developmental Bracket

A sketch and a reduced size drawing of the Developmental Bracket are shown as Figures Dl and D2. This part is not an actual production component, but was designed specifically for development work on castings and forgings. As a shape, it is difficult to forge or cast because of the adjacent heavy and thin sections, the high thin flanges, and the thin confined web. The part is somewhat typical of airframe structural detail and is small and economical to produce, machine into a finished part, and test. The Developmental Bracket was used for much of the basic development work in this contract. As a titanium casting, the machined shape weighs approximately 2.2 pounds.

(2) Flap Track Support Link

A sketch and a drawing of this part are shown as Figures D18 and D19. This is a redesigned KC-135 Tanker-Transport structural brace, presently forged from AISI 4140 or 8740 steel and heat iteated to the 180 - 200 ksi ultimate tensile strength range. Four of this configuration are used per airplane. The machined component weighs 2.9 pounds as a titanium casting.

(3) Sway Brace Case

This is a B-52 Bomber component, essentially a spring casing, presently used as an AISI type 410 steel rough centrifugal casting heat treated to 150 - 170 ksi ultimate tensile strength. The machined titanium part weighs 7.75 pounds. There are eight used per airplane. Conversion to a titanium casting would save 46 pounds per airplane. A sketch and a drawing of this part are shown as Figures D32 and D33.

(4) Elevator Torsion Fitting

A sketch and a drawing of this component are shown as Figures D36 and D37. The part is a redesigned structural component that converts rotation of an input shaft to change of attack angle of thehorizontal stabilizer on the Bomarc missile. The fitting is designed for rigidity and is presently an AISI type 410 steel casting heat treated to 180 – 210 ksi ultimate tensile strength. One left and one right hand versions of this component are used per missile and weight 4.48 pounds each as machined titanium castings.

(5) Inboard Horizontal Stabilizer Rib

A sketch of this component is shown as Figure D4?. The corresponding production component controls angle of attack and attaches the horizontal stabilizer to the fuselage of the North American Aviation A3J-1 Airplane. The production part was initially designed and produced as a titanium alloy forging heat treated to 150 ksi ultimate strength but was later changed to a steel forging to increase rigidity. The titanium forging weighed 160 pounds and was machined to 37 pounds. This component was selected as a large casting which approached the size limitation of the available casting equipment. The part was not satisfactorily developed as a casting.

Casting of The Developmental Bracket

A sketch and drawing of the Developmental Bracket are shown as Figures D1 and D2.

The Bracket was first statically cast in both machined graphite and rammed graphite molds using the Ti-6Al-4V alloy. These first castings were produced without the optional holes in the web, and contained dispersed shrinkage in the web. This design, when produced in a machined graphite mold with a machined graphite core to form the web and inside surfaces of the flanges, also had extensive cracks in the web area because the high strength of the machined graphite restrained contraction of the metal during cooling after solidification. The casting was again produced in the machined mold using a rammed graphite core with no cracking.

Following further tests to verify the dispersed shrinkage distribution in the web area, the patterns were modified to include the optional holes through the web and castings were then produced in both machined and rammed graphite molds. The addition of the holes greatly improved the feeding characteristics of the web and relieved the problem of web cracking when machined graphite cores were used.

Experience with this design made it apparent that the conditions which produced web soundness were borderline, since several of the castings produced had some shrinkage in the web area. A typical risering and gating technique for static casting the Bracket is shown in Figure D3. Risers were located at each of the lugs, which represent three isolated thermal centers. Gating to the mold was through the risers so that risers would fill last and thus provide a greater temperature gradient from casting to riser.

Casting made in machined graphite molds generally exhibited a surface roughness visually comparable to a 150 RMS finish. In general, the surfaces of castings produced in rammed graphite molds were rougher than those in the machined mold, in the order of 120 to 300 RMS.

FIGURE DI

DEVELOPMENTAL BRACKET

FIGURE D2

DEVELOPMENT BRACKET

Next, the shrinkage condition in the flanges was experimentally improved by adding a three degree taper to the exterior of the flanges, from the midpoint of the flange toward the riser connection. This reduced the shrinkage to very minor areas near the flange-to-web intersection. Incorporation of a one degree taper from the center of the web toward the flanges further improved the soundness to the point where shrinkage was no longer a problem in the web and flanges. The corebox was then modified to provide the flange taper on the inside of the flange to incorporate the web taper. It became increasingly obvious as shrinkage was eliminated that gas porosity was a major problem.

The initial trials of centrifuge casting the Developmental Bracket utilized machined graphite molds with machined or shell graphite cores to provide the web and inner flange surfaces. Centrifuge casting at 850 RPM (160 G's) resulted in nearly sound castings with slight shrinkage porosity in the heavy section at the small end of the part.

An additional casting was then made using a shell core with a larger ingate to feed the small end. This casting was also centrifuge cast at 850 RPM in a 16-inch diameter mold and had satisfactory soundness in the problem area. Surface quality of the casting was poor, because of penetration of inetal into the core in the web and flange areas. The core material was easily removed from the casting by sand blast, but a rough surface remained on the casting. The roughness is attributed to lack of density at those surfaces of the core which are vertical in the corebox and did not receive adequate packing during shell molding.

A photograph of three casting made with the above mold arrangements is shown in Figure D4.

The Developmental Bracket was next cast by centrifuging in multiple cavity molds. The arrangement Illustrated by Figure D5 was poured in a horizontal axis centrifuge casting furnace. The photograph shows the front of the mold as poured. The mold was rotated counterclockwise at approximately 900 RPM. This arrangement was used to provide "bottom pouring" into the mold cavity to prevent outward impingement of metal directly into the mold cavity. The metal enters the gates and is accelerated outward to the ends of the

gates, fills them, and then enters the mold with little turbulence. The castings produced were sound except for a shrinkage cavity in the large lug which is not connected to the ingate, caused by the necessity for this flange to be fed through the relatively thin sections between the two heavy lugs.

The castings shown in Figure D6 were cast in the vertical axis furnace and were gated and risered at each heavy lug. These castings were x-ray sound but had slight surface laps or shuts along the lower flange, caused by metal entering from the top gate and flowing to meet the metal from the bottom gates.

The casting setup shown in Figure D7 was a variation used in an attempt to prevent surface laps. However this setup produced heavy surface laps because of too rapid filling of the mold cavity. The angle of the surface lap indicated a necessity for repositioning the mold in addition to a new gating arrangement. The results from this casting experiment indicated that in centrifugal casting, it is necessary that each end of the mold cavity be at an equal radius from the central sprue to permit even filling of the mold cavity.

The casting setup shown in Figure D8 was to determine the effect of higher casting forces on the outside mold and a new gating arrangement on the inside molds. The as-cast surface from the outside mold was improved slightly, and that from the inside mold was greatly improved. It is apparent that a reverse gating system is necessary to introduce a low-turbulence flow of metal into the mold cavity.

The setup shown in Figure D9did not Improve the casting surface to any great extent. The single gating arrangement did not reduce the turbulence for proper filling of the mold cavity.

In gating systems and mold position as a result of previous experimental heats. The mold position was changed such that a line through the mold cavity would be perpendicular to a line from the center sprue. This position permits low-turbulence filling of the mold cavity. The gate pipe feeding the linguists to the mold cavity has been reduced in size after the first gate opening to create a slight pressure head at the first

ingate. This method of gating was to provide equal flow of metal into each of the ingates. However, the small ingates (1 * O.D.) did not permit the metal to enter at the proper rate and some surface laps appeared as shown in the sketch in Figure D10.

The photograph in Figure D11 illustrates a setup similar to that shown in Figure D10 with a gating change that increased the ingate into the mold to $1.1/4^n$ O.D. This increase in gating size further improved the surface finish obtained.

The casting setup shown in Figure D12 is the same as shown in Figure D11. The variation in casting was to increase the centrifugal forces by rotating at 215 RPM (25 G's force at the cavity). The surface finish of the castings produced was not improved over previous castings cast at 140 RPM (12 G's). The noticeable difference was that the surface laps were only on the straight flange and the angular flange. There was no change in metal penetration of the shell core or the rammed graphite mold. It was concluded that the relatively high rotating speed was not advantageous as there was no improvement in surface finish. The effects of centrifugally casting at high speeds will become important where molds are stacked inwards towards the center of the sprue, enabling rotation at high enough speeds to obtain x-ray sound castings at the inner locations without detriment to the molds rotating at high speeds nearer the periphery of the plate.

The photographs shown in Figure D13 illustrate the casting setup used to test a higher production experimental pour. The top photograph illustrates the arrangement of four molds on the central sprue and the bottom photograph shows the gating system, developed in the previous experimental casting setups.

Of the entire quantity of castings produced in these trials, only two experimental heats failed to yield x-ray sound castings. One of the two heats was rejectable because of gas porosity. It was centrifugally cast at only 5 G's force which is evidently too slow to completely remove gas porosity. The second heat was rejectable because of shrinkage porosity and was made with the molds reversed such that the risers had insufficient effect in feeding shrinkage prone areas.

Next, the Bracket was experimentally cast using a variety of mold setups aimed at the development of an improved gating system and of multiple-mold centrifugal production setups. Radiographically sound castings were consistently produced.

Figure D14 illustrates a setup of two castings produced with a two-ingate mold-filling system. The molds are attached to the periphery of the runner bars with vertical ingates feeding the risers. The runner bar is reduced in size after the first ingate, to create a pressure head and increase the metal flow through the first ingate, thus providing a more uniform filling of the mold cavity. This change in the gating system for the Bracket was made to prevent surface laps in the castings caused by turbulent mold filling. Examination of the castings showed them to be free of such laps.

Figure D15 shows a four-casting arrangement and an eight-casting arrangement used in developing multiple-mold production setups. Visual examination showed these castings also to be free of surface laps.

In this production-setup work, the approach taken was to use a casting method which has been proven successful for small pours (as illustrated in Figure D13), and adapt the method for increased numbers of molds until a maximum is reached as dictated by equipment size. Figure D16 illustrates the pouring setup used for casting a 16-mold production arrangement. This was found to be the maximum number of castings that can be made under the existing casting conditions. The setup consists of eight stacks of two molds each. The molds are attached to a runner bar and gate mold of rammed graphite. The lower photograph in Figure D16 shows the setup after pouring was completed. Very little metal was lost through splashing and spilling from the sprue.

Figure D17 is a photograph of castings produced in the setup shown In Figure D16. Visual examination showed these castings to be free of surface laps.

X-rays of the 16 castings made in the first maximum production pour revealed a void in 15 of them. These voids were all located in the same portion of the casting. The cause of the void has been traced to the

TYPICAL RISERING AND GATING TECHNIQUE

EXAMPLES OF SURFACE CONDITIONS OBTAINED IN BRACKET CASTING TRIALS

Left - Centrifuged, Machined Graphite Mold and Core Center - Centrifuged, Machined Graphite Mold, Shell Core Right - Static Cast, Rammed Graphite Mold and Core

CENTRIFUGALLY CAST DEVELOPMENTAL BRACKET

BRACKETS CENTRIFUGALLY CAST AT 125 RPM (10G)

Rammed Graphite Mold, Shell Core

Below: Castings were X-ray Sound Surface Showed Slight Laps

BRACKETS CENTRIFUGALLY CAST AT 125 RPM (10G)

Rammed Graphite Mold, Shell Core

Below: Castings were X-ray Sound Surface Showed Heavy Laps

BRACKETS CENTRIFUGALLY CAST AT 140 RPM (OUTER 126, INNER 106)

Rammed Graphite Mold, Shell Core

Below: Inner Castings Had Light Laps, Outer Had Medium Laps. Both were X-ray Sound

BRACKETS CENTRIFUGALLY CAST AT 137 RPM (12G)

Rammed Graphite Mold, Shell Core

Below: Casting was X-ray Sound Surface Had Medium Laps

BRACKETS CENTRIFUGALLY CAST AT 130 RPM (10G)

Rammed Graphite Mold, Shell Core

Below: Casting was X-ray Sound Surface Had Slight Laps

FIGURE DII

BRACKETS CENTRIFUGALLY CAST AT 130 RPM (10G)

Rammed Graphite Mold, Shell Core

Below: Casting was X-ray Sound Surface Had Slight Laps

BRACKETS CENTRIFUGALLY CAST AT 215 RPM (25G)

Rammed Graphite Mold, Shell Core
Below: Casting was X-ray Sound
Surface Had Medium Laps

BRACKETS CENTRIFUGALLY CAST AT 135 RPM (12G)

Rammed Graphite Molds, Shell Core

CENTRIFUGALLY CAST DEVELOPMENTAL BRACKETS

Two-Casting Arrangement

FIGURE D15 CENTRIFUGALLY CAST DEVELOPMENTAL BRACKETS

Four-Casting Arrangement

Eight-Casting Arrangement

SIXTEEN-MOLD CENTRIFUGAL SET UP FOR DEVELOPMENTAL BRACKET

Before Pour

Stre Paur

CENTRIFUGALLY CAST DEVELOPMENTAL BRACKETS

Sixteen-Casting Arrangement

method of feeding the upper riser. An analysis of the gating system showed that a large volume of metal was being fed through a thin web to the riser, from where it was subsequently fed back to the casting. This situation caused improper thermal gradients to be set up across the riser and casting.

The gating system for this part was then revised to allow metal to flow to the mold cavity through each of the three risers as shown in Figure D6. The surfaces of castings made with this system were found tobe free of visible laps, and x-rays showed them to be sound. This mold arrangement was used to produce the pilot production lot of 50 castings.

To obtain the production lot of 50 parts, it was necessary to cast five heats, a total of 80 castings. The rejection rate was approximately 33 per cent, of which half the rejections were because of surface defects and the remainder because of internal (radiographic) defects. The foundry yield (acceptable casting weight/weight of poured metal) was in the order of 14 per cent.

Of the castings shipped, none were entirely within the dimensional tolerances established as targets early in the program or within the tolerances later established as representative of this process, mostly because of pattern errors which were not corrected before beginning the production phase. All of the shipped castings were x-ray acceptable. The ranges of deviation from average of several specific dimensions on the 50 production phase parts was determined and is discussed in the section of this report dealing with development of specifications. Representative tolerances were statistically developed from these data.

Casting of The Flap Track Link

A sketch and drawing of this component are shown in Figures D18 and D19. Initial design of this casting included a cored hole through the cylindrical portion, but this requirement was removed in favor of machining the bore when it did not core satisfactorily.

FLAP TRACK SUPPORT LINK

FLAP TRACK SUPPORT LINK

The initial castings were made in rammed graphite molds with rammed and with machined graphite cores. The first results obtained were considered generally good. The tool hold-down lugs (along the flanges reinforcing the tubular section) represent isolated thermal centers that caused shrinkage voids. Other isolated shrinkage areas are located at the junction of the tubular portion and the transverse flange at the wide end of the part. A photograph of the first casting made is shown as Figure D20. The gating and risering setup is shown as Figure D21.

Next, a shell core was used in an attempt to cast the Flap Track Link to soundness. It had been established that the use of the shell core promoted soundness by reducing the chilling effect and extending feeding distance. The web areas at the large end of the link presented a borderline shrinkage problem with soundness being obtained part of the time. Some of the castings exhibited shrinkage at riser junctions, because of the difficulty of attaching properly sized risers to the casting without obscuring casting detail. Large heavy risers were added at the top of the casting at the heavy sections in an attempt to better feed the casting. The riser was necked down to tain casting detail and unfortunately the necked down portion of the riser closed off feed metal before the casting solidified.

The two tooling lugs extending from the sides of the casting were, at this time, problem areas in shrink porosity. Chilling of the tool lugs and use of shell cores promoted directional solidification to the point where the shrink void was located just inside of the casting at the riser function. The location of the single shrink void in the middle of the tool lug is acceptable since these lugs are removed after the part has been machined, but since the location of the shrink void was partially in the casting when shell cores were used, an attempt was made to remove the shrink by supplementary gating from the riser located in close proximity to the tool lug.

Experimental castings were next made without coring. This method permitted the shrinkage to concentrate along the centerline areas where it is removed by machining the center of the tubular section. Castings of the link were made while varying the position of the mold. Most of the variations in positioning resulted in very poor surface finish due to cold laps being formed by metal impinging on the sides of the mold cavity.

Figure D22A illustrates the shrinkage in the Flap Track Link cast in a rammed graphite mold with rammed core at the small end and a machined graphite core through the center bore. Six thermal areas are represented by the six localized shrink areas shown at the relatively isolated heavy sections. Slight dispersed shrinkage occurred in the thin triangular web area. The casting was side gated through four risers located as shown on the sketch.

The sketch of the Link in Figure D22B represents a variation to determine the effect of copper chills placed at the tool hold down lugs to remove the shrinkage areas present. The copper chills moved the shrinkage area into the casting and reduced the size of the voids slightly. The six localized shrinkage areas remained.

Figure D22C represents a Link cast in a machined graphite mold with 2-1/2-inch diameter risers attached. The only noticeable difference in casting in the machined graphite mold was the change in location of the shrinkage at the tip of the thin triangular web area into the body of the casting.

Figure D23A arrangement was cast without a core in the center section to determine the possibility of isolating shrinkage at the center of the casting. This Flap Track Link was cast in a rammed graphite mold preheated in a vaccoun heating oven to 300°T. The major shrinkage areas occurred along the center line of the casting. The previous shrinkages at the tip of the triangular web shaped area and near the core at the wide end of the casting were removed. The two shrinkage areas at the tool hold-down lugs remained with some change in location toward the center of the casting. General dispersed shrinkage again occurred in the wab area of the casting.

The Flap Track Link efforted in Figure 0.238 had an extra riser establed in the rope of brown in a public in any section according narrow end of the Link. The interior manuscript down slightly at the point of function with the continuity in given. This bear Core " offset to permit easier removal. The distributions in the position of the shrinkage in that portion of the couler. The interior and the shrinkage in that portion of the couler. The interior and the costing of a costing at that in an arrow of a costing at that in an arrow of a costing at that in an arrow of a cost manual in this expensive arrows on a room of the cost manual interior and the cost manual interior and the cost manual interior are the cost in this expensive arrows on a room of the cost manual interior and the cost manual interior are the cost interior and the large arrows of the cost manual interior are the cost interior and the large arrows are the cost interior and the cost manual interior are the cost interior and the cost manual interior are the cost interior and the cost manual interior are the cost interior and the cost manual interior are the cost interior and the cost manual interior are the cost manual interior and the cost manual interior are the cost manual interior and the cost manual interior are also as a cost manual interior and the cost manual interior are also as a cost manual interior and the cost manual interior are also as a cost manual interior and the cost manual interior are also as a cost manual interior and the cost manual interior are also as a cost manual interior and are a cost manual interior and are also as a cost manual interior and are also as a cost manual interior and are a cost manual interior and are

gradients conducive to removal of the shrink areas at the tip of the web area. Isolated shrink remained near the core at the wide end of the Link. The shrinkage areas in the tool hold down lugs also remained.

The illustration in Figure D23C is of a second experimental casting without the core through the center. Shrinkage was isolated along the center line with the exception of the tool hold down lugs and the web. Figure D24A is the same casting x-rayed after drilling through the center of the casting to remove shrinkage.

Figure D24B represents a modification of the Flap Track Link by varying the method of gating. In attempting to remove the shrinkage area in the tool lug, a slot from the riser to the tool lug was milled into a rammed mold to provide a feed channel and gate. The shrinkage area in one tool lug was absent and in the other lug it developed as an elongated center shrink in the head along the thin web section.

One isolated shrinkage area still remained at the wide end of the flange. The shrinkage had been reduced to one side of the casting, possibly indicating incorrect flow of metal into the mold cavity and the setting up of higher thermal gradienis on one side of the casting.

Figure D24C is an Illustration of a core modification in an attempt to remove shrinkage by a larger taper towards each end of the casting where risers are located. A two piece core of shell graphite and machined graphite was used. The shrinkage was generally isolated to the tip of the triangular shaped web areas.

Figure D25A illustrates a variation in the core by machining a straight machined graphite core and using it in conjunction with a shell graphite core at the small end of the Link. The straight center core causes the shrinkage to be isolated at the tip of the thin triangular web section. The same 7/8-inch diameter center core with a slight modification as in Figure D25B eliminated shrinkage in the casting. The variation in Figure D25B reduced the concentration of metal by coring a portion of the critical area and establishing a favorable directional solidification condition. A general gas condition has prevented definite soundness conclusions to be reached.

The photograph shown in Figure D2& is of a static casting setup with gating and risering attached. Using the static casting method, the Flap Track Link can be produced with shrinkage only in areas which are subsequently machined out. The major problem in static casting, however, is the presence of dispersed gas porosity. The problem is an uncontrollable factor influencing the soundness quality of all of the statically cast parts. The sketch in Figure D26 illustrates areas where shrinkage is typical. Further experimental static casting was discontinued in favor of centrifuge casting to solve the gas porosity problem.

Next, experimental pours of this part were made in a vertical-axis centrifugal furnace. Figure D27 illustrates the setup of the part and the attached gating and risering. The mold was made using the same pattern and risering as is used for static casting. The gating arrangement was revised and repositioned to accommodate the centrifuge arrangement. A detrimental centerline shrinkage area occurs at the narrow end of the casting as shown in Figure D27. The method used to gate the casting was not satisfactory and medium surface laps occur along the surface of the part. A modification to introduce a smooth low-turbulence flow was necessary to remove the surface lap defect and produce a smooth cast surface.

Figure D28 illustrates a different experimental setup poured in the vertical-axis centrifugal furnace. The gating, risering, and mold position were modified in an attempt to arrive at a workable pouring setup. The sketch illustrates the location of resulting centerline shrinkage. The major shrinkage area occurred in an area where normal machining would not remove the defect. The risers located at the narrow end of the Link were intended to feed the area where shrinkage occurred and to feed the two flanges at that end. The thin section adjacent to the risers prevented adequate feeding of the heavier section where major shrinkage occurred. This gating system provided a low-turbulence method of pouring the casting and produced an excellent surface finish. The Link was free from parasity.

A small rises was next added to the Link of the centerline of the wide emitto control brinkage at that location. A comparison of Flaures D29 and D30 will show the for after of this rise, and its effect on

shrinkage in the area. The position of the parts shown in Figures D29 and D30 during casting was such that the casting was self risering with the exception of the wide end, which was located nearest the center sprue. The shrinkage void at the riser, shown in Figure D30 could be removed entirely by enlargement of the riser.

Further modifications in the risering and gating system for this part are shown in Figure D31. In the system shown in the lower photograph of Figure D31, the large risers at the narrow end of the Flap Track Link were modified. This modification did not provide a sufficient volume of metal to feed the narrow end, allowing shrinkage to occur. To eliminate this shrinkage, small risers were added at the narrow end of the Flap Track Link. The risers at the narrow end of the part in the top photograph of Figure D31 are unnecessarily large and contribute little to the soundness of the casting.

The method of gating the Flap Track Link at the outer extremity of the casting, as shown in Figure D31, is necessary to achieve a bottom pour with low turbulence as metal enters the mold cavity. Gate sizes are varied to cause an even flow of metal into both of the ingates.

Next, a preliminary dimensional analysis of the Flap Track Link was made. The general trend was for the parts to be oversize, indicating that the combined mold and metal shrinkage averages slightly less than 3/8 inch per foot.

The pattern equipment was modified prior to casting pilot production heats. Risers were added to the narrow end of the Link and a riser was added to the center of the wide end to reduce the large shrinkage void occurring at that point. A 1/8-inch-radius fillet was added to the edges of the pattern to provide a mold with rounded edges, thus preventing a mold crushing problem and possible graphite inclusions.

The production run set of Links was to be made in five heats of twelve castings per heat. Mishaps and rejections caused an increase to six heats. A total of 50 parts was produced. Of the 72 castings made, 50 were accepted. Seventy-five per cent of the

rejections were because of mold shift during casting and incomplete filling, the remainder were rejected because of grinding errors. The overall rejection rate was 35%.

The castings were centrifugally cast twelve molds per heat. The molds were rotated at 130 RPM to obtain 10 G's on the center of the part.

X-ray quality of the accepted castings was good. Dimensional accuracy was fair but not within the specified tolerance.

Tolerances are further discussed in the section on specifications.

FLAP TRACK SUPPORT CAST IN RAMMED GRAPHITE MOLD

TYPICAL GATING AND RISERING SETUP FOR FLAP TRACK SUPPORT LINK

Rummed Graphite

Core

FIGURE D22

Porosity in Flap Track Link

Porosity in Flap Track Link

Porosity in Flap Track Link

FLAP TRACK LINK, STATICALLY CAST
Rammed Graphite Mold, No Core

FLAP TRACK LINK CENTRIFUGALLY CAST AT 150 RPM (10G)

Rammed Graphite Mold, No Core

Results Below

Medium Surface Laps

FLAP TRACK LINK CENTRIFUGALLY CAST AT 110 RPM (10G)

Rammed Graphite Mold, No Core

Results below

X-RAY OF FLAP TRACK LINK SHOWING SHRINKAGE IN CYLINDRICAL SECTION

X-RAY OF FLAP TRACK LINK SHOWING SHRINKAGE ADJACENT TO INADEQUATE RISER

CENTRIFUGALLY CAST FLAP TRACK LINKS

Casting of The Sway Brace Case

The Sway Brace Case was first cast from TI-6Al-4V alloy in static molds of rammed graphite with rammed graphite cores. The casting was poured in the horizontal position, gating through four risers. A riser was located at each corner of the casting and connected to the casting through the lugs on one side and directly to the heavy section on the other side. Basic problems exist with this design for casting in titanium. It should be noted that minimum wall thickness throughout the cylindrical section of the part is 1/4-inch and that no difficulty was experienced in producing a smooth casting without misruns. However, as would be expected from the feeding studies, the uniformly thin center section had dispersed shrinkage porosity. As the section increased in thickness toward the ends of the casting and the riser locations, the shrinkage disappeared and the casting was sound with exception of the thermal centers adjacent to the lugs. Connection of the risers to the casting was difficult at these lug positions since an adequate connection would destroy definition of the lug outlines. Shrinkage occurred in the characteristic manner at the thermal centers behind the lugs, appearing as a single concentrated void existing at each location as shown in Figure D34B. It should be noted that the two tapered ears and the closed end of the casting were completely sound since their design produces exceptionally good directional solidification conditions.

Figure D34A shows the effect of pouring position on casting soundness. The casting was poured with the open end down. It was evident that gas was rising to the surface of the mold and being collected under the surface of the metal in all castings poured in this position. Shell cores were used for these trials. Risers were attached to the lugs extending from the parting line plane. The mold cavity was gated through each of the four riser locations. Shrinkage in the thin tube section was dispersed indicating poor feeding of the wall area. Heavy shrinkage was located at the lugs extending from the open end of the casting.

Figure D34B illustrates a casting that was poured with the open end at the top of the mold. The casting was gated through two of the four side risers with an additional four risers attached to the top of

SWAY BRACE CASE CASTING

FIGURE D33
SWAY BRACE CASE CASTING

the casting. Dispersed shrinkage was still present in the tubular section. The four top risers were attached to the top of the casting in an attempt to feed the lugs extending from this area. The riser connections were not sufficient to permit the metal to feed the top of the casting.

The initial pattern revisions were decided upon the basis of the experimental casting shown in Figure D34C. In this casting a heavy shell core was tapered from one end toward the open end of the Sway Brace Case to provide a thicker wall section near the top end of the casting. The core modification increased the feeding of the top section to the tube section. Shrinkage was still evident in the heavy top end, since no provisions were made in this modification for additional feeding of the heavy section at the top of the casting.

Figure D34D Illustrates the modified casting with redesign and location of risers. The top riser is a wedge shaped ring covering the entire area at the top of the casting, to provide more efficient feeding of this area. The shall care was modified to include a 5° taper, starting at approximately 2 inches from the bottom of the care. This amount of taper was believed to be more than needed to establish proper directional solidification and soundness of the tubular section. The top section of the casting did not feed properly to obtain soundness because of the greater volume of metal located at the top of the open end of the casting.

The tubular section of the casting poured in this manner did not show any shrinkage. There was some surface roughness from both the rammed graphite mold and the machined graphite core. The core was machined hollow to 1/4-inch thickness at the open end to reduce the chilling effect and clean-out problems. There were a few cold shuts in the interior of the casting due to the rapid skin chilling effect of the machined graphite core. The shell core was not satisfactory for casting the awar into a Case Language of the targe amount of metal concentration. The whalt was more as he we sufficient had capacity to prevent rapid heating to high the associate and consequent wetting of the core by the metal access, and I a sower pone which A casting setup for a contributed pure was a she similar to that it come to Figure D35 in which as with access to a second source and a similar to that it come to Figure D35 in which as with access to a second source and a similar to that it come to Figure D35 in which as with access to the core to figure D35.

relatively thick (1/2-inch) to give it sufficient thermal capacity to prevent penetration by the molten metal. Breakage of the core at the support hole occurred after the casting had solidified, without damage to the casting. Movement of the shell core, if any, was very slight.

The photograph in Figure D35 is of a casting setup in which a rammed graphite core was used. The use of a rammed graphite core with a machined graphite insert at the support end of the core gave consistently good results. The major disadvantage in the rammed graphite core is that it was difficult to remove from the casting. It was necessary to chip almost the entire core free from the casting. An advantage of the rammed core over shell core was the better dimensional accuracy in the finished castings.

The Sway Brace Casting was bottom gated through two side risers attached to the closed end of the part. These two risers provided feed metal for the two end lugs and the heavy portion of the casting to which they were attached. This gating arrangement provided uniform metal flow to the top riser, which was attached to the entire open end of the part, forming a ring riser. The inner portion of the Sway Brace Case was tapered from the open end to the closed end to provide a sound wall section. With incorporation of this taper, the wall section was consistently cast with very little shrinkage or gas defects. The ring riser a' the top of the part supplied metal for the wall section and the heavy portion at the open end of the part. The part as centrifugally cast was consistently sound. The production run of 16 Sway Brace Cases was completed by pouring four heats of four parts each.

The parts were cast with 12 G's force on the mold cavity by centrifuging at 140 RPM. This speed was found to be necessary to obtain proper feeding from the ring riser attached to the top of the casting. The ring riser was relatively close to the spin axis of the mold setup and did not feed properly at reduced speeds.

The rejection rate for Sway Brace Cases was 25%. The cause of rejection was insufficient metal to fill the mold cavity. Casting yield was 28 per cent. There was no difficulty encountered in the pilot production casting of this part. The incorporation of taper in the bore

of the part provided adequate thermal gradients to properly feed the walls of the cylinder and heavy riserings in close proximity to thermal centers prevented shrinkage in the heavy sections.

Porosity in Sway Brace Case

Shrink
Vold

Risers

Gas vold

Risers

This end top of casting as poured

Runned Graphito Mold Shell Core (4) 3" drameter side risers - side gated

8

Shell Core
(4) 3" dlameter side
risers - side gated

()) Top riser Buttom gate

CENTRIFUGALLY CAST SWAY BRACE CASE

Rotated at 140 RPM (12 G)

Casting of the Elevator Torsion Fitting

The Elevator Torsion Fitting was first cast in machined graphite with a machined graphite core, in machined graphite with a rammed graphite core, and in rammed graphite. Machined cores produced the same cracking difficulty in the thin flat areas at each end of the casting as was experienced with the Bracket. This condition was readily corrected with the use of a rammed graphite core in the machined mold. As was expected from the result of the feeding studies, the casting evidenced shrinkage porosity in the wide thin webs at each end as shown in Figure D 38, and in the four heavy sections around the center of the part. Approximately two degrees of taper were added to the webs, thickening the casting toward the heavy center which decreased the total shrinkage but did not remove all shrinkage in that area.

The four heavy sections around the center of the Elevator Torsion Fitting presented difficulty in risering with sufficiently large riser connections, because the wall thickness of standard graphite tubing held the risers at least 1-1/4-inches apart, and the slight jog at the edge of the casting prevented a full-width riser connection without loss of casting detail. Characteristic shrinkage in these heavy sections is shown in Figure D 39.

Through further casting attempts, it was determined that the web section with taper to approximately 1/4-Inch of the center did not have sufficient taper to promote direction solidification. In attempting to obtain sound web sections, risers were located along the edges of the channel to feed the web area. This was not successful. The thin sections required feeding to remove dispersed shrinkage, but were not thick enough that risering at the edges of the channels would provide the directional solidification required to remove the shrinkage.

The next trials in statically casting the Torsion Fitting were based on increasing the taper of the thin web section and increasing and modifying gating and risering.

ELEVATOR TORSION FITTING

FIGURE D37 0 § . √ CASTING - PCKLED - DART NO. SK-II-65220 TATOM BLALE'A. \ \ \ *

The taper added to the thin web areas was varied from 12° to 14° by tapering from the center of the webs toward the edges where a rectangular riser was attached to each side for the entire length of the web area. The 12° taper in the web area did not free the area of shirthkage. Slight dispersed shrinkage was still evident in the center of the web. The 14" toper did not show any definite shrinkage areas, but gas perosity was extensive and conclusive results were not obtained.

Figure D40A is the initial type of set up used in attempting to obtain a sound part by static casting. The mold was made of rammed graphite with rammed graphite cores. Risers were attached to the mold externally and fed into the casting through gates. The entire covity was fed by runners and gates that entered through the riser locations, establishing thermal gradients toward the risers. Dispersed shrinkage occurred in the web areas in all of the static castings made with this arrangement regardless of riser size and location. Localized shrink areas occurred at the center of the heavy sections near the hole where isolated thermal areas were formed. The riser location valuatified with regard to feeding this central area.

Figure D 40B represents a casting modification with riser attached to the top of the casting and connected through a necked-type core system to facilitate removal. The actual riser connection to the casting was formed by connecting the opening to fit the shape of the areas to be fed. The modification did not provide a sound casting. The mold cavity was side goted in four places at the heavy areas. The inclusions of 12° mass from the center of the web areas reduced the degree of shrinkage in 3 did not of immate it.

Figure D 40 C and () 40 D costings were poured to determine If an advantage could be guited by pooring the casting upside down from its perget on their course 1540 C, whose him the usual position. Historica discreasidades en en la facta da seb mem with one say a may be a second of the Andrew Linder House Control Figure (240.), recested, clear to a องกับสายออกเปลี่ยน สาร**ะได้เรา** constitution in the person therefore and a server to two countrys transfer to the control of the enterior of the Experience following survey Francisco Control Control greature of the transfer of the contract of

The photograph in Figure D41 illustrates a static casting setup with side risers along the tapered web area. The web area had been revised to include a 14° taper from the center of the web to the edges in an attempt to obtain a sound casting. The addition of 14° of taper to the web section did not provide adequate thermal gradients to obtain soundness. Adding taper from the center of the web section to the edge did not successfully remove shrinkage in any of the trials conducted. The heavy rectangular riser shown located at the central portion of the casting, feeding the heavy section, did not result in a sound heavy section.

The photograph in Figure D42 is of an experimental pour made to determine the effectiveness of adding taper from the extreme ends of the web towards the center section. The taper added to the web section was parabolic, starting at 7° at the extreme ends of the casting. The tapers required to feed the section of the casting were determined from the feeding distance studies; i.e. for the first inch from the end a 7° taper is required to cast a one-inch length of 1/8-inch section thickness sound or to obtain a soundness ratio of eight. The second taper was 6° to the two-inch length and thereafter 2° to the five-inch length.

The X-ray of the casting did not reveal any dispersed shrinkage, although some gas porosity was apparent. This type of taper was more effective in Increasing the feeding distance than a straight toper. Upon straight tapering 6° from the end of the casting to the heavy center section, dispersed shrinkage occurred at the outer edges of the thin web section. The parabolic taper not only Increased sound feeding distance but reduced the total volume of metal required to pour the casting. As experimental casting trials progressed, experience showed a necessity for large tapers on large thin sections and less taper as section thickness increases. Several factors involved in the cooling of the metal contributed to this. The rapid chilling effect of the graphite mold causes thin sections to freeze very rapidly, and as section thickness increases heat transfer is less rapid. The problem is similar to all casting processes but is exaggerated in the case of titanium because of high melting temperatures and high thermal conductance of the mold materials.

The casting was made centrifugally in rammed graphite molds. Figure D 43 A is a sketch of the first centrifuge cast part. Some dispersed shrinkage was prominent in one of the web areas while the opposite end had slight amounts of shrinkage close to the heavy center section. Isothermal areas under the Ingates presented two shrinkage areas at the same end of the heavy section that contained the greatest degree of shrinkage in the web area. The part was gated at the four heavy sections at the center of the casting. The four gates were attached perpendicularly to the casting and centered sprue. The castings were in a horizontal position attached centrally about a sprue. Castings poured in this arrangement did not give satisfactory results in surface quality because of excessive turbulence as the metal enters the mold.

The sketch in Figure D 43B represents a casting centrifuged using the pour technique shown in Figure D 44. The molds were side gated and cast in the horizontal axis centrifugal casting furnace. The benefits of gating in this manner were reduced turbulence and continued pressure on the mold cavity as solidification took place. The thin web section was relatively free of general dispersed shrinkage, although gas porosity was evident in this section.

Figure D 43C is an example of a casting containing large amounts of gas porosity. This casting was made by tapering the web section to obtain a 14° taper from the center of the web toward the outside edge and the rectangular riser located to feed the web area. The gas porosity may have been intensified by machining the rammed mold and exposing the subsurface of the rammed graphite mold. The center section was free from shrinkage. The casting was side gated through the risers located at the heavy center section of the casting.

Figure D 43 D illustrates the casting modified to incorporate 6° of taper from the end of the casting at the web area toward the center section. Risers were located on the top of the casting and overlapped the sides with portion gating sometoyed to teed the casting. Shrinkage was greatly reduced, but modificated both to the web area and at the heavy center section.

à.

Absence of gas porosity in centrifugally cast parts was noted when molds were centrifuged at high speeds. Localized shrinkage at the heavy thermal areas in the center of the casting illustrated that sufficient metal supply was not available to feed those areas as solidification progressed.

The sketch in Figure 0.45 shows the characteristic dispersed shrinkage found in the part when cast with inadequate padding and centrifuged at high speeds. The casting shown was centrifuged at 140 rpm (12 G's). It has been established through experimental heats that a higher G force will not remove this shrinkage. The ultimate removal of shrinkage such as this depends almost entirely on improved padding and risering.

The sketch in Figure D 46 shows the location of shrinkage when a 1-1/2-inch diameter riser has been added at the center of the web. The addition of this riser improved the soundness of the part by moving the shrinkage area to within 1/2-inch of the ends of the part. The Illustration in Figure D 47 shows the location of shrinkage with a 2-inch diameter riser used. The shrinkage still remains near the ends of the web.

Risering of the center of the web section does not appear to be an effective method of obtaining a sound section. A thin web does not lend itself to feeding from a centrally located riser, as has also been shown in previous feeding distance studies on tapered plates. The present casting attempts also demonstrate that the feeding distance of a centrally located riser is not influenced greatly by centrifugal casting techniques.

Figure D 48 illustrates a further modification of the risering system. A riser of large connecting area is at the end of the web at the location of previous dispersed shrinkage. Occasional shrinkage occurred such as shown in the sketch.

Two heats were required to make the pilot production run of ten castings. Six molds were poured in each heat.

The gating and risering system was similar to that shown in Figure D 48. The molds were centrifuged to obtain 12 G's on the muld cavity, requiring centrifuge speed of 140 rpm to obtain proper casting conditions.

The rejection rate for the castings was 17%. The two casting rejections were caused by breakage of mold setup braces and consequent dislocation of molds during pouring. The yield of casting weight to poured weight was 20%.

The Torsion Fitting was the most difficult part to cast to the internal soundness levels required. The thin web section is very difficult to feed properly to establish thermal gradients required for casting sound parts. In some Instances a random dispersed shrinkage was located at the extreme ends of the fittings. The 12 G force on the mold cavity has succeeded in eliminating the shrinkage occurring in most instances.

DISPERSED SHRINKAGE IN WEB SECTION --MACHINED GRAPHITE MOLD

FIGURE D39 SHRINKAGE IN HEAVY SECTION

Porosity in Torsion Fitting

STATICALLY CAST TORSION FITTING

Rammed Graphite Mold, Shell Core

Result below

STATICALLY CAST TORSION FITTING Rammed Graphite Mold, Shell Core Result below

Gas Porosity

Porosity in Torsion Fitting

TORSION SUPPORT FITTING CENTRIFUGALLY CAST IN RAMMED GRAPHITE MOLD

CENTRIFUGALLY CAST TORSION FITTING

Rotated at 140 RPM (12 G)

Shrinkage

CENTRIFUGALLY CAST TORSION FITTING

Rotated at 160 RPM (15G)

1 1/2-inch Diameter Riser Added to Centers of Webs

Shrinkage

D72

CENTRIFUGALLY CAST TORSION FITTING

Rotated at 160 RPM (15G)

2-inch Diameter Riser Added to Centers of Webs

Shrinkage

CENTRIFUGALLY CAST TORSION FITTING

Rectangular Riser Added to Ends of Webs

Casting of the Horizontal Stabilizer Fitting

The Horizontal Stabilizer Fitting was first cast statically. The mold required sixteen sections fitted together. Gating and risering was accomplished by drilling into the rammed graphite mold and by addition of graphite piping to provide the external connections.

This casting was not sound. Numerous gross shrinkage areas occurred as a result of insufficient risering. The web areas of the part contained widely dispersed shrinkage demonstrating that inadequate tapers had been incorporated in the original pattern equipment. In addition to the shrinkage problem, severe gas porosity was noted.

The photograph in Figure D50 shows the front of the casting with gates and risers attached. In this casting experiment two-thirds of the metal was theoretically to flow through the large front gate and through its interconnecting system, feeding the length of the fitting. The remaining one-third was to flow through the two smaller gates into the enclosed arm of the part, thereby preventing cold shuts and surface laps. The system succeeded in minimizing surface cold shuts, but not in entirely eliminating them. A slight misrun occurred in one of the thin webs in the bottom of the mold as shown in Figure D51 This misrun was due primarily to too much metal flow through the end ingates and not through the next inside ingate. It would be necessary to reduce the size of the runner or ingate feeding the end of the casting to provide a more desirable flow of metal.

Figure D51 illustrates the bottom of the casting and the cored out detail. Evidence of blowing is visible in the web areas of the cored sections. The cause of this irregularity was not determined.

The second attempt to cast the Horizontal Stabilizer Fitting was accomplished in the vertical axis centrifuge furnace. The part was extremely large for centrifuge casting in this furnace.

This casting also was not sound. It contained numerous shrinkage defects where risering was insufficient. There was a noticeable increase in soundness of the web areas of the angular "U" section and the extremities of the Fitting. The center portion of the casting was absent, due to insufficient metal in the pour. The casting was gated along the trailing edges, to provide low turbulence metal flow into the mold

cavity. The mold cavity was gated at several places from a main runner, and gating size changed to provide uniform filling through each of the gates. The 'U' shaped extension was also gated in three locations at the trailing edge to fill this area at approximately the same time as filling of the remainder of the mold cavity. It was expected that filling of the center portion would be difficult, and therefore a large gate was provided to feed metal to the center. Because of spilling and splashing there was insufficient metal to fill the mold cavity.

it was concluded that although sufficient development would be expected to solve the shrinkage porosity problem, the gas porosity problem could not be overcome without centrifuge casting the part. This component was too large for centrifuge casting in the furnace equipment available. FIGURE D4.

INBOARD BEARING SUPPORT RIB, HORIZONTAL STABILIZER (as machined from forging)

D2-2786-8

FIGURE D49A

TYPICAL SECTIONS - INBOARD BEARING SUPPORT RIB

FIGURE D50 STATICALLY CAST HORIZONTAL STABILIZER FITTING

FIGURE D51
STATICALLY CAST HORIZONTAL STABILIZER FITTING

SECTION E

EVALUATION TESTING

The following mechanical tests were used to evaluate the general properties of cast titanium alloys and to compare the structural components with conventional materials and fabrication methods:

(1) Conventional Materials Tests

- (a) Tensile, room and elevated temperature
- (b) Compression
- (c) Impact
- (d) Shear
- (e) Tension fatigue
- (f) Notched tensile
- (g) Bearing

(2) Component Tests

- (a) Developmental Bracket Static and fatigue simulaterice tests, cast Ti-6Al-4V compared to cast type 410 steel.
- (b) Flap Track Link Static and fuligue simulated service tests, cast Ti-6Al-4V compared to forged AISI 4340 steel.
- (c) Elevator Torsion Fitting Torsion load vs deflection simulated service tests, cast Ti-6Al-4V compared to AISI 4340 hog-out.
- (d) Sway Brace Case Static simulated service tests, cast Ti-6Al-4V compared to cast type 410 steel.
- (e) Inboard Bearing Support Rib No testing do to failure to develop a satisfactory titanium casting.

Conventional Materials Tests

All tensile tests were conducted on conventional 1/4-Inch gage diameter, 1-inch gage length tensile specimens similar to those specified in Federal Test Method Standard No. 151, type R3 specimen. The strain

rate used was .005 \pm .002 in./in./minute through 0.2 per cent strain. All tensile yield strengths reported are at 0.2 per cent offset. The results of tension tests are reported in the section of this report on alloy development.

The notched tension test specimens were as shown in Figure El and had a notch factor (K_t) of 3.3. Results of notched tests were used to compare properties of experimental alloys and are reported in the alloy development section.

The impact test specimens were conventional charpy test specimens. Results of impact tests are reported in the alloy development section.

The compression, shear, and bearing tests were on conventional specimens and were conducted to provide allowables data for design purposes. Results are in the section on development of specifications, standards, and design allowables.

Tension fatigue specimens were tested to establish requirements for chemical removal of surface contamination. The results of the tests are reported on page 860.

COMPONENT TESTS

Testing of The Developmental Bracket

The tests on co-ponents were to compare cast titanium structural shapes with the presently conventional aircraft materials and fabrication methods. All tests were at room to perature and were designed to simulate service conditions applicable to each part. All parts tested were compared with the present production part, except the developmental bracket which was not a production part. Two attempts were made to produce this part as a titanium forging, but the thin webs and high thin flanges made the part impractical to forge. Therefore, type 410 steel castings were obtained and tested for comparison with the titanium castings.

The Bracket was prepared for testing by milling both faces of the two heavy luss and a slot in the small lug and then drilling and reaming the fastener holes. Castings were considered satisfactory for testing if X-ray defects were absent in all areas except the web and the two flanges which received almost no load. In those areas, slight shrinkage porosity was accepted. The castings were fatigue tested using the lig shown in Figure E2 and static tested in a conventional tensile test machine using a similar lig. The castings were loaded 26.6° from vertical (as shown in Figure E2) to provide a horizontal load equal to one half the vertical load.

All of the type 410 steel costings were X-ray sound and were heat it ated by the vendor to 180,000 psi minimum ultimate tensile strength, 150,000 psi minimum yield strength, and 25 per cent minimum reduction of area. The TI-6Al-4V castings were in the as-cast condition and had not been pickled.

Four cast Ti-6Al-4V brackets and one type 410 steel bracket were statically loaded to failure. The four cast Ti-6Al-4V brackets failed at the mounting hole in the upper large lag (Figure E3) at 24,400, 27,900, 25,000, and 21,800 pounds load. The type 410 steel bracket failed in the upper flange (Figure E3) at 34,100 pounds load. The average of the four cast Ti-5Al-4V values is 73 per cent of the ultimate load for the type 410 steel bracket. This value is very close to the ratios of ultimate teraile strengths of the two materials.

Ten cast Ti-6Al-4V Brackers and seven cast 410 steel brackets were fatigue tested for comparison of fatigue properties. Table J23 and Figure E4 show the results of these tests. The fatigue strength of the Ti-6Al-4V castings at any given number of cycles is 55 to 60 per cent of that of the 410 steel castings.

An additional series of fatigue tests was conducted on a modified version of the Bracket to determine the necessity of chemical removal of surface material from the as-cast surface. Since several of the brackets already tested failed adjacent to the machined mounting hole, in the upper lug, that lug was thickened by twenty per cent to make the casting fail in the flange, which had an as-cast surface. In addition the flange was tapered from its midpoint toward the lugs to encourage failure at the flange midpoint. Although the static strength of the modified design was an average of 37,000 pounds load for three tests (compared to 25,000 pounds for the unmodified design), the casting continued to fail frequently at the same machined hole. For this reason, a tension fatigue specimen having a gage diameter of 0.5 inch was designed and used for the chemical removal study. The results of this study are reported on pages B59 and B60, in Figure B30, and Table J16.

FIGURE E1

NOTCHED TENSILE TEST SPECIMEN $(K_t = 3.3)$

FIGURE E2

SETUP FOR FATIGUE TEST OF DEVELOPMENTAL BRACKET

FIGURE E3

FIGURE E4

RESULTS OF FATIGUE TESTS OF THE DEVELOPMENTAL BRACKET

LOAD CYCLES

Testing of The Flag Track Link

Two types of tests were used to evaluat. The cast Ti-6Al-4V Flap Track Link. One production AIS1 4340 steel part and one cast Ti-6Al-4V part were static compression loaded to failure as shown in Figure E5. Three steel parts and six cast Ti-6Al-4V parts were fatigue loaded to failure.

The AISI 4340 parts were obtained directly from production stock in the finished condition. They had been heat treated to the 180,000 to 200,000 psi ultimate strength range. The Ti-6Al-4V castings were in the as-cast condition and had been pickled to remove .015 inches material thickness per surface. The static tests failed the steel component at 127,600 pounds load and the cast Ti-6Al-4V component failed at 104,700 pounds load. The mechanism of failure was uniform bending of the shank for the steel part and localized crippling of the tubular portion of the cast Ti-6Al-4V part.

The fatigue tests were conducted in a fixture designed to load the part in combined bending and torsion, to simulate expected service conditions. The torsional load on the part is equal to 6.17 times the bending load. The results of the fatigue tests are as follows:

Material	Bending Load, Pounds	Cycles to Failure
Steel	5000	4,667
	3000	24, 330
	2000	148,231
Cast Ti-6Al-4V	2000	11,602
	2000	6,057
	1500	66, <u>408</u>
	1500	57,557
	1000	216,833
	1000	1,000,000
		(Not falled)

Figure E6 is a S-N curve of these test results.

FIGURE E5 FIXTURE FOR COMPRESSION TESTING OF FLAP TRACK LINK

FIGURE E6

RESULTS OF FATIGUE TESTS OF THE FLAP TRACK LINK

Testing of The Sway Brace Case

Static tests were used to compare the properties of five cast Ti-6Al-4V components with two production cast type 410 steel components heat treated to the 150,000 psi ultimate tensile strength level. The Ti-6Al-4V castings were in the as-cast condition.

The test setup and loading conditions were as shown in Figure E7 and were designed to simulate actual service loads.

No casting failures were experienced in the tests which loaded the large lugs in compression (Test B in Figure E7). In all trials, the bolt which loaded the lug failed in shear.

The 410 steel cast Sway Brace Cases tested as shown in Test A (Figure E6) failed at 32,700 pounds and 35,300 pounds tension load. Both failures were in the upper lug and exhibited good ductility. The five Ti-6Al-4V castings failed at 22,900; 23,400; 25,000; and 28,600 pounds tension loads at the same location. These failures exhibited fair ductility but not equivalent to the 410 steel test parts.

FIGURE E7

TEST FIXTURES FOR THE SWAY BRACE CASE

Testing of The Elevator Torsion Fitting

This component is a part of a missile control system and was designed for rigidity rather than strength or fatigue requirements. Consequently, the evaluation tests were comparisons of rigidity of the cast Ti-6Al-4V part and the production AISI 4340 steel part which was machined from bar stock. The Ti-6Al-4V parts were in the as-cast condition and the steel parts had been heat treated to the IBO,000-200,000 psi ultimate strength level. (Since these parts were obtained, this production component has been redesigned as a type 410 steel casting.)

The Torsion Fittings were tested in a fixture adapted to a conventional torsion test machine. The torsion load was fed into the slotted center hole and the reaction load restrained at the channel ends. Deflection of the parts was measured by dial indicators supported by the load imput bolts and cantilevered to the channel ends. A schematic load diagram is shown in Figure E8. Typical load-deflection curves obtained from these tests are shown as Figures E9 and E10.

FIGURE E8

LOAD SCHEMATIC FOR ELEVATOR TORSION FITTING

FIGURE E9

RESULTS OF DEFLECTION TEST OF CAST TI-(AI-4V ELEVATOR TORSION FITTING

HGURF F10

RESULTS OF DEFLECTION TEST OF A SILEL ELEVATOR TORSION FITTING

DEFLECTION, INCHES

Testing of The Inboard Horizontal Stabilizer Rib

Since this part was not satisfactorily-produced as a titanium alloy casting, no tests were conducted.

D2-2786-8 F1

SECTION F

SPECIFICATION AND DESIGN CRITERIA

DEVELOPMENT OF CASTING SPECIFICATIONS

A tentative material specification for procurement of air-frame quality Ti-6Al-4V castings has been developed and is presented on page F3. This specification is based on the conclusions made from the development work conducted in this program and from experience gained in development and use of other casting specifications.

TENTATIVE SPECIFICATION - TITANIUM ALLOY CASTINGS (Ti-6Al-4V)

Tentative Boeing Material Specification BMS 7-111
Oregon Metallurgical Corporation Specification—OMC 164

1. ACKNOWLEDGMENTS:

1.1 A vendor shall mention this specification number in all pertinent quotations and when acknowledging purchase orders.

2. APPLICABLE SPECIFICATIONS:

- 2.1 The following specifications, of the issue in effect on date of invitation for bids, form a part of this specification to the extent herein described:
- 2.1.1 MIL-1-6865 Inspection, Radiographic
- 2.1.2 MIL-1-6866 Inspection, Penetrant
- 2.1.3 MIL-C-6021 Castings, Classification and Inspection.
- 2.1.4 Federal Test Method Standard No. 151
- 2.1.5 Reference Radiographs for Titanium Castings (Boeing Document D2-2786-9)

3. APPLICATION:

3.1 This specification is primarily for high strength titanium alloy aircraft castings requiring room temperature ultimate tensile strength above 140,000 psi, light weight, and good corrosion resistance.

4. TYPES AND GRADES:

- 4.1 Unless otherwise specified, castings are to be in the as-cast condition. If annealed condition is specified, the annealing heat treatment shall be 1000°F for 4 hours followed by air cool.
- 4.2 Casting classification shall be as specified on the applicable casting drawing. Class definitions shall be as specified in MIL-C-6021.

5. CASTING METHOD:

5.1 Costing molds shall be rammed graphite mixed with suitable binders, unless otherwise specified

5.2 Melting shall be by the vaccoun double-melt process when the titanium source is either raw sponge or raw sponge compacts. Use of titanium solids in preparation of electrode stock is permitted, provided all other requirements of this specification are met. All melting shall be by the vacuum consumable-electrode process.

6. COMPOSITION:

6.1 Costings shall be of the following composition:

	Weight Per Cent
Carbon	.10 max.
Hydrogen	.015 max.
Nitrogen	.07 max.
Oxygen	.25 max.
hon	.30 max.
Aluminum	5.5 - 6.5
Variation	3.5 - 4.5
Other Elements	.4 max.
Titanium	Balance

6.2 Each heat shall be analyzed for each of the elements listed in paragraph 6.1 except titanium. Chemical analysis of each lot shall be certified by the vendor. Analysis for hydrogen shall be on samples removed after all vendor processing. All analyses shall be performed using equipment and procedures approved by the procuring agency. Hydrogen analysis sample shall be removed from a location designated on the casting drawing, or from a separate coupon from the same heat and processed at the same time as the casting lot. This coupon shall be no thicker than the thinnest section of the casting.

QUALITY:

- 7.1 Castings shall be uniform in quality and condition, well cleaned, and have a uniformly smooth surface compatible with the casting process. Castings shall be free of surface contamination (such as oxygen, nitrogen, or other foreign contaminants).
- 7.2 Unless otherwise specified, metallic gift or shot shall not be used for final cleaning.
- 7.3 Costings shall not be repaired by plugging, walding, paening, or other methods without written parameters of the procuring agency.

- 7.4 The areas of castings subject to soundness requirements shall be as specified, and the number and extent of defects in such areas shall not be greater than indicated by the standard furnished or approved by the procuring agency. Combinations of cracks, shrinkage cavities, cold shuts, misruns, or other defects not individually cause for rejection, but which are so aligned as to cause stress concentration are cause for rejection.
- 7.5 When soundness is specified in accordance with paragraph 7.4, it shall be determined in accordance with visual, penetrant, and radiographic inspection methods established by MIL-C-6021, MIL-I-6865, and MIL-I-6866.

8. TENSILE PROPERTIES:

- 8.1 All test specimers shall be cast in a graphite mold in the same heat and in the same manner as the castings which they represent.
- 8.2 Two cast test bars per heat shall be furnished to the purchaser. Bars shall be of sufficient size to be machined into type R3 specimen in accordance with Method 211.1 of Federal Test Method Standard No. 151.
- 8.3 Vendors shall conduct at least two tensile tests per heat.
- 8.4 Tensile tests are to be performed in accordance with Federal Test Method Standard No. 151 using type R3 specimen. Strain rate shall be .005 ± .002 in/in/min through 0.2 per cent strain.
- 8.5 Tensile properties of each separately cast specimen or specimen sectioned from a critical area of a 1A casting shall meet or exceed the following minimum values:

Ultimate tensile strength			_			_	-	-	-		-	-	-		-	-	-	-	-	140,000 p!
Yield tensile strength (.29	%	offs	et)	-	-		-	-					-	_	-		-			122,000 ps
Elongation	-		-		-	_	-	-	_	-	-	-		~	-	-	-		-	5 per cer
Reduction of area	_		_	_	_		~	_	-			_	_		-	_	_		_	10 per cer

9. IDENTIFICATION:

9.1 Unless otherwise specified, each casting shall be identified with the part number and a vendor identification symbol approved by the purchaser by the use of raised figures in a location indicated on the drawing. When no location is shown on the drawing, the number shall be so located as not to be machined off in finishing to the required casting dimensions. Such numbers shall not be at indicated tool point locations.

CHEMICAL REMOVAL OF SURFACE MATERIAL

10.1 If pickling is specified, castings shall be pickled to remove .015 inch minimum material thickness per surface. Foreign material, such as particles of mold, adhering to the casting surface shall be removed prior to pickling. Castings shall not be peened, abrasive blasted or otherwise finished after pickling, unless otherwise specified.

11. CERTIFICATION:

11.1 Three copies of a quality certification shall accompany or precede each lot of castings. The certification shall include results of analyses in accordance with paragraph 6.2, the results of tensile tests in accordance with paragraphs 8.3 and 8.4, the vendors heat number, the thickness of material removed by pickling in accordance with paragraph 10.1, the quantity of castings constituting that lot, the casting part number, and the purchase order number.

12. DEFINITIONS:

- 12.1 A lot consists of castings of the same heat, the same configuration, the same condition, processed at the same time, and submitted for inspection at the same time.
- 12.2 A heat consists of the material produced in one melting and pouring cycle.

DEVELOPMENT OF MINIMUM PROPERTY VALUES

A group of 196 heats of cost Ti-6A1-4V alloy were studied to establish minimum property values for separately cast test bars, for design purposes. The heats were all those produced prior to the production run which were within the composition limits established by the specification (page F3) and for which mechanical properties data were available, with the exception of a small number of experimental low-interstitial heats which were poured during study of melting practice.

The ultimate tensile strength, yield strength, elongation, and reduction of area values for these heats were averaged and the standard deviations determined by conventional statistical analysis methods as shown in the appendix to this report.

Both "A" and "B" design values were determined. For a "normal" distribution, "A" values assure to a 95% confidence level that 99 percent of the distribution will exceed the "A" value given. The "B" design value assures to the same confidence level that 90 per cent of the distribution will exceed the "B" value. Although mechanical property distributions are not "normal" in that the distribution curve is slightly skewed toward the high-value end of the curve, this analysis method is convenient and the small error involved is in the conservative direction.

In accordance with Convair Astronautics Document AZS-27-274 "Statistical Determination of Strength Properties", 2.573 standard deviations were subtracted from the property averages to establish "A" design values and 1.452 standard deviations were subtracted from the averages to establish "B" values. This method is usually applied to strength values, but is also suitable for establishing the ductility minimums. The averages, "A" values, and "B" values obtained were as follows:

	Avetage	"A" Minimum	"B" Minimum
Ultimate Tensile Strength, KSI	146.8	135.0	140.0
Yield Strength, KSI, .2% Offset	129.8	0.611	122.0
Elongation, per cent	0.8	3.2	5.3
Reduction of Area, per cent	15.3	5.7	9.6

COMPRESSION, BEARING, AND SHEAR PROPERTIES

Room temperature compression, bearing, and shear tests were conducted to provide basic properties values for design purposes. Tensile tests from the same heats were also conducted for reference. The results were as follows:

Tensile Tests

Heat Number	Ultimate Tensile Strength, KSI	Yield Strength, KSI (.2%)	Elong. Per Cent	R.A., Per Cent
P441	152.5	138.0	9	17
P483	141.3	129.0	12	18
P494	143.5	130.5	10	1 <i>7</i>

Compression Tests

Heat Number	Yield Strength, KSI (.2%)	Modulus of Elasticity, KSI
P441	141.0	18.3
P483	148.7	17.9
P494	135.5	17.7

Bearing Tests

Heat Number	Ultimate Bearing Strength, KSI	Yield Bearing Strength, KSI*	Hole Diameter, Inches	Edge Margin , Inches
P441	239.1	215.9	.1599	.2566
P483	225.0	194.1	.1600	.2573
P494	235,0	208.9	. 1599	.2574

^{*} Based on offset of 2 per cent of hole diameter

Shear Tests

Heat Number	Ultimate Shear Stress, KS1
P441	96.3
P483	90.8
P494	97.3

DEVELOPMENT OF REFERENCE RADIOGRAPHS

X-ray reference radiographs were prepared from specimens machined from the discs which were cast during the feeding studies. The radiographs of the discs of proper thickness (1/4, 1/2, and 1 inch thicknesses) were examined and sections which represented reasonable gas and shrinkage porosity quality gradients were selected and machined from the discs. Other casting imperfections found in steel, aluminum, and magnesium alloy castings (such as heavy inclusions, dross, microshrinkage, segregation, internal cracks, and internal cold liuts) were not experienced in the titanium alloy castings, with the exception of mold material (graphite) inclusions. This defect was not often observed, and when it was found, it was similar in appearance on the radiograph to shrinkage porosity. Consequently, the defects shown in the shrinkage porosity reference radiographs can be applied to graphite inclusions, since the appearance and stress concentration effects of these types of defects are similar. The reference radiographs are attached to the back cover of this report so that they may be readily removed for use. These radiographs were prepared to a film density of 1.9 to 2.2 (American Standard Printing Density P2-3) so that they may be directly compared to typical casting radiographs.

DEVELOPMENT OF DIMENSIONAL TOLERANCE CRITERIA

Nine dimensions were selected from the Development Bracket and the Flap Track Link for analysis of deviations from the desired dimensions. The dimensions were selected to enable separation of the effects of parting plane causes of deviation from the basic tolerance characteristics of the rammed graphite mold casting process. Fifty of each part were studied.

There are several obvious sources of dimensional variance in castings. Examples are; deviation of the pattern dimensions from the desired nominal dimensions, the inaccuracy of the established average shrinkage of mold and metal, the variations in mold and metal shrinkage from the established average, the inconsistencies in mold ramming and drawing practice from mold to mold, the inability of the foundry to establish the proper pattern dimensional corrections after a casting trial (due to the impracticality of pouring enough trial casting to establish true process average dimensions), variations in casting cleanup practice (removal of gates, risers, flash, etc.), variations in pouring temperature and practice, and variations in mold material quality and in mixture ratios.

The effects of these causes of dimensional variation are cumulative and each cause represents a separate avenue for potential improvement in dimensional quality.

The dimensions selected for study represent three general types of tolerances. Four simple dimensions which were not across the parting plane were selected for establishment of a basic tolerance. These dimensions varied from .2 to 9.6 inches. Three dimensions of similar magnitude but across and parallel to the parting plane were selected to separate the effects of pattern and mold mismatch. Two dimensions which were across and perpendicular to the parting plane were studied to separate the effects of poor parting plane fitup other than mismatch.

The results of these studies are in Table J24 and frequency distribution bar charts for each of the dimensions studied are presented as Figures F1 through F9. Recommended minimum design tolerances were computed from these data. The actual values for each dimension were averaged and the standard deviation was then calculated as explained in the Appendix. Three standard deviations were used to

establish the recommended winimum tolerances. Such a tolerance will make approximately 99.7 per cent of the dimensions in a normal distribution acceptable, provided that the average of the distribution is exactly the desired nominal dimension. Obviously, it never will be; therefore, the actual number of rejected dimensions will be greater than the 0.3 per cent implied, the amount dependent on how close the foundry can make their average approach the desired nominal dimensions. The usual practice is to cast one or two trial pieces, inspect them, and make pattern corrections. This practice will reveal only large errors, since any dimension on one individual part will rarely indicate the average of a large number of pieces.

General rules for recommended design dimensional tolerances for dimensions up to ten inches were derived from the results of this study, as follows:

- (a) For simple dimensions under one inch that do not cross the mold parting plane, use a basic dimensional tolerance of plus or minus .015 inch. If the dimension exceeds one inch, add .005 inches to the basic tolerance for each whole inch. Examples are 0.620 ± .015, 1.135 ± .020, 4.720 ± .035.
- (b) For dimensions that cross the parting plane and are essentially perpendicular to it, add .008 Inch to the tolerance calculated as in (a) above. Examples are $0.620 \pm .023$, $1.135 \pm .028$, $4.720 \pm .043$.
- (c) For dimensions that cross the parting plane and are essentially parallel to it (i.e. mismatch), add .020 inch to the tolerance calculated as in (a) above. Examples are .620 ± .035, 1.135 ± .040, 4.720 ± .055.

These dimensional tolerances represent minimums. Larger tolerances should be used when practical. It is anticipated that some improvement in available minimum tolerances (particularly in mismatch) will occur as the mold preparation process becomes mechanized. All rammed molds in this program were manually prepared with the aid of a pneumatic rammer.

FIGURE FI

DIMENSION DISTRIBUTION IN DEVELOPMENTAL BRACKET

This dimension is Lasic, both surfaces being in the same mold half. The desired dimension was .200 \pm .015 inches.

FIGURE F2

DIMENSION DISTRIBUTION IN DEVELOPMENTAL BRACKET

This dimension is basic, both surfaces being in the same mold half. The desired dimension was .650 \pm .015 inches.

FIGURE F3

This dimension is basic, both surfaces being in the same mold half. The desired dimension was 3.050 \pm .015 inches.

DIMENSIONAL DISTRIBUTION IN DEVELOPMENTAL BRACKET

DIMENSIONAL DISTRIBUTION IN FLAP TRACK LINK

This dimension is basic, both surfaces being in the same mold half. This dimension was not directly specified on the engineering drawing, but is controlled by two cumulative dimensions. It was selected because it was convenient to measure and represents a large dimension on the part.

DIMENSION, INCHES

DIMENSIONAL DISTRIBUTION OF DEVELOPMENTAL BRACKET

This dimension is across the parting plane and is perpendicular to it. It represents the basic tolerance plus the added dimensional variations resulting from misfit of the mold parting plane. It does not involve mismatch. The desired dimension was 1.520 + .025 - .015 inches.

DIMENSION, INCHES

DIMENSIONAL DISTRIBUTION OF DEVELOPMENTAL BRACKET

This dimension is across the parting plane and is perpendicular to it. It represents the basic tolerance plus the added dimensional variations resulting from misfit of the mold parting plane. It does not involve mismatch. The desired dimension was $2.520 \pm .025 - .015$ inches.

DIMENSION, INCHES

DIMENSIONAL DISTRIBUTION OF DEVELOPMENTAL BRACKET

This dimension is across the parting plane and is parallel to it. It represents the basic dimensional tolerance plus the added variations resulting from pattern and mold mismatch. The desired dimension was not directly specified. It was measured for comparison with Figure F2 to separate mismatch effects.

DIMENSIONAL DISTRIBUTION OF DEVELOPMENTAL BRACKET

This dimension is across and parallel to the parting plane. It represents the basic tolerance plus effects of pattern and mold mismatch. The desired dimension was $3.050 \pm .015$ inches.

DIMENSION, INCHES

DIMENSIONAL DISTRIBUTION OF FLAP TRACK LINK

This dimension is across and parallel to the parting plane. It represents the basic tolerance plus effects of pattern and mold mismatch. The desired dimension was $10.630 \pm .050$ inches.

DIMENSION, INCHES

CONCLUSIONS

SECTION G

.

*3

The following conclusions are based on the development work performed during this program. They are listed in the same order as the corresponding discussions in this report, except for the first three conclusions which are of a general nature.

- 1. A complete commercially feasible process was developed for production of titanium alloy castings of the type, sizes, and quality required for aircraft and missile application.
- 2. A practical demonstration of the process was accomplished by production of quantity lots of several airframe structural shapes.
- 3. A procurement specification, quality control procedure, inspection standards, and design criteria were established to permit production application of titanium alloy castings.
- 4. A vacuum, consumable-electrode, arc furnace with water-cooled copper, tilt pour crucible is suitable for melting and pouring of production heats of titanium alloys.
- 5. Preparation of melting electrode stock may be satisfactorily done by inert-gas shielded arc welding of pressure-compacted titanium sponge mechanically mixed with the proper alloying additions, or by similar welding of titanium solids from previous melting operations. Care in welding must be exercised to minimize oxygen and nitrogen contamination of the electrode stock.
- 6. Foundry and other scrap may be satisfactorily recycled to produce aircraft quality titenium castings, provided additional low-interstitial stock is added to dilute the interstitial content. It will be necessary to occasionally discard foundry scrap if the interstitial level becomes too high. This requirement can be minimized if electrode welding is conducted in an inert gas chamber.
- 7. An expendable rammed graphite mold has been found suitable for production casting of titanium alleys. Properties of the mold were developed and are presented and discussed in Section B of this report.

- 8. A graphite-base shell mold was developed, which with further development aimed at increasing its resistance to penetration, offers considerable potential as a production mold. At the present stage of development, shell graphite molds are suitable for small shapes.
- 9. Development of an investment graphite mold suitable for casting of titanium was partially accomplished. The successful development of such a mold appears feasible if based on the use of graphite.
- 10. Used rammed graphite mold materials were satisfactorily reused to make new molds.
- 11. Feeding characteristics were determined for titanium alloy Ti-6Al-4V cast in ramined and machined graphite molds.
- 12. Shrinkage porosity in cast titanium appears as distinct voids on the X-ray film, rather than as cloudy low-density areas.
- 13. Less taper is generally required in rammed than in machined graphite molds, for equivalent soundness.
- 14. Increasing the amount of taper progressively improves feeding distance in rammed molds. In the case of machined graphite molds the feeding distance decreased until taper exceeded three or four degrees, and then increased.
- 15. The effectiveness of taper decreases as the section thickness in increased.
- 16. The tapers required to cast sound sections were established in relation to thickness and are shown in Figure B18.
- 17. The use of heated molds did not appreciably improve the feeding of cast Ti-6Al-4V but did decrease the gas porosity problem, apparently because of reduced moisture pickup during mold assembly.
- 18. The feeding distance in shell graphite molds appeared to be significantly superior to rammed and machined graphite molds.

- 19. The feeding characteristics of centrifuge cast Ti-6Al-4V discs were not significantly different from the similar discs which were statically cast.
- 20. Castings which are centrifuge cast should be fed such that the metal enters the mold from the trailing side of the casting and from the outside (away from the centrifuge axis). This is necessary to minimize poor casting surface resulting from turbulent metal flow into the mold cavity.
- 21. Removal of gates and risers from the castings by power saw or abrasive cut-off wheel have been found to be satisfactory.

 Use of oxy-acetylene torch increases interstitial contamination of the scrap and requires excessive hand grinding to clean up the casting.
- 22. Grinding and belt sanding is satisfactory for primary clean up of titanium castings. Grit blasting is satisfactory for removal of mold particles and surface oxides. Sand blasting is satisfactory for final clean up.
- 23. A satisfactory acid solution and processing technique was developed for chemical removal of surface material from titanium castings.
- 24. For best failigue properties, 0.015 inch per surface should be chemically removed from Ti-6Al-4V castings, using the solution and process developed.
- 25. At the present stage of development, unalloyed titanium and Ti-6Al-4V are suitable for "standard" casting alloys.
- 26. A satisfactory heat treatment to improve the properties of cast Ti-6Al-4V was not developed, the best properties being obtained in the as-cast condition.
- 27. Ti-2Cu casting alloy has ductility superior to cast unalloyed titanium which has been strengthened to the same level by interstitial additions.

- 28. The properties of a titanium costing alloy containing four to six per cent aluminum, four to six per cent tin, eight to ten per cent zirconium, and two to four per cent vanadium are slightly better than those of cast Ti-6Al-4V. Additional work is needed to establish the best composition for this alloy.
- 29. The effects of the interstitial and alloying elements in cast Ti-6Al-4V were determined. Composition limits were established.
- 30. Elevated temperature tensile properties for as-cast Ti-6Al-4V were determined.
- 31. Four of the five shapes selected for study as titanium alloy castings were successfully developed and produced. The fifth shape was too large for the available equipment.
- 32. Properties of the four developed shapes were compared with the corresponding production components by structural testing.
- 33. Statistically valid minimum design allowables were established for the as-cast Ti-6Al-4V alloy.
- Minimum dimensional tolerances for design purposes were determined.

D2-2786-8 H 1

SECTION H

RECOMMENDATIONS

The following recommendations are based on the work done during this contract.

- 1. Further development of an investment casting mold and process is recommended.
- 2. Further development of casting alloys is recommended, almed at higher strength properties.
- 3. Development of composition limits and a casting specification for the four to six per cent aluminum, eight to ten per cent zirconium, and two to four per cent vanadium titanium casting alloy is recommended, to take advantage of the superiority of this alloy over the Ti-6Al-4V casting alloy.

SECTION J

TABLE J1

Fluidity Gross Net Spirel Heat Wt. Heat Wt. Percent Numidity in, Lb. Lb. Yield Pricent in, Lb. 12.75 25. 27. 25. 5.5 5.5 22.8 34.8 14.5 30.3 22.063 15.063 18.50 23.28.22 23.28.22 23.33 16.62 13.81 36.0 92.063 92.063 2.25.28 2.35.28 2.35.25 96.50 86.33 97.94 30.4₹ 86 .:3 91.37 93.37 93.62 18.25 118.19 16.75 14.5 None ъ ъ Q 2 SKULL VT. Start Finish LF. Lb. 22.31 15.75 4.7 17.88 14.13 13.50 16.31 15.0 14.0 27.75 33.31 16.25 6.56 13.75 19.0 15.25 28.50 35.4 37.25 2.58 22.37 250 300 300 8 8 175 38 250 \$4828 **2**3 5 6 8 3 2 8 S 88 ន្ត 82 85 5 2 8 5 3 HELTING Time Elect, Cruci, Min, Dia, Dia,in, 1 Ĵ Volt 7 333 33 7 4 7 \$ ¥¥ 7 ş 3 33 3 W 2 3 12,000 12,000 12,000 12,000 12,000 7.000 12,000 12,000 12,000 71641-4V 1547-154517 11681-LV 11111 33333 FFFFF 71681-4V 71681-41 7:541 L 7 164 1-4V TIBA!-+ 71641-47 TIÓAILL 716A) ---11621 Ti6.81-4V Ti6A1-4 4 22- 7 77 7.7.7 ä 7 7-77 á 24 - tem q n p ~ wm = 1

TABLES

TABLE J1 (Continued)

2					WELT IN				VACUUP	ᇷ	S	SKILL VI		Fluidity	6 1088		
	¥	hateria	Amps	Valt	Min.	Dia.	Dia.in.	Start	Felt Felt	Pour	S MIN.	, e	ŀ	Spire.		E	Yield terre
	:: ដក់	11661-1	12,006	¥ ¥	4.14		ψιV	27.5 57.5	388	350		36.0	12.75	**	86.50 65.0	11.69	3.5
	17.7	Tick1-4; Tick-4; Tick1-2;Sn	7,000	¥7¥	W.4.W 1-100	410	თთთ	845	3.55 S	175 200 175		17.75 33.13 36.81	3.50 19.97	3.5 3.5	93.88 93.88	32.4 32.4	15.3 22 34.6
	4.4	11.	12,000	77	33.	ψv	ማ ማ	ደደ	200 200 200 200 200 200 200 200 200 200	320		30.50	16.50	7 7 7	92.0 83.50	1.55 1.86	17.9
	à	71641-17	12,000	¥:	5.6	Ŷ	7.	250	300	750		0.04	29 , 25	#is rus	113.62	20.62	7.71
	22-2	7 (64)-4.	12.000	;	φ. •		Ŋ	8	8	900		34.37	16.25	ŭ	100.37	36.56	16
	21-22	1.13v+11Cr-2g4	12,006	3	5.3	r ~	σı	3	g 2 8	33	•	6.19	13.19	2	86.37	35.19	37.6
	7	71641-41	12,006	¥	3.2		ø	8	ខ្ពុខ្ពុ	290	5	74.0 34.0	9.0	NO.	74.25	42.13	56.7
	17-77	716A1-41	300,2,	¥	5.27		O)	50	288	500		31.15	17.0	2	90.37	16.88	18.7
	ź	1:66:44	17,000	75	3.92		Ŋ	22	វី៩ដ	275		26.13	30.66	92	75.50	15.50	20.5
	40 ² 4 3333	T. 13. 12. 12. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17	200 000 000 000 000 000	794	3.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	.n .o	១ភូមជ្ជ	82.25 82.25 83.25	25822 25822	200 200 200 200 200 200 200 200 200 200		25.75 23.31 21.063	16.75 26.65 10.50 20.75	2222	103.50 70.37 50.0	17.44 10.13 21.0 24.063	0, 1, 20 0,
	2	T:134+135++44	12,000	:×	5.65	r.	ທ	ŧ,	አ	175		5.75	12.81	12.6	16.33	29.81	37.2
	4	1 100	12,000	¥	5.75		ຫ	225	25	999		(Turnings) 32.8) 18.	.8.86 38.86	2	102.0	12.9	12.7
	444	311	444 888 888	443	4-76 50.5 50.0 50.0 50.0 50.0 50.0 50.0 50.	υ	아이었	328	25.7.55 25.7.55	275 175 550		282	14.75 12.86 21.66	16 None 17	81.75 31.0 121.62	75.55 25.65 25.65 25.65	16.65 51.75 21
	42 44	77738-1107-45	12,006	¥¥	6.2 2.05		οιÄ	28	88	250 200 200		20.19	25.19	PCJe	69.0 46.19	16.25	F.35
	ä	7164 41	12,000	7	5.2		ον	ક્ષ	ទីខ	225		37.0	16.56	11	53.86	26.75	28.5
	2.2-5	7.6%	12,030	¥	4 W.		on.	8	325	900		23.31	19.71	12.5	88 .58	38.4	17.2
	ä	71134-11C-	12,000	36	'n	7	ø,	ደ	3 = 8	175		2	13.56	Ξ	83.62	32.66	39.2
	22-3	71641-41	12,000	¥	6.25	•	σı	150	35.5	800		23.75	14.81	14.5	98.75	12,15	12.3
	4	7 16k1-4,	12,000	ij.	ς; δ.	v	σι	125	328	909		27.81	20.0	±	92.61	12.37	13.35

TABLE J1 (Continued)

					MELT MG				VACUUM	- MICRONS	ın	SKULI	SKULL WT.	Fluidity	Gross	ž		
,	Örber Mc.	4.55	Ş.	volt.		Elec . Die.	Crucible Die.ir.	Start	During	After Pour	5 Min. Leek Rate	Start Lb.	Finish tb.	Spiral in.	Heat Wt.	ž	Percent Yield	Humidity Percent
7-56	<u>.</u>	7.16A)41/	12,000	ş	1.35		6	150	32	004		24.19	16.88	Mone	18.44	11.31	61.5	
ž.	52-23	í. Led	12,003	3	4.2	6.5	ø,	જ	Q.O.	125		15,31	19.37	None	62.75	3.	8.85	
Ą	2-12	5 4 7 i	12,000	3	4,5	6.5	ø	8	85.2	8		0.	15.69	None	£.9	5.56	9.78	
	1	T1138-116F	12,000	4.2	2.35		ø,	8	8.	00 72		21,0	10.62	None	46.64	23.31	€6.75	
 	27-77	T4134-112r	12,000	الا ج 50 م	5.30	7	12	2		ž		0.1	13.13	2	86.62	32.94	37	
ņ.	<u>.</u>	11541-4V	12,000	333	5.23	^	ው ጥ	ደደ	448	275 170		28.3	16.0	23.5	102.13 &6.62	20.69 30.69	3.5.7 3.6.5.2	
\$3 6	ä	1.546.1544 1.57 F. 1.25 1.20 C. 1.20	200'91	9	3.	,	ø,	S.	882	371		9.50	22.75	52	84.94	25.69	35	
, K	7.1	Til3V-:16r	12,000	3	8.5		øν	55	8	2 82		8. 8.	5.75	φ	60.75	26.69	‡	
į	24.5	Tibel	12,003	7			12	250	8 5K	off.		0.34	91.61	None	132.75	0.31	11.3	
4	á	7.741-3MC	2,03	1X:	29.4	۲	งา	9	. į	190 190		31.37	20.25	18.5	93.62	\$.75	36	
٠ ن پ	Ä	12 Fe, 25	12,000	7 † ?	4.75	7 + Recycle	Ø	ä	និឌុឌ	572		32.75	0.35	17	93.37	30.62	32.5	
2.1	;	13	12,033	3	5.6	Recycle	ďη	350	330	750		30.52	18.62	<u>.</u>	105.31	17.063	16.2	
12-4	4	7.12	12,030	\$	5.70	Recycle	Ø	ន	202	900		32.37	, 5.0	91	96.37	95.0	17.85	
11/14	35 .1	44-140-1	12,000	3	3.00	Recycle	Ŋ	35	321	350		7.50	38.	None	₹ 22.	15.063	27.2	
ř.	7	7.041-4V	12,005	3	5.45	Recycle	σı	8	37.	550		26.19	17.19	14.5	19.76	16.50	6.9	
7.7	34	118	12,000	¥¥	4 . 4 5	۲-۷	ውው	4 Q 2 Q	888	300 275		26.52 26.52	17.50	None	32	25.35	94.0 0.2	
ا7-4	2 .	T:641-41	12,000	¥	8.	IJ	on.	25 25	250 on Recy.	.y. 250		18.81	17.56	None	85.56	21.94	25.6	
11.4	ង់ដំ	1135	12,000	¥ ¥	8°2.	7 Recycle	መማ	- KR	5 % 3	Q		25.0	16.56	No se	87.50 87.50	30.75	35.2	
7.7 2.3	.i.i	33	12,000	¥¥	5.5	Recycle Recycle	መወ	22.23	25-250 55-225	250 250		30.4	11.69	None Sone	39.0	10.25	 	
	44	716A1-4V	12,000	¥¥.	200	Recycle Recycle	ማ ማ		60-175		8/min.	28.0	12.19	None	29.37	25.45	29.8 30.6	
·		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	98.1	¥3	~ ~ ~ 2,2,3	Recycle Kacycle	თ თ თ	** 67 57	100 50-275 150-330	202	5/æin.	27.0	 	None Rone	35.75 25.75		28.2	
	. 77		Ì	l	in 19	Net ye is	Pa.		2412			,	7.7	Š		5.		

TABLE J1 (Continued)

MELTING RECORD

																						T/	۹	B	L	= 0	5																	
	Percent numidity								-21																															eject				
	7-0-14 7:0-14		Α, 1		2,0	, ,		į	10.00			,		.,	:	3 1	20.5	, ,	3,45			7.1.7			4:	: '		25.0	17.	1 1	7 7	13		24.6		27.50	2. t. C	Ω. Œ		Zl.l~Reject		3	28.30	ì
ž	heat wt.		(4)	¥.			2,5	}	See '22.	1	,		υ -	7. 7. 7.	:	 	JC	7,1		30.	3	24 66	,		7	3	21.00	22.61	5	100	1	See		46.72	1.62	21.37	22.37	6.62	:	_ :	, t . c . c . c . c . c . c . c . c . c .	75.37	4	3
5202	heat wt.		20.75	37.56	ć	9	10.00	•	() ()	1	3	,		7	:		8	.X.	1	,	1	35 1.			4	, , , , , , , , , , , , , , , , , , ,	75.50	75.063		\ };	3 1	·		6+.37	36.62	77.37	53.0	ပ ပ		27.	, t	0 C	94.7C	
Fluicity	Spira		PO 2	Aco.	40.04	4	9	?	Acce	4			e Co Z	NO.	:	15.375	NO.	 	9004		<u>.</u>	200		^ ^	000		e CO Z	1.1	11.00) () () () () ()	14.25C		None	PON	None	PO 2	2036		703e	202	. 403e	. }	ř
11 67.	# E			16.0	14. 7:		, u	:		•	:	! :		 	:	11.25	 5.	1			4.45	13		0	On 1			13				90.5						115.#	•	:X:	9	. t	. c	<u>,</u>
SKLLL	52.8	1	υ\ (1)	35.37	2.	i u	,		16.5		, ,	3	2.	7. 23	;	20.0	<u>.</u>	20.56	1			77		. i			S.	10.25)		1:	21.72	•	4,4	ა. წ	.E.063	.3	17.0			, i	27.77	2 2 2	ž
٠,	5 15 17.								6/815.					5/11.			. c/# in.		7/3:1			11,41			C . L . C		t . /	L . L ()	16					16/Ein.	7./min	S/#in.	17/min.	14/min.		מ שלט	.c. = /h		77/#15	
- PICRONS	19 T g 19	ŝ	9	75.	000	1	ì	į	3				S	::	;	 M	Ç	760	4		ż	;		1		f.	ç,	ć	(-	ř	3	٠ •		Ç,	23	45C	Q	300		22	2 6	3	, ,	3
VAC. JA	פרי יינ	1	75-165	3004350	125-25	1 1 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,	<u>:0</u>		3 1	0.00		¥		.,	۲:	351-337			, ,	3	\$:	ń :	٠.	1	Ş	ŏ		į	¥4	2 13	3	720	165	5 t 4	ដ	SZ SZ		521	/\ i - i	, , , , , , , , , , , , , , , , , , ,	126.150	× .
			9	<u></u>		(;	, i	;	1	•	;	^		Ţ	:	1	-	3	C)) i	Ü	1	۲.	;	<u>.</u>	À.	k,	Ş	3 ;	17 6 4 -1	3 6	. e.	•	¥	Ľ	ä	ij	¥		÷;	4	8) u	ŗ
	6. 00 mg		Jh	U)	, 4	hu	,	u	• •	· ·	٠,	J.	υı		J,	J	J,	د.		۰,	u	•••	۶. ،	dr.	J , .	J,	J	4 6	¥ .	n d	ı, J		٦'n	J,	υ'n	J	J		σ, .	Jı ı	J\ u	n o	n
9	E . 60 C.		Penver.	ي.	400	,	0	אפראני פ	e i u v u e e		2	F.O. C.			,	,	1-	ABCYC.	4		#			9 . U U		1000	4.0.0			700	1 TO 1) 1 1 1 1 1 1 1 1 1 1		Recycle	Recyc. e	Recycle	Fec ve le	Fecycle		Recycie	Recyo.e	Kenyn:	100 de 10	2000
BE 17 1 NG	# !		ö			:	::	;	ų,	:		ó	 	7		:	i	;			, 0	1		1		3	" 1	3				ָר רְי וּי		5.25	3	5.25	u.	3		1, 1,	¥ ;	1 V I	``	ŀ
			. 1	·	•	f *.	f.	f	4	•	í	í	¥	¥		'ŕ	.;	ř	,1	, .	;		; .	i	ť	į	¥	٠,	.	ŕ	, `.	i i	!	ij	. ;	¥	ij	¥		'n		•	- '	-
]			100			; i	;		::		4	98	3			1.33	de			;	•	;	;	8	3	S			,		, i		1,907	1,00	12.99	15.500	205		1.00		2		
		2 2 2	1	į			i 37	;			1	Í		i d		i	1.5	3			; ;			,	3	í	1 1 1 1 1 1 1	1 1 1		į į	i 3 :	4 L T T T T T T T T T T T T T T T T T T		į	4 4 4 5		1	100		3	4	107	j j	1
	0		;				ή.	;			'n	;	;	;			.;				ï		:	ï		:	}	į			;		į	.;		- 17		3		7	1.	.)	;;	'
			201		, .		:::	į	:			:	1	:		.; .;		.,.		•	•				. ; .:							: :		:						:	:			7

Foct Note: i. She!' Core colirosed when poured.

1. Contaminated scrap, Plug in mold came loose,

TABLE J1 (Continued)

3	1031017 Perion						ã E			3 E
	Yield Yield	47.22 4.62.22 4.6.63.4	្ សស្ដ្រ។ ថ្ងៃ ភាពភាពល	23.40 33.40 33.2	::	35.55	<u>いるで</u> 4 18 心のいたにこ	8.22.22.7. 2.4.26.22.52.	28.83.27 2.4.6.6.5.	24.41.8 8 8 7 8 9
Zet.	Lb.	23.23 23.13 22.69	i 222248 5262545 5262546	25.13	12.9	23.62	21.22 21.35 21.35 21.35 21.35 21.35	25.25 25.063 25.063	13.69 14.69 25.37 25.44 11.063	5.5.5. 2.5.4.8.6.2.6.
	9 4	2.2.88.48 2.0.0.48	3 4 2 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	79.0 92.62 86.37	115.37	61.13 86.0	85.38.13.3 8.38.13.3 8.38.12.2 8.41.2	38.35 56.3 82.0 62.37	61.69 62.0 86.37 96.37	96.39 105.13 34/13
Fluidity	30 ra	None None	None None 17.750	A A O D G	6.0	4 03e	7 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	16 22 17 17.25 14.75	22 15 None None	None
5	נים בים	75.50 12.50 12.50 12.50	11.37	25.0 13.69 13.69	ц Ж	10.3	5.65.25 5.05.30 5.05.3	6.25 4.94 3.56 3.56 5.56	5.8.25.25 2.2.25.25 2.2.25.25	4.8.8.2.8 8.6.8.8 8.6.8.8
SKULL WT.		3.8.8. 26.6.9	. 85 × 28 5 0 0 5 8 5 5	23.50	12.81	16.0	17.37 16.0 38.37 16.25	2000 g	25.58 25.58 37.58	28.32 28.32 28.33 28.33 28.33
SX	Lesk Fute	24/min. 28/min. 27/min.	12/min. 24/min. 23/min. 2/min.	21/min. 22/min. 14/min.	5/mln. not bour	5/min. 18/min.	9/min. 15/min. 10/min. 10/min.	10/min. 3/min. 7/min. 10/min.	10/min. 2/min. 8/min. 5/min.	5/min. 3/min. 2/min. 10/min. 2/min.
- HICRONS	Pour	2692	00 00 00 00 00 00 00 00 00 00 00 00 00	320 920 900 900	55. E	55	82888 82888 82888 82888 82888 83888 83888 83888 83888 83888 8388 808 808 8088 808 8	250 250 250 250 250 250	250 750 750 300 300	200000
YALLUN Y	ner r	22.23	35.47. 35.47. 35.77. 37.78. 37.78.	175 689 166 256	85 Sectrode Broke	5.9 9.9	200 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ጀଝጸኝጀ	200000 200000 2000000 2000000000000000	25 25 5 25 25 5 1 1
	Star:	8888	្ត ក <u>រ</u> ិសិសិ	3835		ខន	www.	33785 33785	ន្តនិង្គន្ត	7805
Selection 1	Die. ir.	ດາຜາກຄ	ւ տ գումի գո	ហហហហ	ui vi	ហេ	कलं कड़े कल	சு மு சு சு	សសដ្ដិស	លលក្ខភ្នំស
	9 :	Recycle Recycle Recycle Recycle	Recycle Recycle Recycle Recycle	Aecycle facycle facycle facycle fecycle	Recycle Sample) 	A Recorded A A A A A A A A A A A A A A A A A A	r for fsis	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	Recy ale Recy ale Recy ale Recy ale
FELT ING	<u>.</u>	3.28 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.		3424	8.90 8.90 8.20	46	4.20.000	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	94.34 84.34	49 4444
	Volt	3333	ē ģ∉¥¥¥∵	4444	\$ 4 4	44	44444	****	24444	44444
	A.DS	9000		44444 44444 9000 1000 1000 1000 1000 100	E Electrode 1 (2,000 40 (1,000 46	7, 93 2, 90 2, 90	8888888 888888 114486	41,444 54,65 54,65	44444 8888 8888 8888 8888 8888 8888 88	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Pateria	3333	•	11111	7 19 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 C C C C C C C C C C C C C C C C C C C		7 13, 1-086-14 7-086-3 7-086-3 7-086-3 7-30-10-5	17. 20. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17	14111
0	ž	ដឹងដឹង	- ឯងដំង	ដង់តំដ	:::	ដូច	illette		តំដឹងជំងឺ	ដង់ដង់ដ
5	į		11111 11111	range, and and an	211	#¥ 23	110713	¥7473 11121	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	11111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TABLE JI (Continued)

																		•	TA	\B	L	E:	S																							
	Kumidi ty	Percent	37	į	ţ.	\$ 7	٠ د	ત્ર	29.5	2		7 4	, w)		37	37	37.5	*	22	;	2	×1 6	3 !	, c	n 1	4	J.	33	2	*	74	20	.3	36		36	9 4	(5	::	1 13	,	52	42	.e.	?; ‡ 6	3
	Heat Wt. Percent	Yield	16.0	27.6	3	27:7	25.0	70.5	7	27.3	27.5	24.5	Pour		26.2	27.7	26.9	54.6	9.9		7.7	31.2	0.		; ;	23.3	35.3	26.1	25.5	27.1	12 4	4	21.7	35.	32. 1	44		? ?	7.	27.75		25.0	9.0	χ) - -	₹	0./4
*	Hear W.	9	5.62	25.75	22.20	9	∮ ;	<u>;</u>	26.25	23.81	24.75	23. 88	Broke-Nc		\$. \$	24.37	33.E	24.56	24.75		72.50	2.5 9.5 9.5	9 6	14.5	5	9.19	14.61	15.56	25.25	24.25	12 21	2.5	6.81	22.50	₹ 7	20 33	^ <u>'</u>) d	3 2	25.69		25.56	76.6	3.50	85	45.50
	Heat WL.	tp.	34.44	200	76.37	n R	¥ 9	.	63.44	87.69	91.37	10	E 80 t.		30	3.		99.75	\$0.	, ,	67.63	96) i	. 4.		39.44	6.0	55.37	0.00	90.75	00	7.0	3.5	£. 52	95.8	102	30.5	17.	6	93175		102.0	94.37	87.56	\$, ,
	Š	<u>:</u>	None	9CO2	9 0 2	Č .	9 6		17	¥00	e cox	e cov	¥00		NO.	No.	NO.	None	SO S	1		Son of	200	9 60 2		9	None	9	None	None	2	2	None	<u>,</u>	1.7	2	ğ σ	`=	: =	Son		None	17	<u>۰</u> ۰.	* :	NO DE
7		ė	19.69						9. 9.	18.85	17.69	10.75	50.50		250					17. 13	1	7,4	9 %	, K		7.75	22	ある	14.50	13.50	75. 13	1	8.19	1.1.	13.37	27 66	3	3 4	44.54	33.7		23. 23.	5	2.3		٧٠/٠
SKU	Start	9	 	3;	0	1 0	ָ פֿע	2	10.0	19.75	25.62	22.50	14.62	;	2.00	ţ.	5.3	ဗ္ဗ	£.58	90	9 :	20.01		2 0	:	12,19	29.	56	27.62	17.25	17.25	25.0	17.0	°, =	3.0	ç	0.0	2	7			45.37	8	25.0	2.5	7.70
NS .		Leak Fet	2/min.		E 0 1	, min,	4/min.		S/min.	4/min.	7/min.	3/210.	12/min.		W/ato	ZU/m10.	20/min	15/Ein.	10/min.	20,00	10,411	. (a.i.)	2/4:1	1,1	•	6/min.	3/#10.	5/# in.	15/min.	6/min.	16/min	10/812	6/mën.	7/min.	20/m n	A/min	6/nin.	15/min	, e	9/min.		9/110	12/min.	Z0/mtm.	- 14/Bin-	· · · · · · · · · · · · · · · · · · ·
SMCADIM -	After	7001	8	2 6	3 6	3 6	3	3	3	300	200	8	ı	i	750	â		8	000	8	3	000	2 2	2 5	}	8	8	500	90.	96.	750	250	80.	οj n;	2	000	8	G	8	80		8	8	3 8	3 5	2
VACUUM	During	76.1	83	3 :	34	3 4	2.5	3	3	7.5	22	250	1	3	8 5	2	2	8	040	250		2 5	2 5	50	1	ន	ß	8	38	200	909	250	250	22	ደ	007		2	9	05+	-	52	250	3 5	3 6	3
		1181	e, i	7 ·	2 %	n (3 5	•	×	8	, 20 70	35	2	;	8 5	2	8	502	200	4	35	3 5	3 %	7.5	•	8	÷	ደ	ដ	305	160	52	ደ	Š	g	250	S	9	8	200	į	8	3:	f S	2 5	?
	Elect. Grucible	010	ωž			_			ď'n	Ø	Vì	(J)	ማ	,	no	n (an e	J. (ע	o	ī	. 0	, 5	į vi	•	σ'n	ď٦	ഗ	on ·	ጥ	on	On.	ov.	መ	ጣ	7	o	o	2	2	:	7	ን ር	n 0	. 2	!
Ą	E) ect.	4	Recycle	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Berry Com	,	- 1		~	Rectang.	Recycle	Bar Stk	Recyale		Kecycle Boots	200.00	100 X	Hecyc:	Recycle	Rec ve le	Beckel	Recycle	Secve le	, ~		7	7	7	Recycle	Recyc)e	Recycle	Recycle	Recycle	r ~	7	Recycle		7	:0	Recycle		Hecycle	Nec ye	Dec. yes	A COLOR	
HELTING	Time	Ċ	8.0°	60.0	, , , , , , , , , , , , , , , , , , ,	; ;			4.40	o.	2.30	S. 65	5.23	;) i	2		7.0	2	4 95	3	1	7	9		2.73	9.	÷.	6.3	9. 8.	.80 80	3.32	2.62	4	3.37	10.07	3.33	2.92	30.00	\$		9 6	7	. 1	2	•
	• 1 • 1	Š	7 :						45						7 5									30		÷,	¥	7	7	ż	7	7	77	7	¥	7	36	¥	47	7	9	ž :	7 5	13	13	!
	1	Sala	12,000						12,500	2.00	17,09	12,000	10,000		3 6	3	200	3 6	300.4	000	12 000	17.330	000	1 -		60							88				7,000								2.500	
		70101	T10A1-48 12	1100	Ticket	French 25	2Fe-2Cr-270		4 - 170- 1-140-	Tich:-uv	7:641-4.	Tich)-+.	7:643-4.	F 24.5	1144		1		3	Tick1-4,	10.1	1	1. (40.1	LUZZAL TI 1	•	9		95++15	141	à	, i. i.	113	à	à	ě	6.1-4.	4.2O.FO	2:1 V= 2K	31.	4-1:19	¥ • 1	1 1 1	1	, the 100 to 100		
	90. 3	4	7-7-1	27	វង	22-30	22-23		77-77	-22-		75.	:	Š	1 :			1 : 1 :		.7.7	77.	, 't		22-2c	;	22-33	7 - F	34 - 77	-77	Ė	1-17	27-5	; :1:	35-77	; -7 7	27-72	-2-3-	.;;	7:1.	- - -7			27.5	22mè	1	
	3.		101.0		1	1	2		: X	1	. J.	d) L	u.						:			1		4 0		<u></u>				3	5	! .!	, .	1	: :		: 1		ļ	::: :	1	i j		. 5		

TABLE J1 (Continued)

1 5 4								
. Humid Perc	mages	3,28,25	zwerd Fwww	rint 400	¥4 ኤ ዘ ቴ	44444 4444 4444 4444 4444 4444 4444 4444	**************************************	32.22
Percent Humidity Yield Percent	22222	139.62	28.25.28 20.25.26 20.25.27	28.1 11.6 11.6 11.6	20 m	24.2 No pour 13.3	34.6 13.7 17.0 13.3	75.6 20.4 19.0 13.8
Gross Net Heat Wt. Heat Wt. Lb. Lb.	6.50 6.50 9.063 13.063	23.50 26.68 23.25 11.56	15.0 27.37 8.063 25.94 27.25	7.50 10.50 10.62 5.75 5.75	5.063	04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 8 9 9 8 8 8 5 5	8.62 de Broke 15.063 19.13
	37.75	96.50 20.56 37.25 44.37	70.33 56.37 65.37 86.51 86.51	25.25 18.18 18.03 18.03 18.03 18.03	30.56 37.75 37.75 92.69 95.94	54.13 E1.31 54.13	38.75 72.88 38.0 55.62 68.50	55.063 Electro 73.62 100.81 87.75
Spirel Spirel in.	None Signal Sign	None None 14	NODA NODA NODA	None None None	Non 4	None 151 1500	None None 10 18 None	4 6 6 4 4 5 6 6 4 4
Finish	14.69 25.69 75.75 75.69 75.69	32.88 7.31 15.0 30.81 15.69	12.25 12.81 14.33	5.88 33.13 1.62 75.75	20.25 20.25 20.81 19.62	63.58 2.58 2.58 2.59 3.58	25.05.11 85.03.11	7.62 70.69 10.25 18.063
Start Lb.	34.62 9.94 11.0	24.81 24.81 34.50	25.25 25.05 25.05 25.05 25.05	12.0 19.13 24.37 17.88	23.000.00	10.61 17.0 17.0 10.0	0.02 0.03 0.03 0.03 0.03	2,888 6,666 6,666
5 Min. Lear Rate	6/nin. 6/nin. 5/nin. 7/rin. 7/min.	5/min. 20/min. 20/min. 5/min.	4/rin. 6/nin. 6/nin. 1/m.n. 8/min.	9/min. 6/min. 10/min. 2/min. 7/min.	17/min. 7/min. 6/min. 4/min. 11/min.	10/min. 7/min. 8/min. 4/min. 7/min.	9/min. 15/min. 7/min. 11/min.	5/min. 6/min. 6/min. 10/min. 6/min.
After Pour	, 90, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	66. 725. 725.	% 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	58.65 58.65 58.65 58.65 58.65	1,000	2000,1 000,1 000,1 000,1	000 000 000 000 000 000 000 000 000 00	250 1,000 750 750
VACCUM During Mete	W 00000	300 300 300 300 300 300 300 300 300 300	275 275 250 250 250 250 250 250 250 250 250 25	22000 M	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	27.2 27.5 27.5 27.5 27.5	250 - 250	100 275 300
Start	£8583	388.8	88888	250000	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3225	78388	88888
Crucible Dia in	~ anna	20220	பை ப ிரைவ	៷៷៷៷៹	ដីលល់លល	ማ ማማማማ	ወመመመማ	ம் மை மை ம
Elect.	ω ι.ι.ν.ν	Recycle Recycle Recycle Recycle	Recycle Recycle Recycle Recycle	Recycle Recycle Recycle Recycle Recycle	7 7 7 7 Recycle Recycle	Recycle Recycle Recycle	Recycle Recycle 7 7 Recycle	Recycle Recycle Recycle Recycle
MELTING Time	804444 \$0436	0.4.9.9.5 7.8.8.5 7.5.8.5 7.5.8.5	***********	6.16 5.00 5.00	5 4 4 4 6 4 6 7 4 4 6 4 6 7 4 4 6	41444 1.8412	444.44 8283.84	
r e y	7277	77744	77777	444.1	4 6 8 8 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	44444	44384	57777 77778
S OTHY	87777	13,000	occoo dinin	41.12 41.00 60 60 60 60 60 60 60 60 60 60 60 60 6	300 300 300 300 300 300 300 300 300 300	27 - 17 2000 - 17 2000 - 17 2000 - 17	2, 20 00, 21 00, 21 00, 21 00, 21	25.50 25.00 25.00 25.00 25.00 25.00 25.00
Pater - a	641-41 11-26 11-25 11-25 11-25	itili keere	11111	11111	0.4 - 1.20. 0.4 - 1.20. 0.4 - 1.20. 0.4 - 1.40.	641-13 641-14 641-14 641-14 641-14 641-14	5A 4V 6A 4V 6A 4V 6A 6V 25 n 6A 4V	155m-102r-441 641-47 641-47 641-48 641-48
ب د د د د	ក្នុងក្រុង ដូច្ចាំដូច្ចិ	ង	45144	. 4000 11164 11164 11164	11111	1000%	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2222 2222 2222 2222 2222 2222 2222 2222 2222
			1510 11111 11111 11111	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		11111	man sa manan anan anan anan	DIN DONY MM SOLI N N M M SOLI 1 1 1 1 1 4 4 4 4 0

TABLE J1 (Continued)

					TABLES				
	Percent numicity Yield Percent	###### ###############################	ን ጽትክታ	ta arravird et er er er et	- Constant		<u> </u>	व्यक्ता के प्र लेखाली के कि	ያድ¥##
	Percent	0-000 0-000 0-000	מי בי מימי מי ל שריח		1 110 0. 0.01	#1505 ¥	24448 24444	2024 2024 2024	20.40.C
Z e z	heat ¥t.	21.11 1.37 1.3.51 1.3.57	3 4 4 4 4 9 7 5 2 14	9.3 4.4.4 7.3 4.72.9	8. 4.6.4 4.6.4 4.56.4	177079 14164	48841	1427 m	6 - 110
\$1055	3	100.0 100.3 10.56 102.50 134.063	93.79 95.15 102.86	36.83 36.75 37.0 31.0	22.15 22.15 3.3 3.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.	34.05.05 50.	198.053 198.053 198.053	2. 20. 20. 20. 20. 20. 20. 20. 20. 20. 2	544224 314725 314725
Fluidity	Spira!	200 200 133 None	7 7 7 7 00 00 00 00 00 00 00 00 00 00 00	None None None	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2	00000 00000 00000 00000	X X X X X X X X X X X X X X X X X X X
5	Finish Lb.	20.44	80.00 80.00 80.00 80.00	ลูกจับ ลูงหมู่ ลูงหมู่	ลับแนก 1.000 เกีย เกฏอยาติ	21.000	404 W. 4	34.17.4.5. 86.5.5.5. 10.0.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	10 3 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
SKUL	Start Finist Lb. Lb.	11.13 17.25 17.69 27.37 11.50	22.31 18.75 18.0 17.0	កិត្តបង្គក កិត្តបង្គក	22.0 30.0 7.50 7.50 21.63	24.55 24.55 24.55 24.55 24.55	VWV!!!		17.0 28.0 22.0 13.75
	5 Min. Lesk Rate	5/min. 13/min. 25/min.	2/#.n 6/min 2.4/min	6/min. 1.6/min. 4/min. 7/min. 6/min.	1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	1 E E E E E E E E E E E E E E E E E E E	7/0//W	A COMM	5/ain. 5/ain. 'rin.
F MICRONS	After Pour	1,000 1,000 1,000 1,000 1,000 89	%%% %% ***	88.50	750 250 200 1,000	500 4 4 800 5 4 4	23 6 7 7 8 7 8 7 8 7 8 7 8 9 9 9 9 9 9 9 9 9	200 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1881
VACUUM	During Melt	WWWW 72000 WW000	55 54 4 54 55 54 54 54 54 54 54 54 54 54 54 54 54 5	200 mg	0 4 6 4 4 6 6 4 6 4 4 6	2002 2002 2002 2002 2002 2002 2002 200	205 56 175 300 175	200 50 120 120 120 120 120 120 120 120 120 12	1388 1380 1380 1380
	Stert	105 75 75 75 75 75 75 75 75 75	አ 8%ሥታ	23282	ន្តផ្ទុសអត្ថិ	นีรอะพ	52588	នឹងនឹងមី	55.55 55.55
	Crucible Die. in.	មេសភីភីជី	ផ្ទល់ពីស្វាក	Ժ Ծ Ծ Ծ Ծ Ծ	จะจะจะจะสุ	कर्ने क क क	սիսիսիսիսի	Մ ՄԻ ՄԻ ՄԻ ՄԻ	ማ ማ ማ ማ ማ
Q	Elect. Dia.	Recycle Recycle 7 Recy:le	Recve 0,000 0 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0 0,000 0 0,000 0 0 0	Recyc.e Recyc.e Recyc.e	## ## ## ## ## ## ## ## ## ## ## ## ##	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Reckore Reckore Reckore Reckore Reckore	7860 Y C C Y C C C C C C C C C C C C C C C	Recycle Recycle Recycle Recycle Recycle
PELTING	ime nin.	6.75 6.75 7.06 7.06	64.20 64.20 65.20	9.412 5	2.04.14 2.65.04	44114 865.24	9.20 mm	4 4 4 4 6 4 6 4 6 4 6 4 6 6 6 6 6 6 6 6	1999 -
	Ve lt	7777	77777	44444 4	777.7	75537	77777	77777	47417
	Amps	1 min 1 m	7:1:1 1:0 0000000000000000000000000000000		36666	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.11.24 8.65.98	388666 44. Hi	3000 3000 3000 3000 3000 3000 3000 300
	Pater.a.	11111	11111	11111	iiiii	11111	11111	iiiiii &&&&&	11111
	1 10 th	វទីជំងឺដំ	34434		ត់តំត់តំន	4 Tajaa	678 7 54855	77 33444	ក្នុ ដឹងដង់ងំងំ
	e 8	14 14 17 18 18 18 18 18 18 18 18 18 18 18 18 18	11333	month of the	35553 2553	ន្ទាំងក្នុង	\$ 4 4 H L	The staff can the first of the The first of the first as the staff of the	gligen g

TABLE J1 (Continued)

<i>:</i> :	띩																																						
Homin	Fercent	82	, <u>"</u>	. 5	ž	m	<u></u>	'n	ï	ij	ř	ċ	i ii		m	. 143	•	, ,,	i	;	d\ M		30	33	1 5	3:5	:	1: 2	36	 		# £) u	17	::	£	: :	. 7	2
ا9 10 10 11	7: e 1d	6.6		, N	0.5	6.7	12.3	 		4 (3)	[5	4		, .	,	 	:	100	i u		9		;;;	<u>ق</u> ن	:: : :::) <u></u>	;	<u> </u>	οή σή	:: ;;	• •	3.5	† u	17	. 77.		23.5	. i.	22.
¥ .		15.54		7.6.	5.63	ν. Χ.	17.31	رب ښ		1,37	20.94		֓ ֓֞֝֞֝֞֝֞֝֞֝֞֝֞֝֞֝֡֡֡֡֡֝֞֡֡֡֡֡֡֡֡֡֝	1	0	15	:	. v . v) ! !	1 40	, N		7:3	j;		 	•	17.77	13.53	8; : 8; :	•	25.15	 	1.62	9.00	20.10	27.25	15.53	24,40
GPOSH Mean Wit	9	65.75	, r.	75.65	96.25	96.75	52.0	J	87.62	17.62	112.33		د د		١,	, .	•	9 6	, ,				ş. , ş	4. v.		1554	•	7. 7	135.7	13		7.67	\$	 2.2.	 8	101,4	91.15	1.0	110.1
Fluidity Spirei	in.	900%	2 6	200	. 5	'n.	<u></u>	io.	. i		22	•	.`			11		¢.	;	ķ'ر			Ξ	None	None	- 5 5 5 5		n u	<u>.</u>	- 1 - 1	9	None.	D z	o o	7	9	Nor		000
5	9	1.5	ν. 1 5 . 6	י קיני	ω 	5.	100	11.15	10.50	1.7	23.73	:	7	, 	, ii		;		3 :	12.05			7.11	.7	7.5	20.25		25. 12 24. 12 1	7.	는 참!	· · ·	5.5	- 3	1.7.	23.0	. i 7	16.13	4 % 4. %	14.5
SKULL	ą	0.0	- t	3.0	C)	π. Ω	2,7	15, 75	5	10,0	 	;	n n	::	, . , .	, ‡		ο ι η ς	,	, c	1/2		0.5	ر. د.	14	0 U		0 c	, o	3,	;	3	30.5	, v	36.6	30.0	25.0	¥ 1,	52.12
2 2 2	Leek Rate	3/#:n.	, TET.	7/4.0.	7/#16.	7/m16.	5/Ein.	. L/5	3/11/16	· ·	,		E,	1		 h							2,7#in.	3/#16.	1.6/#1.	٠/٩/٦ ١٠:٣/٧		#/min.	E/# 15.	5/410	د/تا: د/تا:	1/419.	. in/6	1.2/min.	7/4.0	8/mir.	2/min.	6/4 7.17	1/# in.
- MICRONS	Four	88	3 2	, 2 , 2 , 3 , 4	, , ,	750	35	9	755		000	:	ğ	6 6	, . , .	7 C		 			202		55	125	125	98		66.	88	; }	ý	300	χ;	222	750	350	325	, 60 100 100 100 100 100 100 100 100 100 1	, 1 ⁴
VACUL?	2	8	2 E	200	200	±5c	200	7:0	300	77	275		G (7	4 5	1. UN 2. E.		77 7.	57		ધ		w)	-61	107-125	 20 90 90	•	275	, i.,	23.	7,1	200	ار ا	77.	N 1	250	250	325	1.9
	Stari	F. 9	3	7 2	17:	27	4	· ::	: č	; ≆	20.		Κ.	×:	77	% ¥		χ;	2		ij,	:	×			ដដ		<u>م</u> و	Κ.3	8	52	25	<u>ب</u>	4 4	75	55	m	<u> </u>	8 53
1	Dia.in.	Ų) i	۵, ډ	p, u	. v	. Un	J	. 0	, u	ı J	.:1		: = -	Jş ·	J, c	9 a a d .			١, ،	J. J	r		J,	-,	, i),	2::	!	:* :		111	J١	υ'n	멸	J) J	, <u>; ;</u>	12	C.	22	7 17
	D: 8.	Rec ye ie	Necve in	70000 00000		, v		,		A	7.00 V C . 18		hecyc e	AGG V. C	7-07-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		RECVC.					1.	1.	Recyc.e	Ferver's Ferver's	, , ,	Aervole	Aer ve le	Recvere	¥ec∨c - €	Fecve 1	Recycle	7000X	Rec yo le	Recyc."	Recycle	Aeryo.e	Aecve 14
PELT ! NG	1 i	5.50	7 0	'. Y !!	12	2.5	-4			; ;	. 2			6	ŏ.		!	ي. د .	.,	2	, 9 1	:	! -;		ď,	4 1. 9 3.	:	# S	1	, r	in M	ų.	J.	8 h	, 1 , 1	4	S. S.	 	
	20.5	4	į.	i i	٠.,	. 1	4		ζ.,	, 	. 1		ł	7	1	j j		i.	j	1.	i i		į	1		i i		į:	i I	ï		¥	1 :	31	į			4.	<i>i</i>
	205			66					:	į	C		8			38										-					. •		K K	ij.	i ii	• -		: ! :	4 4 6 6 8 7
	7 7 87 8					i 1					i i		;	::	i 			i				1,0 - 11.14	10 - K		i	òòò	1	í ò		i	; !	i	:	# h	i i	1		11110	i ;
	i .	. 1			;:	: :					; ;			:	•	. !		.;	:	:				i	; ;	į.,	;	; .;	; ·	: :	;	,	·,	: 1	1.3	1	;	. ; .	3.3
•		.,	;							٠.	•					.j.	:		.•	<i>:</i>	:					!		K.	:	:				6	: ···		i in		, 1

TABLE J1 (Continued)

TABLES

				MELTING	9			VACCUM		2	SKITL	5	Fluidity	Gross	ž		
ر دراة دراة	- T	Ago	20	E .	Elect.Crucible	rucible Dia in	21.42.50	Der. Jag	After	S Nin.	2 te 7			Heat Mt.	Hert.	Percent	Percent humidity
į,	17. 70	13,030	£	3.		12	8	552		l/min.	25.0	16.5	None	<u>5</u>	ł	18.5	25
ŗ.	1	500	Ţ.	6.52	Recycle	2 :	9 5	8 2 2	88	12/min.	999	% %	77	123.1	3.5	υ; 6.6	22
	1 1 1	1.1	: 3	, y	Kenyna	2 2	3 %	, C	30		18	72.15	e o	32.5	25.7	25	y K
	41-179	90	3	7.02	Recycle	2	2	450	9	2/min.	30.6	22.5	None	127.2	36.65	23.6	:~
	; *	305.5	. 1	s, èc	Recycle	12	ĸ	30	200	3/min.	23.C	25.4	None	79.7	19.45	15.6	ಭ
:1	11.43	200.4	.;	9.	Recycle	12	Š	300	5 2	3/min.	3.5	23.6	None	121.6	28.6	23.5	52
	04:-1	36,36	‡	€.70	Recyc ! e	:7	ζ,	မ္က	909	w'ein.	25.0	19.6	Pose	٠. د. د.	26.27	22.0	37
: 3		12,535	¥	6.80	۲۰	ι'n	S	225	ğ	3/=in.	17.0	 5.	None	92.50	28.66	31.2	#
ij	i Z	14,000	Ť	5.33	Recycle	17	2	275	9	#/a:n	S	22.50	ლ	104.4	9.10	6.73	42
	7 30 - 65 + 40	10,000		117	Fac, c ie	•71	9	175	210	1/2:0.	13.6	49	51	42.0	4.63	3.5	36
1		13,000		7.7	Fecycle		¥	15	125	1.2/min.	 Q	ŧ.	None	36.10	5.3	9.4.	ID M
.,,		5,000		5.7	Recycle	u	ņ	2;0	520	4/Ein.	o. *	15.1	200V	₩.90 100	16.6	 \$2	ر. عر
7		303.11	; ;	.52	Recycle	(Ft	8	ಟ್ಟ	175	1.4/min.	0,0	6.75	*COX	% %	4.50	15.2	30
i	,	17,000	; ;	5.5	Recycle	m	22	125	350	3/min.	20.0		400A	90.14	20.7	23.62	32
.;		12,000	ij	. 3	Recycle	J۱	50	125	250	3/#in.	20.0	o,	None	0.	5.	36.8	<u>*</u>
		17,500		5.73	Recycie	J١	ረ	275	9	3/810.	9 9		-	6.0	25.66		+
1		000 1	. ;	. 5	Secycle	2				t/min.	25.0		No Pour	E ec	TODE BOOK		ů.
Ä		000	32-45	 6)	1~	'n	۲. بر	230	325	5/812.	5.87	ö. 25	w	£ .05	9.6	o, co	. ‡
		;	•	:		•		;	;		;	:	7	;	:	:	;
:	1 1 2 0	100 T	į		Recycie	. 4	121	700	205	2/#in-	25.0	73. C	÷.	26.75		.0.7	2
4	: F : : : : : : : : : : : : : : : : : :	000,-1	4	6.53	Recycle	17	æ	0-340	604	5/#10.	42.14	35.0	A O O	132.1	30.78	23.2	e
 L		- 999	;	ş;	Rec yc.e	2	ž	300	525	6/min.	35.0	17.50	'n,	,00°,	25.67	27.6	37
		12,000	7	.; .;	Recycle	ψ	¥,	125	750	4/Ein.	0.	24.75	ou:	71.56	12.54	7.5	43
		13,535	.;	1.75	Recycle	17	23	175	746	4/min.	24.0	16.75	NO CO	86.52	20,76	31.2	52
7	ét	14,000	7	٠. چ	Recycle	7	120	250	300	2/mlm.	20.0	15.37	17	701.7	15.36	ň, –	22
.,	E.A.1-11	000.71	7	5.55	Recycle	12	8	250	290	4/min.	22.0	23.25	33	301.18	36.36	3.76	
		14,030	. <u>.</u>	3.8	Recycle	?	53	35	225	2/min.	0.0	18.68	PO O	90.6	20.65	22.Ê	32
****	(1) - + v + + 1.7	36,4	¥	3.05	7	ď۱	ደ	220	375	3/min.	6.75	ب س	53	50.65	5.7	19.2	36
3	15 1 200-30r-	3, 930	¥	3.35	^	u,	3		5 20	3/min.	0.1.	6.0	7	53.19	79.6	18.2	3
13.9	721-20-54	300,-1	¥	3.2	~	Φſ	ĸ	55	3.25	7/min.	10,63	8.8 %	=	51.68	5.5 2	20.2	4
	918+321+350+22																
17:41		00,4	÷	3.5	۲	ω	8	125	205	5/min.	12.0	9.50	αĵ	51.75	30.45	20.2	3
4	•	14.033	4	. 17	•	J	7,	CA.	215	4/11	ç	7, 2	΄,	13	o o	4	ž
; !			!				}	\$	`	•	?	;	i.) }		ì.
3-2	<u>.</u>), 0)C	27	4.34	7	JN .	51.	30	215	4/min.	3.62	8.25	- #	55.19	9.55	17.3	
31.	4.4 in 51 ft or 61 kg	5,000		8.5	r- s	V) U	84	2 3	8 5	4/min.	~ :	o, e	œ۷	0,0 0,0	₹.ā		9 4
		,	4	3		'n	ò	Ť	3	- Tu	14.7	ν ().	<u>o</u>	¥.	Ď.		ţ

TABLE J1 (Continued)

MELTING RECORD

אַניטיִבאַן	8 8172		12221	14 - 05 00 00 1 1 24 - 1 05	27272	춖午쁺퍞쀪	*******	44450	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
אניטייים אמייים אוייייים אוייייים אוייייים אויייים אוייים אויים אוייים אוייים אויים אוייים אויים אוייים אויים אוייים אייים אוייים אוייים אייים אייים אייים אוייים אוייים אייים אייים אייים אייים אייים אייים אייים אייים אוייים אייים אייים אייים אייים אייים אייים אייים אייים אייים איייים אייים איייים אייים אייים אייים אייים אייים אייים איייים איייים איייים אייים אייים איייים איייים איייים אי	. ក្រក្	W	# 14 m 1	Romus Signif	i dende Idini idi	4 14 4 4 4	3 0 0 1 0 3 0 0 1 0	27.00.00	23.6 23.7 23.7 26.0
787 1631 At	2 9 9 4 7 2 9 4 7	.0.25	Manara Ma Manara Ma Ma Ma Manara Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma	3 4 7 5 5 5 4 4 4 5 5 5	fr of m	4 3 1 4 2 5	40,489	15.57 15.57 15.05 15.05	20.66 20.46 20.46 21.21
Griss heat wit.	1 10 mg 1 10 mg 1	;v	San Indian San Indian San Indian San Indian	acele per terrodia terrodia primted	For a drag my sada U Filesala drag grass	्र क्षेत्र के क्षेत्र इ.क्ष्मिक्ष इ.क्ष्मिक्ष	ក្នុង ក្	45488 04489	4.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5
7. 02. 03. 03. 03. 03. 03. 03. 03. 03. 03. 03	நேற்று ந	0,0	9 0 0 1 0 0 0 0 1 0 2 7 11	9 2 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	į į milij	50115	# # # # # # # # # # # # # # # # # # #	Vone Rone Rone	NON NON YOUR
Skuth MT. tart Firish	4 00 0 1 0 1 1 1 1 0 1 1 1 1 0	.n	1 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	met ale	N in a L	111 - M	0.45 9.9 0.45 9.9	25.25.05 25.05.05 25.05.05 25.05.05 25.05	20.61 16.53 17.75
1112		2. H	000000 	ocoon dimon	0 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- - - - - - - - - - - - - - - - - - -	24466 2466	11120W 00000	25.17.25.0 25.17.75.0 25.25.0 25.25.0
		i, i, i, i, i, i,		Adda Adda	ikili ikili pomidi med d	inter fittie mondif	CCELC LCELE Modulad	1 1 E L E L E L E L E L E L E L E L E L	2,6/7 10.
10177		ij	auvau auvau auseu	\$5.45.4	m forting distribution of a Maria	STATE OF THE STATE	# SW 5 5	Park W.	555 575 575 575 575 575 575
	1922	ä	Grant Co.	20033		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	នូក្ខាត្តិក្តីក្	Modon មិចជំពុំជំ	800 S S S S S S S S S S S S S S S S S S
		::	20003	TURKY	17187	2348#	ក្នុក្សាក្នុក	WWBSS	<u> ተመሠ</u> ያት
40 62 12 12 12		.,,	खंडांग्य <u>े</u>	marria	च गुचुचका	40131331 40131434	ក្រុងដែលពី	HHHHHH	44444
.;		7. C		4 4 4 4 4 0 - 0 0 0 2 - 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0		P	F F F F F F F F F F F F F F F F F F F	0 0 0 0 0 0 5 75 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	12134	<u>)</u>		100	7. 19. 1. 100	100%	74023 07706	3.1 0 m r	Turners
		<i>:</i> ;:		. 17 i i i	1417	7 - 177 13:170	14414 24422	7:171	17777 88888
		:	1		7 7 1 1 4		Property	11411	HOLLS I
		. :							111111
ì	¦		11111						
,	1	ï							: * :

TABLE J1 (Continued)

	ភ្យ								
	Percent Percent	MMMm #	addag.	2 2042 2042	rates.	2223	*2543%	计型器编数	8278 8
	Percent Yield	1,4,0 m	75. 7 7. 7 7. 7 7. 7 7. 7	21.7 22.03 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 20 20 20 20 20 20 20 20 20 20 20 20 2	4.4.4.5. 8.8.4.4.6.	7. 2. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	7.2.4.2. 4.7.4.2. 2.2.2.2.	25.23.25 26.00 4.4 3.00 4.4	22.12 1.22.12 2.12.02
	Hear Wr.	12. 14. 15. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16	₩₩₩₩₩₩ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	25. 12. 25. 25. 25. 25. 25. 25. 25. 25. 25. 2	2.75 5.00 12.87 5.57	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	2.75 2.75 8.83 9.83	11.62 9.12 21.37 21.15	0.024
Gross	Hest Kr.	2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33	95.3: 96.65 01.00 01.00	85.35 70.13 42.65 85.5	64.63 11.63 100.87	66.55 45.25 51.25 23.9	75.55 92.57 96.05 76.25	73.61 75.54 82.6 80.13 81.12	73.25 76.12 85.37 45.75
F)uldity	50 rs	7000 1000 1000 1000 1000 1000 1000 1000	8 8 8 8 8 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8	ဆ ဆီညီမ ွှဲ	None	None None None	None 17:	16 None None None	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
SKULL WT.	Finish de di	30000 12000	76.08 16.08 17.62 20.19	17.67 12.25 19.18 19.18	21.33 22.12 15.50 15.50	17.50 8.75 5.46 5.88	25.55 25.55	11.62 14.75 15.87 17.0	25.55 25.05 25.05 21.12
SKUL	× 1	25.00 25.00 25.00 25.00 25.00 25.00	25.05 27.25 26.75 25.05 25.0	27.6	35.0	13.75 20.03 70.05 70.05	7.44 % 5.50 5.50 5.50 5.50	00000	20.0.0
	5 Pin. Leax Rate	6/ais. 5/ais. 7/ais.	3.6/13. 5.4/13. 5.4/13.	2/4 In. 6/4 In. 6/4 In. 6/4 In.	3.4/min. 6/min. 4/min. 20/min.	4.2/#in. 2/#in. 2/#in. 2/#in.	2/min. 6/min. 7/mir. 7/mir. 10/min.	8/min. 8/min. 5/min. 10/min.	4/min. 1/min. 4/min. 4/min.
- PICRONS	Pour	# # # # # # # # # # # # # # # # # # #	255 255 255 255 255 255 255 255 255 255	475 466 3196 3196	750 750	22 25 25 25 25 25 25 25 25 25 25 25 25 2	575 500 500 500 500 500 500 500	22.85. 28.65. 4.85. 5.85.	3,000 4,000 4,45
VACUUR	During Meli	44.4 w 44.40 m 44.70 m	88888 88888 88888 88888 88888 88888 8888	** WWW ** WWW ** WWW	KKEKT KKEKT	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22822	250 250 250 250 250 250 250 250 250 250	390 390 360
	Start	416. 114. F	មភទិងទី	* 5255	N W B W B	4 - 52 - 55 5	##R255	8258	2458
-	Crucible Die in.	22225	22222	ម មមេលផ	22221	ដែលបង្គីល	하던졌잖아	ሳ ሳ ሳ ሳ መ	কলমুক
ş	i ect.	Recycle Recycle Recycle Recycle	######################################	7-round & Recycle Recycle Aecycle Aecycle	Recycle Recycle Recycle Recycle	Recycle Recycle Recycle Recycle	Recycle Recorde Recorde Recycle	Recycle Recycle Recycle Recycle Recycle	Recycle Recycle Recycle
PELT : NO	Kin.	្សស្នាក់ ភូមិស្នាស្ន	2004 min	n wwi. n 14722	100001	4-44 83.25 50	5.45.25 5.45.25	44444	4.73.4
	, c	44464	77771	4 4424	73434	पुंच के दिखें के के कि दिखें	37344	14444	4373
	105	288888 11119	300000	1 4 4 4 W	11.4.1.1 20.0000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.00	13,500 11,000 14,000 14,000 12,500	25,900,41	12,000 12,100 12,000 10,000 10,000 10,000	2,500 2,500 2,000 2,000
	No 167 . 8	11111	11111	30-10-24: 24:-246- 26:-24:-246- 5M:-00-25 06:-41-			11111	144	6. P. T. 6. P. T. 6. P. T. 10.
	rager Me	33		4 4444 4 4444 4 4444 4 4444 4 4444		37	77777	44444	\$ 1. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
	نز د از د	# 1 00 #################################	11217	\$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		14111			

TABLE J1 (Confinued)

MELTING RECORD

:	Percent	#	<u> </u>	(建聚聚聚丁	terew terew	omeo a temmin t	47444	다이크 마리 마리얼 마리	7.4.W.W.V	መሳታይ መልላይ
	Y's'c	25.3	7.25 ×		2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5-99	40044	วันพื้น เน่นกลัก	55555 46146	81114 00044
Net.	Heat Vr.	19.26	6.75 2.75	8.5.5.5 4.5.7.5.5.4 4.5.7.4.6.5.4	37.36 72.75 72.75	1.94.2 2.25 30.6	1 3 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24.32 24.16 24.16 24.16	2.000 2.24 2.26 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0
\$50. 9	10. Vr.	76.19	0 0 %	25.25 26.33 26.33 26.33 26.33 26.33	105.50 125.37 125.37 12.68	24444 24444 24444 24444 24444 24444 24444 24444 24444 24444 2444 2444 2444 2444 24444 2444	25.25.99 25.25.99 25.25.85.95	155.22 375.32 375.32 375.32	14.63 145.73 131.12 166.95	101.12 62.18 77.25 52.16 52.06
Fluidity	5	None	N ON O	ភាពក្រក្ តំ	₩ 2.2 W	0 m 1 0 1	てダルンダ	8 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	## <u>7.7.5</u>	None Till
SKULL WT.	Firsh Be	13.18	_ ~ . 8 ~ . 8 ~ .	1.554.3 2.604.3 2.604.3	25 25 25 25 25 25 25 25 25 25 25 25 25 2	25.000 25.000	3 14 14 14 14 14 14 14 14 14 14 14 14 14	178444 174444 18664 18664	25.25 27.35 27.63 22.55	24.0
SKLL	9	13.0	27.0	1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	######################################	0.0000 0.0000	4141414 10000	00000 00000	32 23 25 5 37 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4.52.25 20.26.02 20.06.02
	Lesk Rate	2.6/min. 2/min.	(C/min.	6/4 in. 6/4 in. 7/4 in. 5/4 in.	5.21/810. 10/810. 10/810. 1/810. 5/810.	0000 mi	001 0 1 W	Service Property of the Control of t	4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6/4 in.
- HICRONS	Pour	200	38.5	33.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5	8647 8647 864 864 864 864 864 864 864 864 864 864	0.7 mg	5.03.14 5.03.03 5.03 5	0.65.43 0.65.4	55000 50000 50000 50000	4 C W B B 4 C W B B 5 C W D B
VACUUM	# 1 T	§ 55	542	24.0 24.0 190 250	8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	000000 0110000000000000000000000000000	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	84888 84888 84888 84888 84888 84888 84888 84888 84888 84888 8488 868 8488 8488 8488 8488 8488 8488 8488 8488 8488 8488 8488 8488 868 86	22222 22222	3645758 3645758
	Start	1,2	98.4	8	5 ² 5280	oten was isten pre	ជីជីវងនិ	23443	23.12	28482
	Die. in.	ሪካ ሪካ ነ	ነ ሳ፣ ፫	. 43222	52220	witten	2022	11.12.11.12	<u> </u>	Hadda
	Dia.	Recycle Recycle	7.0000 7.0000 7.0000 7.0000		A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	A A A A A A A A A A A A A A A A A A A	7 7 7 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 9 9 9 3 2 2 2 2 2 9 9 9 9 9 6 6 6 6 6 6	7.00 × 0.	Aericale Recycle Recycle Recycle
FELT (*G	3 -	117		40141	4 1 4 1 W	34844	34038	1 4 4 4 4 4	1/1/1-W 0	1
	1011	불 끝.	444	1447.4	77777	27777	3/11/B	37.7	1 7 7 7 7	73.77.
	Amps	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11.	11111		88888	38838 11511	88888 11111		1411. 188880
	Peter.a		7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		11111 34333			11111	11111	
;	NC .	444			14111	iiiiii	1,77.3		11111	11111
	: } 	#1. #1.		iiii:) <u>[</u> [i]	21.74	* * * * *	ZŶŧŶŶ	yryr	45545

TABLE J1 (Continued)

•

MELTING RECORD

															•	ŢΑ	Bl	LE:	5															
	Humidity Percent	33	4	45 45	9	2	38	:	S	14	3 5		5	53	ð,	31	2 3	15	47	C 2	- 23	75	3	1 9	. 23	Ç,	. 9	\$:	; ;	(2)	25	72	3 3	\$
	Percent Humidity Yield Percent	13.1	2	32.8	7	2 2	::	:	22.3	8.6	3.55		9	24.5	19.9	9 9 9	2.5	16.2	9.6	n.		13.5		27.5	. 7.	29.5	30.4	- « 2.8	9 i	. 4	35.5	6.0		-0.
Z F	Heat Vt.	20.00 9.00	9.67	5.6	25 A3	27.50	9.13	3	16.86	8.18	21.22		, o	20.53	14.97	ድ , ጽ፤	7.0	17.10	9.13	8.5 6.5	5.6	13.18		22.7	22.74	15.3	23.47	23.03	7.5	9	30.72	12.05	5. 5 5.	5.06
Gross	Heat Vt.	68.19	130.75		27. 801	5 % 5 %	30.32	;	76.50	94.56	75.00 52.68		0.10	83.69	74.87	83.00	51.25	93,68	94.56	25.6	102.09	97.38		82.63	76.37	77.37	77.12	8.50	33	24.12	85.56	61.12	50.62	49.68
Fluidity	Spire!	None Sone	<u>~</u>	¥ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05		2:	ž Č Š		<u>.</u>	1	None		2	None	92	0	ğ i.	'nΈ	ī.	កៈ	2±	15.50		None	ACO N	None	None	None	9 6 0 2 2	- F	No.	None	1 22	Φ
SKULL WT.	Finish Lb.	14.37	21.25	7.37 37.	37. 12	, x	2.3.	:	13.75	27.50	12.50		0 2	24.56	14.60	10.25	7. E	15.50	14.87	8.5	22.5	17.87	34.6	9.9	2 2	12.75	13.94	17.12	??	38.0	38.06	8	8.5	15.37
SÆ	Stert Lb.	10.00	53.00	3.50	. 4	3.5	12.00	:	3.8	22.38	17.50 8.06		3.50	32.44	18.56	21.50	9	20.02	21,00	30.05	35.55		30.00	20.00	17.00	15.00	18.00	7. 2.	3.5	3.5	30.00	2		10.25
NS NS	5 Min. Leax Rate	1/min. 5/min.	13/min.	1.2/min. 5/min.	, n	, (m.),	2/ain.		7/min.	7/ain.	3/#15.		//	1.6/min.	3/min.	/min.		7/min.	./#in.	1.4/min.	//min.	11/min.	2.8/min.	7/min.	. c i e / c	3/min.	2.4/min.	3/min.	//min.	13/min.	1.4/min.	2/min.	2/min.	2/min.
- MICRONS	After Pour	9 6	700	% 8 8	, L	2 12	4 C		300	500	9 9 7 7		720	230	430	750	86	8	90	750	1 4	88		245	345	390	255		_	38	000	375	28	125
VACCUM	During Reit	230	245	2 50 8 80 8 80	100	2 6	3.7.	;	165	270	175 271	?	8	256	3	25	245	275	ঠ	22-295	\$23 803 803 803 803 803 803 803 803 803 80	202 202	500	270	3 6	335	175	3	27.67		300	3	26.4. 26.4.	2
	Start	9,4	8	¥ 5	ď	9 4	33		‡2	9	36	; ;	જે	¥	2	Ţ.	, ,	85	75	ж М	3 %	र्यु	37	2	Ç. Ç		32	7,5	2 4	ሳ ነሳ ጎ የነ	32	31	, <u>(</u> ,	3
	is in	9.5	17	יח פיזי	. 2	::	i a		ው	7	av a		ת	7	12	7.	<u>4</u> u	. თ	o,	2	v 2	j or	ďΛ	2.	ሊ ወ	. თ	თ	ታ ን የ	n d	ካ ሪካ	σ	. O. C	n on	o
2	Elect, Crucible Dia, Dia, in.	Recycle Recycle	Secycle	Recycle		A CYCLE	Recycle		Secycle.	Sec ye le	Recycle 7" Round		7 Round	Recycle	7	Recycle	Rec vol.	Fec ye le	Recycle	Recycle	Recycle	Recycle	Recycle	Recycle	Recycle Recycle	herycle	Recycle	Accyc le	Pecycle Pecycle	7	Secve) e	Recycle	~ ~	۰,
HELTING	# . E . E . E .	5.70	7.60	4.7	, ,	7 7	4 13	;	2.5	5.60		3	3.75	5.25	4.00	3.	- 4 2 6	6.30	5.20	, 8°	0 4 0 4	7.03	5.15		n 4	ν, ŧ	1.7.	20∶	1 c	. 25	5	2	5.6	3.45
	1107	₩.±	4	ភ្នំ ក្នុ	: 3	7 9	¥¥	Ų,	3	7,	3 %	₹ :	¥	· <u>∓</u>	4	¥;	γ 1	Ŧ		4				? !			9	7	7 -	4 F.		4		
	YUG.	200, 17	12,500	12,000		3 6	98	Chace	12,330	1-,333	12,000		. 200	14,330	300	17.00	8 6	12,990	14,000	200,4	7,000		12.000	14,000	000	12,000	12,000	12,000	1 6	4,99	12,000	200	1.5	:0,500
	F.s.t.e. 1	1	1- 4-	11111		1	1 1		11-140	i	541-1. Secure 14.		Table Control		5-1-2-5	307413445	1 1	1111	£±1=±.	64	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.40	641	441-14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ok!	£1-1			647-1	641-41	V4-149	- j-	, H
		7 5 6 5 6 5	; ; ; ;		; ;	1. 1) 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	: : : : :		;;		4		100	1224	44	:;; :†:			ä	:1:	11	1 14	9-27	10.1		13	-4-44	:3 : :3 :	72 - 77	5-17	2	14 h	, i	22-101
	1 4 2	5.1	1	12. f.		y -9	j	1	Ţ	ř,	' '. 1	;	; ;	0. 1. 1.	·15	4		. di	j	<u>.</u>	1) () 1) () 1 ()	ijģ		3			35.	ir i	U	n u n u n u	: I y d	4	, <u>1</u>	ig.

TABLE J1 (Continued)

	Humidi:y Percer:	52	22.72	0 3	30	52	52	:	:	4		9	ii)	.	22	Ţ.	17,	ţ	57	`	: ::		3	Z,	9 .	3	ţ,	ş ş	:	`	ş	.0	25	1		47	<u>യ</u>	₽
	Percent Humidity Yield Percent	ø.	on 0	, <u>.</u>	2	20.5	27.0	;	17.1	9.7		2.2	20.0	12.1	23.3	9.50	7	11.7	73.3		22.E	Broke .	ž,	· •	7.0	2.5	2.5	, 7.		٠	, un	4	20.1	C)	9	3. 4.	en ;	13.0
žet	Heat Wt.	3.	J :		16,4	ė. 93	5,12	6.	11.62	7.50	, i	9.30 30	P oc	. j.	26.37	13,63	7.25	ره. و.و	7.31	t-	12.24	lec t rode	20.61		4.50	7.43	7.5	4.62		4.02	4.62	11.36	10.10	4	1.7	10.00	4.75	\$
	Heat Wr.	45.36	9 5	. c	17.56	£4.34	51.12	77.00	95.50	53.16	trode Bro	142.56	106.12	75.37	113, 12	27. 26	50.49	57.81	55.30	37 75	2 4	i i	305.06	57.87	\$.12	3.56 3.56	1:	74.12		50.00			50.36		52.12	31.81	55.50	72. 1
Fluidity	Spire!	w)	on j		?=	\$	40	7	ñ	None	- Elec	7	5	<u>-1</u>	=	m	\$00¢	None	None	1	5	Non	7.	SO S	ų	٠.	None.	20 Y		None Police	1 00	400	123	900	202	₹ or or	NO.	eco.
5	Start Finish te Lb. Lb.	13.3	12.62	2 5	17.37	8.50	12.25	12.53	15.87	13.75	•	25.25	26. ±3	12.00	21.51	00	14.50	15.50	4.75			69.00	33.00	24.37	18.12	26.00		7.10) i	9	7.	9.87	36 71	12.62	12.93	30.50	14.62
SKUL	Stert Lb.	10.50	1 8	2 2	6.23	5.00	10.75	25,00	30.00	20.00	25.00	30.00	30.00	35.50	4.5	22.37	20.00	20.02	60.25		16.25	5.00	36.75	35.64	16.00	22.00	27.30	23,00		8 8	3 2	5	9.25	4	9 6	23.00	18.00	8.0
	5 Min. Leak Rate		2.E/mir.		2/min.	5/min.	2/min.	2/min.	5/min.	34/110.	, i. i.	16/010.	2/#in.	1./#in.	4/min	7/=10.	4/410.	3/mir.	le/win.		15/415	3.6/=10.	4/E	.b/min.	16/m1n.	2.8/min.	6/min.	, m / 0 /		//min.	5/ain.	2/413	4/min.	20/41	7/min.	. u = 10	6/min.	e/min.
. MICRONS	After	30	9 5	70.	3	195	5	650	900	050				0,20	600	900	14	Ď,	320	,	7		300				() ()	200		200			8		88			-
VACCOM	i I	2 7 85	22-65	, ;	15-:05	125	. 60	5	68	ď	, , , , , , , , , , , , , , , , , , ,	:73	1/7	252	9	10 10 10	ę,	Ť	ç	ģ	3	NC 304r	550		236-750	325	220	150-275					12		150-325	302-750	250-400	300-500
	Start	ž	÷.	Ŧ :	£ 52	72	4	4	ņ	124	•	3;	¥	4	ţ	Š	4	\ W	125		3	•	33		2	‡	2	Λώ	; ;	S,	ž G	;;	14	ý	88	2	8	72
	Cruciole Dia.in,	ΟN	o, c	9 k C	n on	σı	J	ı U	'n	ď	· 0	17	7.	J,	12	J	, Jì	. J.	٠.,	•	;. J	1::	므	J,	::			31 EN	: :	≃:	4 1 4				1.3	7		7
¥	Elect. Dia.	1	~1	~ 1	٧,	7	r	Sec v. Je	Recycle	r	Section	-	Recycle	Recycle	4:000	Recyc) e	Recycle	Ren vn. e	Fec youe		700 YO 100 YO YO 100 YO YO 100 YO	Recycle	Secyole	Recycle	Recyc1e	Secycie	Recyc	10074 F88		Accycie	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	É' Round	4, 47, 44	Recycle	Recycle	Secycle	Recycle
MELTING	T in	ų.	w .) (, 4 , 4	5.36	c C	1	5.22	w.	•		φ. α	100	٠. د	4	10		5.74	,	n :	9 4	, ,	y. '.	01 141 171	4	ιν ·	· 1		4	, u		1,0		77.0	3.3	1	4
	50,	ž	ý.	¥;	n S			, <u>;</u>	÷	'n	•	'n		7			. ;		ï	•	i i	, 4	14	2	1	¥	Ę,				<i>i</i>		23		} J		ŧ	•
	50.5		505.	86	88		•		000			: :	ä	8		Ċ			. 22	:	5		H 12	305	500	8	9	300		200	2 6		000		200	13.50	0	, 50g
	. O	: :)- <u>!</u>	:- I	- 1-	14:-0-186	7 - 1301-100-1		1		5 1		:	; ; · · ·			1		<i>i</i>	-			į	7.3	į			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<i>i</i>	1 1		11.22		ĺ	247	11.43	04.
		:		2	13		,					: ;	;	:	-;						:	 :	:	;	:	, ,	:			į					, ; ;	i di		1.79
	3.	 	: = •	4. 4 (4	: : :::							· :		· .·	:	• ::	• .		::		:		· ·	<i>i</i>	;	į	,	Ļ		<u>;</u>	; ; , ,	; ;		;			j.	 L

TABLE J1 (Continued)

MELTING RECORD

	Heat Wt. Percent Humidity	Percent	£4	36	‡	-	Ď,	7:	¥	(a) •	9	O	Ţ	ç	5 4	3	9 :	ዮጵ	į	₽ 4	ę٠	₽ :	V n	;	25	S	iV iV	Ţ.	₽		.¥	:	27,	99		56		3 3	.8	:	 	t ::	٠.	,, ,,
	Percent	7,6,0		7.5	9.01	20.3	6.2	G	ņ	9	9	o. 	0.0	,	3	9	9.0	, ,	:	<u>.</u>		20	ນູ້. ວັດ	•		25.0	5.0	27.0	,	35 0.	17.0	_	0 % 0 0	15.0		15.0	0		;;;	;			22.0	8
4		i i	%	5.98	5.30	21,10	5.22	ó		^ ·	74.00	11.22	3.5	•	4	1	8 4	ţ'.	77 04	8	79 97	8:	1 2			22.61	14.23	:2; ::::	P	36.36	15.46	oke During		16.34		8	73 24		23.	;	2. 2.	·	36.52	11.62
S. C.	-	19	27.61	14. 14	50.03	103.68	63.37	900	20.00	8	277.00	S.	.: -::	37.52		3 5		60.62	ŝ	, ,	700	3.5	2.00		91.65	1-2.00	86.50	67.	60.27	135.12	88.00	ectrode Br	16.9	306.75		64.67	118 25	145	53.75	;	269,69	00	160,25	116.65
Fluidity	Spirel	:	hone	None	None	None	Vone	4		200	e o v	0 0 0 2	None	2		2	B (0 7	F OF	9		D ()	None	None	None None	None	e co	None		-	ğ və	φ.		æ	¥	. vi	φ	,	υ:		w	4
5	1:-	3	5.87					6	3 5	70.07	78.72	4	17.0	6.37	4	2 0	3:	14.25	14. 62	5 6	3 4	,,,	15.12		15.00	27.62	16.37	er i	4.5	26.50	16.37	8:	26.12	39.50		13.00	22 23	26.62	21.25		2.5	8 8	34,3	24,12
SKU	Start	J	30.50	16.00	25.87	8	18.80	6	9 6	9 6	3.5	30.0		10.00	200	200		36.	4	3 6	3 8	3 2	20.02		19.75	30.00	22.08	8.53	3	20.00	20.00	3 5	20.02	20.02		25.50	25.00	0	16.12	9	72 GC	2,42	32.63	23.93
S	S Min.	Leax Rec	.8/min.	7/min.	5/min.	9/min.	10/min.	1 6/25	,	E E /	ייייייייייייייייייייייייייייייייייייייי	C/6/0	5/410.	4/min.	٨/٣٠			2/min.	2 /m i.e.	, , ,	, e , e , e ,		4/min.		2/min.	2/min.	3/min.	4/min.	•	l/Ein.	S/Bin	2/min.	Z/min.	2/min.		2/min,	4/812	1	4/min.		4/min.	3/min.	4/min.	4/#10.
- MICRONS	After	100	325	750	250	220	770	7	35	3 8	33	3 :	750		ď			22,5	503	3 2	Š	9 6	800					350		000.1	750	, 8	88.	250		850	000	000	0 1,000		3 6		-	-
VACUUM	During 11	u U	250	S	450	250	245	800	36	9 6	7	7.	310	200	175-350	10,00	20.00	175	175	S	175	200	3 3		175	5	5/1	175,250				320		350		350	350	250-350	250-350	010	200-200	150-300	350	150-300
	,	200	3	2	7	e M	9	5	2 5	2	P S	λ:	'n	55	Ş	ğ	15	12	2	2	3.5	3 -	3		<u></u>	g. :	D	C 17	•	190	<u>8</u>	¥ 5	22	3		65	C ⁴	33	S.	2	3 5	3	ట్ట	20
	Crucible Die in		o,	2				12	::	! !	5 5	4 :	7	σı	2		: 2	12	2	! 2	: 2	-	: 2		15	2 :	_	an id		_	N 6		! !!	7		7.7	7	13	12	4.	2 2	2	2	12
닺	Elect. (Recycle	Recycle	Necycle	Recycle	/'Recycle	Sec volte	Ren ve la	4 4 4 4 4 4 4		יים אריים	Mecyc.e	Recycle	Recvele 7	Recv. fee.	Rec. 7-6	Recycle 6	Kecve la	Ver. ()	Recycle 7	Percycle 7	Secycle 7		Recycle 7	3.54.81.5	S Chunks	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	: :	7. 5q. Stock	01949	20.00	Secycle.	67549	6'Recy.	4. ABIY.	Recycle	7. Recy.	6. Recy.	, i	Recycle.	7 Recy.	6 Recy.	7 Recy.
MELTING	ë 2. ≃	1	2,16								1 2 1 2	<u>.</u>	,	3.25	3			3	7.1	ð	5.27	30	3.55		9.6		6	6.6	}	7.65	¥.	, 4 1	1	ć. 22	- 1	e.	6,33	9	5.75		5,75			
	1134		4	1	1	77.	1		42-40		; d			91-04				‡	,	1		17-1	1		1			ļ.		1		; 1	-4	1		7	ŧ	45-47	‡	340.64			1	
	Amos		12,500	1 2	2	000	60,4	14.00	00 5	2	1		•	12,000	14.50	14.00	15,000	14,560	•	7, 000		15.000	15,000		20.0	2	7	4.00		15.000	7		35.030	15.000		15.00	300	65, 75	14,590	1,000	13.000	13,500	13.500	13.500
	*e ter		6A 1-4	1	8	1	1 1 1	1 40	A	40	1	1 7 7	5	1.19	1-140	40	1	CA !-4.	C. i. i. i. i.	541-11	641-11.	(A.) min ,	140		1-173	<u> </u>	1	541-40		1	11 11 11 11		1-1-1-1	6 £1~ 	:	1	54!-4.	64:	641-4	15 lm 11.	6. P. L.	1-149	1 1 1 1	;
	i de .		22-85	45.	7.67	1.	4.64	23-5	17				1167	¥i Zi		-		7		1.5	11.	-	7		Į.	,				i.		1 .		7-67	:		13-51	17.5	7	23-2	4-17	Z3-3		3
		İ	χ; %!	, ,	0 d	, , ,	ķ	3	11254		1			š	a	9004	1,32	i'	14	14. 14. 14.		1	<u>.</u>		; ;	. 1	11.			iji in i	4 0 1		17.4	36.5	;	۲ ۲	500	.1, 13 14 14	0.55 4	35.4	1 di	 	j.,	 di di

TABLE J1 (Continued)

				1	SN I				VACULE	MICRO		SKUL	5	Ligity	0	ž		
9 /	0 2	Hate's	Arres VC		# # : # : # :	2.8. D.	Crucipie Dia in	Start	During After Melt Four	After Four	Eak Ra	Start Lt.	Stert Finish :	- c	1 0	/t. nest //t. f.		Humicity Percent
ž.	\$11.44 \$11.44 \$11.44	- 54-04-005,5' .5' area America	oce 'ee.	77-07	•	kecy.	σı	ă	150-200	215	4/4	 	8.50	۴,	£9.33	10.46	3,12	=
- 55	* 4	1				7 Aec).	'n	q	•		2/5 5.	5.16	ġ. 90	~	£3	.o. 4€	J C	35
#1 2.2.2	412	, , , , , , , , , , , , , , , , , , ,	11.35	11.		7 7 8 8 8 9 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	322	ទីដីដ	250-300	500 500 500 500 500 500 500 500 500 500	2/#'n. 5/#'n.	33.68 20.75 24.50	15.37 15.00 14.56	עישייש		35.36	0.00 = 9.7	7 in
10 1 10 1 10 0 10 1 10 0 10 10 0 0	HEL		11 4W	11.44	u	,0 t- 0 ti 3	20222	8 # º₭~	25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	758 55 50 55 50 55	2/#in. 2/#in. 5/#in. 3/min.	24 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		222,00 222,00 252,00 252,00	73.75 23.21 112.21 51.62 32.56	4-24	34546
81. 22.27 ##1. 22.27	йШ		200 000 000 000 000 000 000 000	36 99		11.000	ատորը	ж <u>ъ</u> · · §	155-150 	34 63 1 + 48 60 1 + 48	5/4 in. 10/4 in. 10/4 in.	# # # # # # # # # # # # # # # # # # #	- 10 10 10 10 10 10 10 10 10 10 10 10 10	55 2	0,0000 0,0000 0,0000 0,0000 0,0000	22111		71272
aratat vat	11114					OKOGA	22239	0000000 000000000000000000000000000000	200+25: 200-225: 35:0 375: 300+35:	580088 88088 88088	5/4 in.	146.9% 2000.00	1 - 0.0 m		N 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	411110	24114 . 24114 .	ት የአ ት አ የ
		111111111	\$ # # # # # \$ \$ # # # # # # # # # # # #		511.5	# # # # # # # # # # # # # # # # # # #	2.2.2 2.2.2.2	5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	256-350 266-300 66-300 56-300	75c 3,55c 35c 50c 50c	M 4 1 W 9 W 9 W 9 W 9 W 9 W 9 W 9 W 9 W 9 W	58874 5883 500 mil 200	54.55 54.55 54.55 54.55 54.55 74.55 74.55		345. 345. 345. 345. 345. 345. 345. 345.	- 20 0 1 0 1 1 1	100,000	ቁቀ ያ ሃሃሃታ
133 3 4 2 3		110	877 888 9.,7		n few	7.00 P.00 P.00 P.00 P.00 P.00 P.00 P.00	<u></u>	252	3501-361 3701-381	3000 3000 175	1,77.2 2,77.3 1,77.3 1,77.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	75. i. 13.37	 n.	20. 20. 20. 20. 20. 20. 20. 20. 20. 20.	540	 	28 9
1 2 2 2			A 000, 41	. 4	-10 ·1	* 1		¥ 5	150-150	301		<u>:</u> :	 	2	£1.5	3 5		5 2
				•	,		•					,	,		č			

TABLE J2

MECHANICAL PROPERTIES OF RECYCLED LOW INTERSTITIAL 6A1-4V

			ULTIMATE		REDUCTION	
		YIELD STRENGTH	TEBLILE		IN AREA	
HEAT NO.		0.2% OFFSET	STRENGTH	ELONGATION	<u> </u>	BHN
22-43-P245- 1	A	104,000	124,800	13	33.6	269.3
	В	103,000	124,000	10	24.6	
	C	105,000	124,200	9	22.4	
22-43-P249- 1	Α	102,000	122,200	10	19.0	269.3
	В	104,000	124,200	10	21.7	
	С	104,000	124,000	10	24.6	
22-43-P252- 2	!A	106,000	127,600	10	20.4	276.5
	В	107,000	127,600	11	25,2	
	C	104,000	126,000	9	22.4	
22-43-P255- 3	Α	107,600	128,000	13	27.2	277.0
	B	107,000	126,800	10	25.9	
	Ç	106,000	126,800	10	21.7	
22-43-P259- I	Α	109,000	128,000	13	32.4	279,6
	C	108,000	128,000	12	24.4	
22-43-P289- 5	A	106,000	126,000	12	31.9	277.0
	В	104,000	122,000	9	20.8	• • •
	С	105,000	122,000	12	31.9	
22-43-P267- 2	2A	109,000	130,000	12	26.5	271,6
	В	110,000	131,200	12	23.9	
	C	110,000	130,000	10	19.7	
22-43-P271- 1	A	109,000	128,000	13	29.2	279.0
	B	110,000	128,400	12	26.5	
	С	108,000	128,000	10	24.6	
	A	110,000	128,000	8	22.4	277.0
	B	110,000	130,000	11	27.0	
	C	109,000	130,000	13	34.4	
22-43-P282- 4		Tno	93,200	o	ύ	282.3
	B	B:Ittle	96,000	0 -	0	
	£		72,000	0	0	
22-43-P332-C1		105,000	125,200	12	18.1	272.0
	8	102,000	123,600	12	33.6	
	C	104,000	124,000	12	27,6	

TABLE J2 (Continued)

MECHANICAL PROPERTIES OF RECYCLED LOW INTERSTITIAL 6A1-4V

HEAT NO.	YIELD STRENGTH 0,2% OFFSET	ULTIMATE TENSILE STRENGTH	ELONGATION	REDUCTION IN AREA	BHN
22-43-P334-C2A	109,000	128,800	10	28.5	290.1
В	110,000	128,800	11	27.7	
c	110,000	128,000	11	29.2	
22-43-P372-C3A	110,000	131,600	11	26.5	279.2
В	110,000	131,600	12	23.2	
Ç	112,000	131,200	iï	26.5	
22-43-P375-C4A	114,000	133,200	8	15.0	287.2
В	116,000	134,400	10	19.7	
C	115,000	134,800	11	26.5	
22-43-P376-C5A	117,000	137,200	13	26.5	296.0
В	119,000	136,200	10	21.0	-2-4-
Č	118,000	136,200	ii	21.0	

TABLE J?
EXPERIMENTAL RAMMED GRAPHITE MOLD MIXTURES

		GRAPHITE L	JSED				Ì	RAW	Ì
MIX NO.	BB5	Recialm BB5	Classified Turnings	PITCH	LAUNDRY STARCH	CORN FLOUR	CEMENT C-3	LINSEED OIL	WATER
1	69			10	5		8		8
2	70.5			10	5.25		8.25		6
3		80.5		5.8	5,8		4.6		3.3
4 5 6		75		7.0	5.0		6.0		7.0
5		70		10	5.0		8.0		7.0
6		73.7		10.1		3.04	8.1		5.05
7 8	83.7				7.1				10.1
8	76.1			11					12.9
9	79.3						9.2		11.5
10	73.5			10.6	5.32				10.6
11	71,1			10.3			8.3		10.3
12	85.8					3.73			10.4
13	75			10.85		3.26			10.85
14		86.25				3.75			10.0
15		86.25				(Truscar)			10.0
						3.75			
16		70,5*		10	5.25		8.25		6.0
17	70			10	5		8		7
18	73			12.2	6.1				8.7
19	77			10	5			1	7
20	74.76			9.85	4.92			1.97	8.5
21	72			10	5			3	10
22		70 (BB8)	10	5 5		8		7
23	74			10	5			4	7
24	76			10		3		1	10
25	75			10		3 3 3		2	10
26	74			10		3		3	10
27	75			10		4		1	10
28	74			10		4		2	10
29	73			10		4		3	10
30			70	10	5		8		7
31			70	10		3	8		9
32			67.75	9.67	4.84		7.75		10
33			68	10	5		8		9
34			69	10		4	7		10
35			70	10		4	6		10
36			71	10		4	6 5 4		10
37			72	10		4	4		10
38			73	10		4	3		10

^{* 2} nd reclaim

TABLE J3 (Continued)

EXPERIMENTAL RAMMED GRAPHITE MOLD MIXTURES

		GRAPHITE	USED						5434	
MIX NO.	885	Crescent	Classified Turnings	DUPONOL G	PITCH	LAUNDRY STARCH	CORN FLOUR	CEMENT C-3	RAW LINSEED OIL	WATER
36		65		0.938	9.38		2.82	7.5		14.75
40		70			10		3	8		9
41			69	Ī	10		3	8		9
42			69		10	5		8		8
43			73		10		4	2		11
44			66.2	1.09	10.95	5.47		8.75		7.65
45			68	2	10	5		8		7
46		70			10	5		8		7
17	70				10	5		8		7
30			70		10	5		8		7
47	69.5				9.72	4.85		2.78		8.35
48	72.5			0.98	9.8	4.9			2.94	8.82
49 50	69			1	10	5		8		7
30			(Calcined Coke 3-15) 70		10	_				
51	70		70		10	5		8		7
52	70		(Calcined Coke 3-04)		9.72	4.86		3.89		9.58
			70		10	5		8		7
53			(Calcined Coke 3-15)			•				
			76		8	4		6		6
54	71				10	4 3		8		7
55	72				10	3		8		7
56	73				10			8		9 9
57 50	70				10		3	8 8 8		9
58 59	70	10.75			10		3	8		9
59 60		63.75	44.5	0.938	9.38	2.82	7.5			9.38
30			66.5		9.38	2.82	5.62			14.7

TABLE J3 (Continued)

EXPERIMENTAL RAMMED GRAPHITE MOLD MIXTURES

		·				· · · · · · · · · · · · · · · · · · ·			
1	PETROLEUM	COAL	PETROLEUM	~~~]	e		
MIX NO.	CALCINED	CALCINED		COKE	STARCH	PITCH	C-3	WAILE	SHRINKAGE
NO.	COKE	COKE	COKE	FLOUR	i		CEMENT		in./in.
									· · · · · · · · · · · · · · · · · · ·
02		76				10-		••	0.004
83		75		.5	5	10*		10	0.006
84		70		10		10*		10	0.007
85		65		15	_	10*		10	0.002
86		70		5	5	10•		10	0.012
87		65		10	5	10*		10	0.012
88		60		15	5	10*	_	10	0.011
89		65		5	5	10*	8	7	0.016
90		60		10	5	10*	8	7	0.015
91		55	~-	15	5	10*	8	7	0.013
92			75	.5		10*		10	0.105
93			70	10		10*		10	0.089
94			65	15	_	10*		iù	0.074
95			75		5	10*		10	0.097
96			73.8		5.2	10.5		10.5	0.105
97			72.2		5.56	11.2*		11.2	0.093
98			75		5	10*		10	0.093
99			73.8		5.2	10.5*		10.5	0.093
100			72.2		5.56	11.2*		11.2	0.159
101				80		10*		10	0.002
102				75		15*		10	3444
103				70		20*		19	
104				76.2	4.76	9.52*		9,52	0.023
105				71.6	4.7	14.2*		9.5	0.015
106				66.7	4.77	10.03*		9.5	0.021
107		78				12*		10	0.007
108		80				10.		iO	0.008
109		82				8+		10	0.003
110	75			5		10°		10	
110A				\$	5	10*		10	0.019
110B	65			10	5	10*		10	0.016
111	70			10		10*		10	0.002
112	65			15		10*		10	0.005
113		76				12**		12	0.016
114		78				10**		12	0.010
115		80				8**		12	0.014
116		71			5	12**		12	0.018
117		73			5	10		12	0.012
118		75			5	8**		12	0.016
119		76				12***		12	ð.öo y
120		78				10***		12	0.001
121		80				8***		12	
122				78		10***		12	0.003
123				73		15***		12	0.007
124				68		20***		12	0.021
125				73	5	10***		12	0.016
126				68	5	15***		12	0.021
127				63	5	20***		12	0.023
128		71			5 5 5 5	12***		12	0 016
129		73			3	júsis		12	0.012
130		75			5	B***		12	0.014
131		67			5	12***	8	8	0.016
132		69				10.**	8	8	0.016
133		71			5	8***	8	8	0.018

^{*} Foundry Pirch

** Black Diamond Pitch

*** Koppers Pitch

TABLE J3 (Continued)

EXPERIMENTAL RAMMED GRAPHITE MOLD MIXTURES

MIX NO.	GRAPHIT Sweco 20	E USED Sweco 40	PITCH	LAUNDRY STARCH	CEMENT C-3	LIQUID BINDER	WATER	SHRINKAGE In/In.
61	70		9	6		10 (7605)	5	
62	75		9	6		8 (7605)	2	0.0105
63	70.5		10.1	5.04		10.1 (7601)	3.5	0.0150
64	71.6		10.2	5.1		10.2 (7101)	1.5	0.0276
65	52	21	10	5	8		5.6	0.0239
66	52	20	10	3	8		7	
67	70 (carbon		10	3 5	8 8		7	
	sand)						·	
	COKE 93-04)							
68	68		12	5	8	7		0.0094
69	70		ìù	5 5	8 8	7 7 7		0.0094
70	72		8	5	8	7		0.0063
71	64.8		11.4	4.75	4.75	-	14.3	0
72	66.7		9.5	4.75	4.75		14.3	ŏ
73	68,6		7.6	4.75	4.75		14.3	Õ
74	74.3		11.42				14.28	Ö
75	75.2		10.50				14.3	0.031
76	78		7.6				14.3	0
7 7	73		12	5		10		0.0125
78	75		10	5		10	-	0.0019
79	77		8	5		10		0.0078
80	78		12			10		0.0016
81	80		10			10		0
82	82		8			10		Ö

^{*} Sturry - Petroleum residual

7605 - Amino - Aldehyde

7601 - Urea type - water soluble

7101 - Pheno - Formaldehyde - water dispersing

TABLE J4

GRAIN SIZE DISTRIBUTIONS OF GRAPHITE BASE MATERIALS

U.S. Series Equivalent No.	National Carbon Grade BB 8	Sweco Separator Pass No. 10	Reclaimed (Tumbled Only)	Reclaimed Crushed & Tumbled	Reclaimed Crushed Only	Reclaimed Crushed & Pulverized	2nd Reclaim Crushed	Reclaim Plus 20% Fines
6								
12		0.78						
20	5.44	39.70	0.12	0.26	0.22	2.32	0.32	0.38
30	40.82	40.86	1.46	3.88	5.54	7.10	5.24	1.50
40	32.35	10.62	5.30	13.50	9.88	12.12	15.06	3.10
50	16.72	3.24	31.30	25.96	20.76	20.06	30.28	15.50
70	2.08	86.1	38.75	29.10	26.20	23.56	25.40	23.78
100	.49	1.00	19.72	18.32	18.10	15.66	10.94	17.60
140	.28	0.52	2.90	5.44	6.86	5.14	3.90	6.50
200	.20	0.46	0.84	2,18	3.80	2.96	2.76	4.30
270	.08	0.14	0.08	0.34	2.00	0.96	1.28	3.30
Pan	.22	0.42	0.06	0.92	6.52	8.28	4.74	23.84
Total	98.68	99.42	100.53	99.90	99.88	98.16	99.92	99.80

	Crescent GraphIte	Sweco No. 20	Calcined Coke 3-15	Calcined Coke 3-04	Sweco No. 40	Sweco 60% No. 20 40% No. 40	BB 5
6							
12				.04			
20	.06	.10	.08	.60		0.2	0.14
30	9.36	6.62	23.24	1.44	.02	6.4	0.68
40	11.62	22.34	51.58	3.14	.06	18.0	1.22
50	22.66	52.50	21.42	6.16	1.38	32.0	26.44
70	17.74	18.54	3.36	13.34	10,12	22.2	44.28
100	11.12	1.82	.34	27,24	17.84	10.2	
140	6.36	.08	.06	27.80	16.96	4.2	24.62
200	3,50	.02	.02	12.94	12.86		1.44
270	1.04		.02	3.0	9.44	2.4	0.2
Pan	6.32		04			1.2	0.03
	0.32		.06	3.32	30.76	3.2	0.68
Total	87.98	102,02	100.16	99.02	99.44	100.	99.78

TABLES

TABLE J5

PROPERTIES OF RAMMED GRAPHITE MOLD MIXTURES

MIXTURE NO.	MOISTURE CONTENT, PER CENT	GREEN PERMEABILITY	GREEN HARDN		GREEN COMPRESSION STRENGTH	STRENGTH,	FIRED SC HARDÍ	
			2 x 2 Specimen	Mold		PS1	Test Coupon	Mold
1	7.75	150	77	77	10.3	65	75	75
	8.75	145	76	76	9.4	75	76	90
	8.9	90	78	78	10.3	80	82	82
	10.0	95	<i>7</i> 8	79	10.5	70	82	94
	9.1	105	77	78	9.7	87	83	95
	9.2	100	77	77	9.8	77	82	96
	8.6	80	79		9.8	75	76	98
	8.8	85	79		10.3	70	78	98
	8	97	77	79	9.5	72.5	80	98
	8.3	97	78	79	8.9	85	80	97
	7.8	83	77		10.1	85	80	97
	7.6	90	78		9.9	90	80	98
	8	93	77 70		10.1	102.5	82	•••
	8.1	95 95	78 77		10.5 9	85	83	98
	8.75 8.5	95 85	77 78		9.2	75 05	83	95
	7.5	83 82	78 78		9.2 9.2	95 80	83 80	97
	7.5 8.5	85	78 79		9.2 9.6	90		98
	8.2	107	77 77		9.6 8.9	90 95	80 86	96
	8.4	95	77 79	80	9.6	95	85	90 98
	9.0	105	77	78	9.7	80	82	97
	8.2	115	77	80	9.5	65	75	96
	7.4	115	77	80	8.7	67.5	75	70
	8	115	<i>7</i> 8	80	9.4	75	75 75	97
2	7.5	145	77	77	7.2	62.5	75 75	87
-	5.8	160	79	78	9.3	51.5	60	93
	5.5	135	80	80	10.7	75	75	96
	6.5	122	78	78	10.1	60	70	97
	6.75	127	78	80	9.4	50	65	90
3	4.5	170	75	83	5.7	20	20	75
4	6.75	195		80	8.3	45	60	
5	6.2	205		80	8.6	87.5	75	96
6	5.75	155		80	5.5	Broken before tes	†	90
7	9	187		58		Broken	20	70
8	12	100		48	5.2	20	30	52
9	11.1	155		60	2.9	Broken in firing		0
10	10.2	125		7û	4,5	42.5	65	95
11	10.2	90		70	5.9			80
12	9.4	180		70	•	Broken	0	20
13	10.3	120		76		Broken in firing		75
14	10	270		76		Broken in filing	_	40
15	9	267		76		Broken in setup o		40
16	5.75	270	0.5	82	6.7	55	60	93
17	7.6	105	8Ú	80	10.6	46	60	
	6	110	78	80	9.7	50	62	98
	6.3	125	81	90	10.3	47	7G	98
	6.3	127	79 70	80 86	9.7	46 40	68	97
	7.0	97	79 20		9 6 0 6	4G	63	97
	6.4	117	79	76	9.3	46	70)	ዓ ላ

TABLES

TABLE J5

PROPERTIES OF RAMMED GRAPHITE MOLD MIXTURES

MIXTURE NO.	MOISTURE CONTENT, PER CENT	GREEN PERMEABILITY	GREEN HARDNI		GREEN COMPRESSION STRENGTH	FIRED TENSILE STRENGTH, PSI	FIRED SC HARDI	
			2 x 2 Specimen	Mold			Test Coupon	Mold
17	7.2	122	78	76	8.0	43	58	95
cont.	7.5	127	79	82	8.6	44	70	
	6,75	150	77	76	7.5	37.5	55	97
	6.75	140	76	80	7.2	47.5	65	
	8	152	76	78	6.7	50	70	97
	7.0	125	77	80	7.1	62.5	70	95
	7.4	130	77	80	7.4	62.5	70	95
	7.3	230	80		7.2	60	65	
	7.3	320	80		7.1	50	60	
	6.75	270	77		5.3		**	
	6.75	290	77		5.3	45	55 50	
	6.75	280	78		5.8	40 20	50 55	
	7.1	330	78 70		. 5.9	30	55	
	7.0	310	79 79		6.3 6.9	40	65	
	6.85	330 300	79 78		6.5	35	60	
	7.5	300 270	78 79		7.5	52.5	60	
	6.85		79 79		6.5	6Ú	70	
	6.5 7.9	220 210	80		6.5	60	70	
	7. 9 7.6	270	78		7.3	55	70	
	7.5 7.5	230	70 79		6.8	60	70	
	7.75	200	77 79		7.0	70	75	
	7.75 7.75	290	80		7.3	65	70	
	7.75 7.75	260	79		6.2	52.5	70	
	8.0	290	79		5.1	40	55	
	7.9	270	80		6.9	55	65	
	7.7	250	79		7.7	65	70	
	8.2	250	79		7.0	60	65	
	8.0	240	80		5.7	50	65	
	8.1	230	79		7.3	60	70	
	8.0	230	80		7.0	52.5	65	
	8.5	250	78		6.7	Broke	30	
	8.8	170	80		7.6	27.5	60	
	8.0	180	79		6.8	35	60	
	8.3	180	78		6.9	25	55	
	9.0	240	79		6.3	:30	60	
	8.5	240	77		4.9			
	7.8	220	79		6.3	30	50	
	7.75	250	79		7.1	25	65	
	8.0	200	79		6.9	37.5	70	
	8.2	26Û	78		5.8	22.5	60	
	8.5	240	78		7.1	35	70	
	7.4	260	79		6.0			
	7.2	250	79		5.5			
	8.6	290	76 70		4.3			
	7.5	210	79 70		5.3			
	8.3	260	78 70		5.3			
	7.6	230	79 79		6.7 6.7			
	8.0	210	17		u./			

TABLES

TABLE J5

PROPERTIES OF RAMMED GRAPHITE MOLD MIXTURES

MIXTURE NO.	MOISTURE CONTENT, PER CENT	NTENT, PERMEABILITY HAPPINESS			GREEN COMPRESSION STRENGTH	FIRED TENSILE STRENGTH, PSI		FIRED SCRATCH HARDNESS	
····			2 x 2 Specimen	Mold			Test Coupon	Mold	
17	8.0	250	78		5.0				
cont.	8.6	220	77		4.5				
	8.0	230	78		4.6				
	7.2	260	78		4.0				
	7.5	230	<i>7</i> 8		5.5				
	8.0	270	78		6.1				
	7.75	220 240	78 79		6.4				
	7.0 6.2	240 95	79 79		6.8 9.7	o.e	00		
	7.5	105	81		9.7 9.3	85 60	80 7 0		
	7.5	95	80		9.4	67.5	70 75		
	6.9	125	80		9.1	80	73 77		
	7.5	117	<i>7</i> 9		· 8.9	75	75		
	7.8	120	80		8.1	67.5	75		
	7.8	110	80		9.9	77.5	80		
	7.7	120	80		9.7	75	77		
	7.75	113	80		9.8	77.5	80		
	8.0	120	79		8.3	60	70		
	7.9	123	79		8.1	82.5	80		
	7.75	127	80		9.9	90	75		
	7.9	130	80		9.8	70	75		
	7.5	115	7 8		6.8	65	75		
	7.9 7.2	155 165	80 80		9.2	70	77		
	7.2 7.5	162	80		9.1	50 55	65		
	7.5	177	79		9.2 7.6	55 70	70 75		
	8.3	127	79		9.2	77 . 5	80		
	8.4	152	80		9.1	45	70		
	8.1	145	79		9.8	60	75		
	8.1	190	80		9.6	70	75 75		
	8.0	245	79		8.9	72.5	75		
	8.2	245	80		8.4	60	70		
	8.4	195	80		9.0	67.5	75		
	7.4	185	80		9.1	50	65		
	7.8	225	79		8.0	62.5	70		
	7.2	200	80		8.5	67	72		
	7.75	215 192	80 80		7.7	52.5	70		
	6.25	220	80		8.6	80	75		
	7.0 7.2	147	77	80	8.1 8.3	75 77. 5	77 75	00	
	6.75	150	77 79	80	9.3	77.5 70	75 75	92	
	6.9	120	79 79	80	9.0	70 70	75 75		
	8.6	115	74	80	7.5	70 64	75 85	97	
18	6.6	105	78	79	6.9	26	35	92	
19	7.7	122	75	76	6,1	27.5	40	92	
	6.4	132	75	72	6.2	27.5	45	93	
20	7.2	117	72	72	5.6	40	55	95	
	9.5	105	70	72	4.4	46	70	95	

TABLES

TABLE J5

PROPERTIES OF RAMMED GRAPHITE MOLD MIXTURES

MIXTURE NO.	MOISTURE CONTENT, PER CENT	GREEN PERMEABILITY	GREET HARDN		CREEN COMPRESSION STRENGTH	FIRED TENSILE STRENGTH PSI	FIRED SC HARDI	
· · · · · · · · · · · · · · · · · · ·			2 x 2 Specimen	Mold		rot	Test Coupon	Mold
21	9.3	105	72	72	5.0	40	60	95
	8.1	107	73	72	4.9	35	55	95
	8.5	90	72	78	4.8	52.5	70	96
	9	80	72	72	5.2	61	75	95
	9.4	82	71	72	5.5	50	72	95
	8.8	90	70		4.3	46	70	
	9.2	75	57	78	5.8	137.5	90	95
	9.5	90	72	78	4.8	167.5	90	95
	8	77	74	76	6.7	116.5	35	94
	ý	92	73	76	5.6	75	80	
22	6.1	440	79	80	8,8	52.5	7č	95
23	7.2	100	75	73	.5.2	35	55	87
24	8.2	107	72	77	4.3	20	25	94
2-4	8.6	95	74	76	3.8	22.5	30	92
25	8.2	100	73	77	4.4	17.5	20	78
23	8.5	110	70	76	2.7	30	50	80
26	9.5	110	73	78	4.1	12.5	10	72
20	9	75	73 74	70 72	4.9	60	70	91
	9.5	87	74	76	4.7	21	30	92
27	7.75	105		80	5.7	20	30 30	85
27		87	75 75	78	5.7 5.1	27.5	40	80
00	7.3	92	73 74	78	4.0	27.5	40 25	94
28	8.2 8.4	72 73	74 76	76 81	6.0	31.0	25 55	87
	8.2	73 77	76 74	81	6.3	32.5	55	87
	_	77 73	74 75	78	5.5	32.5 32.5	60	93
24	7.5	73 73	73 74	70 78	5.2	60	75	94
29	9.2 8.75	73 85		78 78	5.3	52.5	73 70	94
~		150	73 80	90	10.6	41.5	65	74
30	8.0	200	78	78	10.5	42.5	70	
	7.8	200 140	76 77	76 80	10.8	42.5 57.5	80	93
	7.5	92	77 78	80	8.7	66.5	80	93 95
	7.5	92 88	78 80	80 80	9.1	45	70	73
	6.5	62	78	80 80	9.2	45 60	80	
	7.4	02 125	76 80	δU	10.0	55	65	
30	7.8		80 80		9.8	35 45	60	
	7.2	130 97	80 80		9.0	45 35	60 60	
	9.2 10.8	80 80	76		10.3	ა: 6Ū	80	
		127	70 80		9.7	40	65	
	9.3	165	79		9.3	40 45	75	
	9.25	330	79 79		9.3 6.7	43	73	
	7.2	330 410	79 80		6.7 7.2			
	7.3		*					
	7.75	140	78 90		6.2			
21	9.4	80 76	80	00	7.9	25	r.c	
31	9.4	75 76	75	80	7.1	25 25	55 75	٠.
	8.2	75 40	75 75	80	8.1	35 37 5	75 75	94
	9.7	60	75 75	60	8.4	37.5	75	
	9.75	77	75 74		8.5			
	9.5	72	76		8.8			

TABLE J5

PROPERTIES OF RAMMED GRAPHITE MOLD MIXTURES

MIXTURE NO.	MOISTURE CONTENT, PER CENT	GREEN PERMEABILITY	GREEI H a rdn		GREEN COMPRESSION STRENGTH	FIRED TENSILE STRENGTH, PSI	FIRED SO HARDI	
			2 x 2 Specimen	Mold			Test Coupon	Mold
31	9.5	72	76		8.6			
cont.	9.9	75	76		8.1			
32	9.4	68	76	78	8.1	38.5	75	97
33	8.7	100	77	78	9.0	35	80	94
34	9.8	75	75	80	9.0	42.5	80	95
35	9.2	77	75	80	8.4	41.5	78	96
36	8.9	93	75	80	8.6	46	75	95
37	10.0	95	75		9.2	40	75	96
38	10.7	<i>7</i> 8	74	80	8.7			92
37	14.5	17	70		6.5	297	91	
40	10.0	90	72		5.5	70	77	
	10	93	76		8.8	58.7 5	65	
41	10.3	46	74		5.8	112.5	85	
42	7.8	107	78		9.9	50	72	
	8.4	97	77		10.4	65	78	
	ó.Ÿ	14/	/8		9.2	22.5	40	
43	11.3	38	74		8.5	35	65	
44	8.8	31	79		11.1	150	90	
45	8.1	45	79		10.3	152	90	
46	8.0	95	78		9.0	91	80	
47	12.0	75	75		7.5	135	90	
48	6.5	<i>7</i> 0	80		8.3	102.5	80	
49	7.5	95	80		8.7	166	87	
	8.75	85	80		9.3	145	87	
	7.5	110	79		9.2	87.5	78	
	8.25	110	79		9.2	102.5	85	
	8.20	100	79		8.8	100	85	
	8.2	110	80		8.9	100	85	
	7.9	125	78		7.2	95	80	
	7.9	120	78		8,6	92.5	82	
	8.25	120	78		8.8	100	82	
	7.9	110	79		8.5	07.5	82	
	8.1	130	80		8.2	112.5	84	
	8.1	130	80		8.7	110	80	
	8.1	93	78		9.4	140	85	
	8.5	93	80		9.6	136.5	85	
	7.0	73	80		10.9	167	87	
	7.0	77	δü		10.2	115	80	
	7.5	92	80		9.0	166	87	
	8.75	85	79		9.3	145	87	
	7.5	110	79		9.2			
	8.25	110	79		9,1			
	8.2	100	79		8.7			
	8 2	105	79		8.7			
	7.9	122	78		7.3			
	7.9	115	79		b.o			
	8.25	120	78		8.7			

,TABLE J5

PROPERTIES OF RAMMED GRAPHITE MOLD MIXTURES

MIXTURE NO.	MOISTURE CONTENT, PER CENT	GREEN PERMEABILITY	GREEN HARDNE		GREEN COMPRESSION STRENGTH	FIRED TENSILE STRENGTH, PSI	FIRED SC HARDI	
			2 x 2 Specimen	Mold		131	Tesi Coupon	Mold
49	7.9	105	79	Mora	8.6	<u> </u>	, C. 131 13.	MOIC
cont.	8.1	125	79		8.4			
	8.1	125	80		8.8			
5C	8.3	410	80		9.4	60	75	
51	11.4	115	75		4.8	72.5	75	
52	7.8	77	75		6.7	80	80	
53	6.2	660	76		5.6	35	60	
54	8.7	142	76		6.1	50	65	
55	7.4	143	76		6.1	42.5	55	
56	9.2	102	75		6.2	40	70	
57	11.5	160	73		6.7	45	65	
58	12.7	85	71		4.9	60	80	
59	12.75	83	70		3.7	95	85	
60	14.5	27	74		7.i	85	87	
61	10.7	270	76		9.5	105	85	
62	7.75	390	78		7.6	35	35	
63	8.2	390	78		8.6	42.5	70	
64	5.4	800	70		4.3			
67	7.6	170	78		7.4			
68	7.8	80	78		6.3	72.5	80	
69	8.6	60	73		4.3	54.0	88	
70	8.0	78	75		4.9	42.0	78	
71	2.36	50	66		3.0			
72	3.34	50	65		2.6	120.0	88	
73	2.10	50	65		2.5	95.0	88	
74		31	69		3.4	218.0	96	
75			70		2.9	200.0	96	
76			56		2.5	94.0	83	
77			76		5.2	77.0	86	
79			75		4.7	56.5	75	
80			76		4.7	81.0	83	
81			79		4.8	61.0	7 9	
82	11 0	20	77		4.5	22.0	••	
83 84	11.8 12.8	32 19	73 75		ó.1	33.0	42	
8 4 85		18	73 78		7.5	25.5	41	
	13.6		78 74		8.1	33.8	54	
86	12.0 13.2	37	74 71		5.4	57.5	76	
87 88	11.4	36 23	7. 75		5.2	45.5	74	
89	9.5	23 39	69		6.4 5.9	47.7	73	
89 90	9.5 8.8	37 48	72		5.9 5.2	49.8 34.0	74 56	
90 91	8.0	49 32	72 70		5.4 5.4	34.0 36.7	56 43	
92	15.4	7.5	70 79		12.3	36.7 60	43 92	
93	15.4	7.5 6.5	80 80		12.3	ου	72	
93 94	16.7	7.	9C		12.7	34	84	
95	13.3	21	75		7,7	34	04	
66 42	13.3	49	55		6.3			
97	12 0	53	45		5.8			
96	10.8	57	6.		5.0			

TABLE J5

PROPERTIES OF RAMMED GRAPHITE MOLD MIXTURES

MIXTURE NO.	MOISTURE CONTENT, PER CENT	GREEN PERMEABILITY	GREEI HARDN		GREEN COMPRESSION STRENGTH	FIRED TENSILE STRENGTH, PSI	FIRED 3C HARDI	
			2 x 2 Specimen	Mold			Test Coupon	Mold
99	11.9	71	65		, _F		A	<u> </u>
100	11.8	30	67		6.5 6.4			
101	11.8	5	81		11,/	49.4	80	
102	14.8	6	81		12.9	55.0	84	
102	14.8	6	80		12.7	82.5	89	
103	14.0	6.5	78		10.2	51.0	88	
105	12.8	7	76 78		10.2	67.5	85	
103	13.4	6.5	75 77		10.2	72.0	81	
107	11.8	35	72		5.7	55.0	64	
108	12.2	36	72 77		6.1	55.0	59	
109	11.0	40	77 75		5.4	47.5	57 66	
110	10.6	40 5	84		15.0	47.3	66	
110A	15.6	9	77		11.2	35.0	83	
1108	14.2	13	77 77		10.5	26.0	74	
111		6	82		15.9	26.0 45.1	77 77	
	13.8	6	82 83		16.0	43.0	80	
112	13.6		74		5.3		71	
113	12.0	40 41	74 75		5.9	44.0 40.0	71 70	
114	13.0		73 72		4.9		40	
115	12.0	46 40	69		4.9 4.8	31.2	40 85	
116	13.6 12.6	40 48	68		4.0	77.5 62.5		
117		48 59	08 70				88	
118	11.4 9.2	59 51	69		5.0 3.4	48.5	74 53	
119						32.5	53	
120	10.3	52	68		3.6			
121	9.8	58	70		3.4		nn.	
122	17.6	5.5	80		13.7	00 5	88	
123	19 6	5.5	80		12.6	82.5	92	
124	21.8	5	80		12.5	41. 3	93	
125	16.8	7 .	75 75		9.0	41.0	86	
126	13.8	6	75 75		9.8	69.0	89	
127	15.6	გ.5	75 70		9.7	122.0	97	
128	13.4	31	70		4.9	59.5	77	
129	10.2	50	68		3.0	42.0	55	
130	10.8	54	73		4.4	39.5	52	
131	9.2	47	72		5. 4	48.5	72	
132	9.6	49	70		5 0	56.0	80	

TABLE J6
SHRINKAGE OF RAMMED GRAPHITE MOLDS

MIX NO.	SHRINKAGE, IN/FT	HIX NO.	SHRINKAGE, IN/IN	MIX 110.	SHRINKAGE, IN/FT
2	0.128	17	0.0110	19	0.207
-			0,01185		0.173
4	0.198		0.0122	Ave.	0.190
			0.0120		
5	0.198		0.0145	20	0.173
•			0.0145		0.132
16	0.188		0.00805	Ave.	0.152
,,,	JJJ		0.0145 0.0145	,	
17	0.125	4	0.0126	21	0.138
17	0.125	Ave,	0.0120	61	0.173
	0.125	30	0.0136		0,160
		,,	0.0126		0.159
	0.136	Ave.	0.0131		0.0834
	0.136	*****			0.0054
	0,133	40	0.00745		0.0612
	0,140		0.01435		
Ava.	0.133	Ave.	0.00109	Ava,	0.131
22	0.188	41	0.00825	23	0.114
30	0.141	43	0.00885	24	0.132
•-	0.141			•	0.151
Ava.	0.141	işiş	0.0151	Ave.	0,141
32 '	0.151	46	0,01385	25	0.104
74	0,151			-,	0.0345
~~	0.155	47	0,0153	Ave,	0,0694
33	0.155	48	0.034.0	7140,	0.005.
,	A 120	40	0,0142	26	0.076
6	0.139	49	0.01535	40	0.045
**		72	0,01450		0.104
31	0. 38		0.01450		
	0.104		0,01450	Ave.	0.075
	0.0926		0,01450	A.W	0.0755
	0.0909	Ave,	0.01453	27	0.0755
	0,0792				0:0755
Ave.	0.101	51	0.01025	Ave,	0.0755
34	0.0755	54	0.0152	28	0.1385 0.136
35	0.104	55	0,0141		0.151
	••••			Ave.	0.149
36	0.1035	56	0,0103		
		57	0,0107	29	0,166
37	0.0755		0.0.01		
		58	0.0149		
38	0,138				

TABLE J7

EXPERIMENTAL SHELL GRAPHITE MOLD MIXTURES

Mix No. '	Phenol Formal- dehyde %	Pitch %	Graphit Type	e %	Solvent	Mull Time, Minutes
i	12		9B 5	88		4
2	12		\$waco //40	88		5
3	20		88 5	80		5
4	12 ·	8	8B 5	80		5
5	6	8	88 5	86	1/2 Pt.	4*
6	12	8	88 5	80	1/2 Pt.	ig vie
7	(Borden). 10	10	Carbon Sand	80		4
8	12 (7504)	10	Calcined Coke	78		4
9	10 (7504)	10	Calcined Coke	78		ią.

^{*} Hulled dry & minutes and then mulled until alcohol solvent evaporated.

TABLE J8

EXPERIMENTAL INVESTMENT MOLD MIXTURES

H in No	- سادا	Grup	hito	Darex 561	Canad je	Commutatel White films	C-3 Compt	Plich	Vater	Comments
		#50 Mesh	Grade 39							
1		5 Parts		4 Parts	2 Parts					Hadium shrinkago 20 hr. set ilmo
2		7 Parts		2 Parts	I Facis					Modium shrinkage 8 i.r. set time
3		7 Parts			↓ Parts	2 Parts				High shrinkage strong, 10 hr. set time.
4		7 Parts		2 Parts					1 Part	10 hr. set time hard strength no shrinkage
5		7 Parts				2 Parts			2 Parts	lő hr. sot tíme. hard – no shrinkage
6		70 GH		20 GH		•	8 GH	IC GH	25 GH	Hold cavity pitted
7		70 GM		20 GH	20 GH		8 GH	FO GM		Hold cavity badly pitted - poor condition
Ħ		70 GH				15 GH	8 GM	io AH	30 GH	Scubbing, partial culiupse of mold walls
9		70 GH		to GM		6 GM (starch)	8 G M	IO GM	50 GH	Very purous, cavity collapsed.
10		·350 GM		100 SH		÷	40 GM	50 GM	125 GM	Air entrapped at cavity surfaces thick slurry,
I) (H (First C		30 GH	40 GH	36 GH			16 GM	20 GH	90 GH	First coat buckled and pulled may from
IIA (Second	· ·	350 GM		50 GH			40 GK	50 GH	140 GH	second coat, air entrapped in second coat,
12		350 GH		50 GM			40 GM	50 GH	120 GH	Too stiff to pour well
13		400 GH	150 GH	40 BH				50 GH	270 GH	Holds good, Some air entrapment
144 (50 GH	38 GH	12 GH			10 GM	12 GM	65 GM	
(F)rst 66 148 (100 CC fai 24 CC JX i sotting ti	ydrochlor ic	hosilicato, 5 .acid, (plo	16 CC domiture 1 12 CC of wi	id ethyl alcoh ter to control	ol			
		Added to: £80 GH -#2 200 mash t	20 Grug, 210 Illeu flour	GM -120 Aucsi , 1 GM -acsigne	s Navad., sand ostum uxida,	, 120 GH -				
15 (1	(-1)	Korr crys	tailite and	water						
16 (0	i+1)	Z00 GH	150 GH	50 GN			40 GR	50 ter	270 GM	Best mix

TABLES

GRAIN SIZE DISTRIBUTION OF RECYCLED MOLD MATERIALS TABLE J9

134 0.2 1.0 0.8 2.4 2.2 5.4 6.4 5.12 0.4 0.2 0.4 1.2 0	6		Per Ce	ent Re	cent Retained on Screens	on Scr	eens				ļ			1	با
1,194 0.2 1.0 0.8 2.4 2.2 1.6 2.8 3.2 3.2 1.6 2.8 1.0 1.3 1.3 1.0 0.4 1.2 0.4 1.2 1.6 1.8 2.8 3.2 1.2 1.8 1.2 0.4 1.2 0.4 1.2 0.4 1.2 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	Salte e les .	·	2	3	*	2	40		wQ.	ታን	2	:		•	
1.394 0.2 1.0 0.8 2.4 2.2 1.8 2.8 3.2 3.24 1.2 0.4 1.2	_						-	.4	f.	at d	2,0	**	0.2		
1.194 0.2 1.4 2.4 2.6 3.2 3.2 3.2 5.4 6.4 7.18 3.2 5.8 1.0 13.34 9.6 17.6 1.2 5.8 1.0 13.34 9.6 17.6 13.54 13.6 13.6 17.6 13.34 9.6 17.6 13.6 17.6 13.34 9.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17	•.						· ·	; ;	; .	, t	2	14	1.2	4.0	٥. ا
1.500 2.2 3.4 5.2 5.6 6.5 5.8 7.6 8.6 11.0 13.34 9.6 17.6 5.8 1.5 15.0 15.20 2.2 5.8 5.8 17.6 15.0 13.34 9.6 17.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15	ij			7.0	٥, د	9-0	4,4	1	o,	ì	!			•	;
1,500 2.2 3,4 5.2 5.6 6.5 5.8 7.6 8.6 11.0 13.34 9.6 12.6 7,535 9.2 10.2 13.8 14.4 15.6 15.4 18.5 21.2 22.8 25.86 22.4 27.5 12.8 16,454 8.0 17.5 22.6 25.6 7.2 2.6 24.2 24.4 27.2 24.4 27.2 13.1 27.0 13.1 12.0 13.2 13.1 12.0 13.2 13.1 12.0 13.2 13.1 12.0 13.2 13.1 12.0 13.2 13.1 12.0 13.2 13.1 12.0 13.2 13.1 12.0 13.1 12.0 13.1 12.0 13.1 12.0 13.1 12.0 13.1 12.0 13.1 12.0 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13	z	đ.	J	*	4.7	97	7	W. W.	7.2	₩	£.4	7.18	3.2	m v	0
7.635 9.2 10.2 13.8 14.4 15.6 15.4 18.5 21.2 22.8 25.86 22.4 27.8 25.8 18.5 18.5 18.5 18.5 18.5 18.5 18.5 1	t u	955	7	3,4	5.2	5. 5	6.5	7. B	7.6	. e	a, 17	¥.5	9.6	18.6	3.21
	,	7.83	2	20.7		4,4	15.6	15.4	18.5	2,,2	. 8.27	25.86	a v	8, 3	#
16.726	·	1	e co	3-51	8	9.8	¥.	.v.	¥.1.	4.45	27.22	24.12	23.0	38.6	40
16.970 1.3 11.6 12.6 10.1 9.4 5.2 7.2 6.6 5.4 3.36 6.2 3.4 3.5 6.5 5.4 5.5 6.5 3.4 5.5 6.5 3.4 5.5 6.5 3.4 5.6 5.4 5.5 6.5 5.4 5.5 6.5 5.4 5.5		47. 47.	-4 (4)	. t.	ž,	18.0	7.77	ί <u>ε</u> . 6	16.5	3,5,	13.0	æ. ::	13,0	13.4	a is
8. two 8 88 70 72 6.4 6.6 5.4 4.2 32 2.40 4.6 5.4 5.4 8.2 3.2 2.40 4.6 5.4 5.4 8.2 3.2 2.40 4.6 5.4 5.4 5.2 5.40 4.6 5.4 5.4 5.2 5.2 5.4 5.4 5.8 5.4 5.8 5.4 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8	:	826 U	, -	4.1	4,27	10. č	₹. Ø	4.7	7.2	5,5	4.8	3.36	6.2	4	Ģ.
1, 166 0.12 0.14 1.0 0.12 0.12 1.64 1.0 0.18 1.8 1.18 1.18 1.18 1.18 1.18 1	s <u>1</u>	. G		80	2.0	7.2	4.	9.9	ų,	7.4	3.2	2,40	9 . 0	4 .;	5.4
34, 230 11.8 16.6 20.0 5.6 4.0 6.8 0.2 3.2 8.4 1.54 2.8 1.8 1.6 32,46 170, 88.2 100, 85.0 66.4 90.2 85.4 92.6 90.8 92.62 87.2 103, 1 C.This .07314 3/6446-51 1/1646 3/230 1/2.100 3/16.10 3/16.10 3/16.10 1/16.10 1/100 6.070 6.070 6.070 6.070 6.070 14,000 12,100 12,100 12,100 12,100 12,100 8,050 6.070 6.070 6.070 6.070	× 1	} <u> </u>		4	1	1	3	0.2	2.0	. 1	1	ą,	1.0	, c	4.0
92.4c 17C, 86.2 10C, 85.c 66.4 90.2 85.4 92.6 98.5 92.62 87.2 103, 10 .C.Z7118 , 07318 3/6418-51 1/1648 3/2230 1/1640 3/1640 3/1640 3/1640 1/				16.6	, e.	به. ای	а, 4	.¢	2,2	4,4	4.9	ţ	2,8	3.6	; 2. b
. C.Z7)18 . U)318 3/6-wid-si 1/16-m 3/3200 1/16-m 3/16-m 3/16-m 3/16-m 1/16-m 1/16-m 1/2-m (C.07) 6,070 6,07	.		ž Š	 	ğ,	85.0	4. 48	5.30	85.4	92.6	કુ: સુ	92.62	87.5	.692	
14,000 12,100 12,100 12,100 12,100 12,100 8,050 8,050 6,070 6,070 6,070 6,070 6,070	. :	投			71 1/16#8	3/3380	3.78WD	3.716 705	3/16 40	3/16 80	1/16 R3	178 H		•	
SELECTION CONTRACTOR OF THE PROPERTY OF THE PR	¥: - \$45	;	<u>.</u>		2	9	12.186	12, 100	8,050	8,050	6,070	7.0.7	6,670	6.070	5,070
	,	3	1	i	;	•			;				3	Sweco #20	Aschined

TABLE J10

FEEDING DISTANCES IN UN-TAPERED MACHINED GRAPHITE MOLDS

HEAT		PLATE		UNDER	PLATE	EDGE	CAUGO	TOTAL	ĭ ×
NO.	THICK-	DIA-	RISER	RISER	SHRINK	SOUND	BEYOND	SOUND	Total Sound
	NESS	METER	DIA.	SHRINK			RISER		în icknoss
P-7	1 1-	٠.,		41 - M		- 10 to	206		
6-1	l in.	6 in.	l in.		s Yes		7/16	1-1/16	
	7/8			No Ob		0	13/16	13/16	0.929
	3/4			No Ob		1/4	5/8	7/8	1.16
	5/8			No Ob	s Yes	3/8	9/16	15/16	1.50
P-9	1 In.	6 in.	1.5 in	Yes	Yes	5/8	3/8	l in,	1.0
	7/8			Yes	Yes	9/16	5/8	1-3/16	
	3/4			No	Yes	5/8	5/8	1-1/4	1.67
•	5/8		•	No	185	3/8	7/16	13/16	1.30
	1/2			No	Yes	3/16	3/8	9/16	1,12
P-10	l in.	6 In.	2 in.	No	Yes	3/4	1/4	l In.	1.0
•	7/8	•	,	No	Yes	11/16	13/16	1-1/2	1.71
	3/4			No	Yes	9/16	11/16	1-1/4	1.67
	5/8			No	Yes	5/16	9/16	7/8	1.40
	1/2			No	Yes	1/2	11/16		
	•,, -			110	105	172	. 11710	1-3/16	2.37
P-11	l In.	6 ln.	2.5 in	No	Yes	9/16	1/2	1-1/16	1.0625
	7/8			No	Yes	9/16	1/2	1-1/16	1.21
	3/4			No	Yes	1/4	1/2	3/4	0.75
	5/8			No	Yes	5/16	5/8	15/16	1.50
	1/2	•		No	Yes	1/4	5/16	9/16	1.12
	3/8		2 ln.	No,	Yes	3/8	3/8	3/4	2,0
P-13	l in.	5 in.	None		Yes	3/16	5/16	1/2	0.5
	7/8				Yes	1-1/16		1-1/4	1.43
	3/4				Yes	1/2	7/16	15/16	1.25
	5/8				Yes	1/2	1/8	5/8	1.0
	1/2		•		Yes	1/2	5/16	13/16	1.62
	3/8				Yos	5/16	3/8	11/16	1.83
P-14	I in.	5 in.	l la.	Yes	Yes	1/2	1/2	1	1.0
-	7/8	•		Yes	Yes	i' -	5/16	1-5/16	1.5
	3/4			Yes	Yes	1/2	1/2	1-3710	1.33
	5/8			Yes	Yes	9/16	1/2	1-1/16	1.70
	1/2			Yes	Yes	7/16	3/8	13/16	1.60
	3/8			No	Yes	3/8	7/16	13/16	2.15
P-15	l in.	5 lo.	1.5	Yes	Yes	11/16	7/8	1-9/16	
	7/8		•••	Yas	Yes	5/8	5/16	15/16	1,56
	3/4			Yes	Yes	9/16	3/8	15/16	1.06
	5/8			No	Yos	1/2	5/8	1-1/8	1.25
	1/2			No	Yes	1/4	5/16	9/16	1.8
	3/8			Hu	Yes	1/8	3/4	7/8	1.12 2.30
P-16	l In.	5 In.	2 in	No	Yes	1/2	5/8	1-1/8	1.125
-10	: in. 7/8	₽ 177.	- +"	No.	Yes	9/16	1/2	1-1/16	1.125
-				No No	Yes	• .		1-3/16	* .
	3/4 5/8			No No	Yes	1/2	11/16 5/8	1-1/8	1.48 1.80
	1/2			No	Yes		5/16		
	3/8			Ho	Yos	3/8 3/16	3/16	11/16 3/8	1.37 1.00
- 1 7) (-	e t-	2 E ! .	H.		•	-		1 00
P-17) in. 7/8	5 In.	2.5 ln,	No No	No No			1-1/4 1-1/4	1.25 1.43
	3/4			No	No			1-1/4	1.66
	5/8			No	Yes	1/2	5/8	1-1/8	1.8
	1/2			No	Yes	11/16	7/16	1-1/8	2.25
	3/8			No	Yos	1/4	1/2	3/4	2.25

TABLE J11
FEEDING DISTANCES IN TAPERED MACHINED GRAPHITE MOLDS

NO.		LATE		TAPER	UNDER	PLATE	EDGE	SOUND	TOTAL	7 8
no.	THICK-	DIA-	RISER		RISER	SHRINK	SOUND	BEYOND	SOUND	Total Sou
	NESS_	HETER	DIA.		SHRINK			RISER		Thicknes
P-74	1/8 In.	6 in.	l in.	2	no	yes	1/5	1/4	1/2	4.00
	1/4	6	1	ž	ne	yes	1/4	1/2	3/4	3.00
	3/8	6	i	2	no	yas	3/4	1/2	1-1/4	3.33
	1/2	6	1.5	2	no	y63	3/8	5/8	1	2.00
	5/8	6	1.5	Ž	no	yes	5/8	3/4	1-3/8	2,20
	3/4	ě	2	2	no	701	3/4	1/2	1-1/4	1.670
	7/8	6	2	ž	na	yos	3/4	1/2	1-1/4	1.440
	ï	6	2.5	ž	no	yas	3/4	1/4	1-1/4	1.250
P-75	1/8 In.	6 In	l in.	ž	no	yet	3/4	1/4	1/2	4.00
1-10	1/4	6 "	i ''''	ž	no	YOL	1/4	1/2	3/4	3.00
	3/8	6	i	2	no	yas	1/2	1/4	3/4	2.00
	1/2	6	1,5	ž	no	yes	1/2	1/4	3/4	1,50
	5/8	6	1.5	ž	no	yes	1/2	1/2	ĩ ·	1,60
	3/4	ě	2	2	no	yes	3/8	1/4	5/8	.834
	7/8	6	2	2	no	YOR	5/8	ï	1-5/8	1.86
	í	6	2.5	į	no	yes	3/4	1/2	1-1/4	1.250
			,	•	••••	,	31.4	•, -	1-1/4	.,.,,
P-76	1/8 In.	6 In.	I In.	2	no	yes	1/4	1/4	1/2	4.00
	1/4	6	1	2	no	yes	1/4	1/4	1/2	2,00
	3/8	6	ļ	2	no	yes	1/2	3/8	7/8	2.33
	1/2	6	1.5	2	no.	y 8 \$	1/2	1/4	3/4	1.50
•	5/8	6	1.5	2	no	ÿes	1/2	1/2	1	1.60
	3/4	6	2	2	n-a	yes	1/2	0	1/2	.666
	7/8	6	ž	2	no	yes.	3/4	1/4	1	1,14
	ı	6	2.5	2	no	Yes	1/2	1/4	3/4	.75
P-77	1/8 In.	6 In.	l in.	3	na	yes	1/8	3/8	1/2	4.00
• • •	1/4	6	1	j	no	yes	1/4	174	1/2	2,00
	3/8	6	1	j	no	y 8 \$	1/4	1/4	1/2	1.33
	1/2	6	1.5	š	no	yes	1/2	1/4	3/4	1.50
	5/8	6	1.5	š	no	yes	1/2	1/2	í	1.60
	3/4	6	ž	3	no	yes	3/8	0	3/8	.50
	7/8	6	2	3	no	yes	3/4	1/2	1-1/4	1.43
	i	é	2.5	ś	no	yes	3/8	1/2	7/8	.87
P-78	1/8 In.	6 in.	i in,	3	no	yes.	1/8	1/4	3/8	3.00
	1/4	6	i ''''	3	ao .	yes	1/4	3/4	1	4.00
	3/8	ě	j	•	NO .	yes	1/4	1/4	1/2	7,00
	1/2	ě	1,5	Ś	10	yes	3/8	1/2	3/8	1.33
	5/8	ě	i.ś	i	00	y#\$	1/2	1/4	3/4	1.75
	3/4	6	2	š	60	yes	1/2	3/4	1-1/4	1.20 1.67
	7/8	Ğ.	ž	í	no	y 0.8	5/8	177	1-5/8	1.86
	i	6	2.5	í	no	yes	5/8	1/2	1-1/8	1,125
				_						
P-79	1/8 In. 1/4	6 In. 6	l In.	3	NO.	yes	1/8	1/4	3/8	3.00
	3/8	6	1	3	μŌ	yes	1/4	1/4	1/2	2.00
	3/8 1/2	6.	1.5	3	go	yes	1/4	1/4	1/2	1.33
	5/8	6		3	ρο	yes	0	0	0	0,50
			1.5		(IQ	yes	1/2	1/2	1	1,60
	1/4	6		1			C 44			
	3/4	6	2	3	po	Yet	5/8	1/2	1-1/8	1.50
	3/4 7/8 1	6 6	2.5	}	no no	705 735	5/8 1/4 5/8	1/2 1/2 3/4	i-:/4	1,45
	7/R }	6	? 2.5	;	no no	Aas Aas Aus	1/2	1/2 3/4	i-1/4 I-3/8	1.37
P-82	7/8 	6	÷.	4	no no	Anz Anz Anz	5/8	1/2 3/4 1/4	1-1/4 1-3/8 1/4	1.37
P-82	7/8 	6 6 1n. 6	2.5 1 In,	4	no no no	yor you you	5/8	1/2 3/4 1/4 1/8	1-1/4 1-3/8 1/4 7/8	1,45 1,37 2,00 3,50
P-82	7/8 	6 in.	? 2.5 1 in, 1	4	no no ro ro	yet yet yet yet	1/2 1/2	1/2 3/4 1/4 3/8 1/4	1-1/4 1-3/8 1/4 7/8 3/4	1.45 1.37 2.00 3.50 2.00
P-82	7/8 1 1/8 In. 1/4 3/8 1/2	6 in. 6	? 2.5 1 in, 1 1,5	4 is is	no no no	yos yos yes yes yes	1/2 1/2 1/2 1/4	1/2 3/4 1/4 3/8 1/4 0	1-1/4 1-3/8 1/4 7/8 3/4 3/4	1.43 1.37 2.00 3.50 2.00 1.50
P-83	7/A 1 1/8 In. 1/4 3/8 1/2 5/8	6 in. 6 6 6	? 2.5 1 In, 1 1.5	2.3 4.2.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	no no no no ro no	yes yes yes yes yes yes	1/2 1/2	1/2 3/4 1/4 3/8 1/4	1-1/4 1-3/8 1/4 7/8 3/4	1.45 1.37 2.00 3.50 2.00
P-83	7/A 1 1/8 In. 1/4 3/8 1/2 5/8 3/4	6 in. 6 6 6	2.5 1 In, 1 1.5 1.5	***	00 00 00 00 00 00 00 00 00 00	yet yes yes yet yes yes yes	1/2 1/2 1/2 1/2 1/4 5/8	1/2 3/4 1/4 3/8 1/4 0 1/4	1-1/4 1-3/8 1/4 7/8 3/4 3/4 7/8	1.45 1.37 2.00 3.50 2.30 1.50 1.40
P-82	7/A 1 1/8 In. 1/4 3/8 1/2 5/8	6 in. 6 6 6	? 2.5 1 In, 1 1.5	2.3 4.2.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	no no no no ro no	yes yes yes yes yes yes yes yes	1/2 1/2 1/2 1/4	1/2 3/4 1/4 3/8 1/4 0	1-1/4 1-3/8 1/4 7/8 3/4 3/4 3/4 7/8	1,45 1,37 2,00 3,50 2,00 1,50 1,40
	7/8 1 1/8 1n. 1/4 3/8 1/2 5/8 3/4 7/8	6 in. 6 6 6 6 6 6 6 6 6 6	2.5 1 in, 1 1,5 1.5 2 2.5	\$ \ \$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	no no no no ro no no no	yor you you you you you you you you you you	1/2 1/2 1/2 1/2 3/4 5/8 1/2	1/2 3/4 1/4 1/4 1/4 6 1/4 1- /2	1-1/4 1-3/8 1/4 7/8 3/4 3/4 7/8 2 1:1/4	1.45 1.37 2.00 3.50 2.30 1.50 1.40 2.49
P-82 P-84	7/8 1 1/8 in. 1/4 3/8 1/2 3/4 7/8 1	6 in. 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2.5 1 In, 1 1,5 1.5 2 2,5	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	100 100 100 100 100 100 100 100 100 100	yes yes yes yes yes yes yes yes	1/2 1/2 1/2 1/2 3/4 5/8 1/2 3/1	1/2 3/4 1/4 3/8 1/4 0 1/4 1- /2 3/1	1-1/4 1-3/8 1/4 7/8 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4	1,43 1,37 2,00 3,50 2,30 1,50 1,40 2,29 1,50
	7/8 1 1/8 in. 1/4 3/8 1/2 5/8 3/4 7/8 1	6 in. 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	? 2.5 1 In, 1 1,5 1,5 2 2,5 1 in,	· · · · · · · · · · · · · · · · · · ·	100 100 100 100 100 100 100 100 100 100	yet yes yes yet yes yes yes yes yes	1/2 1/2 1/2 1/2 3/4 5/8 1/2 1/2 1/5	1/4 3/4 1/4 3/8 1/4 0 1/4 1/2 3/3 1/4	1-1/4 1-3/8 1/4 7/8 3/4 3/4 3/4 7/8 2 1-1/4 1/3	1,45 1,37 2,00 3,50 2,30 1,50 1,46 2,49 1,50 3,36 4,50
	7/8 1 1/8 in. 1/4 3/4 1/2 5/8 3/4 7/8 1 1/8 in. 1/6 3/6	6 in. 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 2.5 1 in, 1 1,5 1.5 2 2,5	1973年 经营销售 化克拉 化二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二	100 100 100 100 100 100 100 100 100 100	Act	1/2 1/2 1/2 1/2 3/4 5/8 1/2 1/2 1/3	177 378 174 378 175 0 176 177 177 177 177	1-1/4 1-3/8 1/4 7/8 3/4 3/4 2/8 2 1:1/2 1/3	1.43 1.37 2.00 3.50 2.30 1.50 1.40 2.49 1.50 3.90 2.50
	7/8 in. 1/8 in. 1/4 3/8 1/2 5/8 3/4 7/8 1 1/8 in. 3/6 3/6 3/6 1/2	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	? 2-5 1 In, 1 15 1 .5 1 .5 2 2 3.5	1. 3. 特洛特特特特特 经	100 100 100 100 100 100 100 100 100 100	yet yes yes yet yes yes yes yes yes	1/2 1/2 1/2 1/2 3/4 5/8 1/2 1/2 1/3 1/3 1/3	172 374 174 378 175 6 175 1-72 371 174 174	1-1/4 1-3/8 1/4 7/8 3/4 3/4 3/8 2 1-1/2 1/3 3/6 1/5	1,43 1,37 2,00 3,50 2,30 1,50 1,50 1,40 2,49 1,50 3,00 4,00 1,50
	7/8 1 1/8 In. 1/4 3/8 1/2 5/8 3/4 7/8 1 1/8 In. 1/6 1/7 5/6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	? 2-5 1 in, 1 1,5 1 in, 1 in, 1 in, 1 in,	1. 3. 推设特种技术 化特什丁	no n	yes yes yes yes yes yes yes	1/2 1/2 1/2 1/2 3/4 5/8 1/2 1/2 1/2 1/3 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	172 374 174 378 174 6 174 1- 72 375 174 174	1-1/4 1-3/8 1/4 7/8 3/4 3/4 3/8 2 1-1/2 1/4 1/4 1/4 1/4 1/4	1,43 1,37 2,00 3,50 2,30 1,50 1,40 2,29 1,50 3,00 1,50 1,50 1,50
	7/8 in. 1/8 in. 1/4 3/8 1/2 5/8 3/4 7/8 1 1/8 in. 3/6 3/6 3/6 1/2	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	? 2-5 1 In, 1 15 1 .5 1 .5 2 2 3.5	1. 3. 特洛特特特特特 经	100 100 100 100 100 100 100 100 100 100	Act	1/2 1/2 1/2 1/2 3/4 5/8 1/2 1/2 1/3 1/3 1/3	172 374 174 378 175 6 175 1-72 371 174 174	1-1/4 1-3/8 1/4 7/8 3/4 3/4 3/8 2 1-1/2 1/3 3/6 1/5	1,43 1,37 2,00 3,50 2,30 1,50 1,50 1,40 2,49 1,50 3,00 4,00 1,50

TABLE J11 (Continued)

HEAT		LATE		TAPER	UNDER	PLATE	EDGE	SOUND	TOTAL	T *
NO.	THICK-	DIA-	RISER		RISER	SHRINK	SOUND	BEYOND	SOUND	Total Soun
	NESS	METER	DIA.		SHRINK			RISER		Thickness
P-88	1 (0 1-									
r-00	1/8 in.	6 In,	i in,	4	110	yes	i/8	3/8	1/2	4.00
	1/4		1	4	110	yes	1/4	1/4	1/2	2,00
	3/8	6	1.	4	no	yes	1/4	3/8	7/8	2.33
	1/2	6	1.5	4	no	yes	1/2	1/4	3/4	1,25
	5/8	6	1.5	4	no	yes	1/2	0	1/2	1.25
	3/4	6	2	4	no	yaş.	1/2 -	3/4	1-1/4	1.67
	7/8 .	6	2	4	no	yes	5/8	1/2	1-1/8	1.28
	1	6	2.5	4	nc	yes	3/4	1/2	1-1/4	1.25
						•	• • •	- • -		,
P-95	1/8 in,	6 in,	l In,	•	yes	yes	1/8	3/4	7/8	7.00
	1/4	6	1	ś	yes	yes	1/4	1/4	1/2	2.00
	3/8	6	1.5	Š	no.	yes	1/2	o ·	1/2	1,33
	1/2	6	1.5	5	no	Yes.	1/2	1/2	i'	2.00
	5/8	6	1.5	(no		3/8	7/8	1-1/4	
	3/4	6	2.	5 5		yes				2.00
	7/8	6	2	5	no	yes	1/2	3/4	1-1/4	1.67
	1"	6	2.5	5	no	yes	5/8	1/4	1-1/8	1.28
	•	•	4.3	7	no	yes	3/4	3/4	1-1/2	1.50
P-101	1/8 In.	6 in,	l in,	5	yes	yes	1/8	3/4	7/8	7.00
	1/4	6	i	5	Vos	yes	1/4	1/4	1/2	2.00
	3/8	ř	i.5	ś	no	yes	1/4	1/4	1/2	1.33
	1/2	i	1.5	ś	00	yes	1/2	1/4	3/4	
	5/8	ě	1.5	-	no			1/2		1.50
	3/,	6	2	ś		yes	3/4		1-1/4	2.00
	7/8	ĕ	2		no	yes	3/8	3/4	1-1/8	1.50
	178	6		5	no	yes	3/4	i.	1-3/4	2,00
	•	•	2.5	5	110	yes	3/4	1/4	1-1/4	1.25
F-105	1/8 in.	6 ta.	l la.	5						
7-103	1/4	6	1 111.	5	yes	yes		1/2	1/2	4.00
		6		?	yes	yes		1/4	1/4	1.00
	3/8		1.5	5	no	yes	1/2	0	1/2	1.33
	1/2	6	1.5	5 5	no	yes	1/4	1/4	1/2	1.00
	5/8	6	1.3	5	no	yes	1/2	1/2	1	1.60
	3/4	6	2	5	no	yos	3/4	3/4	1-1/2	2,00
	7/8	6	2	5	no	yes	3/4	3/4	1-1/2	1.71
	1	6	2 .	5	ua .	yes	3/4	3/4	1-1/2	1.25
				_						
r-117	1/8 In.	6 In.	l In.	6	no.	Yes	1/4	5/8	7/8	7.00 .
	1/2	6	1	6	no	yes	1/4	1/2	3/4	3.00
	3/8	6	1.5	6	PIO	yet	1/2	1/4	3/4	2.00
	i/2	6	1.5	6	00	yes	5/8	1/4	7/8	1.75
	5/8	6	1.5	6	no.	yes	5/8	1/2	1-1/8	1.80
	3/4	6	2	6	no	yes	5/8	3/4	1-3/8	1.83
	7/8	6	2	6	na	yos	3/4	3/4	1-1/2	1.72
	i	6	2.5	6	no	yes	3/4	1/4	1	1.00
						•		-• -	•	1.00
- 1 20	1/8 In.	6 łn,	l la,	6	j10	Yes	1/8	1/2	5/8	5.00
	1/4	6	3	6	110	yes	1/4	1/2	3/4	3.00
	3/8	6	1.5	6	no	yos	1/2	ő	1/2	1.33
	1/2	6	1.5	6	no	yas	1/2	1/4	3/4	
	5/8	6	1.5	5	no no	yas yas	1/2			1,50
	3/4	6	2	6	กอ		1/2	942 } /4	1/2	.80
	7/8	6	2	6	110 110	yos			3/4	1.00
	1	6	2.5	š	00	yes	1/2	1	1-1/2	1.73
	•	-	4.7	•	pi0	y a s		3/4		
-128	1/8 In.	6 in.	l In.	6	Orth			1.72		
	1/4	ξ '''.	1 111.	6	UO	A a g	1/4	1/2	3/4	6.00
	3/8	ĕ	•	6	un	Ant.	1/4	1/4	1/2	2.00
	1/2	6	1.5		nó	yes	3/8	1/4	5/8	1.66
			1.5	6	NO.	yes	1/2	1/4	3/4	1.50
	5/8	6	1.5	6	UO	yes		1/2	1/2	. 80
	3/4	6	2	6	no.	yos	1/2	1/4	3/4	1.00
	7/8	6	2.5	6	HO	yes	3/4	1/4	1-1/4	1.67

TABLE J11 (Continued)

		PLAT	f	Under			Sound		T.
Hest	Thick-	Ola-	Riser	Riser	Plate	Edge	Bryond	Total	Total Sound
No.	ness	meter		per Shrink	. into	Samuel	Riser	Sound	Th Ickness
-100	11033	alc (e)		ber surrick	3111 1112	Judia.	177361	300110	THICKINGS.
P143	1/8 in.	6 1-	l In.	7 yes	yes	1/4	1/4	1/2	4.00
F145	1/4	6 in.				1/4	1/4	1/2	2.00
		6			yes		0		
	3/8			7 nu	yes.	1/4		1/4	.66
	1/2	6		7 no	Agz	1/2	5/8	1 1/8	2,25
	5/8	6		7 no	gas	•	•	•	•
	3/4	6		7 no	90\$	٠.	•.	•	•
	7/8	6		7 no	ye:\$	3/4	3/4	1 1/2	1.80
	1	6	3	7 no	ሳሀ	-	-	1 1/2	1.50
P153	1/8 In.		l In.	7 yes	yes	3/16	3/8	9/16	4.51
	1/4	6	.5	7 no	yes	1/4	1/4	1/2	2.00
	3/8	6	.5	7 no 7 no	ye*	1/2	1/2	1	2.67
	1/2	6	2	7 no	yos	1/4	1/8	3/8	.75
	5/8	6	2	7 no 7 no	gas	-	-	•	•
	3/4	6	2.25	7 10	, L:	5/8	1/2	1 1/8	1.50
	7/8	6	2.5	7 no	gas	-	-	_	•
	ì	6		7 no	gas	-	-	-	
			-	-	•				
P154	1/8 in.	6 In.	l In.	7 ng -	yes	1/4	1/4	1/2	4.00
	1/4	6	1,25	7 110	YOL	9.11	1/4	1/4	1.00
	3/8	6	2	7 yas	yas	3/4	3/8	1 178	3.00
	1/2	6	2	7 yes 7 no	yas	3/4	1/2	1 1/4	2.50
	5/8	6	2	7 no	YOS	3/4	5/8	1 3/8	2.20
	3/4	6	2.25	7 no	yas	5/8	5/8	1 1/4	1.67
	7/8	6		7 no	gas	-	,,,	, .	1.07
	'i'	6		7 119	no.		-	1 1/2	1,50
			•	,				. ,,.	,.
PIGI	1/8 In.	á in.	i in.	8 no	yes	1/8	3/8	1/2	4.00
	1/4	6		8 no	yes.	1/4	1/4	1/2	2,00
	3/8	6		d no	yos	1/4	1/4	1/2	1.33
	1/2	6		8 no	yas	5/8	3/4	1 3/8	2.75
	5/8	6		8 no		1/8		1 1/2	2,40
	3/4	6		8 na	yes .	3/4		1 1/2	1.33
	7/8	6		B no	yes	5/8		3/8	
	í	ě		8 11ú	no	3,0		1 1/2	1.65
	•	•	•	. 110	'NO	•	•	1 1/2	1.50
P162	1/8 In.	£ +.	I in,	8 114	ye3	3/16	1/4	7/16	3.50
	1/4	b		B nu	703	1/4	3/16	7/16	1.75
	3/8	Ě		U 8	yes	1/4	1/4	1/2	
	1/2	6		8 30	•	5/8	3/4	172	1.33
	5/8	6		8 no	794	3/8			2.75
	3/4	6		_	yes		1/2	7/8	1,40
	7/8	6		B no B no	Uto Un	-		1 3/4	2.33
	1,0	6		:				1 3/4	2,10
	•	•	, ,	g uo	no	-	-	1 1/2	1.50
P163	1/8 In,	b In.	1.5 In. i	g no	yes	945	1/4	1/4	4.00
•	1/4	6	1.5	8 no	yes	448	1/4	i/4	1.00
	3/8	6		8 no	yes	3/4	1/2	1 1/4	3.33
	1/2	ě		8 119	705	3/4		15/16	1.67
	5/8	6		8 10	yes	1/2	3/4	1 1/4	2,00
	3/4	6		8 no	yes	5/8		,	1,33
	1/0	ě		8 no	¥125	3/4		1 1/4	1.50
	(/0	6		3 no	142		•. •	1 1/2	1.50
	•	v	•	u 110					,0
P177	1/8 In.	6 In.	1.5 10.	9 yes	80.5	3/16	1/4	7/16	3.50
. •,,	1/4	6		9 100	yes	1/4	1/4	1/2	4.00
	3/8	6		9 nu	y 125		. ''	1 3/8	3.67
	1/2	6		S NO	yes	7/8	. 1/4	1 1/8	2.15
	5/8	6		5 AU 9 AU		1 178	3/8	1 1/2	2.49
	3/4	6		y no	yes :	5/8	3/4	1 1/2	1,83
	3/4 3/8	6		3 110 9 110		3/0 1	3/4	1 3/4	2 10
)/0	5		9 171		•	7/4	1 1/2	1.50
	•	,	-			-	-		1 u

TABLE J11 (Continued)

		PLAT	E		Under			Sound		t.
Heat	Thick-	Dla-	Riser			Plate	Edge	Beyond	Total	fotal Sound
No.	ness	meter	Dla, T	aper		Shrink		Riser	Sound	Thickness
P178	1/8 ln	. 6 in.	1.5 in	. 9	yes	yes	1/4	1/2	3/4	6,00
,•	1/4	6	1.5	ģ	no	yes	1/4	1/4	1/2	2.00
	3/8	6	1.5	9	no	yes	1/4	1/4	1/2	1,33
	1/2	6	2	9	no	yes	5/8	3/8 1		2.00
	5/8	6	2	9	90	yes	7/8	3/8 1	1/4	2,00
	3/4	6	2.25	9	no.	yes	7/8	1/2 1	3/8	1.83
	7/8	6	2.5	9	no.	yes	3/4		1/2	1,80
	1	6	3	3	no	no.	•	- 1	1/2	1.50
F179	i/ā ın.	, é in.	1 In	. 9	yes	Los	1/8	1/4	3/8	3,00
	1/4 3/8	6 6	1.5	9	no	Yes	1/4	3/8	5/8	2.50
	1/2	ě	1.5 2	9	no	yes	1/2 3/4	1/4	3/4	2,00
	5/8	ĕ	į	9	no no	yes Yes	3/4 3/4	3/4 1	1/4	2,50 2,40
	3/4	6	ž.25	é	uo.		1/4		3/4	2.33
	7/8	ě	2,5	ś	no	no .	.,.	· · i	3/4	2.10
	i	6	3	ý	no	no	•	- i	1/2	1.50
F208	1/8 in.	ó in,	i In	. 10	yes	yes	3/8	1/4	5/8	5.00
	1/4	6	1,5	10	00	yes	3/8		5/8	2,50
	3/8	6	1.5	10	yes	Yes	3/8		7/8	2.43
	1/2	6	ž	10	no-	yes	3/4		1/2	3.00
	5/8	6	2	10	no	yes 1		5/8 1	5/8	2.60
	3/4	6	2.5	10	110	yes I		1/4 1	1/4	1,66
	7/8	•	2.5	10	no	yes	3/4		1/4	1,50
	,	6	3	ia	no	no	•	- I	1/2	1.50
P213	2 1/8 In 1/4	, 6 In.	l In.	10 10	yes	yes.	3/16		9/16	4,50
	3/8	6	1.5 1.5	10	SES SES	yus Yus	1/2 3/8	1/4 3/8 ~	3/4 3/4	3.00 2.55
	1/2	ě	1.5	10	no no	yas i	,,,		1/2	3.00
	5/8	6	2	10	no.	yes	5/8	5/8 I	1/4	2.00
	3/4	6	2.5	10	no	no.	-	- 1	3/4	2,33
	7/8	6	2.5	10	UC		1/2		1/8	1.34
	1	6	3	10	(Mr.)	n()	•	- 1	1/2	1.50
P215	1/8 in 1/4	. 6 In.	1.5 In. 1.5	10	765 00		g 35 3/8		1/8	1.00
	3/8	6	1.5	10	(M)				3/4 7/8	3.00
	1/2	6	1	10	nto	yot i			3/4	2,33 3,50
	5/8	6	2	10	no.		7/8		3/8	2.20
	3/4	6	2.5	10	90		5/8 1	1	5/8	2.17
	7/8	6	2.5	10	IND				1/4	1.43
	•		3	10	90	1.0	-	- 1	1/2	1.50
P 269			i in.		yes				3/4	6.00
	}/4 3/8	6 6	1.5	!!	nO.	Aor .	3/8	1/2	7/8	2./6
	1/2	ě	1.5	!!	nu nu	yes you l		1/2 1/8		2.66
	5/8	6	2,25	ii	no no	,,,,,			3/8 7/8	2 75 3.00
	3/4	6	2.5	ii	no	yut i	1/8		1/2	1.00
	7/8	6	2.5	(1	no	yut i		1/2 1		1.71
	,	6	3	13	no	301	-	•	-	-
P273	1/8 in.	6 in. 6		!!	yos				6/16	2.50
	3/8	ê	1.5	11	10				/t	2,50
	1/2	š	1.3	ii	no no			!/} !/4		4.30
	5/8	6	2.25	ii	nu		/4 1			2,74 2.80
	1/6	£		11	34,1	āns.	-	_	-	-
	7/8	6		11 11	UC Ant	uo äir i		:/4	/4 /3	.857
P311	1/8 to.	- بملاک	•				-		, ,	1.50
.,,,	1/4	6	1.375	2 2		Ange	74	- 7/8 + 1	- /d	4, 50
	3/8	6	2	! 2				/e i /		4, 20 5 u0
	1/2	6		12	กบ	yer ij				j. 13
	5/8	6		11			-	- 13	<i>(</i>)	4.40
	3/4	6	2.5	12	***	•-6•	-	- 11	/ ·	4,49 3,66
			2.5 2.5		res No	r-ti 13tj		- 13	/ · / · / ·	4.40

TABLE J12
FEEDING DISTANCES IN TAPERED RAMMED GRAPHITE MOLDS

HEAT		LATE	E1865	TAPER	UNDER	PLATE	EDGE SOUND	SOUND	TOTAL	Total Sour
NO.	THICK-	DIA- METER	RISER DIA.		RISER SHRINK	SHRINK	JUVNU	RISER	JUUNU	Thickness
	NESS	METEN	DIA		SHILINA					
P-90	1/8 In.	6 in.	I in.	0	yes	yes	1/8"	1/8	1/4	2.00
1-30	1/4	6	i	Ö	yes	yes	1/4	1/8	3/8	1,50
	3/8	6	i	ò	yes	768	1/4	1/4	1/2	1.33
	1/2	6	1.5	ò	yes	yes	1/4	0	1/4	,50 1,40
	5/8	6	1.5	ŏ	yes	yes	1/2	3/8	7/8	
	3/4	6	2	ŏ	yes	yes	1/2	i	1-1/2	2.00
	7/8	6	ż	ŏ	no	yes	3/8	1/2	5/8	.71
	1''	6	2.5	ō	Yes	no	**	4-3/4		
P-92	1/8 In.	6 in.	i in.	0	yes	yes	1/16	1/8	3/16	1,50 2.00
	1/4	6	1	0	yes	yes	1/4 1/4	1/4 1/4	1/2	1.33
	3/8	6	! _	0	yes	yes	1/4	1/16	5/16	.624
	1/2	6	1.5	0	yes	yes	3/8	5/16	11/16	1.09
	5/8	6	1.5	0	yes	Yes	3/8	1/2	7/8	1,166
	3/4	6	2	9	no	yes	1/2	3/4	1-1/4	1,43
	7/8	6	2 2.5	G O	no Yes	Aes	***	77-	gas	,
	,	•	2.5	•	740				•	
P-93	1/8 In.	6 In.	1 in.	0	ÄGS	y9\$	1/8	1/8	1/4	2.00
//	1/4	6	1	0	yas	yes	1/4	1/4	1/2	2.00
	3/8	6	i	Ö	yes	yes	174	1/4	1/2	1.33
	1/2	6	1.5	0	yes	Yes	1/4	1/16	5/16	. 624
	5/8	6	1.5	8	yes	yes	3/8	5/14	11/15	1.09
	3/4	6	2	0	yes	yes	3/8	1/2	7/8	1,166
	7/8	6	2	Û	yet	y 63	3/4	9/16	1-5/16	
	i ·	6	2.5	0	yes	yes	1	1/2	1-1/2	1,50
_									5/16	2,50
P-94	1/8 In.	6 In.	l la	!	yes	yes	3/16	1/8		
	1/4	6	1	1	705	yes	1/4	1/4	1/2	2.00
	3/8	6	ı	1	yes	yes	1/4	1/2	3/4	2,00
	1/2	6	1.5	1	yes	yes	3/8	1/4	5/8	1.25
	5/8	6	1.5	1	yes	yes	1/2	5/16	13/16	1.30
	3/4	6	2	1	yes	yes	5/8	3/4	1-3/8	1.94
	7/8	6	2	1	yes	¥68	7/8	3/4	1-5/8	1,86 1,50
	1	6	2,5	1	na	no			1-1/2	1.50
P-97	1/8 in.	6 in.	l in.	1	yes	no	3/16	1/4	7/16	3.50
7-31	1/4	6 '	i ''''	i	yes	yes	1/4	1/4	1/2	2.00
	3/8	š	i	÷	y 0 5	yes	3/8	1/4	5/8	1.67
	1/2	6	1.5	i	, Aes	y 28	1/2	3/4	1-1/4	2,50
	5/8	6	1.5	i	yes	yes	5/8	3/4	1-3/8	2.16.
	3/4	ě	2	i	ne	Yes	1/2	5/8	1-1/8	1.50
	7/8	6	2	i	yes	yes	3/4	3/4	1-1/2	1,50
	1/0	6	2.5	i	no	no				
	•		-				_			
P-103	1/8 10.	6 in.		3	no	ye3	3/16	1/8	5/16	2,50
	174	6	1	1	to	yes	1/4	1/4	1/2	2.00
	3/8	6	I	1	yes	yes	3/8	1/2	7/8	2.33
	1/2	6	1.5	1	no	Yes	1/2	3/8	7/8	1.75
	5/8	6	1.5	1	yes	yes	1/2	1/2	!	1.60
	7/4	6	2	ŧ	no	YPE	1/2	1/2	1	1.33
	1/6	o	ż	į	700	7 .	3/%	375	1 1/2	3.71
	ì	6	2.5	ŧ	no	vo				
P-109	1/8 in.	6 In.) lo.	2	yes	yes	3/16	1/8	5/16	2,50
T-103	1/4	6	1 "".	2	yes	ya:	1/4	1/4	1/2	2,00
		6	:	2	Aea Aea	745	1/4	1/4	1/2	1.33
	3/8 1/2	ĕ	i.5	2	yes Psy	yes	3/8	1/4	5/8	1.25
	5/8	ť	1.5	2	yes	Aut.	1/2	1/2	1	1.60
	3/8 3/4	ĕ	ż	2	rn rn	ves	3/1,	3/4	1-1/2	2.00
	3/9	6	2	2	yes.	yr s	3/4	i''	1-7/4	2.00
	7/8	6	2.5	2	60 60	יין חם	37 .7	Ç.iš		
	•									
	1/8 10.			2	wet	/**	174	174	1/2	r '00
P-111		6	1	2	YHS	ye.s	174	1/6	1/2	2.90
P-111	1/4			;	y s.s	7""	1/4	1/4	1/2	1.33
P-111	1/4 3/8	\$	1							
P-111	1/4 3/8 1/1	5	1.5	3	yes	, 98	378	5/16	11/16	1.37
P-111	3/8	5 6		? ?	yet yet		:/?	1/4	1/4	1.70
P-111	3/8 1/4	\$ 6	1.5	2	yet yet	2 m 5	:77 7/8	1/k 1/2	1-3/6	1,70 2.00
P-111	3/8 1/4 5/6	5 6	1.5	? ?	yet yet		:/?	1/4	1/4	1.70

TABLE J12 (Continued)

NO.		ICX-	DIA-	RISER	TAPER	-100 CIT	PLATE	EDGE	GOUND	TOTAL	
	NE	\$\$	METE		···	RISER SHRINK	5HR i nk	GNU02	BEYOND		Total Sound
P-1	13 1/1 1/1	In.	6 in	. I In.	2	yes			_11.55		Th!:la ess
	3/8		6	!	2	yes	703	3/16	1/4	7/16	3,50
	1/2		é	! .	7	yes	yes yes	1/4	1/4	1/2	2.00
	5/8		ě	1,5	2	no	yes	1/2	1/4	1/2	1.50
	3/4		6	1.5 2	ž	yes	yes	5/8	3/8 1/4	7/8	1.75
	7/8		6	į	2	, no	yes	7/8	3/4	7/8	1.40
	I		4	2.5	RO.	no	YOS	7/8	3/4	1-3/8 1-3/8	1,83
						ga s			•••	**3/6	1.57
P-11	-,,	in,	6 in,	1.5 ln	. 3						
	1/4 3/8		6	1.5	` ;	no no	yes	1/8	1/8	1/4	
	1/2		6	1,5	í	no no	yes	1/4	1/4	1/2	, 20 2,00
	5/8		6 6	2	3	no	Yes	3/8	1/4	5/8	1.67
	3/4		6	2.5	3	no	705 705	1/2	1/4	3/4	1.50
	7/8		6	2,5	3	no	•	1/2	3 /0	1/2	.804
	į		5	3.5	3	no				7/8	1.167
P-118	1/8			•	•	no	nu		<i>71</i> 7	1-1/2	1,71
	1/4	n, 1	in,	1.5 In. 1.5	3	no	yes	1/8	1/8	1/4	2 00
	3/8		\$	1.5	3	no no		3/8	1/2	7/8	2.00 3.50
	1/2			2	í	no no		1/2	1/2	1	2.67
	5/8 3/4	6		2	3	no no				8\1	1.75
	7/8	6		2.5	3	no				-1/8	1.85
	i. T	š		2.5 3	3	RG				-1/2 -1/2	2.00
P-121				•	,	no	DO.	•	,	-,,,	1.71
	1/8 1:	, 6 6		1.5 In.	3	no	Yes 1	/8)	/4 3	**	
	3/8	ĕ		1.5	3	ac.			•.	/8 /8	3.00
	1/2	6		2.5	3	no	yes !		/2 1		2,86
	5/8	6		ž	3	no 		/Z [/2		2,66 2,00
	3/4	6		2,5	ś	no no			/2 1		1.60
	7/8	6		2.5	3	no	yes 5/			-5/8	2,17
	•	•	3	3.5	3	no	945	T 1/	/2 1-	1/4	1.43
							no				
-123	1/8 in. 1/4	. 6	ia,	.5 In.	4	no -	yes 1/				
	3/6	6			4	AO.	Yes 3/				4.00
	1/2	š	į	.5	i; ij	nv	yes i/			E	2,86
	5/8	6	ž		 4	NO	yes 5/	8 1/		1/8	2.66
	3/4	6			4		Aer 1/	2 1/	4 3/		2,50 1,20
	// 8	6	2	.5	\$		yes 3/2		2 1-	1/8	1.50
	•	6	3.	.5	¥		y¤& }/2 No			1/8	1.57
124	1/8 In.	6 1	n, 1,	5 In. 4					1/2 [-]	/2	1.50
	1/4	6	"' i,	5 4			yes 1/4			1	\$.00
	3/8	6	١,	5 4)		yas 3/8	.,.	1/8	l	2,86
	1/2 5/8	6	2	7		•	yos 3/8 /es 1/4			l	1.66
	3/4	6	2 2,			no ,	08 5/8		37.1		1.50
7	7/8	6	2.			no j	08 1/2				2,20
1		Ä	3.			Rů ,	ю • Q	1-3			1.00 1.00
25	/ê in.	6 (r		in. 4			•			•	
ı	/4	6	1,9	in, t			as 1/8	3/8	1/2	2.	. 00
	/8	6	1.5	į			05 1/4	3/8	5/8	2	. 50
	/2 /8	6	2	4			01 1/4 01 1/2	1/:	3/4		.00
		6 6	3 .	4			01 1/2 03 1/2	1/2	1.	. 2	.00
		6	2,5			o y		3/4 1/2	1-1/	4 2	,00
				2.		. A:		./6	1-1/		.50

TABLE J12 (Continued)

HEAT NO.	THICK- NESS	PLATE DIA- HETER	RISER DIA.	TAPER	UNDER RISER SHRINK	PLATE SHRINK	EDGE SOUND	SOUND BEYOND RISER	TOTAL SOUND	T : Yeta! Sound Thickness
P-126	1/8 In.	. 6 In.	1.5 In	. 5	no	y 6 \$	1/4	1/4	1/2	4.00
	1/4	6	1,5		no	yos	3/8	i/4	7/8	3.50
	3/8	6	1.5	5 5	yes	yos	1/2	1/2	ï	2.57
	1/2	6	2	5	no	yes	3/4	5/8	1-3/8	2.75
	5/8	5	2	5	ĐO	yes	3/4	ī	1-3/4	2.80
	3/4	6	2,5	5	no	yes	3/4	3/4	1-1/2	1.71
	7/8	6	2.5	5	no	•		•••		,.
	. 1	6	3	5	no					
P-127	1/8 In.	6 in.	1.5 In	. 5	no	yas	1/4	1/4	1/2	4.00
	1/4	6	1.5	5	no	yes	3/8	1/2	7/8	3.50
	3/8 1/2	6	1.5	5	no	yes	1/2	7/8	1-3/8	3.67
	5/8		2	5	no	yos	5/8	3/4	1-3/8	2.75
	3/4	6	2	2	no	yes	3/4	3/4	1-1/2	2,40
	3/4	6	2,5	5	no	yaz	3/4	3/4	1-1/2	2.00
	7/8 1	6 6	2.5 3	5	no no	กด กด				
P-133	1/8 In.	6 In.	1 6 1					- 40	_	
	1/4	6 111,	1.5 lm. 1.5	. 5 5	10 (10	yes yes	1/8 3/8	1/4	3/8	3.00
	3/8	6	1.5	Š					5/8	2.50
	1/2	4	2	5	no no	yes yes	1/2 5/8	1/2 1/2	1 1-1/8	2.57
	\$/8	š	2	ś	no					2.50
	3/4	.,	2.5	ś	no	yes	3/4	1/2	1-1/4	2.00
	7/8	b	2.5	5	no	Yes.	3/4	3/4	1-1/2	2.00
	i i	b	3	ś	กบ	9.1\$ 9.1\$				
134	1/8 In.	6 In.	1.5 ln.	. 6	no	y63	1/8	1/2	c 40	
•	1/4	6	1.5	6	no	yes	3/8	3/8	578	5,00
	3/8	6	1.5	6	no	yes	1/2	1/2	3/4	3.00
	1/2	6	2	6	00	yes	1/2	3/4	1 1-1/4	2.67
	5/R	6	2	4	no	yes	5/8	1/2		2.50
	1 4	¢.	j	6	no	945	7/0	1/4	1-1/8	1.80
	7/8	6	2.5	6	no	945				
	1	6	3	6	no no	392				
P135	i/8 In.	6 In.	1,5	6	no	yes	g-15	3/8	3/8	3,00
	1/4	6	1.5	6	ħú	yes	318	1/2	7/8	3.50
	3/8	6	1.5	6	yes	ye s	1/2	5/8 '	1 1/8	3.31
	1/2	6	2.0	ь	nu	y :- 5	1/2	5/8	3 1/8	2.25
	5/8	6	2	6	no	yu\$	374	3/4	1 1/2	2.41
	3/4	6	2.5	6	NO	yes	3/4	3/4	1 1/2	2.00
	7/8 1	6 6	2,5 3	6	ro no	yes 9-15	1/2	3/4	1 1/4	1.73
1167	1/8 In.	6 In.	1.5 In.		•	•	9.15	1.40	3/8	_
,	1/4	6	1,5	6	no.	402	3/8	3/8 3/8	3/4	3.00
	379	6	1.5	દ	nu	70.2	1/2	5/8	1 1/8	3.00
	1/2	6	2	Ğ	yes	yes	1/4	5/8	7/8	3.31
	5/8	6	2	6	nO	yes)		1/4	2 3/4	1.75
	3/4	6	2.5	ř.	no no	yes '	5/0	5/8	1 1/4	4.40 1.4)
	7/8	6	2.5	ř.	no re	g. s		-	-	1.5.7
	1	0	3	u	กบ	g-re	~	-		•
FIOD	170	b in.	1.> in.	,	no	703	1/4	17.1	,,0	7.09
	1/4	6	1.5	7	no	res	1/2 1		1 1/2	G into
	3/8	6	1.5	7	y t- a	703	5/4	3/4	1 1/2	4.60
	1/2	6	2	7	fic	Yes	5/8 1		1.576	1.35
	578	ŗ	2	7	Des	6.3	-	-	ž.	3.20
	3/4	ί L	4.5	į	no	5 : 2	-	-		-
	7/ម :	ŧ	2.5	7	fiu fis-	au Set	-	-	1 3/4	2.60
fivy	1/e	ć in.	t.5 in.				1/4		i	-
	170	ί	1.5	1	ency ency	les les	3/e 3/d		1 I 1/8	8,03 4,50
	378	E	1.5	ż	40. 10.	1	1/2		i ''	4.50
	1/2	Ł	2	?	***		147		170	4.09
	5/8	Ł	4	i	3 - 3				ł	3.20
	3/4	ı	2.5	,	1 - 3 f,		-	_	1 3.74	2 14
	7/3	٤	2.5	1	40	.43	•		-	- 14
	1	6	3	?					1.7	

TABLE J12 (Continued)

		PLATE			Under			Sound		T.
Heat	Thick-	Dia-	Riser		Riser	Plate		Beyond		lotal Sound
No.	ness	moter	U18, 1.	sper.	Shrink	Shr Ink	Sound	Riser	Sound	Hilckness
P1/1	1/8 In.	6 In.	1.5 In.	7	no	yes	3/8	3/4	1 1/8	9.00
,	1/4	6	1.5	7	no	yes	578	1/2	1 1/8	4.50
	3/8	6	1.5	į	yes	yos	1/2	7/8	1 3/8	2.75
	1/2	6	2	7	no	yes	1/2	3/8	7/8	1,75
	5/8	6	2	7	yes	gas	-	-	•	-
	3/4	6	2.5	7	no	g.15	~	•	•	-
	7/8	6	₹.5	7	no	gas	•	•	- 1	•
	1	6	3	7	no	no	•	-	1 1/2	1.50
P172	1/8 In.	6 ln.	1.5 in.	8	no	yes.	3/8	3/4	1 1/8	9.00
	1/4	6	1.5	8	no	yes	3/8	1	1 3/8	5.50
	3/8	6	1.5	8	yes	yes		1	1	2,67
	1/2	6	2	8	no	gas	~	-	-	- '
	5/8	6	2	8	yos.	qas	~	-,	-	•
	3/4	6	2.5	8	no	gas	-	-	-	•
	7/8	6	2.5	8	au	gus	-	-	-	•
	1	6	3	8	no	ga g	-	-	-	•
P173	1/8 ln.	6 In.	1.5 ln.	8	yes	yos	3/8	5/8	ı	8.00
	1/4	6	1.5	8	no	yes	1/2	3/4	1 1/4	5,00
	3/8	6	1.5	8	yes	ves	3/8	5/8	1	2,67
	1/2	6	2	8	UO.	gas	•		•	
	5/8	6	2	8	yes	yes	1/2	5/8	1 1/8	1.80
	3/4	6	2.5	8	no	9.15	~	-	-	•
	7/8	6		8	no	ā-1	-	-	-	-
	1	6	3	8	по	ga s	-	-	- 1	•
£174	1/8 ln.	6 In.	1,5In,	8	no	yes	1/2	1/2	1	8.00
	1/4	6	1.5	8	no	yes	1/2	1/2	i	4.00
	3/8	6	1.5	8	yes	yes	5/8	7/8	1 1/4	3.30
	1/2	6		8	no .	gas	-	-	_	-
	5/8	6		8	yas	gas		-	-	-
	3/4	6		8	no	gos	-	-	-	-
	7/8	6		8	100	gas	-	-		-
	1	6	3	8	no	941	-	-	- v	-
P175	1/8	6	1.5	9	no	yes	gas i	ı	ı	8,00
	1/4	6	1.5	9	no	yes			ż	8.09
	3/8	6	1.5	9	yes	yes	1/2		1 1/2	4,00
	1/2	6		9	ΠO	gas		-		-
	5/8	6		9	yes	пŲ	-	-	2	3.20
	3/4	6		9	no	gas	-	-	-	-
	7/8	6		9	yes	9.11	-	-	-	-
	,		3	9	·	3.4	-	-	-	-
P184		6 In.	1,5 In.	9	110	yes	946	5/8	5/8	5,00
	1/4	6		9	no	yes	1/8			4.00
	3/8	6		9	yes	y == 5	1/8	3/4	7/8	2,86
	172	6		9	Ou	ye.s	1/2	?/8	3/8	2,75
		6	2	9	yes	A.2	1/2		3/8	2, 20
	3/4	۶		9	110	110	-		3/5	2.34
		6		9	1143	fire.	-		1 3/4	2,00
	•	0	3	9	NU	g.s.r.	•	-	•	- *
P185		6 lr.	1.5 la, 5		nu	yes	5/8	7/8	1/2	10,00
		6	1.5	9	yes	yes	1/4	7/8	1/8	4.50
		6		9	yes.	44.2	172 1		574	4, 35
		6		9	Fat.e	71.5	1/4	5/8	7/8	1.75
		Ó	2 9		703	Πω	-		} `	3,20
		6		3	14:3	F1-3	-	- 1	3/4	2.34
		6 L	2.5		PI-2	945	-	-	-	-
	•	U	3 9	ŧ	Pt-J	444	-	-	~	-

TABLE J12 (Continued)

				ATE				Under			5	wind			T.
Heat	Thi	ck-	5	la-	Rie	er		Alser	Plate	Edge	В	c you	d i	lotal	Total Sound
No.	กอร	3		otuc	01	a,	Liper	Shrin	Shrink	Sound	R	lser	:	bound	Thickness
														-	
P195	1/8	i ir	ı. 1	6 In.	. 1.	5 1	n. 10	no	gas	-		•		-	•
	1/1			6	1.		10	yos		•		-		•	-
	3/6		1		1.	5	10	yes		-		-			•
	1/3			6	2		10	UG	842	•		-		-	•
	5/8			6	2		10	A e s		•		•		-	•
	3/4			5	2.		10	no	ð-1#	-		-		-	-
	7/8	\$	- 1		2,	>	10	y 6 2		-		•		•	-
	1		•	5	3		10	NO	Jag.	-		-		-	•
P196	17	. 1.		i in,		c 1	n. 10	DE:	yes	1/4	,	1/4	,	1/2	10.00
7130	1/1			5 T(1),	i.		10	yes		2/8	i	1/4		3/8	5.50
	3/8		- 2		i.		10	Aca	•	1/2	•	3/4		1/4	3.33
	1/2		7		2	,	10	no	yos	3/8	ı	<i>,,</i> ,,	i		2.75
	5/8		- 7		2		iŏ	on on	908	,,,,	•		•	7	
	3/4		-		2,	5	io	- 00	900	-		-	1	3/4	2.33
	7/1		i		2.		io	no	gas	-			•	-	-
	- í `		-		3	•	iõ	no	UQ.	•			i	1/2	1,50
					•								•	•	
P 200	1/8	3 10	١. ا	i in.	. 1.	5 1	n. je	na na	yes	1/2		3/4	ŧ	1/4	10.00
	1/4				1,	5	16	yes	yas	1/4	ì		1	1/4	6,6?
	3/8	3			1.	5	10	y = 8	yas	1/2	ŀ	1/2	2	!	5.34
	1/7		•		2		10	no	•	941	1	9/8	1		3.25
	5/6		•		2		10	704		-		-	2		3,20
	3/4		•		2,		10	UO	-	802	1	1/4	I		1,67
	7/4	,	- 5		2.	5	10	ρO	llo	-		-	į	1/2	1,72
	ŧ		•	•	3		10	no	IKI	-		-	i	1/2	1.50
P 275-	1/8	ln.	ં 6	la.	1.5	1.	s. 11	no	yes	1/16		3/4		13/16	6.50
· -/ j	1/4		6		2	•••	¨ ii	no	yes	1/8		1/2		5/8	2.50
•	3/8		6		Ž		ii	100	no yez			.,,	2	3/0	5.34
	1/2		6		2		ii	no no	Qas	•		-	•		3.34
			-		•		• • •	110	gas	•		-		•	•
P 275-	1/8	in,	, 6	in.	1.5	1:	. 11	no	yes	1/4		1/2		3/4	6,00
2	1/4		6		2		13	no	yes	3/8	ì	1/4	1	5/8	6.50
	3/8		6		2		11	no	no	-,-			ž		5.34
	1/2		6		2		ijį	-	nu	-			2		4.00
								•							
P 278		ln.			1.5	Ιn	, 11	Y 0 \$	yes	1/8		7/8	1		8.00
	1/4		6		2		- 11	nu	Yes	1/4		3/4	ı		4.00
	3/8		6		2		11	no	yes	3/8		1/4	1		2,46
	1/2		6		3		!]	yes	ដូចន	•		-			•
P 279	1 /R	l.	6	i n	1.5	١	. 12					1/4		24.	4
	1/4		6		2	• • • •	12	no no	Aut Aut	1/3 3/8		1/4	,	3/4 5/8	6.00
	3/8		6		ž		12	UC			1		•	2/0	6,50
	1/2		6		2.5		12	no	gas			•		•	
			٠		•.3		14	no	200	•		•		•	3.50
F 273	1/6	lo.	6	in.	1.5	l٥	. 12	no	yes	1/8	,	1/4	1	3/8	11.00
	1/4		6		3		12	กง	yes	1/6	ì	1/4	}	3/6	5.50
	3/8		ઠ		2		12	no	nω	-				-	5.34
	1/2		ŧ		2.5		12	110	****	-		-		-	3.50
P 201	1/8	t n	6	je:	j.5	i.,	, j <i>a</i>			cn.					10
	1/4	••••	ő	•••	1.3	411	12	1.42	Aet	1/4	į		ŀ	1/4	10 00
	3/8		6		ì		12	ĐO	g : e	-		••		•	
	3/0 1/2		ĕ		2.5		15	-	ing	-			2		5.54
	.,.				• 3		1.6	nu	***	3/4		1/4	•	1/2	3.70

TABLE J13
FEEDING DISTANCE IN HEATED MACHINED GRAPHITE MOLDS

J47

	Thick-	PLA Dlu-			Under		e 1	Sound	7	у»
Hea t			Riser	T	Rlsor Shi lak	Plate Shriek	Edge Sound	Beyond	Tota)	Total Sound
Ho,	16627	motor	Dla,	Ligitor		261 (68	- Schille	Alser	Senged	<u> Thickness</u>
1400	178	6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	Oct	yes	1/16	1/16	1/8	1,00
	1/5	6	17	9	1343	yes	1/8	8	1/8	0.50
	3/8	6	11	. 0	110	yes	1/6	0	1/4	0.66
	1/2	6	2	Đ	1363	yes	1/4	Ö	1/4	0.50
	5/8	6	ë	0	po	YUS	1/2	178	5/8	1.00
	3/4	6	21	0	no	VC5	1/2	1/6	3/4	1,00
	7/8	Ġ	21	ō	no	yes	1/2	1/4	3/4	0,86
	i	6	3	a	1113	yes	7/8	1/2	1 3/8	1.375
P402	1/8	6	13	0	nω	yes	1/16	D	1/16	0.50
	1/4	6	iţ	ä	ga	yes	174	ā	1/4	1,00
	3/8	Ğ	i j	ō	no	yes	3/8	Ŭ	3/8	1.00
	1/2	ŭ	ž	Ö	no	yes	1/2	1/8	578	1,25
	5/8	Ğ	ž	Ö	ຄບ	yes	1/2	8	1/2	0.80
	3/4	Ĝ	ž	ő	110	yes	1/2	1/4	3/4	1.00
	7/8	Ğ	2]	ö	กบ	yes	1/2	178	5/8	0.71
	í	Ğ	3	õ	ทบ	yes.	3/4	1/4	í	1,00
r410	1/8	6	11	D	tyca	ye5	1/8	0	1/8	1,00
	1/4	6	if	ő	ner.	yes	1/4	ű	1/4	1,00
	3/13	6	15	Ď	ħr.	yes	3/8	1/4	5/8	1,66
	1/2	6	2	0	no	ytis	1/2	o´	1/2	1,00
	5/8	6	2	õ	no	yes	1/2	0	1/2	0.80
	3/4	6	2	ő	tic)	yes	5/8	1/4	7/8	1,16
	1/8	Ĝ	21	ñ	no	VCS	1/2	178	5/8	0.71
	i	6	3	0	tkı	yes	3/4	1/4	} "	1.00
r411.	178	£.	13	1	(Re)	yes	1/8	1/16	3/16	1,50
, -, ,	174	Ğ	if	i	IRI	yes	1/4	O	1/4	1.00
	3/8	6	ij	i	(8)	ye.	3/8	O	3/8	00,1
	172	6	ž	i	no	yes	1/2	1/2	1	2.00
	57a	Ğ	4	i	tiC)	Yes	1/2	1/8	578	1,00
	5/4	č	اد	i	1163	yr.s	1/2	0	1/2	0.64
	178	ű	2 <u>.</u> 2.	}	tif.	yes	374	Ö	3/4	0,86
	í"	6	3	i	1363	yes	578	1/8	3/4	0.75
1436	1/8	í,	.3	1	1313	yı.,	В	1/8	178	1.00
.,	174	í.	1	i	1417	ye-5	1/6	1/8	1/4	1.00
	3/B	ä	11	1	Yes	yes	3/8	178	1/2	1.33
	1/2	6	2	ì	1161	ye-s	1/8	1/4	578	1.25
	5/8	ú	2	į	1961	yers	1/2	(I	1/2	à,190
	1/4	6	71	i	4141	yes	1/2	174	3/4	1,00
	7/8	l.	3	i	• 1= 1	yes	3/4	0	3/8	0,45
	1	0	ž	i	1167	Ac. 5	7/6	1/2	1 1/4	1.50
رد پلیاء	1/8	ł,	13	1	1144	yı.,	178	n	1/8	1,90
,	1/4	6	1 L	1	fi(i)	yes	170	Ð	178	0.50
	1/8	Ğ	iş	i	1113	y: -	175	1/16	5/16	0,43
	1/2	ť	ž	,	pri	ys.4	1/8	0	378	9.2%
	4/8	6	,	į	1117	yes	177	Ü	1/2	0.30
	3/4	6	21	j	(34)	y	578	1/4	7/8	1,11
	1/8	6	4	ì	m.	γι s	î	174	1 1/4	(,4)
	{	6	jď	ì	gar.	er ·			110	1,50

٠

TABLE J13 (Continued)

11		PLATE						Sound	1=	
Heat	Thick-	Dia-	Riser		Undor Riser	Plato	Edga	Beyond	lotal	fotal Sound
No.	ness	moter	Dla,	Tapor	Shr lak	Slu Ink	Sound	<u>Risor</u>	Sound	Helckinss
	1.40							1.40	2.40	3
P477	1/8	6	!#	3	ικο	yes	1/4	178	3/8	3.00
	1/4	6		3	ħΟ	yes	1/4	0	1/4	1.00
	3/8	6	į į	3	no	y::s	1/4	0	1/4	0,66
	1/2	6	2	3	110	yı:5	1/2	174	3/4	1,25
	5/8	6	2	3	yes	ye.s	1/2	Ü	. 1/7	0.00
	3/4	6	2] 2]	3	ħυ	yes.	1/2	1/2	!	1,3
	7/8	6	21	3	ŊO	yı-s	1/2	1/2	1	1.14
	i	6	3	j	no	yes	1/2	1/2	1	1.00
P487	1/8	6	ij	3	ho	ye.p	1/8	U	1/8	1,00
	1/4	6	1]	į	yes	yes	174	1/8	3/8	1,40
	3/8	6		3	yus	ye5	1/4	3/8	5/8	1.66
	1/2	6	į	3	LIL)	ýes.	178	174	5/8	1.75
	5/8	6	2	j	no	ye-5	1/2	1/4	3/4	1.70
	3/4	6	21	ž	110	yes	1/2	3/8	//8	1.16
	7/8	ě	2] 2]	ź	110	yes	374	1/4	1 // 0	1.14
	1,0	ě	3	ź	110	yas	5/8	1/2	1 1/8	1,125
						•				••••
P490	178	6		3	HO	yes	1/8	Ü	1/8	1.00
	174	6	11	3	yes	yes.	174	1/4	1/2	2,00
	3/8	ű	11	3	yes	ye-s	3/8	1/8	1/2	1.33
	1/2	6	2	3	po	yes.	1/2	0	1/2	1.00
	5/8	6	2	3	yes	yes	1/2	O	1/2	0.80
	3/4	6	21 21	3	no	yes	1/2	1/2	1	1,33
	7/8	6	2]	3	no	yes	1/2	1/6	5/8	0,71
	I	6	3	3	no	γιι»	ŧ	177	1 1/2	1,50
	40									
P502	1/8	6	1 <u>4</u> 1 <u>1</u> 1 <u>1</u>	5	1813	Yes	179	1/8	378	3 , (K)
	1/4	6	1 4	5	Ber	y 1-5	1/4	1/8	3/8	1.50
	3/8	6	17	5	1117	yes	1/4	3/8	4/8	1.66
	1/2	6	2	5	no	y e: 5	1/2	174	3/4	1,50
	5/8	Ŀ	2	5	ye-5	Y1-5	1/2	1/8	5/8	1,00
	3/4	6	2	5	tics	y t: 5	1/8	174	3/8	0.50
	7/8	E	2	5	yes	yes	3/4	1/4	ł	1.14
	1	દ	3	5	HO	ÿ, o	į	3/8	1 3/0	1.3/%
2504	1/8	6	ı	ξ.	1913	y :: 5	1/16	178	3/16	
	175	Ġ	is	5 5 5	110	yes	1/4	1/8		1.50
	3/8	Ğ	iŧ	ć	90	yes	1/1		, 3/8	1,50
	1/2	6	13	5			1/2	1/2	l l	1 (.)
	5/8	6	2	5	ye-s	ÿu.,		1/2	-	2.00
	3/4		Ž	3	γι-5	7	<i>3/</i> 4	1/8	7/8	1.50
	//8	ő	2]	5	1110	À 1	3/4	1/2	1 176	1 6/
		6			y1-5	y	3/4	174	1	1.20
	j	U	ţ	5	st.)	10.2	374	1/2	1.474	1.74
15.	176	Ŀ	ιĴ	3	4814	yes.	174	1/16	5/16	2.20
	1/4	b	; } 1 }	5	0.1	71.5	176	0 4	1/0	0.56
	5/15	٤.	i [i,		, ,	143	e q	.78	4, 30
	1/2	6		5			37.5		./ti	6 Pr
	57a	ŧ,	2	į	7.12	ya	Wa	177.4	578	1 111
	179	6	25	Ś	l):	y ·	1	1/5	1.174	1
	770	t.	4	4	1	ý-	179	37.4	i '''	1 14
	1	ſ.	• •	-		•		-· •	1,	1 '
									• ••	•

TABLE J13 (Continued)

		PLA	TE		under			Sound		T =
Hee t	Thick-	Dia-	Riser		Riser	Plate	Edge	Beyond	Total	Total Sound
No.	ness	meter	Dia.	Taper	Shrink	Shrink	Sound	Riser	Sound	Thickness
P506	1/8	6	14	7	yes	yes	1/4	0	1/4	2.00
	1/4	6	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7	no	yes	1/4	1/2	3/4	3.00
	3/8	6	11	Ź	no	yes	1/2	3/4	1 1/4	3.00
	1/2	6	21	Ź	no	yes	1/2	1/4	3/4	1.50
	5/8	6	21	'n	no	yes	i	1/2	1 1/2	2.40
	3/4	6	2	ż	no	yes	3/4	1/4	i	1.33
	7/8	6	3	Ż	no	yes	5/8	1/2	1 1/8	1.28
	i	6	3	Ż	no	no			1 1/2	1.50
P507	1/8	6	1	7	no	yes	1/4	1/4	1/2	4.00
• •	1/4	6	14	7	no	yes	1/4	1/4	1/2	2.00
	3/8	6	11	7	no	yes	1/2	3/4	1 1/4	3.00
	1/2	6	2 2	7	nQ	yes	1/2	1/4	3/4	1.50
	5/8	6	2	7	no	yes	3/4	1/2	1 1/4	2.00
	3/4	6	14 24	7	no	yes	1	1/2	1 1/2	2,00
	7/8	6	2₹	7	no	yes	1	1/2	1 1/2	1.73
	1	6	3	7	no	PS	**		1 1/2	1.50
P508	1/8	6	14 14 14	7	no	yes	-1/8	0	1/8	1.00
	1/4	6	14	7	no	yes	1/4	1/8	3/8	1.50
	3/8	6	11	7	yes	yes	3/8	1/4	5/8	1.67
	1/2	6	2	7	no	yes	1/2	3/4	1 1/4	2.50
	5/8	6	2	7	no	765	1/2	1	1 1/2	2.40
	3/4	6	21	7	no	'/85	3/4	3/8	1 1/8	1.50
	7/8	6	2 1 2 1	7	no	, a \$	7/8	1/2	1 3/8	1.64
	1	6	3	7	no	ne	••	••	1 1/2	1.50

J50

TABLE J14

FEEDING DISTANCE IN HEATED RAMMED GRAPHITE HOLDS

	****	PLAT			Under			Sound		Ţ#
Heat	Thick-	Dia-	Riser	Taper	Riser	Plate	Edge	Beyond	Total	Total Sound
No.	ness	Meter	Dla.	•			k Sound	Riser	Sound	Thickness
					*****		(dldn't			
P383	1/8	6	1	0	no	yes	fill)	0	0	0
	1/4	6	1	0	yes	yes	1/8	3/16	5/16	1,250
	3/8	6	1	0	yes	yes	1/4	3/16	7/16	1,165
	1/2	6	14	ŏ	no	yes	1/8	1/4	3/8	.750
	5/8	6	情	ō	yes	yes	3/8	3/4	1 1/8	1.80
	3/4	6	2	ŏ	no	yes	1/2	1/2	1 1/0	1.33
	7/8	6	2	ō	no	yes		1/8	1 3/4	2.00
	i	6	21/2	ŏ	no	yes	5/8	3/4	1 3/8	•
	•	•	-3	U	110	Acz	2/0	3/4	1 3/0	1.375
P384	1/8	6	1	0	yes	yes	1/16	1/8	3/16	1.50
	1/4	6	1	0	yes	yes	1/8	3/8	1/2	2.00
	3/8	6	1	0	yes	yes	1/4	1/4	1/2	1,33
	1/2	6	14	0	yes	yes	1/8 gas	5/8	3/4	1.50
	5/8	6	13 13	Ö	yes	yes	3/8	5/8	, <i>), -</i>	1.60
	3/4	6	2	Õ	no	yes	1/2	1/2	j	1.33
	7/8	6	2	ō	yes	yes	1/2	7/8	1 3/8	1.57
	i	6	21	Õ	no	uc.	., ~	770	1 3/4	1.750
	•	•	2	-	1.0	110			1 3/7	1./50
P385	1/8	6	1	0	yes	yes	1/32	0	1/32	.276
	1/4	6	1	0	yes	yes	1/8	1/4	3/8	1.50
	3/8	6	1	0	yes	yes	1/4	1/4) "	2,67
	1/2	6	74 14 12	0	no	yes	1/4	1/4	1	2.00
	5/8	6	13	0	yes	yes	3/8	1/2	7/8	1.40
	3/4	6	13	0	no	yes	1/2		1 1/4	1.67
	7/8	6	2	0	yes	yes		7.1	1 5/8	1.86
	1	6	21/2	0	no	no			1 3/4	1.75
P386	1/8	6	l l	1	yes	yes	0 g	0	0	0
	1/4	6	1	i	yes	yes	1/16 g		5/16	1.25
	3/8	6	i	ì	yes	yes	1/4 g	3/8	5/8	1.66
	1/2	6	14	i	yes	yes yes	3/8 g	1/2	7/8	
	5/8	6	i	i	yes	yes	3/8	1/2	7/8	1.75 1.40
	3/4	É	2	į	คอ	y 45	1/2		1 1/8	
	7/8	6	2	i	no	yes	1/2	_	1/2	1.50
	1	6	3	i	no	no	1/2		1/2	1.71
	•	•	•	,	110	170			1/2	1.50
P387	1/8	6	ì	1	yes	yes	0 gas	1/8	178	1.00
	1/4	6	1	1	yes	yes	1/8 q	1/8	1/4	1,00
	3/8	6	ì	i	yeş	yes.	1/4		1,7-7 	2.67
	1/2	6		1	yes	yes	1/4	1/2	3/4	1.50
	5/8	6	1 1 2	i	yes	Y05	1/4	•)/4 	1,60
	3/4	6	2	1	UO.	yes	5/8		: 1 178	1.50
	7/8	6	2	i	yes	•	37.53 !		3/6	
	1	ĺ	21	i	110	no no	•	•	-	2.00
	,	•	~1	•	****			,	3/4	1.75

TABLE J14 (Continued)

FEEDING DISTANCE IN HEATED RAMMED GRAPHITE MOLDS

*********		PLAT	E		Under	·····	·	Sound		T =
Heat	Thick-	Dia-	Riser		Riser	Plate	Edge	Beyond	Total	Total Sound
No.	ness	Meter	Dla,	Taper	Shrink	Shrink	Sound	Riser	Sound	Thickness
P388	1/8	6	1	1	yes	yes	0	0	0	0
. • • • •	1/4	6	1	1	yes	yes.	1/8 g	1/2	5/8	1.50
	3/8	6	1	1	yes	ye5	1/4	1/4	1	2,67
	1/2	6	1 <u>1</u> 1 <u>1</u>	1	yes	yes	1/4	1/2	3/4	1.50
	5/8	6	11	1	yes	yes	1/2	1/2	1	1.60
	3/4	6	2	1	no	yes	1/2	1/2	1	1.33
	7/8	٤	Ž	i	yes	yes	1/2	3/4	1 1/4	1.43
	1	6	$2\frac{1}{2}$	1	no	no	ga\$		1 3/4	1.750
P389	1/8	6	14	3	no	yes	gas	1/4	1/4	2.00
	1/4	6	11	3	no	yes	gas	1/8	1/8	.50
	3/8	6		3	no	yes	1/4 g	1/4	ì	2.67
	1/2	6	2	3 3 3	no	yes	3/8 g	3/4	i 1/8	2.25
	5/8	6	2	ž	no	yes	3/8 9	1/2	7/8	1.40
	3/4	6	21/2	3	no	no	gas	••	1 3/4	2.34
	7/8	6	$\frac{2\frac{1}{2}}{2\frac{1}{2}}$	3 3	no	no	gas		1 3/4	2.00
	1	6	3	3	no	no			1/2	1.50
P390	1/8	6	14	3	no	yes	gas	1/4	1/4	2,00
	1/4	6	11	3	no	yes	1/4 g	1/4	1/4	1.00
	3/8	6	14 14 14	3333333	no	yes	1/8 9	1/8	1/4	1.667
	1/2	6	2 2	3	no	yeş	3/8	1/2	7/8	1.750
	5/8	6	2	3	no	yes	1/2		1	1.60
	3/4	6	2 1	3	no	yes	5/8 1		1 5/8	2.17
	7/8	6	21 21 21	3	no	no	gas		1 3/4	2,00
	1	6	3	3	no	no	gas		1 1/2	1.50
P391	1/8	6		3	no	yes	gas	gas		0
	1/4	6	11	3	no	yes	1/4 g	1/8	3/8	1.50
	3/8	9 6	11	3	no	yes	1/4	1/4	1/2	1.33
	1/2	6	2	3	no	yes	1/4	1/2	3/4	1.50
	5/8	6	2	3	no	yes	1/2	3/4	1 1/4	2.00
	3/4	6	21 21	3	no	yes	1/2 1		1 1/2	2.00
	7/8	6	2 1	3	no	no	ga s		1 3/4	2.00
	1	6	3	3	no	no	ga s		1 1/2	1.50
P392	1/8	6	1 ½ 1 ½	5	no	yes	1/2 g	1/2	1	8,00
	1/4	6	l 🛊	5	no	yes	1/4 g	1/4	1/2	2.00
	3/8	6	11/2	5 5 5 5 5	no	yes	1/2		1 1/8	3.00
	1/2	6	2	5	no	yes	1/2		1 1/4	2.50
	5/8	6	2	5	ŊΟ	yes	1/2	1/2	1	1.60
	3/4	6	2	5	no	f1O	gas		1 3/4	2.80
	7,8	6 6	2½ 3	5 5	no	no	gas		1 3/4	2.34
					no				1/2	1.50

TABLE J14 (Continued)

FEEDING DISTANCE IN HEATED RAMMED GRAPHITE MOLDS

		?L/.1	E		Under			Sound		T=
Hea t	Thick-	Dia-	Riser		Riser	Plate	Edge	Beyond	Total	Total Sound
No.	ness	Meter	Dia,	Taper	Shrink	Shrink	Sound	Riser	Sound	Thickness
P393	1/8	6	14	Ş	no	yes	Q g	i/4	1/4	4.00
	1/4	6	11/2	55555555	no	yes .	1/4 g	3/8	5/8	2.50
	3/§	6	i 🖠	5	yes	yes	1/4 g	1/4	1/2	1.33
	1/2	6	2	É	no	•	3/8	3/4	1 1/8	2.25
	5/8	6	2	2		yes		3/4	1 1/4	2.00
		6	21	2	no	yes	1/2			
	3/4	6	21/2 21/2	5	no	yes	1/2	ļ.	1 1/2	2.00
	7/8		43	5	no	no			1 3/4	2.00
	ì	6	3	5	no	no			1 1/2	1.50
P394	ز با	6	1212	5	no	yes .	qas	1/2	1/2	4.00
	1/4	6	13	5	no	yes	1/4 g	1/2	3/4	3.00
	3/8	6	11	5	yes	yes	1/4	1/4 g	1/2	1.37
	1/2	6	2	5 5 5 5 5 5 5 5 5 5 5 5 5	no	yes	1/2 g	3/4	1 1/4	2.50
	5/8	6	2	5	no	yes	7/8	3/4	1 5/8	2.60
	3/4	6	21	Ś	no	no	,,,	<i>,</i> ,	1 3/4	2.34
	7/8	6	21 21	Ś	no	no			1 3/4	2.00
	i	6	3	5	no	no			1 1/2	1.50
				,	110	110			1 1/2	1,70
P395	1/8	6		7	no	yes	ÿaş	0	0	
	1/4	ક	11	7	ΠŪ	y == S	:/6 1	3/4	1 7/6	7.50
	3/8	6	13	7	no	yes	1/4	3/4	ł	2,67
	1/2	6	2	7	no	gas	3/16	1/4	7/16	,875
	5/8	6	2	7	yes	gas	1/8	3/4	7/8	1.40
	3/4	6	21/2	7	no	gas	1/4		2	2.67
	7/8	6	$\frac{2\frac{1}{2}}{2\frac{1}{2}}$	7	no	no			1 3/4	2.00
	1	6	3	7	no	no			1 1/2	1.50
P396	1/8	6	14	7	no	yes	1/16	3/8	7/16	3.50
	1/4	6	i‡	ì	no	yes	G	1/2	1/2	2.00
	3/8	6	131 132	'n	yes	yes	1/8	1/2	5/8	1,67
	1/2	6	2	7	no	yes	1/2	1/4	3/4	1,50
	5/8	6	Ž	7	no	985	17.	177	דונ	1,30
	3/4	6	2 1	7	no 110	gas				
	7/8	6	21	7	70	-				
	i	6	3	7		945				
	•	ŭ	•	,	no	gas				
P397	1/8	6	13	7	ñô	yes	0	1/4	1/4	2.00
	1/4	6	ij	7	no	Ass	Ō	3/4	3/4	3.00
	3/8	6	13	7	yes	yes	1/2	3/4	1 1/4	3.34
	1/2	ΰ	2	7	no	gas				
	57R	6	2	7	36	F _i G			2	ئ, كن
	3/4	6	2),	7	กซ	1) a \$				
	7/8	6	2 <u>}</u> 2 }	7	510	ກວ			1 3/4	2,00
	ì	6	<u>.</u> ز	7	no	กด			1 1/2	1,50
			-	•		***			1 11 5	1.34

TABLE J15
FEEDING DISTANCE IN CENTRIFUGED DISCS

					SOUND		Ϋ =	
HEAT	PLAT	re	RISER	EDGE	BEYOND	TOTAL	Total Sound	RPM/G'S
NO.	THICKNESS	DIAMETER	SIZE	SOUND	RISER	SOUND	Thickness	
		_			_			_
P-80	1/2	6	1	3/16	1/4	7/16	0.875	900/200
	1/2	6	1	1/4	1/4	1/2	1.000	
	1/2	6	1	3/16	1/4	7/16	0.875	
	1/2	6	1	3/16	1/8	5/16	0.630	
P-81	1/2	6	1	1/4	5/8	7/8	1.750	900/200
	1/2	6	1	3/16	1/4	7/16	0.875	
	1/2	6	1	3/16	5/16	1/2	1.000	
	1/2	6	i	3/16	1/4	7/16	0.875	
				•				
P-83	1/2	6	1	1/4	5/8	7/8	1.750	900/200
	1/2	6	i	3/16	1/4	7/16	0.875	200, 200
	1/2	6	i	3/16	1/4	7/16	0.875	
	1/2	6	i	3/16	5/8	13/16	1.625	
	•	•		••				
P-85	1/2	6	11/3	Gas	5/8	5/8	1.250	900/200
	1/2	6	11	0	1/4	1/4	0.500	•
	1/2	6	17	Gas	5/16	5/16	0,630	
	1/2	6	1-1-2-1-2	Gas	1/2	1/2	1.000	
P-86	1/2	6	11	1/4	1/4	1/2	1.000	900/200
	1/2	6	iĨ	3/16	1/4	7/16	0.875	3007200
	1/2	6	iI	3/16	1/4	7/16	0.875	
	1/2	6	1-3-1-3-1-3-1-3-1-3-1-3-1-3-1-3-1-3-1-3	1/4	1/4	1/2	1.000	
	• • • • • • • • • • • • • • • • • • • •	•	'2	17.4	1/7	1/2	1.000	
P-99	1/2	6	13	3/16	1/4	7/16	0.875	1300/325
	1/2	6	11	1/4	1/4	1/2	1.000	.,,,.,
	1/2	6	13	1/4	1/4	1/2	1.000	
	1/2	6	13131313	1/4	1/4	1/2	1.000	

TABLE 116

RESULTS OF TENSION FATIGUE TESTS TO ESTABLISH CHEMICAL REMOVAL REQUIREMENTS

SPECIMEN CONDITION	MAXIMUM STRESS, PSI	CYCLES TO FAILURE
As Cast and	75,000	101,000
Abrasive Blast	75,000	82,000
Cleaned	75,000	92,000
	75,000	151,000
	65,000	1,165,000
	60,000	1,546,000
	60,000	1,024,000
	60,000	129,000
.005" Per	75,000	61,000
Surface	75,000	114, 000
Chemically	75,000	33,000
Removed	75,000	88,000
	65,000	66,000
	65,000	177,000
	65,000	205,000
	55,000	1,026,000
.010" Per	75,000	83,000
Surface	75,000	74,000
Chemically	75,000	127,000
Removed	75,000	213,000
	65,000	170,000
	65,000	182,000
	65,000	95,000
	65,000	1,072,000
.015" Per	85,000	724,000
Surface	85,000	251,000
Chemically	75,000	297,000
Removed	75,000	100,000
	75,000	744,000
	75,000	1,013,000
	65,000	1, 252, 000
	65,000	1,561,000

Underlined values were not failures.

R = Minimum Stress = .06
Maximum Stress

TABLE J17

MECHANICAL PROPERTIES OF AS-CAST T1-6A1-4V

		11501110110116 1111	OF ERELIES OF MS	- CA12; 11-QA11 1	•	
Heat Number	Ultimate Tensile Strength KSI	Yield Strength KSI (.2%)	Elongation in 4D Per Cent	Reduction in Arca Per Cent	Notch Tensile Strength KSI	Brinelî Hardness Number
DO 7	110 (200.	4			
P2-7	119.8	*801		9.2		
-7	152.3	127.1	12	22.6		
P4-8	156.1 140.1	not obtained	11	22.6		
-8 56 54	140.1	1 10×	10.5	15.5	216.85	
P6-5A					210.65	
-58 -50					216.85	
-6	141.6	124.7	12	24	210.05	
-0 274	144.85	128.4	9	18		
1 74	144.5	128.2	11	21		
	143.7	130.9	9.5	12		
	144.85	128.4		18		
	144.5	128.2	9 11	·21		
D7.20	143.7	130.9	9.5	12	212 CF	
P7-2G					213.55	
-2H -2i					215.15	
P9-2	145.9	121 25	^		215.2	
F9-2		131.35	9	12		
	145.55 144.9	131.4	9.5	19		
Ola a		132.5	9.5	18		
P10-2	150.6	131	10	20		
P11-2 P12-1	144.5	120.5	8.5	17		
· · · ·	148.65	136.15	6.5	10**		
P13-1 P14-1	144.5	133.65	10	18		
	148.15	136.05	10	15		
P15-1 P16-1	138.25	127.15	10	25		
	143.9	131.65	8	18		
P17-1	141.6	126.7	5	.6		
P18-2	149	130.6	8	13		
P19-5	130.9	112,6	10		nalysis)	
P20-1	143.0	120	12	21		
P23-1	144.8	132.3	9	18		
P27-28	147	135.5	9	15		
P29-2	149	Poor Curve	9 9 7 5	10		
P30-2	150.5	137.25	9	15		
P31-6	147.2	130.1	7	20		
P32-2	149.9	133.2		.7		
P34-2	151,45	138,25	9.5	18		
P35-2	144.5	127.35	13	23		
P36-2	150.2	133.3	5	13		
P37-2	151 152 1	i53.3	ð	15		
P40-3	153.1	142	8.5	16		
P41-2	152.9	145.7	8	17		
P42-2	146.1	132.8	13	20		

*Flaw at fracture **Broke out of gage length

TABLE J17 (Continued)

MECHANICAL PROPERTIES OF AS-CAST TI-6A1-4V

Heat	Ultimate Tensile Strength	Yield Strength KSI	Elongation in ^{1,} 0	Reduction In Area	Notch Tensile Strength	Brinell Hardness
Number	KS I	(.2%)	Per Cent	Per Cent	KS I	Number

P43-2	151.2	140.9	6.5	13		
P45-2	145.1	130.8	11	22		
P47-2	154.7	143.5	12	20		
P48-2	154.3	141.8	12.5	18		
f50-2	150	134.95	12	18		221
P51-2	152.8	137.15	12.5	18.5		334
P53-2	152,6	139.1	g G	15		324
P54-2	152.9	143.2	9.5	14		324
P56-2	145.5	129.4	12	25		321
P57-3	144	128.8	10	19		321
P63-2	149.2	135.8	10	16		321
P70-2	148.9	135.7	15	23		337
P71-2	151.9	138.3	d 13	12		
P73~3	156.4	143.2	12	18		212
P76-2	138.4	124	8	20.4		317
P78-2	156.4	138	7	16		343
P100-2	154.8	13/.6	7	17		348
?lúi-i	13/.2	121	9	15.1 -		345
P102-2	142.8	125.2	9	22		345
P104-2	146.8	130		22		348
P108-3	1 444	127.6	1	19.4	-	337
P115-3	144	127.2	9	26.5		317
P119-2	146.4	128.4	8	19.4		344
P129-2	151.6	135	8	24.1		334
P131-2	142.8	124.4	9	18.9		317
P132-2	148	143	7	18.1		338
P137-2	144 156 0	125	6	15.1		314
P142-2	156.8	135	ઇ	17.6		344
P155-2 P156-2	144.	126	3	10		308
	152.4	138	8	. 14.2		324
P157-2 P158-1	149.2 141.6	132	<i>]</i>	13.4		317
P159-2	141.6	124 128	გ გ	17		317
P186-2	139,4	118		15.1		311
P194-1	142	110	ช	9.7		302
P197-1	132	: 24 116	,	11.5		305
P198-1	142	124	/ 6	13.1		285
P199-2	144	۱۷۶ زاد ا	o 8	10.5 15.1		321
P201-2	140	120	o j	13.5		311
t201-2	138.4	121	์ ช			ju j
P210-1	148	131	9	15.9		299
P210-1	142	124	9	14.5		311
P217-1	145.2	12/	9 8	15,1 10		305
P218-1	144.2	126	/	10.7		296
F220-1	148	129	/ と	10.7		314.3
P221-1	136	118	s I _t			305
1224-1	i lio	116 124,	·• /,	/.6		299
P225-1	150	132		10.6		308.3
	140	132 121	<i>i</i>	10		331
F233 F	1.10	141	t.	11.2		308

TABLE J17 (Continued)

MECHANICAL PROFESTIES OF AS-CAST TI-6A1-4V

Heat Numbe <i>r</i>	Ultimate Tensile Strength KSI	Yleld Strength KSI (,2%)	Elongation in 4D Per Cent	Reduction In Area Per Cent	Notch Tensile Strength KS1	Brineit Hardness Number
P240-1	148	130	8	12.9		308
P 241-1	142.2	125	š	13.5		299
P242-1	139.2	122	8	12.9		296
P243-1	139.2	112	5	14.5		311
P244-2	141.2	124	5 5	13.4		311.6
P 246-1	139.6	121	8	15		311.3
P 247-1	145.2	128	8	14.5		305
P 248-1	144	126	8	14.5		308
P250-1	140	122	7 6	11.5		293.6
P 260-1	146	127	6	8		296
P261-1	146	129	8	13.5		317.6
P 264-1	146	130	6	4.9		321
P 265-1	143.2	126	4	· 9.7		311
P 281 - 1	144	126	10	15		316
P 284-1	144	126	7 7	18.1		308
P 286- I	138.4	121	7	12.7		308
P 290-1	149.6	132	9	19.4		317.6
P291-1	138	120	9 7	17.5		311.3
P304-1	146.2	131	7	13.5		321
P305-1	148	131	7	10		324.3
P306-1 P307-1	146	128	7	10		308
P308-1	146.8 146.8	130	8 6	15.9		305
P309-1	152	130	6	11.5		317.6
P312-2	146.8	134 132	7	13.5		317.6
P314-1	146.4	130	8 8	14.2		321
P322-1	146	129	8	12.9		336
P323-1	144.8	128	9 9 7 9	15.1		331
P324-!	152	135	7	13.4		321
P328-1	142	124	á	12.7 12.7		326
P329-1	142	124	ź	8.1		311
P330-2	148	132	ģ	14.5		311
P333-1	140.4	122	ģ	15.9		321
P336-1	144	137	9 8	15.1		302 326
P340-1	145.2	130	7	12.7		327.2
P343-1	150	135	7 7	16.7		324.3
P345-3	143.8	128	6	8.9		317.6
P346-2	140.2	122	7	15.1		311
P360-1	149.6	132	7	10.5		327.2
P364-1	146.8	131	7	13,5		305
1365-1	150	154	1	12.2		311
Р366-1 Р367-1	149.6	125	8	-15.1		311
P368-1	150 153.6	134	6	10.6		311
P369-1	153.6 148.4	136	6	10.6		327.6
P370-1	150.8	133	7	12.9		317.6
P3/1	146.8	134 131	7	12.7		314.3
P373	151.2	131	/	8.9		331
+ 373 + 374	150.8	135	7	12.2		324.3
P379	156.0	139	5 7	10.6		317.6
, .	ب پرسپ	- 23	1	9.2		334,3

TABLE J17 (Continued)

MECHANICAL PROPERTIES OF AS-CAST TI-6A1-4V

	Ultimate	Yleld			Notch	
	Tensile	Strength	Elongation	Reduction	Tens I le	Brinell
Heat	Strength	KS I	In 4D	în Area	Strength	Hardness
Number	KSI	(.2%)	Per Cent	Per Cent	KSI	Number
P380-1	154	137	7	8.6		331
P381-1	151.6	134	7	10		331
P382-1	152	135	7	14.5		33 i
P398-1	150.4	134	7	11.5		321
P399-1	140.4	123	7 7 6 5 6	12.9		302
P401-1	150	130	6	12.9		311
P403-1	150	133	Š	10.5		321
P404-1	148	132	6	14.5		311.3
P405~1	154.8	137	8	12,2		327.6
P408-1	150	134	7.	13.5		327.6
P411-1	147.2	129	4	10.5		324.4
P412-1	150	132	6	15.1		331
P413-1	139.6	120	8	16.7		314.3
P414 1	150	132	8	16.7		317.6
P418-1	146.8	128	8	16.7		321
P419 1	153.6	135	6	13.5		337.6
P420 1	142	122	8	21.7		321
P421-1	141.6	122	8	14.2		311
P422-1	152	133	9	18.1		324.3
P423-1	146	130	و	17.5		308
P511-1	146	131	8	12.9		311
P512-1	152	134	7	13.5		324.3
P524	153.2	137	7	13.5		331
P525	144.4	128	, 7 8	18.1		
P526	153.6	135	7	13.5		331
P528	147.2	131	7 8	11.5		311.3
P529	149.2	132	8	15.1		324.3
P530	147.2	130	8	11.2		324
P531	148.2	130	7	12,2		317.6
P532	147.2	129	7 9 7 7	19.4		327.3
P534	150	132	7	18.9		331
P535	146.4	128	7	17.5		331
P536	152	132	8	10.6		
P538	152.8	133	9 7 6	15.1		~~~
P539	150	132	7	18.1		321
P540	147.2	130	6	11.5		314.4
P541-1	148.4	132	8	13.4		321
P542-1	146.8	130	7	18.1		305
P543-1	150	133	6	12.7		327.3
P546-1	143.6	126	5 7 8	12,2		306.5
P548-1	150	134	7	13.4		316
P549	165.2	145		13.5		311
P551	145.6	128	?	14.5		316
P552	146.2	130	8	15.9		331
P554	146.2	129	8	14.5		316
P555	148	129	10	43.7		302
P557	148.8	131	31	21.7		302
P558-1	148	129	8	17.5		292
P559	149.2	131	9	17.8		363
8562	155.2	136	9	17.5		311
P560 F501	154	134	13	22.4		331
1 501	144.0	125	11	16.7		ر 20

MECHANICAL PROPERTIES OF AS-CAST TI-6AI-4V

Heat Number	Ultimate Tensile Strength KSI	Yield Strength KSi (,2%)	Elongation in 40 Per Cent	Reduction In Area Per Cent	Notch Tensile Strength KSI	Brinell Hardness Number
P564	166. 0	120	0	16.4		
-	144.8 152.4	130 136	9 6			
P566-1			8	10.5		
P568-1 P575-1	143.6	128 134	0	17.0		
P570	150 143.2	126	/	15.9 16.4		
P571	146.8	129	, 6	15.9		
P572	143.6	126	7 ? 8 8 6 5	14.2		
P573	146.4	120 130	0 4	16.4		
P574	145.2	130	e e	12.2		
P5/6	147.2	131	2	11.2		
P577-1	142.8	122	13	27		302
P578 1	148.8	128	9	19.4		311
P580-1	146.4	128	11	21		311
P581-1	144	124	10	20.4		302
P582-1	135.6	118	10	18.1		302
P584-1	146.8	124	10	19.7		302
P585-1	158	138		19.7		
P586~1	146	128	9 8	15.8		331
P586-1	148.8	130	0	10		302
P586-1A	146.4	128	9 9 9	18.1		302
P586-2A	146.8	128	9	20.5		302 303
P587-1	158.8	137	7	13.5		293
P588-1	152	132	ý	16.7		321
P589-1	152,4	129	9	15.9		311
P590-1	160	138	10	21		•
P591-1	154.8	134	8	15.1		
P592-1	168.8	146	5	10.5		
P593-1	154.8	134	ıí	20.8		
P595-1	156.4	136	้ช่	15.9		
P598-1	162.4	140	8	15.1		
P599~1	156	136	10	15.9		
P604-1	150	130	8	16.7		211
P608-3	151.2	132	ğ	13.5		311
P609-1	152.8	136	9	18.1		331
P610-1	144.8	123	ý	18.1		
P611-1	150.4	130	9	21		
P612-1	150.8	132	11	24.8		
P613-1	149.2	128	9	17.5		
P614-1	151.2	128	9	18.3		
P617-1	148.8	130	11	24 K		
rólo-i	146	128	ii	23.7		
P619-1	142.2	120	ii	24.6		
PG20-1	141.8	120	ii	23.7		
P621-3	151,2	129	io	20.6		
P622-3	147.2	123	13	26.1		
P623-3	147.8	125	ií	21.7		
P624-3	154.8	132	9	17.5		
PG25-3	150	129	12	27.2		

TABLE J18

ELEVATED TEMPERATURE PROPERTIES OF AS-CAST TI-6A:-4V

MODULUS CF ELASTICITY, PSI x 10-6	16.5	16.9	16.0	16.9	14.8	16.9	15.7	15.7	14.3	13.7	13.53	15.6	12.8	12.0	13.0	12.0
REDUCTION, OF AREA, PER CENT	<u>က</u>	23	13	15	82	24	01	16	24	27	23	23	र्ड	[C	8	*
ELONGATION, PER CENT	ω		20	2	12	12	٥	2		12	-	_		12	13	11
YIELD STRENGTH, KSI (.2%)	127.8	129.6	126.3	126.6	88.5	9.06	90.5	91.9	75.7	73.5	72.9	74.2	65.3	64.0	0.99	65.3
ULTIMATE TENSILE STRENGTH, KSI	140.5	141.0	141.5	141.2	107.2	107.8	107.2	107.4	94.3	92.7	90.6	92.0	84.8	85.8	82.9	82.4
TEST TEMPERATURE, °F	70	ደ	20	70	400	400	400	400	009	009	009	009	800	800	800	800
HEAT O	467	467	469	460	46,7	467	460	469	467	467	469	469	467	467	469	469

NOTE: The first two tests at each temperature were from heat 467.

TABLE J19

MECHANICAL PROPERTIES OF HEAT TREATED CAST TI-6AI-4V

		Yiela Strength	Ullimate Tensile	Llongation	Reduction	Notch	8rinel]
Hoat No.	Rest Treatment	K51 (, £4)	Strength KSI	In 40 Per Cent	in Area	Tens lle KS1	Hardness Number
P)	As Cast	145.1	124.1				- MUMBE!
6	1900F-1/2HR-WQ	149.1	1 64,1	ö	19.0		
	+1750-1/2HK-WQ+1000F-4HR-AC	168.1	156.7	3	5.0		
P10	1900F-1/28R-NQ						
11	+1750F-1/20R-MQ " " " " " " " " " " " " " " " " " " "	174.1	164,6	2	5.0		
**	1/50F-1/2HH-WQ " " " " As Cast	173.2 156.8	161.7	4	1.0		
		130.0	140.6	1	19.0		
PII	As Cast	146.8	127,2	to	14.0		
••	1900F-1/288-WQ+1/50F-1/288-W						
	+1750-1/2HK-WQ+1000F-4HK-AC 1750F-1/2HR-WQ+1000F-4HR-AC	164.6	151,4	i,	9.0		
	17.501-17.0007-10007-10C(1	162.7	150.6	26	6.0		
P41	" ZHR " " BHR "	179.1	174.3	a	0.6		
**	" 16HR " " 24HR "	176.9	175.9	ō	0.9		
**	As Cast	151.9	145.7	8	17.0		
	1650F-2HR-WQ+1000F-24HR-AC	177.3	171.3	ì	14.14		
••	" 16ня " " жиз "	182.9	173.6	1 .	3.7		
142	As Cast	146.1	132.8	13	2.0		
"	1750F- 2HK-WU+1000F- 24HK-AC	171.5	161.7	3	7.6		
	" 16нк " " инк "	172.0	161.9	3	6.7		
	1650F-2HR 11 11 11 11	168.3	158,6	2	8.7		
	" 16HR " " 24HR " 1500F-2HR-FCE COUL to 1000F-2	166.4	159.5	2	4.2		
		ic 144.2	135.8	7	13.6		
£41	The state of the s	154.7	152.3	7	0.11		
	16001-2HR-WQ+ 900F-2HR-AC	1/4.0	163.4	3	3.6		
863 11	II	171		0	1.0		
	" " " " 8/IR "	178.5		Ð	1,4		
P43	As Cast	153.1	142	8.5	6.0		
"	1600F-2HK-WQ+1DUDF-2HR-AC	168	***	2.2	4.0		
P57	As Cast	144	128.8	10	19.0		
	1600F-2HR-WQ+1000F-4HR-AC	159.7		4	5.7		
11	" " " " ZHK "	12/.0	149.4	3	8.1		
971	As List	151.9	138.3	ĸ	12		
••	igouf-2nr-140+1100F-4nr-al	149.4	143.7	ž	1.8		
P42	1500F-2HR-VQ+ 900F-2HR **	163.6	149.1	3	5.5		
P40	1550F-2HK-WQ+ 9007-5HK-AC	174.7	162.0				
41	" " 1000F-2HR "	168.)	162.5	3	6.7		
Y51	" " " " 4HK "	157.9	149.4	5	3.9 8.0		
P71	* 41 " floof-znk "	165.6	164.8	5	9.5		
"	" " " " " 'ARK "	164.5	161.2	š	2.0		
47	A. F						
*/	As Cast Liver-Bur-Ac	144	154.7	12	20		338
ţ.i	1550E-ZIN Westidd him "	150 150	158.0 162.8	6.0	13.5	206.B	331
	13001 -688-AC+15501 288-MQ	. , .	101.0	6	12.9		341
	e loud - link- he	140	140.0	i	ć.3		4- 4
48	As Casi	142	154.3	12.5	le.)		16.1 332
"	HODE - GHR-AC	140	154.0	9	₹€.4	217.6	321
"	15501 - 20x-ing+10007 - inn - 11	151	160	3	, .6	233,2	341
	HOUF-BIR-ACETSSOF ZIR WO HOOG-BIR AC		4				
	TIV DI CHIR AC	152	, fc4.8	ų	10.6	216.A	352

MECHANICAL PROPERTIES OF HEAT TREATED CAST Ti-6AI-4V

Hnat No.	Heat Treatmont	Yield Strength KSI (.ZL)	Ultimate Tensile Strength KSI	Elongation In 40 Per Cent	Reduction In Arca Per Lent	Notch Tensile KS1	Brinell Hardness Number
45	As Cast	131	145	11		::"	
**	1100F-8HR-AC	137	152	9	42.0	100	
n	1550F-2HR-WQ			9	25.9	223	
u	+1000F-4HR-AC 1100F-8HR-AC+1550F-7HR-WQ	143	156	6	12.2	220	
	+1000F-4HR-AC	145	158	6	11.5	226	
47	As Cast	144	155	12	20		
41	1100F-8HK-AC	150	158	6	13.5	207	
4	1550F-2HR-WQ						
ŧı	+1000F-4HR-AC 1100F-8HR-AC+1550F-2HR-WQ	150	163	6	12.9		
	+1000F-4HR-AC	148	149	1	6.3		
48	As Cast	142	154	12	18		
l r	1100F-8HR-AC	140	154	و و	16.4	218	
41	1550F-2HR-WQ			•	10,4	2.0	
	+1000F-448-AC	151	160	3	7.6	233	
11	1100F-8HR-AC+1550F-2HR-WQ			•	,,,	-27	
	+1000F-4HR-AC	152	165	4 .	10.6	227	
50	As Cast	135	150	12	18.0	/	
11	1100F-8HK-AC	132	147	7	18.9	216.8	
ıi.	1550F-2HR-WQ +1000F-4HR-AC	137	152				
11	1100F-8HR-AC+1550F-2HR-WQ		•	5	12.6	218.0	
70	+1000F-4HR-AC	140	155	5	9.2	217.6	
70	As Cast	136	149	15	23		
u .	1100F-8HR-AC 1550F-2HR-WQ	138	. 153	10	24.6	228	
**	+1000F-4HR-AC 1100F-8HR-AC+1550F-2HR-WQ	154	168	4	i1.5	252	
	+1000F-4HR-AC	158	172	3	8.6	228	
50	As Cast	135	150	12	18		324
u	1100F-8HR-AC	132	146.8	7	18.9	216.8	311
14 11	1550F-2HR-MQ+1000F-4HR-AC 1100F-8HR-AC+1550F-2HR-MQ			·		218.0	341
	+1000F-4HR-AC					217.6	341
70	As Cast	136	146.9	15	23	•	337
**	1100F Wir Ac	138	153.2	10	74.6	228	321
11	1550F- 2HR-WQ+1000F-4HR-AC 1100F-8HR-AC+1550F-2HR-WQ	154	168	4	.5	321,6	341
	+1000F-4HR-AC	158	172	3	8.6	228	352
115	As Cast	132	143	8	13.2	211	33-
11	1150F-2HA-AL	136	142	9	13,6	212	
191	As Cast	125	134	ช์	8.8	203	
	1150F-4HK-AC	127	133	9	20.3	205	
194	As Cast	126	136	6	13.8	201	
	1100F-ZHK-AC	127	137	8	14.1	195	
201	As Cast	124	135	7	10.2	203	
**	DEMELLORS of	126	130	7	10	196	
20t.	As Lust	173	154	7	13.5	201	
	16tiOf-4rln ni	173	i 3 5	ï	15.1	ž06	
209	As tast	129	13/	,	16, 1	264	
	Harde-Zuis-au	131	161	7	70 7	218	
312	As Let	iii	i!	;	lu i	210	
	12601- žina ni.	13:	1-yl	9	4.1		
Biet.	PS Cast	1 5%	144	ಕ	11.7	2 19	
	1705F=9100 73	136	103		6.3	201	
307	As unit	135	1:ea	t.	13.7	.10	
	Forter zon	155	1.	:	77		

TABLE J19 (Continued)

MECHANICAL PROPERTIES OF HEAT TREATED CAST TI-6AI-4V

Heat No	Neat Treatment	Yleld Strength KS1 (,2%)	Oltimate Tensile Strength KSI	flongation in 40 Per Cent	Ruduction in Arua Pur Cent	Notch Tensile KSI	Brinell Hardness Number
308	As Cust	134	144	7	9.8	211	
11	1150F-4nik-AC	Liú	145	8	12.1	217	
309	As Last	134	145	6	6.5	205	
"	1150F-8HR-AC	135	145	8	12,1	414	
P211-1	As Cast	142	124	9	15.1		305
11	1550F-20R-WQ+1000F-40R AU	136	146.8	6	11.2		321
	" " " 11001 - 2HR "	136	145.6	5	10.5		321
	9 H 9 13001-208 60	134	144.0	7	9.7		321
	" " " 10001-4HK AC	135	146.0	7	12,9		321
P245	16001 - 28K-WQ+10001 - 28K-AC	119	138.2	7	17.5		302
:1	at the second data of	119	138.2	6	14.5		302
**	" " " 1100F-2BR "	117	132.2	5 7	10.5		321
11	488 ··	116	133.2	7	14.2		311
11	" THK " 10001-20K "	120	isč.u	5	10,0		302
11	n no n lang n	119	135.6	3	8.t.		302
**	" " 1100F-2HR "	116	130.8	4	13.5		311
11	a u o o sagero	116	131.6	6	10,5		293
350	1550F-2HK-WQ+1000F-2HK-AC	134	144.8	4	11.2		321
41	a in a topic of	135	144.0	3	5.2		331
	" " " 11601-2BK "	134	143.2	4	10,0		311
11	in the street will be settled to	132	141.6	5	18.1		321
45	As East	131	195.1	11.0	22.0		334
11	l luofBir- Al	137	151.6	9.0	25.9	222.8	293
	1550F-20K MQ+1000F-46K **					220.0	331
H	1100F 8HR-AC+1550F-2HR-M +1000F-4HR-AC	ı				226.4	341

TABLE JED

MECHANICAL PROPERTIES OF AS CAST EXPERIMENTAL ALLOYS

Alloy No.	Alloy Type	Heat No.	Yield Strength, KSI	Ultimate Strength, KSI	Elong. In 4D, Per Cent	Reduction In Area, Per Cent	Tensile, KSI	årinell Hardness Number	Carbon, Per Cent	Oxygen, Per Cent	Nit-ogen, Per Cent
5	11 6AI-4V	P51-2	137.15	152.8	12.5	18.5			,084	.181	.028
5	TI 6AI-4V	P54-2	143.2	152.9	9.5	14 0			.080	.200	.031
5	TI 6AI-4V	F73-3	143.2	155.4	12.0	18.0			.094	, 19	.036
6	TISAH2 V2Sn	P26-28	127.15	136.7	9.0	16.0			.067	.230	.014
			129.0	136.7	11.0	20.0					
6	TISAL2 1/25n	D24-20	128.2	137.4	11.0	20,0					
0	11 JAPS 17 23H	PZG-ZC A					205.65				
		8					206.5				
		č					207.3				
6	Tt5AH2 !/2Sn						207.3		.070	. 256	.015
•	/10/01 1/ 25/1	A	132,1	139.5	11.0	22.0			.070	. 230	.013
		B	132,25	139.6	11.5	22.0					
		č	133.0	139.8	11.0	22.0					
6	T15AH2 1/2Sn										
-	• • • • • • • • • • • • • • • • • • • •	A					203.3				
		В					196.45				
		č					204.2				
9	TI 6AI-4V	P47-2	143.5	154.7	12.0	20.0			.087	.240	.027
9	TI 6A!~4V	P50-2	134.95	150.0	12.0	18.0			.054	.158	.022
10	TI 13V-11Cr	P62-2A	120.5	122.4	16.0	27.0			.028	.146	.027
		В	120.75	123.8	16.0	25.0					
		C	121.0	123.9	16.0	26.O					
10	Ti13V-11Cr	P62-3A					174.9				
		В					182.9				
		С					192.1				
10	TI13V-11Cr	P66-2A	124.6	125.5	9.5	16.0			,023	. 19	.028
		8	124.5	123.5	6.5	13.0					
	w.1 m 4 11 m	C	124.6	125.1	6.0	9.0					
10	1113V-11Cr	P66-3					174.7				
							180.7				
11	mine ile.	068 14	105.0	10/ 76	12.6	22.0	178.5		000	150	***
**	1113V-11Cr- 1 1/2Ai	P55-1A B	125.9 125.25	126,75 126,5	13.5 18.5	23.0 24.0			.028	.153	.022
	1 1/ 4/4	Č	125.25	126.3	15.0	23.0					
11	1113V-11Cr-	P55-2A	123.23	120.1	13.0	23.0	107.2				
••	1/2Al	B					187.3 184.8				
	17 474	č					174.7				
11] 3V- Cr-	P61-1A	126.4	127,8	10.5	17.0	1/4.7		.032	. 1575	027
• •	I 1/2AI	8	128.4	129.6	12.5	21.0			.032	. 1.30	0.77
		č	127.7	131.0	12.0	18.0					
11	TI13V-11Cr-	P61-2A					163.1				
	1 1/2AI	В					175.5				
		Ċ					179,0				
13	TI13V-I1Cr-	435	120	130.8	7.0	11.5	179.2	277	.051	.12	.022
	1 1/2AL		119	129.6	70	9.7				··•	
12	1113V-11Cr-	P3G-7A	123.9	124.5	11.5	22.0			.020	.1438	.017
		8	121.95	124.7	9.5	22.0			-		
		C	121.0u	128.4	10.0	23.0					

TABLE J20 (Continued)

Alloy No.	Alloy Type	Heat No.	Yleid Strength, KSI	Ultimate Strength, KSI	Elong. In 4D, Per Cent	Reduction in Areo; Per Cent	Notch Tensile, KSI	Brineii Hardness	Carbon, Per Cent	Oxygen, Per Cent	Nitroger Per Cen
12	Ti13V-11Cr- 2 1/2Al	P38-2B					191.1 176.8 180.65				
12		P44-2A	128,55	130.7	10.5	20.0	100.00		.030	.143	.020
••		В	129.45	133.1	8.5	18.0			****		
		č	129.8	131.4	3.5	9.0					
12		P44-3A					165.6				
		B					170.2				
		Ċ					162.25				
13	T113V-11Cr-	P46-2A	131.4	133.1	9.0	21.0			.019	.143	.018
	4Aİ	В	134.65	136.15	9.0	21.0					
		C	133.6	135.8	8.5	18.0					
13		P46-3A					177.6				
		8					178.1				
		C					169.3				
13		P52-1A	133.3	133.1	9.0	21.0			.024	. 153	.018
		8	135.2	136.15	9.0	21.0					
		C	134.3	135.8	8.5	18.0					
13		P52-2A					185.7				
		В					174.3				
		С				_	173.7				
14	8V-5Fe	P139-2A	None	182.4	Ú	0	102.8	438	.022	.101	
		В	None	180.0	0	0	104.0				
		C	None	186.0	0	0	126.0				
15	8V-5Fe-1Ai	P140-2A	169.0	174.0	4	11.9	203.0	363	.030	.096	.014
		8	169.0	174.0	4	10.0	206.8				
15	8V-5Fe-IAI	358 C	162.0	171.6	5	16.4	170.0	255 2	000	•••	01.5
13	OA-SLE-IMI	336	150 150	178.8 180.0	2 2	4.0	178.4	355.2	,028	.11	.015
			150	180.0	2	5.3 5.0	178.0				•
		140	167	174.0	4	13.0	193.0		.030	.096	.014
		521		181.0	2.0	4.9	174.0		.017	.060	.011
16	5 1/2AI-31/2V		125.4	142.0	10.5	15.0	210.0	311	.019	.10	.010
	0.45Fe-25n-	B	126.7	142.4	10.0	16.0	206.8	311	.017	.10	.010
	0.25Cu	ć	125,9	142.0	0.01	15.0	200.0				
		P65-3A					217.5				
		В					216.0				
		c					215.i				
17		P151-2A	96.0	106.0	12	31.9	172.8	262	.024	.11	.0061
	-	В	96.0	106.2	10	36.5	173.2				,
		C	98.0	108.2	12	29.2	172.0				
19	T17A1-3M0	P64-2	112.3	128.4	8.0	18.0			.020	.131	.0083
			118.0	130.7	5.0	12.0					•
			113.05	128.4	7.0	16.0					
19		P64-3					190.7				
							189.7				
							186.95				
19		P68-2	117.0	132.55	5.0	15.0			.024	.10	.010
			115.8	129.95	3.0	7.0					
			112.1	127.3	7.0	15.0					

Alloy No.	Alloy Type	Heat No.	Yield Strength, KSI	Ultimate Strength, KSI	tlong. In 4D, Per Cent	Reduction in Area, Per Cent	Notch Tensile, KSI	Brinell Hardness Number	Carbon, Per Cent	Oxygen, Per Cent	Mitrogen, Per Cent
		<u> </u>	L KJI	K 21	1,21,440	, rer Cent	1	1, commen		i	<u></u>
20		P!50 2A	128.0	136.0	iù	25.7	iste it	277	Acn	.13	.018
20			128.2	137.2	10	25./ 24.6	190.0 204.2	277	.036	3	.010
		8 C	128.0	136.0	11	2/.2	190.0				
21			104.0	124.2	9			277	no.	.11	0.774
41		PI 52-1A B	105.0	124.2	9	26.5 18.1	196.Ú 194.0	277	.036	. 1 1	.0076
		č	106.7	127.6	10	25.2	190.0				
24	7A1-4Mo	P148-2A	112.0	132.0	5	15.1	194.0	305	.022	.072	.0046
47	VUI AINO	B	112.0	130.0	5	12.2	193.2	303	.022	.072	.0046
		č	110.0	126.0	7	12.9	195.6				
25		P165-1A	90.0	114.0	10	18.9	172.0	250	.029	.089	.0069
••		B	91.0	114.0	11	23.9	173.6	1.50	.027	.007	.0007
		Č	90.0	114.0	12	25.2	176.0				
2ó		P166-1A	107.0	121.0	9	25.2	190.0	287.6	.022	.11	.0067
		B	107.0	119.6	ý	26.5	186.0	207.0	.444	•••	1000
		č	106.6	120.8	10	26.5	190.8				
27	4A1-3Mo-1V	P147-2A	91.0	110.0	15	37.0	172.0	254	.032	.086	.0066
	20100 17	B	92.0	110.2	15	36.0	173.2	4.54	.002		.0050
		č	94.0	111.6	9	2ó.5	172.4				
28		P180-1A	134.0	140.8	i	5.3	220.8	321	.0035	.10	.012
		В	128.0	144.0	4	4.5	206.8	•••			
		č	130.0	149.6	5	4.5	212.8				
29	6 1/2AI-	P1 49-2A	136.0	154.8	8	14.0	216.4	331	.073	.020	.018
-	3 1/2Mo-1V	8	132.0	152.0	12	21.5	224.0	•••		*****	••••
		Č	135.0	154.2	10	20.4	214.4				
		359	112	150.0	9	16.7	219.2	321	.062	. 19	.018
			110	148.8	6	10.6					
30		P189-1A	88.0	96.0	4	17.8	160.0	223	.044	.07]	.0053
		8	91.0	98.0	11	45.5	157.2		-	•	
	_	С	90.0	97.2	10	37.7	158.0				
31		P190-1A	90.0	96.4	10	40.7	168.0	241	.024	.08	.0038
		В	92.0	96.4	13	34.4	166.0				
		C	90.0	98.0	12	42.0	172.0				
33		P! 46-2A	115.0	128.8	3	9.2	122.8	293	.032	.081	.018
		В	115.0	134.0	5	11.5	167.2				
		С	115.0	135.2	6	18.6	177.6				
33		P181-1A	149.0	165.2	ı	0.6	170.6	345	.027	. : 15	.0041
		В	145.0	158.2	Ī	0.6	168.0				
		C	146.0	161.2	?	1.6	172 0				
34			:32,0	4.40.4	•		104.7	317.0	.UZÞ	.084	.005
		9	129.0	148.0	2	3.8	173.2				
		C	134.0	141.2	2	1.6	180.4		2		
35		P205-3A	None	106,2	ı	0	125.6	331	.033	,084	.0085
		8	None	108.2	1	0	154.8				
04			None	118.0	1	9	122.0				
36		P204-2A	Too ductile	82.8	18	34.3	122.0	190	.Ú36	.085	.0083
		8	to gram corr		16	33.7	124.0				
		¢		83.2	17	35.8	122.0				

TABLE J20 (Continued)

Alloy No.	Alloy Type	Heat No.	Yield Strength, KSI	Ultimate Strength, KSI	Elong. In 4D, Per Cent	Reduction In Area, Per Cent	Notch Tensile, KSI	Brinell Hordness Number	Carbon, Per Cent	Oxygan, Per Cent	Nitrogen Per Cent
37		P203 2A	None	136.8	1	1.6	122.8	375	.029	.105	.0070
		8	None	138.2	1	.7	100.8				
		C	None	136.0	0	2.4	116.4				
38		P193-1A	Too ductile	96.4	15	27.2	148.0				
		В		92.0	18	27.2	148 0				
		Ç		95.6	10	19.7	140.0				
39	5M0-6V-2NI	P164-1A	138.0	154.0	\$	13.5	204.8	314.3	.021	.095	.011
		8	137.0	152.0	4	11.0	204.0				
		C	140.0	156.2	4	10.6	204.8				
		409	140	156.0	8	13.5	217.6	314	.027	.108	.0092
40		2002 14	140	156.0	7	14.5					0000
40		P233-1A	146.0	160.0	7	13.4	226.0	331	.026	.064	.0095
		B	146.0	160.0	7	10.5	232.0				
	00	C	145,0	159.2	5	10.6	228.0	174	000	10	
4 1	2Cu	P202-2A	62.0	79.6	25	38.3	112.0	176	.038	.10	.032
		B	62.0	80.0	24	36.5	114.0				
		C C	61.0	79.6	25	39.3	114.0				
		P202	62.0	80.0	25	38.0	114.0				
		P523	85.0	106.0	15	25.9	156.0				
		P523	88.0	104.0	16	22.4		235	.033	.20	.035
		P523	89.0	106.0	15	24.6	•	248			
		P523	88.0	106.0	15	23.9		241			
		P579	100.0	117.0	14	18.9	173.0	255	.045	.27	.047
		F579	100.0	118.0	13	19.7	174	255			
		P579	100.0	117	13	18.1		262			
		P579	102.0	118.0	13	17.5		262			
		P579	98.0	115.0	6.0	9.2		269			
		P579	102.0	118.0	13	22.4		248			
42		P223-1A	111.0	123.6	8	15.8	182.4	283	.025	.08	.0041
		8	110.0	122.2	9	18.9	182.8				
		C	111.0	122.4	9	15.8	182.8	_			
43		P267-1A	103.0	123.8	9	2/.2		272	.024	.066	.0072
		B	103.0	122.8	10	21.7					
	241 2 5 /24	C	102.0	122.2	12	34.4					
14	3AI-2 1/2V	P144-1A	94.0	8.601	11	28.5	168.4	253	.028	.12	.019
		8	94.0	108.0	li	29.8					
		Ç	94.0	108.0	12	29.9		900		*	
45		P222-1A	112.0	124.4	13	30.5	194.4	288	.414	.ŪU/	.0047
		В	113.0	125.6	14	27.2	192.0				
		3	114.0	126.4	16	25 9	196.8				
66		P182-2A	ωi.0	92.0	14	25.2	12/.2	201	.021	.12	.012
		8	68.0	90.4	13	24.0	132.0				
47		C	63.0	91.6	13	23.0	133.2	***			
•/		F226-1A	122.0	136.8	11	27.9	206.0	290	.030	.079	.012
		8	122.0	136.8	12	24.6	206.0				
40		O	121.0	136.0	13	27.9	208.6				
48		P183-2A	137.0	156.0	4	4.9	186.4		.018	.16	-013
		8	136.0	154.0	4	6.1	180.0				
		C	136.0	154.4	3	6.3	178.0				

TABLE J20 (Continued)

Alloy No.	Alloy Typs	Heat	Yield	Ultimate	Elong.	Reduction	Notch	Brinell			
No.						1		prineii		1	!
L	1,750	No.	Strength,	Strength,		in Area,		Hardness	Carbon,	Oxygen,	Mitrogen,
49		170.	KSI	KSI	Per Cent	Per Cent	KSI	Number	Per Cent	Per Cont	Per Cent
		1234-1A	111.0	132.0	10	22 F	204.0	00/			
		B	115.0	132.0	8	32.5	206.0	296	.019	.073	.024
		č	111.0	130.0		21.0	204.0				
50		P230-1A	122.0	142.6	9 4	29.0	204.4				
		В	123.0			5.3	196.2	305	.012	.19	.0054
		Č	123.0	143.2 144.0	11	18.9	186.0				
51		P236-1A	None	102.8	10	18.1	190 0				
		8	None		0	0	90.0	331	.022	.15	.0054
		ċ	None	100.0	0	0	76.0				
52		Ç	Note	106.4 Ja	O Ion hai	0	88.0				
53	6AI~4V-	P267-1A	114.0	133.6	loobri 8		44.0				
•	0.155	В	112.0	133.0	_	17.5	44.8	280	036	.ì2	.0078
		Č	112.0	132.0	!0 12	21.0	49.2				
54	6A!~4v=	Payu-iA	112.0	131.0 76,0		33 0	54.4				
	0.55	12.5-1A	None	80.0	0	U	62.0	ZÔ.2	.028		.0077
		Č	None	90.4	-	0	63.2				
55	6AI-4V-	P297-1A	104.0	124.0	0 9	0	78.0				
•	0.5W	B	104.0	124.0	10	25.7		277	.025	.078	.0067
		č	104.0			25.2					
		313	104.0	124.0	12	41.4					
		V. 3					200	243	.031	.12	.015
							197.6				
56	6AI-4V-	348	104.0	124.0		20.0	203.2				
	0.5Ta		104.0	124.0	11	38.9	192.0	282.3	.024	.19	.0090
			106.0	128.0	11	24.9	190.0				
57	3A1-7Mo-	P298-1A	114.0	124.0	11	33.6	196.0				
	0.25Be	1270-17	113.0	134.0	6	10.6	192.0	285	.016	. 106	.0047
		ċ	112.0	134.0 133.2	8	12.2	189.6				
59	4AI-4Sn-	P299-1A	112.0	133.2	7	10.6	192.0				
	8Zr	B	108.0	123.0	10	23		262	.017	. 10	. 0045
		Č	110.0		10	23.7					
		331		124.C	10	24.4					
							202.0	293	.034	.11	.020
							204 8				
60	4AI-4Sn-8Zr-	P300-1A	132.0	151,6		A1 5	205.6				
	lFe-1Cr-IV	В	132.0	152,0	9. 10	21.5	223.2	321	.014	.14 -	.0054
		Ç	136.0	152.0		22.4	218.8				
		P489	151.0	170.0	10	19.7	223.2				
		P489	156.0	170.0	7	10.5			.048	. 29	.063
		P489	156.0	156.0	0	70		352			
		>489	156.0	1.77.0	-	0	161.0	352			
6ì	7Al 2Mo-3Ci-		156.0	168.2	4	5.3) no c	352			
	35n-2Zr-	8	156.0	172.8	2		130.0	371	.014	.12	.064
	0 06N	Č	154.0	164 0			133.2				
62	7AI-2Mo-3Cr-		151.0	161.2	1		137.2				
	3\$n-271		154.0	174.0	3		160.8	359.6	.0030	.12	.0082
			153.0	174.0	J I		156.2				
63	7AI-2Mo-	350	155.0	172.0]		86.8				
	0.5W-0.5Ta-		155.0	162.4	i		128.0	363	.022	.ii	.00/3
	3Cr-3Sn-2Zr		156.0	170.8	1		28.0				
	4311 221		0.0	170.0	•	4.0	159 N				

TABLE J20 (Continued)

·		·····					,				
Alloy	Alloy	Heat	Aneig	Ultimate	Elony.	Keduction		Brineli	Codon,	Oxygen,	Nitrogen,
No.	Туре	No.	Strongth,	Strength,	In 4D,	In Area,	Tensile,	Hardness	Per Cent	Per Cent	Per Cent
	.,,		KSI	KSI	Per Cent	Per Cent	KSI	Number			
64	4A1-4Sn-8Zr-	D202 A	124.0	141.2	11	00.4	212.2	000	010	10	040
04	0.07N	F302-A B	124.0	142.0	10	22.4	213.2	290	.010	. 12	.068
	0.0/14	Č	125.0	142.8	10	21.5	214.0				
65	4AI-2Mo-2Cr-		123.0	183.2	3	23.0 C	214.4 150.8	405.2	.018	.15	.0099
03	2V-2Fe-4\$n-	331						4U5.2	.018	.13	, UJYY
	8Zr			137.6	ì	0	131.6				
	2Al-5Fe-2Sn-	26.2	101	190.8	0	0	130.0		-	10	
66		332	131	149.0	2	3.0	154.8	285.1	.023	. 18	.015
	8V-5Zr		131	140.0	22	0.7	116.0			-	
40	041 04 FF	071	130	130,0	2	1,6	118.0				
68	2AI~8Y~5Fe	354	140	154.4	7	11.9	183.6	311	.026	.11	.014
			142	153.2	4	8.6	186.8				
	*** ***		143	153.6	4	10.6	148.0				
69	6AI-4V-	434	129	147.6	9	15.1	204	317	.038	.12	.0063
	ICr-IMo	434	126	144.8	7	18.6					
		434	128	145.0	8	17.0	204				
		None-A	130	152.0	7	15.1		321			
	(1) 04	B	130	152.0	6	9.2			4		
71	6AI-4V-	3 55	113	128.0	7	11.5	196.0	277	.048	.06	.028
	0.048C-0.06		111	127.2	6	12.2	190.4				
70	Ox-0.028N		114	128.0	6	12.9	190.8				
72	6AI-4V-	357	114	130.8	6	15.1	200.0	287.6	.028	.05	.045
	0.028C-0.050		115	133.2	/	15.1	196.8				
	Ox-0.045N		115	132.0	7	15.1	198.0				
73	6AI-4V-	356	122	136.8	8	15.1	200.4	290.3	.025	.06	.079
	0.025C-0.06		124	142.8	6	11.2	212.0				
	Ox-0.079N		121	138.8	8	16.4	206.0				
80	0.040-0.18	341	64	82.8	15	25.9			.040	. 18	.018
	Ox-0.018N		64	8C.2	15	23.0					
			63	81.8	13	34.4					
84	.036C-0.28 Ox-0.018N	431	48	90.8	13	21.7			.036	.28	.018
84	.053C-,26 Ox-,021N	432	76	96.0	13	28.5	213.0	213	.053	.26	.021
90	.03 0 ₂ , 15AI,		Not conta	իկա - Ոստ խո	nle						
96	• •	513	54	71,0	20	40.0	108		.025	.099	.016
97		514	69	84.0	20	38.7	122		.023	.077	.073
98		520	111	127.0	3	0.7	119		.053	.57	.073
99		519	117	121.0	i	1.6	90		.036	.63	.010
100		518	59	83.G	16	27.0	128		. 188	.13	
101		517	71	94.0	11	16.7	138		. 190	.13	.013 .059
107		516	• •	85.0	1	0.8	86		. 170 . 1 <u>8</u> 3	.67	.013
103		515		93.0	1	2.3	68		.185	.67 .61	
104		PI 42	135	157.0	8	17.6	30		.105	. i y 6	.076
105	4A1-45n-8Z1-		154	171.0	4	5.3	216	352	.060	.12	.035
•	1.5Fe-1.5Cr	P596	154	1/1.0	5	9.7	2.0	352 352	·ww	. 12	.038
	1.5V	P596	154	170 0	4	5.3		352 352			
106			132	148.0	10	22.4	219	352 321	.060	.11	.038
	.5Γα∼.5Cr− .5V	P597	132	149.0	ii	16.7	217	321	.000	.11	.036
		PSIO	144	150.0	4	<u>s 1</u>			.055	.129	150
		P511	131	146.0	8	12.9			.055	.151	.153
		P526	135	153.0	7	13.5			.055		110.
		P531	130	148.0	7	19.4				.21	.025
		P536	132	152.0	8	10.6			.050	.21	.020
		P541	132	148.0	8	13.4			.050	.22	.024
		P548	134	150.0	7	13.4			.057	.23	.031
		P554	1 2Ý	146.0	8	14.5			.047	.22	.055
		P559	131	149.0	9	14.3			.048	.23	.028
····				137.0	7	17.0			.026	.23	.052

Alloy No.	Alloy Type	Heat No.	Yield Strength, KSI	Ultimote Strength, KSI		Reduction In Area, Per Cent		bilnell Hardness Number	Carbon, Per Cent	Oxygen, Per Cent	Nitrogen, Per Cent
107	10C(~.1A)	606		140.0	0	0					
				16d.0	1	1.6					
				172.0	1	3.3					
108	8Zr-4Al-	607	130	152.4	11	21.0	208		.077	.030	.035
	4\$n-2 V		130	152.8	11	20.5					
110	10Zr-4A1-	626	118	135.2	11	27.9	201		.016	.11	.014
	45 n 2V		118	134.2	11	24.6					
111	8Zr-4AI-	627	117	140.0	12	22.4	198		.016	. 12	.014
	6\$n-2V		118	141.0	10	22.4					
112	8Zr-6Al-	628	120	145,0	12	21.4			.021	. 12	.013
	45n-2V		120	144.0	11	23.2					

TABLE J21

MECHANICAL PROPERTIES OF HEAT TREATED EXPERIMENTAL ALLOYS

	ny Alluy lype	Heat No.	Heat Greatment	Tield Stragth Sel (0,2 attsel)	ldaimate tensile Strength Jol	Flowgation in 40 Per Gret	Reduction In Area Per Cent	Notch Fencille Kal	Brinell Hardness Runber
6	5A1-255n	P.26 - 20	As-Cast	127,15					
-,				177.15	136. / 136. /	9,0 11,0	16.0 20.0		
		D 24 21	A	124.7	15/.4	11.0	70.0		
		70.70	- As-Last					101 (1	
		v						205,65 206.5	
		(, 1))) (,						207.3	
		1°35-21	Assumt	137,1	139.5	11.0	12. 6		
		В		137,75	139.5	11.0 11.5	77.0 77.9		
				133.0	139, a	11,0	11.0		
		1°33-28 A	As-((
		3						33 , ز20 روا , 196	
		L						204.2	
		P33 P76	15001 20K ACT TOOM - 60K AC	113.6	139.3	8.0	15.7		
		f 33	7000i	175,3 175,5	136.4 136.2	6,0 7,0	17.5		
					13,7	7.0	13.3		
lu	13V-11Cr	194 4							
	-0A1	141.5	As Cast 14001 - 208-14:19251 - 4:006-Ac	116.157 142,97	110,555	13.0	24.7		
			1 1900 - Millian St. N. N. Millian C.	174.0	150, 13 174, 09	4.0 12.0	5,6 20,7		
			1700f ZBR-WQ 1	152,91	161.54	6.0	3.2		
			0 0 0 0 1 0	177,55	147.53	17.0	33.7		
			0 0 49751-210C-AL	1 <i>ი. ქ</i> 126. ა	177.1 132.5	15.0 6.0	33.5		
		••	" " " lugor- " "	122,9	125.2	6.0	10.7 7.4		
			" " 9251 - gpk - "	137.4	145.0	5.0	6.1		
			" " 1050F + + + 925F-48HR-АС	122.4 141.29	131.0	11.0	13.0		
		Fu6	17001 - 2HR- WQ	130.6	151.35 131.0	11 û 8	11.1 :4.7		
		••	" " 9751-1HE-AC	130,9	132.0	6.0	6.7		
			" " 1050+ " " " " 925+-4HK-AC	126,1	129.7	4.0	5.7		
10	134-1161		1/30f- 2HR-WQ 1050F-4HR-AC	135.0 12 6. 7	147.6 135.3	4.0 7.0	4.9 6.5		
	-0A1	.,	" " 9256-16нк-АС	150.3	161.5	4.0	3.8		
		.,	10201	127.8	135.0	5.0	1.4		
11	13V-11cr								
	IJAI		As Last	125.9	126.75	13.5	23.0		
			As Cast As Cast	-25.25	126.5	18.5	24.0		
			As Cast	25.25	. 26, 1	15.0	23.0	167.3	
		8	As tist					184.8	
			As Cast					174.7	
		P61 - IA	As Cast	126.4 170.4	127,8 129,6	:0,5 i4.5	17.0 21.0		
		C	As Cast	127.7	131.0	12.0	10.0		
		P61-7A						163.1	
			As Cast As Cast					175.5	
		řرز۴	1 \CO1 - \Sub-wd	124.0	175.5	17.0	36, I	179.0	
		Fr.1	" "+925£~1nk-AC	133.6	135.7	5.0	11.0		
			16501	130.4	136,2	10.0	12.0		
		155	" " 925F-20R " " 1050F " "	176.8 175.3	131,6 176,5	11.0 6.0	la.9 13.3		
		ral	" 9zələnik	167.4	156.0	4.0	6.2		
		11	· · · · · · · · 1050) · ·	196.19	163.3	€.,6	10.3		
		Pr.C	" " " JASE-ARE " " Tusor " "	1,9,5 1619	140.4	11.0	12,5		
		Pol	979 1000	175.9	140 _. 6 133.6	9.0 5	13.a 6.a		
			1950 '' '	150.0	147,1	6	4.3		
				131,1	131.1	12	23.4		
		F 55	os 1 act. 1600i - 20 c. #14 3251 sa 200-2 c.	120°, 254 160°, 266	125 A. Te 100 J. S. in	14 3	20,9		
			•	125, 214	125,523	14	5.1 20.5		
			Most zos we jéjí a ms	179, 292	150,73	•	٠. u		
		. 5 .	en en en en en en en en en en en en en e	137	lzī, au ir Z ai i		30.3		
			7 10 10	14:0	107 413	•	f , i		

11 13V-11Cr P55		Alluy Type	Heat No.	Heat Treatment	Yleld Strength KS1 (0.2% Affset)	Ultinate Tensille Strength KST	Elongation In 48 Per Cent	Reduction In Area Per Cent	Notch Tensile KSI	Brinell Hardness Number
17,07	11				160	176	3	5.1		
		1 } A I								
1.0				1700F- " " 925! 488!R AC			4			
961							15			
1			P61	" "4925F. 18R-AC						
P55				" "1050 " "						
P61				77 71 - KIIII - 11G	129					
				10,01						
P55)2) (IIII-						
10				10,0						
P61										
				767 KMW						
P55				1070 107						
1100F-2RR-Ng-925F-17RR-NC 199 176 6 19.2										
1,000										
1700F 1700F 1700F 1818 163 160										
100 100										
150					143					
P55				7,701						
10				IQDA						
1				2.4010						
1			11							
#355 As Cast			"							
									179.2	277
1990 2018 1992 1918 1992 175 4 6.3 1992 174 4 5.2 1993 174 1992 175 174 1992 175 174 175										•••
1										
1				10.m						
1			11							
1500F 1500F 1500F 149 1606 5				11 11 16HR 11						
435 1506F-2ir-Mq-1950F-16HR-AC 156 174 4 6.3 6				2 7111	171					
1			"	1500F " 950F-õnk "	149	òoi	5	5.3		
			435		156	174	4	6.3		
1				Zunn-						
1600F - 2Hr - MQ+1050F - 2HR - AC				Jours Olly						
1600F-2Hr-MQ+1050F-2HR-AC				TOTAL						
10				£.1111	11.4.	163	*	5.4		
1600F			55		133	146.0	7	13.5		311
12 13V-11Cr P38 As Cast				3						
1700F 1 1000F- 8HR 1 1/3 159.6 8 12.9 341 1600F 1 1 1 1000F- 8HR 1 1/43 158.0 8 12.7 311 12 13V-11Cr P38 As Last 125,144 125.972 11 19.1 12 13V-11Cr P38 As Last 1290F-2H8-AC 1/2.3/1 1/4.433 1 0.0 1 1/00F 1 1/2 925F-48HR-AC 1/2.3/1 1/4.433 1 0.0 1 1/00F 1 1/2 925F-48HR-AC 1/2.3/1 1/4.433 1 0.0 1 1/00F 1 1/2 925F-48HR-AC 1/2.3/1 1/4.433 1 0.0 1 1/00F 1 1/2 925F-48HR-AC 1/2.3/1 1/2.3/1 1/2 25.0 1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/				-						
12 13V-11Cr P38 As Cast				7271 - 1 SIIN						
12 13V-11Cr P38 As Cast				1,000	• • •					
24A1 " 1400F-2H8-MQ+925F-4BHR-AC 1/2,3/1 174,433 1 0.0 " " " " 925F-4BHR-AC 180,922 194,4/5 2 2.7 " " " " " 925F-4BHR-AC 180,922 194,4/5 2 2.7 " " " " 925F-4BHR-AC 180,521 173,03/ 2 2.6 " " 7A As Cast 123,9 124.5 11.5 22.0 " " C As Cast 121,95 125.7 9.5 22.0 " " C As Cast 171,95 125.7 9.5 22.0 " " -28 As Cast 171,95 125.7 9.5 22.0 " " As Cast 171,85 130,7 10.0 23.0 " " As Cast 176,55 130,7 10.5 70.6 ### P44-2A As Cast 172,55 130,7 10.5 70.6 #### As Cast 172,8 131.4 3.5 9.0 ###################################	11 1	27 110-	n 1 u							
1706 1706	12 1									
127,108 127,310 12 25.0 11 925F-484R-AC 10h.r.51 173.037 2 2.6 11-7A As Cast 123.9 124.5 11.5 22.0 11 B As Cast 121.9 125.7 9.5 22.0 11 C As Cast 121.0 125.6 10.0 23.0 11-2B As Cast 171.0 125.6 10.0 23.0 11-2B As Cast 171.8 125.6 10.0 23.0 11-2B As Cast 171.8 125.6 10.0 23.0 11-2B As Cast 171.8 125.6 10.0 23.0 11-2B As Cast 171.8 125.6 10.0 23.0 11-2B As Cast 172.55 130.7 10.5 70.6 180.55 11-2B As Cast 172.55 131.4 3.5 9.0 11-2B As Cast 172.8 131.4 3.5 9.0 11-2B As Cast 172.8 131.4 3.5 9.0		-2								
" 925F-484R-AC 10h.r.51 173.037 2 2.6 "-7A As Cast 123.9 124.5 11.5 22.0 " B As Cast 121.95 124.7 9.5 22.0 " C As Cast 171.0 125.4 10.0 23.0 "-2B As Cast 171.0 125.4 10.0 23.0 "-2B As Cast 171.0 125.4 10.0 23.0 "-2B As Cast 174.0 125.4 10.0 23.0 "-4B As Cast 176.8 10.0 23.0 " As Cast 176.8 130.7 10.5 70.0 " As Cast 172.0 131.1 16.5 10.0 C As Cast 172.8 131.4 3.5 9.0 PM-3A As Cast 172.8 131.4 3.5 9.0 PM-3A As Cast 172.8 131.4 3.5 9.0			••		180,92.		2			
12.5						127,316	12			
B As Cast										
C As Cast										
## As Cast 191.1 1/6.8 191.1 1/6.8 196.55 196										
11 As Cast 1/6.8 11 As Cast 1/6.8 12.55 130.7 10.5 20.0 12.55 130.7 10.0 12.55 130.7 10.0 12.55 130.7 10.0 12.55 130.7 10.0 12.55 130.7 10.0 12.55 130.7 10.0 12.55 130.7 10.0 12.55 130.7 10.0 12.55 130.7 10.0 12.55 130.7 10.0 12.55 130.7 1					11.0	. 43."	10,0	23.0	191-1	
11 As Cast 160.55 P44-2A As Cast 172.55 130.7 10.5 70.6 if A. Last 720.00 131.1 is 5 lb.0 C As Cast 127.8 131.4 3.5 9.0 P44-3A As Cast 170.6 B As Cast 170.2										
PHA-2A As Cast 176.55 130.7 10.5 70.6 E As Cast -20.96 131.1 H.5 10.0 C As Cast 127.8 131.4 3.5 9.0 PHA-3A As Cast 165.6 B As Cast 170.2				As Cas'						
C As Cost (27.8 131.4 3.5 9.0 PH4-3A As Cost (65.6 8 As Cost										
PH4-3A As Cart 165,6 8 As Cast 170,2										
8 A ₂ Cast 170,2					127.8	151.4	3.5	9,0	14.5 /	
									162.25	

, WE I'! (Commed)

Allay Ai	l lay	He.) (Yleld Strength 851	Ultimate Tensile Strength	Llungacton In '0	Reduction In Area	Notch Tensile	Brine][Hardness
Ho, I	YC! O	₩о	Heat Trestment	(0.2% offset)	KS 1	Per Cent	Per Cent	K\$1	Number
		Plul	1700F-2HK-WX	133.7	133.7	18	25.6		
			" " 1925F-10R-AC	135.6	135.9	4	6,2		
		•	" " 1050£ " "	137.5	139.6	6	9.2		
		**	9251-448	128.3	142.6	7	10.6		
		**	" " " 1050E " "	135.6 176.1	139.8 189.0	9 1,	10.7 4.6		
		"	" " " 925E-1GHR-AC " " " 1050E " "	143.4	148.9	l ₄	6.5		
		F38	*1 10 11	125.7	126.7	12	29.6		
		ú	" " " 925F-2iFS-AC	141.4	144.0	ł,	2.8		
		u	" " 10501~ " "	142.2	150.2	9	14.0		
		u	" " " 975F~BHR~AC	165.5	176.5	6	9.5		
		11	" " 1050F~84R- "	140.6	156.7	3	10.5		
13 134-	-11Cr	P46~2A	As Cast	131.4	133.1	9.0	21.0		
-41	A i	R	AS Cast	134.65	136,15	9.0	21.0		
		C	As Cast	133.6	135.8	8.5	18.0	177 6	
		- 31	As Cast					177.6 178.1	
		B	As Cast As Cast					169.3	
			As Cast	133.3	133.1	9.0	21.0		
		В	As Cast	135.2	136,15	9,0	21.0		
		C		134.5	135,8	8.5	18.0		
		- 2A	As C.ist					185.7	
		9						174.3	
			As Cast	*** *	124. 2		10 4	173.7	
		P46	As Cast	132,3	134.3	9 0	18.3 0.2		
		11	1400F-2HR-WQ+925F-48HR-AC	131.2	182.8 133.7	7	14.7		
			1700F-288-WQ+ " " "	205.8	206.6	ó	2.0		
		11	u 11 11	132,918	133.956	15	31,1		
		P52	0 0	136.7	137.3	13	26.6		
		**	" " 1925F-1HR-AC	140.8	162.8	4	8.2		
		**	" " 1050F " "	196.6	148.8	7	11.2		
		22 \$1	" " 925F-4HR- "	157.0	163.6	3	3.9		
		11	" " " t050# " " " " 975F+16HR-"	160.8	170.6	<u>4</u> 2	6.5 1.4		
			11 11 1050F 11 11	192,6 175.5	198.7 179.5	3	2.0		
		P46	11 11 11	132.5	133.8	13	32,3		
		"	" " " 925F-2HR-AC	133.7	136,8	3	2.7		
		*1	" " " 1050F " "	146.6	148.4	5	в.6		
		11	" " 925F-8HR-AC	169.0	176.3	3	4.1		
			" " 1050+ " "	163.6	171.7	3	2.9		
			925F-49HR AC		191.1	0	1.2	(0130.01	
14 MH		0120 16	LA Cont	Ma	102 6	o	0	(P139-3) 102,8	438
:4 84-	>1.6		l As Cast 3 As Cast	None None	182.4 180.0	o	9	104.0	430
			As Cast	None	186.0	ŏ	ő	126,0	
		F139	1350F-201 -MQ+1000F-1HR-AC	165.6	166.6	i	3.5		
		44	21 11 11 11 2HR 11	161.1	163.0	t	1.4		
		**	" " " 4nR-AC	Noi Take		2	4.4		
		**	1230F " " 1HR "	••	146.8	5	6.6		
		34 91	** 11 1- 11 2HR 11	n	144.9	4	5.7		
		"	" " " " 48R " 86K "	11	144.1	4	6.3 9.5		
		:	As tast		140.2 182.8	3	0		
15 8V-	C.F.o.	P 140-2A		169.0	174.0	4	ŧĭ.9	203.0	363
	Al		As Cast	169.0	176.0	4	10.0	206.8	
•	~•	Č		162.0	171.6	5	16.4	170.0	
		F 358	As Cast	150	178.6	2	4.0	178,4	355.2
		a	As Casi	1',0	160.0	2	5.3	•	
			As Cast	157	150.0	,	5.0	1/8.0	
		b : 40	As Cast	167	174.0	i,	13.û	193.0	
		1921	i de la Caret Lista de Lange (1900) de la Reixe Acc	AXX	181.0	2.0	4.9 3.3		
		P 140	13.74 Aug. 4.74 Higgs - 14.8. Ar	le t t dis	n 125.4 179.8	į	5.3 6,8		
			the state of the state of	1- 1	179.3	Ş	2,2		
			12501-28k 168	\$12.5	15.0	3	2,6		
			20 0 0 20 20 20 2	part Las		5	5,1		
			• • • • ав	•	151.7	4	4.3		
		1.	· · · · · · · · · · · · · · · · · · ·	. ,	Conn	4	5.1		
			e fra p	1 - 1	10	•	5.3		(6)
			•	ι,	1 121	•	4 7		; ;1

lloy No.	A'loy Type	Heat No.	Heat Treatment	Ylela Strength KSI (0,2% Offse	Strength	Elongation In 40 Per Cetn	Reduction in Area Per Cent	Notch Tensile KSI	Brinell Hardness Number
								(P140-3)	
15		P358	1900F-48HK-A	C 160	166	3	9.5	192	331
		P140	900F- 811R		201	0	0		338
		P358		"	192	3	7.2		363
		- 11	480R	,,,,	181	2	3.4	1/2	341
		P140	GOLII - GIIIK		191	2	0		401
		P358	A-11.115		195	1	0.		388
		P140	.,		194 148	1	0	118	375
		P358			121	0.5	2.1		415 401
		. ,,,,,	* ****		122	0.5	0	85	415
		P140		••		•	ū	0,	717
		11	" 24HR						
		P358	" 48нк		121	0.5	1.6		388
16	5.5A1	P65	As Cist	126	142,1	10	15.3		
	5.54-25		1150F-16HR-A		138.9	9	16.2		
		5Cu P69	As Cast	125.2	140.4	ģ	16.2		
		"	1100F- ∠HR-A		141.0	9	19,6		
			" 4HR "	123.0	140,6	6	13.7		
			'' 8HR '		140.6	5	13,2		
			'' 16HR '	.,	140.8	9	13.0		
		11	1150F- ZHR ' '' 68R '	,.,	136.6	8	14,1		
			'' 48R ' '' 88R '		139.1	11	17.8		
			1050F- "Hr. 1	1-0.5	140.7 141.8	8 7	14.8		
		11		129.9	142.9	9	8.8 11.8		
		11	" Вив '		142.3	6	12.7		
		P65-2A	As Cast	125.4	142.0	10 5	15.0	210.0	311
		8		126.7	142.4	10.0	16.0	206.8	311
		C		125.9	142.0	10.0	15.0	100.0	
		P65-3A					-	217.5	
		8 C	As Cast					216.0	
		P65	As Cast As Cast	136.0				215.1	
		11	1650F-2HR-WQ+1000F-GHR-AC	126.0	142.1	ło	15.3		
			" " " 16HR	172.0	181.2	0	0.6		
		**	" " 1100F-6HR "	171.6 161,2	176.5 172.0	0	0.3		
		**	" " " 16HR "	158.3	168.9	Ü 2	1.0		
		11	" 16HR 1000F-6HR "	164.9	173.3	0	5.0 0.5		
		**	11 11 11 11 16HR 11	164.6	175.7	ĭ	2.8		
		41	" " 1100г-бив "	161.1	168.2	i	3.6		
		11	" " 16HR "	156.7	165.8	i	4.8		
		Р69	As Cast	125.2	140.4	9	16.2		
¥ ?	Al-Utto	P64-2	As Cast	112,3	128.4	8.0	18.0		
			As Cast	110.0	130.9	5	12,0		
			As Cast	113.05	128.4	í	16.5		
	,	² 64-3	As Last				• -	190.7	
			As Cast As Cast					109.7	
		P68-2	As Cast	1110				186.95	
			As Last	117.0	132.55	5	15.0		
			As Cast	115.6 112.1	129,55 127,3	3	7.0		
		P64	As Cast	114,1	129.3	7	15.0		
		••	1600F 2HR AL+1100F-16HK-AL	114.3	124,9	4	15.0		
		••		107.9	127.5	6	14.2 12.6		
			" " WEET LOOK - TOUR- VC	123.3	11100	3	9.2		
				117.3	127,0	5	9.2 12.2		
		::	1800F - 2885 Att # 100F - 1006 Att	115.5	173.0	ć	14.7		
				lue.:	122,0	4	ال عا		
			" " Wo	17: 7	130.7	9	9.7		

illoy Alloy No. Type	Heat No.	Heat Treatment	Yield Strength KSI (0.2% Offsat)	Ultimate Tensile Strength KSI	Elongation in 4D Per Cent	Reduction in Area Per Cent	Notch Tensile KSI	Brinell Hardnes: Number
19	P68	As Cast	111.0					· · · · · · · · · · · · · · · · · · ·
	11	1700F-2HR-WQ+1000F-1HR-AC	115. 0 130.6	129.9	5	12.0		
	11	" 11 11 12 ZHK "	133.0	142.0 148.4	3	7.6		
	**	" " " 4HR "	138.4	148.0	3 2	2.7		
	**	II. II II II BHR II	132,9	148.6	2	10.7 1.8		
		" " 1 1100F-1HR "	131,9	142,1	ī	0,6		
	11	11 11 11 2HR 1-	138.6	146.6	ž	0.8		
	P64	H H H H H	131.8	138.6	2	2,1		
	**	1600F " " 1000F-##R "	125.5	137.3	3	8.7		
	••	" " 1100F-2HR "	127.1	138.1	3	6.9		
10V-13Cr	PICO 3	A As Cast					(150-3)	
5A1		B As Last	148.0	136.0	10	25.7	190.0	277
•		C As Cast	128,2	137.2	10	24.6	204.2	
	P150	As Cast	128.0 128	136.0	11	27.2	190.0	
	11	1600F-2HR-WQ+1000F-2HR-AC	151	136 163	10	25.0	193	
	11	" " 491R "	179	162	3 1	7.0		
	LI .	" " " " BHR "		173	0.5	2.1 0.7		
	11	" " 1050F- <i>2</i> HR "	167	167	1	0.0		
	**	11 11 11 14HR		158	i	1.5		
7A1-HMo	11 0 1 h U	-2A As Cast		173	i	0.0		
Avt-, into	r 198	- An An Cant B An Cant	112.0	132.0	5	15, 1	194.0	305
		C As Cast	112.0	130.0	5	12.2	193.2	
	P148	As Cast	110.0	128.0	7	12.9	195.6	
	**	1600F-2HR-WQ+1000F-4HR-AC	111.3	130.0	6	13.4		
	•1	" " 1100F-2HR "	127.2	145.8	4	5.7		
	"	" " " 4HR "	129.0	140,2	2	6.7		
8AI-IMO	P166-1/		107.0	142.5 121.0	3	1.4		
17	i	B As Cast	107.0	119.6	9 9	25.2	i90.0	287.6
		As Cast	106.6	120.8	10	26.5	186.0	
	166	1600F-2HK-WQ+1000F-1HR-AC	107	122.0	4	26.5	190.8	
	11	" " " ZHR "	103	119.6	9	4.9 24.1	285	
	## ##	in in in order in	107	116.4	์ 8	25.9	285 293	
		" " 900F-2HR "	104	117.2	7	21,7	285	
	••	11 11 11 4HR 11	106	119,6	10	22.4	293	
4A1-3Mg 8	147-2A	As Cast	01.0	110.0			(P147-3)	
1v	В	As Cast	91.0 92.0	110.0 110.2	15	37.0	172.0	254
	C	As Cast	94.0	111.6	15	36.0	1/3.2	
	P147	Ás tast	92.3	111.6	9 13	26.5	172.4	
	**	1550F-2HR-WQ+1000F-4HR-AC	107.5	123.6	3	33.2		
	t.	" " 11005-2HR "	103.4	118.6	4	2.4		
	**	" " " 4нк "	101.6	116.4	6	8.5 11,3		
61a1 21	DIA.	A. 6			**	,	(P149-3)	
61A1-31Mo 1V			136.0	154.8	8	14.0	216.4	331
	B		132.0	152.0	12	21.5	224.0	J) 1
	359	As Cast As Cast	135.0	154.2	10	20.4	214.4	
	333	As Cast	112	150.0	9	16.7	219.2	321
	P149	As Cast	110	148.8	.6	10.6		
	11	1600F- 2HR-WQ+1000F-1HR-AC	134 2	17.7	in	າ ຄ. ວ		
	**	11 11 11 24K- 1-	165,6	171.1	2	3.3		
	;•	" " 41K "	16a, 0 170, 0	1/3.5	1	3.0		
	**			1/5.5 1/6.1	2	3,2 0,2		
	P149	As Cast	134	154	iü	io.y	داه	
		1600F- 2HR-MQ + 10001 - HIR-AC	165	171	£.	3.8		
	••	2111	168	174	1	3,0		
		-4F16:	i 70	176	2	3.2		
	*1	1550F " " MR "		166	ž	0.2		
		17500 HIR H	155	le4	7	4.9		
	•1	11 11 11 11 11 11 11 11 11 11 11 11 11	159	les.	2	4.0		
	**	11007-2118	155	176	3	7.0		
			152	16.7	ı,	7,4		
	**							
		Timit 1000t	134	165	7	4.9		
		Timit 1000t						

Alloy No	y Alloy Type	Heat No.	Heat Treatment	Yleld Strength Käl (0,2% Offset)	Ultimate Tensilo Strength KSI	Elongation In 40 Per Cent	Reduction in Area Per Cent	Notch Tensile KSI	Brinell Hardnes Number
29		P359	As Cast	111	150	7.5	14.0	219	
-9		11	1500F-2HR-WQ+1000F-8HR-MC	149	165	5	11.5	217	
		*1	" 1 1100F-4HR "	144	158	ź	6.7	226	
		41	11 11 1050F-GHR 11	150	163	Ĩ,	8.1	222	
		61	1450 " " 1000F-8HR "	148	163	4	10.6	214	
		11	" " 1100F-44IR "	144	153	3	7.0	224	
		**	" " 1050F-6HR 1	146	160	5	6.7	221	
		P149	1550F-2HR-WQ+1000F-4HR-AC	158	163.6	ž	4.9		363
		•: -		159	168.0	2	4.0		352
		31	" " " 1100F-2HR "	155	170.0	3	7.0		352
		н	11 tran 11 4HR 11	152	162.4	4	7.4		352
		11	1500F " " 1000F-4HR "	134	165.0	2	4.9		352
		11	" " BHR "	136	170.0	3	6.3		352
		*1	" " 1100F-2HR "	132	166.0	3	8,6		341
		н	" " " 4HR "	132	166.0	5	11.5		352
								(*146-3)	
32	158	P146-2A	As Cast	115.0	128.8	3	9,2	122.8	293
		В	As Cast	115.0	134.0	5	11.5	167.2	
			As Cast	115.0	135.2	6	18.6	177.6	
		P146	1350F-2HR-WQ+900F-2HR-AC	141.8	144.0	4	1.8		
		11	" " " " " " " " " " " " " " " " " " "	164.0	166.5	3	3.8		
		P146	n it is it BHR it	135.3	136.7	2	3.3		
1	2Cu	P523	As Cast	85	106	15	25.9	156	
11		- ii - i	1000F-8HR-AC			.,	-7.5		
**		10	" 24HR "						
1.3		11	900F-72HR "	88	106	15	23.9		241
14		**	" 24 "	88	104	16	22.4		235
t t		11	11 48 11		106	15	24.6		248
12		11	800F - 8HR "	84	104	iź	20.4		299
14		11	" 24HR "		104	15	24.4		241
••		TI .	" 48HR "		105	16	27.2		241
		11	/00F- 8HR "	86	104	16	25.9		235
* *		**	" 24KR "		104	17	26.5		223
11			' 48HR '		105	16	30.5		223
•		11	600F-24HR "						
"		11	'' 46HR ''						
11		P202	1475F-2HR-WQ+1200F-2HR-AC	55	82.8	21	41.4		170
**			" " " " 8HR "	58	80	19	38.1		183
		P579	As Cast	¹ 00	117	14	!a.9	173	255
				100	118	13	19.7	174	255
		11	1000F-80HR-		117	13	i 8. l		262
•		**	900F- 8HR-		lio	13	17.5		262
		11	600F- 8HR		115	6	9.2		269
	C 4 4 3 5		" dolla		118	13	22.4		248
2	6Ai-2Cu	P223-1A	As Cast	111	123.6	8	15.8	182,4	283
,		3	As Casi	! 16	122.2	9	14.9	182.8	
		C	As Cast	111	122.4	9	15.0	₹8Z.8	
		P223	1475F-2BR-WQ+1200F-2BR-AC	108	118.8	10	23.2	 .	262
ونيا	201 210		QIIIV	106	116.8	10	23.2	(f182-3)	269
***	3A1-2∮V		As Cast	94.0	8, 201	11	28.5	168.4	253
			As Cast	94.0	0,801	11	29 P		
		7154	As Cast As Cast	94.0	108.0	12	29.9		
		1 1 - 1 - 1	NS GAST 1450F-ZHR-WQF900F-ZHR-AC	94.U	107.6	11	29.4		
			1 1 1 1 1 4 4HK 1	101.6 105.3	113.8	9	13.2		
			" " " dHR "	105,4	113.9	5 9	15.3		
		11	1350F " " " 2HR "	101.4	117.5 108.6	12	21.2		
			1 1 1 1 4HR 1	107.0			30 3		
		**	2* 2* 28 18 595h 11	102.0	106,6 10a,5	10 14	21.1		
		**	i it ii li lidha ii	107.2			30.4		
			Rang	107.2	108.9	9	21.2	10	
_						4 -		(P112-2)	
5			A Ar Last	112	1.01.4	12	30.5	194.4	• ಭರ
	166-113		8 A; Cast	! ! ;	1.5.7	14	a	192 197 u	
			t as tast In a.c. hore.ac	; i <i>n</i> 1 16	176,4 135,6	14.	75.9 13.6	196.8	,
		, J9 11	" BHR "	1.25	17.8	5	14		111 101

Al lo	oy Alloy Type	lieat No,	Heat Treatment	Yfold Strangth KSI (0.2% Offset)	Ultimate Tensile Strength KSI	Elongation In 40 Per Cent	Reduction In Area Per Cent	Notch Tensile KS1	Brinell Hardness Number
46	3Mo~ , 58	3e P182-2	A As Casi	Úδ	97.0	14	25.2	127.2	201
61	•		B As Cast	68	90.4	13	26	132	
**			C As Cast	68	91.6	13	23	133.2	
••		P182	1500F-2HR-WQ	78	126.0	4.5	9.2		293
**		11	" " + 900F-1HR-AC	78	106.0	3	8.6		277
-		11	1 1 1 1 1 1 2HR 11	72	108	4.5	10		248
0) 10)) -		72	115.6	7	11.9		248
			OHIV	60	113.2	7	11.9		241
			" " 800F-18K "	81	122 124.8	2.5	4		285
		**	" " " " 4HR "	78 76	124.6	3 6	6.3 7.6		293 293
••			n n n n 8HR n	16	123.2	4	7.4		285
40	CA1 (W	021/-14	. An inc.	111.6	122.0	10	20.6	(P234-2)	***
49	6A1-6V -2Sn		As Cast	0.111	132.0	10	32.5	206.0	296
	-43n		As Cast As Cast	115.0 111.0	136.0 131.0	8 9	21.0 29.0	204.8 204.4	
		P234	1600F-2HR-WQ+1000F-2HR-AC	711.0	163.6	2	3.8	204.4	363
		11	11 11 11 4HR 11	150	163.6	2	3.8		352
		11	" " 1 100F-2HR "	146	158.8	ž	7.0		352
		11	11 11 11 4HR 11	150	160.0	ī	1.6		352
		***	" " " 1000F-2HR "	142	159.2	2	4.9		352
		11	" " " 4HR "	145	157.2	1	9.3		352
		at pi	11 11 11 100F - 21(R 11	141	155.2	2	7.0		341
			HIR	140	154.2	3	7.6		341
50	13\$n-2A1			122.0	142,0	4	5.3	196.2	305
	-102r	В	As Cast	123,0	143:2	11	18.9	186.0	
		U Date	As Cast	123.0	144.0	10	18.1	190.0	
		P230	1025F-4HR-AC " 16HR "	1 26 1 24	141.6 143.6	7	11.9 7.6		293 311
55	6A1-4V	D207 14	As Cast			•			-
>>	0.5W		As Cast	104,0 106,0	124.0 126.0	. 9 10	25.7 25.2		277
	0.5*		As Cast	100,0	124.0	12	41.4		
		313			124.0	**	71.7	200 197.6	243
								203.2	
55		313	1606F-2H9-WQ+1000F-2HR-AC	121	139.6	5	11.5		321
		11	" " " 1100F-2HR "	120	139.6	8	15.1		311
			1 1 1 1 1 4HR "	123 119	13 <u>6.</u> 2 134.0	6 8	13.5		286
		11	" " 1000F-2HR "	119	138.0	8 7	16.7 13.5		293 302
		11	" " " " 4HR "	120	138.8	7	12.9		302 302
		11	" " 1100F-2HR "	116	132.8	8	12.7		293
		10	" " " 'HR "	116	133.6	9	17.5		311
56	6A1-4V -0.5Ta	348	As Cast	104	124	11	20 0	102	202 3
	-0.718	110	As Last	108	124	11	38.9 24.3	192 190	282.3
			At Cast	106	124	ii	33.6	130	
		**	1600F-2HR-WQ+ 900F-2HK-AC	117	140.4	6	in n	893	£321
			" " BHR-AC	123	140.0	4	12.2	32k	321
		1:	·· '' '' 1000£-2нк ''	114	138.2	9	25.2	-	311
			ч.	119	136.8	9	25.0		321
		"	" " 1100F-2HR "	117	134.0	à	14.5		302
		"	46756	120	i),;;;	Ş	15.9		302
			1-11 10001 - \$1-14	i zu i zo	136.0	4	12.2		311
			" 1100F-26K #	171) 118	136.8 134.2	6 6	12.9		111
			11 001-25K	116	134.2	7	7.6 14,2		302 311
			31414			,	17,4) i i

TABLE J21 (Continued)

57 3A1-785 P.795-1A As Cast	Miloy All <u>Rosan</u> Typ		Heat, Freatment	Yleld Strength K\$1 -{0,7% Offsei}	Ultimate Tensile Strength	Elongation In 40 Per Cent	Reduction In Area Per Cent	Notch fensile KSI	Brinell Hardness Number
1						_			
C S Lest 112 133.2 7 10.6 192									285
Page	-0.2								
								134	269
	11								388
		-	2 1111		156	0			375
			10111						388
			Otter			-			375
1			Ond - 14tr						388
60			21111						338
60 4A1-45n-82r P300 As Cast			7 110						388 388
1	60 4A1-4S	Sn-82r P300	\ 1	133					300
1									أعز
Phys	**	**	" BHR "						311
1			" 16нв "	137	153	8	10.6		331
		Phoy					5.2		
10						•			
			-tOUV	-				172	
1	•-			151	170	,	10.5		
1				156.	177		3		352
1								161	352
	11							.0.	352
1			800F-8HR "	155		i			
60 4A1-45n P300-1A AS Cast 132.0 151.0 19 21.5 223.2 87r-1Fe B AS Cast 132.0 152.0 10 22.4 218.8 19-1Cr C AS Cast 136.0 154.0 10 19.7 223.2 19-1Cr C AS Cast 151.0 170.0 7 10.5 300 F0.50f-208-M0.1000F-1HR-AC 151.0 170.0 7 10.5 10.0 10.0 10.5 10.0 10.0 10.5 10.0 10.0			£	157	173	2			
87r-1Fe		,,	" 48HR "	160	182	5	7.6		
87r-1Fe	60 4A1-4	45n P300-1A	As Cast	137,0	151.4	9	21.5	223.2	321
Ph89					152.0	10			-
300	1 V~ 10	Cr C	As Cast	136.0	154.0	10	19.7	223.2	
10						-			
P300									363
P300 As Cart 133 152 10 21.0 221 P489 As Cart 151 170 7 10.5 231 P300 IStan Ins.MQ-1000F-118-AC 171 2 2.4 "" "" "" "" " " 418 "" 154 179 2 3 3.3 "" 1500F "" "" 118 " 152 179 3 10 9 60 P300 I450F-248-MQ-1606F-248-AC 153 177 4 10.9 "" "" "" "" " 888 " 151 176 3 3.3 "" 1500F "" " 888 " 151 176 3 3.3 "" 1500F "" " 888 " 151 176 3 3.3 "" 1500F "" " 888 " 151 176 3 3.3 "" 1500F "" " 888 " 151 176 3 3.3 "" 1500F "" " 888 " 151 176 3 3.3 "" 1500F "" " 888 " 151 176 3 3.3 "" 1500F "" " 888 " 151 176 3 3.3 "" " " " " " " 248 " 156 160.0 2 3.3 "" " " " " " " 248 " 156 160.0 2 3.3 "" " " " " " " 248 " 156 160.0 2 3.3 "" " " " " " " 248 " 156 160.0 2 3.3 "" " " " " " " " 448 " 155 162.6 1 1 1.6 128 "" 3Cr 3Cr 2Cr " As Cast 155 152.6 1 1 1.6 128 "" 3Cr 3Cr 2Cr " As Cast 150 170 3 1 1 4 152 "" " " " " " " 488 " 136en 170 2 4.2 "" " " " 488 " 136en 170 2 4.2 "" " " 488 " 136en 170 2 4.2 "" " " 488 " 136en 170 2 4.2 "" " " " " 488 " 136en 170 2 4.2 "" " " 488 " 136en 170 2 4.2 "" " " " 488 " 136en 170 2 4.2 "" " " " " " " " " " " " " " " " " "			2110						363
P489 As Cast 151 170 7 10.5 231 P300 1560 118-MQ-1000F-118-AC 171 2 2.4			71114					221	363
P300									
60								-,.	
60 P300 1450F 24R-MQ-1606F-24R-AC 153 177 4 10.9 1 1500F 24R-MQ-1606F-24R-AC 153 177 176 3 3.3 1 1500F 24R-MQ-1606F-14R-AC 248 177 176 3 3.3 1 1500F-24R-MQ-1600F-14R-AC 248 177 17 1 0.7 166 1 1500F-24R-MQ-1000F-14R-AC 248 177 17 1 0.7 166 1 1500F-24R-MQ-1000F-14R-AC 248 177 17 1 0.7 166 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				156		2			
60				154	179	2	5.3		
1		11	1450f " " " 1HR "	152	179	. 1	10 9		
1	4.0	6300	TAKINE - JAR-WO-TGOGE - ZHR-AC	153	177	4	10.9		
1500F 0 0 0 0 0 0 0 0 176 3 3.3 3.3 166 2009 0 0 0 0 0 0 0 173 175 1 0.7 166 160.0 2 2.4 0 0 0 0 0 0 0 0 0	W		4HR "			-			
### PASS		•	1500F " " " BHR "			3	3.3		
1		<i>₽</i> 489	n n p n h o	173				16ಕ	
0 0 0 0 0 0 4 4 1 1 1 1 3.3 128 128 1 1 1 3.3 128 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									375
63			2-111						363
10.5M-0.51a 1									375
1 30 25 25 25 25 25 25 25 2						•		-	36;
	" U.5W-0	U.514 "				•			
0 0 488 0 1aken 170 2 44.2 0 0 1200F-248-AC 0 14kC 1 1.6 0 0 1600 0 0 1660 1 2.4 766 4A1 0660 0 0 1600 0 1600 1 1 2.4 766 4A1 0660 0 0 1600 0 1600 1 1 2.4 766 4A1 0660 0 0 1600 0 1600 1 1 2.4 766 4A1 0660 0 0 1600 0 1600 1 1 1 1 1 1 1 1 1	יי אנד א	5 221 ···				-		152	363
1									363
0				1'					357
64 4A1 (Standard F) F2 A AS Start 176 141,2 11 27,9 213,2 9 B AS Cost 126 142 10 21,5 234 9 6 Cost for a cost-fills-AC 176 140,6 10 23 215,4 9 6 TO 2 6 Cost for a cost-fills-AC 176 140,6 10 16 g	-1	.,		••		ì			30.5
0 E. C.	dia AAT 45.				141.2		22,4		290
e ctoz ozstanikaci tze tadin 10 lidig	••								
10.54 - 10.54 - 10.54 10.54								214,4	
	.,	£ 40.2	roz 4 - mR-AL	176			-		793
10.00		••		•					293 233

TABLE J21 (Continued)

Alloy No.	Alloy Type	Heat 1-io.	tleus Trautment	Yield Strength KSI (0.2% Offcet)	Ultimate Tensile Strength KSI	In 4D	n Reduct. In Area Per Cent		Brinell Haráness Number
69	6A1-4V	434	As Cast	129	147.6	9	15.1	204	317
	1Ct-1Mo		As Cast	126	144.8	7	18,6	1	
			As Cast	128	145,0	8	17,0	204	
		None-A	As Cast	130	152.0	7	15.1		321
		, B	As Cast	130	152.0	6	9.2		
		434	1550F-2HR-WQ+1000F-4HR-AC		159.2	2	6.7		341
			1550F-2HR-WQ+1000F-8HR-AC		158.8	2 4	6.7		341
			1550F-2HR-QW+1100F-2HP-AC 1550F-2HR-QW+1100F-4HR-AC		154,0 154,4	4	10.5 7.0		331 352
		*	1500F-2HR-QW+1000F-4HR-AC		160.0	4	7.6		341
		*	1500F-2HR-WQ+1000F-8HR-AC		156.8	3	7.6		331
			1500F-2HR-WQ+1100F-2HR-AC		154.4	4	9.7		321
		*	1500F-2HR-WQ+1100F-4HR-AC	_	150.0	5	11.2		311
105	8Zr-4Al-	596	As Cast	154	171	4	5.3	216	352
	45n-1.5Fa-	*	1500F-2HR-AC	159	175	3	6.5		363
	1.5Cr-1.5V		1400F-2HR-AC	154	168	8	12.9		352
		*	1300F-2HR-AC	154	168	4	6.7		352
		*	1200F-2HR-AC	158	164	5	1.6		352
		•	1400F-2HR-AC+1000F-48HR-AC		142	0	0		
		*	1400F-2HR-AC+ 900F-48HR-A	-	184	0.7			
			1400F-211R-AC+ 800F-48HR-AC		136	}	1.6		401
			1400F-2HR-AC+ 700F-48HR-AC		101	0	0		401
***	0- 441		1400F-2HR-AC+ 600F-48HR-AC		170	4	8.6		352
106	8Zr-4A1-	597 =	As Cast	132	148	10	20.0		321
	45n5Fe-	*	1500F-2HR-WQ+1000F-2HR-AC		162 158	4 5	9.2		352
	.5Cr~,5V	*	1400F-2HR-WQ+1000F-2HR-AC 1000F-2HR-AC	135	149	4	6.3 14.0		331 311
		*	1000F-48HR-AC	138	151	5	8.6		321
		*	900F-48HR-AC	138	152	ě	18.9		341
		*	890F-48HR-AC	138	154	ž	13.5		331
		•	700F-481K-AC	136	152	8	17.5		311
		*	600F-48HR-AC	133	140	10	18.9		293
		•	As Cast	t 32	148	10	22.4	219	321
		*	As Cast	132	149	11	16.7		321
		te .	1500F-211R-WQ+1000-2HR-AC	146	162	4	9.2		352
		*	1400F-2HR-WG+1000-2HR-AC	144	158	5	6.3		331
107	10Cr	606	As Cast		168	Ī	1.6	140	
		*	As Cast		172	1	3.3		
			1400F-2HR-WQ		150	1	0.7		331
		*	1400F-2HR-WQ+800F-1HR-AC		107	0	0		429
			1400F-2HR-WQ+800F-2HR-AC 1400F-2HR-WQ+800F-4HR-AC		176 173	Ö	٥		429
108	87r-4Ai-	607	As Cast	130	152	11	20.0	208	331
2.22	45n-2V	*	900F-48HR-AC	140	157	9	16.7	200	331
	-311 24	-	6001-401R AC	139	158	10	18.9		331
		*	700F-48HR-AC	138	159	9	19.1		33i
			600F-48HR-AC	135	158	9	23.2		331
		•	1000F-48HR-AC	140	142	3	5.3		331
			1500F-2HR-WQ+1000-1HR-AC	145	161	7.5	12.9		352
		*	1500F-2HR-WQ+1000-2HR-AC	145	363	7	12.9		341
		#	1500F-2HR-WQ+1000-4HR-AC	144	160	8	15.1		352
		-	1500F-2HR-WQ+1000-8HR-AC	147	164	8	17.0		352
			1500F-2HR-WQ+ 900-1HR-AC	144	162	8	11.2		352
			1500F-2HR-WQ+ 700-2HR-AC	146	162	5 9	12.9		352
		*	1500F-2HR-WQ+ 900-41IR-AC 1500F-2HR-WQ+ 900-8HR-AC	146 144	163 161	7	15.1 14.2		352 352
			tool sim may two out we	1 44	101	•	17.4		334

TABLE J22

HEAT ANALYSES

Per Cent Heit Ho. Çu f:g Bhia .015 171 ۴ı .0033 .016 . 21.1 .007 .005 .05 .01.4 5.02 3.93 . lo P1 .048 .003 .133 ,01/ .475 .768 6,01 3,92 .002 .002 .015 .005 .005 .03 .004 .03 .002 ot's .01% . D & 3 2f s .002 .10 .008 .004 371 .057 016 '. W 3.99 .03 .005 .005 .01/ .212 5.91 .002 .04 ر00. .005 ιυ. ა0. .002 .10 .10 .015 3 P P 30% .027 .003 . 14cb .016 .147 5.98 .002 . 10 .uus .005 .064 .00 .002 .10 .0% .61 .1515 .1575 .Oio 6,17 .05 Fe. 160, .004 . 210 4.08 .002 .015 .005 .005 -008 .002 .02 .015 .0049 .03 .02 ol -114 .210 .002 .02 ,00% No Analysis PB .1755 .015 .002 .01 ,015 P9 1:10 . 220 . JO2 .005 .008 6.07 .005 .0/0 .0034 .227 ,nt) ne. .00% .02 .0!', .61: : 27. .056 .030 ,005 ,005 .01 212 .213 341 0031 024 .255 6.13 4. 10 .002 .02 .00% oo. roi. .0.6 .002 -02 .015 .01 P13 .036 .618 . 205 4.15 .002 .02 .005 .005 .004 .03 .002 .02 .015 , Qui ,0026 5.98 4.1, P14 052 .0026 . 19 .023 . 215 5.85 6.10 .905 10 .005 .004 .03 .04 .002 .02 .nli .015 Otto 141 .00% .004 .008 ,027 .1475 3 11. .0037 ្តារ ! It. . 2180 .051 .0028 .03 .ui 0// . 415 5.80 .002 .02 .005 .00% .004 .04 .uul .07 P17 .016 .180 t. lb 4.65 007 .005 .01 04 00702 003 302 ,028 .0025 . 305 .145 6.07 .215 4.03 .195 1.73 .005 -02 .042 .0032 . 165 .021 4.05 .002 .02 .00% .008 .04 .002 .03 .01 321 P 19 .070 .0034 .1858 .020 2.97 .002 .02 .00% .02 .10 ,0025 . 1-35 .022 .002 .07 .006 .004 .002 .02 002 .10 .015 .604 114 P21 .050 .0036 .186 .019 . 180 5.81 3.94 .002 .10 .005 ,005 .015 .0a .002 .10 .015 .01 See p24 - P22 Mistun ,042 ,0043 . 2698 P22 P23 .022 710 .015 .005 . 002 .03 .010 .0024 . 162 .020 .135 3.65 .002 .01 .00% .005 4.18 .005 .002 .02 .002 .01 . 22 .025 .01 . 002 .02 .004 125 .077 . 004 .024 . 120 5.60 3.94 .002 .62 .005 .03 .10 (P26, .e6.7 .0024 .23 .014 .170 4.53 .50 .062 .01 .005 .005 .008 .005 .002 .01 .402 2.35 (5A1-2}5n P27 .05 F28 .06 P49 .06 .004 .054 ,002 , UO\$ 004 .01 007 .υ; .015 00.2 ΩI 318 .25/5 0/10 3.73 .002 .005 ,002 .008 .0023 . 245 .022 .225 5.67 .015 .005 .01 .03 .015 .2275 002 , Gób .0G}o .023 P30 .073 .0026 .2425 .02/ . 240 6.04 3.92 .0005 .02 .008 _CO5 .008 .03 .002 .02 .015 .008 334 P31 (P32 (5A1-.18 .051 .0021 .073 . 300 1.92 .000% .02 -005 .005 .DOK .02 .002 .02 .015 .015 .355 .0005 .02 .005 .008 .03 .007 .025 .01 .025 , 240 5.93 .01 .015 .075 .003 3.86 .070 .0032 .175 .015 .002 .005 .005 .004 .005 .002 . 10 P33 . 256 .015 .005 .000 3.88 10. .005 .07 100 .07 .015 .015 315 321 .050 .0026 .19/5 .015 P35 .05 \$.105 .027 . 2*d*G 6.03 .002 .015 .005 .005 .015 .015 .015 .03 P30 P37 .0041 .03 .02 .02 .01 .00ն , Oti Ž .2125 .027 744. 1.87 002 PΖ -005 OC's 004 002 . 10 .007 .02 .005 .094 .003 .10 .015 .320 .073 .0033 . 2025 .040 5 /3 1.70 .005 .04 (P38 P19 P40 .002 11.3 .04 002 020 .004/ 1538 .017 12.9 .uos .00% .002 . (40/2 .03 .370 6.01 .00% .00% .005 .004 .o. .092 .10 .015 .008 .098 334 .002 .002 .092 .0042 .2512 .0// .420 5.90 5.02 , Iu .00% .005 .000 .02 .00 .015 .01 .02 P41 P42 ,096 n.yg, .015 CULZ . 226 . Û ća 5.95 1.04 .0.:2 1:3 Wij .00% (104 .942 . 10 .01 .04i ,110 ,607 .005 .01 100 . 10 .015 .015 ιо, ,000 .01 .0034 . It 229 , 2 JÜ ,00°, .ŭG; .004 F43 030. .06 (6 .02., 5.0/ 3.04 OGZ .64 .605 ,iiio ,002 111 ,002 .143 12.7 .005 .615 .602 .02 .030 .00% .020 2.21bler 9,116 202 (134 ,0(-39 . 9. .002 .012 913 1145 ſ,'t, .17.9 .02, . 30 1. 19 .002 .90 .005 .07 .007 .1 134 e: , , ü - n . 11. LALL .00 . :---.v. .07. 913 $_{1}^{-}$ (e.g., $_{2}^{-}$ (157-111-44) Fri (05) :-- 1 .tel. (60) 1.04 , (*) . -- ' 1017 00,71, .185 .024 . . . 9000 1,15 ٠. .94. (61 4 ţıı. .0576 , I .ø 10.14 4.100 5 erj -.: (5 Jaur . **0 GI. 1 1 1176

							<i></i> .											
Heat																		
No.	C		0	N	ře.	<u>^!</u>		Ct.	Çr	Cu	_ ng	Mg	N'1 .	_ Pb .	· • • • • • • • • • • • • • • • • • • •	Mo	Sn	BHN
	HEr-NA										007	003		00.3	.02	.02	.002	291
(852	.024	.0063		.018	. 21	4.05	13.5	,015 ,007	10.1	.005 .005	.005	.003 .004	.015	,002	.02	.01	.002	324
F 5 3	.0/5	.0025		.028	.34	6.01	3.93	, 1007	•	, ин 5	, 505	. 004	.34	.002		.01	.01	324
154	.080	,0029		.031 .022	.32	6,07 1,58	3.92	.007	10.	.005	.005	. 007	.02	.002	.015	.01	.007	283
(055 - (139-1	,028 	.0049	.153	.1-22	.13	1.30	3.0	.007	10.0	.005	.003	. 004	.02	,004	.0.,			-0,
(1)4-1	1111113																	
P56	.048	.0026	•	.C 28	.30	4.33	3.98											321
P57	.056	.0024		.024	. 29	6.05	4.01	.005	.1	.005	.005	.01	.015	002	.1	100.	.012	321
P58	180,	.0032		.012	.40	6.05	3.97	.002	.1	.005	.005	.01	.01	,002	.02	.01	.01	
P59	.027	.001/		.017	, 20	10,	.005	.002	.015	.005	.005	,002	.005	.002	.01	.002	. CO3	
(P6-0)	.0.79	0025	. 175	.014	21	n t	ออร	, n n?	97	,005	ůνε	.002	.005	,002	.01	.002	.003	
(C.P.	11																	
									10. 7		305	003	021	002	0.3	.015	003	280
(P6-1		.0044	. 158	.017	. 20	1.65	13.5	,002	10.7	.005	.005	,002	.025	,002	.03	,015	. 007	200
			11-6	.0.17	30		1.0	002	10.3	.005	.005	. 002	.04	.002	.02	.002	.002	260
(Pf)2		.0045	. 146	.0.7	. 20		12.9	.002	10,3	,005	.005	.002	.04	,002	.02	.002		- 10
(13 v ~1	ווני																	
LIGAT	1 - 4V																	
P53	.070	.0025	.18	.030	. 24	5.87	4.83	, 007	.1	.02	.005	.003	.01	,002	80.	.008	,015	321
11/A	020,	.0034	131	.0083	.12	7.32	.005	.002	.025	.005	.005	.002	.005	.002	.02	3.33	.002	308
10-1	,010	,005	,	.000,		7.3.	.00)		,	.00)	,		,	,		,,,,		,
1151	A1-53V-																	
	e-25n																	
P65		.002	.10	.010	.59	5.62	5.46	.002	,02	.22	.005	.002	.01	.002	.03	.015	1,97	3!1
T1131	V-11Cr																	
P66	.023	.00:5	. 19	.028	. 20	.01,	12.9	.002	9.5	.005	.005	.002	.03	.002	10,	,002	.003	288
	_																	
TIKA											001	011	0.3	302	010	016	0.7	
P67	.038	.0036	.16	.052	.32	6.08	3.93	.002	.1	.02	.005	.015	.02	, აი2	.015	.015	.02	
7174	1 1Mm																	
P68	1-3Mo ,024	.003	.10	.010	.13	7.45	. 1	,002	.025	.005	.005	.002	.005	.002	.03	3.07	.002	315
100	,024	.00)	, ,,,	+0.0	,	,,	• • •		,	.00,	,		,					
T154/																		
456	A1-54V-																	
	Al~5∄V- c-25∩•.	25Cu																
	c-25n·.	25€v ,002€	3 ,12	.011	.59	5.59	5.41	,002	.02	.22	.005	.003	.01	,002	,02	.015	1.99	324
P69	c-25n·.		J ,12	.011	.59	5.59	5.41	.002	.02	.22	.005	.003	10.	,002	.02	.015	1.99	324
P69 T16A	c-25n·. .023	,0028						•						·	-			
P69	.023			.011	.59	5.59 5.99	5.41 4.32	,002	.02	.22	.005	.003	.01	,002	,02 ,015		1.99	324 337
P69 T16A P70	e-25n·. .023 I-4V .060	.0028	.14	.033	. 30	5.99	4.32	,002	.1	.005	.005	.015	.02	.002	.015	.015	.02	337
P69 T16A P70 P71	e-25n-, ,023 I-4v ,060	.0034	4 .14 3 .19	.033	.30	5.99 5.98	4,32 4,13	\$00, \$00.	a a	.005	.005	.015	,02 ,015	,002	.015	.015	.02	
P69 T16A1 P70 P71 P72	e-25n-, ,023 I-4v ,060 ,082 ,084	.0034 .0034 .0033	3 .14 3 .19 3 .13	.033 .033 .032	.30 .32 .28	5.99 5.98 6.14	4,32 4,13 4,07	,002 ,002	.a .a	.005 .005 .005	.005	.015 .01	,02 ,015 ,015	.002 .002 .002	.015 .02	.015 .015	.02	337 337
P69 T16Al P70 P71 P72 P73	e-25n .023 I-4v .060 .082 .084	.0034 .0034 .0033 .0033	4 .14 3 .19 3 .13 3 .19	.033 .033 .032 .036	.30 .32 .28 .31	5.99 :.98 6.14 5.97	4,32 4,13 4,07 4,27	,002 ,002 102 ,G02	.a .a .a	.005 .005 .005	.005 .005 .005	.015 .01 .01	.02 .015 .015	,002 ,002 ,002 ,002	.015 .02 .02	.015 .015 .015	.02 .02 .03	337
P69 T16Al P70 P71 P72 P73 P74	c-25n- .023 I-4v .060 .082 .084 .094	.0034 .0034 .0033 .0033	4 .14 3 .19 3 .13 3 .19 5 .17	.033 .033 .032	.30 .32 .28 .31 .28	5.99 5.98 6.14 5.97 6.28	4,32 4,13 4,07 4,27 4,19	,002 200, 201 201 201	.a .a	.005 .005 .005	.005 .005 .005 .005	.015 .01	,02 ,015 ,015	.002 .002 .002	.015 .02 .02 .02	.015 .015	.02	337 337
P69 T16A1 P70 P71 P72 P73 P74 P75	e-25n- .023 I-4v .060 .082 .094 .094 .072	.0034 .0034 .0033 .0033 .0026	3 .19 3 .13 3 .19 5 .17	.033 .033 .032 .036 .031	.30 .32 .28 .31 .28 .19	5.99 5.98 6.14 5.97 6.28 6.14	4,32 4,13 4,07 4,27 4,19 3,95	,002 .002 .002 .002 .002	3 3 3 3 3 3	.005 .005 .005 .005	.005 .005 .005 .005 .005	.015 .01 .01 .05 .004	.02 .015 .015 .015 .015	.002 .002 .002 .002 .002	.015 .02 .02 .02 .05	.015 .015 .015 .015 .02	.02 .03 .03 .03	337 337
P69 T16Al P70 P71 P72 P73 P74 P75	e-25n- ,023 I-4v ,060 ,082 ,084 ,094 ,072 ,054	.0034 .0034 .0033 .0033 .0036 .0026	3 .19 3 .13 3 .13 5 .17 5 .17	.033 .033 .032 .036 .031 .027	.30 .32 .28 .31 .28 .19	5.99 5.98 6.14 5.97 6.28 6.14	4,32 4,13 4,07 4,27 4,19 3,95	,002 .002 .002 .002	.d .d .d .d .d .d	.005 .005 .005 .005 .005	.005 .005 .005 .005 .005	.015 .01 .01 .05 .004 .008	.02 .015 .015 .015 .015	.002 .002 .002 .002 .002	.015 .02 .02 .02 .05 .025	.015 .015 .015 .015 .02 01	.02 .03 .03 .03 .02	337 337
P69 T16A P70 P71 P72 P73 P74 P75	c-25n- ,023 1-4v ,060 .082 .094 .072 .054	.0028 .0034 .0033 .0033 .0026 .0029	4 .14 3 .19 3 .13 3 .19 5 .17 9 .17	.033 .032 .036 .031 .027	.30 .32 .28 .31 .28 .19	5.99 5.98 6.14 5.97 6.28 6.14 4.20 6.16	4.32 4.13 4.07 4.27 4.19 3.95	.002 .002 .002 .002	3 3 3 3 3 3 4 3	.005 .005 .005 .005 .005	.005 .005 .005 .005 .005	.015 .01 .01 .05 .004 .008	.02 .015 .015 .015 .015 .02	.002 .002 .002 .002 .002 .002	.015 .02 .02 .02 .05 .025	.015 .015 .015 .015 .02 01	.02 .02 .03 .03 .02 .01	337 337
P69 T16Al P70 P71 P72 P73 P74 P75	c-25n- .023 1-4v .060 .082 .094 .094 .072 .054	.0028 .0034 .0033 .0033 .0026 .0029	3 .19 3 .13 3 .13 5 .17 5 .17 1 .19	.033 .033 .032 .036 .031 .027	.30 .32 .28 .31 .28 .19	5.99 5.98 6.14 5.97 6.28 6.14 6.16 6.16	4.32 4.13 4.07 4.27 4.19 3.95	.002 .002 .002 .002 .002		.005 .005 .005 .005 .005 .005	.005 .005 .005 .005 .005 .005	.015 .01 .01 .05 .004 .008	.02 .015 .015 .015 .015 .02	.002 .002 .002 .002 .002 .002	.015 .02 .02 .02 .05 .025	.015 .015 .015 .015 .02 .02 .01	.02 .03 .03 .03 .02 .01	337 337
P69 T16Al P70 P71 P72 P73 P74 P75 P77 P78 P79	c- 25n- .023 1-4v .060 .082 .094 .094 .072 .054 -279 .079	.0034 .0034 .0033 .0035 .0026 .0029 .0029	3 .19 3 .13 3 .13 5 .17 5 .17 6 .19 1 .17 1 .16 20	.033 .032 .036 .031 .027 .032 .032	.30 .32 .28 .31 .28 .19	5.99 1.98 6.14 5.97 6.26 6.14 4.20 6.16 6.17	4.32 4.13 4.07 4.27 4.19 3.95 4.15 5.45 4.17	,002 .002 .002 .002 .002 .002 .002		.005 .005 .005 .005 .005 .005	.005 .005 .005 .005 .005 .005	.015 .01 .01 .05 .004 .008 .01 .008	.02 .015 .015 .015 .02 .015 .02	.002 .002 .002 .002 .002 .002	.015 .02 .02 .05 .025 .025	.015 .015 .015 .015 .02 01	.02 .03 .03 .02 .01 .04	337 337
P69 T16Al P70 P71 P72 P73 P74 P75	c-25n- .023 1-4v .060 .082 .094 .094 .072 .054	.0028 .0034 .0033 .0033 .0026 .0029	3 .19 3 .13 3 .13 5 .17 5 .17 6 .19 1 .17 1 .16 20	.033 .033 .032 .036 .031 .027	.30 .32 .28 .31 .28 .19	5.99 5.98 6.14 5.97 6.28 6.14 6.16 6.16	4.32 4.13 4.07 4.27 4.19 3.95	.002 .002 .002 .002 .002		.005 .005 .005 .005 .005 .005	.005 .005 .005 .005 .005 .005	.015 .01 .01 .05 .004 .008	.02 .015 .015 .015 .015 .02	.002 .002 .002 .002 .002 .002	.015 .02 .02 .02 .05 .025	.015 .015 .015 .015 .02 .02 .01	.02 .03 .03 .03 .02 .01	337 337
P69 T16Al P70 P71 P72 P73 P74 P75 P77 P78 P79	e-25n- .023 1-4v .060 .082 .094 .072 .054 .079 .079 .079	.0034 .0034 .0033 .0033 .0026 .0025 .0029 .0020	3 .19 3 .13 3 .19 5 .17 3 .17 1 .19 1 .16 20	.033 .032 .036 .031 .027 .032 .032 .032	.30 .32 .28 .31 .28 .19 .1; .24 .21	5.99 2.98 6.14 5.97 6.26 6.14 6.16 6.17 6.34	4,32 4,13 4,07 4,27 4,19 3,95 1,17 4,15 1,16, 4,17	.002 .002 .002 .002 .002 .002 .002	.3 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.005 .005 .005 .005 .005 .005 .001 .1	.005 .005 .005 .005 .005 .005	.015 .01 .01 .05 .004 .008 .01	.02 .015 .015 .015 .015 .02 .015 .015	.002 .002 .002 .002 .002 .002 .007 .007	.015 .02 .02 .02 .05 .025 .05	.015 .015 .015 .015 .02 .01	.02 .03 .03 .02 .01 .04 .03 .04	337 337
P69 T16Al P70 P71 P72 P73 P74 P75 P77 P78 P79 P60	e-25n- .023 1-4v .060 .082 .094 .072 .054 -079 .072 .074 .072	.0028 .003 ⁴ .0033 .0033 .0026 .0029 .0029 .0020 .0033	3 .19 3 .19 3 .19 5 .17 .17 .17 .16 .20 .23	.033 .032 .036 .031 .027 .032 .032 .032 .037	.30 .32 .28 .31 .28 .19 .19 .11 .24 .21	5.99 2.98 6.14 5.97 6.26 6.14 6.36 6.35	4,32 4,13 4,07 4,27 4,19 3,95 1,17 4,15 5,47 4,17	.002 .002 .002 .002 .002 .002 .002 .002	.1 .1 .1 .1 .1 .1 .1 .1	.005 .005 .005 .005 .005 .005 .005 .001 .01	.005 .005 .005 .005 .005 .005 .005	.015 .01 .01 .004 .008 .01 .004 .005	.02 .015 .015 .015 .015 .02 .015 .015	.002 .002 .002 .002 .002 .002 .002 .007 .007	.015 .02 .02 .02 .05 .025 .05 .02	.015 .015 .015 .02 .01 .02 .02 .02 .02	.02 .03 .03 .02 .01 .04 .03 .02 .03	337 337
P69 T16Al P70 P71 P72 P73 P74 P75 P77 P78 P79	e-25n- .023 1-4v .060 .082 .094 .072 .054 .079 .079 .079	.0034 .0034 .0033 .0033 .0026 .0025 .0029 .0020	3 .19 3 .19 3 .19 5 .17 .17 .17 .16 .20 .23	.033 .032 .036 .031 .027 .032 .032 .032	.30 .32 .28 .31 .28 .19 .1; .24 .21	5.99 2.98 6.14 5.97 6.26 6.14 6.16 6.17 6.34	4,32 4,13 4,07 4,27 4,19 3,95 1,17 4,15 1,16, 4,17	.002 .002 .002 .002 .002 .002 .002	.3 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.005 .005 .005 .005 .005 .005 .001 .1	.005 .005 .005 .005 .005 .005	.015 .01 .01 .05 .004 .008 .01	.02 .015 .015 .015 .015 .02 .015 .015	.002 .002 .002 .002 .002 .002 .007 .007	.015 .02 .02 .02 .05 .025 .05	.015 .015 .015 .015 .02 .01	.02 .03 .03 .02 .01 .04 .03 .04	337 337
P69 T16Al P70 P71 P72 P73 P74 P75 P77 P78 P79 P60 P81 P82	e-25n	.0034 .0034 .0033 .0033 .0026 .0029 .0029 .0033 .0029	4 .14 3 .19 3 .13 3 .19 5 .17 .17 .19 .17 .16 .20 .23 .21	.033 .032 .036 .031 .027 .032 .032 .032 .033	.30 .32 .28 .31 .28 .19 .1; .24 .21 .25	5.99 2.98 6.14 5.97 6.26 6.14 6.36 6.35	4,32 4,13 4,07 4,19 3,95 4,15 4,15 4,17 4,17	.002 .002 .002 .002 .002 .002 .002 .002	.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.005 .005 .005 .005 .005 .005 .005	.005 .005 .005 .005 .005 .005 .005 .005	.015 .01 .01 .004 .008 .01 .008 .01 .006 .005	.02 .015 .015 .015 .015 .02 .015 .02 .015 .02	.002 .002 .002 .002 .002 .002 .007 .007	.015 .02 .02 .05 .025 .05 .025	.015 .015 .015 .02 01 .02 .02 .02 .02 .02	.02 .03 .03 .02 .01 .03 .02 .03 .02	337 337
P69 T16Al P70 P71 P72 P73 P74 P75 P77 P78 P79 P60	e-25n- .023 1-4v .060 .082 .094 .072 .054 -079 .072 .074 .072	.0028 .003 ⁴ .0033 .0033 .0026 .0029 .0029 .0020 .0033	4 .14 3 .19 3 .13 3 .19 17 17 17 17 18 19 17 18 19 17 18 19 19 10 11 10 10 10 10 10 10 10 10	.033 .032 .036 .031 .027 .032 .032 .032 .037	.30 .32 .28 .31 .28 .19 .1; .24 .21 .25 .24	5.99 5.98 6.14 5.97 6.26 6.16 6.16 6.16 6.35 6.35	4.32 4.13 4.07 4.19 3.95 4.15 4.17 4.17 4.17 4.15	.002 .002 .002 .002 .002 .002 .002 .002	.1 .1 .1 .1 .1 .1 .1 .1	.005 .005 .005 .005 .005 .005 .005 .001 .01	.005 .005 .005 .005 .005 .005 .005	.015 .01 .05 .004 .008 .01 .004 .005 .004 .004	.02 .015 .015 .015 .02 .015 .02 .015 .02 .015	.002 .002 .002 .002 .002 .002 .002 .007 .007	.015 .02 .02 .02 .05 .025 .05 .025 .05 .02	.015 .015 .015 .015 .02 .01 .02 .02 .02 .02 .03	.02 .03 .03 .02 .01 .03 .04 .03 .07	337 337
P69 T16AI P70 P71 P72 P73 P74 P75 C76 P77 P78 P79 P81 P82 (P83	e-25n- .023 1-4v .060 .082 .094 .094 .072 .054 .079 .072 .076 .071 .105	.0034 .0034 .0033 .0033 .0026 .0029 .0029 .0037 .0033	4 .14 3 .19 3 .13 3 .19 5 .17 17 16 17 16 17 18 19 17 16 17 18 19 17 18 19 19 10 11 11 11 11 11 11 11 11 11	.033 .032 .036 .031 .027 .032 .032 .032 .033 .034	.30 .32 .28 .31 .28 .19 .1; .24 .21 .25	5.99 1.98 6.14 5.97 6.16 6.16 6.17 6.36 6.35 0.17 6.31	4,32 4,13 4,07 4,19 3,95 4,15 4,15 4,17 4,17	,002 .002 .002 .002 .002 .002 .002 .002	.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.005 .005 .005 .005 .005 .005 .01 .01	.005 .005 .005 .005 .005 .005 .005 .005	.015 .01 .01 .004 .008 .01 .008 .01 .006 .005	.02 .015 .015 .015 .015 .02 .015 .02 .015 .02	.002 .002 .002 .002 .002 .002 .007 .007	.015 .02 .02 .05 .025 .05 .025	.015 .015 .015 .02 01 .02 .02 .02 .02 .02	.02 .03 .03 .02 .01 .03 .02 .03 .02	337 337
P69 T16AI P70 P71 P72 P73 P74 P75 P77 P78 P79 P60 P81 P82 (P83 P84	c-25n- .023 1-4y .060 .082 .094 .072 .054 .079 .079 .079 .071 .071 .105 .090	.0034 .0034 .0033 .0033 .0026 .0029 .0029 .0033 .0029 .0033 .0029	4 .14 3 .19 3 .13 3 .19 5 .17 6 .17 7 .17 10 .16 10 .23 11 .19 12 .24 13 .24 14 .25	.033 .032 .036 .031 .027 .032 .032 .032 .034	.30 .32 .28 .31 .28 .19 .12 .24 .21 .25 .24 .18	5.99 2.98 6.14 5.97 6.26 6.16 6.17 6.36 6.35 6.31 6.24 6.62	4,32 4,13 4,27 4,19 3,95 1,17 4,15 4,15 4,15 4,15 4,15	,002 .002 .002 .002 .002 .002 .002 .002	.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.005 .005 .005 .005 .005 .001 .1 .01 .1 .01 .01	.005 .005 .005 .005 .005 .005 .005 .005	.015 .01 .05 .004 .008 .01 .004 .004 .004	.02 .015 .015 .015 .02 .015 .02 .015 .02 .095	.002 .002 .002 .002 .002 .002 .007 .007	.015 .02 .02 .02 .05 .025 .05 .02 .02 .02 .02	.015 .015 .015 .02 .02 .02 .02 .02 .02 .03	.02 .02 .03 .02 .01 .04 .03 .02 .03 .07 .07	337 337
P69 T16A P70 P71 P72 P73 P74 P75 P77 P78 P79 P60 P81 P82 (P83 P84 P85	e-25n- .023 1-hv .060 .082 .094 .072 .054 .079 .072 .079 .072 .074 .090 .100 .094 .094	.0028 .0034 .0033 .0033 .0026 .0029 .0039 .0029 .0033 .0029 .0033 .0029 .0036 .0029	3 .19 3 .13 3 .17 5 .17 .17 .16 .20 .23 .21 .24 .25	.033 .032 .036 .036 .037 .032 .032 .032 .033 .034 .032	.30 .32 .28 .31 .28 .19 .25 .24 .21 .25 .24 .25 .24 .25	5.99 5.98 6.14 5.97 6.28 6.14 6.16 6.17 6.36 6.35 6.37 6.31 6.24 6.02 6.09	4,32 4,13 4,07 4,27 4,19 3,95 1,17 4,15 1,17 4,17 4,17 4,17 4,17 5,90 3,66	,002 ,002 ,002 ,002 ,002 ,002 ,002 ,002 ,002 ,002 ,002	.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.005 .005 .005 .005 .005 .001 .1 .01 .1 .01 .01 .01 .01 .005	.005 .005 .005 .005 .005 .005 .005 .005	.015 .01 .05 .004 .008 .01 .004 .004 .004 .004 .005 .01	.02 .015 .015 .015 .015 .015 .015 .015 .015	.002 .002 .002 .002 .002 .002 .007 .007	.015 .02 .02 .05 .025 .05 .025 .05 .02 .1 .01 .02 .02 .01 .02	.015 .015 .015 .02 .02 .02 .02 .02 .03 .02 .03 .02 .03	.02 .03 .03 .02 .01 .04 .03 .02 .03 .07 .03 .0;	337 337
P69 T16Al P70 P71 P72 P73 P74 P75 C75 C75 P77 P81 P82 (P83 P85 P86 P87	c-25n-, .023 1-4v .060 .082 .094 .072 .054 .079 .079 .071 .105 .090 .100 .094	.0028 .0031 .0033 .0033 .0026 .0033 .0026 .0033 .0029 .0020 .0020 .0037 .0033 .0020 .0030 .0020 .0030 .0030 .0020 .0030	3 .19 3 .13 3 .19 3 .17 3 .17 .17 .16 .20 .21 .19 .21 .19 .23 .24	.033 .032 .036 .031 .027 .032 .032 .032 .033 .034 .032	.30 .32 .28 .31 .28 .31 .29 .32 .41 .90 .25 .44 .48 .43 .44 .45 .46 .46 .46 .46 .46 .46 .46 .46 .46 .46	5.99 5.98 6.14 5.97 6.26 6.16 6.17 6.36 6.35 6.37 6.31 6.24 6.62 6.09	4.13 4.07 4.27 4.27 4.19 3.95 4.15 6.17 4.15 4.15 5.57 8.66 3.76	.002 .002 .002 .002 .002 .002 .002 .002	.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .	.005 .005 .005 .005 .005 .005 .001 .01 .01 .01 .005 .005	.005 .005 .005 .005 .005 .005 .005 .005	.015 .01 .01 .05 .004 .008 .01 .004 .004 .004 .005	.02 .015 .015 .015 .015 .015 .015 .015 .015	.002 .002 .002 .002 .002 .002 .003 .003	.015 .02 .02 .05 .025 .05 .05 .02 .05 .02 .015 .02 .02	.015 .015 .015 .02 .02 .02 .02 .02 .02 .03 .02 .02 .03	.02 .03 .03 .02 .01 .04 .03 .02 .03 .07 .03 .02 .03 .02 .03 .02 .03	337 337
P69 T16A1 P70 P71 P72 P73 P74 P75 P77 P78 P79 P60 P81 P82 (P83 P84 P85 P86 P87 P68	c-25n-, .023 I-hv .060 .082 .094 .072 .054 .079 .079 .071 .105 .090 .100 .094 .094	.0028 .0034 .0033 .0033 .0036 .0029 .0020 .0029 .0020	4 .14 3 .19 3 .13 3 .19 5 .17 6 .17 17 .16 18 .19 19 .17 19 .17 19 .17 19 .17 19 .17 19 .17 19 .17 10 .17 11 .19 12 .19 12 .19 13 .19 14 .19 15 .19 16 .19 17 .17 18 .19 18 .	.033 .032 .036 .031 .027 .032 .032 .032 .032 .032 .037 .037	.30 .32 .28 .31 .28 .19 .12 .24 .21 .25 .24 .25 .26 .26 .26 .26	5.99 5.98 6.14 5.97 6.26 6.16 6.17 6.35 6.31 6.44 6.62 6.09 5.65 6.41	4, 32 4, 13 4, 17 4, 27 4, 19 4, 15 7, 4, 15 7, 4, 17 4, 15 4, 17 4, 15 5, 90 3, 66 5, 76 5, 76 5, 76	.002 .002 .002 .002 .002 .002 .002 .002	.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.005 .005 .005 .005 .005 .005 .01 .1 .01 .01 .01 .005	.005 .005 .005 .005 .005 .005 .005 .005	.015 .01 .01 .05 .008 .01 .008 .01 .008 .01 .004 .004 .004 .008	.02 .015 .015 .015 .02 .015 .015 .02 .015 .015 .015 .015 .015	.002 .002 .002 .002 .002 .002 .002 .002	.015 .02 .02 .05 .025 .025 .02 .1 .02 .02 .01 .02 .02 .02 .03	.015 .015 .015 .02 .01 .02 .02 .02 .02 .03 .02 .03 .02 .03 .04 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	.02 .03 .03 .02 .01 .04 .03 .02 .03 .07 .03 .02 .03 .02 .03	337 337
P69 T16Al P70 P71 P72 P73 P74 P75 C75 C75 P77 P81 P82 (P83 P85 P86 P87	c-25n-, .023 1-4v .060 .082 .094 .072 .054 .079 .079 .071 .105 .090 .100 .094	.0028 .0031 .0033 .0033 .0026 .0033 .0026 .0033 .0029 .0020 .0020 .0037 .0033 .0020 .0030 .0020 .0030 .0030 .0020 .0030	3 .19 3 .13 3 .17 3 .17 .17 .16 .20 .23 .21 .24 .25	.033 .032 .036 .031 .027 .032 .032 .032 .033 .034 .032	.30 .32 .28 .31 .28 .31 .29 .32 .41 .90 .25 .44 .48 .43 .44 .45 .46 .46 .46 .46 .46 .46 .46 .46 .46 .46	5.99 5.98 6.14 5.97 6.26 6.16 6.17 6.36 6.35 6.37 6.31 6.24 6.62 6.09	4.13 4.07 4.27 4.27 4.19 3.95 4.15 6.17 4.15 4.15 5.57 8.66 3.76	.002 .002 .002 .002 .002 .002 .002 .002	.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .	.005 .005 .005 .005 .005 .005 .001 .01 .01 .01 .005 .005	.005 .005 .005 .005 .005 .005 .005 .005	.015 .01 .01 .05 .004 .008 .01 .004 .004 .004 .005	.02 .015 .015 .015 .015 .015 .015 .015 .015	.002 .002 .002 .002 .002 .002 .003 .003	.015 .02 .02 .05 .025 .05 .05 .02 .05 .02 .015 .02 .02	.015 .015 .015 .02 .02 .02 .02 .02 .02 .03 .02 .02 .03	.02 .03 .03 .02 .01 .04 .03 .02 .03 .07 .03 .02 .03 .02 .03 .02 .03	337 337

~																		
Heat																		
No.	ι	Н	0		fe	. <u>Al</u>	V	, c o	<u>Gr</u>	Çu	Mg	Hn	ИI	የሁ	\$1	Мо	\$n	ВНЙ
P91	No And				• •	(10		,002	.1	,005	.005	.002	.005	.002	.015	.004	.02	
P92 P93	.094 ,002	.0041 .0039	.24 .26	,037 ,037	.27 .24	6.19 6.18	3.96 3.82	,002	;;	.005	.005	.002	.005	.002	,015	.005	.02	
P94	.061	.0031	.15	.037	. 28	5.94	+.06	.002	.1	.01	.005	.003	.03	.002	. 625	.015	.01	
P95	.030	.0033	4	.017	, 24	6,74	3.83	.002	.04	.015	.005	.003	.04	.002	.02	.02	.01	
											ost	202		002	.015	,015	.015	334
P96	.066	.0026	.16	.019	.26	6.24	3.99	,002	.08 .03	.005	.005	.003	.03	.002	.015	.015	.015	,,,,
198 198	.058 .094	.0030	.14 ,26	.018	. 25 . 27	6.07	3.92 4.03	.002	.!	,005	.005	.003	.015	,002	,015	.01	.015	355
P93	.088	.0017	.28	.037	. 25	5.95	3,80	,002	.;	.04	.005	.004	.015	.002	.02	.015	.02	
P100	.093	.0089	.26	.034	.23	5.94	4.03	.002	. 1	.01	.005	.004	.02	,002	.025	.015	.03	348
P 101	.641	0036	.14	.019	. 25	5.96	3.97	.002	.06	.01	,005	.003	.03	,002	.025	.015	.015	
5105	.094	,0036 ,0036	.20	.022	. 25	5.96	3.87	.002	.1	.01	.005	.003	.03	.002	.03	.015	.015	345
P103	.035	.0031	. 24	.015	. 25	5.95	4,06	.002	.05	.02	.005	.003	.04	.002	, n3	.02	.01	
P104	.072	.0031	. 20	.028	. 26	6.00	3.97	.002	,1	.01	.005	.01	.03	.002	.07	.015	.02	348
P105	.086	.0031	.23	.032	. 20	5.90	3.99	.002	. 1	.01	.005	÷00,	.02	,602	.015	.02	.03	
P106	.049	.0028	.16	,022	. 25	5.98	4,02	.002	.1	.01	,005	.003	.03	,002	.05	.02	.0i	311
P107	,092	.0030	.27	.031	.26	5.88	3.97	,002	;i	.01	005	.01	.03	.002	.02	.02	.02	337
P108	.094	.0030	.21	.030	.27	5.09	3.85	.002	.1	.01	.005	.003	.015	.002	.02	.015	.015	337
P309	.108	,0033	.19	.032	. 27	5.97	3.98	.002	.1	.01	,005	.004	.03	.002	.002	.02	.03	
P110	.048	.0031	.14	.016	. 24	6.03	3.82	.002	.03	.08	,005	.004	.004	,002	.02	.03	.01	
(11)	.054	oros.	.22	.028	.27	5.36	3.5%	.002	.05	.03	.005	,003	.02	. 202	,015	.015	,015	
P112	.070	.0034	.22	.026	.26	6.05	3.90	,002	, i	10.	.005	.003	.03	.002	. 92	,02	.015	
P113	.080	,0037	.18	.030	, 26	5.99	3.95	.002	.1	.01	.005	.003	.03	,002	.02	.02	.02	
P114	.080	,0028	.15	.026	, 27	5.85	3.83	,002	.1	,01	,005	.003	.02	\$00,	.03	.02 .015	.015	
P115	.042	.0026	.19	.025	. 23	5.95	4.02	,002	.015	.015	,005	\$60.	.01	.002	.02	.015	.02	317
P116	.060	.0031	.21	.028	. 20	5,92	3.95	.002	,015	.01	.005	_003	.02	.002	.025	.03	.03	
P117	.096	.0029	.23	.033	.26	5.88	3.76	.002	.1	.01	.005	.003	.02	.002	.02	.005	.015	
P118	.098	,0038	. 26	.032	. 28	5.99	3.99	.002	.1	.005	.005	.003	.04	.002	. [.015	.005	
P119	.062	,0022	.11	.028	. 27	5.90	3.78	.002	.08	.01	.005	.002	.03	.002	.02	.02 .015	.008	334
P 1 2C	,058	.0026	.15	.022	.18	5.94	4.03	.002	.1	.008	.005	.002	.04	.002	.1	.015	.015	
P121	,100	.0036	. 28	.035	. 29	5.96	3.96	.002	.1	500.	.005	002	,04	,002	, ì	.015	.015	
P123	. оън	.0031	. 40	.029	. 26	6.02	3.59	.002	.05	.005	,005	.002	.04	.002	.1	.015	.005	
P124	.946	.0029	.18	.025	.13	6.05	4.04	100	.02	.008	.005	702	.05	.002	-!	.015	.015	
P125	.076	.0036	.21	.032	. 28	5.97	3.98	.002	.1	10.	.005	.003	.04	.902	.1	.03	.015	
P126	.078	.0036	. 70	.038	-25.	5.83	1.84	.002	.03	.015	.005	.002	.03	.002	.03	. 02	.015	
P127	.058	.0032	.22	.030	.21	5.94	3.89	.002	.1	.64	.005	,003	.04	.002	-1	.03	.015	
P 1 28	.074	.0038	.28	.031	.25	5.94	3.88	.002	.03	,1	.005	.002	.03	.002	.03	.02	.015	224
1127	.026	.0017	.15	.024 .024	. ?2 . 21	5.53 6.63	3.92 3.90	.002	.03 .015	.04 .01	.005	,003 ,003	.03 .015	.005	.03	.02 .015	.008	334 317
PI3I	.026	.0010	.15	.014		0.0)	3.50	.001	.0.5		.00,	,	,		•••	,		2.,
P132	.059	.0028	.212	.032	.21	6.05	4.05	.002	.04	.01	.005	.003	.03	.002	.925	.02	.01	331
P133	. (44	.0029	.23	.036	.19	5.82	4.09	.002	.025	.01	.005	.002	.0?	.003	.03	50.	.01	
P134	.086	.0034	.226	.034	.23	6.05	4.03 3.84	.002	.03	.005 800,	,005 .025	,002	.01 .015	.002	.02 .02	.03	.ung	321
#135 #136	,053 No. Po	,0C34 ur - Liec	.33	.029	.18	6.00	3.07	,002	.07	, 000	.071	.00)	,			,	10.0	,
,0																		
2133	'ušu	nn ir	174		12	6.10	3 91	007	917	.00.	.005	.003	.01	002	.02	.02	.002	311
		ur - Elec	t rode	Broke														
(118V-		,0031	.101		5.59	.01	8.01	, GÓZ	.015	,01	.605	.002	.03	.602	.615	, Ú0 Ž	,003	
(11)	.022	, 1,117,1			3.77		0.07				,		,		,	•	•	
(TIEV-	5Fe-1A																	
(P140	.030	.6024	.696	.014	5.4	. 19	0.15	,002	,)2	.005	,005	.002	.03	.002	,015	.005	.002	
0141	.042	.0024	.152	.026	. 29 . 23	5.85 6.55	4,05 4,09	,002 ,002	.03 .84	,n) ,ooa	.005 .665	,003 ,007	.03 .92	.002	.08 .02	.00c	.004	341
P142 P143	.100 .026	.0036 .003	. 197. - 25	.029 .029	, 73 , 23	5.90	1.0°1 3.90	1:07	.04	.1	.U()4.	.052	.02	.002	.02	.02	.03	330
(TI3A)		.00)	-+3	.02)	,	2. 70	****	-	-	•								
6244								.602	.ni	.60%	uJi,	V. 2	, out.	.007	.02	.0 <i>i</i>	ÜZ	155
	_							4-1-4		Dec.	. 10		an.	.867	.03	.07	.015	341
F19,		.004-0		. 13.	. 4:1	5.5"	5.43	. ta · Z	. 1	Lar.	. 10%	667		.067	.03	.67	.015	,11
i i i i i i i i ji i ji i i i i i i i i		.0022	.ual	dlu,	. ೧೬೪	.ul	14.4.	.052	.05	n.r,	.00%	(0.)	.015	.002	.015	.00	.007	.493

ii, it													-					
Nie,	ι	н.	. 0	¥	te	41	v	Ĉr∙ .	Cı	Cu	, Mg	Mn	<u>N</u> I .	. Pb _	<u>\$</u>]_	Mo_	Sn	BRN
(1154) (1347	- 3Mu-1		. 689	.00:1.	, Or. 59	J , 93	.98	,002	.1	.605	.005	.002	.005	.002	.02	3.00	.002	248
(117A) (P148	-′iHo .022	.0023	.072	.00%	. Wid	6,96	.01	.002	.014	,005	.005	,002	.005	.002	.02	4.10	.002	311
P153	.23	.0033	16	ntt	15	6.12	3.95	.002	.015	.008	.005	.002	,015	.002	.02	.04	,003	300
F154	.082	.0025	, 28	.033	.19	5.85	4,11	.007	.02	.01	.005	.003	.015	.002	.02	.02	.008	309
P155	.021	.0032	,15	.017	, 14	6.05	4.09	.002	.02	800.	.005	.003	.02	.002	.075	.04	.002	308
PFS	.057	.0034	.31	.046	. 20	5.90	4.09	.002	.025	.005	.005	.002	.015	.002	.02	.04	.003	324
P157	۸۱۵.	.0031	. 22	.035	. 19	5.d0	3.59	.002	.04	.008	.005	.002	.03	.002	.01	.01	.004	317
P158	.041	.0028	. 23	.) 24	, le	6.90	4.09	.002	.02	.02	.002	.003	.015	.005	.02	.02	.008	317
P159	,050	.0036	. 29	.025	, lj	6.00	3.85	.002	.02	.02	ŭυŞ	.003	.015	.005	.02	.02	.008	311
P160	.037	.0028	.21	.020	.12	5.90	4.00	,002	,01	.005	.005	.002	.005	.002	.02	.01	,42	
P161 P162	.022	.0035	. 16 . 21	.017	14	6.00	3.90	.002	.015 .1	.02	.005	.003	.02	.002	.03	.02	.05	306.
F 1532	.089	.0028	.21	. 040	. 21	6,00	4.11	,002		.008	,005	.003	.03	.002	.05	.0,	,01	331
P163	.034	.00%	.14	.016	.13	5.95	3.99	.002	.015	,055	.055	.002	.005	.002	.1	.002	.015	306
P167	.015	.0044	.13	.016	. [2	5.96	2,44	.002	.015	.005	.005	.003	.01	.002	.02	.015	.83	297
9319 9319	.032	.0033 + £00,	. 19 . 19	.021 .019	.14 15	6,05 6,05	4,04 4,09	,003 ,007	.015	.005 .005	.005	.002	.01	.002	.02 .02	.02 .91	.03 .008	311 316
P170			1 tode		19	6,05	4,09	.007	.015	.005	,00 <u>;</u>	,002	.01	.002	,ui	,01	.008	310
P171	.050	.00%	. 19	.029		5.95	4.00	2	0.7	001	005	003	61	000			8.0	***
P1/2	.060	.00741	,20	.029	.17	5.90	4.07	.002	.02 .02	.005 .005	.005 .005	.002 .003	.01 .015	.902 .002	,02 ,015	.01 .015	.05 ,24	331 331
11/3	.000	.0042	, 29	.020	.73	5.90	4.08	,002	.025	.005	.005	,002	.02	,002	.013	.03	.02	311
P174	.093	,0041	.19	0,2	.17	5.07	4.05	,002	.02	.015	.005	,002	,015	.002	.02	.015	,015	331
P175	.061	.0049	.21	.079	.17	5.87	4.07	,007	.02	.ul	.005	.004	.03	.002	.02	.015	800.	326
P176	.060	. 6045	, 24	.030	.16	5.90	3.94	.002	.015	,605	.005	.002	.005	.002	.015	.03	.015	311
P177	.953	.0039	. 25	.025	.15	6.10	4.03	.002	.015	.005	,005	.002	.009	.002	.02	.02	.04	331
P178	.074	.0041	, 24	.034	.17	5.95	4.08	.002	.02	.005	,005	.002	.01	.002	.015	,02	.04	321
P179	.0/0	.0033	. 29	.028	.16	5.95	3 53	.02	.02	800.	,005	.002	.015	.002	.02	.02	.04	336
P184	.049	.0039	.22	.027	.17	5.97	3.98	.002	.02	.005	,005	.002	.02	.002	.02	.03	.04	336
PIUS	.044	.004:9	.79	.041	.17	6.05	3.98	.002	.02	.005	.005	,002	.015	.002	.02	.03	.04	341
P186	.044	.0045	. 24	.021	.13	5.85	2.23	.002	.01	.005	.005	.002	,005	.002	.025	.01	.68	
P187	.036	.0038	. 21	.026	.15	5.9/	3.83	,002	.015	.005	,005	.002	.015	.002	.02	.02	.08	20.3
P188	.030	.0041 .0012	, 14 , 29	,019 ,020	.13	6.05 5.18	3.93 3.14	.002 .002	.015 .01	.005 .005	.005	.004 .002	,01 .005	.002 .002	.02 .015	.05 .01	.02 .004	293
_										_	-	-			-		-	
P194	.020	.0046	. 24	810,	.13	6.05	4.00	.002 .002	.01	.005	.005	.002 .002	.005	.002 .002	.02	.01 .015	.002	336
P195 P196	.663	.0048 .0059	.30 .17	.034 .017	.10	5.75 5.93	3.83 2.33	.002	.015 .015	.005	.005	.002	.005	.002	.02	.005	.03 .68	336 311
F197	.027	.00/1	14	.017	.13	5.90	3.30	.002	.01	.005	,005	.003	.005	.002	.015	.01	.1	285
P198	.013	.0042	,15	.022	.13	6.00	3.89	.002	.015	.005	,005	.003	.005	.002	.02	.02	.06	321
r199	.049	.0049	,15	.021	.13	5.87	3.97	.002	.01	.015	.005	.003	. 01	.002	.02	.02	.01	
: 200	.035	0042	. 25	.032	.16	5.95	3.92	.002	.02	.008	.005	.002	.015	.002	.02	.015	.05	336
P201	049	.0041	.18	.018	.14	6.07	4.00	.002	.015	.008	.005	.002	.015	.002	,02	.02	.02	,,,
P20%	.025	nn47	11	.015	.13	6.10	4.09	.004	.02	.01	.005	.002	.015	.002	,1	.01	,006	
P-10)	.025	.0073	. 15	15 643	14	5.82	3.40	,002	.015	.005	.005	.003	.005	.002	.02	.03	1	30%
PzOt	.020	.0039	.11	.017		6.05	4,10	,002	inte	nns	በበዓ	.002	.005	.002	,02	.04	.01	311
P269	.045	.0032	. 2 2	.078	. 15	5.70	3.65	.002	.02	.02	.005	.003	.04	.602	.02	.03	.05	
P210	.064	.0023	. 21	.079	.15	5.82	1.84	.007	.015	ر00.	.005	.002	.015	.002	.02	.02	.08	311
P211	.036	.0035	.13	.021	.14	5.90	3.92	003	.02	.05	.005	\$00.	.015	.062	.03	.02	.015	305
F217	.042	10033	.10	.011	.15	5.70	3.65		, C .	116.4	70%	.002	,015	.002	.02	.03	.38	331
PZIJ	.037	004c	.17	.024	.15	5.02	3.30	, 00 ž	.015	.005	.005	.003	,01	.002	.025	.04	_0t	326
P214	.045	. 00 23	14	.076	17	5.95	4.05	.00.	,015	.015	.005	.003	,62	.002	.025	.02	.02	311
P 215	.046	.0040	-15	, fe 1 is	13	(., 6)	4.03	.097	.015	.005	.005	,904	.095	.002	.015	.03	.02	311
P216	.051	0034	.1)	.645	. 23	5.80	1 /1	509.	.02	.03	.005	\$00,	,015	.002	.025	.07	.:	306
P []]	.641	.4033	. 21	.023	. 16	6.00	1.09	.902	.015	.00%	رە0.	. Ou 2	.01	.002	.02	.02	.05	<i>1</i> 96

																			
Page No Power	Heat <u>N</u> o.	<u> </u>	H	<u> </u>	N	fe_	ΑĮ.	v	Ço	ε.	Cu	. 4g	. Hn	. <u>e</u> l .	. Pb .	<u> </u>	Mo	Sn.	BHN
P.220	P218	.043	.0048	. 22	.029	,16	5,67	3.93	.002	.015	.005	.005	.003	.015	.002	.05	.015	.06	314
P.220	P219	No Po	our - Gus	ntanilna te	ed Scrap	,													
### PAIS	P 2 2 0			.18			6.00	3,96	.002	.01	.02	.005	.002	.015	.002	.02	.02	.02	305
### PAIS	P221	.024	.0051	.14	.014		5.82	4.00	.002	.01	.005	,005	.003	.02	.002	.03	.015	.005	299
P.222	P 224	.055		.18	.025	.17	6.03	3.98	,002	.015	.02	.005	.002	.005	.002	.02	.01	.03	308
Page Page	P 225	.048	.0630	.16	,032	, 19	6,00	3.90	,002	.02	.005	.005	.004	.015	,002	.02	.04	.08	311
P223 0.042 0.093 2.00 0.004 0.15 0.004 0.15 0.002 0.015 0.004 0.015 0.002 0.015 0.008 0.013 0.015 0.002 0.015 0.003 0.015 0.003 0.015 0.003	P227	.048	.0036		.024		6.05	4.09	,002	.02	.02	.005	.002	.015	.002	.075	¢0,	.05	317
F232 .280 .280 .281	P 228	No Po	ur - Ele	ectrode l	Broke														
P132 0.30	P 2 2 9	.042		. 20	.026	. 16	5.97	3.92	.002	.02	.005	.005	.002	.005			800.	.03	317
P213	P 231	.040	,0043	.15	.030	.15	6.00	3.96	.002	.015	.005	.005	. 004	.015	.002	.02	.03	.05	30€
P.233 No. Pour - Electrode Broke P.238 No. 20. 037 203 203 205 205 206 214 215 215 205 205 206 225 225 208 3.96 .002 .015 .005 .005 .002 .015 .002 .02 .02 .02 .02 .02 .03 308 P.240 .050 .0035 .21 .026 .16 5.90 3.34 .007 .005 .005 .005 .002 .015 .002 .02 .02 .02 .03 308 P.240 .050 .0035 .21 .026 .16 5.90 3.34 .007 .005 .005 .005 .002 .015 .002 .02 .005 .005 .007 .00	£232	.030	.0037	.12	.021	.14	6.05	3.98	.002	.015	.005	.005	.004	,015	,002	,02	, 04	.06	
P218	P235	.063	.0031	.15	.024	.18	5 90	3.90	.002	.015	015	.005	.002	.01	. 902	.02	.03	.08	316
P249	P 237																		
P240																			
PART .041 .0049 .18 .021 .14 6.02 4.09 .002 .02 .005 .005 .002 .015 .002 .015 .002 .02 .005 .00	P239	.035	.0035	.13	.019	, 16	6,00	4.05	.002	.015	.005	.005	.002	.015	,002	.02	.02	.03	308
P.442 0.027 0.0041 1.86 0.071 1.14 6.03 4.00 0.002 0.015 0.05 0.003 0.01 0.002 0.02 0.02 0.05 0.05 2.065 2.065 2.066 P.444 0.019 0.004 0.014 0.018 1.16 6.05 4.09 0.002 0.01 0.005 0.005 0.003 0.03 0.002 0.025 0.025 0.025 0.015 2.092 1.15 0.018 0.002 0.015 0.002 0.01 0.002 0.015 0.002 0.015 0.018 0.018 1.15 0.018 0.018 0.004 1.15 0.15 0.018 0.002 0.015 0.005 0.002 0.015 0.002 0.015 0.005 0.005 0.002 0.015 0.005			.0039	.21	.026	.16	5.90	3.34	.002	.015	.005	.005	.002	,01		.02	.02	.03	
P248 .019 .0037 .10 .013 .17 6.05 4,10 .002 .01 .005 .002 .01 .002 .02 .015 .002 .015 .002 .015 .002 .015 .002 .02 .02 .005 .005 .003 .03 .002 .02 .02 .005 .005 .000 .001 .002 .02 .002 .003 .03 .002 .02 .005 .005 .000 .001 .002 .002 .001 .002 .002 .001 .002 .002 .001 .002 .002 .001 .002 .002 .002 .002 .001 .002 .001 .002 .002 .002 .003						.14													
P246 .030 .0040 .14 .018 .16 6.05 4.07 .002 .011 .005 .005 .003 .03 .002 .025 .025 .015 .299 P246 .022 .0014 .073 .0059 .12 5.75 4.09 .02 .02 .005 .005 .006 .002 .03 .002 .02 .02 .008 .209 P246 .027 .0031 .15 .018 .15 .018 .15 .018 .018 .15 .018 .018 .15 .018 .018 .15 .018 .018 .15 .018 .018 .15 .018 .018 .015 .015 .011 P247 .040 .0031 .21 .022 .18 5.90 3.96 .002 .015 .005 .005 .000 .01 .007 .025 .02 .02 .05 .038 P248 .032 .0014 .068 .0064 .13 5.70 4.09 .002 .015 .005 .005 .002 .01 .007 .002 .02 .02 .03 .008 P250 .031 .0035 .18 .024 .15 5.95 .94 .002 .015 .005 .005 .005 .002 .015 .002 .005 .002 .015 .002 .005 .002 .015 .002 .005 .002 .015 .002 .005 .005 P251 .022 .0040 .11 .016 .15 6.17 4.13 .002 .015 .005 .005 .002 .015 .002 .015 .002 .03 .006 .002 .015 .004 .008 P252 .035 .0016 .07 .0072 .13 5.77 4.09 .002 .011 .005 .005 .002 .011 .002 .015 .004 .007 P253 .046 .0038 .16 .0024 .15 5.82 4.09 .002 .011 .005 .005 .002 .011 .002 .015 .015 .004 .007 P255 .046 .0019 .07 .0073 .14 5.82 4.09 .002 .015 .005 .005 .002 .01 .002 .02 .02 .015 .004 .017 P255 .046 .0019 .07 .0073 .14 5.82 4.09 .002 .015 .005 .005 .002 .01 .002 .02 .02 .015 .004 .017 P255 .046 .0019 .07 .0073 .14 5.82 4.09 .002 .015 .005 .005 .002 .01 .002 .02 .02 .015 .004 .017 P255 .046 .0019 .07 .0073 .14 5.82 4.09 .002 .015 .005 .005 .002 .01 .002 .02 .02 .015 .004 .017 P255 .046 .0019 .07 .0073 .14 5.82 4.09 .002 .015 .005 .005 .002 .01 .002 .02 .02																			
P246 0.028 0.014 0.73 0.059 1.2 5.75 4.09 0.02 0.02 0.05 0.05 0.002 0.01 0.002 0.02 0.02 0.08 269 P.466 0.027 0.031 1.15 0.18 1.15 5.95 4.11 0.002 0.01 0.005 0.05 0.002 0.01 0.002 0.08 0.015																			
PAMP 0003	P 244	.039	.0040	.14	.018	.16	6.05	4.07	,002	.01	.005	.005	.003	.03	.002	.025	.025	.015	299
PAPA 0,040 0,031 2,21 0,022 18 5,90 3,96 0,002 0,15 0,02 0,01 0,07 0,25 0,02 0,03																			
P288 0.012 0.0033 1.19 0.022 1.15 6.02 2.98 0.002 0.11 0.005 0.002 0.01 0.002 0.02 0.02 0.05 0.005 0.005 2.74 P350 0.011 0.035 1.18 0.024 1.15 5.95 3.94 0.002 0.15 0.05 0.05 0.002 0.15 0.002 0.1 0.00 0.05 0.005 2.74 P350 0.011 0.035 1.18 0.024 1.15 5.95 3.94 0.002 0.15 0.05 0.05 0.002 0.15 0.002 0.1 0.02 0.05 0.005 2.93 P351 0.022 0.0040 1.11 0.16 1.5 6.17 4.13 0.002 0.1 1 0.05 0.005 0.002 0.15 0.002 0.3 0.2 0.002 2.99 P352 0.035 0.016 0.07 0.072 1.3 5.77 4.09 0.002 0.2 0.5 0.005 0.002 0.1 0.002 0.15 0.004 2.77 P253 0.00 0.038 1.16 0.02 1.16 5.95 4.05 0.04 0.0 0.02 0.1 0.005 0.002 0.1 0.002 0.15 0.05 0.004 2.77 P255 0.046 0.019 0.07 0.073 1.14 5.82 4.09 0.002 0.0 0.05 0.005 0.002 0.1 0.002 0.15 0.15 0.15 0.15 0.19 P355 0.046 0.0019 0.07 0.073 1.14 5.82 4.09 0.002 0.1 0.05 0.05 0.002 0.0 0.002 0.0 0.15 0.05 0.05 0.02 0.1 0.002 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15						.15													
P269 .032 .0014 .068 .0064 .13 5.70 4.09 .002 .02 .02 .005 .002 .02 .002 .002 .0						.18													
P250																			
P255 0.02 0.0040 11 0.16 15 6.17 4.13 0.02 0.11 0.005 0.002 0.15 0.002 0.3 0.02 0.004 277 P253 0.040 0.038 1.16 0.027 1.16 5.95 4.05 0.064 0.2 0.5 0.05 0.002 0.01 0.002 0.02 0.02 0.05 0.015 0.004 277 P253 0.040 0.038 1.16 0.027 1.16 5.95 4.05 0.064 0.2 0.5 0.05 0.002 0.01 0.002 0.02 0.02 0.015 311 P254 0.035 0.0011 1.14 0.019 1.14 5.95 3.30 0.002 0.01 0.005 0.005 0.002 0.01 0.002 0.015 0.015 0.014 P255 0.046 0.0019 0.07 0.0073 1.12 5.82 4.09 0.002 0.02 0.008 0.005 0.002 0.01 0.002 0.02 0.015 0.004 277 P256 0.033 0.0051 1.20 0.021 1.15 6.05 3.97 0.002 0.01 0.005 0.005 0.002 0.05 0.002 0.02 0.08 0.03 306 P257 0.050 0.0012 1.19 0.026 1.18 5.92 3.197 0.002 0.15 0.005 0.005 0.002 0.023 0.022 0.02	P 249	,032	,9014	.068	.0064	.13	5.70	4.09	.002	.02	.02	.005	.002	.02	,002	.02	,005	.005	274
P252 0.35 0.400 0.038 1.66 0.027 1.65 5.95 4.09 0.002 0.02 0.05 0.005 0.002 0.01 0.002 0.05 0.015 0.04 277 P253 0.400 0.038 1.66 0.027 1.66 5.95 4.05 0.064 0.02 0.01 0.005 0.005 0.002 0.01 0.002 0.05 0.05 0.03 1.14 0.019 1.14 5.95 3.90 0.002 0.01 0.005 0.005 0.002 0.01 0.002 0.05 0.03 0.01 0.002 0.05 0.03 0.01 0.002 0.05 0.002 0.01 0.002 0.05 0.002 0.01 0.002 0.05 0.002 0.01 0.002 0.02 0.015 0.004 277 P256 0.033 0.0051 2.00 0.021 1.15 6.05 3.97 0.002 0.01 0.005 0.005 0.002 0.05 0.002 0.02 0.02																			
P253																			
P255 .046 .0019 .07 .0073 .12 5.82 4.09 .002 .01 .005 .005 .002 .01 .002 .015 .015 .015 .02 .77 P256 .033 .0051 .20 .021 .15 6.05 3.97 .002 .01 .005 .005 .002 .01 .002 .02 .02 .008 .03 306 P257 .050 .0032 .19 .026 .18 5.92 3.97 .002 .015 .005 .005 .002 .005 .002 .025 .002 .025 .008 .03 306 P257 .050 .0032 .12 .016 .15 6.10 3.98 .002 .015 .005 .005 .003 .015 .002 .025 .005 .02 .02 .028 .03 .02 .01 P255 .049 .0020 .087 .0092 .13 5.80 4.02 .002 .02 .005 .005 .003 .015 .002 .03 .02 .01 P255 .049 .0020 .087 .0092 .13 5.80 4.02 .002 .02 .005 .005 .003 .015 .002 .03 .02 .01 P255 .049 .0020 .087 .0092 .13 5.80 4.02 .002 .02 .00 .005 .005 .003 .015 .002 .02 .02 .02 .008 .279 P260 .045 .0050 .037 .07 .028 .15 5.92 3.90 .002 .015 .02 .005 .003 .015 .002 .02 .02 .02 .008 .03 .02 .01 P255 .049 .0020 .037 .07 .028 .15 5.92 3.90 .002 .015 .02 .005 .003 .01 .002 .015 .02 .015 .311 P262 .030 .0033 .15 .021 .16 5.92 3.90 .002 .015 .02 .005 .003 .01 .002 .015 .02 .015 .311 P262 .030 .0033 .15 .021 .16 5.92 3.90 .002 .015 .002 .005 .003 .01 .002 .025 .02 .01 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02																			
P.255 .046 .0019 .07 .0073 .12 5,82 4.09 .002 .02 .008 .005 .002 .01 .002 .02 .015 .004 .277 P.256 .033 .0051 .20 .021 .15 6.05 3.97 .002 .01 .005 .005 .002 .005 .002 .02 .008 .03 .306 P.257 .050 .0032 .19 .026 .18 5.92 3.97 .002 .015 .005 .005 .002 .02 .02 .028 .03 .306 P.258 .049 .002 .19 .016 .15 6.10 3.98 .002 .01 .005 .005 .003 .015 .002 .03 .02 .01 P.255 .049 .0020 .087 .0092 .13 5.80 4.02 .002 .02 .005 .005 .003 .015 .002 .03 .02 .01 P.256 .049 .0020 .087 .0092 .13 5.80 4.02 .002 .02 .005 .005 .003 .015 .002 .03 .02 .01 P.256 .049 .0050 .16 .023 .17 5.95 4.00 .002 .02 .02 .005 .005 .003 .015 .002 .02 .02 .008 .279 P.260 .045 .0050 .16 .023 .17 5.95 4.00 .002 .01 .005 .005 .005 .002 .02 .002 .02 .02 .008 .279 P.261 .040 .0037 .07 .028 .15 5.92 3.90 .002 .015 .02 .005 .003 .01 .002 .015 .02 .015 .02 P.262 .030 .0033 .15 .021 .16 5.95 4.07 .002 .015 .002 .005 .003 .01 .002 .025 .02 .015 P.263 .051 .0029 .17 .024 .17 5.87 3.92 .002 .015 .005 .005 .002 .015 .002 .025 .02 .01 P.263 .051 .0029 .17 .024 .17 5.87 3.92 .002 .015 .005 .005 .005 .002 .01 .002 .028 .01 .01 .038 P.264 .034 .0031 .22 .026 .18 6.00 4.17 .002 .11 .01 .005 .003 .01 .002 .015 .015 .015 .02 P.265 .037 .0033 .19 .025 .16 6.03 4.00 .002 .015 .005 .005 .002 .01 .002 .015 .015 .015 .02 P.265 .037 .0033 .19 .025 .16 6.03 4.00 .002 .015 .005 .005 .002 .007 .002 .015 .015 .015 .02 P.267 .024 .0013 .026 .0072 .17 5.87 4.00 .002 .015 .005 .005 .002 .007 .002 .02 .015 .015 .015 .02 P.268 .037 .0033 .19 .025 .16 6.03 4.00 .002 .015 .005 .005 .002 .007 .002 .02 .02 .01 .015 P.269 .003 .003 .003 .003 .003 .003 .003 .00																			311
P.256	-									-									
P257 050 0032 19 026 18 592 3.97 .002 .015 .605 .602 .603 .022 .015 .022 .021 .003 .015 .002 .021 .003 .015 .002 .021 .003 .015 .002 .021 .005 .005 .005 .003 .015 .002 .021 .022 .022 .021 .003 .022 .022 .022 .022 .022 .022 .023 .022 .024 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .002 .005 .005 .005 .002 .005 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																			
P258 .024 .0052 .152 .016 .15 6.10 3.98 .002 .01 .005 .005 .003 .015 .002 .03 .02 .01 P259 .049 .0020 .087 .0092 .13 5.80 4.02 .002 .02 .02 .005 .005 .005 .002 .02 .002 .0				. 20												.02			300
P265																			
P.261																			279
P.261		A1.E	0010	16	022				003	01	001	001	00.1	210	202	• •	۸.	-: 1.	***
P262 0.30 0.033 15 0.21 16 5.95 4.07 0.02 0.05 0.05 0.05 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.05																			
P263) 1 1
P264																			308
P266 .034 .0922 .15 .021 .14 6.10 4.03 .602 .01 .005 .005 .002 .022 .02 .01 .015 .022 .01 .015 .022 .01 .015 .022 .01 .015 .02 .005 .005 .002 .01 .005 .005 .005 .002 .01 .005 .002 .005 .002 .02 .01 .004 .017 .002 .01 .005 .005 .002 .005 .002 .02 .01 .006 .005 .002 .005 .002 .005 .002 .002 .001 .002 .001 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .003 .002 .003 .002 .003 .002 .003 .002 .003 .002 .003 .002 .003 .003 .003 .003 .003																			
P266 .034 .0922 .15 .021 .14 6.10 4.03 .602 .01 .005 .005 .002 .022 .02 .01 .015 .022 .01 .015 .022 .01 .015 .022 .01 .015 .02 .005 .005 .002 .01 .005 .005 .005 .002 .01 .005 .002 .005 .002 .02 .01 .004 .017 .002 .01 .005 .005 .002 .005 .002 .02 .01 .006 .005 .002 .005 .002 .005 .002 .002 .001 .002 .001 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .003 .002 .003 .002 .003 .002 .003 .002 .003 .002 .003 .002 .003 .003 .003 .003 .003	D 26 t	027	0077	to	0.25	16	6 01	6.00	002	016	ans	nas	002	400	602	۸2	۸1	o.	22.1
P257 .024 .0013 .066 .0072 .12 5,85 4,08 .007 .01 .005 .001 .015 .02 .008 271 P268 .037 .0011 .16 .025 .16 6,03 4,00 .002 .005 .002 .002 .002 .002 .001 .004 311 P268 .037 .0026 .17 .026 .16 5,07 4,03 .002 .001 .002 .002 .001 .002 .001 .002 .001 .002 .001 .002 .001 .002 .001 .002 .001 .002 .002 .001 .002 .001 .002 .001 .002 .001 .002 .002 .001 .002 .002 .001 .002 .002 .001 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .003 .002 .003 .002																			3
P268 .037 .0031 .16 .025 .16 6.03 4.00 .002 .01 .005 .002 .005 .002 .02 .01 .04 311 P269 .042 .0026 .17 .026 .14 .5.27 4.03 .002 .01 .005 .002 .001 .007 .007 .007 .007 .007 .007 .007 .002 .02 .015 .02 .015 .02 .015 .002 .02 .02 .001 .002 .02 .01 .002 .02 .01 .002 .02 .01 .002 .02 .01 .002 .02 .01 .002 .02 .01 .002 .02 .01 .002 .02 .01 .002 .02 .01 .002 .02 .01 .002 .02 .01 .002 .02 .01 .002 .02 .01 .002 .02 .01 .002 .01 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>.12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>271</td></td<>						.12													271
P276 .042 .0026 .17 .026 .14 5.07 4.03 .002 .01 .001 .002 .003 .						.16													
P773 .027 .0017 .005 .0086 .12 5.95 4.77 .002 .05 .005 .002 .279 .002 .01 .002 .02 .015 .002 .279 .279 .005 .005 .002 .005 .007 .015 .002 .279 .279 .005 .005 .005 .005 .007 .015 .008 .02 .344 .005 .005 .005 .002 .005 .002 .005 .002 .002 .005 .002 .002 .005 .002 .005 .002 .005 .002 .005 .002 .005 .002 .005 .002 .005 .002 .005 .002 .005 .002 .005 .002 .005 .002 .005 .002 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .0																			
P773 .027 .0017 .005 .0086 .12 5.95 4.77 .002 .05 .005 .002 .279 .002 .01 .002 .02 .015 .002 .279 .279 .005 .005 .002 .005 .007 .015 .002 .279 .279 .005 .005 .005 .005 .007 .015 .008 .02 .344 .005 .005 .005 .002 .005 .002 .005 .002 .002 .005 .002 .002 .005 .002 .005 .002 .005 .002 .005 .002 .005 .002 .005 .002 .005 .002 .005 .002 .005 .002 .005 .002 .005 .002 .005 .002 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .0	y / m.	0.4	111.5.5	i-	ū. 3	:4	5 40.	1.78	.007	A15	nar	201	002	por	002	0.7	93	43	
9272 .009 .0036 14 .005 16 6,03 4,03 .002 .01 .005 .002 .003 .002 .002 .005 .002 .005 .002 .005 .002 .002 .005 .002 .002 .005 .005 .005 .005 .005 .005 .005 .00						12													220
P273						14.													
P274				.17	.024	.16		4.03											
P27F .657 .6623 .20 .025 .15 5.97 3.97 .002 .015 .005 .005 .002 .001 .007 .02 .008 .03 326 .027 .004 .0026 .22 .029 .16 5.72 3.17 .002 .015 .00 .005 .007 .01 .002 .07 .07 .09 .321 .0026 .003 .0026 .22 .029 .16 5.72 3.17 .002 .004 .005 .005 .007 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02																			
P27F .657 .6623 .20 .025 .15 5.97 3.97 .002 .015 .005 .005 .002 .001 .007 .02 .008 .03 326 .027 .004 .0026 .22 .029 .16 5.72 3.17 .002 .015 .00 .005 .007 .01 .002 .07 .07 .09 .321 .0026 .003 .0026 .22 .029 .16 5.72 3.17 .002 .004 .005 .005 .007 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02	P 275					::	617	1,00	.002	.01	. 1105	.004	.002	.01	. 00-2	02	٥.	Uŝ	311
P277 .044 .0076 .22 .029 .0 5.72 3002 .015 .07 .005 .007 .015 .00 .007 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02		.647	.0623	. 20	.025														
P278 .000 .0035 .00 .026 .20 5.35 5.11 .000 .00 .005 .005 .007 .02 .02 .07 .02 .02 .326																			
		Oria.	.0935	. 70															
	£179	.037	0035	. 18	.075	. 3/.	5 97	3 53	.002	c10.	uo!	.005							

Ju5

Heat					_			• •		•		•	•					
NO.	c	H	v	Ń	Fe	, Al	٧,	. Co	Ĺ	Cu	Mg	_ Mn	NI.	l.P	51	!kı	Sn	P!!!
B 100	022	0033	004	010		1 44	L 5.1	202	•	001	001			001				2.23
P 280 P 281	.037 .044	.0022	.096 .18	.010 .026	.12	5.80 6.00	4.03 4.00	.002 .002	.0∤ .015	.005 .04	.005	.002	.02 .008	.002	.02 .015	.0; .02	.004	267 316
P /82	,048		.20	.012	.12	5.87	4.09	.002	.015	.005	.005	.002	.008	.002	.02	.008	.002	282
£783	.042		. 20	.025	.16	5.97	4.03	,002	.01	.005	.005	.007	.005	.002	.02	.000	.015	336
P 284	.044	8600.	.13	.023	14	5,95	3.98	.002	.02	.00%	.005	.002	.1	.002	.1	,005	.005	108
			_	_		_												
	A .034	.0036	.12	.014	-15	6.03	4.09	.002	.01	800.	.005	.002	800	.002	.015	015	.004	296
	.013	.0047	.17	.015	-16	6.03	4.14	.002	.015	.005	.005	.002	.01	,002	.08	.005	.005	299
6599 6584	.031 .050	,0029 .0036	.17 .20	.023 .027	.14	6.05 5.70	4.07 3.57	.002	.015 .025	.005	.005	.002	.005	.002	.02	.015	.015	308
P 289	.043	.0030	.11	.0053	.14	5.80	4.05	.002	.015	.005	.005	.002	.008	,002	.015 .02	.005	.015	321 277
		,	• • •	,,	•	,,,,,	,		,	,00,	.00,		.000	,002	,01	.000	•••	-//
P 290	.060	.0056	. 20	.030	.16	5.75	3.92	.002	.015	ر00.	.005	,003	401.	,002	.02	.01	.06	317
P 291	.033	.0032	. 19	.027	.15	5.85	4.07	.002	.015	.005	.005	.002	.005	.00?	.02	.015	.02	311
P 292	.048	.0042	. 20	.024	.16	5.94	3.98	.002	.015	.005	.005	.002	800.	.002	.02	.008	.015	321
P 293 P 294	.048 140.	.0030 .0036	. 21	.025	-15	5.57	4.03	.002	.02	,005	.005	.002	.008	.002	.015	.005	.003	316
r 294	.041	, 60 30	. 19	.024	.17	6.00	1.91	. 002	.015	.005	.005	,002	800,	.002	.015	.005	.07	321
P 296	,051	.0036	, 22	.026	.17	5.90	4.07	.007	.02	.005	.005	.002	,005	,002	.015	.02	.015	
P 303	.057	១០ ខេ	.082	.015	.15	4.77	4.10	.002	.02	,005	.005	,002	800,	002	.015	.01	.003	279
P 504	.049	.0036	.23	.015	.17	5.30	4.03	.002	.015	.005	.005	,007	,005	002	.02	.01	.015	321
P 305	.050	.0811	. 22	.029	.17	5.75	3.87	.002	.02	005	,00°,	,002	.005	\$00,	.03	.01	.02	324
r 306	.047	.6023	.71	.025	. 16	5.35	4.05	.002	.62	.005	.005	.00 <i>i</i>	,005	,002	.03	10.	.015	308
P307	9,10	.0045	.22	.026	.16	5.87	4.00	.002	.02	,nus	.465	,003	.015	.00?	,025	.015	.08	305
P308	.044	.0038	. 19	.026	.16	5.80	4.07	.002	.02	.005	.00	.002	800,	.002	.02	.015	.03	317
P 3.09	.063	,6033	.22	.027	.16	5.97	4.02	.002	.015	.005	.005	.003	,008	,002	.015	.015	.03	317
P310	.052	,0046	. 20	.028	-17	6.04	3.95	.032	.015	.005	.005	.003	,01	.002	.02	.015	.05	316
7311	.041	.0033	. 19	.023	.16	5.80	4.07	.002	.015	.005	.005	.vo3	10,	.002	.02	.015	.02	321
P312	.049	,0045	. 18	,027	.16	5.85	4.03	,002	.015	.008	.005	.002	,008	,002	.015	10.	.015	321
P314	.053	.0026	.21	.026	.17	5.80	4.07	.002	.03	,005	,005	,003	,01	.002	.02	.02	.03	336
P315	.046	.0032	.27	.024	.18	5.97	3.98	.002	.02	.ci	.005	.002	800.	002	.02	.015	015	324
P316	.050	. 2029	. 16	.025	.19	5.92	4.05	.002	.015	.005	.005	.003	800,	.002	.015	.01	.02	314
P317	.044	.0031	. 20	.026	.17	5.70	4,11	.002	.05	.005	.005	,002	800,	.002	.02	.02	.03	336
P318	06.1	.0048	14.					007										
P319	.057	.0052	, 14 , 19	.027 .025	.18	6.10 5.95	3.90 4.07	.002 .GO2	.015 .015	.005	.005 .005	.002 .002	.005	.002	.015	.015	.03	316
P 3 20	.049	.0052	,19	.030	15	5.87	3.99	.002	.015	.005	,005	,002	,005 ,005	,002	.015	.015	.04 .04	316 321
P321	.052	.0035	.21	.026	.16	5.90	4.00	.002	.015	.005	.005	.002	,005	.602	.015	.015	.02	311
P322	.053	4400	. 20	.028	.16	5.92	4.00	.007	.015	.005	.005	.003	.008	.002	.02	.015	.03	331
																	_	
P323	.03!	.0047 .0043	. 20	.021	.15	5.97	4.09	.00?	210.	.กกร	,005	.003	.008	.002	.015	.015	.015	311
P324 P325	.051 .051	.0043	. 21 . 21	.027 .025	.16	5.85	3.98	.002	.02	.005	.005	.002	.01	,002	.02	.015	.04	326
P3.6	.958	.0057	,21	.025	.17	5.90 5.92	4.03 3.98	.002 .002	.02 .02	,005 ,005	.005 .005	,002 ,002	.01 .01	.002	.08	.004	.004	326
P327	810.	.0037	.18	.023	.16	6.02	4.05	.002	.015	.005	,005	,002	.005	.002	.08	.003 800.	,004 ,03	316 321
				-			-			,	,	,	,			1000	,	,
P328	.027	.0034	. 15	.016	.16	5.67	4.11	.602	.015	,005	,005	.002	.008	.002	,UŽ	.01	,űű4	311
P329	.027	.0033	. 15	.013	.14	6.05	4.02	.002	.015	.02	.005	,002	10,	0.03	.02	.01	.02	311
F330	.049	.00-36	. ; !	.574	.16	3.95	4.00	.002	.015	.008	.005	,002	.008	.002	.02	.015	.05	521
P332	.037 na	0100. e£00	.065 14	.00/4 .017	.13	6.08	4.05	.007	(125 (125	.005	.005	.002	.02	607	.68	.004	.002	272
		1117,14	1.4	.017	. 10	0.00	4. Ot-	.092	,015	.015	.005	.003	.005	,002	.015	.ŭūž	.Ūī	302
P 5 3 4	.040	.00/2	.683	.011	.13	5.60	4.0j	.002	.025	.005	.005	.002	.015	,002	.08	.004	.002	290
P335	.053	,0023	, 22	.027	.16	5.92	4.05	.002	. 04	.005	.005	.002	B00.	,002	.02	.91	,02	326
P 3 36	Jr.0.	,0032	11	3		5.70	3.38	.007	.02	.005	.005	.002	.905	,007	.0?	.01	.02	311
b333	.053 .044	.00 }5 .44 00,	. 20	.025	. †t.	t .05	4.03	.063	.0?	.03	.005	CGS	.005	.002	.015	.01	.02	
b 3140	.044	,007	. 19	.627	.16	5 85	4.02	.007	.02	.008	.00%	.UUZ	.005	.002	,ΰŹ	.01	.02	327
9347	, 1 4.n	0030	, и	ŋ <i>)</i> +:	17	5. 90	4 00	907	. 0 2	Oile	.005	.002	,00g	.002	.02	.015	.03	327
P343	. 06,44	. 00 šć.		.030	37	1.67	4.0	.007	.01.	.006	.005	.002	005	.007	.02	.005	.02	324
P 344	.055	.004	. 20	.030	. 14	5.90	4.07	, 00 /	.0.	090	.005	00 1	.00%	002	.02	.01	.02	34;
P 345	.044	.0031	. 20	.026	.16	5.95	4.00	.002	,07	.91	.005	1007	.00៥	.002	.0:	.01	.64	317
P 344	. 040	,693C	. 49	.022		5.92	4.07	.002	. (-1	c(ii).	.005	,002	÷00;	.002	.015	.01	.615	311

											_							
ű					_						-			-				
No.	C	н.	ľ	. N .	f e	AI	, v ,	Ct.	Cr	Cu	. Hg	An	ИI	РЬ	. \$1	, Mo	Sıı	BHŃ
£ 347	059	.0034	. 20	.029	-17	5.90	4.04	.002	.02	.005	.005	.002	.005	, OD 2	.015	.01	.02	331
P 355	800.	.0016	.06	.058	.080	5./2	4, 13	.002	,01	.005	.005	.003	800.	.002	.02	.00%	.002	277
P 356	.025	.0022	, Ota	.079	.0/5	5.80	4.11	.002	.01	. 1	.005	.002	.004	.002	10.	.002	.002	290
F 357	.028	.0020	.65	.045	. 075	5.87	4.13	.002	.01	.005	.005	,002	.008	.002	.02	.005	.002	287
		.00%	. 22	.027	.17	5.80	4.07	.002	.02	.005	.005	.002	.005	.002	.02	.005	,015	327
1361	.075	.0026	. 21	.032	.18	5.94	3.88	.002	.015	.01	.005	.003	.005	.002	.015	.22	.015	324
P362	.041	.0029	.71	.023	.15	5.67	3.94	.002	.015	.005	.005	.003	.005	.002	.015	.02	.008	314
P363	.052	.0041	. 24	,027	.15	5.97	3.97	,002	.015	800.	.005	.002	.005	.002	.02	.015	.03	317
P364	.045	.0040	. 24	.025	.15	5.60	3.83	.002	.015	10,	.005	.002	.005	2002	.02	.015	.01	305
P 365	.073	.0041	. 24	.031	. 16	0.15	1.97	.002	.02	800,	.005	,00?	.005	.002	,02	.01	.02	311
												-			•	•	•	-
P 366	.051	.0033	. 25	.024	. 16	6,25	4.03	,002	.015	.005	.005	,003	.005	.002	.02	.005	.02	311
F 3/57	.058	.0032	81.	.029	. 16	6.00	4,05	,007	.015	.01	005	.003	.005	.002	.02	.005	.02	346
P 368	.083	.0052	. 24	.030	.18	5.90	4.04	.002	.025	10.	.005	.002	.005	.002	.015	.015	.02	327
P 369	.063	.0036	. 23	.027	. 16	5.90	4.05	.002	.02	.01	,005	.002	.005	.002	.015	.015	.02	317
r370	.073	.0033	, 24	.031	.18	5.90	4.06	,002	.015	10,	.005	.003	.005	.002	.015	.02	.02	314
P371	.063	,0040	.27	.018	. 18	5.06	3.98	.02	.02	.005	.005	.002	0.1	***		205	000	121
P377	.049	.0040	.13	.012	. 14	5.72	4.02	.002	.015	800,	.005	.002	.01 .01	.002	. í .02	.005	.008	331 279
P373	.064	.0026	. 74	,030	.17	5.95	4.00	.002	.015	800.	.005	,002	.005	.002	,02	.005	.02	324
1374	.064	.0028	. 25	.030	. 21	5.95	4.03	.002	. ůž	10	.005	,007	.005	.002	.015	.002	.ū2	۶۵۰۰ (1از
P375	042	.0033	.12	.010	.13	5.80	4.05	,002	.025	800,	.005	.002	,01	.002	.025	.005	.004	287
.,,,	•	,,,,,		,,,,	. ,	,,,,,,	.,.,	. ,		,000	,,,,			.001	.01,	.00,		10,
P376	.066	.0028	.14	.016	.14	5.70	4.05	.002	.02	.008	.005	.002	.01	,002	.025	.005	.004	296
P378	.048	.0033	26	.023	. 15	6.05	3.98	.002	.045	.005	.005	.002	.01	.002	.1	.005	.008	317.6
F379	.699	.0034	. 26	.038	. 22	5.85	3.93	.002	.01	800.	.005	003	.005	.002	.015	.004	.02	334.3
F383	.0/3	.0.20	. 26	.033	, 20	5.90	3.98	.002	.01	.005	.005	.003	,005	.002	.015	.02	.015	331
F 381	.085	,0053	. 25	.030	. 20	6.10	4.07	.002	.03	.005	.005	.003	.03	.002	.1	.01	.008	331
P 382	.093	.0031	. 27	.031	.19	6.00	4.04	.002	.07	د ۵۰۰	.005	.002	.02	.002	- !	.01	R00.	331
P 383	.066	.0027	. 26	.031	- 17	6.04	3.87	007	.01	.01	005	.007	.005	.002	.015	.004	.02	316
P384	.057	.0058	. 24 . 24	.028	.18	6.03	3.91	.002	.01	.005	.005	.002	.005	.002	.015	.015	.015	326
P385 P386	.078	.0049	. 23	.037 .035	. 20 . 20	6.05 5.95	3.81 4.00	.002	.015 .01	.008	.005	.003	.005	.002	.015	,01 .015	.02	311
F 300	.070	.0049	.43	.055	. 20	2.33	4.00	.002	.01	,005	.005	.002	.005	.002	.015	.015	,015	306.5
P387	.074	.0076	. 26	.033	.19	6.02	3,82	.002	.c	BÚG.	.005	,003	. 005	.002	.01	.01	.02	331
P388	.076	.0041	. 25	.031	.20	5.65	3.98	.002	.01	300.	.005	.003	,005	.002	.01	.015	.015	326
P389	.080	.0041	.27	.032	. 20	5.80	4.00	. 002	.315	.008	.005	.002	.005	.002	.015	.01	.015	346.5
P390	.074	.0046	. 28	.041	.19	5.96	3.75	.002	.015	.008	.005	.002	.005	.002	.015	.015	.93	341.5
P 391	.0/8	.0045	. 26	.032	.21	5 Ós	4.00	.001	.015	.01	. 005	.002	.005	.002	.015	.01	.02	326
P 392	.051	,0028	. 24	.028	.17	6,00	4.04	.002	.04	, 005	.005	.002	.0?	ดคว	.!	10.	.01	346.5
P393	.065	.0030	. 25	.030	.19	5.95	3.88	.002	.02	.008	.005	.002	.005	,002	.02	.01	.015	352
P 394	.046	.0021	.22	.075	.18	6.15	4.04	.032	.03	.008	.005	.003	.01	,002	.03	.01	.01	33i
P395	.053	.0027	72	.025	.16	6.25	4.03	.002	,01	.005	. 005	.003	,005	,002	.01	.01	.02	
P396	.053	.0026	. 24	.036	.16	6.05	4.05	.002	.015	.005	. 005	.002	,005	.002	,015	.01	.02	
P397	.05/	.0026	.22	.024	.17	6,20	4.02	.002	,02	.005	,005	.003	800,	.002	.015	.01	.02	
ŕžýö	,ûń7	.0028	,23	.029	. 76	6 07	3.81	.002	.02	.01	.005	.002	.005	.002	.si	.02	.015	323
P399	.025	.0049	. 32	.031	.17	6.20	4.07	.002	.015	.005	.005	.co4	.015	.002	.01	.01	.07	302
P400	.046	. OC 34	24	630	. 16	ē' lů	3.98	.002	.025	,00%	,005	.002	.ūi	UUZ	. 1	.005	.002	316
P401	.046	.0036	, ž l	.023	.16	6.11	4.00	.003	.015	:00ა	.005	004	.015	407	1116	u:	alı	<u>)</u> 11
									_									
P402	UL/B	.0023	. 23	.031	-16	6.05	4.05	.003	. 025	.02	, 00%	,002	.02	.002	. 1	ć i 0.	500.	326
P463	.0(0	.0027	. 26	.033	. 16	5.05	4.01	.002	.02	.005		.002	.01	,002	.08	.005	.01	321
P404 F405	052 069	0023 .6039	. 75	010	.16	6 05	4.04 4.01	002	,03	.908	.095	.002	.01	,0u2	.05	,005	.05	311.3
F405 F406	, G64	miss	. 75	.030	.17	5.75 5.35	4.01	.002 500.	.03 04	.005 665	.005	.001 \$40	00s	003	-915	.03	.63 	357.6
L-100	. 1313-4	ining		.0.10				. 170 c	U-1	GOS	.095	902		.002	.1	, ûû y	.000	327.6
2410	.07.2	.0027	. 24	.07.	5	6.65	4.05	.002	.63	,004	.005	643	Det	.002	.02%	63	Cinn	41.5
P411	.00.2	.0013	. 23	.010	. 6	5.95	4.07	.002	.015	.04	.00:	.092	.005	667	0.45	.0!	B00.	324.4
8412	.054	.0125	24	,026	.16	5.65	4.07	.002	.015	.0:	00	.007	.005	002	.075	.00 ,	.004	331
14!3	.027	.60333	.17	.0!9	. 15	6.10	4.09	.007	.04	.001	.005	.007	.01	.002	,1	.00.2	Núż	114.3
P414	(u,t,	.9037	. 73	.030	.13	6.05	زه. ز	.002	r:-	.61	000	203	.01	.001	SI	.01;	ais	317.6

.s							-					_						
He et No	C	н	Ο.	N	Fe	Al	v,	Cıə	(r	Gu	Ng	Иn	NI.	Pb	SI	Ho	\$n	Вим
P415	.045	.0075	. 26	,úžj	.15	5.95	4.08	.002	.07	.00%	.005	.00?	.01	.002	.02	.002	.002	
P416	.058	.0021	14	0.00	71	/ ₂ , tru	4 nt	•:€12	, Gri	.00%	.00	.002	.005	002	.02	.03	015	336
P41/			•			nst -	HIT WAT											
1419 1419	.061 .064	.0026	. 14 . <i>1</i> 6	.019 .016	.17	6,10 6,00	4.03 6.00	.007	.(15 02	.01	, 005 .005	.007	.005	007	.03 .025	800. 600.	.015 .615	321 337.4
2019	. Orses	.0072	. 20	.036	.17	65,00	4,14,	,002	112	,(1117)	,uus	.002	.005	.002	.025	uue	.013	334.6
P4 20	850.	.2071	1.4	.015	. 16	6.10	4,13	.002	.02	.008	.005	.002	.01	, uu ž	.03	Or o	.008	321
8471	.029	.0025	.17	.014	.13	6, 20	4.05	.002	.02	.005	.005	.632	.01	.002	.1	.005	.002	: ·
842 i	ÛLE	. 1030	.75	.072	.17	6.15	4.05	.002	.62	,005	.005	.003	.01	.002	.015	.015	.02	3. 3
P423 P424	.056	.0050	.21	.021	.14	6, 15 5, 10	4.05 4.05	.002	.025 .015	.004 UI	.005	,002 .004	.005 .005	,002 .002	.015	.07 .015	.008	308 314,3
1.0.74	.043	. augt.		,017	.15	3,10	4,05	,002	.01%	.01	.005	.004	.:105	.002	.015	.015	.008	314.5
P425	, C4 }	.0023	. 21	.019	.16	6.15	4.10	\$ 00.	.02	,005	005	.003	.015	.002	.1	.005	.004	321.6
P4 21,		0033	17	.015	.13	6,20	4.00	.002	.07	.004	.005	.002	.003	,002	.03	800,	.002	308
P427 P431	.(33	.0054 .0025	. 16	.019 .014	.15 .11	6,25 6,20	4.03 4.10	.002 .002	.002 .015	.005 .005	.005 .005	.002	.01 .005	.002	.02 .05	.008 .003	,002	311.3 297.5
1437	.062	.0025	.17	078	- 37	6.00	4 04	.007	,06	,005	.005	,002	.05	.002	.03	.003	.002	1)1.5
,				•		0.0		•	1.00	•								
F437	$\mathcal{A}^{\prime\prime}$,0026	.12	.012	.15	5,90	4.09	,002	.01	.02	.005	но0.	.004	.002	.015	.003	.003	311.3
P441	.650	,0019	. 16	.023	. 16	6,10	4.03	.002	.025	,005	,005	.002	.02	1001	.10	.003	.002	334.3
P44,3	.0'-/ .039	.0022	. 19	.030 .e.1	.17	6.10	3.97 4.69	,002	.01 .02	.005	.005 .nns	.003 .002	,005 10,	.00? .002	10. 50.	.02 .005	,015 ,003	334.2
Pilit	.064	.0074	ون	.028			77,127		.02	.02		.002	.0.	.002	.06	.00,	.00,	
			• •															
P445	.050	.0024	.18	.020	, 16	6,15	4.05	.002	.01	800.	.005	800.	.01	.002	.015	.07	.015	316
P ԿI _I IO	.033	.0041	.17	,017	, le	6.15	4.04	.002	.015	.015	.005	.004	.01	.002	:015	.015	.01	308
P447 P448	.021	.0034	.17 .19	.016 .015	.14	6.15	4.06	.002	.0.	.004	.005	.002	.07	. 002	.16	.002	,002	311
P449	.042	,0024	.19	.017	.19	5,90	3.96	.002	.025	.61	.005	.002	.015	.002	.1	.002	,002	302
,		, , , , ,	. •		•••	,,,,,	,		,	•			•		• -	•	•	,
P450	.050	,0025	. 13	. 19	. 16	6.05	4.07	.002	.02	. 305	.005	. 007	,ŪĬ	.062	.05	.002	\$00.	324.3
1452	,050	.0025	. 21	.024	, lo	6.15	4.07	.005	.015	.03	.005	003	.005	.002	.015	.01	.015	314.3
P453	nsl	.0023	. 23	.025	. 16	5.90 6.15	3.95 4.03	.002	.014	.u; .008	.005 .005	. 12	.005 .005	. 00 2 . 00 2	.015 .01	.004	.015 800.	321 311
P455	,049 ,049	,6026 ,0026	.20	, 622	.13	6.00	4.03	.002	.015 .015	.000	.005	.002	.005	.002	.04	,002	.002	317.6
,,		.5020			,	0.00			,	,	.00,				•••		•	
P456	.073	.0022	. 19	.023	. 16	6.00	4.05	.002	.01	.005	,005	.002	.005	.002	10,	.002	.004	327.5
1457	.051	.0036	. 15	.021	. 16	0.15	4.09	.002	.015	BOO.	.005	.01	.0:	,002	.015	,005	.006	
P458 P459	.060	.0023 .0022	. 23 . 20	.024	.15 .16	6.10 6.15	4.04 4.04	.002 .002	.02 .015	.005 .008	.005	.002 .002	.01 10,	.002	.08 .015	.005	.004 .002	331 321
P460	.037	.0036	. 20	.010 .5 i 9	.17	6.00	4.04	.002	.02	.005	.005	,002	.oi	.002	.08	.002	.002	311
		· -		-					-		-							
Pikil	.062	, vu j j	.23	.022	. 16	5.95	4.09	,002	.015	.005	.005	.003	.605 .005	.002	.02	,002	,004	
P462 P463	.021 .050	,0024 ,0034	. 21 . 22	.024	. 16 . 16	5.90 6.00	4.05 4.08	.002	.02 .01	.005	.005	.002	.005	.002	.01	.002	.01	
P464	,042	,0031	.21	.022	. 16	6.10	4.04	,002	.01	.005	.005	.003	.005	.002	.015	.002	.003	
P465	.023	.0028	.21	.021	.15	6.00	4.05	,002	10,	. 005	.005	.002	.005	.002	.02	.002	. 003	
	~!!	04.03				6 10	h 00	003		.005	.005	.008	.015	.007	.úz	.004	004	321
P466 P467	.044 .028	.0023 .0023	.16 .20	.076	.17	5.95	4.06 4.03	.002	.015 .01	.005	.005	.003	005	.002	.01	.01	800.	321
9468	.0/0	.0026	.12	.672	.18	6.00	4.04	.002	.01	.00%	.005	,nn 3	nn ,	002	.01	.01	.008	
Fillig	. 042	, ŨÚZE,		.024	. 15	5.90	4.05	.nn?	ុក15	กอร	005	.004	. 305	.002	.015	.01	.01	
bp ju	Uff	UU 2.5	114	072	. 18	4.90	4.04	.002	10.	.005	.005	.004	8Ú0.	. 002	.015	.005	.00%	
P413	062	.0021	. 24	.025	.15	5,90	4.09	.902	.015	.005	005	.002	.005	.002	.015	.00 ≀	.01	310.3
2474	.024	.0026	.23	.025	.17	6.05	4.07	.002	.015	.015	.005	.003	.01	.002	.01	.004	.01	324.3
F475	.025	.0022	.ié	,027	15	5.95	4.07	.062	.01	. 865	.005	.003	.005	.002	.01	.(03	. 004	կնց
r4 <i>16</i>	.054	.0027	.1٤.	0.24	. ! #	6,05	4 07	.002	.01	. 005	.005	.002	. ü ü5	.602	.61	.002	.000	371
P477	.051	.0625	li	, ÜZ4	.17	5.90	4.05	.002	.01	.001	.005	.902	,005	.902	.01	.003	űöñ	131
P4 ; H	,05	2015	. 72:	.024	.17	.01	.1	.002	07	.00%	.005	.002	.001	.062	.01	.007	.005	
P479	.035	0013	13	017	14	6,00	4 p.	0012	.91	oc.	7.75	.00	(10)	.007	.01	.01	.007	ماز
Plai	65.3	0627	19	, û. 4	11.	5, 30	1.01	.06.	,eı	.00%	.004	.503	die.	.097	. ** }	01	, u l	\$1-1.5
PAGZ	.045	,0023	24	.0 <i>a.</i>	.17	£, 60	1,04	.097	,c1.	1907	int.	615	1	144	* :	06.7	1 *** 1	
Pagi	/· 1	hi: - i	19	13.	•	• • •	1,16		11.3	10%	, Un. "	. CZ	•••	. "			11.7	-

383L

TABLE J22 (Continued)

D2-2786-8

. 																		
Heat No.	Ç.	н	ι	и	1	Al	v	1		Cu	B ₁	h:.	hı	j**;-	51	Má.	Sn	Birte
													_					
P485	160, 360,	.0024	. 22 . 19	. 028 .024	. 17	5.95 6.00	4.04	.007	.015 .01	isir. 167	, uu , _uu ,	.001	.ci .uu	, UNIZ	.615	.004 21a,	, Out	\$ \$1 \$ 40.\$
P487	.036	.00.3	.27	,027	. 16	6.05	5 05	.002	615	inc	, init,	, uu : . üli a	.005	.007	.015	.002	.003	352
P49-1	.030	.0025	, (1	.022	.15	t. lu	4.07	002	til',	.uu-	lar .	. Ula	, Gu/s	.0071	.071	.002	.004	541
Plut	044	.0024	.15	.023	.17	U.10	4 0/	500	015	,ci	De.	,003	,000	GD 2	.015	.01	.01	316
9445	.057	.003	. 191	.077	.17	6. 01	4.09	.402	.015	, GU;	. 605	. 003	. 00%	,002	.01	.005	.01	121
P496	.041	.0029	. 19	.0.2	.17	6, 10	4.01	ulle	al	.005	tary.	,007	.005	.002	.01	903	.004	321.6
P497	.056	.0030	,22	.027	.10	6,10	l. (14,	,002	.01	.01	G.	. 604	,ul	097	.01	.004	.014	341.6
P498	.030	. JOZ	. 188	.024	. 16.	r., uu	4.08	.002	.01	, 00	. 005	, tx3 §	. 60%	.002	.01	.004	,006	317.6
P499	.053	.0026	. 20	,673	.17	ts. 0b	4 (19	,007	.01,	.vl	, lubs	.00}	.005	, t-u2	.01	.004	.01	524.3
2500	.095	.0023	, lo	.071	.16	6.00	4.17.	.602	.01	.015	. 005	. 1934	, 1815	.007	.01	004	, Dua	324.3
1502	.0/6	,0021	. 20	.070	.16	5.95	4,141	.007	.01	.005	. 095	. 604	.015	.007	,015	.97	BUU.	341
P503	.04	.00 \$6	14,	0.44	.18	6,05	4.40	.002	.015	, UU &	GU).	. uu3	,008	.002	.071	.015	10,	311
P504	2را0.	.0027	.12	.023	.16.	6.12	3 7/	007	015	.005	. 00	. 004	. 00%	.00 !	ars	.01	.008	331
P505	.045	,0029	. 20	.072	.17	6,00	4 - 1	Sins.	.ul	.61	. 005	, Utij	.00%	. 002	.01	.01	,015	320
PSOL	048	.007	. 216	.025	17	t., 10	4 05	31.27	,015	. 40%	. Lu -	, trus	, ans.	. 002	.01	308	.03	331
150/	054	,002	. 195	022	- 17	5.55	4,13	1.07	,uls		, ter,	. 14.6	, 1700	, UII é	, u l	. Uide	.005	300
P508	.052	.003	.177	.075	. 18	6.65	4.00	107	(0) %	,000	. 005	. 1003	, (402)	11(1)	ni.	902	043	330.
1509	.05	560,	. 71	.62%	.17	4., iu	6.11	1417	.01%	,01	, uds	, ual t	, 120 ,	007	.015	.00%	0.0	31.1
bi 10	.055	.001	, LM	.153	-14	t., 04	\$ 151	.602	.01	. 0:35	. 585	. 603	to.	Ot ?	.01	.40	.003	331
P511	.050	,(03	.151	.011	. la	6.00	4 14.	.107	.01	.90.	, الخا	t Mary	. 000	.607	.0.	.002	. (n) t	511
F512	.04n	uu 30	. 20	.024	. 15	6.15	4 03	007	1+1	Gibi	UO'.	. 00 5	. 004.	.002	.uls	.0.	.bi	324.3
P>24	.044.	.0030	, 21	.079	.16	1.10	4.0,	!	μl	u.	, tor.	tio (. 515	.007	.61	.114	'(nin	511
F5.25	.041	.004	, lul	.0.3	.17	6.00	4.0	, laced	clu,	.00%	, up:	. UU S	. 80%	.007	.1u,	.00%	.01	3/1
F 1.26	.055	.0635	. 21	.025	, W.	£-, m)	4,67		.ul	. U . 25	, 13G1,	. 00%	.005	.00.2	.ui	, ulu	.01	111
11.78	025	.0050	.11	.ole.	. li	6.,50	4.12	.002	,01	eo4	. 00	_ (104	. 110-	. 0812	.01	500.	.wuZ	311.3
P'127	040	.0030	.22	07.	.17	6.20	4.07	.00.	υl	.60%	. UÜ,	, On.	, Dun	06.	.01	(UU)	sen,	121
P , 10	.0.5	0023	. 47	071.	, J#:	(,6"	9.05	. 1812	.01	,ul	, tuus	. (4))	. (46.)	OUZ	(+)	.03	.006	364
P531	.040	.00 10	. č i	.026	.17	ι.Ι.	4.64	UC12	.61	LIP,	. 1705	140.2	.005	.007	.01	,003	000	317.6
P532	.053	.0028	.23	.074	. 15.	1.0%	4,00	.007	01%	.01	.00	. 004	. 01	.007	.01	.03	800.	327.3
2533 2534	.053	.0040 .uu40	,21 ,21	.027	,1, ,19	6,10	4.05 4.07	.007	.015 02	. On	, 005 , 005	. 003	. 005	, 60 <i>2</i> 01-7	.01 111	10.	.01 .01	324.3
P535	.055	.0032	. 71	.074	.17	6,10	4.07	int/	() I	LUO	. 605	, (n:4	.00%	.007	.0!	.01	.01	
P) 10	.05.5	.0034		.074	.14	4.00	4.09	.007	, ul	.005	.00,	003	.01	.007	.01	.006	.004	331
F5 5.7	.050	.0079	.21	.024	.16	4.0	4.0%	00.7	!	.01	.001	taufe	6.1	7	(.)		.000	
P5 >0	.051	. 00 26	. 41	.072	. 16	0.05	9.11	, tet: Z	,ul	. au	.00.	, 600 5	01	.007	.01	.004	. 6018	
P5 59	.Cc./	-0027	.23	.024	. lo	3,90	4.0.	.002	, al's	.07	. Ohr.	. U!:	.01	.007	.01	.004	.01	323
1 .40	04/	فرينيل	.22	075	.15	(. UI)	4.0	.002	.01	100%	, tous	. 004	, udi-	,007	.01	. bud	.01	314.4
P541	.057	.0630	.23	.031	. 10,	5.07	4, 10.	.002	.ul	, tw	_ Cur,	. 004	, Uilb	, tili į	.015	.015	.015	W
P542	No Re	cord																305
1.44	Or s	91.78		.,,,	.,		L, G C		.02			say.*.	.61	.007	.61.	. 11 -	, tritigi	3.7.3
P>=4	.077	.0023	. Jr.	, o le.	15	(i)	4 07	12.3	s. t	1.1	- 1 9-	. 449	;	.:			3:	
44,	, PG4	150.71	, 1 n	057	14.	$S: P^{\perp}$	4.12	2007	91	,122.5	_00		uu.	fata.	1.1		13737	
	, u · .u	. 6464	. 17	.079	. :	. 1	9.17	, to		, as a **.	⇒ Oæ.	. Obj	.ul	duz	.ul	. 664	. (.4,4,	\$000.5
2.4/	No. Pr.	1																
Pr. ng	.u.j	, du zli		, 55.5	. 14		4,44		6+4		Obt.	, Ugir,	.01	, ae.	.015	. 1.4!	, 60°	31±
1 7 1 7	.055	2.4	. 21	,69	1			.*	***		_ tu-			tain.	. i		UUZ	311
11.54	. 6-6	. 04.44	. 40	128	-		**.**	1.4	.4.7	. 1- 5	- en	. 147 -		í.ú.	i i	ada)	, udg	y iv
P101	. 6 . 9	0t1Z		3.0		:	- 0	11.3 *	ı-t-	•	. C	971	.04		.04		-61	351
P553	65.	0000	. 5	. U Sr	, Ir	1.60	9 93	60.2	.1.4	1	, Od.	12	ů i	1546	1, 5	.61	. u 1	
f · 44	·j···t	** 32	1		. ! -	. #	1					1.,	.,		1	, to 'a	.000	310
P555	445	10.27	.10	. 7 14	.4%	.,	4 D .	.,				. • •			u l	1,1	6.1	35.4
1		in. L	. 1 .	, 11 - 3	1.5	1.	31.16.1	. 5.9	:			•				t-, -		
1.51	Ú-si	.9021			, ; /						a.	1.		-	!		1	:
,	. 63		***	•• .	. !	* : *				•	-	. 5.51.1	1.3	uri.	u I	b*	. 5 1113	

Hest																		
	C	н		н	f e	ķΙ	٧	•	Li	iu	Иđ	Mes	*i		3 i	No	711	Biii
F559	.025	.0025	. 20	.0 50	.13	5. 15	4,11	,007	.01,	05	.1015	(mri-	18,0%	500	.015	.005	,000	50.5
25£0	.012			.039	.22	6,13	3.77	,002	ols.	300,	.005	.14	uus	, 00 2	.01	.01	.000	551
1561 1562	.031 050,	.0027	. 19 . 23	0.0 5.0	.12	5.18 5.90	4,05	500. 500.	.07	,000, 1.00	.005 .005	.007	.J.	007	.02	.01	.005	465 311
1563	.023	.0025	.11		.17	5.95	4.05	.002	.01	,003	.005	.014	.004	,002	.01	.005	.008	,,,
		-								-				•	•••			
P 56.4	.06.1	.0076	<i>'</i> 1	.011	17	1. 11	6 (15	tris.	.s.	.vis	.005	.007	.01	,002	.ers	61	.01	321
P565 P566	,61.4	.002) .002)	. 19	.035 .047	.17	1,35	9.13	.002	.01 .01	.01 .005	.005	.004	.61	,002	.01	.01 .915	,vi	;ł÷
P567		ecold	. 37	.047		6.05	4.10	002	.01	.001	.005	,004	.015	,002	.01	.915	.008	
PSUB		.002a	. 74	.041	. 15	6.00	4.09	JL/	.015	.005	.005	'taint	.015	1001	.315	.635	. 606	
2509	,Oas	.0078	. 24	.01/	.15	SMO	4 17	,	414	.00-	7:11	.000	, :: ,	.002	.01	.005	.008	107
P570	.07	.0074	. 71	.041	.14	5.95	4.02	302	.01	.00%	.005	.004	, oi	,002	,01	,004	.000	
15/1	.077	1/00.	.11	,041	. 14	5.90	4.07	. 1/07	.015	.00%	.005	, their	, u 1	.002	.015	.004	Out	
P5/2	(16)	.0075	. 22	.037	. 14	6.07	4.04	.00/	.011	.008	.005	.004	.01	.002	.0152		,00%	
25/3	.96.1	,0026	. 14	.040	, iti	5.95	4.04	.007	.0!5	.008	.005	.004	.01	.002	.01	.004	\$0U,	311
P57 i	, Ur B	.6024	. 41	.037	, le.	1.02	4.07	.041	.015	.015	.005	.004	.01	.002	.01	, 604	.006	331
1575	,(0	.0032	. 2 6	.0.74	.le	5.97	4,04	\$007	.C15	BUO.	,005	. 46 1	, i. Uri	.002	.015	.02	,U.∗o	341
P576	. (Pr.)	.0023	. 25	.013	16	6.02	4 00	007	. 114	, Guo	.005	.004	.01	.002	.01	.004	.01	321
P5/7 P5/8	024 372	. UC 26 . OO 3 3	.17	.015 .017	.17	6,32 5,97	4, ary 4, 13	.007	.014	.v) .vov.	. 00% 00%	, (*0-) 1 OD	, G 1 1109:	002	.01	.005	800. ihig.	302 511
. ,,,		.0077		.0.,	,	1.54	7.73				120	(117)		,		.03)::
1579	945	.0078	. 27	.047	. 11	uu5	0,	<i>(</i> 4)	.01	2,00	ونابا	(817	. 302	\$00	.01	\$00,	, uuti	
P580 P5e;	.023	.0031	. ! ;;	.07:	. I*		0.1	u.	. 6 i	,100-7	,uu ₂	, · tro		, live	.ul	UI	UUU	311
P582	.021	.0033 3£00,	. lø . l6	.017	1	6.02	4.04 4.11	.007	.01 10,	,005 ,005	. US5 . UO5	. 00 } . 004	.00 } .00 }	. 100 t	.01 .01	. 11 .01	,003 ,005	302 311
P583	No Po			.417	•		7.11		.01	,00,	.00)	.004	. (10)	.002	.01	.01	.005	,,,
P584	,017	.0037	.15	.017		5.05	4.11	tiu 2	.61	00%	.00%	007	.005	,602	.03	.015	.002	102
1505	Qt.	0041	. 23	un.	1-	5.98	4.10	,002	.02	.01	.UL >	. 602	015	,007	.1	. 207	007	111
P550	.03	.0030	. 10	.0. !	13	. 11	9.15	.007	.015	,015	.00%	.007	กาด	,067	.03	.015	.002	\$07
P56/	, UK-9 , UK-9	,9076	. 45	.011		6.12	4.64	.002	.02	.01	.005	.065	015	.002	. 1	,002	,002	321
P'-68	.025	. 66 39	. 20	.029	. 14	6.05	4.11	, 667	.015	.00%	.005	.092	, üÜö	.007	.03	.015	.002	311
1 489	. 0 30	.00 ; \$. 19	871	14	£ 0%	4,00	, live	,015	, but	,005	.007	OOS	.007	0.75	015	.002	531
1 1.70	.047	00133	. z i	.633	. ie	6. jú	9,05	fil.z	.011	100%	. 90%	11117	1915	.002	.62	.014	.003	331
2531 2534	. 565 . Coy	. 00 30 . 06 36	. 1 % . 49	031 .096	. 13 . le.	5.98	4,04 4,00	.002	. 0 a . U.	uut.	. 005	,002 ,65	.015	.002	.02	.001	.002	551 551
1.641	u/o	On the	122	.esi	.15	130	4.46		u.	11'5		.05	.00		0'1	.05	.0	311
P1.94	. (14.0)	,0020	. 7:	0.54	1.4	5,60	4, 99		, ù·.	٠ů.		.u.	, ur.		, 6%	.us	, u·,	
P195	.042	, iou.;/		uj.	. 4	6.14	4.05		.0.	D'.		.014	O'.			UŅ.	U,	53 i
Pido	Or 3	.602/	1:	134.	.15	6.15	4,64		Ob	.0%		.0.	ر'ں		100	. i.4.	.0%	331
というつ	رته).	. UÜ 10	. 74	.402	12	r (99	4,93		.0.			.05	.0.		.0%	.05	رن0.	331
i c-50	.0" \$.0027	.794	415.	, 14,	5 25	4.9:		n.	u,		.00	41.		. 0 .	U's	.05	
Fr.01	Gle	.17113	!/	OP.	110	Ж.	9, 11		. U .	u.		ω,	V.		.0,	U*.	.05	
11:03	,00.0 ,014	10.50	i ;	.9/1. _019	.16	1.03	e, of e, tr		0.	, 94. O .		. 60%	44°.		.05	O',	.0%	311 311
l GUS	1110	Gust	. 17	.019	1 5	6.37	1 16		u.	υ·.		.9% 9%			.07	dr.	.05 (°)	311
fru,	.352	.uctu	1-	61 /	11	. 1:	40,		(a·						***			531
Hur	10.35	10.10	•		•:				٠.	, U .		te.	. C.		.05	.05	, u*.	111
re tre	dal	, iso f	• -	.011	. 11	. 19	ני נ		. 0			u.	117		-05	.0,	05	331
Pr lu	.021		1.	.00	14	6.03	1 11			. 21%		, U ,	ŀ		.05	. O-,	u.	521
re. I I	. () f a	, tel et	0	Ui/	11	1.17				.*•					.05	رں.	,u,	351
		0.35		٠.,	j-ı	* • •			1			••	•-			, ter-	ω,	3:1
i.,. 1844	 . U • *		17	14 to 14 to	i, Ii	11			-			• •				u.	.0%	302
i.i.	U1:	185	. 1-		- ; ;	1 5										.5.5 .05		3 - 1
r: 17	.65.G	1							•						.05 .05		0.	
17 18										2		.44				.,	.0%	
1670	1457		. 1 •	0.1	- 17		1.11					.•			ti-	.:•		
	,			***	, P	t 1	• •		-	•		•	-		.400	t		

TABLE J23 RESULTS OF DEVELOPMENTAL BRACKET COMPARATIVE FATIGUE TESTS

Fatigue Life, Cycles

Load, Pounds	Cast Ti-5Al-4V (As-Cast)	Cast 410 Steel (180,000 psi, min.)
18,000	NT	21,000 (2)
15,000	5,010 (1)	26,700 (2)
15,000	2,542 (1)	30, 380 (2)
12,000	7,552 (1)	93, 180 (3)
12,000	14,710 (1)	118, 450 (2)
9,000	30,000 (1)	430, 330 (1)
9,000	34, 149 (2)	311,000 (2)
7,000	140,051 (3)	NT
7,000	134, 420 (2)	NT
5,000	448,618 (1)	NT
5,000	318, 550 (2)	NT

NT - None Tested.

⁽¹⁾ Failure in upper flange.

⁽²⁾ Failure in upper large lug, at mounting hole.(3) Failure in small lug.

TABLE J24

RESULTS OF STATISTICAL EVALUATION OF DIMENSIONS

Dimension Type See Footnotes	Specified Nominal Dimension	Actual Average Dimension	Specified Range	Actual Range*
1	.200	0.205	± .015	±.011
1	.650	.674	± .015	± .015
1	3.050	3.099	± ,015	£ .019
1	Not Specified	9.598	± .050	± .050
2	1.520	1.533	+ .025 015	± .028
2	2,520	2.525	+ .025 015	± .028
3	Not Specified	.664	± .015	± .035
3	3.050	3.110	± .015	± .037
3	10,630	10.703	± .~50	± .071

^{*} Actual range was from conventional statistical analysis and represents plus and minus three standard deviations.

^{1.} Simple Dimension, not across parting line.

^{2.} Dimension across and perpendicular to parting line.

^{3.} Dimension across but parallel to parting line (includes mismatch).

SECTION K

APPENDIX

STATISTICAL ANALYSIS TECHNIQUES

Conventional statistical analysis methods were used to establish composition limits, design allowables, and dimensional tolerances. These methods are based on the assumption that the various data being studied represent a "normal" distribution. The following symbols are used:

n = the number of individual values in a sample

X = an individual value in a sample

 $\Sigma X =$ the sum of the individual values in the sample

X = the arithmetic mean (average) of the individual values in the sample

 σ = the standard deviation of the sample

The procedure for determining standard deviation is as follows

1. Determine n and X.

$$\frac{1}{X} = \frac{\sum X}{n}$$

- 2. Determine the difference of each value from the average (X X) = n values will be obtained. Signs can be disregarded.
- 3. Square each of the values obtained in step $2 - (\overline{X} X)^2 -$ n values will be obtained.
- 4. Determine the sum of the values obtained in step three and divide this sum by n.

$$\frac{\overline{\Sigma}(X-X)^2}{D}$$

5. Determine the square root of the value obtained in step 4.
This will be one standard deviation.

$$\sigma = \sqrt{\frac{\sum (X - X)^2}{n}}$$

BIBLIOGRAPHY

The following references were selected as pertinent to the objectives and investigations covered by this developmental program. Many of the listed references include further bibliographies, which will provide trailed background information for those interested in related research and development work.

The first seven references are the quarterly interim reports published during this contract period.

Copies of these interim reports are available from the ASTIA Document Service Center, Arlington Hall Station, Arlington 12, Virginia.

- 1. Carter, R. V., and Huttinger, R. C., "Development of Titanium Alloy Castings", Boeing Document D2-2786-7, December 1959.
- 2. Carter, R. V., and Hogan, R. J., "Development of Titanium Alloy Castings", Boeing Document D2-2786-6, September, 1959.
- 3. Carter, R. V., and Hogan, R. J., "Development of Titanium Alloy Castings", Boeing Document D2-2786-5, June, 1959.
- 4. Carter, R. V., and Hardy, R. G. "Development of Titanium Alloy Castings", Boeing Document D2-2786-4, March 1959.
- 5. Carter, R. V., and Hardy, R. G. "Development of Titanium Alloy Castings"
 Boeing Document D2-2786-3, December, 1956.
- 6. Carter, R. V., "Development of litanium Allay Cashings", Boeing Document D2-2786-2, September 1958.
- 7. Carter, R. V., "Development of Titanium Alloy Castings, Boeing Document D2-2786-1, June 1958.
- 8. Aschoff, W. A., "Why to Use Titanium and Zirconium Castings", Materials in Design Engineering, 102–104, January 1960.
- 9. Smith, J. W., and Hamm, T. A. "Factors Contributing to Soundness of Titanium Castings", Modern Castings V38, Number 1, 51-60, July 1960.
- 10. Antes, H. W. and Edelman, R. E. "Starch Content Effect On a Rammed Graphitic Mold Material for Casting Titanium", Modern Castings, 97-102, March 1959.
- Wood, F. W., Ausmus, S. L. and Calvert, E. D., "A Casting Technology for Reactive Metals", Modern Castings, 354-360, July 1958.
- 12. Zeto, J., Ahearn, P. J., and Green, H. W., : Ducille High Strength Titanium Castings by Induction Melting. Modern Castings, 127-132, May 1958.
- 13. Feild, A. L., and Edleman, R. F., "Powdered Graphite Molds Simplify Titanium Castings" Modern Castings, 64–68, May 1957.

- 14. Editors, "Cost Titoniur February 1957.
- 15. Lang, R. M., Schippe for Casting Titanium",
- 16. Roberson, A. H., "Tit Bureau of Mines", Ins
- 17 rolld of the Faponic October 1986.
- 18. Lang, R. M., Schlpp-Shaped Cartings ", Yile Report Number 60, De