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FOREWORD
In Si'!>t<-iiib<-r uf IVSo,lh«' firiit S>in|Kn<iuiii on Naval Hyiirixlymini'ti),

.-.orvd l>y lilt' Offit t' of Naval Pi-'^-'-a-' *i 'tnl tin National A> a<l< n.>. '•i'ai ii'iiv.-it — 
National Ri'Hoarch Coiiiii:il, uas ht Id for 'lit- si-<" ifu |jiir|ioii' o'. n-'i-nting 
.iiithoritativv, vilical -urvi ys of Iho-t- art-a-i of Hy<lroil,naniii d that arc of 
’‘iKMificaat I- inna\a< xiit-nc' In kvcping with thv orltiinal plan:! .mt dov.a for 
tlii^ hvrit'ii, Niibxfqiu'nt oifi iir.KH «t-r, to bf di-voti-d to om- or mon* thrini-ii 
sflfctfd on till' l«>i» of iiii|iortan.'i' am! not'd for ii'at-arLh st.niulation, «.• the 
oiu' hand, or ol at hiov t-oo-nt of ini|xirtant‘brt akthroughd''and hence oi inierett 
for w.de dijtbeiiiination, on the other. Thiia, ;he preaent Hyii-.pofiun' achieved 
an evani|ile of each criterion; hvilro- and ..erodynaniic noidc (of Kre it :;ipor'> 
tance in both warfare and i nnniercial 'o-a-je of ithips and airt rafti.and Kuper- 
cavitatini; ami ventilated flowx (which p'-ooiire, for exaniptv, poddibilaliek of 
high -iM'i'tl marine propidrion at effit it ncien hitherto not thought attainable!.

Recent declaskificalion of many renearch re:.ults in both diihject.- made 
|x>«sihle the wealth and excell-nce of contrilrulinn." prt .-t nted al ihe m..et;ng< 
in AuguKt of IVSb and now reproduce*! in thix vtdnme. Unlike the lirrl »ym- 
IM.-iiun which defined 'he framework of the field of interi'Hl, thi- iiicetiiig v.af 
lit ". ii.'ll a. ia gt i-t |urt to original t out ribntiunn. Again, ax for :'.t< earlie.- 
inetliiig, eai h i)a|H"- wa- aiv .ted fi.eii the active rexearih t entt i. without 
regard to gi tigr.ipliii lot ation.

Axide from the military im|x>rtance of the two them'- topic.-, they are 
rather remarkable from other i-tand|mititk. In each care, the important xcien'- 
tifit contribution- that -timiilated further research occurred within the laxt 
seven or eight years. Furthermore, thev clearly illustrate a characteristic 
of the field of Hydrod^-namics that the most important practical problems 
require for their solution rese.irch <»f a nature that is “ba.sii " in the classical 
-elite. Ill the cate of I'.;'drodviiai' it iioi-e pioblems, only an ur.derstanding of 
the physical mechanism- it cavitation, turbulence, etc., could lead to the 
progress that ha.- been made. Of |iarticular interest in recent years has uern 
the question of tiirb'jleiu e mdse iii both aerodynamic and hydrodynamic appli'- 
cation; the clue- to tin i.iretlion of research were provided by Lighihill's 
treatment of jet noise only eight years ago. In the case of cavitating flows, 
the d.ft ic'allies ot the mmlinea r free siriam line lhei>ry and of e\|H'riinental 
ob erv.tl.oi.s made progress vi ry difficult and seemed to lead inevitably to 
the lom lu.-ion dial cavitation and cavitalii.g flows were to be avoided al all 
CO. t-. It was only following Ihe develo:'inenl of a liiiearit.vd theory of such 
flows by TiUin in IV5i and m.- sub-equei t iliscoveries of low»drag supercavi- 
tating strut and hydrofoil prut les thai reali/.ation grew of the significem 
Ijenefit- that can b<- achieved with s',|H'rcavitatiiig flows and, in fact, that for 
terlaii applications,o[M'ralion i,nder superc.ivitatiiiucoi-diioiis is to besought 
rather than avoided, i'l another e.mtevl, rulti.'s aecomui snmenl> in an oul- 
-l.-mdiie; triutii|ih of t > < " r ^ in providing retiill ■ that tan be used wilhivU
moti fic ition and wdh ■ onfidenee in eiigin...... in" design. The Iki-ii a, hievi-
mei.l ilsilf will ................. ra'ik '.tilh I'ui/et, ..irioil thei.ry ami thin sh p
theory in im|Mfi't ,m e a.i'' tti .ntic.tl t inis'-q'ieiu e.

Basal Balts
• It. PiiMiia tit* l'*%7* Saw K I fitf t'*11 * U t'a

- • “ ka • ( •»«> a I



W 111'.' |).iii«r- 'MTI- iiuit.'.l nil noiM- Ml inr mniln .n!'|n.p«'nt
ll.ms in (h.it |MPt -f thf a n r.oi f, lli.- miijor fii.pha.*is was
Kivi'i. to shi-ar flow iioist', an-l in |iartii >itar, lurb'.'.irnn- ii.iino, in r.-io|;nilion 
of thf tti'ow ii>K >i<<|x>rtancf of this soi.itf in both-if rixlynainif aiul hyiirodyi.amic 
application-. Bf.iinsf of thi-i r cU'.n' r •'I .it i on s h i p, Ixith sc.fntilicaUy and 
tfchnoloaic.lily, both supcn a. it itinn and Vfiitilat.-d flovi.. wore im liidfd in thf 
Kfconil iwrt of thf proitran.. In ad.lition.to br.iiti out ttif i .'iittionships between 
cavity fiows of th.'sf types .i id >.;iaratf(l flows,at icasi m.-ofar as tlif usefu'- 
iifss and .il).. tv of iiioU. rn iiifthods oi .nalys., an cnr.fi-rned, a paper
was also iiiiiiidfd on “afrcxlyiiaitiic- cavtiis." bi this w; y, it was hoped to 
iiliistratf and bring about a unificatii*:. of th. various vif<vpoiii*s of resuarch 
in thf di'.f rs .iisripliiifs of fluid dynamics.

It i- Illy priviligf 111 I'xti nd .'urthaiJis to thf authors for tlifir willingmsa 
to iKirticlju,.' in thf program. T!»f responsibility for thf .irgani/ation of thf 
technical sessions was assuiiicd by the Mechanics Branch of the Office of 
Naval Researvh. It is indeed a pleasure to arknowliHlge the assistance of the 
followin)., '.vh.i individually or ,ollec*'vely made a nuiii>H'r of suggestions of 
pa|M'i's and .luthors f-om whiih the final program was seiected;

J. S, Culi'iiian, Escutivf Secretary, l^ysical Sciences 
liivi-ion. National Academy of Seie. ces

S. Corrs.ii, The Johns Hopkiiis University fRepresenting the 
National Research Ciour.cil Committee on Undersea Warfare)

J. B. Ha.>in.so... Chief, Hydrodynamics Division, National 
Aeroni' ii.es .I'lfl Space Ailministrati.'u

M. Sir.isberg, li.iv-d Tay'-ir Moilel rasiii

A. J. Tai iiiii.ii.lji, iXi'. ;<l Taylor MimI.-I liasiii

M. H. lul.ii. Office of .\av.ii Rese.irch Branch Offo e, London

The admino trative arrangt iiient- were very kin-.ily luaiertaken bv the 
Natioiccl Re-e.irch Council and speci.il th.inks are due Messrs. George Wood, 
John Coois r, am. Mrs, Hei<-ii Ray ol that org.tni/.,itioii. Yoeman work in ron- 
i.ec'lion .vith th* tet hnieal detail- of the meeting was performed by CRU H. B. 
Ketit r, US.\, of U.NK's Mechanic s llraneh, anil A. G. Fab'Ua anti R. J. Mindak 
of the Otiiee of Nav.il Rese.irch Brat., h Offic e^ .11 Has.idena and Chicago, re- 
s|M'C>"ly. 1 .O'lgh it 1. iievi-r |mis siltle ailequatel v l«i thank the Fwlitor of sym- 
(Kisnuii pr.ji eedings such as these, |iartic uUr reiugnilion is due Mr. Ral|ih U. 
Coope' ti.rhis eourag.' in act i'|il iiig this .issignmint and for the profess icir.a 11 y 
escell-'i.t way 111 whiih hi accompli -hid hi- task. Not only must he live with 
the meeting long ufter it 1- ovi r, but he must, iuif.airly to In' suri', bear the 
brunt of thi- I iaiMor that iiiv.iriabiy .ir.si v hen delays 111 publication .wcur.

kii.aliy,! should like to express o.ir griititiule to the Cumm.inding Office rs 
of th. IXiv.d Taylor MimIi I Ikisni .tml the Nav.il OrdnaiK'e l.stboralorv, and to 
Ihi'ir -i iit.lifi, si.iffs, for the-r kimlii.-ss and I'lforts in providing the lechiu* 
■ally : t.ii.'il.ilii.i. lours through 'In se labor.itories .in the third d.iy of the 
I'lei'lii.g.

Htlli.l.tP EISKNBERG
ile.id, Meih lines llraneh 
Ofliii' i f N.iv .1 Ki -e.irch
(ill.. ■■ rii ...n
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THEORY AND EXPERIMENT IN AERODYNAMIC NOISE, 
WITH A CRITIQUE OF RESEARCH ON JET FLOWS IN 

THEIR RELATIONSHIP TO SOUND 
Klan Powell 

f f, , , . • M ' >     ■. '     I    lit' 

INTRODUCTION 

When I accepted the invitution tu add tu existing surveys (1-6) of the interesting 
study of aerodynamic noise. I hud in mind a mm1 generous coverage than I am offer- 
ing you today. However it soon bt-came apparent that it would have grown beyond 
reasonable bounds. So. apart from the generalities of Part I below. I shall discuss 
only various jet flows and their relationships with sound and concentrate on the 
debatable or rather vaguely-undcrdtood aspects, endeavoring to indicate many 
research problems that remain, both theoretical and experimental, large and small, 
and how these fit into the general picture. Consequently there is no attempt topresent 
an encyclopedia on the subject, the references serving only tiie purpose of providing 
foundation for my comments. These aspects illustrate well the vagueness of the 
boundary between "ordinary" fluid motion and acoustics, a boundary not recognized 
by Lurd Rayleigh and Sir Ho rare Lamb. The general situation was summed up nicely 
by John Leconte. in that we can "look upunuii jets us musically inclined, "and although 
he was alluding mainly to the "sensitive" jets of low Reynolds number, it mi.;ht be 
applied tu all jets—at least if one's ideas of modern music are liberal enough! 

Part I 
GENERAL THEORETICAL ASPECTS 

There are several types of flow, all sound-producing, that can be distinguished. 
Theseare characterized by the uusence or presence uf a solid surface and if present, 
whether such surfaces arc rigid or nut. All these have in common the eijuations of 
motion, ai d the solution as a radiation problem shows huw the various types are 
related. L'there s no introduction (f matter and no eternally applied body forces, 
the equations of •< ntinuily and momeiilum are 



A.

Tlu-so ran b< manipulated (7) just as il the ardinary wave e>iuation were beiiit; 
obtained. e.\cei>t tict no terms are diseardcd and is introduced on both sides. 
I., beiiiK the .speed of sound in regions of still fluid far removed from the primary 

disturbanies whose sound-producini; properties we are to investigate. Tliis yields 
tile inhomogeneous wave equation

x.l I'i, V

StrieJlv speaking this is an integral equation. But if tin- sound-generating flow is 
assumed given (and therefore unaffected by the sound produced) then sound pt‘rturba- 
tions cun Ih‘ found well away from it. Ihen the "right-hand side"—in other words the 
source distribution—is given and tlie solution is well known, from electromagnetic 
theory, for e.xample. It can In- expressed in a useful form for our puriiose by using 
Gauss' tlu’orera (81 twii-e over on the coniplententary function, the result lieing

>. v,.|

r . IS,, J- '.V. . r., ,

(a)

(b)

/( ■V '-i
t ,

Here r is the distance Irom a |ioinl > in the sound-generating flow to the point > 
at wliicli thept rlurlKitioiis are estimated, and tlic asterisk indicates a time retardation 
•-‘ii'iesponding to the transit lime over tliat distance.

The first group (a) alone survives in tlu‘ absent e of solid boundaries and has 
provided the iKtsis ot •nir understanding of sound production by turbulence. While 
little has In ell done for shear flow turbulence, as such, isotropic turlxilence has been 
• oiisiih red (91 and tin r> suits are verv encouraging when applied to turbulent jet 
flow ilOi An imiNirtani efieci for a high-order source is tia- susceptibility of the 
direi tional charaete: istics to motion through the medium—iIk‘ introduction of moving 
a.xestraihi r ilun tin resopition into liiglier-orik-r stationary sources) permits a very 
.siiii|ili |N>int of view to explain the gross directionality of ihi* sound field so clurac- 
tiri.slic of liirlHileiil .sulnsonic jets (7). The question of the noise generated liy isotropic 
tuibulence has been the .sulijo't of more reci-nl attention (11.121. and siiows well the 
■wed for some careful expertnieiital wi rk measuring tiie rather low acouslii output of 
a stationai-. mass o| isotpipic tuiiiulence. Turtnilenl wakes Isive not yet been con
st dertd theoreticali'. oi ex|H-rimentally . exci-pt in ionnecti'>n with the vori<’.x noise of 
propellers

Tile same ap liiucii lua In- usi I to slud\ th>- scaitei ing of s >und waves by tur- 
Imh iii I -r moie rele-.aiit h< !•-. the scattering •! acousticem-rgy Ironi lh»- intera'-tii-n 
o| turbuietwi. -Aith shoi kwa-.<-s (lit.I4> .-til iicei'esling result of this is tliat most of 
till ai oustii enei lends I c.iti-h up with tlii shockwave, and s- In- ab.sorlH-d in’ it. 
lliisialtier geiN rat .ipproai-: is c-itnp.itilde witc tin- n-sult of studii-sol tiu-iiilt-rucin-n 
hetweeii a siiii-.le \oiti-\ .igi a sl^ickwave 11.' Kit. olitailied by .supi-riiiipo.siiig shear 
waves. •!». efl<-> t s o| will- il n.iii iM-eii coiisi-u re I earlit-r 117) Allliough Ihesi' sludii s 
an vi-i -, .iiipi-ixim.iii . tin •. .l-> ac-■■uni |o| --'i.ii at !ei islic diret-lion.il effects
• >hsei-.i-i expel iiiieiiiall'. ' IK< I I'l:-. Il ill - o-ii .te sh,.;,) waves are just one -it Iia 
liiH ;• m-'-ii s ill ell nien'.i:’ moti-ii: pi-iiuibing a iitiiloi'ii li -w. ili-- --ihci .s Ih-iii-,-. .souiul



itsrli and 11'mpr rii i u r !■ ((•nlnijiy) 
119,20,211 It is inh n siiiii; that llii' 
slim kwavc .uis as an amiHiflcr i>ir 
riiliiilinn snuiiil waves, lail |)raili< all\ 
al'smlis   lliusc   raliliiii);   up   vVitli   it 

TMi'it' arc several impiutaul 
applicalinns of (he principles jusl 
iiiciiiiuiu'd 1 lie nt'ise in supeisunic 
wind tunnels is one aspect aiviflicr 
is tin' inteiai linn (I eddies with the 
shuck-.'aves ol supersonic It'l flow, 
iieinjj partli'ulurly important tor cold 
lets, when tlie ilileractinn apptw« to 
account for almost the whole of the 
smmd output. Til»' situation when the 
edriy isconicri'd on the edge of a jet — 
■ "(• the related situation when the jet 
acquires a sinuosity —has not lieen 
studied in detail; the overall picture 
is shown in Fit; ß '" which, however, 
the details of this particular aspei I 
are obscured. 

• 1 

i.-l 
The second uroup (h) con eins 

surface effects, suni^eslinn that sur- 
lace stresses act like dipole t.;enei'a- 
tnrs. supportintt an earlif!' and more 
intuitive* approach (22). This certainly 
seems tobe the case for the I'luct latinj; 
lorces on circular cylinders (23),and 
is presumably the case in the editc1- 
tunc type of phenomena. !t isimpoitant to notice 
fin •.here is no physical dipole supplyini; enrrgj 
uf tiie fluid about the obstacle. 

II, 

that the dlpule as found isanartifict. 
.his can onlv come from the volume 

Bui for plane surfaics. the contribution f:oin fluctuating inessuri s is Ihoucht to 
vanish (24.251 and. with fairly loose restri, tlon.s  that friuii shear stresses also (2i)> 
'Ihis then suntiests that quadrupole generation from the volume of turbulenc»   in a 
boundary  layer   may be   the most  important   source of noise when   the  surface  is 
rit;id |26|. 

When the surface is not rij.',id. tin boundai'\ lavet st! esses-particularly pres.-ari - 
set the surface into motion 127-301 and in several practical systems this ma\ bi l; i 
predonunatin^ effect. Altllouuh the general principles areliowciear. more infornuit ion 
concern.nn the pressure fluctuations at the wall is required So far speclia anda few 
space (31) and space-time (321 cor-'elations at sulisonc- speeds havi been made The 
patterns of pressure convected across the "fixed" smlaces do not appear to l>e as 
"fro/.en"as inij.'.hl be necessarv for some simpleth."oret;calco|icepts toapply. Acoil- 
'.ectioneffect iscertainly present, the convection vi'loi ity bcln:.' a rather larue fi action 
(0 H or so) of the tree stream velocity. Ihis lends to draw attention to the region o| 
irreuular vorticitv fronts of the boundary layer The surface becomes a soundnii; 
board, and radiates into the space away from the flow aicording to expression |c). 
Un the other side the presence n| n», flow itself mav influence the radiation: and if 
the flow is at anything hut a very low Mach number the dimlionality etfecls will In 
influenced by the movinu source effects.   In addition the first term of expression (bi 

3 
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DIRECTION 

suggests that the nn 'ion of the sur- 
faio results in a clipoli- radiation 
because of Ihe effeetlveimrodutii'jn 
of momentum across the fixed sur- 
fa-i' of the integral—thta uKpecl 
seem» to have been overlooked. 

The noise sources clu«1 to the 
passage of an airplane tliruugh the 
ail arecomplox in character—all of 
the above types '»eing present to 
.s"mc degree. Its motion thruu^h 
the amoient atmosphere results in 
the ^enerateünuise having a marked 
preference foi forward radiati>m. 
im teasing with flight speed; while 
lie jet noise displays a lessening oi 
its downstream preference, its level 
naturally decreasini; because of the 

:': •■ .urp'.ir..'   ;■ r   .i::   •:■.   ..: r  nr...-.^ reduced relative jet velocity.  These 
.:-'i    -   r..(ii..t.-'i •  r.v.ir-! ii; r.-i •:..!.. effecisaieshoyn very we'.'in Fit;. 2. 
('  ■•.•.' r     '.'•':   '. rr.     ..I.:I   '■'.■.   '• .-tj   -i.;:,;  p ; •■■:.1, 

" :;'  ' :      :>1'  " '•■.!..• ^ |u,   distjibutions   of   simple 
»oui .es represented by exprcssiogi 
(c). alreud)' mentioned, can be used 

m ' onnection with fluctuutinK flow from an orifice, such as for puU,.? jets or organ 
pipes On the other hand, the continujt.v ec;uati.in could be supple«1 uted by a suurje 
<>( matter term, and the result could be used in the same cases by < uploying suitable 
hounda.ies for the integrals; and it should be supplemented by a. dipole term if the 
MHToundinn fluid is in motion, currespunding to its deficit of momentum. 

Although the general theory of the relationships between vorttcity. pressure and 
entropy (21.33) cannot come within the scope of this survey, it seems to me that the 
development of such aspects is likely to be very revealing and should lead to a better 
understanding of many scattered facets that so far have not la-en too closely knitted 
together. 

■.tr'l    :. 

Part U 
.IET FLOWS DISPLAYING DISCRETE FREQUENCIES 

THE SENSITIVE .IET AND FLAME 

The sensitivity to external disturbances of ;, jet. operating somewhat below its 
critical Reynolds number for early turbulent development, seemn to be a key to more 
than one phenomenon. Thus it is useful to mention the well-known sensitive jet or 
flame, although in itself it has little to do with the generation of sound. 

The visible dipping ol the (lame, say of coal gas. is an indicator that increased 
jet mixing has taken place prior to the original flame front, tripped by certain dis- 
turbances of the jei. These disturbances are traditionally acoustic—thus Indicating 
that the jet is really sensitive!—and ordinarily arise from distortion of the jet as it 
leaves the nozzle (34.35). This is confirmed by the fact that sound waves propagating 
along the jet axis are usually ineffective, us are the pressure antinodes of a standing- 
wave system and laterally propagating waves shielded from the orifice. Contrary to 
oarlier reports (34), it anpears that vibration of the orifice itself results in effects 
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quite similur to thusi- i-auscd aeuuBtically (33). TIuit is j neerssary requirement if 
ideas based upir tl'ie classit al dynaiiiies uf jet insiabiiiiy arc \’alid. Provided that a 
small sinuosity of ihe jet, caused by distortion as it leaves the orifice. ..es in the 
unstable regime, it will develop to produce the beautiful (nonlinear!) vortex forma 
shown in Fig. 3, which sooner or later degener.ttc into a mass of turbulence. The 
phenomenon takes place at relatively small Reynolds numberswnen, lackingextemaliy 
applied disturbances, a substantial iiortiun. if nut all. uf the jet flow would be of a 
laminar character. Thus sma 11 periodic diMurbances in the pertine.it range uf Strouhal 
number can completely alter Ihe ap|N>arance uf the jet flow; the disturlied jet produces 
sound, but it is ul quite m-glir.ible pr >purlion.s. However, an undisturbed laminar jet 
can produce no scund: it is steady' flow.
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MiciupliDni' hufvc; s reveal directional iiniperties which are churucterietic of 
ctipoles (42). This ii- ju.st what one wouldexpoet tromIheoretiealreasoning,(indicated 
ii\ the pressure pai't of ■.-, in group (b) of Part I). However, the directional pattern 
sumctimes displays an apparently more complex form tlian the dipole's figure of 
eight, in the classical low-speed case (42); in 11»- high-speed case the radiation is 
much more suggestive of simple source radiation, the high-velocity stream apparently 
offering sufficient Impedance to the lateral motion to prevent a dipole forming from 
the generation ol the sources arising from differential flow on either side of the edge. 
Sometimes the sound wave radiated aw iv is far from sinusoidal (38,42) (see Fig. 5, 
for example) It would be particularly interesting therefore to study the details of the 
flow about the edge and to measure the forces acting upon it. It is Interesting to note 
in passing that the edge may be relatively large or (juite small, from the point of view 
of the circulation about it. since it can be replaced by a wire (39). In the latter case 
the connection between the new eddies springing from the wire and »he force upon it 
is evident: there is clearly some analogy to aeolian tones, for which the effective 
dipole concept is now .(uite well established (2'j). It is relevant-indeed, it seems 
efsenlial—that the vortex system shedding from a cylinder can have its frequency 
f ireed to be in step with that of externally applied disturbances (43), if they are 
largo enough. 

The foregoing type of mechanism of edge tores has been subject to doubt in the 
past because of a lew crucial" tests. Tor example, a jet having no edge was placed 
near one having an edge (41). The failure of the edgiless one to show vortex develop- 
ment was taken as evidence tlwt the feedback fron edge to orifice v/as not propagated 
as a wave; but. the disturbing signal at the edgeless one would be reduced, because of 
the increased distance from the assumed effective dipole at the edge, to not moiv 
than about 1 125 of its proper value (judging fn m the published data). The test is 
therefore not so crucial as it would seem at first sight. Again, concerning the inten- 
sity required of a loudspeaker to produce similar vortex formation in an edgeless 
jet (36). "the loudspeaker had to be easily audible, whereas no audible edge tone 
oecurrod." This would have been a very impressive argument had the velociiy 
fluctuations at the orifice been directly compared, an experiment worthy of attention. 

U in interesting that a ve> ■ much simpliiied model of the jet-tone flow yields 
disturbances having an encouraging likeness to suive of those photographed(44). Here 
the jet Is considered as a continuous stream ot particles of mass subjected to trans- 
ver.-,e pressure gradients proportional to the displacement of the "stream" at the 
edge (45). The apparent success of the method lies partly In the suitable choice of a 
necessary arbitrary function, and also in that the iimtnblltty of the jet photographed 
was relatively very small as such jets ^n. 

I hope that this attempt at biingiin; together the "rival ramps" is of some avail, 
and that most of the numerous theories ("acoustic." "hydrodynamic." "impulse." 
"vortex street." etc.) wiH be recognized as being different emphases upon the same 
essential them«' There seen to me to be no se.rvlving conflicts of any Import, some 
of the very earliest theories containing the essence of the matter, despite the con- 
sid'Table experimental (lilficuliu s ol those times. However, while I think the over- 
all picture is taking shape, we are still far from fully understanding the details of it. 
In particular, the sound intensity cannot yet be calculated,^ ab'nitlu.   Since this is 
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supposed tu be a ii-sult of a feedback mcchunism, it would seem necessary for non- 
linrar effects to play an essential part in deternuninu the amplitude. This rule may 
be played by the stream disturbances becomint! "lar-^e" (developing into vortices), 
perhaps by the flow about the edge becoming less oHcctive: in any event the "gain 
round the cycle" must exceed unity during cstablishmtnt of the motion, bu» clearly 
must equal unity when established (38). 

u    6000 In 

£ 3     4000 - 
u > 

2000- 

-L J_ _L 
S 0      2      4      e      a     10 
J    (ORIFICE TO EDGE DISTANCE, IN.)-' 

i-'il!. t) - Edgv-tuui'f re'liloncii;», rhe 
wavi linytli of Ihi1 (lislurliiim :t;, of the 
jet stream nu" ri-asrä sltadily as tin/ 
cdgiis moved away ffim tht' orifict;, 
but after a eertain point a jump oc- 
uurs when another ili slurbance w ive- 
lennth fit« itself in between the ori- 
fice and the edgei restoring the 
wavelength to that corresponding to 
the most unstable reyinie. Nute the 
prominent hysteresis effect. (Data 
from O. B. Brown (3b).) 

oi the reflector or resonator, and soitupr 
This situation is clearly related to the 
establishment is another matter (47). 

M 'si edge-tone studies have been con- 
cerned with the flow itself, and especially 
with the frequency characteristics, a dis- 
tinguishing feature being the jumps In fre- 
quency (Fig. 6). These occur when either 
the height of the ed(v if velocity Is varied, 
in such a manner that the disturbance wave- 
length is never far removed from that of 
maximum Instability. What few sound inten- 
slty measurements are available (42) Indi- 
cate that the acoustic power Is of the order 
of a hundredth of the jet kinetic power: a 
surprisingly high figure in view of the 
extremely low speeds involved, although the 
presmcc of a baffle may have increased the 
acoustic efficiency above its normal value. 

The proximity of reflectors or reso- 
nators greatly influences the edge-tone 
characteristics (38,42,46). The overall 
picture is now much more complex; the 
salient feature is that the pressure fluc- 
tuations at the edge may disturb the stream 
at the orifice more effectively via the action 
ess upon it their characteristic frequencies, 
steady tone of an organ pipe, although Its 

In some unreported tests using a 4:1 elliptic nozzle at a Heynolds number of 
about half a million, the author found it easy to produce edge-tone phenomena, and 
also to demonstrate the effects of reflectors. The acoustic power generated was 
uncomfortably high, since the jet exit had a minimum dimension of one inch, and the 
exit velocity was near sonic! The acoustic power was an appreciable fraction of the 
jet power, perhaps a tenth. 

OTHER DISCRETE VORTEX PHENOMENA IN SUBSONIC JETS 

There is another class of jet phenomena in which the development of discrete 
vortices is a characteristic; however, the nitualion differs from the foregoing in that 
while appreciable sound is generated, the effect of the sound4 so generated on the jet 
itself is not of mognized importance. 

"Jet tones" are intimately connected with the vortex sheddingof jets issuing from 
orifices. These orifices must luive a sharp entrance (48). so that flow separation 
occurs within the orifice. The vortices are thought to be conceived in this region of 
separated flow and escape periodically in the embryo stage, resulting in the toroidal 
vortex structure of the jet (40). as shown in Fig. 7. The nature of the sound-gene rating 
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iiR'clianism ha.“ yet to lx* iiivt'.sti(;ated: it 
seems prnlialilc that the flow rate fluctuates 
ill synipathy with the eddy shedding, so giving 
rise to a "simple source" ly|)e of sound gen- 
eratioii. When a circular orifice is this, the 
characteristic frequency is roughly propor
tional to the exit velocity and inversely pro- 
ptirtior.al to the axial thickness of the orifice 
(51.52). When it is comparatively thick the 
.'requeiicy is more dependent on the diameter 
instead of the thii'kness. But now a very 
interesting facet emerges: the frequency for 
a given gi'ometry is not unique, since there 
is a choici* of .several frequem ies for a given 
velocity. There are such that if the thickne.ss 
is altered by one or two times the diametral 
dimension then the choice of frequencies 
remains sulistantially the same. This nat
urally leads 'jne to contemplate on ihe eddy 
structure, in the stagnant region within the 
orifice, and what controls it. These phenom
ena range over Reynolds nunilx’rs from some 
hundri ds to alxiut 10.000 fur various config
urations. When the orifice is preceded by a 
pipe, the situation is analogous in some ways 
to the edge-tone system supplemented liy a 
resonator. The pipe has its set of resonant 
frequencies depending upon the geometry, 
and 6>e formerly continuously varying jet- 
toiic- is gfeatly reuiforced at these frequi n- 
cies. sounding "pipe tones" 153.51). No data 
appear to lx* available coiieerning the efti - 
ciency by which jet tones or pi|x tones give 
ri.se to acoustic energy.

An interesting variation on this scheme 
is to replace t,*ie sharp entrance to tiu* orifice 
by a carefully designed throat to eliminate 
flow separation there, but o|M>nirg out the 
nozzle exit to cause fiJW sejiaration from ihe 
curved surface. At a Reynolds number of the 
order of 800.000. regular though turbulent 
vortex formations were disclu.sed by Schlieren 
photographs (54) (one of which is shown in 
Fig. 8) accompanied by an increase in sound 
output of up to nearly a hundredfold (55). thus 
raising it to nearly a liuiidred'h oi ihe ji*t 
power. Tile turbulent jet noise wa-i .[uite
swamped by Ihe lail«*r. wli;ch ii.id i di-.ci*e|c Irequeiicy i*f roughly ■ .4 V !. The direi*- 
lional property ol this i'xh.ilioti *s ii.ji h more unitorm that for turlxileiit jet noise, 
and so IS suggestive of Ihe vorii .s iorin.in-.iis In mg ass.-ciated with a fluctuation of 
Ihe mass tlow. l onstitutiiig a simple .ii'oustie .Siciri e. (The sinipli source eff»*ct al
most < i rl.iiiilv overiHiwers the dipole efieci arising Irom the momentum lliictuatioiis.) 
T'l account for Ihe acoustic |ioWer on ihis iusis ihc m.iss Ilow would have to fluctuate 
Ir, roughly I 20 ot the mean calm*, wliii-h sei iiis reasonable The i.iteresting ques
tion is: do the diM ..•'li.inc* s ..I itie lorte.N lorciai; .i.s c.*iiir.il tin* point of flow separa
tion from llie no//li* wall so gmng rise cmlirvo < ildn-s. or can il In* that a m>//l<*

Flu. 7 - Hu* flow* Ol id-loneN. FIin» 
s.*;>.«ralion *H*i*urs w.thir. the or.iici 
.titci the peri.iiiic shecioing of the 
vorlt.*.*.. -A iih the aNNOciated flue- 
tuito.n :n il*..w result*. :n the eii,ir- 
;i. i.*r:stie t.iroidal vortex forrra 
i!*>!is. (From a photograph by W. 
II. Darlic.glon (sOl.l



A.   l'uw.'ll 

F),v;. H - Vor'fX formations at hi^h 
Hpi'fd. In this nasu the siparaiion 
oci.ur-.at tin- (iivcryina noz/.l'.'i-xil, 
and tin- Kvynolda number i^ »uf- 
ficii-ntlyhinh (800,000) lor Iht-tlo* 
to be in il'.f turbulent rrninif i'xo-pt 
tur a narrmv "lamina r mllar." Tlu' 
n-t-ular vortiirs iiw nut havr tin- 
. ;.-,ii tk'linUiiin "i tin-.11 t turn- Ho« 
ni low Kf.T.'ilds nun lur-i, (Kruni 
A. P.iWfll (^-D.) 
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conlraiti'Mi results In convoctcd pressun 
waves being refli-ti'dto a sufflcienl extent.* 
and si» yield "resonant" frequenries ? 

The last variation to be discussed in this 
seetion concerns the pulse jet, The perio- 
dicity superimposed upon the mean flow is in 
this ease controlled by resonance properties 
of the combustion chamber and exhaust nozzle; 
it is maintained by tic periodic combustion 
of fuel, again controlled by the resonance 
properties Thus, while the heat supply is 
variable, and the flow through the engine 
likewise, the whole process is self-governed 
and so bears a strong resemblance to "pipe 
tones." Presumably the fluctuating velocity 
results in toroidal vortex formations. It is 
logical therefore to include the pulse jet 
under the present grouping. The i Isating 
flow can be looked upon as constituting a 
simple source (either expression (c) taken 
over the jet exit, or a source of matter dis- 
tribution enclosed in the volume in the neigh- 
borhood of the exit) and this leads to a good 
approximation to the acoustic power produced 
(56,57). While the energy of the fundamental 
is apparently easily dealt with, the same is 
not true for the harmonics—and sometimes 
the ac Justic power is very rich in harmonic 
structure (SB,59), presumably because any 
harmonicsof the flow rate would be amplified, 
relatively, as a consequence of the higher 
radiative efficiency of higher frequencies. 
In practice the directional properties are 
nowhere near as uniform as for the simple 
source, the levels close to the jet direction 
exceeding those in Hie opposite direction by 
a noticeable amount, as indicated in Fig. 9. 
In the particular case considered (56), this 
asymmetry could not be accounted for either 
by taking into account the pulsations of the 
intake or the fluctuating thrust (expression 
(b) in one form or another). This is really 
rot remarkable, since the acoustic approxi- 
mations, requiring small amplitude fluctua- 
tions, can hardly be expected to be very good 
when tl^e velocity pulsatiens actually exceed 
the umbicnl speed of SOUIM. Perhaps the real 
question rather concerns why the simple 
acoustic theory should yield such good 
results! Two other features are worth noting. 
Firstly, the levels close to the jet fall very 
sharply, presumably because of refraction 
(liei'ts: and secondly, it appears that turbulent 
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*' <iuU>. iM'fort' lurniiiK lo llly^-!^M't'<l |ilu-nomcnu pro|N‘r. I would like to pusv the 
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I'l'sull in a flow havinn am similarity lo ed);e tones'.' This seems a very worthwhile 
i'\|M'rinu'nl. whieh I lio not liiink has been done Finally, is it at all possible that the 
fdd\ Itirmalains in turbulent jets e.xert any influenee on Ihi* ercalion ol embryo dis- 
iiirlMii'es in "ordin.tr\" I ireum.sianfeb'.' Ski. li (tuestiims are very fundanw-ntal and 
thtir joint stiuiy may well yield a more t omplete underslandinKthan would result from 
their lieinu treated separately.
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A,  Howfll 

that while most ol Hit* fuiiUumcntal radiation 
is thus in llic upstream direction, the same 
conditions resulted in the prediction that 
suuml of twice that frequency wouid have a 
sharp preference for radiation at approxi- 
mately ri);ht anf{les to the jet stream and this, 
happily, was found to be the case (60). The 
efficiency by which the kinetic energy of the 
jet stream is converted to acoustic energy is 
high, being of the order of from a hundredth 
(61) to a tenth (62)-a very high figure. 

Fur Jets having circular orifices, the 
phenomenon bears a closer analogy to edge 
tunes in I hat jumps of frequency take place (61) 
(Fig. 11), While tin eddy formation for the 
slit jet is always of an alternate structure, it 
appears that just the first stage for the round 
jet has toroidal vortices (63). It appears to 
be a fortuitous circumstance that the increase 
of spacing of the Shockwaves with pressure 
ratio happens to be such that no jumps are 
present in the case of the slit jet. 

There are several reasuii.s why this "screech" may not make an appearance in a 
supersonic jet. Clearly the absence of Shockwaves will guarantee this; a properly 
designed convergent-divergent nozzle thus will exhibit a limited range over which 
"screech" is absent (64). while the equalization of pressure at the nozzle by a pei - 
furaled sleeve achieves the same result over a wider range of pressures (55,65). 
Like the jet tones of a completely different flow regime, any roughness of the edges 
of the orifice tends to inhibit the mechanism (55). presumably by thickening the 
boundary layer and so decreasing the instability of the eddy formation. Thisof course 
is suggestive from the point of view of noise-reduction devices (66). Not only does 
the mechanism display features in common with edge tones, but also the status of 
research is similar: the essentials of the mechanism are understood, and certain 
isolated aspects of it are amenable to analysis under simplifying conditions. The 
frequencies can be found: but the calculation of sound intensity, ab initio, is quite 
beyond our prescht means. 

This characteristic motion appears to be confined to "cold" Jets. There are 
probably two reasons for this. A hot choked jet has a mucii higher velocity, and this 
results both in increased stability of the Jet boundaries and greatly increased noise 
due to the inevitable turbulent mixing process, which would also tend to mask any 
discrete frequency phenomena. Certainly indications so far are that it is not of 
Importance for Jet engines(67) or rorkeis(68). Here ihe noise from turbulent mixing 
is all important, and in the next section the question of how much of the experimental 
data can be explained by theory is dealt with. 

Part HI 
.'KT FLOWS DISPLAYING NO DISCRETE  FREQUENCIES 

Tlit; TURBULENT JET 

In recent years the turbulent jet lias received much attention, and this section 
will lie devoted to aspei ts concerning noise generation >n the absence of the discrete 
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frequency phenomena associated with the pcrUxiic vortoxformations discussed in the 
precedinn section. 

The overall picture of the spread of a turbulent subsonic jet is now well estab- 
lished (09,70). Initially the turbulence springs from the shear layer adjacent to the 
exit, spreading outwards and inwards at u steady rate. After about four-and-a-half- 
diameters distance the turbulence readies the axis, so annihilating the cone of 
"potential" flow, after which the axial velucily commences to fall in a roughly hyper- 
bolic manner with the distance from the exit. The profiles of mean velocity soon 
become similar, suggesting profitable techniques of analysis; but unfortunately the 
turbulence levels do not füll in line until much further downstream, due to the per- 
sistence uf the high-turbulence levels at positions corresponding to the original high- 
shear layers. This basic structure of course suggests that intense high-frequency 
radiation emanates from the region of high turbulence and shear near the exit, the 
frequency falling in the downstream direction. The intensity would be expected to 
commence to fall sharply in sympathy with the axial velocity ii downstream locations. 
Indeed, early exploratory experiments (71) indicated just this. The success of 
similarity ideas on the mixing problem probably encouraged the application to noise 
generation (72,73); but it is apparent that the proper form of the similarity rules is 
not yet known to us, despite the theoretical concepts at our disposal, and that existing 
efforts should be regarded as first attempts. 

Perhaps the principal difficulty lies in the fact that it is far from easy to design 
an experiment to yield the distribution of sound sources (of varying frequency bands) 
within the volume of the jet. Space, or bpace-lime,co>telatlons can Indicate effective 
regions associated with the areas where the noise leaves the jet boundaries (74). 
Measurements very close to the jet flow itself (75) mainly concern the very local 
turbulent fluctuations, so that the connection with the noise sources distributed 
throughout the volume of turbulence must be regarded as being rather vague, at least 
until proved otherwise. A method of some promise (in principle at least) seems to 
be the correlation between points in the turbulent field itself with a puint(s) in the 
acoustic field. (The difficulty, of course, is with Dopplcr effects, but I Imagine this 
might not be insuperable.) But then one might just as easily (?) measure the cor- 
relations required by the genera! quadrupole theory (7). 

The quadrupole theory certainly yields acoustic powers of the right order of 
magnitude, and it accounts for the gross radiation «.iiaractcristic of marked asym- 
metry (10). There are, however, many aspects that are not yet fully understood, and 
it is upon these I wish to dwell. 

The directional properties of the radiation from turbulent jets appear to follow 
no simple law, although (he principal characteristics can be easily stated and 
accounted for ina general manner. Most of the radiation from jets of low or moderate 
speed occurs at angles noticeably less than 45 degrees to ihe jet axis (71.76,55,77), 
the lower frequency being found closest to the axis, as illustrated in Fig. 12. Theo- 
retical ideas are in accord with this, since both convected lateral quadrupoles asso- 
ciated with the shear layer and convected assemblies uf longitudinal quadrupoles 
associated with regions of weak shear further downstream will display thisproperty. 
However, additional sources, especially longitudinal quadrupoles normal to the axis, 
have to be postulated to obtain a satisfactory agreement at ali angles (65.76). The 
possible influence of convection and refraction effects upon the directional properties 
have not been very seriously considered (2) although there Is almost certainly some 
effect in view of the very noticeable decrease in noise levels as one approaches the 
jet in positions where the energy ul tue jet is ulmusl spent. 
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A.  Powell 

As the eddy convection velocities increase for 
faster jets, the eddy structure will more and more 
tend to generate its own system of shockfronts 
(65,60,10) und this may account for fast jets (i.e., 
those probably having eddy convection at supersonic 
speeds) displaying maxima at increasing angles 
from the axis. A helium jet exhausting at 2600 ft/sec 
displays the maximum Intensity at very nearly 45 
degrees to the axis (78), while rockets, having 
exhaust velocities of upwards of 5000 ft/sec, have 
maxima, apparently for ail frequency bands, at 
anglet between SO and 60 degrees (68). The main 
directional properties of these three types of jet 
are shown in Figs. 12 and 13. If the radiation in 
these cases is essentially associated with the eddy 
shocks, then it is implied that the eddies accounting 
for the major noise contribution have a convection 
velocity of rather less than half the exit velocity. 
That does not seem unreasonable. 

Anotiier outstanding characteristic of turbulent 
jet noise is its rapid variation witn jet velocity. 
The quadrupole theory -ields the well known simi- 
larity form ^.i-V ,.,' when the field of quad- 
rupoles is not convected. By some fortuitous cir- 
cumstance, experimental data produce not only the 

i-' but also the Vs, to a good approximation. How- 
c\rr it should really be looked upon asanempirlcal 
result, since in accounting for the characteristic 
directionality the convection effects (10) necessarily 
supplement the above form by a not at all negligible 
positive power of Mach number V, i-0. Of course 
any such form should also be supplemented by an 
unknown function of Reynolds. Mach number, tem- 
perature ratio, density ratio, and any other param- 
eter that may have a bearing upon the noise 
production. 

One naturally tends to think of cluract ristic frequencies of the radiated sound 
in terms of Strouhal numbers (79,80). One might choose the peak of the spectrum (on 
an "energy-pcr-cycle-per-tH'c" basis) us the characteristic frequency. Although the 
spectra are rather flat, th- •«' is a definite tendency for this peak frequency of the 
total acoubtic power to Increase less quickly than the velocity (resulting Ina decreas- 
ing Strouhal number), as shown in Fig. 14. Most of the energy however Is contained 
by frequencies higher than the true spectral peuk, the peak of an octave analysisbeing 
more representative of the overall noise produced, since it corresponds roughly to 
the median of the energy-frequency distribution. On this basis the departure from 
proportionality is marked, both at individual points (55) (Fig. 15) and for the total 
sound power (76). The more pronounced effect in the latter cases arises because of 
the dependency of the spectral shape on the veUujity. it being much flutter ul low 
speeds. This is in itself a i.Diewuylhy fact and is clearly shown in Figs. 14 and 15. 
It also raises the question of what is the most slgnltieant choice for a "ctturacteristu' 
frequency"; the peak of the energy-per-cycle-per-see spectrum, the peak of the 
energy-per-octave (or similurly propurUoitttl) spectrum, or the frequency correspond- 
ing to the median ol the energy?   A departure from Strouhal concepts also arises In 
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A.   Pnv.HI 

U-nipcrature certainly tend lo uonfirm Hit density laclor (of ^arising from the 
similarity argumi-nt.ultliougli (lie only reported measurement (78)concerns positions 
at rinhtaiinh-s to the Jet axis (where convection effects would be expected to be least). 

Temperature effects have yet to be fully investinaled. Early indications that the 
effect was small (2) seem to be confirmed by recent experiments (78,83). The acous- 
tic power seems to be hardly affected, inr.plyint; that care should be taken in the 
interpretation of the i factor, lor which there is some verification for different 
(rases. Thus the inirociuction of the molecular weicht (to replace jet density) might 
be expected to yield a useful empirical rule. So far as frequency Is concerned it 
seems to me that the statement of decreasing characteristic Strouhal number with 
temperature (00) (at a given pressure ratio) is less significant than the fact that the 
"median-energy" frequency did not change much with velocity. This means that it 
seems to make little difference whether the velocity increase is due to increasing 
temperature at a constant pressure ratio, or vice versa. Apparently the effects of 
reduced gus density are just about offset by increased noise-generating capacity (10). 
Directional effects, however, have yet to be thoroughly investigated, but again it looks 
us though jet velocity is more important than temperature, per se, since a helium Jet 
andahotairjet display similar directional properticsat the same speed (84) (Fig. 13). 

So far there is hardly any data throwing light on the validity of the „•,* of the 
ambient fluid in the denominator of the simUarlty form. Ambient temperature and 
density effects are normally rather small but may have a measurable influence—at 
least some full-scale meaMirements suggest that possibility, It would therefore be 
mosi interesting to perform an experiment in the atmosphere of another gas, for 
example helium, (remembering that most microphone techniques give a measure of 

-, while the acoustic power is con- 
nected with p-' ,)• 
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espei Lilly J.  N    Cole el .il.  ((.«).) 

The noise of roi'ket effluxes is 
particularly interesting. The low- 
speed dependency on velocity must 
be superseded by another form, 
otherwise the acoustic power would 
become Impossibly large. Presum- 
ably the acoustic power Is likely to 
be asymptotic to some fraction of 
the total power, in contrast to the 
;ow - speed case where the conversion 
to acoustic power depends on about 
the fifth power of the Mach number. 
It turns out that this fraction appears 
to he about a hundredth of the total 
power (68,86) This Is shown in Fig. 
16, where a comparison Is made with 
cold air Jets, Jet engines, and Jet 
engines with afterburners. In view 
of the foregoing comments concern- 
ing temperature effects, no allow- 
ance has been made tor density var- 
iations. The essential characteristic 
of the rocket efflux is Its high abso- 
lute velocity. It seems to me that 
model tests using supersonic cold 
air Jets may be very misleading in 
relation to rocket -noise because of 
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the limited velocity, whatever the pressure ratio. For example, the turbulence noise 
level of an unheatcd air jet sti.'l appears to follow the velocity to about the power of 
eight, provided the "expanded" velocity is used if the jet is choked (55), up to pres- 
sure ratios of thirty (85). There is an indication (86) that llio bulk of the noise energy 
generated by rocket jets emanates from relatively far downstream, possibly where 
the jet velocity falls from supersonic to subsonic speed (but this is not in accord with 
the idea that supersonic eddies may be responsible, as discussed earlier). Another 
interesting feature of rocket noise is that radiations from all the frequency ranges so 
fur measured display the maxima between 50' and 60" to the jet axis. * (Low-speed 
jets display a much wider variation (Fig. 12).) Does this imply that the major part 
of the noise production is by supersonic eddies lying within a comparatively small 
speed range? What is the nature of the mechanism which limits the Iraction of 
available energy convertible to acoustic energy? (I cannot appreciate the argument 
that because th "e is only about 1 percent of the jet power resident in turbulent 
kinetic form, then this must be a limit to the acoustic power (87). By the same token 
would it not also be a limit to dissipation?) Close to such jets the pressure amplitudes 
are great enough to invalidate linear acoustic theory—is this responsible (or any 
gross effect, e.g., by increased dissipation? Another (and possibly associated) feature 
of interest is that while the spectrum of turbojet engine noise is quite broad, the 
pressure maxima do not possess a Rayleigh distribution; the highest peaks reach at 
least four times the rms level (88). This aspect is very important in respect to 
fatigue troubles; corresponding data for rocket noise is not yet available, but will be 
of interest from more than one point of view. Knowledge concerning these aspects no 
doubt will cast light on a curious fact that has been observed (68). While the jet flow, 
delayed combustion effects, and near-by pressures are greatly affected by upsetting 
the stream at the nozzle, the noise radiated away is not appreciably altered. 

It is interesting to reflect upon the changes that the immersion of a turbulent jet 
in a moving fluid would effect. Again, similarity arguments (73) come to mind, but, 
to judge by the limited experimental data available, yield results less satisfactory 
even than for the static case. There is some evidence that the reductions in the peak 
and low frequencies are much greater than such arguments suggest (89), although all 
measurements Uu not show this (90). 

THOUGHTS ON JET NOISE REDUCTION 

As the biggest financial expenditure on jet noise has been directly ainud at 
methods tor its reduc'ion, it is perhaps appropriate to mention a few major features. 
Study of some of the results of this work soon convinces one that our understanding 
of the overall problem is still very sketchy (although partial explanations are invari- 
ably forthcoming after any particular experiment!). 

Perhaps the most simple variation on the jet having a circular orifice is that 
having an elliptical orifice. Experiments (91) with a 4:1 exit showed the increase in 
high-frequency noise in positions along the minor axis. This would be expected, yet 
the anticipated corresponding reductions along the major axis were absent; low- 
frequency changes were small but unexpected. Another simple variation concerns a 
change of the velocity profile at the exit, most easily obtained by u8inb a long pipe 
prior to the exit (92,93). Here the high frequencies suffer reduction, but the overall 
reduction is not great. In particular if the jet velocity is increased to restore the 
thrust to its original value, there is a net increase in noise.   There is now a little 

*A  rei ünt report (*•) < .ists   Hume iloulil  m lliih,   reporting! maxim.i  bctwei»« ID*  .iml 
4S° tu the jet axis,  Iml 'lelails are mil available at the time of writinM. 
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iH’Ufi uiiderstanding why this should he so <73,74! (lor example, becausi; the most 
intense part of the spectrum apparently emanates from the region at the end of the 
potential cone which would be little effected by the reduction of velocity gradients at 
the exit).

Those faced with the practical problem, not lacking in urgency, have tried 
numerous ad hoc devices. One might illustrate their diversity by reference just to 
nuzzles having axially corrugated walls (67), a maltiplicity of separate jets (94,95), 
combinations of several rectangular orifices (95), or the combination of the corrugated 
type with ejectors (97). Of course, for devices to be used in flight the question of net 
propulsive efficiency (98,99) is very important, and this is an essential factor in their 
design.

Our understanding of the meclianicm by which the noise suppression is obtained 
is sketchy to say the least, although it has been the subject of much conjecture. The 
views that follow are by no means entirely original and are quite tentative, but seem 
(to me at least!) to be the most satisfying and. I hope, do not invite counter arguments 
of comparable strength. I shall conclude my lecture on this controversial (and 
challenging?) note.

First, confine attention to those variations of nozzle shape which eject all parts 
of the jet in a direction essentially parallel to the axis, for example that of Fig. 17.
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There will be a considerable amount of induced How between the jet flows from the 
various segments, greater than in the absence of neighboring segments. The result 
of this is to reduce the rate of mixing, i.e., the individual potential cores persist 
longer than they would individually (100); the observed reduction in turbulent velocity 
fluctuations, and in the frequency (100,101) more than offset the greater volume of 
turbulence so far as the noise production is concerned, at least according to existing 
•3! ilarity arguments (73). The greatest reduction will occur at frequencies corre- 
sponding to the regions where the induced velocity is the most effective: this view Is 
consistent with the selectivity associated with nuzzles having various numbers and 
depths of corrugations around the periphery (67). 

This also sheds some light on the noise-reducing action of ejectors. The flow 
leaving an ejector forms a new, larger, but slower jet of lower noise-producing 
capacity The answer to the question of why less noise is made in the ejector than 
in the corresponding section of a free jet seems to lie at least partly in the fact that 
the action of the ejector directs the induced flow so as to reduce the total shear of 
the mixing region, and this Is the most important single parameter so far as noise 
production is concerned. 

Another point of view—which does not seem to have attracted previous attention- 
hinges on the tact that the predominant effect of turbulent mixing la the diffusion of 
momentum in transverse planes. Is It not reasonable to argue that the noise produced 
is connected with the amount of diffusion that has to take place? (There is some 
theoretical backing in this direction, in that the transverse velocity fluctuations are 
presumably connected with the amount of diffusion, and fluctuations across shear 
layers serve to amplify the noise output (7).) And all the fancy exit shapes considered 
do reduce the amount of diffusion, because some momentum is ejee'ed from the exit 
at greater distances from the axis. While it may be useful to think of th seas separate 
effects, of course they arc inseparable in practice. Perhaps the optimum configura- 
tion is a nice balance between these two points of view, namely to spread out the 
initial momentum, yet taking care to lessen the total shear by induced flow. 

The addition of a slower moving sheath of air has not proved very effective (102), 
less effective than some measurements (73) suggest for the flight case of jet engines, 
even for very moderate aircraft speeds. The reason seems to be that the part of the 
jet responsible fur the peak of the noise spectrum -ihe most Important single region— 
probably lies rather far from the exit (at the end of the potential cone, or a little 
farther downstream (73;) and that the outside sheath has already been annihilated. 
In other words, to be really effective one would expect that the sheath should certainly 
exceed the jet diameter in thickness-an arrangement the airplane designer is unlikely 
to welcome, compared, say, to an ejector arrangement. 

There is another class of nozzle in which the efflux does not all leave the nozzle 
parallel to the axis, and which is known to result in diminished noise output. Typical 
of these is the one in which a parallel pipe has axial sluts at the ends, some of the 
resultant "teeth" or "fingers" being bent inwards, some outwards. The situation here 
is less easy to see. The jet spread» at a faster rate (103), thus reducing the volume 
uf noise-producing turbulence, but why is it hot offset by the presumably higher 
turbulence levels? Firstly, some efflux is ejected outwards from the axis, and would 
not this reduce the "work" the turbulence would luve to do in achieving the necessary 
diffusion? Also, may not secondary fluws be set up, like vortices with their axes 
lying along the mean velocity surface of the jet, this rotation being a direct help to 
the diffusion process, since it would provide a mean flow between regions of high and 
low velocity and vice-versa? Finally, the effect uf the teeth is to corrugate the Jet 
leaving ihe nozzle: then is not the induced flow argument just as effective in these 
circumstances?    The   conjectural   nature   of   the   furegulng   suggestions   is  all 
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apparent—the practical reduction of jet-engine noise is clearly still more an engi- 
neering art than science! 

I appreciate very much having been invited to under.ake the task of preparing the 
survey I have just presented to you, a task wnfch proved to be both pleasant and 
revealing (at least to myself!), and I regret only thai time did not permit me to 
include phenomena involving solid boundaries and heat. This also seems an opportune 
time to express my appreciation to all the many who have helped me in many ways at 
one time or another and have given me so much encouragement. Of these, Professor 
E. J. Richards is directly responsible for my interest in the field and he gave me 
limitless help and encouragement while I worked at the University of Southampton. 
Since my association with the Douglas Aircraft Company, Mr. M. M. Miller has given 
me encouragement that I am glad to place on record. A third name it that of Mr. H. 
B. Irving, lately of the Ministry of Supply who, in his quiet gentlemanly manner, I am 
sure has achieved much by way of encouraging those, including myself, pursuing 
noise research in England. 
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DISCUSSION 

R. H. Kraichnan (New York University) 

I'd like to say a few words about why the maximum frequency doesn't seem to go 
up with Mach number as fast as one might expect. I have done some work recently 
on predicting quantitatively the amount of noise from Isotropie turbulence, which is a 
very idealized approach to the jet problem but it does seem to indicate some quali- 
tative features. One of the results is that at high Reynolds numbers the radiation is 
principally at high frequencies coming from small eddies and, in fact, the spectrum 
at high frequencies falls off inversely with frequency. 

The radiated power is proportional to the rate of dissipation of power in the jet 
itself, and to the fifth power of the Mach number. For Mach numbers of the order of 
unity the acoustic damping of the turbulence becomes very strong. This indicates a 
strong coupling between the acoustical and vortical modes at high frequencies. In the 
region of appreciable Mach numbers, because of the strong damping at the relatively 
high frequencies, one would expect that these frequencies could no longer increase 
in power and, therefore, that the maximum in the acoustic radiation curve would not 
go up as fast. 

This doesn't solve LighthiU's paradox in a neat form because it doesn't answer 
why one begins and ends with the eighth power law. Aside from any specific inves- 
tigation for nonlinear phenomena, one would certainly expect things not to increase 
as fast, so certainly the power law is going to drop off. 

There is a slight increase in efficiency if the Reynolds number is separated from 
Mach number dependence. This increase would ^ive a decrease in the power law. 
The turbulence itself is damped. 

Wewill accept the experimental evidence. I have noi-ompctence to do otherwise, 
and I would like to point out what seems to be the great danger in all of this. The 
theoretical explanationsare very simple and it is not too difficult to find a theoretical 
effect which agrees with any given experimental effect. Whether you are happy in 
doing this depends on how strongly you want to support a particular theory. 

A. Regier 'National Advisory Committee for Aeronautics) 

In our earlier experiments we soon became aware of the fact that the frequency 
in the far field did not increase as rapidly as the velocity. However, in the near field 
we found that i)oth the turbulence in the jet and the pressures '.-lose to th<' jet Hid 
agree nicely with the velocity increase. I wondered if Dr. Kraichnan or Dr. Powell 
would accept this as an experimental fact and explain it, or is ihere anything further 
to be said on that, whether the near field does follow the velocity but the far field 
does not ? 

E. Mollo-Chrifiteimen (California Institute of Technology) 

From tlu- dimensional analysis in the near field I think (here is no cioulit thai 
things should scale with velocity, hut in the far field one has radiation and there dels 
something «luite d'ffercnt. In the far field, as 1 show in my paper, we find that certain 
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frequency ranges scale with velcity very precisely. We also find in other parts of 
the far field that we do have scaling with the velocity of sound, suggesting an acoustic 
mechanism of sound radiation. There arc apparently two mechanisms involved. This 
is speculation now, but it agrees with our experimental results. 

I '.hink that one can gel more out of narrow band measurements.  The measure- 
ments to wntrh Mr. Regier rcfersare octave-band measurements on thedecibel scale. 

J. 11. CJerrard (University of Manchester) 

I should like to comment on Dr. Powell 's question, "would the placing of an edge 
in the vortex street behind a cylinder result in a flow analogous to edge tones?" 

Edge tones have been produced by placing a circular cylinder in a Jet. One might 
expect the similarity suggested by Powell to be detected, therefore, when two cylin- 
ders were placed one behind the other in an air flow. I have made some exploratory 
observations of the pressure fluctuations on the surface of a one-inch-diameter cyl- 
inder when a second cylinder was placed parallel to it a short distance, 2 in. to 6 in., 
upstream and downstream (also to port and starboard). Increaned amplitude of pres- 
sure fluctuation at the surface corresponds to increased Aeolian tone intensity radiated 
from that c> .Inder. If the flow assumed the character of an edge tone one would 
expect: (a) the surface pressure fluctuation would increase when a second cylinder 
was placed upstream or downstream, and (b) the character of the fluctuation would 
change from that characteristic of Aeolian tones to the pure-tone form associated 
with edge tones. No change in intensity was detected when the second cylinder was 
Interposed in the fore or aft position. When, however, the cylinders were separated 
across the stream the signal Intensity increased about twofold. In neither case did 
the appearance of the signal change from that of a narrowband of noise. The Reynolds 
number of this experiment was about S x 10*. 

27 



A THEORY OF TURBULENCE DYNAMICS 
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1. INTRODUCTION 

A fundanuntul difficulty in i\\v drvdopnunt of thi' thiory uf noise produced by 
turbuhwi' lias bitn Iho abscmi- of a Hatlsfajtory quantitative theory of turbulence 
itself. This lack is the more serious because the prediction of acoustic phenomena 
associated with turbulent flows requires a considerably more Intimate knowledge of 
the structure of tht velocity fluctuations than Is contained in the energy spectrum 
function, or two-point velocity correlation, whose determination has been the principal 
concern of pure turbulence theory. 

The purpose of the present paper Is to survey the foundations of an approach to 
turbulence dynamics which holds some promise of yielding useful approximations to 
the pressure field associated with certain classes of flows - those which display sub- 
stantial homogeneity in at 1» asi one direction In space. Parts of this theory have 
been published recently (1-3), and other aspects. Including the extension to acoustic 
phenomena, will be treated In future papers. The discussion here necessarily will bo 
largely qualitative. The Intention is only to describe the basic dynamical concepts 
which characterize the thiory, particularly those which have elements of novelty. 
Consequently, the treatment will be confined entirely to the simplest case, Isotropie 
turbulence of a completely Incomp •esslble fluid, and acoustic phenomena will not be 
considered. 

2. THK STATISTICAL EQUATIONS OF MOTION 

Let us consider an Incompressible fluid in a state of Isotropie turbulence within 
a large domain of side I . If we analyze the velocity field u ,< «. i ^within the domain 
by a Fourier series expansion 

..,(«.» •     Li.fH.i i .•'k■,l . ,„  . 
N (2.1) 

where- the summation is over all wave vectors allowed by the boundary conditions, 
equations of motion for the Fourier coefficients can be deduced from the Navier- 
Stjkes equation.   In this way we find (4) 

(■■ -) 
(k.i i     IM , .ki     ^J   ii,fk'.ti M,'k 

k -K    k 
(2.2) 
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whiTf    is Ihi' kinematic viscosity and 

The first term of V (k> scrvt-s to include the Reynolds stresses, and tne hecond 
term, the pressure, vlv shall regard the u/fc.t i as the fundamental dynamic variables 
of the flow system.* 

In discussing turbulence we do not seek an exact description of the exceedingly 
complicated velocity field but rather the average values of physically interesting 
functions of the field. The averages can be defined in several ways. Wc shall adopt 
here the most customary procedure, in which the averages, to be denoted by < ■, are 
taken over a suitable representative ensemble of individual flows (4). The statistical 
quantity of greatest interest is the second-order covarianee tensor n/k.t > u^k, t') ■. 
It can be shown as a consequence of isuUopy that this tensor must have the form 

(I, 2  r1 ■ ,i/k.i m.'fk.i'i       j P,/!«) m-.t.t'>. (2.4) 

where the scalar V is real, does not depend on the direction of k, and is a symmetric 
function of t and t' (Refs. 4,5). The iiormalization by ft. J-i3 is done so .hat. in the 
limit I.—- ■ , when the spacing of the allowed k victors becomes infinitely close, the 
mean energy per unit mass is given by 

,   li u.ik.i ui,"rk.t ^  —•-{   K^K.I   .)v. . (2.5) 

where 

F(k.t )     2"k-:m:i.t : (2.6) 

is the energy spectrum function, as usually defined. I 

We shall also define the function 

rfk;,.t.,     -^
J',"^','|      . (2.7) 

which satisfies r(k;t.t i ! and measures the phase correlation between theampli- 
tudes of a Fourier mode at times t and i'. 

From Kq. (2.2) we may obtain the statistical equation of motion 

("'     '■)'1'''-       "':'..'. (2<8) 

; In tin- i.illn»mi;, sw lrt'fjui'iitly Kii.iil «nlr n 'k' msti'.Hi ■! 11,(11.' »Iu<n J m not 
flc-siri-ii In siictlty«) ii.irlu ul.ir v.iliir ul Ih*' UMM-.t rLumnit Irt* sann1 pi »urdurf will 
l.f  fiilliiWfll  «llii .itl'.iT (illn  -iir|irliili'llt i|ll.mlltlr*   .list). 

I 1 i.i' [ifirtittilar ni»rni.ili/.iili'Mi ihoj-rnis .ippp-iprMTt' tii i-.r'.ii- lutumi.ir) lomhtions tin 
I he i In ii i,i. ii.   ( Min r IIKM.II liimiulat't > "<><l'<i'>»i' rt'iiutrr iiiui'ir i n.iu^cri in n.r ili'liiiitimis. 
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whrri' 

sMt,,1,     ,i  > ■.■hn     ^      n/kM i 11,,,'k .t i i'/ik.i' i   . (2.9) 
K  'K     K 

Bwause of the symnu'try of ''c . t .t' i in i and i , the similar equation of motion 
Involving mi,", i ■ is redundant with Eq. (2.8). For i t , we find that Eq. (2.8) 
rcduci's to 

•■) 
nk.i,    rat). (2il0) 

whon- 

T'k.i i      4   ^Sfk.t.tl (2.11) 

is the iiurny transfer function as usually defined (4). Equation (2.10) expresses the 
conservation of energy. It exhibits tin opposing contributions ol viscous dissipation 
.! [i2? u.i i and ni'l enerKy-input from interaction with other modes. 

Equation (2.10). or F ;. (2.8), cannot be solved directly for ra.i i, or m;t,t\ 
because of the presence ol the third-order moments on the right sides. Equations of 
motion for the third-order moments can be obtained by mulliplyinn Eq. (2.2) with 
suitable bilinear expressions and averagint;. but as a consequence of the nonlmearity 
these equations contain fourth-order moments. One does notibtaina closed set of 
equations for moments of any given orders simply by multiplying Eq. (2.2) with 
\arious iuiuiions and averaging. 

Several theories of turbulence have been based on making Eq. (2.10) determinate 
by assuming an expression for the triple nioment T'':.i I in terms of m .t . obtained 
usually from sonic simple analogy for the energy-transfer process together with 
dimensional considerations. The best-studied example is the eddy-viscosity theory 
of Heisenberg (6). Other theories have been based on tiie assumption that fourth- 
order moments have the same expression in terms of second-order moments as they 
would have if the velocity field were normally distributed. In this way a closed set of 
equations can be obtained which involve only the second- and third-order moments. 
Examples of this type include the second theory of Heisenberg (6) and the theory of 
Proudman and ReiH (7). 

The approach to be outlined in the present paper is not based on direct surmises 
about the relations of various munients. Instead, it involves a well-defined approxi- 
mation en the dynamical processes by which statistical interdependence of the Fourier 
modes is produced. Th« dosed equations thus obtained turn out to represent the 
exact behavior of a model system whose dynamical structure is related to that of the 
actual system. Thereby it can be inferred that the theoryobeys important consistency 
conditions. In formulating this approach it is necessary to consider not only the 
iroments describing the actual statistical state of the system, such as ''<< .t .t ' > and 

• ft' , but also functions which give the average response of the system to »mall 
perturbations, Tin latter functions embody essential additional aspects of the 
dynamical behavior. 

let us suppose that at lime ■ tin amplitude of mode k, but of no other mode, is 
suddenly Increased an urbitrury iiilinitesimal amount n| kt > by some impulsive 
force. Tin subsequent history of tins perturbation in amplitude - the infinitesimal 
impulse response - will be very eomplicalid, in general, liecause of the interaction 
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of modi k with all tlu otlu r modes. HOWCVIT, if the rcsponsf is avcraged over tlie 
isotropic statistical distribution of the unperturbed amplitudes, we may expect it to 
become a much simpler function. Therefore we introduce the avcratie impulse- 
responsc function  ■>': i. i' i defined for i     t' by 

•„/k i u.dt.t'' ." ...i ' i. (2.12) 

Note that the averagiiu; implied is only over the unperturbed state, not over the 
prescribed initial perturbation i/kt i. The response indicated by Eq. (2.12) is 
proportional to the initial amplitude jump, despite the nonlinearity of the system, 
because we are considering only infinitesimal perturbations. In the following, we 
i'.hall usually call   •< i . i  t '   simply the response function. 

Byusiny Eq. (2.2) .an equation of motion for id. t i' i analogous toEq. (2.8) may 
be obtained. As in Eq. (2.8). the riuht side of this equation contains higher-order 
averages than the left, thereby givinn rise to similar difficulties. In the present cfse, 
the higher averages involve the c ross- response of other modes H' to the initial applied 
jump in the amplitude of mode k: they areconnected with the contribution to the decay 
of this jump due to spreading of its energy to the other modes. An additional con- 
tribution arises, of course, from the viscous dissipation In mode k. 

3.     THE STRUCTURE OF THE INTERACTION 

The nonlinear interaction described by Eq. (2 2) is quite complex: each mode 
interacts with every other mode. However, the total interaction may be considered 
the resultant of very many ilementary Interactions of simple structure, each of which 
involves just three Fourier modes. When k p q . we shall define the elementary 
interaction of three mo.'es k, p, and q by the terms 

•pJ'i.'P1 "/ Q1 "J^ ' V*1 ""' A» (3.1) 

i'iiJV^.Ujfln "J-pi * V-P' "1^('^,' 

in the equations of motion of the form (Eq. (2.2)) for n^k i. 11,1p s and u^qt respec- 
tively.   We may represent this elementary Interaction bv the diagram of Fig. 1.   It 

follows from the reality of the velocity field 
that 11/ k>     11,'ikK Therefore we shall con- 
sider the mode k to be  represented by the 

P      ,      r, amplitude u ( k * as well  as IM ki, and we 
uf th»- ehmontary aia*1 Include In the definition of elementary 
interaction Hinon« Interaction the   conjugat«;  terms to (3.1) 

* n<»<l"s N, p, and q which appear In the equations of motion for 
c n^-kv, ii^-p), wid u/ qi.   It is clear in gen- 

eral that elementary Interactions exist only 
for mode triads whose wave vectors can form 
a triangle. 

The Reynolds stresses and pressure are conservative, so that the nonlinear 
interaction servos only to distribute the energy among the modes without overall gain 
or loss. The aptness of the concept of elementary Interactions Is enhanced by the 
fact, verifiable fron- Kq. (2.2), that each elementary Interaction is Individually con- 
servative: the sum of tire energy transfers to modes k, p, and q arising from the 
terms (3.1) Is zero. Thus the whole process of energy transport may lie con- 
sidered the sum of elemental transfers associated with the Individual interactions. 

:i2 
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ui-twiirkii   Unking   modes   h,   p, 
iinlab^llfU lim'« dfnuti-  modrs i 

intiriu lion 
and   q.     fhi- 
ihir  than k, 

p, and q. 

A  ilu'iiry'i   I urttiiU'iuv Dynamu-H 

Tlic total process is wry complicaU'tl. Transfer from Miodcs k and p to modo q may 
tiiki' plaif not only through the di'mi'iitary iiui'raction which dirtctly links these 
modes (Fij^. I)but also through networks of elementary interactions, Involving inter- 
mediate modes, which can branch out to extreme complexity (Fig. 2). The branching 
is a graphical expression of the nonliiuarity of the equations of motion. 

Fortunately, the complexity 
associated with the multiplicity of 
transfer paths is compensated by a 
related feature: each elementary 
interaction actually   represents  a 
very   weal;  dynamical  (.'oupling • ,        , 
among the modes involved - pro- 
vided   the domain   containing  the      > •       »        .   i • • 
turbulence is very  large.   Let us 
consider what happens as the limit f 
' -» is approached. The number- 
density in wave vector space of the 
modes allowed by the boundary 
conditions increases as 1 '. Conse- 
quently, the number of terms con- 
tributing to the right side of Eq. 
(2.2) in any wave vector range 
increases as ' '. In the limit, each 
individual  term,   representing  a 
single elementary interaction, makes only an infinitesimal contribution to the motion 
of the modi k. This implies that in the limit the effective dynamical coupling among 
any three individual modes k, p, and q due to the elementary interaction which directly 
links them (Fig. 1) becomes infinitesimal in strength. The same conclusion is 
suggested if one takes the terms in the first line of (3.1), which contribute to the 
motion of n, k , and regard them as giving a coupling between the pair of modes k and 
p with tiie amplitude uq i acting as a modul-T.ing factor. As I —• , the energy-per- 
unit-mass is spr'ad over an infinitely increasing number of individual modes. Thus 
the rms value of the amplitude uq becomes infinitesimal, and so does the strength 
of the pair coupling. 

It is not difficult to verify, by keeping account of the orders-of-magnitude of 
relevant quantities as ' —»■ , that the weakness of dynamical coupling among any 
triad of modes is still valid when all the possible path-) of coupling involving many 
elementary interactions and intermediate modes (Fig. 2) are taken into account. In 
fact, the weakness of the total coupling of any three modes is actually a dynamical 
requirement for the consistencv of our underlying assumption of statistical homoge- 
neity. As I —» , homogeneity implies that the phase relations among individual 
Fourier amplitudes become increasingly random," and this would not be possible if 
strongdynamic couplings persisted among individual modes. It is extremely important 
to keep in mind here that these weak couplings do not become negligible as the limit 
is approached. As they become weaker, there become more of them because there 
are more allowed modes. Similarly, as the statistical dependencies which they Induce 
among individual modes become weaker, there are more Individual cross-moments 
to be added up In the Fourier sums which represent measurable averages. Indeed. 
the essential problem of turbulence theory may he considered the evaluation of these 
cross-moments. 

•Sc<- Kalilu-lor (Ret.  1. Senliun .^,>, 
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4.     THE DIRECT-INTERACTION APPROXIMATION 

Let us consider the case where at an initial time t,, the Fourier amplitudes are 
all statistically independent and the state of the system is specified by the initial 
spectrum tiki,,*. This represents a very considerable idealization of any actual 
flow, as does our previous assumption of isotropy. However, this initial condition 
is ar especially simple and useful one for studying how the nonlinear interaction 
induces statistical interdependence of the modes at later times. 

We are particularly interested in finding the triple moment 

which contributes to S()(, t. t'). The most obvious way in which the nonlinear inter- 
action can induce a nonvanishinn value for this moment is through the i ementary 
interaction which directly links the three modes involved (Fig. 1). We would also expect 
the value of the moment to be affected by the more complicated paths of dynamical 
coupling involving networks of other elementary interactions, and Intermediate modes. 
The distinction just made suggests breaking up the moment into the sum of direct and 
indirect contributions defined below. 

Let us remove fn.m the equations of mot'o-i of the system the terms (3.1) 
representing the single elementary interaction directly linking modes k, p, and q; but 
let us leave unaltered all the other nonlinear terms, which express the elementary 
interactions among the rest of the modes and those between k, p, 4 and the rest of the 
modes. We shall call the value of the moment (4.i) induced by these altered equa- 
tions of motion the indirect contribution. The direct contribution will be defined 
as the difference between the true value of the moment (with all elementary inter- 
actions retained) and the indirect contribution. Thus the direct contribution represents 
the part of the moment which is induced by the direct elementary interaction acting 
atrainst the background of all the other elementary Interactions. 

The approximation fundamental to the present theory is to neglect the indirect 
contribution to the triple moment. We shall call this the direct-interaction approxi- 
mation. The dynamical picture underiying it is the following. The elementary inter- 
action directly linking modes k, p. and q induces an increment in the amplitude of 
each of these three modes which bears a phase relation to the product of the ampli- 
tudes of the other two modes. Thus it yields a contribution to the triple moment. 
However, this inleraclion does not take place in isolation. Each of the three modes 
is coupled to the rest of the system. As a result of this coupling, the induced incre- 
ments do not simply continue to build up. A relaxation process takes place whereby 
the energy of the increments is distributed, or mixed, by the overall interaction into 
many other modes. At the same time,an additional relaxation is caused bythe action 
of viscosity. Thus we have the pictureof phase relations among U(k>, Wp'i, «Kqt being 
continually induced by the direct coupling of the three modes and t mtinually broken 
clown by relaxation effects associated with the dynamical interaction as a whole. 

Now neglecting the indirect conlrilmtion to (4.1) amounts to assuming that the 
effect of the overall inleraclion - without the direct interaction - consists entirely 
'<f the relaxation process just described. Thus we are ignoring any induction of phase 
ci.;relati(>n by networks of elementary interactions which can couple modes k, p, and 
qonly through the agency of intermediate modes. Examples of such networks are 
shown in Fig. 3. It will be noticed that in the diagrams shown each intermediate 
mode (represented  by a line  without a   free end)  is involved  in two elementary 
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inti'ractions. This has the effect of 
eliminating from the associated 
contribution to (4.1) any depend- 
ence on the (random) phases of the 
amplitudes of the intermediate 
modes.* 

The only justification for i      ^      j 
the direct-interaction approxima- * / \ 
tion which we can cite at the present r <\ 
point is the wholly intuitive argu- " 
ment that in view of the complexity 
of the dynamical system the round- Ki«- * " Examples of contribmin« i lasses „f 
about  paths of interaction among Interaction network, which ar.- neglected .n 
.. '     . .     ,j . .   , tho clireL't-inti-rartmn appr'iximation for the 
three modes should be much less tri ,„ momen, E    (4iU

PP 

effective in inducing definite mutual 
phase   relations   than   the   direct 
coupling.   later, we shall see that  the approximation   exhibits   important  self- 
consistenrv properties which strongly indicate its dynamic naturalness and that it 
actually it-presents the exact dynamics of a certain modil system. 

Approximations similar to that described for (4.1) can be defined fur moments 
of fourth and higher orders.  We shall not deal with them in the present paper. 

It is not very difficult to obtain an exact analytical expression for the direct con- 
tribution to (4.1). According to definition, this contribution may be constructed by 
introducing the elementary interaction of Fig. 1 as a perturbation on the equations of 
motion. Although this single interaction is expected to induce the principal contribu- 
tion to the triple moment, it is clear from the discussion in the previous Section that 
actually it can represent only an infinitesimal perturbation of the motion of each of the 
three modes involved,in the limit I.-*- u.' Thus we can express its effects in terms 
of the response of the modes k, p, and q to arbitrary infinitesimal disturbances. Then 
we may average the result over the statistical distribution, taking account of the 
weakness of the total dynamic coupling and consequent statistical interdependence 
among the three modes in the limit. After summing the results over p and'q. we 
arrive at the following exact expression (3) for the direct contribution to ':" : t. t' >: 

"«rM.t'J ^    I j    !<'lil!< li! -j   I      .ilk.I'.'I>  I'.'kM'.si t'ri.;I.O  (•(•■.( .s .    U 

(4.2) 

l>(li,!>,"> i'(n;l .s) l'(k; t ' .s \  H ". I . s> 

In this equation the summation over p and q has been replaced in the limit by an 
equivalent   Integration.    The   symbols'<,•>. and «i denote   wave   numbers,  ami the 

■'The flia^rarnH in Ki^. .* tlepict i-xarnples of mure ^eiu'ral networks in which sonu' 
mlermediat« iiiixlrs enter only once. Met aiine of the r.inilotn phases of the mter- 
mccliatu niodes. it can be HIIOWII, without approsiination, that such networks ({ive a 
vanishing contribution to (4,1) when they are stlmineil over all possible clmices 
ol intenm-iliate modes in the limit I.—• >. 

'These two properties are cunsiHtent sim-e the moment (1,1) r**preseius :ii Uito 
only .in infinitesiinal phase lorrelation ainon^ the three mod.-s when I.—H* 
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iiili ;;ratio.i is ovi r th. i-min domain (dciioti d by ) siirh that i ,; , and ■■ ran form 
tiu' b^s of a Iriai.fib . Thf quantiii< s ■ r '• and ■ ar«’momi lriral fartors 
which d.'pi nd on llu shap< . but iioi ih< si/«-. of this triaiiuli . Tin y arc ;;iv. n by

(4.3)

win n ■ arc th. cosines ol the interior ant-lcs op|Kisitc the icps • . ■
tivcly. Tin y obey tin itienlities

respt e-

■ •f 
•>.i, .

(4.4)

which, as w» shall indicate a litili lat» r. express important dynamical propertii-s.

In order to facilitati the physn'al interpretation of Kq. (4.2), let us specialize to 
1 I. Tln-n we find for the transfer function d> fin<-d by Kq. (2.111.

H i .i:: - I . ’r .! . - I . t . s r- :: t. s
(4.5)

: ' e -.t N

The structure e.xiiibiti-d by Eq. (4..5) may In- interpreti-d rather directly. The e func
tions on the rifiht express the di-cay of infinitesimal perturintions (h.-rc associated 
with the direct interaction) under the influence of viscosity and the overall nonlinear 
couplinit. Let us write each e factor in Eq. (4.5) in th<- form

i- i.t.s j - ' t i.i ^ '• I , r I •!, (4.6)

Mow the I functions express the loss of phase autoeorri-lation in the mode amplitudes 
under the overall interaction. Thus th«- appt'arance of these ■ and r fum'tions 
embodies the dynamical relaxation effects discussed above.

It will IM- noted that the ri;;ht side of Eq. (4.5) is the integral of the difference 
between two terms. 'The term containini; n!,.!■. >> involves the rraponse function for 
th«- mode k. As this would su^cesl. it arises from the induction by the direct inter
action of an increment in H(h) having a phase relation with the product of the ampli
tudes of modes p and % Similarly.thi termcontainin);involves civt .>> aral 
-irises from the induction of an increment in H(p) phas<-d with the product of the 
amplitudes of modes h and «. (No*e that we may »■schan|;e the roles of p and p simply 
by a rhanite of intecration variables.)

Since both the , and r functions e.xpress the relaxation effewts associated with 
the overall interactiisi, we may anticipate that they are either nan-ne|Sitive or have 
only unimportant nepalivi- reftions. Now from the first of identities (4.4) we see 
that I'l.e ..is n*m-nepative. and lli< last ofth.si- relatiin-.s supitests (corriwtly.it
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turns nut) that ■' r.i> Is typically positive. Thus, the ttrm in Eq. (4.5) containing 
• ' . v ■' plays-' the roU' of aiuibsorption term, whicn always rrprcsentsa positive flow 

of energy to modi1 k. while the term containing I.I' .;■. n acts as an emission term. 
Uslnu; Eq. (4.6) we find that the absorption term contains the factors 

i-,,. , , p,,., s. ' -' ri ■... ! '■...,s> ' -' 

but does not contain ' ' i.    In contrast, the emission term contains the factors 

I-M..I i  Fd-.sl   '   -  fl-t .  Viv.-)' '   J 

and thus is linearly proportional toHM. Consequently, the stronger the excitation 
in mode k. the more the relal ivc flow out of this mode into modes p and q. Conversely, 
the stronger the excitation in modes p and q, the more the relative flow from them to 
mode k. It appears that the transfer function (4.5) describes a plausible tendency 
for the kinetic energy in the various wavenumbers to seek some equilibrium through 
the .igency of the nonlinear interaction. 

By inserting Eq. (4.2) in Eq. (2.8) we obtain an equation of motion for f'k; t. t' i 
which involves only the functions .. and t. In order to have a complete system we 
should obtain a similar equation of motion for .'' i . <. t' by a consistent extension of 
the direct-interactioi. approximation. This can be done (3) without great difficulty, 
and the result Is 

-M   ii.M.t'i    -   i   H i..|.ipiit,a;.|.,M.   i    uipit.si tiftcs.t'itV'iit.H» is. (4.7) 

It will be noticed that In contrast to Eq. (4.2) the right side here is bilinear in the 
response functions and linear In the covarlance scalars. It is possible to give a 
simple dynamical interpretation of Eq. (4.7) which parallels closely the actual 
derivation. 

We can break up the relaxation process described by «(M.t'i into two parts, 
conceptually. First, an initial perturbation in mode k will Induce Increments In the 
amplitudes of other modes p. For each mode p the magnitude of this Increment will 
be proportional to the amplitude of a third mode q which acts as a modulating (actor. 
Second, there will be a reaction on mode k. The increment Induced In the amplitude 
of mode p will In turn Induce a counter-Increment in mode k, again proportional to 
the amplitude of the third mode q. The counter-increment will on fie average be out of 
phase with the original perturbation in mode k and thus represent a drain of the per- 
turbation energy out of mode k. This process is represented diagramatlcally In Fig. 4. 
The arrows indicate the  "signal path"   from mode k to mode p and back to mode k. 

Turning to Eq. (4.7) and writing out iv^t.si as 
an explicit covarlance accordingto Eq. (2.4), we may r 
Interpret the factors in the time-integralas follows. .    ,      ~ %     «.   . . 
If the amplitude of mode k is perturbed an inflni- ■ 
tcslmal amount at time i   then ufkis.t') represents 
the average   fraction of   this perturbation   which Vl    4 . Dia„rani   fo,   ,he 
remains at time s. Together with the amplitudefac- direct-inleraction   contri- 
tor in l'( li«.si which has argument s. It represents Uuioniotlu- rpeponse func- 
ihe perturbing force applied to mode p at time s tiun g(l<;t .t'i 

*Wi'  use "-Mo tu diMi'ilf tin"  MJM'I trum  turn Urn  when it is not cirsirrd tu  specify  tlu 
vatuu of tin- tune .ii'^iiiiiiiit. 
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through the elementary mteractton directly Unking müdes h, p, and q. This forre 
Integrated with the response function u(|i;t,si gives the increment induced in mode 
p at time t. This increment, lonether with the remalnlnt? amplitude factor in 
I'd); t,si (argument t). represents the perturbing force reacting at time t to produce 
a counter-increment in mode k. 

The approximation made in obtaining Eq. (4.7) is the neglect of classes of longer 
paths of action and reaction on mode k which involve successive transfers of exci- 
tation along chains of modes instead of to single modes p.    Typical neglected con- 

tributions are shown in Fig. S,  Here again, 
the arrows trace the "signal path" from mode 

*. k back to mode k.   It should be  noted that 
.    ,   ' '   ,    ,     . even  in Eq. (4.7) the  interaction of modes 

k, p, and q with all the rest of the modes is 
* implicitly taken into account to the extent of 

the   relaxation effects included in the n and 
(' functions on the right.  As in Eq. (4.2), we 

• * treat the effects of the direct interaction not 
„   .   '      '. ...        in  isolation but against the background of 

, the rest of the interaction. 
'« • 

If  we append to Eqs.   (2.8),  (4.2), and 
KIL. - - KxampleB .if ...ntruiutiML' (4.7) the boundary condition 
proifhiicti nuclei li'U m tin' diriTt- 
intcrai tiun appr ox s in a t n« n far .(Vit  t'      I. (4.8) 

■   ' ; t . t ' i 

which according to the definition of . '.: t. t' 
must hold for all t, we have a complete set 

of equations which should determine the response and correlation functions once 
the initial values "n .t,.i     i k't'ik;!,  t,   are prescribed. 

5.     REPRESENTATION BY A MODEL SYSTEM 

Before asking how accuratea picture of turbulence the direct-interaction approx- 
imation represents, we have to inquire whether our approximate integro-ditferential 
equations lead to any physically meaningful solution at all. This is by no means an 
academic question. If an arbitrary approximate expression is assumed for Si fc: t. t' i, 
it is not to be expected that the solution of Eq. (2.8) will be the covariancc scalar of 
a possible random process or that it will go to zero in a physically sensible fashion 
as t t' —► . Furthermore, an arbitrary approximation will not preserve the 
conservation properties of the interaction discussed in Section 3. These observations 
reflect the general fact that usually we cannot make approximations within a differ- 
ential or integm•differential equation and obtain a solution which displays the same 
asymptotic and integral properties as the solution of the exact equation. 

It can be seen in a rather simple fashion that the direct-interaction approxima- 
tion does actually satisfy the consistency requirements we have mentioned. This can 
be shown by demonstrating that Eqs. (4.2) and »4.7) are obeyed exactly by a model 
system in which the coupling of the Fourier modes is altered from that in the real 
system but the conservation properties of the interaction are preserved. The com- 
parison of this model system with the actual system gives an insight into the real 
meaning and the domain of validity of our approximation. 

i- 'i r i-:s,tMi;>!i-. '*'' : I . I ' i   mi L'M   I urn mil \-, fuivt' .i I rr(|iirii. \   ?-,.f. I run, whu':i  ;;- tu*gu- 
liV" !■'.- huini' ! ri-ijiiriH H-    llteri'l*'/  ■.ftipU uii: .1 IH-LMIIVI   ',M\MT h|H'ttruiii I»ir u      k 1 '. 
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Let us consider  instead of  Eq.   (2.2)   the  more  general equation of  motion 
for HI k.t i 

(--'h u.fk.n       •■J',,'!«'      L    nl«k'.k    n/k'.t m/k .1 i.      (5.1) 
k'-k -k 

where the tüclfkient fik k k ' is real, symmetric ink. k', and k . and invarlanl 
under replacement of any of these three vector arsuments by Us negative. With this 
change, Eq. (2.8) requires that Eq, (2.9) be replaced by the new definition 

Sk.t.t' 1    ukk' k 
k' .k ^ k 

1,,/k .t ; UjMt.t' ' (5,2) 

It is clear from the symmetry properties uf tiie c's that all the terms (2.1), repre- 
senting the elememary interaction linking modes k, p, and q, are multiplied by the 
same factor c k.pq. From this it follows that the individual conservation property 
n  the elementary interaction is unaltered by the generalisation. 

Our actual fluid system is represented, of course, byok.pq) 1 for all k, p. 
and q, Lei us consider instead the new system obtained by letting o kpq take the 
value +1 or -1 entirely at random (subject to the symmetry conditions abtive) when 
k, p, and q range over the various values allowed by the boundary conditions on our 
large volume of side I. For this system all the elementary Interactions have the 
same strength as in the uriginal system, but the relative sign of the coefficients of 
any two (or more) elementary interactions is entirely random. 

If one now goes through the dlreet-lnteraetlon approximation for the new sys- 
tem, it is not hard to verity that as a result of the multiplication of (3,1) by c k p. q . 
the expression (in the limit I,—» ) for the triple moment (4.1) in terms of u and 
'' functions is multiplied by this same factor. Since fk. p. qi ■' 1. it follows that 
«'it' i, as defined by Eq, (5.2). is still given by the expression (4.2). Conse- 
quently, the equation of motion for '■'-;•» is identical for the original and the new 
systems in the direct-interaction approximation. Similarly, it can be verified that 
the equation of motion for ■ 1 ;t i is given by Eq. (4.7) forlxith new and old systems. 
(This can be inferred from the double appearance of the direct elementary interaction 
in Fig. 4.) Thus, the direct-interaction approximation yields identical . ' ; • t and 
'' '• . t t     for the new system and the old. 

Now let us consider the Indirect contributions, neglected by our approximation. 
Referring to Figs. 3 and 5 we note that Ihi indirect contributions necessarily involve 
several distinct elementary interactions. Foi the new system the coefficients asso- 
ciated with these interactions are quite randomly related In sign. It is not very hard 
tu see that when one sumsover all posslbli .-.ets uf partii ipating interaciinns the con- 
sequence is a random cancellutioii of Hi« contributions from different sets. In the 
limit ! —«► , it can be shown that thisresults in complete suppression t«f the indirect 
contributions to i • > and the iquatlon of motion for • • . This means that 
for tin new system, Kqs, (2.ti), (4,2), and (4.7) aetnallv constitute exact equations of 
motion for • • and ■ ■ • . \v< mav \iiU v fnun this the consistency of the 
diri ct -interaction approximation in UH   respects mentioned previously. 
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The direct-interaction approximation appears to be the simplest dynainical 
approximation which timtxKhos the consistency properties in question - that is, real- 
izabilityot in it' i as acovariance scalar, proper asymptotic behavior, and detailed 
energy conservation. Higher approximations with these properties can be constructed 
also (3). The next such approximation involves obtaining an approximate expression 
tor fourth-order moments in termsof third-order moments, second-order moments, 
and higher response functions and using it to close oft the set of moment equations. 
Like the direct-Interaction approximation, this leads to Integro-differentlal equations 
which are exact for a modified system. Now, however, the modified system bears a 
closer resemblance to the actual system in that the proper sign relations between 
different elementary interactions are taken approximately into account. There appear 
to be a well-defined sequence of successively higher approximations which exactly 
describe model systems embodying more and more accurately the dynamical struc- 
ture of the actual system. The higher approximations provide, in principle, a means 
of eatimatlng the errors associated with the direct-Interaction approximation, but 
they promise severe mathematical difficulties. 

The fact that the direct-interaction approximation gives an exact description of 
our model system suggests the nature of the Inaccuracies it generates. As we have 
noted before, the mudel system preserves the strengths of all the elementary Inter- 
actions of mode triads but loses completely the correlation In sign between the 
coefflcienta of different elementary interactions. It seems plausible that the mean 
energy transfer among the modes should depend principally on the relative excitation 
of the various modes and on the strengths of the Interactions which link them. Thus 
we might expect that it should be fairly well described by the direct-Interaction 
approximation. This surmise is supported by the reasonableness of the dynamical 
interpretation we have been able to give fur the transfer function Eq. (4.5). Some 
further support is given by the application of the theory discussed In the next Section. 

Now, however, let us turn to the question of the detailed structure of the turbulence 
incoordinate space. The evolution of the flow can be partially described as due to the 
convection, stretching, and twisting of the velocity field by itself. These phenomena 
seem (airly simple intuitively, but they Involve, In essential fashion, the algebraic 
summation of contributions from all the elementary Interactions linking the Fourier 
components of any given "eddy structure." In the model system, consequently, they 
become scrambled beyond recognition with regard to appearance In coordinate space. 
This suggests that the direct-interaction approximation should give increasingly poor 
results when extended to the evaluation of successively higher-order moments, 
sensitive to the precise spatial form of the velocity structures. 

6.     THE INERTIAL-AND DJSIPATION RANGES AT HIGH REYNOLDS NUMBERS 

Some characteristics and limitations of the dlrcct-lnteractlonappruximation may 
be illustrated by consideration of the inertial and dissipation ranges at very high 
Reynolds numbers. Let the mis turbulent velocity in any direction be v„, and let the 
rate of dissipation by viscosity per unit mass be ■. Then, a wavenumber character- 
izing the energy-containing range of the turbulence is given (3,4) by 

and a Reynolds number to»" this range by 

(6.1a) 

(6.11)) 

40 



A   Ihi uv;  „I   rurlmUia .■ »yii.inm s 

When';,1 ' i, the Integro-cUffcrcirtial equations ot the direct-interaction 
approximation simplify greatly for hitfh wavenumbers. Usin« them, it is found (3) 
that the inertial range and the nini;e of principal energy dissipation involve wave- 
numbers '■ satisfying the inequalities 

' „      1        ■■„1 „ • (6-2) 

Also, it is found that the transferof energy is local in wavenumbcr space, there being 
no appreciable direct transfer from the energy-containing range to the wavenumbers 
satisfying Eq. (6,2). 

The characteristic times for modes satisfying Eq. (6.2) are very short compared 
to the decay time of the turbulence. This has the consequence that .flct.t' i and 
r(';t.t'i maybe considered explicit functions of only the difference time t t'. The 
solution of the system Eqs. (2.8), (4.2), and (4.7) in this range then gives the 
result (3) 

H(k, t .1 ' 1       r' I : ! , t ' 
l!   iVukft - t ' 

v,,k' I   - t ' i (6.3) 

(It must be remembered here that a t.t ■ is defined only for t t .) Thus the 
characteristic time for mode k is the order of i v,,.;. the time associated with the 
convection of a structure of this wavenumbcr by an rms veloc' . component. The 
transfer function in the range (6.2) reduces to the form (3) 

Tfki      k    [|     kJ.ifk.p..|i Ffj" - I^t'^-P-'H Ftki    fl'tl    rk.,,..., ±±i .        (6i4) 

where 

,■• .I,f2v„k»i   .I,(2v„rs>    .T,'2v(1'isi f  2,1 J „ ev 

. .i \ l,<...        j.    .... 

We have suppressed the time-dependence of r and f in Eq. (6.4), since this variation 
is slow compared to the characteristic times of the modes involved. 

The quantity f k.p. m has the dimensions ot a time. In view of our previous dis- 
cussion of the direct-interaction approximation, we may interpret ((t,r.<ii as the 
effective time during which the direct elementary interaction of modes k, p. and q 
can build up phase relations before they are wiped out by the relaxation due to the 
overall nonlinear interaction, to put it very crudely. In the present case the relaxa- 
tion evidently is dominated by the action of the energy-containing range, as demon- 
straled by the factor v,, in Eq. (6.5). Thus, in the dire.-t-interaction approximation 
the energy-containing region exerts an influence on the rate at which energy Is 
transferred within the high-wavenumber region, even though there is negligible direct 
transfer from the energy-containing region to the high wavenumbers. 

The inertial-range spectrum law in the direct-interaction approximation is 
easily found from the form of Eq. (6.4) and the fact that the energy-transfer turns 
out to be local in wavenumbcr space. It is apparent from Eq. (6.4) that the rate at 
which energy is transferred by each elementary interaction involves the ..pectrum 
function bilinearlyand the velocity v,, inversely.   Since the transfer is local, tin vale 
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at which energy passes from below to above the wavenumber ^ can depend only on 
the spectrum lunelioii in the neighborhood of U,   Thus, 

\ 
Ffk-.l2. (6.6) 

where the factor i- ' makes the dimensions of both sides the same, and may bededuced 
from Eq. (6.4).   Inverting Eq. (6.6) we have the spectrum law 

K'U      r.mst   (.v,,)1   \    ' ' (6.7) 

This law is corroborated and a value obtained for the constant of proportionality by 
a detailed treatment of Eq. (6.4) in Ret. (3). 

It is well-known (4) that according to the Kolmogorov theory the spectrum in the 
inertial range is given not by Eq. (6.7) but by 

-.u     ■' Vs '. (6.6) 

The origin of the discrepancy lies in the different roles played by the energy- 
containing modes in the two cases. Under the direct-Interaction approximation, the 
action of these modes on the high wavenumbers may be described as follows. They 
induce a rapid (characteristic time I v,,«) exchange of energy among very many modes 
in the neighborhood of a given high k whose wave vectors differ by the order of k,,. 
Although these high-lying modes have nearly the same wave vectors, their phases 
are effectively almost randomly related (see Section 3). Therefore the energy-mixing 
results in a relaxing of the phase relations, essential for mean energy-transfer. 
among individual triads consisting of one of the modes in the neighborhood and modes 
p. q in other neighborhoods. 

In th.> Kolmogoiot theory, on the other hand, the energy-containing modes have 
only a trivial convective effect on high i modes and do not directly influence the 
dynamics in the high i range. On this basis, the eneigy-eimtaining range should not 
contribute to the relaxation of energy-transferring phase relations ?mong modes h. 
p, and q. In fact, II in the expression (6,9) for d, r ••! we replace v, by, say, 

■'"'i i ' ', which may IH1 considered the rms velocity associated with wavenumbers 
the order of' only, it may be seen that the modified Eq. (6.4) thereby obtained leads 
to thi' Kolniogorov law Eq. (6.8). 

It does not seem very easy to decide which of the two inertial range laws is 
asymptotically correct for infinite " ,, or, for that matter, whether either of them is. 
The argument basic to the Kolniogorov theory - that the energy-range has only a 
trivial convective effect on high wavenumber« - is open to some doubt. This is 
becausi high lleynolds mimlier uirlmlenee tends to display sharp shear fronts (4i 
which contribute signifleantly to the high1 spectrum, and across which the jump in 
velocity can be an appreciable fraction of . It does not clear how to separate the 
low and high waveminiliers in such regions in a physically satisfying fashion. On the 
other hand. II the Kolniogorov theorv .s correct, it is not a surprise that thedirect- 
interaciioii approxmuitlon lulls in reproduce it. The convection, with only small 
illstoriliri'.. ol a  small-scale velocity  stnictme liy a large-male structure is not a 

i r\ i Ii im marv proce.is In '• spaci . It irvolves m essential fashiun the fact that the 
i-uellicieiits oi inanv i leiiK ni.irv interactions linking low wavenumlters with pairs of 
liit'li .v IM miii'.lM I-. an nearly Hie   ami     t'liiisequenlly. as imticated by the discussion 

<. Si ctini r>, tlie convection process i^ iniillv reproduceil m tin model .system winch 
tin  ilin el  mil ivietior. appioxinuilioii ■!>   trilies, 
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The really surprising fiu-t, perhaps, is that the very different dynamical pictures 
called (or by the KolmoKorov theory and the direct-interaction approximation lead to 
asymptotic- laws which are nearly the same. This appears to support the surmise 
made in the last Section that so far as energy equilibrium is concerned it does not 
make much diflerence how the elemental y interactions are phased. One mi^ht expect, 

jnoreover, that the accuracy of the direct-interaction approximation very likely 
i's at wavenumbers below the inertial range, where convcetion-without- 
iable-distortion clearly does not occur in any event. 

The exßfe^tnenlal evidence is not much help in choosing between the two Inertial 
range laws. Arc^Malysis (3) of one of the most careful high-Reynolds-number labora- 
tory experiments (»i^eems slightly to favor the I ' •' law, but not much can be made 
of this. The Ucynold^umber i'!,", 4üIMM is not really high enough to be sure that 
asymptotic behavior waauhjerved, and there are large deviations from isotropy and 
homogeneity. What seems a iSHter way to check the direct-interact ion apprfilmation 
is to compare measured and calfiSä^ted values of the absolute spectrum level in the 
inertial range. This may provide a m**ijinngful test of the usefulness of the approxi- 
mation even at Reynolds numbers 8tllTw^.low to disc rim tnatf the diflerence In the 
power law. 
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DISCUSSION 

I,. S. (i. Kuvaszuay  .lolms Hopkins Lnivt i.sity 

1 m.iki .ii\ cumnn'iit lu r« as an exp» nmenlalist in ttiiiiulenei research. I want 
[a reassure most who an siartKd liv [iu ditlt renei lietweeu an ixponent of -5 I* ai\il 

• IS 2 that. peri'iitat,e-wi.s> this ss not very anal most ol yim are famituu wiin 
lurli'.tlinri .-pi in .i -dr.iwni'.. on Vu-Urapli . In .i louaritlumc plot ol powi r siHeiiuni 
vii' ■.!' *.!.■   miu.liii* oni  .il'A.is:^ iidiaiiis .i m nilv  "dimvping" eurve.   Any pow« r law 
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is given by a straight line, whose slopt is thu expont'nt, while a measured spectrum 
always looks slightly curved. One may. therefore, always draw a langem represenl- 
Ing a particular power law. So, I believe, lor a long time to come the dispute will not 
be decided by experimental evidence alone, 
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SOME EXPERIMENTAL AND THEORETICAL RESULTS 
RELATING TO THE PRODUCTION OF NOISE BY 

TURBULENCE AND THE SCATTERING OF SOUND BY 
TURBULENCE OR SINGLE VORTICES 

'■ ■liM - AtliiUM   Mlii.<T 

EXPERIMENTS WITH REDUCING VALVES 
/a, 

In the  piping systt'm ut steam power plants. ^— •■       •• J~*- 
rt'ducmn valves (see Fin. I) arc utten installed to >        ~   
contrul the flow rate of the steam and to reduce the  -., •* , 
stfam from a high pressure to a lower pressure '  :r'"""vV ■■•■: 

under certain upcratint; conditions of the plant.  In ;.. y, •-,    ) - 
many cases the flow rate of the steam and thepres- * f^i    ._.- , 
sure difference are lari!e: for example, a maximum .' *V T5-''' 
flow rate of 200 tons per hour may have to be reduced ,. ■;     '• • 
from 150 aim at the liiuli pressure side of the valve  , j 
(left) to20 or 30atm at the low pressure side (rinht). . ^       R 

The physical process of pressure reduction con- \, ...        .••!-'' 1 
sists in the conversion of kinetic ener^, which is ■■-•."'.'■-'' 1.. 
produced by the valve in Ms smallest cross stction. 
to heat by turbulent mixint; in the region I!, a process K-.n   I - Sv nrm.iiu-iii.iiir.mi 
in which the enthalpies (per unit of mass) before ■;' ■> lypU'tl ri.liumi; v.ilvc. 
andafter the valve are approximatelycquul because ^   • ''•c' l,""■• *■?■ !il,, ,lll■,!, 
the losses by heat-conduction and heat- and sound- v '"^ -""""• R "OXIMI; rr- 
radiation are  small.   In the above cxampte, the 
energy beinu converted per second is of an order 
of magnitude of 10 MW (megawatts), but sometimes 
it is even higher (up to 100 MW).   Of course, turbulent mixing at such a high power 
produces noise in the vicinity of the valve of a strength which often lies beyond the 
threshold of pain.   In addition, strong vibrations of the valve and the piping system 
are caused which lead to vibration breakages of screws, welds, etc. (1) and thereby 
threaten the safety of operation.   In Fin. 2 one sees a typical broad noise spectrum 
with some dangerous high peaks which obviously are due to resonance phenomena. 

Uecause of these difficulties, an association of power plant operators asked the 
Max-l'lanck Institut für StrSmungsfurschung to design valves which would werk 
reliably even if the flow rates, the pressures and the temperatures increase more 
and more, as seems to be the general (rend today.  At Iirst. model experiments were 
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Sound intensity db 

3000 10* 
frequency cpt 

Kiy. .; - Suunrl mti'iiMty in the vicinity oi .-. 
recluciDK valve (»uli urbitriiry refc-rence inli-n- 
Bity) 

unsteady 
Shockwaves 

rnudt- with air with a pressure reduction from 4 to 1 
atm. Allentlun was focused on two regions of the 
valve: 

1. The surroundings of the valve cone and the valve 
seat (Fig. 3). Here the flow Is supersonic; unsteady 
shock waves occur and cause vibrations, especially 
of the valve cone, and, thus, of the whole reducing 
valve. 

2. The mixing region K (see Fig. 1) and its shape. 

lllf   V  1 

The vibrations were measured in the following 
-  Unstp.uly   ^h.x k way (Fig. 4):   Different valve cones c (Fig. 4b) and 

>! runt- uui s. ,i uf different bottoms n (Fig. 4c) were fixed on thin iron 
plates. The plate with the bottom could be mounted at 
a variable distance from the seat. Opposite the outer 
sides of the plates electromagnetic microphones were 

sei up in which voltage uscillations wore induced by the vibrations of the cone and 
the bottom. (The characteristic frequencies of the fixing plates did not play a role 
as was checked by earlier experimenls.) The experiments gave the following results 
(details in Ref. 2): 

1. The surroundings of cone and seat are not of great importance for the vibrations 
of the valve. The vibrations are of minimum strength if the nozzle contour 
formed by the seal and the cone has a ratio of throat cross section to exit cross 
section (into the region \<) which is equal to the well-known ratio one has to use 
tor the design of supersonic nozzles at a given pressure ratio. This result cor- 
responds to results found by other authors (see Ref. 3. for instance) using 
convergent •divergent mmztes. 

2. 'Hie main source «f the vibrations and the noise is the mixing region K. Here, a 
(.'lumge in Hie shape of w by use of a smooth contour a certain distance from the 
valve seat gave a reduction in the strength of the vibrations of 12 db. However. 
if the mixing region was changed sn as to completely eliminate the liend after 
'in  valve, Ihc JH rlnriiiaiU'i1 was almost as bail as in the originul rase. 

Tlie reduction "f 12 <ll> wa^ mil yet l^rge enough (or practical purposes.   There- 
ton    two other possibilities were cimsulered! 
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1. A reduction of the flow velocity from supersonic to subsonic values. Such a 
reduction would result in the disappearance of the unsteady ehock waves. Further, 
the noise level would decrease according to the r8 law (or a similar power-law 
of a characteristic velocity r) which governs the production of noise by turbulent 
mixing. Of course, this decrease of velocity is limited by the demand for a small 
cross section of the valve. 

2. A great decrease in the size of the turbulent eddies. The physical argument tor 
this device is nut only the shifting of the dominant frequencies toward the ultra- 
sonic domain, but also the influence on the turbulent mixing process itself. This 
can be understood if one recognizes dial the conversion of kinetic energy into 
heat is performed by a kind of cascade-type mixing process In which the energy 
is transferred from the energy containing wave numbers (eddies in the size of 
the mechanism producing the turbulence) through a region of mean wave numbers 
(mean-size eddies) up to the dissipative domain of wave numbers (small eddies). 
Qualitatively, one may say that during this transfer, the turbulent eddies strike 
one another und thereby produce noise. If the process of energy transfer from 
large eddies (small wave numbers) to small eddies (large wave numbers) is cut 
off in such a way that the initial size of the eddies is smaller than before, a part 
of the transfer process dues not take place, and the noise production decreases. 
(This pruccss will be discussed in mure detail in the next section.) 

In order to test the possibilities mentioned above, a "labyrinth system" (Fig. 5) 
was designed which was set directly below the valve scat. It consisted of a set of 
plates with many small holes (1 to 4 mm in diameter) which were placed so that each 
hole of one plate lay opposite a closed part of Ihe next plate. The spacing between 
subsequent plates was also very small. The flow velocity through the system could 
lie controlled by varying the number and the size of the holes and the spacing of the 
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plates. The degree of turbulence was increased by 
sharp edges. In this way a drag was produced which 
was large enough to reduce the pressure at subsonic 
velocity, at least at maximum flow rate. This type of 
reducing valve worked very well and gave an improve- 
ment of 24 db Ui the model experiments (measured 
again by the vibrations of a bottom mounted below the 
labyrinth system). 

On the basis of these experiments, several full- 
scale valves(Fig. 6) with labyrinth sets were designed 
and installed in some heating and electric power plants. 
They worked very satisfactorily. At one plant, for 
instance, the inhabitants of the surrounding apartment 
houses had filed suit, charging that the company was 
disturbing the peace with the noise caused by the old- 
type valve. After the new valve was installed the noise 
outside the engine house was very low and no longer 
disturbed the inhabitants. Inside the engine room the 
noise production of the other machines placed there 
was larger than that of the valve. Measurements 
gave a noise level of 91 phons in this room, whereas 
the noise level produced by the valve alone was about 
85 phons. The acceleration of the material, which is 
important for the vibration breaking strength, was 
determined at different points of the valve surface. 
The measured values ranged from 10 to 20 m sec-', 
which was several orders of magnitude below the 
critical acceleration for vibration breakage. 

In another application, a valve was also used for 
pressure reduction at extreme pressure ratios. A 
flow rate of 64 tons per hour had to be reduced from 
116 to 3 atm. Even at this supercritical ratio the 
valve performed very satisfactorily, bot!i from the 
standpoint of noise and from that of vibrations. 

CALCULATION OF THE INFLUENCE OF THE 
EDDY SIZE ON NOISE PRODUCTION 

In the last section the supposition was made that noise generation i* influenced 
by the eddy size of the turbulent motion. In the language of statistical analysis this 
means a depende/ice on the spectral distribution of the turbulent properties. In order 
to check this supposition, the noise output was calculated (or several different dis- 
tributions of turbulent energy in wave number space fur the case of decaying, homo- 
geneous, Isotropie turbulence with zero mean velocity. This (low may be considered 
as representing the flow in a jet, in which the turbulence of the different fluid volume 
elements (in the moving system) also decays. 

The following assumptions were made: At the time t i„ a homogeneous, Iso- 
tropie turbulent motion exists in t.'ie volume V. The mean velocity is zero. The 
spectral energy distribution at *     t,  is given by the function f so that 

l-ik.l   i.iu (1) 
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wlKTf . „ is the kinetic cnerny per unit mass 
at I Iand k is the wave number. The 
sliaiio ol l••lk t, . is ri*ctantailar (see Fii;. 7):

F. (11 -1'
,ik

1 ti. At I i„ the turbulence be^tins to 
decay. The total sound energy K radiated 
from the volume V durint; the- decay process 
is to be calculated, especially its dependence 
on tlte initial condition Eq. (2).

The initial condition. Eq. (2) contains 
three parameters ,. i and k,For the pur
poses ol this calculation, only k„ is of inter
est. because 1 t.. is proportional to the lon
gitudinal scale

$:

Kj>*. •' - valve w.th
:.i)jyr;nth !*«*t (.liter (4>)

which is a measure of the eddy size (i is the longitudinal curreUtion function, r the 
distance). Therefore, constant values of -and a were assumed and the noise output 
for different values of i , was calculated. The parameter .i was taken equal to 2. This 
value of means that tiie energy is contained in an ocUve of wave numbers at the 
beginning of the decay.

With a derivation similar to that in 1. Proudman's paper (5) the energy F was 
found to be (for deUils see Ref. 6)

.. s.l ^1.7,-. •

^ '
05

K}»». 7 - rj!»uf um K at i t.
\'^ llll?*il»«-f* k
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where      und ., are the density and tlve spci-d of sound at infinity, respectively, v2 is 
tlu> instantaneous mean square value of any velocity component (arbitrary because of 
isotropy). 

I I I . i i .ii- 

is the longitudinal scale, and 11 i is a function dependent on the shape of i only. The 
dependence of the inteurand on t was calculated by Heisenberg's Integru-differential 
cquiition for the decay of homogeneous, Isotropie turbulence, which was solved as an 
initial value problem. The results are ^iven in Fig. 8, in which the energy K, divided 
by \i,f and by the total initial turbulent energy „' „v contained in V. is plotied against 
A', .the initial Reynolds number of the turbulence.   The following definitions apply: 

and 
■ i i 

■ v" •        I.. 

v," is the mean square of one velocity component at 
viscosity. 

and    is the kinematic 

Figure 8 shows that the expected general trend indeed exists.  At low Reynolds 
numbers (small eddies) less noise is produced than at high Reynolds numbers (large 
eddies), the other parameters remaining unchanged.  For example, a decrease In Re, 
from 3 >< 104 to 3 * 10' gives a decrease in the noise output of about 7 db.   Quanti- 

tatively, the dependence of the noise output 
on K. u is small at  high Reynolds numbers 
(in agreement with  Proudman's conaldera- 

22 turns (5))   and   larger   at   lower  Reynolds 
numbers. 

MT 
I8I 

The result can easily be understood by 
means of a dimensional analysis. For this 
purpose, the integration in Eq. (3) is replaced 
by multiplying the Initial sound power, which 
is proportional to 

101 

With the timeuf decay of the turbulence. For 
large Keynolds numbers, this time is pro 
porliunul u> 

If)       to'      Kl1     V.'*     tP* 
1 

T . ., .  -■        I ). [I.rtl: .'.11 .«       -   I. .1 .t .    -    Itl 

.!■<■ r- .■ Ki'VH'.i'i!-    Ii'il 11' ■<   ['    \\-  - 

c .: ,  .. ,i. ■! i..,.i;i -   :..r   ■       .' 
Hence, ' is independent of i 
Keynolds number»,   a   part 

For smaller 
of   the  initial 
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energy ,,_ is contained in the dissipalive domain of wave numbers, and another char- 
acteristic time becomes important which Involves the viscosity, namely the time I.;' 
(this also follows from Heisenberg's equation). Therefore, if this time becomes 
significam, the energy F becomes proportional to I.,, and decreases with decreasing 
I.((. The curve shown In Fig. 8 covers the upper part of the transition region between 
the two laws. 

What practical conclusions can be drawn from these results ? The calculations 
were only conctrned with homogeneous, Isotropie turbulence, but one can assume that 
the results are also qualitatively correct for Inhomogeneous, non-isotropic turbulence. 
Hence, one can say that the reduction in the size of the turbulent eddies Is an effective 
means of noise suppression If the size of the eddies can be made very small. In the 
case of a reducing valve this is easily possible. In the Investigations ot the last 
chapter, for Instance, the Reynolds number K<, lay between 10} and 104, but even 
smaller values could have been attained. For jet engines, the overall benefit Incurred 
in reducing the eddy size Is problematic, because the reduction may lead to a too 
large Increase of weight and drag and also to thrust losses. 

Some remarks concerning some devices for the reduction of jet noise are perhaps 
in order. The above calculations show the effect of changing eddy size on sound output 
and thereby offer a possible cxplanatiun for the reduction of overall sound power 
effected by some jet noise suppressors. For Instance, the reduction of about 7 db 
achieved by the slit-type nozzle proposed by E. J. Richards (7) can be due - at least 
partially - to the decreased eddy size. Further, one tun expect that certain other 
changes In the distribution of turbulent properties also reduce the rate of noise 
production. For example, the avoidance of strong inhomogenelties or nonisotropies 
may result in a reduction of the sound level by eliminating the eddy exchange 
processes needed to smooth out a region of strong gradients. This seems to be the 
situation with some suppressors for jet planes (at tin- jet edge of the eurrngatcd 
nuzzles, fur example). These proposed explanations ought to provide a basis for 
further experimental Investigations In which particular care should be taken regard- 
ing measurements In the higher frequency bands. 

SCATTERING OF SOUND BY A SINGLE VORTKX AND BY TURBULENCE 

Another subject of the Investigations uf the Max-Planck-Institut für 
Stromungsforschung concerning the interaction of sound and turbulence Is the scat- 
tering of oxlernal sound by a turbulent medium. This research Is still going onand. 
hence, only preliminary results can be given here. Both theoreticalandexperlmcntal 
invesllgatumshave been made.  First thetheureiiculconslderatluns will be described. 

Scattering by a Single Vortex 

General Mudie* uf the scattering »f light or sound have already been made by 
vartuus authors who have considered wave propagation in a medium with flu"tuatlng 
reiraetlon i'iw,f(ieiei)t(see the referenceH listed iii(H),,ilsn ('(,10) and other»). Special 
tlicories for the Kcaltenng »I sound \K turlmlence have l>ren developed by Lighthill 
(U),Krai(lm.iii(l2),and R.it('lulor(t3). These theories.while having general validity, 
have IH'C:, applied specilirallv to hinnngeneous, isotropii' turbulence. In addition the 
noise generated hv the inirr.u-tioi, of shock waves and tuiinilencc has beenennsidered 
(11.H). 
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The starling point for the investigatiuns of the Mux-l'lanck-lnstitut was the 
problem of the scattering of u sound wave as it passes through a single vortex. This 
single-vortex scattering may be considered as a kinil of elementary model for the 
process of scattering by turbulent eddies. As will be shown, the knowledge gained 
from a study of thi* elementary model provides an understanding of the scattering 
caused by both extreme non-Isotropie and by isotropic turbulence." Of course, 
scattering by a single vonex is also in itself a problem of mathematical and physical 
interest. 

The problem was formulated as follows: Consider a steady potential vortex of 
circulation The axis of the vortex coincides with the /-axis of a cylindrical 
coordinate system r. ./ and extends from - to ■ . In the t plane the vortex 
extends from r r.toi r,,. In the domains r r, and r r, the fluid is at rest. This 
vortex interacts with a plane sound wave of wave length . The projection of the 
normal of wave propagation into the r plane is taken as the line o . The direc- 
tion of wave propagation includes an angle with the axis of the vortex (see Fig. 9). 
The polar diagram of scattering intensity and the scattering power are required as 
functions of the five parameters of the problem . r,. r,.    . 

The problem was solved by applying lite method of small perturbations to the 
frictionless equations of motion, the equation of continuity and the equation for the 
conservation of entropy of a mass element. This means that terms involving the 
square of the amplitude of the sound wave were neglected. 

\\ 

\ \ \ \ 

\ 
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\^< \ 
\ \ \ \ \ 
\ \ \ \ \ 

t'    C.     *   -   Si hfMV.lt .       '! f t v. ;j;i;   itt   .filupitis   :lu;tlftlt   ^■t'^M^l^^.l^l 
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Tlu' fivt1 paramilrr.s of thr  prohlcm can Iw nduiid to (our  by dt'tining now 
d'lin nsioiiirss parameters .,,, R.,     i ,   . w,     i,    ( '  and >'„ is the 
hpoi'd ot sound). is assumed to be small coniuarcd with 1.   Thcreforo. if all 
varianli's art' i'xpandid in powor scric s In   , ti'rnis of order   •' and smaller may be 
lU'ulei'ted.   With these approximations, the potential or the sound reads ,,  '      p 

is the potential of the original plane sound wave. 

It (4) 

(5b) 

where n is a eonslant, "     i     ./     /    , i.        are the dimensionless independent 
variables and i is the time. , is the potential of the sealtered sound. For , one 
obtains the Inlioinogeneuus wave equation 

K 

in the region R,     K    v.,, and the homogeneous wave equation 

i - ■ i 

in the regions "     V.     K', and K     N ,.      is the Laplaeian operator 

1 K .     1 ■'    ,       " 
I.' K K Ri i yi 

Equation (5) van lie solved by the well-known method of retarded potentials, 

Speeial eare has to lx' taken regarding the diseontinuities in the potential , and 
its derivatives at R R, and R K,. From dynamieal considerations it fallows that 
the sound pressure for R »8 n and R »R , - <> has to be continuous. This require- 
ment leads to the jump condition 

i i '   ,      " (6a) 

for all , , t. Further, from the requirement that the flow velocities normal to the 
interface between the vortex and the outer flow lie continuous, a second jump condition 
results: 

I   „M ,     ' -       ' "i (6b) 
•     R 'k-'       L    R   K,  " .'    i R;'      K        K, 

for all . . /. With this condition, the ripples at the interface due to the original 
sound wave are taken into account.'' At R K, corresponding conditions apply. Con- 
ditions (6a) and (6b) require doublet layers and source layers respectively at both 
•<     R,, and K     R,. 

The solution ol Kqs. (5) and (6) gives the following formula for the total scatter- 
ing potential in the iar zone (R MM R ) (or the case RI   ^ (i: 

■ Ci.rnij.in   thf  |ii|iipv 11''..'.u) iii.ii   lri-.ii   iiiluT   Inn   Hiimlar  iimMriiis   in which  thi'so 
rijijilfs .i n   HI ITIMI itii|ii.rt.ini >■ 
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4   R    s, •    1: 

(7) 

where J,, is the zero-onli r Dossi-l [unction ol the first kind. For    = 90  (soundwave 
fullinu; pi'rpcudii'ularly on the vortex) this is a cylindrical wavi.-, while- tor      : 90 
(sound wave (ailing obliquely on the vortex) it is a conical wave. This means that the 
surfaced of constant phase are cones movirv outward as indicated in Fli!. 10. 
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,
':L;.     lü    -    CfusK* Ncctlull«!!    View     ui    tht     ph.ist- 

surt";ice*« of the scattered stjund wav*^ 

With the help ot Eq. (7) polar diagrams of the scatterm; intensity 

i; -,11 
i' i; (8) 

can be drawn. Here, i> is the sound pressure, vn is the particle velocity normal to 
the phase surfaces of the scattered sound, and I,, is the suur.d intensity of the incident 
wave.   The bar indicates mean value and V is equal to 

r     i,, [4   K, sin i ■  i ■.III Ml* Ca) 

Such polar diagrams were constructed for lour different values ol ("0 , 60 , 45 , 
15 ) and three different values of K,(10, 1, 0.1) and arc shown in Fir. 11. I,, is 
referred to ' 1^, >„,,,,, the value of maximum intensity. The waviness of llu1 curves for 
K, = 10 is due to the oscillations of the Ressel function or. physically, to interference 
effect«. 
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For = 90 the intensity is zero in four diroctions {. =0 , iJW", 180 ), but only 
for R , ■* i' do the four leaves of the characteristic appear symmetrical and have the 
same maximum intensity (at = i45 , 1135 ). For R,. 1 the Intensity of the two 
leaves in the half circle -90 90   is much greater than that of the other two 
leaves. Therefore, scattering by vortices with diameters of the orocr of magnitude 
of the wave length or larger is a forward scattering. Further, for R,, I, the Inten- 
sity is contained in a very sharp angle interval (see ft,, = 10 in Fig. 11) and the angle 

,„,,, of maximum intensity is proportional to 1 R,,. It should be mentioned here that 
for R(1 i the angular distribution K (Eq, (8a)) agrees exactly wish Lighthlll's dis- 
tribution for the case of homogeneous, Isotropie turbulence (see Hof. ll,Eq.(25) with 
K(ki     k* for l       1). 

For 90 (see Fig. lib, c, d) the zeros at = 0 and 180 remain, while the 
zeros at t90   are shifted toward    = 180 , as one can also sec from Eq. (8a).   For 

45 only two leaves can exist, because the second term in the second bracket of 
Eq. (8a) can no longer attain the value 1. For fixed R, and ->0 the angle !ri,s 
approaches the value 90 . 

By use of Eq. (H) one can easily calculate the total scattering power l.v, emitted 
per unit length of the vortex.  One obtains 

I...       2    R. si,, F.I.   . O) 

I , Jr , sin I, is the sound power falling on the vortex per unit length. Because 
the most interesting question is the dependence on the frequency of the incident 
sound wave - the other parameters remaining unchanged - this ratio is plotted in Fig. 
12 pgainst K , which is proportional to   .  (For this purpose    is written 

>   M   B (10) M R 
where 

i 
■■ J  I vif 

is the mean value of the azimuthal velocity v of tin vortex and M is the mean Mach 
number.) For R, I, I.,., I „ varies with the 5'" power of H,, for R.( I with the 
2nd power.  In the vicinity of i;, = 1 the K* law changes to the K- law. 

The scattering power per unit volume is        l.kl     i'] which has the limiting values 

• , ' ,,       i (Ha) 

and 

(Ub) 

The last formula ran also Ix written (by use ol Eq. (10)) as 

, •'   ' 11      '   ' ' S'."     i„. (U'b) 
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which has txaitly thi' same struituri' as Lighthili's formula (20) in Ref. 11 for the 
sam«.' Unütiiiü; r»Hf. [his again shows, as i-sprcu-d, that scatttTini; by a single vortex 
containa tlu' cssi'iuiai fcaturt's of the scattering process in a turbulent medium and 
may be considered as a kind of elementary process. 

Scattering by Turbulence 

In order tu apply the above results tolurlmleiu-e it is assumed that the turbulence 
can be described by a statistical superposition of vortices of different radii !•„, cir- 
culations ', and inclinations with respect to the incident souiid wave. Because the 
different vortices (eddies) are statistically independent of one another, the intensities 
Of the scattered sound produced by them can be simply added. Further, it is assumed 
that the time required for the external sound wave topass through one vortex is smaM 
as compared with the time in which the vortex undergoes any sensible change. This 
assumption is equiv«lent to the requirement that R, (or M J       I). One maythen 
proceed as follows: 

Let  'ViK .    .   .  \.\, r\ .Ik, I    !     be  the  probability  that   the   volume  element 
IV      ix !\ 1/ (\.\./ are the coordinates of a cartesian system) belongs to a vortex 

having a radius between K , and K,      IK ,, a dimensionless circulation between    and 
• i  , and an angle    (see Fig, it) between    and       I  .  » has to satisfy the condition 

/'   /    i   *■*. !K     I 
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Willi this probability function, thf total sound radiation I. from tho turbulent volume v is 

(K.. ) ilRil    ,1 .,1V , (12) 

This general cxprussion was evaluated for two different cases, namely extreme non- 
isotropy (applicable lor boundary layers or jet edges, for Instance) and .sotropy. 
(Non-lsotropy is a case treated only with difficulty by the method given in Ref. 11.) 
For simplicity, it was assumed that all vortices had the same radius Rn and the same 
absolute value of circulation , and that the field was homogeneous (w independent of 
\.v./). Then, non-isotropy means that all vortices have parallel axes making an 
angle with the direction of external wave propagation and can turn clockwise or 
counterclockwise. In the Isotropie case w was taken proportional to the differential 
element of solid angle. The results are plotted in Fig. 13. This figure shows that 
the greatest scattering power occurs for ■ 90 (normal Incidence) and that It 
decreases as > n (where it becomes zero). The scattering power In the Isotropie 
case is approximately equal tothatln the not.-Isotropie case With 45°; 60°. Hence, 
one can say that there Is no significant difference between Isotropie and non-Isotropie 
scattering. 

KiK- H- DinicnKiunlesK total HiatU-ring pimi-r radiated 
rriuii the volume V. fur two i.i.scs of non-ivotropy 
(       90* and 15*) and for the case of iautropy 

Experimental Investigations 

Figure 14 shows the apparatus which is being used for the experimental Inves- 
tigations. The laminar air flow within the entrance region of a circular duct 300 mm 
in diameter is made turbulent by a grid consisting of parallel circular rods, 5 mm In 
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(liami'tcr and 12.8 mm distant from oni' anotlu-r. The (low vplocity is 25 m s. Short 
sound pulses are transmitted perpendicular to the (low direction (rom one side o( the 
duct and are received at the opposite aide.' The degree o( turbulence o( the (low 
traversed by the sound waves can be changed by varying the distance .1 o( the tur- 
bulence grid (rom the test section. For the exact measurement o( the intensity o( the 
received sound pulses, electronic equipment is used which is shown in the right part 
of the (igure. The main element, a "pulse comparing bridge." contains a bridge con- 
sisting o( two condensers and two electron tubes controlling the charge o( the con- 
densers. In this bridge the effect caused by the received bound pulses on one arm is 
compensated by the effect ol electrically produced pulses o( the same shape on the 
other arm. The height ol these electrically produced pulses can be measured easily 
and, if the bridge is balanced, is equal to the height of the sound pulses. The other 
parts o( the electronic system shown in the figure are needed to compensate (or the 
delay time incurred in the transmission of the acoustical pulses through the flow and 
to compensate for the amplitude- modulation imposed on these pulses by disturbing 
noise and other influences. 

Some experimental results concerning the dependence of scattering intensity on 
the (requency o( sound are given in Fig. 15. The measurements were made in the 
following manner: At first, by shifting the receiving microphone, the position of the 
maximum intensity o( the sound at the walloppusiteto the transmitter was determined 
without scattering (that is to say. with the grid (ar removed (rom the test section or 
with laminar flow in the duct). The microphone was then left in this position and the 
grid was brought closer to the test section. In this way one obtains the Intensity l' ' 

"llu- Kimnd l r.iMHinitli-r ui'! the ncturr .in iiUntu.il miwit ».•< r lypi' nm'roplumefi 
with solid dirliTlru . wliuli li.tvr Iwi-n di'Vi'Ki|«-d l>y W. Kuhl, ii R Svluidder imi 
K-K.  Srh roller in the  in.l'liVKlt(..ll?i hw» liistilnl  ul   !">■  I'IUVITMU  ut (it'll iMp'ii !.'1 I. 
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(without soattering) and the intensity I' "' 
(with scattering) for each frequency of tin' 
sound. Thi'quantily I l" lou,,, I1'"' I'"1 

is plotted against In Fi«. 15. I must be 
proportional to i.s, i given by Eq.(0)t since 
it represents the attenuation oi the intensity 
due to scattering (see Ret, 15). 

The i'aleulationstwve asymptotic power 
laws i.s   I. " witli ii     S for the  lower 
frequency range and n 2 for high fre- 
quencies. The measuring values obtained 
until now seem to obey the J-law. Further 
measurements an- being made and will be 
published later. 
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DISCUSSION 

W. WUltnarth (Unm-rsity of Michlcan) 

I wish tu L'ümpüment the author on his fxcellent cxperini«nti<l and theoretical 
work. The experiments on sound scatterini; are very well done. In particular, the 
use of bound pulses produced und detected by identical transducers eliminates dif- 
ficulties with sound reflection and transducer calibration. It is gratifying to see that 
the simple, or relatively simple, results of scattering from a single vortex can be 
superimposed to give a description of the sound scattering from turbulence. 

With regard to the noise produced by a high-pressure steam valve: by the use of 
a set of small passageways the turbulence and shock waves within the valve were 
reduced In scale. The small scale motion which Is produced probably does not 
vibrate the pipe as much because the mechanical Impedance of the walls for the hlgh- 
fiequency, small-scale fluctuations is greater. 

A related problem of valve noise Is being studied at the Stanford University 
Medical Center. They are working on the valve noise produced by a heart valve, and 
would like to know what types of obstructions In the heart valve produce what types 
of noise. Of course, the sound Intensity for the heart valve is very much lower than 
that for the steam valve discussed by Professor Müller. 

R. H. Krakhnan (New York University) 

The cotninent I wish to make concerns the dependence of sound-radiation • 
efficiency upon the turbulence parameters. Work which we have done recently on the 
radiation from Isotropie turbulence at high Reynolds numbers has yielded the formula 

* -• • i v c is in R . 

where w is the radiated power per unit mass, is the power dissipated by shear 
viscosity per unit mass, v Is the r.m.s. fluctuation velocity, r is the velocity of sound, 
and R is the Reynolds number defined by R vl. . , where I. is the length scale of the 
energy-containing range of the turbulence and i is the kinematic viscosity. This 
formula differs from the earlier result of Proudman on)" in the presence of the in R 
factor, which arises from a slowly-decreasing, high-lrequency component to the 
radiation spectrum suggested by our work. 

It Is well-known empirically that 

v' I. 

Thus, w depends on the basic parameters according to 

«      'v" l.i  Infvl.  ■ i 

and varies, approximately, Inversuly with I..   However, th« efficiency of (he con- 
version of turbulent energy Into sound is given by 

» v'livi »1.   . I 
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and, apart from the very-slowly-varying logarithmii- factor, is unaffected by a change 
of length scale, provided v is fixed. 

A. Regier (National Advisory Committee for Aeronautics) 

i am rather interested in relating the scattering from a large vortex to the valve- 
noise problem. At Langley wc have a test facility for producing turbulent noise for 
testing aircraft and missile components, and we are interested In making an much 
noise as possible from a jet. We found that by turning the air supply pipe through a 
90-degree turn we can raise the jet noise levels about 5 decibels, possibly because 
of the large vortices generated in the turns. Actually, we can shape our spectrum 
and increase the lower frequencies by these large pipe bends. In our test set-up we 
are using a 12-inch pipe which has four 90-degree turns near the Jet exit, and have 
succeeded In Increasing our noise considerably and In bringing our frequencies down. 

I. Dyer (Bolt, Beranek, and Newman, Massachusetts) 

Several years ago I made an analysis of scattering from a single vortex. The 
flow field 1 used started at the origin with zero velocity, increased linearly, and then, 
at a given value, decreased as the Inverse distance law. I, too, obtained good agree- 
ment with LlghthlU's theory. This seems 10 be a very different flow model compared 
to that of Müller's. In the sense that the velocity was not divergent at the origin and 
contained a central core as a true single vortex might. Thus the model doesn't appear 
to be too critical in the computation of the scattering. 

H. S. Rlbner (University of Toronto) 

Dr. Müller attributes the noise reduction In the large steam valves to the great 
reduction In scale; he supports the Idea by a theoretical analysis of the noise radiation 
of homogeneous, isutroplc turbulence during its decay as a function of the Initial 
scale. This reviewer believes, on the other hand, that the dominant factor is the 
reduction of the turbulent velocities In the labyrinth: note that v enters as the eighth 
power in Eq. (3), scale I. as the minus lirat power. A similar argument applies to 
jet-muffler silencing. It is to be noted that, according to Flg. B, a factor of 10' In 
I.—a wholly implausible amount—is required to explain the 7-db noise reduction 
attributed to Hichards' silt-type noz/le. 
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SIMILARITY RELATIONS IN 
AERODYNAMIC NOISE MEASUREMENTS 

K.  Molln-Clinsifnsf;' and II. W.  I.n :)inuim 
'   : I I ■   ■■ : i  i    hi .■ i Int.    ,. '    /. . (ill..;..; \ 

INTRODUCTION 

Turbuhmcv still remains the hast undorstood and most tntfri'Bting field of fluid 
nu'chanics The tnlvraction of sound and turbulent flow thus prisents a problem for 
which w" cannot hope at the present time to obtain a complete analytical solution, 
since besides our i^noranee alxiut the structure of turbulent flow in general the added 
tcaturt! of u mm-limar interaction between the two fields enters. Consequently the 
need for analytical experiments in the field is obvious. Experimentation in aerody- 
namic acoustics is anything but easy, not because of any insurmountable difficulties 
with the measuring technique hut rather because it is quite difficult to set up a clean 
and simple priibhm. free of parasitic effects, and in additionto decide what the really 
important quantities to be measured are. Experimental studies of turbulence, even 
in the absence of interaction with sound, have uiven ample evidence of these difficulties. 

In the following we will illustrate some very simple similarity considi'rations with 
experimental results obtained at GALCIT in the course of a study of aerodynamic 
noise spon«nrert by the NACA. 

The experimental results which will be used for illustration have been obtained 
by Wlllmarth (1). Weyers (2). and Narusimha and Mollo-Christer.sen. Willmarth 
(1) measured power spectral densities and space-time correlations of pressure fluc- 
tuations on the wall under a turbulent boundary layer. Weyers (2) measured the 
pressure fluctuations on the wall and in the emitted sound field of a pip 'With extremely 
thin wails with turbulent flow Inside. Narasimha and Mollo-Christensen measured 
noise from subsonic jets. 

In all these experiments, great care was taken to avoid parasitic effects, such 
as noise from unknown sources, diffraction, and scattering. 

PARAMETERS OF Till   PROBLEM 

In th' study of turlmlence-produced sound, the fluctuating pressure p R.t is 
measured. Its statistical properties determine Hi structure of the sound field and 
as relation to the original lurbuli nee The simpli M and most important quantities to 
1).   measured are the mean-square pressure ;.'K •    and the power spectral density 

K .   These an  r» lati-d by 
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The HUKI (jropiTtlfs and the sound-produclnt; turbulent field aro spwififd by a 
si't of paranutcrs which involve at least tin' folluwlnn: density . , viscosity i , and 
veloeity of .sound n; a characteristic flow velocity e and a characteristic lenijth n. 
Oiu' can of course think up many other, parasitic, parameters, such as: the dimen- 
sion ofthe pressure transducer, the turbulence leveland the sound level of the stream 
used, the cutoff frequencies of the recording equipment, the length of time averauin«, 
the dimension of the receiving volume. 

Indeed, a very important and in some casesdecisive part of an experimental study 
of aerodynamic ne:selies with the identification and elimination of as many parasitic 
parameters as possible. This is obvious for any experiment: it Is emphasized here 
for the case of aerodynamic noise since the nature of the problem, namely the study 
uf a random wavefieldof „.nail intensity without a priori knowledge of what to expect, 
often makes it very difficult to know whether one has succeeded In measuring what 
was intended or not. 

It is therefore especially important to cheek the similarity properties of the 
experimental data before any detailed conclusions can be drawn. 

DIMENSIONAL ANALYSIS 

If it is assumed that tin problem is defined inthe minimum number of parameters 
listed, dimensional analysis yields for the form of pJ and .'   >: 

rJ -i •• 1   R D.   K. .   V.i 

where Ki l'' and Mi 'i are Reynolds number and Mach number. For the power 
spectral density it follows. 

,K' -'l-'"   ..   C-  I).      t) 1«;   Kr.   Wl I . 

Any measurement which cannot be represented in this form must be Influenced by at 
least one additional parameter, and the above relations can then be used to eliminate 
such a parameter by a limiting procedure 

As examples, measurements by Weyers (2) and Willmarth (1) will be cited. 
Figures 1 and 2 taken from Weyers' paper demonstrate the similarity relations in 
intensityand spectrum. Figure 3 shows a plot of spectra of wall-pressure fluctuations 
under a turbulent boundary layer obtained by Willmarth (1), in which the ratio of the 
diameter of the pressure transducer I to the boundary layer thickness '* is the 
parameter which is dilferunt for the different spectra. The effect of a finite trans- 
ducer size can thus be estimated, and eliminated by an extrapolation to >l .-*—•<*. 

In both sets of measurements the influence of Reynolds number and Mach number 
were found to be small: this agrees with the expectation that the turbulence at not too 
high Mach numbers is unaffected by compressibility and that at sufficiently high 
Reynolds number no viscous effects remain. 

We have not investigated the near field of a jet or wake, for which similar rela- 
tions are bound to hold. However, in lueusuretiU'litM of the far field it becomes quite 
obvious that microphone size and orientation can cause very large deviations from 
the proper similarity laws due to diffraction effects. 
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SIMILARITY 

If wv supph-ment the boukkecpim'. of dimensional analysis with some insight into 
thi- physics of tho problem, such as can i>< obtained from general conservation laws 
or the differential equations of the prnLli m, one can attempt to reduce the number of 
variables further specifying the forms ol p-.' and more closely. One may also turn 
the process around and riuu-uss the physical mechanism which must be involved to 
give a certain experimentally obtained similarity law. 

67 



S in;;,i :• !■,   K i>   .11 Ac-nidvn.mii'    Nmsi' Mcisuri'iniMU- 

''j. fl 0 

■/ 0018 

1  ': 1 a<i 003? 

v.- l'iij j ooae 

•• 
-■    IM l*)f) 

if,' ' M069 
• j   1 M 4IH ;00i9 

*■- •J.r 

A, h 0 00!9 

0 OOfcS 

''             -. » •    'ft- ','j7 0 007! 

* 

• 

• • 

^^.     ,..v, . 14   ! II 

., ■ 

1 

1- .J, 
lurliitlcnt bijumlttry layiT 

ami 

;•■(." ■»-) 

whi-ri" tin vi (tnr!' hits born replaced by its magnitudc1 r and its inclination    to the 
jet axis, 

To'^nhi ymul this slaiii .inun and nxn e detailed physical mndelsmust l)e adopted. 
or else tlie i mpiiasis is thrown entirely on the nicasurcniiiits per se. For example, 
if the emitter contains Ira', ell ini; sources, the combination M« ■■"•• will becharacter- 
istic. rather than ■;. and    IJV tliemselves. 

INTKHPHITATION Of .IKT NOISF) 

Whili the im as'ireineiiiK of ^all-pri'ssurelluctuations under aturbulent Ixnindary 
layer and turliulenl pipe flow an- nieasureiueiits of noise from a practically homogenous 
surface , mitii r. |tt noise is eimtl'd from liii'.hly nonhomo^t nous turlmlenci' which 
occupii s a small r. . ion, 
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1.     Willmartli.W W.. "Spao-Timi C'crn iation« anclSi«ctra ul thi Wall Prosmin in 
a Turbuli nl Huuiiclar\ Li'/n'." NAC'A Ticluucal Noti in i rin; 

2      WIM rs. Paul F.H    "Tht Vihratmn and Ai'ousiu Ratliatm!; ul Tliin-Wullui Cyltn- 
(!■ is CuiiHicI liv IJU  mal Tujiml« nl Flnw." sulHUittiel !■■ NAC'A. Au;.. 105 

l.ii.hii.ill. M..I.. "C)ii Simii'-i Gi-iiinit'd Atrniiynan.ii'ally - I,  Gem nil Tlunry," 
Pi"c. R«- . Sec   A211:5iH-5 7 ilS32) 

DISC TSSION 

M. Stiastx'ru   Uavitl Tayl'H'M.HUI Basini 

Al t.'^' Uavid Taylor M'iciil H.isin'.M-iiavi pi»turmi'd tniasui'-niiiith at p'issiirt 
fluctuailuiis, I'M thus, im .i'iin M,. m- invulvuit; i s.«inliaU> iiuimiprtsniltlt flow, 
ihat if. pit ssun  tluctuutiiHU In lln iiiar fu Id ui! distam < s ifum tin souni li, ■ ,iri 
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Irss than ;i quartiT wavilonuili nf wluitivt r li-iqui nty is of Interest), we have found 
thai simllurity is nuiintulned. Tluse Im'lude the near field of a turhuleni jet at low 
Mach iiumlurs and the prissurr fluctuutloilh In the wake of a cylinder. In those 
cans, simtlaiity was maintained.that is,when we plotted andn-dimensionul.spectral 
density versus a Stroudhal numl«'r, we would net a spectral curve that applied at all 
velocities. We were not surprim-d Uy ilus. We would have been more surprised if 
this hadn't been the case. 

1 would like to mention .1 convenient way for expressing spectral disti ihutions. 
It has been common toespnss tlu speetrun' In icrnisof spectral density, which is 
tlu mean square pressure in a narrow band divided by the bandwidth, but for non- 
dinu nsional parameti rs oiie misiht consider txpressint; the spectrum in a .slightly 
diffeteni way as the mean squan pressure Itself, which remains proportional to tin 
trequency. This is just a mallei ol convenience, the advantage being that when going 
from one scale to another it i> not necessary lu correct for the bandwidth. The 
bandwidth automatically chunnes m the rinht way. J'or example, one can give the 
mean square pressure in a lull octave baud. The reason 1 am sug^estinp, this is that 
1 have seen many cases where people seal« from one dimension to another, and forget 
to change tlu bandwidth pru|>ortionally. 

K. Mollo-CluisU'tisen 

In response to Dr. Siraslu ru's remark that similarity should be expected in 
individual measurements. I would like to point out that if only one parameter is varied 
it may be easy to obtain apparent similarity, but no evidence has been obtained that 
the phenomenon is independent of the variables which wire not changed durini: the 
experiment. 

One has not demonstrated stmilarity. for example, when measuring the pressure 
thi'.-tuations in a turbulent boundary layer it a part of the observed fluctuations could 
be due in turbulent flow in the tunnel. Such pressure fluctuations would probably 
seal« with velocity the same wav as the pressure fluctuations due to boundary layt r 
turbulence. Thus, parasitic effects may follow the same similarity law as does the 
priu i s- om intended to obseiu. To avoid this, one must either eliminate or change 
the wimi i..iiii 1 turbulence. 1 bilievetlu disagreement between the results obtained 
In P. . Willmarth and those obtained by Dr. Strasberg may be due to the tact that 
Willmurth'.- measurements wen performed with virtually zero free-stream turbu- 
lem . wlule StraslHTii's wen obtained in an existing wind tunnel where there appar- 
ently was some free-stream turbulence, judninv; from the difference in spectra and 
space-tinn covariance oliserved m the two investigations. 

About lhe-su..L',i .-'inn ii!.;i m plot t instant-Q spectra; I (eel it may take some 
nine t i become accustoinecl : the relation 1 o example, between such spectra and 
the cur relation tunctiun. 
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I-XIMIUMKNTAI, I-gilPMlNT 

To tiisun v.tll-tli liurd t xpt riiiitntii! CDiicliliims, .1 iKiundar;. lavtr ot tonstaiii 
Ihiekiu'ss had to I»' (.'.i-iurati'd. 'Mus rculariiv i-tiukl I" oblair.i'il with ;t rolatim: 
cyUntlt'r. TIHTC wcri' nasous lo bcliivi that tin finiti ltii|,iii ui tin 1 ylimU'i had 
litlli1 1 fffct on tin' inniT part of the Ixnmdary layer, whlih IK I;IUHVM I'I he M spiiiisihli 
for most ol tlif flow iioisc, and that tin risults cuuld l)i' 1,1 m rali/t d lali 1 lor am 
iillui' curvici »urfaiis. 

Tin first ixinrinu nts w n inadi' In til« Ordiuiiu'( Uisianh Laljorat<iry, I'- was 
ct rtaln that the propiTtk'S of tin cylindir .vails wtmld play an at'livc pan in lla 
rxpi rinurds. Th. fhu taatini', pnssun cuuld l» ixpirtrd to ixcltc resonant modi s: 
and tin nsonatim, niodis would, in turn, ixciii thf sound nn 1.11. wlutln r it was 
atiailncl totht' shi'll or pUu'vd far awayfrom it. This cotnplcxbt.-liavtürtübi' ixputnl 
in anv practical situation was tl»'reason for leaving pur< ly ihiüritlcal ground, for 
uainn the same hydrophoni s as are used with smm 111 S'r\iie torpedoes, and for 
niakinn up a cylind« r of 1 8-in('li steel. 17.!' iiiehes outer dianuter, and 24 inches 
loni;. with aluminum domes fastened mi itu'h tiid. Tin overall length was 42-3 4 
inches (Fit;. 1). It was driven by an 11.5-lip motor utilizing! V-helts. Figure 2 shows 
the cylindi r mounted in the acuiistic water tank when in all the nn asun nients were 
taUen. The sound receivi rs were two mai'.netostrictive hydrophones, one 2.5 inches 
in diameter, tin other 5 inches in diametir. Tin hydrophones wire mounted 130 
det;rees apart at tin midpoint on t.n insidi wall. Fipiri 3 shows the frequency 
responses ol these hydrophones. The exi< mal-noise nuasurenu'iits wire madi' with 
a similar receiver, a 24.5-kc hydrophuii. ii^cated one yard from the surface of tin 
cylinder and at ili> same depth as thi1 cent 11 ni tir cylind»'!', 

Tin machinery noise is v« ry small at lii.h fr qurncii'S (88 can lie deduced from 
tin ' urves for a smooth metal surface) - tobe discussed lati r. The background noisi 
may therefore be attributed to tin stiuetur--borre noisi transmitted into the water 
lank, and to the tin rmal-noisi levi'l ol the iransducers. For small speeds the noist 
b vel equals the liacki;round noise level !-';(i db belnw 1 dyne). 

Otlnr equipment was used in additional measurt mi nts pi rformed in the Garfield 
Thomas Water Tunml. Tin tt'Fit section has a diameter ol •!!-; iiu'ln s. Fach hydro- 
phone was made up ot two barium titanau discs. 0111 inch in diameter, each 0.27 
inches Ihlck, Om disc was titled with a small holt In the middle of Its face, that 
served to take up tin lead lothe hot 1 b clroile. which was at tin interface betwi .11 tin 
two crystals. The unit was enclosed In a rh.id brass box with a 1 IG-ini h thick 
membrain in front. Great can was taken to ensure perfect ron'act with the casino 
and betwe, 11 tin crystals by usim; casior oil as a coupiini'. at.ent. The unit was cali- 
bratedat tin BlackMuslumi in Calibration Station. On the awraM'its sensitivity was 
the same asthe theoretical value of -100 dbper bar ri I volt. A second setof hydro- 
phones oi similar construction had a diameter ol 1 2 inch, a thickness of 0.1 inch. 
Hydrophon wen also mounted at th nose and at the side of a streamlined body 
having a maximum diameter ol 4 1 '■ inches and a lene.th of 20 inches. This body 
was Inld iii position 111 tin middli of Ik. test section of tin chainnl bv a strut Tin 
frequency analysis was perform d ovi 1 th. bands 2'iO to 500 cps, MX) cpg to 1 i.e. 
1 kc to 2 ke. 2 kc to 4 kc. 4 kc to ■! I.e. H kc to 10 kc. 10 kc to 15 kc. 2o kc to 25 ke 
:'.<) kc to '.0 ke. 00 .a- to HO kc, HO ke lo loo kc. 1 \i pi for tin results plulted m Fit;. 
Iß. which wer.  olitained by a ä-eyel  -band analysis. 

Mil   VFLOCITY DISTRIPL'TION M AH Till   UOTATINU CYLINDFH AND 
IN Till'   TI.ST SFCTION Of  Till   GAHMi I.P THOMAS WATFH TINNI L 

■I!;' |»i'i ssuri ilistribiitimi 111 Un buiimlai". kr' 1 nt thi roiatin;, cylindir was 
no asurefl with ,1 miiltipb-rake IIKUK nn 11 r Iruni .1 distanci   "I   1 n inch to about II 
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iiu-hi v. Thi' v< Itiritv liisfrilHition riiuld thi n Im> rntnimti'd. TIv mi'amirt Rii ntfi vi'n- 
ill .1 ru Miiiit wnli !in Prilutll viin iUrnian l<i-urithmi< -v<formula (II as 
'<lwiKii II, Kii. 4. For til- pl.t.II of Kvmmiii v of tin i-vliiMti r thi- luUiiwinp n suli «as
111,tail ■ li'

Tins mil \p< I'tid r> nuM si i tn.-. ii. Is liu. to tli, fcii-t Hut tin Hlnar vi liN-ily was v< ry 
iii arly rimsiaiiloviT thi’ wiioli Ihmhi' arv iavi r. h variid imly by a tartiHr <tf two from 
till mill rnio.s| |Kirt of IIm iKimiriary laM i to llii n pions a b w its-In a dislaM from IIH' 
surlai • of till rylmrti r. Tins i oulit in li'ibM-itf from thi’drai; mi asari lMi’tils|mhlbihi-d 
iiv Thi'iiriloriii'n (2) and Ihi' \a!'.n’ di-fi riiuiu'd IriHu tin- ri’Siilts ropn-siiili'd in Fiit. 4. 
A nil’ll of thi tuiii- varttitiiMi ”1 Ihi' pn ssiin distriimtion (Fir,. 5| provi'd Hurt thi’ri- 
was pnii 1 irally iiotiiiii'la|>si . .’twri’ii i|- siirtai’’ spi-i dof thi I'viiudi r and Ihi'liuild- 
III" up ol till’ inn. r n :’iiNis ol tli’ Imin: l.|•.•■l.

T'■ '.I lis itv di. iriliiifii n r ll;< i.iuior juiri oj ili< rross si i tiiir of tli. tuiim I 
.■..1.’’. uiilorin. Fi; HI’’ <> slio-.^^ iiii ’..in ii o n ..t tin .i li«ity ,,\i r th, liniiiiiiailavi r 

s> I III,IIS 10 lilt fuaii till iriiMl i-i;il >,! I!i, list siilmti.

l)Mti\AIKfN OF IMF liiHWiV ON ! Ill
I'ASIS OF Till fJU'I IflMI NTAI HI .SIMS

Will 1 • ■’ I I III, H> viiolij- 
■i.llii’ .iil‘1 turl,:.|i III. i I

Ik r i: • ils ’, I I’lli! 111!’. . ;!k

. .i;.s,’il In .1 t !• ill’ll oi.iiv’i
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is inrris.    I hi kin lir forri's surh as thi  Kutta Jonkovskj/ Uli 
■,iir ;iil [•!M|iMri',iin;i! Id I hi  Stuart (if th«' vdocily, wiwrcas Ihr 
asi  witlimily the first powt r of 11"  '.limits. At small Reynolds 

is Uiri-i  in cumiiarUim In      .nie! li'iition KDVCIUS the motiun. 
luciU   field Ihcri'foi i 

125 IN FROM SURFACE 

Sil IN   FROM SURFACE 

3 9 <N   FROM SURFACE 

% I  iN FROM SURFACE 

STATIC 
4 6 IN  FROM SURFACE 
STATIC   S95IN 
STATIC   ■  31 IN 

• li rnasis r''i)icllv to zero, At Miijli 
sp. ids, •' is t;i tytcrtlum i . and lln 
kirn lie toiTcs dciiTiniiii' the flow. 
Frit"ti un then bcconifs almost 
iiitinly nogliKiblt' and thf fluid 
Iwhavcs similar to an idoal tvas or 
to a colli'Ctloil ol Ideal clastic balls 
A disturbance introduced Into thi 
How no hmger decreases hut per- 
sists or even increases with time, 
because of the production ot mechan- 
ical 'in rCT by the surface drat;. 

Tin Reynolds number for which 
!!r     kul''tu     forC'ij   iit-i wiVii     läiL'.t'i 
than tin viscous fore s can be 
crudely estimated. If we identify 
tin disturbances with a cylindrical 
or, better, a spherical particle, a 
value of 51) to 100 is obtained, which 
aiiers well with the experimental 
value 00 ohsi i-vid for tin in ntrution 
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■il lurhuli'nri' in ,i \v;iki Tin' i'oii'i-spinuiin . Ri ymildsi numlii r For t. ' nnscl ul uliu ■ 
I. in ■ in tin :>i ii;iii;ir'- luyi'i' "1 live ru'.id limly i^ .il liawl -l'i litilc!- us i;ir," I'his 
..;. ii.iii r i';.!1 Ihv turliulriici'in thi Ixmnriary luvi i'ul u i n,!.! I-..;. i.s rumpli'ti'h tiii- 
ii riiit in milurr lipiii ihr iiuiiiili'iii i in A wak»'; Tiii- tail ii'.i> I«' hiti I'pi'Hi'cl as fiil- 
le.ws: nccaust nf Hi' altructivcforces fxcrtfcl liy llii wall ami the incnasi'd lntt>t'nal 
IfUMioii uwiiig to 'In proximity of tin wall, uu'iulniri is nuich harder to start. 
id i . ut iiscanli (3) shows tliai turlmliiwe is iuiUaleil hy a plieiioimnon that is stmtlur 
lna serii s ol ir.lt rnal explosions of the iluid. Hi I the moment lurbulent patches ur 
vortlfes have lieeti formed, they possess so mui'l' kinetic energy thai tlu'y may split 
up into smaller and smaller ones of less than 1 50tl\ of the original diameter, and all 
these patches or vortiees will still possess siiflieieni energy to Inve an apprecialile 
lifetime ahead of them. The diir.mters of lie vortie s in the lioundary layer of a 
i e.iti body then fore varv hetwci n a diameter • qual to the thiekness of thi boundary 
layi v ii'ii ariiamt'ter at least40 times smaller: andilu spaie-wave-numberspcetrum 
of this turbulence isi ontinuou8l> distnlmti dover a fairly laiiv volume in wave-number 
space. Under this condition, equilibrium laws sah as the Kolmogorov laws (see 
Appendix A) forhomop neims turhulenci' may bi eNpected to apply. In fact, it is pos- 
sible to estimate ihe root-mean-sqaare velocity Üiictualion of the turbulence on tin 
basis ol this la», tin result haunt; at least tin sann order ot magnitude as the 
measured values. Kraichnan (4a) has recently Impraved the Kolmottorov theory on 
the basis ol statistical mechanics and lu.s derived a slii;liily different wave-number 
iti pnuii ncy. 

The vilociiy fluctuations caused by the turbulent patches increase the tr.mspor- 
latuin of moment urn and (iem rate the drag. Our first task istu compute the maimitudt 
ul the velocity lluctnatiniis, assuming the drag to be known. This computation can be 
performed in two different ways. We may start with the Stokes Navier equations. If 
tie mean values of the components of the velociu are denuted by , • . ■ . and tin 
fluctuating velocity components are denoted by   . ,     ,     , this equation becomes 

.( 

Tie  exprissinn inthe p'an ntheses cintln right-hand stdi represi'nts the drag. Oi:tsiiii 
the laminar sublayer, the first term ■. is negligible; and tin drag becomes 

Tie second method is based on tin ^as-kinetic considerations. Sim ■ friction is 
in ; li.it Ii at high Reynolds numbi rs.computing the drag in a similar manner is per- 
missible, as the viscous forci is gas-kiueties The above expression is then 
r<-obtained. If the flow is hnmogeneous. and an tin same; but the turbulence 
in tin boundary layer is not homogeneouH, W« may. however, di fine an i ffi ctivi 
'.i loeity by tin i qvi.iiion 

This vi loeity ' 11 pr'sents tin . 'iimetric avi rani ut tin fluctuating velocities, in the 
direction Mt thi flow and pi rpendicular to tin wall in tin innermost part of the tur- 
bulent boundary layer at a distance from tin wall, when tin viscous torcis just 
become in I'hgibli . According iniln classical I'lamlll theory ol turbuli'nee, ^ • should 
in practicaih constant' accordtni to ih« von Kärmän theory. ' ■' shuuid decrea«« 
pr<i|Mirtionally to tin distanci ftoni tin laminar sublayer to /em at the outer limit 
ol tin iKiundary layer, an assumption that agrees well with l.auler's('r) measuri mints. 
Tin inagiiitudi o| ■ ihti riiiiins tin shear forei near the wall, tin so-called surfaci 
ilr.o ; it i- I'.ti'iwn as tin sliear \i loeity, 

«1 



!• .  SKiulr. VK   r;.. i.. II iildli' 

Thi'surfiwr clruu hasbiin tliorounhly skuliid fur pipes (1,5) and clianm l.s(l,(l) as 
\,i Ihis lor llai platis (1,6) and rotatini', cvliiidcr.s (2). The rxptTinn'tital ri'sults show 
thai ilu surface drat; is !ip|Jr(>ximat«'ly nroporiKnial In ll»' squari' of ihv frcc-strcain 
vtlmily ii . Thr surfac«' drat1, can tin rilorcln cxprisscdas llic product of the coeffi- 
ii( HI of dran • i mid the squari1 of the free .sircam vilociiy: 

'; 
I 

dciiotlnn tlu' density of the fluid. 

This coefficient of drat; proves to be practically a constant and to be equal to 
.') x 10 " whenever the flow is turbulent, h changes by only a factor of 3 when the 
velocity is changed by as much as a factor of 5000 (Ref. 1). Since this surface drat; 
is generated in the inner part of the boundary layer, we may expect that it will not 
greatly depend on the curvature of the surface nor on the size of the body that gener- 
al, cl it. This conclusion has been verified by Theodorsen (2) for a series of rotating 
cylinders. The ratio of the height to the diameter has been varied by as much as a 
factor of 20. Nevertheless, all the measured points seem to lie on »he same curve 
(Fig. 7). We may therefore assume that the coefficient of drag is independent of the 
curvature and of the size -nd shape of the body. This approach means a considerable 
simplification in the dlu«    )f flow noise. 

The fluctuating velocity .' can be computed by equating the theoretical and 
experimental results. 

v*-'     T Ci,     ".,"'       1S1"'4     '■,,"'   or    v'      e,ii4 ,,    , 

The effective velocity then turns out to be very nearly equal to 4 percent of the free- 
stream velocity. 

This result is in good agreement with Laufer's channel measurements (7). The 
shear velocity reaches 4 percent at the outside of the laminar sublayer, and then 
decreases linearly with ihe di: *aiice until it becomes zero at the outer side of the 
boundary layer. Laufer's measurements also show that u' is about 8 percent of u ,, 
and v slightly less than 4 percent of .J,,: because of the imperfect correlation between 
these two, n' v is only 4 percent of II(I. 

The next task is to derive the connection between the fluctuating velocity v* and 
the pressure at a point in the boundary layer. The boundary layer is usually thin and 
the scale of the turbulence we are interested in small in comparison to the acoustic 
wavelength. Because of this fact the pressure fluctuations in the boundary layer will 
be primaril/kinetic. They are generated by the centrifugal and similar forces of the 
rotating vortices: they represent the near field of the dipole. quad rupole, and octupole 
sources that mathematically describe the turbulence. To distinguish these pressure 
fluctuations from a true sound field, they are usually summarized under the name 
quasi sound. In addition to this quasi sound, true sound that is radiated off to greater 
distance is produced because of the unsteadiness of the flow. But this true sound 
seems to be negligible in the boundary layer in comparison to the internal near field 
generated by the rotating vortices. This fact makes it possible tu establish the con- 
nection between the fluctuating velocity and the sound pressure by an equation of the 
type of the Bernoulli equation (Appendix B) with a slightly modified constant 

H2 
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wh. re     is u constanl nl tin order af muKnltudc one. This {|iiiisi sound pressure would 
h.  ,u luully nicuMirnl, il iiv' HOUIUI n't'tlver were infiniti ly small. 

A receiver of tiniti si/e imasures the uvemni' value of the pressure ov<'r its 
sensitive area. This averajje value is tin smuller, tin larn»r Hie ana, sinci tin 
pn SMUT niiixima and minima compensate oiu another. If th hydrophone area is 
very large in cnnipanson tothe scale ofthe turbulence, the average quasi sound pres- 
sure will lie very small, and the hydrophone reading will he mainly determined by the 
trui radiation field generated in the whole sp.n i that surround« the hydrophone. The 
above formula will then no longer apply. 

Let us consider a practical case, such as a vehicle traveling with a velocity of 
20 knot;, or 10 meter« per second. The effective fluctuating velocity would be 40 
centimeters, and the noise pressure as given by the above equation would be 1600 
dynes cm-. This result is very Interesting, but it does not yet give any information 
about the How noise actually produced by the moving body. Tin frequency spectrum 
is still unknown. The flow noise spectrum may I» centered at extremely low fre- 
quencies and hi inaudible, or may be in the audible or supersonic range. 

First of all, wi'have i«. .md the connection between the frequency spectrum of 
tlie noise pressure and the scale of the turbulence. We may identify th< patches with 
tin maxima and minima in a pr> gnssivi wave that moves with the local mean speed 

of the flow along the surface of the receiving hydrophone, This local speed i varies 
according to how far away from the laminar sublayer the patches are between ; and 
.'. The pressure fluctuations as recorded by the iiydrophone Will then have a 
frequency 

where is the distance between successive vortices or is th; scale (the effective 
diameter) of the turbulent patches. For low-frequency noise, this local velocity u will 
have to be assumed to be roughly equal to tin free-stream velocity of the fluid. 

Thin an two possible ways to compute tlu frequencyspectrutn ol the flow noise. 
Krnichnan Me) assumed a Gaussian correlation function for the velocity correlation, 
his supposition I» ing equivalent to assuming a Gaussian energy spectrum of the tur- 
bulinci. Th' pressure spectrum is then derived by a series of integrations. The 
result still resembles a Gaussian spectral distribution in Its sharp cutoff at fre- 
quencies abovi a limiting trequeney n presented by 

UIMH is tin tiiicKtiess of the boundary layer. If we substitutt numerical values and 
assume a sjnvd of 20 knots or 10 meters per second and a thickness of 1 ci ntimeti r 
for thi boundary layer, this m quency will lie 1 ke. 

The second procedure is as follews; We may divide tin spectrum into a low- 
li t-quency spectrum and a high-frequency spectrum. For the derivation of the low- 
frequency speelmn. thi patch of turbulence may In considered as equivalent to a 
pulse ot .i width i qual to tin diameter of this patch. If we assume this diameter to 
in roughly equal tothe thickness of the Ixmndary laser, the spectrum then turns mit tobe 
constant up to a span wavelength equal tothe diameter of the patch or tothe thickness of 
the boundary layer. Fromthen mi it'iicreasesas > . \. Forthe derlvalinnof the 
high-frequency part of the spectrum, the detalisa re furnished at hast approximatelv bv 
tin ■ quilibrium laws of turbuleiiei . Tip Koimogorov law. for instanci . [indicts that 
,il   In; h  (n (|'..i ni'ii s Hu   ■ in i';'\   spectrum  decreases  inversely as th«   :i  2 power of 
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tin1 Kpucc  wavrli-nnth,   'Hw spectral cUnsily ul tl»' luilml( me noiKc may tlmw In- 
oxpwti'd In tie approximately constant at lower frequencies up to the frequency n,, 
determined by the ratio of the tree-stream velocity to the thickness of the boundary 
layer.   From there on, it may hi   expected to decrease approximately inversely as 
the 3 2 power of the scale of the turbulence or tin space-wave number,' 

Fituire H shows some nuMsurements performed in the Gartield Thomas Water 
Tunnel at State College. The method used in miuunt; these measurements will be 
described later. The noise level is shown as a function of frequency for several [low 
speeds. Up to a certain frequency, which in this particular case should be about 400 
cycles per second, the noise level should be constant; and from there nn should 
approximately decrease inversely as the 5 .1 power of the frequency. 

The experimental results show that we must distini'.uish between two types of 
flow noise. The first type is the one we just discussed: it is the flow noise produced 
by the velocity fluctuation in the turbulent boundary laser that has been studied 
thoroughly, in ureat detail,and very ingeniously by Jl. H. Kruichnan ('lb). M. Harrison 
(8) verified the predictions ol the Kraichnan theory • xp. rimeiitally in air-channel 
flow and proved that the assumptions in Kraielman's work are indeed very 
reasonable. 

The second component of flow noise is produced by the MI Ian roughness.   With 
an increasini; speed of flow,  the laminar  boundary  layer  becomes continuously 
thinner.   When the velocity reaches a certain value, the nmnhnesses become greater 
than thetliicknessofthe laminar boundary sublayer and penetrate the laminar boundary 
sublayer. They then become capable of shedding vortices or ul producim: a von Kärmän 
vortex street (9).   The vortices generated this way im rease tin surtuce dray and 
create a turbulent sublayer on top of the laminar boundary sublayer.  Because of its 
small scale and its great energy content, this turbulence may be expected t" create 
a high noise level with an < ssentlally high-frequency spectrum.  Before L.oin;. nu.re 
into detail, let us prove that this "roughness noise"dors indeed exist. Figuri R shows 
measurements that have been performed with the aid of a rotating cylinder 42 Inches 
high and about 23 inches in diameter, and with a microphone mounted flush with tin 
wall of thecylindi r. The abscissa in this figure represents thesurfaci velocity of the 
cylinder; the ordinati   represents the noise level.    Let us first concentrate on tlu 
measurements performed with a smooth painted cylinder »nrface.a surfac» as smooth 
as possible.   Until the speed exceeds a certain value, tin   noise level is that of the 
.imbient  noise: from then  on. it Increases at a rate of roughly IR ill) per speed 
.ctave.as for true Ixiundary layer noise. Now let u.s consider a second measurement 
hat has been performed under the same conditions except that the surface of the 

■ linder has been rough« ned (grit 1K0).    The noise level now exceeds that of the 
imbient noise at a much slower speed than in the previous case.    For tin   same 
'ioniies Ihi   flow noise produced by the rough surface is 20 to 50 db greater than 

■' prndnced by tin  smooth painted surfaie.  Since nothing else has been changed. 
•t-iiter noise must be attributed to the effect of the surface roughness« «.  Tlu r« 

is no doubt that rou^hn. sses generate flow noise. 

I' e eiieet of surface routdiin sses on Hu drag has Item thoroughly studied in tin 
, . rati-i for flat plates (1), pipes (1,5,6),and a rotating cylinder (2). The result» an 

.ihvavs tin same. Wheinver the surface roughnesses penetrat«1 ihe laminar boundary 
sublaviT. tlnv ineieas«- tin   surfai «■ drag.   The theory sin ws lhat the roughnesses 
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bt'comi' largiT Hum tin ilnckiuss of ttic liouiidai'y sulihiyir if their Reynolds nunilx r 
hcfninrs i'.rcattr [lian 5: 

Tin .1 lucitj in Hi. imnmli.itf vuinily »f Ifu taminur huWaytr in appruximaU'ly i-quul 
to llu'shear vi'loi'ity. Tlu .UKUI- H'ynokis numtjer hacl therefor«? to be formed with 
tin  lu'iuht of the routihiutises and tilt shear velocity. 

With ihr aid o! tin previous results, the above Reynolds number ol 5 can be 
expressed as a function of the free-stream velocity. The roughnessi'S are then found 
to l)i(nine ilircijM' when the speed is greater than the critical value i;iven by 

wheri is the In ight ol the routihnesses in Inches. An analogous condition can be 
derived for tin slnddiiv.L uf vnrtices liy roughnesses in a nonturbulent boundary layer; 
tlie Reynolds tuimber then has to lie formed, with the height of the roughnesses and 
the laminar veloeitv at a distanci ii from the walls. This Reynolds number increases 
toward tin Stagnation point, as would I» ixpect»xl because of the greater velocity 
gradients, For roughnesses of 10 J inch and a distance from the edge1 ot the body 
greater 'lian a ii « ci-tuinn'ters numerically, vtTy nearly tlie same results are d< rived 
lor the roUKhni ss noisi : and it should make little difference whether tin bulk ot the 
boundary layer is lurbuli :ii or laminar. However, the retnilar boundary layer noisi 
will not ':)i ;',i n ratrtl in tin stagnation ri'tjion because of its pi i dominant laminar 
nature. It is hard to predict the reduction of flow nnisethat could beexpected In such 
a casi iiecausi flow noisi will also In radiated back from tin other part;-of tin mov- 
in-. suri.u ■   iiitu tli>  staK-ialed area. 

Ki.,urel0 ilhistrali s tin aiime results for rotatinticylinders covered with rou^li- 
m ss of various '-iMic. si/.is. VVIiem ver tin Reynolds numlier of tin roughnesses 
i xc< i ds '). tin iira^ becuims i.naii r than that for a smooth surface. Tin speed at 
whiil, tin si increases an olisi rvnl is tlmsa function of tin In nilit of tlie roughnesses 
onlv. '. :• ih nne.niiudi ol tin increasi of tin dran is a function of thi density of tin 
cii.i '.: . :-si s. Tins is illusttatt d in I".;. 11, which represents measurements when 
tii   ..! nsity nl tin  riiu^hin sst s lias 1» i n vaiied. 

Tin noise pressuri has In i n shown to In [iroportional to the drai;. Tin increase 
m liiaL ^i cause ill tin small sculi suriiu rouuhin ss«'S may tluTetori' be expected 
in show up in a corn spondin!1 wii.isi ol hifji-friquency flow noise. Thai tins 
assumption is essentially i nrrect is illustrated in Fiii. !>. No flow noise can \<< 
ol»si rvi d at lesser speeds. Ai tin criiteal Reynolds iiumbi r, flow noise may be 
■ \|!' .I'd to In ■ i n rated. Inn the int. nsit\ of tins noise is still so small that it is 
CIJIII|)1III Iv mask'(I hv tin amlnetit niiisi . from a ci rtain speed onwards, a speed 
that I

(
I |M nds on Hi si/i and di iisil>' diMrilmlion ol tin smi.u. roui'.hni sses.lhe h\ii 

il i1. Hi x ninsi sei ^ds ih.ii "i ilii aininenl noisi . it men ases at a rate ol !■• In 'Mi 
■ii si"'d oil.r.i , accordini   tn wlntln r Ih.   siirfac    is ruuch or smonth. 

I ■,: ril 1 II. .11 p. re. ;■• ni lie ii.u'lnlis hav. ,i In'n.ht .ifalmut ii Id inc i. 
I M iitiial ■•|" d ^ tlnf l'ii .' ;,...; ., !'i, ni -.i i II v.. iMr.i|Milati tin cnr\i 

:   ■   •   .       ii 'I ul    nl d'AUi In  i   .-in .  I "i I! I.nni ..   lVi",i   :\\:  n. i   UM    r luclillesses w.mld 
.. rl. d tn I i nim ,ii m .!•.■ dl ■ Hi iii.. . lln ! ■•;- . I- '.. I :■ ; ,;.. mil ; . L. -l'>.: dli. 

I il.;     I n.i     : .   i .IIIMI' I ■ e    i- !'.■      I|'.I''. .ih hi nl  ,     •     HnV.  ir.'IS'   |. '. i 1 Inr lln   cnli - 
I •  ■:    ■ ■  ■'.      v.    ; i:ie nl       I   ■   ell • i        i •,    ■    .1 nuli; ",   .   .,;i. ,   , , i  .,ut|i i j,,       . , ,, n   .A 



I'r.tii ii lii.' i r *,    ;. i , ■ 

/     as 



K. Sk »I i .. It.iilfllf 

ti 
X 

u 
It 

if 
e x: a. 

la] 



Ninsf  I'PiMiui tititi .[i .t   1  irlr.tlcnt   hmjj;H.irv  l-.i.t-t- 

miisi " level - 188 db at spctds iqunl U. ihr currcsponclini; crilical vahus; and this 
indeed sfi'ms to bi1 what happens il we allow tor a small experimental error and tor 
the fact that the energy of the backKi'ound and that ot the flow noise add up to the 
resultant noise level and chttngi' the shape of the eurves at lower noise levels Grit 
GO exhibits maximum dimensions of 10 -' iiu'Mv,,,, 1 knot). The i'orn spondinv, 
critical speed is therefore 0.54 m sec. The measured line intersects very nearly at 
the point v v,.fl, 0.70 m sec with the equivalent zero flow-noise level at -159dl), 
For a smooth machine-polished metal surface, ^ ^ i, = 0.75 m sec (1.5 knots). Paint 
seems to cover the smaller ruunhnesses and appears to increase tilt1 lapger-BiZC 
roughnesses with paint streaks so that the corresponding v,,,, is 0.5 m sec (1 knot). 
The extrapolation of the measurements to levels considerably below the ambient 
noise level is,of course, thoroughly hypothetical; and the assumption of a zero effec- 
tive or equivalent flow noise level is likewise tenuous. But this assumption seems 
tu represent a working assumption that is borne out by the experimental results, at 
least as long as no detailed theory is available. 

Like the slope of the curves for the drag, the slope of tin noise curves is also a 
(unction ot the density distribution of the roughnesses. The noise level increases 
linearly with the logarithm of the speed by 1H do per octave of Increase in speed if 
the surface is very smooth and by up to "35 db per octave increase in speed if the 
surface is rough. The flow noise generated by a surface with small but densely dis- 
tributed roughnesses may thus exceed the ambient noise level at much slower speeds 
than that generated by a surface with large roughnesses if the density ot the large 
roughness is sufficiently small. The noise levels have been measured simultaneously 
with two hydrophones, one 2.5 inches in diameter, the other 5 Inches. The results 
are identical except tor a constant difference in level, the smaller hydrophone being 
more sensitive by 10 - 13 db (Fig. 12). These results show the average pressure 
over the hydrophone area that determines the hydrophone reading and the compensa- 
tion of the pressure maxima and minima over the area of the hydrophone. This 
average pressure is greater, the smaller the diameter ot the hydrophone. 

One ot the must puzzling results of these investigations was the fact that the noise 
level measured with a similar hydrophone outside the boundary layer at a distance of 
one yard proved to be approximately the same as that measured in the boundary 
layer (Fig. 13). This result can be explained again as a consequence of the compen- 
sation of the pressure maxima and minima. The hydrophone used did not indicate the 
true pressure fluctuations in the boundary layer, but the average value over an area 
of a diameter ot about the magnitude ot the acoustical wavelength. On the basis of 
diffraction theory, it t an be shown that the pressure at a certain distance from the 
source distribution can be computed as a function ot the pressure at the boundary 
surface. In this computation the average value of the pressure f'ir an area roughly 
equal to the square of tiie wavelengths determines the result, and this is exactly the 
quantity that was responsible for the hydrophone reading inside the boundary layer. 
This result shows that in tin presence ot flow noise a small hydrophone will always 
be a poorer sound receiver than a large one. 

Damping theshell by coating it internally with a damping varnish had only a small 
effect on the measured levels (Fig. 12). This result might be expected. At high fn - 
quencies,tiu' resonances ot the shell overlap to a continuous background, and individual 
resonances do not greatly contribute to the result. 
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Fiiani' 14 shows son»' mcasun nunts pcrfornud in tin Garfiild Thomas Water 
Tuiiiiil with a microphonf muuntfd on a wry smooth lamiaar-flov-nuisi' head. Thi 
roufihiU'SSfs an rtlativ. ly larct'. but not inimcmis. Tin1 slope m 18 4b per ot'lavr 
spi'i-d (liar.'.i . as would i)i  i xp< i ii'd for iruc boundary layrr noist. 

A luiinlitr of flow noise mcasun iiur.ts on shipshav. hi i n rrportcd for which the 
slnpos aro 1H in 22 db per spied mtavi , Inil Ihr absolute li\> Is are larger by 10 io 
20 elb than thnsi found in thi measun'nii'iits cibtaineil li\ USIIIL1, the cylinder. This 
means that in piaclleal cases the rouiihii'sses (Mieratim; tin flow noise ar< usualh 
; • latively l.i!'.,' , but fi w in numln i. 

Tin rvli.'idi r nie as.ii'no :iis le.uli ■ . rour.li estimad ol tin noisi level ;is \\ luiu- 
ii";i nl thi speid, ih. .si/e, and tin di nsiiy of tin rou^linessi H. The expiTimental 
r'salts i'ail hi- i xpi'essed .is 
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for Hi» 2.5«im'h-dlami'tfr Itydrophoni us nn iv<-r, win ri i^, a faclur varyinu 
bi'twfi n 20 und 25 til) jivr nftav« ul spi'fd rhantif,affording i" wlu'thor Uu' surfan is 
smooth ami puinticl and ill' rou^hm abos si'arcf.ur romplcti ly rou^h as win n tri>nti,d 
with urit.   Sinei' '.' n !)!■• si nts tlv nuniln i •'! nr'avi ■; aluivi' i!ii critical spi cd, 

T!ii ■ xpirimi nlal i > sidts ran i!. i. in suniiuarizcd, 'Mi ■ li^'.v IKHS« li vtl .it 21) kc 
nuasur' I Aitli a hydri.iihoni M a duimliTuf 2.5 inchi'S and u liand^idlli «{ 2 kc aitam.- 
-HO <i!) I» Inw I dyii' pi-r ci'iiiimi' r s(|uuri (spfitral h'Vi l.pir ivcli). wtu n tin spei d 
is 20 tiini s Ihi i ritual sjii cd ii '.! mnfaii is MIUUJIII (can-Uilh painit dl i«r 3 tinn s 
Uu i i-iii.-.il s|n'i d if thi muiaci ii.a hi sscs an rii'tisdv distriluitcd !.;s fui iiist.inci 
mii:' i as. ul a rit-i i.v n ii .'in I . - 'i' ■ imisi I'Vi 1 iht'ti im n asi s a a i ad "i L'' 
.|i |i. r ut'laM ul Uu ri a;-.i ;ii spi i i I'll, scitac. . M"mlh (rim. hm^St s '.viiUi'. als- 
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to be smalltr than 1.25 
rou^hnt'ss noise. 

10 * inch.   Such a vehicle will then generate no audible 

To t^uin additional information about flow noise, measurements were performed 
in the boundary layer at the Garfield Thomas Water Tunnel. Four hydrophones were 
mounted flush with the walls of the Tunnel and two hydrophones were mounted in the 
streamlined body in the middle of the tunnel, one hydrophone at its nose and the other 
at its side. Figure 8 which shows the results measured with tin hydrophone flush with 
the wall of the Tunnel has already been discussed in connection with the speed fre- 
quency spectrum of flow noise. Figure 15 shows the measurements with the hydro- 
phones mounted on the streamlined body. The noise level received by the nose 
hydrophone at frequencies between 500 cps and 20 kc is 5 to 20 db smaller than that 
recorded by the side hydrophone. But at low frequencies the picture reverses. The 
nose hydrophone receives considerably more flow noise than the side hydrophone. 
This Is very »fiarent when listening; to tape recordings. The noise received with the 
starnatini', hV(     )hone sounds bubbly and seems to be very rich in low frequencies: 

94 



NotHü l'iinliu i i.'ii m.i   I ü rb'.ilfiit  Itounclary  Layer 

1 
•0 

-3 
C a 

X 

'S 
X 

11 3 

c   r 

I« >• -. 
X 

x 
'S 

2 

(«UAD I   )»ii 

OS 



K. Skiulr/ II , 

llic lu;;ru i fn t|ui iicii1«arc ulniuslcompletely masked. The noisi no ived l)> the sid<' 
iiyili'Dphoiu 11 srinbjp's more a hissing sound with very small luw-frequeney contents. 
This phfiiomeiion can lie irueed through all recordiiU!». Thi« low-lrequeneysound 
reeelved !>> tin slajjnatlnts hydrophone seems t" In d • to the Stagnation pressure 
Hi'iierated by the larger-scale turbulence that hits it« senBltive ana. The smaller» 
scale turbulence .lues nut seem to produce a similar i flirt; it is very likely that this 
turbulence is damped out entirely by the stagnation oj the flow. Fuvure 16 shows a 
narrowband analysis nl a second series of such measunnienls. 

The boundary layer noise in the Garfield Thomas Water Tunnel is relatively 
lari; . But tin effect of different shapes of test v ■hides and of the position of tin 
hydrophones could »till bi Investi^tcd it these objects were densely covered with 
coarse ^rit and if the speed of the flow wer» sufficiently high. Preliminary measure- 
ments performed on j-'rit-covered surfaces (urit IHO) and surfaces covered with a 
n silient coallnti did not vet lead to new results (Fit;. 17). since the ^rain si/.e of the 
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tirit and tlu speed ol tin How (50 It sir) still were loo low. But there seems to In 
little doubt that proper treatment of the surfaces and the use olnri/attr flow velocities 
vsill make possible detailed flow-noise studies in such a channel. 

RELIABILITY OF THE MEASUREMENTS 

To test the reliability of the results, all the measurements were repeated five 
months later. Identical results were obtained. Spicial tests have been made to ensure 
that cavitation did not interfere with the measurements. 

Cavitation usually starts at a certain '•need, increases the noise almost abruptly 
to a liii;li value, and then for a time remains almost constant: later,it even decreases 
again. The dashed curve In Fii;. 13 is an example of a case where cavitation was 
produced Uiientlonally by welding a projection shaped as a semi-ollipse(6 inches lont;. 
4 inches high, and 1 4 inch thick) to the cylinder surface at the height of the hydro- 
phone. Tin moment cavitation starts, the noise intensity jumps quite suddenly by 
almost BO db. In spile of tin relatively laruesize ef the projection,cavitation is seen 
to take place only at speeds above 7 meters per second. Typical for the measurement 
was a continuous fluctuation of tlii noise level around a mean value. 

Another proof thai cavitation did not Interfere with the measurements is given by 
a curve in HL;. 12 for which tlii area of tlu larger hydrophone was covered with grit. 
Thi noise level is much great« r than that of the painted surface.beinnalmost exactly 
tlii sanieai the untreated hydrophoni area.if its 10-dl) greater sensitivity to incoherent 
flow noise is take n into account. Cavitation would have affected the response of the 
first hydrophone to a much greater extent than that of the second. 17 inches distant 
from the first and in tin  sound shadow. 

During tin measurements performed in the water tunnel, cavitation could l» 
easily Idenlifi'd by increasiii;' 'In jireRsitn Tin unsteadiness ot the noise (liki a 
si rii B ol explosions) mal.is rerognltlon of this phenomenon very easy. 

The noisi level owing to i-.straneous noisi Aould beexpected to increase continu- 
ously with a relatively low power of the speed: and it would be independent of tin 
conditions of th< surface of Hi cylinder. Extraneous noise could not have affectid 
thi rough-surface measure^mi ais ui the cylinde r. but very likely it also luid no i ffi i; 
on thi n .suits for th   smooth ar, '■ the painte I surfaces. 

SUPPLEMENTARY WORK 

Thi study de scribi el abetve' ri pn sents an alte nipt to eh rr. i a gi in ral undi ; slai u- 
ing of tin features ol fl'iw noise. Tin UM asun ine'iits tn tin Wat'r TuntU'l will i'i 
n peate'd m tin near lutun with nieire si-nsitive hydrophones ami with hvdrejphoni .- if 
variable ai e.i. W irk willi liuovanl units lias bi ■■ n lake i; up, and tin li' id program lias 
lust started at Ki . W'Si to supplemi'iil and tei ve't-ify tin previous coiulusions. A 
paper siibmitte'd lo iln ,Iou"nal ol tin Ae'emstical Socie'tx coniaitiv Hie expe'vimcnt.il 
data rli SITIIH d alMAi anil tin ore-tieal dt rivutiems perlormed sinei Iln Flow Neisi 
Svniposimii, This pa pi i ' "M,..i > a (|uanti';tli"n analy:— ^1 il'i in ar-fie Id conipoiient 
and oi tin fUm-nmsi iiim)joni ;.t radiate (I to ireater iistam-.s. Iln iiigii-tre't|ue-iic; 
:,i,:,iH.,1 l.iv! uoiM pressiii i lam: out to li ;ii'.irsil\ iireipot tional to the ihu'kne ss 
■■; tic  1«MIIKI,,I v ktv ;-,.i !•■ laii'M, wlinh is   ■ .i   r. . on e.i  Ait h tin   ■!• rival inns pulili slit d 
ii  1: ■   ii|, rai M • 
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.'.i'KNtl'A 11 ' ■ .il ;,>; IS 

1 ."■.uii'; r na ihint Im nu ;isuriii; li'iv i i.s > r. in i:;i;. ;• :i I •. .' I). 'A ■: 
i quip.u. .i! 'l'-smm d l'V H I- \V;i('.i'iiiT,:iii'i Ihi sl-.i'lu-.s -.n : i iiiiMa!'■' !/, K 1 '•,; : 
Thi V'lixity-i'll>t nhuüi)! im usurinn n':' wi ri p' i loi'im d i'. T, 1. I'H i ■ ;\IK! '.■ 
p i .iniii ■ 1 ;ii ti.' U'irii'Ki rivomas WuNi lunni'i. Ilicaulluns wish m liuiiii. I'i. 0. K 
WitiliiH-nus fur iaUinliK'discussions ami Im' l.is coupi ral imi in lin W.,1 • i Tumu 1 Tin \ 
ulsi wish to lliank H .). L'rii'h (oi'tlu siimnlus !.■ |)rovic!id, nnd lo acKuovli'dsi in 
i'ii"pi ration of Franiv Kapmcki in thr fri [neu ■ analysis, and thai ol Ld L'lrid in 
asi-istinu ttitli  !■ 'sum ori ihli ii;s. 

Aupi'mU.»; .\ 

Till    KQUIUBHIVM   [.AW AND THI   STATISTIC:Al    ÜKHAV10H 
OF DYNAMIC I'IS'Td! '  ' ION 

Man', oi itn sialisiii'.ii i'.hi nnni',na uun natun MUH^L-an ptudiu''ii i'.. 'n I'-IM 

iirifinally bi i n prudufni i)-. i-■•,->. i"...!!'.- :•■•! n.y fi ilini nun a dvnamii system thai 
!•• tlistrüiuii-i;. and'Vi tif.iully .ihsiTlis'ln .i-i ■. ,.tm- t)\ mi rrusniL; Mn > iitrui'y •.!'Un 
H'.sti ni. This is ihii niTsi I'Ti« ui n I , iln uu-i".!! n. . • : raiid iii thi t)ia.ii.iar'. la'. > r 
i! a movins lunl;. .'.ih. : ■ lln m i',ll".d ■ li"!' '. . ■ ; . r. ' lln l'.U'.i'l'' ".i !'■ v' nf !h iluu 

Th' sanu'i'iiui si ai'i'ouius fm U.' nu'lu.li nl niut'iu '■: .•■•: in 11.' - r'li ;iirani.-.. 
thi L i'i iiuri. 'Ah' i ■ tin primal", "i.-";" is snpplii d 'i' '■, ! .idiatinn di'.•i •.:.." ; . ■: 
i!n  surfaci   wa1 i s of Ün   s-i a. 'vlv n  ::.'   ■■'.; <■ turnisli'     ih'- • i.  i" '.. 

This  i'tjuilibriuni  lav   i .'.n bi dii'.'.' 1 on tin   basis oI  -iinpli   dinn-usim,!! > onsid- 
■ i'.niiii..-.   Lil   tin   • in i'.,'.'   lapplirel pi r  i'iiill.n'.i  pi ?■ unit ihass o! ni'    \sunibi 
Tin dinunsior.ri of this [juani't;. '.vil! i' 

'.vltifr       mass, •   ■ tinii ,       li nv.ih. 

Thi   sp'i'li'al T:.y doiusity ol  lln   ssstim  nuist  In   a  t.iiu'i.-n .,' this  im'-.v 
mlluw and ■.! soini oll r vanabb s. l! lln s .-sti ni doi s noi ■ shibit any i.] . al dinn n- 
-,!i'.- und if its ixtinsion in all dirc-ctions s assnund Ui hi infinili (as liolds lor tin 
si-a ur tin air abovi tin ground,or lor tin uihiidarv iayi r ni .'ouipansontci tin small- 
si'ab lurbuli lici ). Un only i rrn ral ''analili thai i-ai, :•• mirortvifi i .lr s|i.u'i 
Fourit i 'Advi iiunibi r of tin propiitv !t" in|" latnf , '.i imilv, di nsi'.y, or In-iühl ni 
il.i sra '.va'.i'-.j \\i an inli n sb-d in V.- nnu ihi ri tori assiuin IIM; itn spi-itra! 
■ i.i i   v di nhil\  I 11 fi rr> d in mul   <.va'. i   n.nnb' i   m: ■ i val ' ■  ' r. ■ i, 1 . ,i inni-uoi, rl 
•In   i mi:', in flow and tin   spari-wa'.'    nmnb' i ' has tin   ililili nsmns 

ion 
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CiinilJiUMSi.ll   ill   til      .■.iiiij'.;.. i i-   hl't   ;i;vl   l:::',,i   vii'ltls 
"■■ : ■ fore n. ci'ssuriiv nl tlu  :■■; in 

IS 

h !■ , 
.   t 

SiiuM tin MI, i-.-;. ilnw i ia inrlipiiicli'nt oi thi (jropcrtus of iln sysii'in and in 
mrtti-ular .4' tin spat • -\v;ivi i. mali.s in Uns system, Üw spfi'trai inti iisit> dt't'n asi s 

witli ini'ri'usiiu wie. r-iumil' r ■■U rri asuu' pati h sizi1). Fur tin caei nl 
liHiio,;! i.'oua turbalim ■ . '>!'.■.> law 'Aas clcrivcd by Kolmonorov in 1941 auct liy von 
VVVi/.sai-kiir imlii'i mfiTtl'. in 1948. Thf diTlvation shows llvat tlu natui'i nf this law 
i- '.■'.■!•>■ '-■:.,i\il and tliat it applies in man', ollvr phcnomi'nii tl;ai havi \w n-lationtn 
i   • I i.li ;■ ■ . 

Kiai uaii (4) h.i.-. :-l,....i. ;!.at tliis classifal fd rtvatinn of t!v Kolmui orov «quilili- 
nuin :;.■ ■■ not rigorous: and hi has dfrivcd an improvi'ci clistriliution law on thi 
!.,muiid      ■ tatis'.ica! tnirhanii s.   His rcsull is 

I ■   •   ■ 

In praci.   ;     .i:-i -, iin   cliili n-i ■■■   lntw in thi twn laws is V' i> smaU. and wliiili of 
tin  two is   •■  .1 !i  li'j ^ vi r-, littli   tliffiTi'iit'i . 

Appi iidi>: 1^ 

THI   BKHNni 1,1,1  KQUATION KOK SMALL-SCALh! MOTION 

Thi' I uli )■ i quation 

1 ! •' i i .    i   i ■, ,ii 

,ii  I»   mil ; rati d alim; ' i'. •     paili as followt 

\Vi  nu'.v intriKluri   'tu ■, < J    ;, ■ '■ilui'a ■■.suniptiim.s that thi   Ucax timi1 ol ihiturlmlinri' 
:s lar1 • in i'unipari.1-  niuili' n ■.•'.'    'Ii   fri tiui'my itfint'nstandlhat thi'lniildin^-up 
iiim nf tli'  uirlii.liiu i  is -Mi iiii;!'-i ison tu tin cUt'av imii,   Thi  flow may thfii 
in i'unsni'i' d tu Ii' -.iia;!', ' |'Aai n viivcd fnur a inordinati  sysU'm farrud 
iloii'.'   iis   Hi1    iiu-aii   tli ,'   ' sltifi'             ,.   and  tin   almvi'   •quaiinn 

- imphti' .• in 



K. Skudtvvk .in.! (1. II.nMIr 

Curl v ("in  ix'  expressed  by Ihe angular  velocity curl v     ■!  ; and, since we an' 
interested only In patches of turbulence, 

where n is the patch radius (or the correlation distance of the velocity fluctuation). 
To find the acousllc effect of the noise of the pressure fluctuations, we are interested 
only in smull-scale turbulence distributed over a very small region. For a small region 
the flow may be considered always to be two-dimensional. For a two-dimensional 
flow, v is perpendicular to curl v and 

C   ■   N ,        rnnsi   -  in /     ^ .Is . 

The maximum value of the integral will result when is is equal to the patch radius >: 
tiiis maximum is therefore of the same order of magnitude as 

■ 2»   '     -Jv'2     2v'2 . 

where v' v" is the fluctuating velocity because of the turbulence. On the average, 
therefore, 

r ■     • It'2 • v* J    '    -'. 

and the result reduces to the standardized Bernoulli equation except that the numerical 
factor is slightly different 

p   .        2v        '   const. 

The above estimate gives an indication of the order of magnitude of the maximum 
pressure fluctuation. The average pressure fluctuations will probably be about ten 
times smaller. In this estimate the effect of the velocity gradient in the boundary 
layer has been neglected. Because of this gradient, the patches are continuously 
deformed and the motion is no longer stationary. Additional forces are set up that 
produce considerable fluctuations in pressure. Kraichnan (4b,c) derived the theory 
for this case on the assumption of a Gaussian velocity correlation. He obtained a 
similar equation: but the numerical constant ncv is of the order of magnitude 7: 
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IJISCLSSION 

R. H. Kranhnan (New York L'ri.'-iisity) 

I should like to auk it when you KothruuKh the transition in which tlu' ruughneascs 
push up through the laminar sublayer you observe Hie same proportionality between 
ilran and noise.   Also. I should lik'.' to express a duubt thai  Ihe i    '   ' behavior which 

iu:t 



,.   ,,. ,, ivy-    .mi     :    II 

you obhi-rvi lias nmi'ti n irvanci-(n iiu-rtial i'.ui.'.i DIILMIOIULIUI. Actually, thf invi'ti.il 
range law Un prfssurt' wliii'h ;iii)'lii reasonafily IJI ixpitnt on ttii' hasis iit tin 
Kolmumirjv theory is appmxiinatcly , m st'i-|'i, M, '.;u'>s wuuld be that ihr 
pressurt' flu''tuatiüns Vkhiih VDU ub.sorvt .it liu'.h tri-IU. inu ,- arist'not from the flni 
.-ti-vuian ^[ ihr uutiT pull if the boundary-layer when ;ii mtrtial ^llll^;^■ nili'hl 
perhaps be txpeetedi bu' frmii the inteiisely-sluariMl tii.^sipali »n layer just abovi thi 
laminar sublavei , 

1. Mtyer iPhysikalisi'hes In.slUüi i.u i L'niversital Göttinnen) 

In conneeliuii with the lery Interesting statemenls ül Dr. Skudr/yk ] would iik«.' 
to report on some exporimi nts dealing with "noiüe of streaming watei " which were 
carried out in our institute in Uöttingcn by Mr. Dinln h-ckiT. 

The iharacieristu feature of the experiments it* the slmplU'ity ol the ii|)p;iratus 
(Fin. 1). Water from the water mains streams through the test tube with an adjust- 
able velocity. The walls of the test tube may consist of different materials lin Fi^. 
Dl a glass tube is shown). The inner surface of the tubes can he treated to give dif- 
feren' degrees of roughness. Having passed the test tubes, the water is collected in 
a storage lank. The test tube is connected to the water mains by means of a long 
rubber tube. This rubber tube works as an acoustic wave guide below its cut-off 
frequency, thus separating the test tube from the mains with respect to structure- 
borne sound. The measurements are carried out with a structure-borne sound 
microphone attached to the outside of the test tube. The frequency response of the 
set-up including the test tube can be determined. 

AA' ER ..ass TUBE 

t—EHZHZ] 
MiCM'.-" M 

X WE 
BANDP4C 

Kiu.   1)1  - Nuise uf streaming Wiiter 
in .i t;1'!' (.irranaement) 

In Fig. D2 the sound level of octave bands is plotted against the frequency with 
!lii stream velocity as a parameter. It is obvious from the iliagr.ini that tue maximum 
ol tin sound intensity shifts to higher frequencies with rising stream velocity, 

These relations are more clearly visible In Fiu. I):<. when tin same i'i suits are 
plotted, but with tin stream velocity as abscissa and the ud.ive ranges us pariimett r. 
Tie onscl of the noise is (jiven when, with rising slreamiiig vi jocity the Reynolds 
iitimbei Is uppi oMin.iti 1\ reached, Intlie beginning, most ol the muse is concentrated 
nil ii.i lowesi oci.ive band. For tin higher octavu bands the point "| nnset .-hit;-in 
hi' I. .•    11 eain vi hu if i 's. 
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These preliminary results soem in tndtcutt' that the turbulence patches have 
smaller dimensions at hight r velocity, 

!•.. Skudrzyk 

With regard to the drag-noise ratiu: the cxtraiiolatton is very hypothetical but is 
somewhat in agreement with experimental results. As limn as nothing better is 
av.ulabl« we feel we should slick to that. 

0» course tlu spectrum Interpol ition is ajialn highly hypothetical and the only 
thing I .mi really allowed lu admit is thai the experimental results do not contradict 
our theoretical concept at thi moment. 

lü;i 



PRESSURE FLUCTUATIONS ON 
THE WALL ADJACENT TO 

A TURBULENT BOUNDARY LAYER 

M.irk ttiirriBun 
Hill ; I   /...IT    ll.l.l   li 

A hiily ili'vi'lupt'd lurbuk'tit buuml.iry I.•>■'"■ with H /.ur'i preanure 
ur.iilu'til h.is IM'IMI SOKIH'II in .1 siitj.suiiu \wiiil tuimrl. Thu pressure flm- 
luatiimii mi tin' w.ill .>i Ihv wim! tunnel wort-' ineasurocl by sniiill flush- 
muuiilcc] um ruiiiuint'». U.il.i l.ir the diiiH-nmcmli*»« Kpeciral dermity uf 
tin' pri'ssurc 1 hu iiuilimi«, Pi M 'l',, '. is u function of the frequency 
D.ir.iinrtir t ' I iri pri-sintctl; !'■ 1 1. . 1' . ',iin<i I are respectively 
tin' spectral cliMiBity, ilvml tlcnsity, frei stream velucity, Uuuudary layer 
liispl.ii i-ini'ut   lii.iiiu'ss.    and    Vrtqui'tuy,     Data    tnr   the    raefficien! 

■1-\/l 2   (',' 

are alsn prcsuntfU. The transverse ^ mss (.nrretation lor the • ressure 
I'm tuatiuns »ri« «tufiieti by usinntwo flush-inuunted micruphotteSi Rather 
than tin- Iiiitt>itudtnal t ross > "Tolation» tht* tunuitudinal cross*spectral 
density was studied, .u'lilm^ a meusurr nf the tiiherence ufthe pressure 
llmtiiati.ins .it tw.i '.ants .1,, ,1 ("unction .■! Ix V: , where \ is the Innnitu- 
ilniiil SJ-.I* iriL1-.;! t!;rtv»i. points an*! r i;- iia* effective convection veli>cily 
id ttir spat lii! p.itlr *■:., 

INTRODUCTION 

PITHSU«'«'fluctuations iu'i'i'.ss;ii'ily i-ocxiHt with velocity (luctuutiuns in a turbulent 
flow. For incompressible flow, the pressure ami velocity are related by the equation 

(I) 

which can l»' ubtalm;«! by combining ll><■ coiiliiuiily ami the Navier-Slokes equatiuns. 
The solid ion to this equution is given in terms of an inteuration over all space ami 
shows that for the case of boundary-layer flow, the vanlshingot the velocity fluctuation 
at the wall does not imidy the vaiilsliin,; of the pressure fluctuations at the wall. 

It m these (jressure fl'.utuauons on the wall adj.u "id to the turbulent houndary 
layer tlial are the focus ol interest In this study. Some measurciuents of the charac- 
leristics ol ttiese pressure fluctualluns are reported and the meanlnt; ot the raeasure- 
1 in ids are inierpiiii d. 

11)7 



Then   MI   scvcml n-ai-ioiihfur In     ■.  .:iii M .-IMI in tl» > li.u.r.li'i'i^tM .- (illl;i|iii  - 
Min   flui uiiiturtin.   A ihn n   ,IIUI  I'nmi (IMII    i.ii'd i xi.-its loi'i.i.U.i in'hi   ; n M eil i LLM 
luc lu unslc.Kij fluw, Wlii'i; :i lurhulii.; '... iml.ii . l.iyi ! Irvi kipH IM .: l!i xilih '.v.iii, IM 
lllnljun ill Uli ^.ill whull results IM-

1
, 'f. ■■•■i H'-iin I.IH-'.U.M;:.'- .■•. m i',.'i S .I 'iiin' 

lulil,   Sunn  Hi ilu  iiin.-i    i',1. riT.il! h.i    IMI r ,i:, ::iiih >; r   ihii-:ii( ■. Ii.i'nsm,  Id urajMii 
1.2) lus liivi'll a tlicorfUcal  discuiitimii 'il lli';  ;ii •ii',rni ,\ M, i    •  ■....-• v .'.li 'In   mu ; 

l)n Ultimi i<f I'q. Ill for ihc   MSI'of IKHüHI.II'V-  .IM I iluv. . 

riii'j'c art alsofuiKlaimiitiil riMSuh; mt i . iii'. nu'-ii'^ii1! n ilu (irchsuii lluilu.i- 
:loiiH .tKSüi'iaicil with i turlniloiit Ijuumiary In'.i i . 1 li< i • h: toi Mclcrahk' imci i i.ii.'.t, 
.i.s lu how energy is prodiici'tl, cunvrci d nil..-- i. nui 'Jlnsip r.fit in tin tuiliulint 
lumniJan layrr. bi paitk'uhu', llu' rol« ! |;ris.suri fluciuation^ i.1 but vanuflj umii i 
.-niiiil. AUIunis'Ji thitj work dorn lot nn usun Ilu prissurt ÜULtuatlüns insidt iiii 
Iiiiund.u'y layur, it dues lonstitutc n stai'i on ilu.- .i r\ nal'i'nyiing prubk'tii .uul it \^ 
bflii'vcd that .i tnriln v i \!i nsiiiii DI ilu-  .voiKwili (iroM valuablf. 

To obtain the data for this report, Hit' boundan layer ui> the wall of a subsonic 
wind tuniu'l was studied. Pri-ssure ti UIBUJII I'H with u < ry small active area were 
motntcd flush with the wall, Usini: convemiij'.uii r.ound ;u alysis equipmenl cunsistirtg 
ol a narrow tunable filter and ,ai rms meter M was possible to obtain the spectral 
density    if tl» pressure fluctuations ■■■' -i poini on tin wall, 

15v measurint; the pressure flucluationf in ilu total frequency range, it was pos- 
sible to obtain tin mean-square value for thi pressun flueluations. This value was 
also cheeked by integrating over tl» spectral density. 

By using two pressure transduct-is ^md studyin}; tin correlation and the cross» 
spectral density between the pressun [luetuations ai tlw two points, it was possible 
to study the spatial pattern ol the pressure fluctualioiis aiui how rapidly it evolves as 
it is coiivectcd downstream. By measuring the time delay necessary to maximize the 
correlation between the two points, it A as possible to measure the velocity at which 
the pattern was convected. 

EXPERIMENTAL APPARATUS 

Hie Wind Tunnel 

The wind tunnel was a closed-i in ui' subsonic tunnel, The velocity range ol the 
tunnel was from 50 to 200 It sei. The transverse dimensions of the working section 
were 20 by 15 inches. The measurciiients wen perfortwd on the wall of the working 
section, 5 feet downstream from the entrance nozzle. At this point the displacement 
thickness of the boundary layer was ii.105 inch at a velocity of 100 ft sec. By com- 
paring the mean velocity profiles with those uiven by Klebanoff and DielU (3) it was 
judged that the boundary layer was nearly well enough developed to show similarity. 
Unfortunately, the working section was not ioni: enough to permit working further 
downstream so as to prove that the boundary layer was exhibiting similarity. 

The Pressure Transducer 

The pressure transducer was an adaptatioii ol ilu Altec 21-HK-181) open-fuced 
microphone (4). This micruphoiu was modified as shown in Fig, 1 to produce the 
transducer used for the spectral density uuMsurt meuts. .' different modification was 
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M. Marrisiin 

required for the cüirclation measurements. In both cases the upper frequency limit 
is determined by a resonance between the mass of the air in the orifice and the stiff- 
ness of the air in the chamber adjacent to the diaphragm. Well above this resonance 
frequency the sensitivity is inversely proportional to the frequency range. The 
resonant response was damped by a cotton piug in the orifice so that some of this fre- 
quency range was salvaged. 

For the correlation measurements it was necessiry to measure at two points 
separated by a small distance. This necessitated the use of the transducer in the 
form shown in Fig. 2. Unfortunately, this arrangement resulted in a much lower 
resonant frequency due to increased mass in the tube. Using this transducer, arrange- 
ments were made to have a series of holes spaced at 0.125 inch apart in the transverse 
and longitu^jial directions which permitted correlation measurements to be made up 
to 1.5 inches in 0.125-inch steps. 

The sensitivity of the transducer was -61 db below 1 volt fur 1 dyne/cm*'. For 
the spectral density measurements the usable frequency range was up to8500cps and 
for the correlation measurements the usable frequency range was up to 2000 cps. The 
lowe;' limit on the frequency range was imposed by wind-tunnel noise ijid not the 
transducer. 

In order to prove that the active area of the transducer was sufficiently small to 
insure that the pressure was coherent over its entire lace, various size orifices were 
used. It was found that orifices up to 0.125 inch in diameter were satisfactory for 
obtaining the data on spectral densities. Smaller orifices were used for the correla- 
tion measurements in order to improve the accuracy in the measurement of the 
separation distance between the transducers. 

Electrical Equipment 

The spectral density of the pressure fluctuations was obtained by the use of the 
Muiihead-Pametrada wave analyzer. A frequency band of a nominal 10 percent was 
used in the analysis. Tlie levels were read on the Ballantine True-rms voltmeter. 
In the section giving the rest'.ts of the measurements, the details of how tu obtain the 
spectral density from the observed data are ^iven. 

The correlation between the pressure fluctuatiuns at two points was measured 
using rather simple apparatus. The basis for the method used is contained in the 
algebraic identity 

1 

. 

where UM terra on the left is the con elation between ■ i .uul ■ ... The bars indicat« 
time avenmes, ■ | and ■ _, are here reKanled .is voltages that are proportioned to the 
fluctuating pressures ;v' •IU^ i'.'" • respect I viiy, where the subscripts denote the 
;wu points a* whirl) the measurements are pei-lormed. With reference to Kin. 3, the 
addition and sulitraiiion of the voltages were accompllKhed by the IranKformer. The 
tune uvei'ar.eswi re accompli shed by the llallantime True-rms voltmeter, whose time 
constant had been increased to 2 seconds. This produced satisfactory smoothing of the 
tlui luations. Measuring the correlations is thena matter of iiuikim;four meter read- 
ings, ■ | ■ • , •' . 'i '.,■'. ] ■' . an.I , uul doing the computations 
indicated IJV the above algebraic identity. 
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randomness of the process. This intcrmittency gave pressure versus timt' records 
iu>t unlike those observed by Klebanoff (7) for the velocity fluctuations in the bounda-y 
layer. This type uf behavior diminished with Increasing frequency and was not 
noticeable for values of i ' r, exceeding 4 10-'. Further support for the possi- 
bility that intcrmittency plays a role at the lower frequencies can be found in the 
fact that at these frequencies, the measurements of the convection velocity yielded a 
value of about n.K i ,. That part of the boundary layer that moves with a mean 
velocity of o.x <    is stroiijily intermittent. 

The validity of the above conjectures could be established by repeating this study 
usinn fully developed pipe flow. 

In view of the precedinu, it would have been desirable to have procured data at 
lower frequencies. Unfortunately, this was not possible due to the tunnel noise which 
limited the lowest usable frequencies to between 100 and 200 cps. The signal-to-noise 
ratio above this range was always in excess of 20 db. This fiioire was obtained by 
placing the pressure pickup in the middle of the working section of the tunnel where 
the flow was essentially laminar. Actually, some noise was undoubtedly induced by 
the flow around the microphone, so that a better signal-to-noise ratio might actually 
have existed at the wail. 

Vibration pickup by tlietraiisiUicei- was not a problem. By simply plugging up the 
hole in the transducer, the vibration excitation could be measured, which in this case 
was too low to even consider. 

Longitudinal Cross-Spectral Density 

In this work it wasdecided to study the longitudinal cross-spectral density rather 
than the longitudinal correlation. Since this is a novel approach, a few words of 
explanation are needed in order to explain the measurement procedure. 

The cross-spectral density of the pressure fluctuation» is defined as 

Pw   I 1 1"    .,.  A"   I '   I!,   t 
i • 

where the asterisk denotes the complex conjugate, and where 

i 

IV t 

iv,     i  P. ...-■    I. 

with the subscripts 1 and 2 denoting the two observation points 

Usinv. the arguments of Kef, 5 which show that the specti.d density and the auUi- 
cfirrelalion ,iie Fourier tiaiisloriiis. it can be shown that the crnss correlation and 
the cross-spectral density are also Fourier transforms; 
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>. wi  can write 

I' 1 i   I '   1  •    ' 1V ,   ,    I 

when' it lollowslrom tlirdiliiülion nl I', , i i that the iial lumtiims ' , , I   and v, , 
AW I'vcn and odd, ri'Hin'vlivt'ly. AiH'wrdinuly, wc cati writ»' 

K, _, I    ' 1.'   '     ' '••■ '' I      'I l' I '   ■'"' '" 

This last oi(uatiun pjovldi'S the Inisi» fur un cxpcrlinvntul method ol nicasurinu, 
tin1 real and Imaginai.t parts nl the irnss-siifitril dtmsity, If the cross lorri'lation 
is nu'asuri'd with zero time dcluv, then 

II the cross corivlatioii is meuBtlted in a narrow band of fmiuenclcs   t as shown in 
Flu. 3. then 

' i."' ■ , 

where lvij"' i denotes the cross correlation measured in the narrow (requcney band. 
The real part of the normalized cross-spectral density   1,^ t i is then 

fl2ln 

'- I'^Ol'jMl    ■ 

Similarly, v,^. i i is obtained l)y usint; a time dela> 

1 
41 

where i , is here the mldband frequency of the narrow liltei.   The imaginary part of 
the normalized cross-spectrul density v,y i i is 

v , y I 1 
P,! I ll-y I  1     •■ 

It is noted that thf measurement of n,^ f) and \y, n yields more information 
than the mow commonly measund normalised cross correlation since the normal- 
ized cross correlation may be obtained by integration. 

For this work 1,1 ti I'y 1 . since the two measurement points are sufficiently 
close together that the boundury layer has not changed in character. 

The real imd imaginary parts of the cross-spectral density as a function of 
t,,* o.Ht',, »re shown in Fin-S. The distance between the two measurement points has 
been designated as », and the midband frequency of the narrow filter has been desig- 
nated as 1 ,.  The factor of i'*1 w'll now be accounted for. 

Hy measuring the cross correlation in a narrow band of fretiuencies. ami by 
determining the time delay T that maximized this correlation.an effective convection 
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vi'luilty i % '. ul Uu' spfi'tral pattorn was determined. For all Imiuencles up to 
20ü(i eps (tht' upper limit of the transducer tor thld cin-umBtance), it was found thai 
tin' lomiriion vcloi'ity was about " « I' It was expected that the convection velocity 
would decrease With increasing \ aides ol frequency as a consequence of thequadrapole 
nature of the liflil-hanil term in Eq. (1). The measurement procedure was not suffi- 
ciently precise in reveal such a relationship cvrnthough thi re is reasonalile certainty 
'if its existence. 

It c.ui be sein thai the spatial pultern ol the pressure fluciuations isnol convected 
downstream as though it is frozen. It this were so, the real part of the normalized 
cross-spectral density can be shown by a liniple computation,for the case of a filter 
with a reetiuwular frequency response, to be 

11 UN I" " '' ) I2 

where the first factor on the right is an effect due to '.he fin ic bandwidth i. Since, 
in these measurements, a constant 10 percent bandwidth . .•- used, this factor is 
nei;lmibly different from unity. 

The departure, tor the real part of the data of l-'u. fi, tmni •■ ' i > n.*. i is a 
measure ol ihedevi lopment of .ui uneor related component iniiie pressuve riuctuatlons 
during its travel from the upstream to the downslreain nie.i:-' nvuu ..; point. 

A measure for the uncorrelated component can be foi mulaUd indthiij.aUcally. 
The downstream pressure fluctuation e/' can be resuive.. into ihrci components 
whose cross-spectral densities with the upstream pressure lUictaatbv, a ' respec- 
lively, real, Imaginary, and zero.  That is. 

where r, ',,. I', iV,,, i", '. The vanishing id thespectjal dcnsil> siquis- 
alent to saying that the correlation for i ,'• and '•, is zero, 'ihis rt'solutn.i •an l« 
effected using the definition for cross-spectral density.  The spectral densiues: for 

and     •   are 

1 . . i 

a tli.tt 

I   i 

u.'i   .in in    unipuU it mti nvs ol Hie me.iMiriv.'i.ita '.',   i  . !' 
|'i i Uapf ul Mf.iti i inten si is the quantits 

,,,,,;, I,   .mi,,   I.M.I i, ,i.- ,i ;;,i .1-..11-,    ■! tin   i iihereim  "i > '1    ■■  i   .    ih^ iiu.inuty 
■ ul.Uli ■! ir  1 !• . '.. 
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TIUT«' art' sevcrul important Umllutions In Ihe data presented in Kin. 5. One 
tioml in the data that isdesirabic to investigate i« thceUrct ol the parameter i ' i',,. 
Unfortunately, tlve transducer used for tin cross •spectral density measurements had 
a usable Iroquency range up to only 2000 cps. Consequently, only the flat part of the 
speetral density, as shown in Fig. 4. could be Investigated, The upper limit of 2000 
cps set ;ui upper limit on f * 1',, between 0,0H3 and 0,33, As can be seen in Fig, 4, 
this does not permit investigation of the cross-spectral density of the pressure fluc- 
tuations in the range where the spectral density is rapidly decreasing with frequency. 
With reference to the velocity fluctuations in the boundary layer, the region investi- 
gatcd forresponded to the region where the velocity spectral density is described by 
the -5 3 law where inertia forces dominate. It would be interesting to procure data 
for the cross-spectral density in the range where fiscous forces dominate. 

IHK TRANSVERSE COHHELATION 

The transverse correlation was measured using the equipment of Fig, 3 with the 
wave analyzer omitted.  The data are presented in Fig, 7,  Unfortunately, these data 
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have not been checked carefully since they were taken on the last Jay the wind tunnel 
was available for this work. Since we are not concerned here with the convection of 
a nearly frozen pattern, the cross»spectral densities were not investigated. For Ihe 
purpose of a cross check, however, it would have been valuable to have obtained 
these data. Another limitation of the data is that their variation of speed was not 
checked because of limitations on experimental time. 
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DISCUSSION 

W. Willmarth (University of Michigan) 

1 think Dr. Harrison's work is a valuable contribution to the existing measure- 
ments i>[ the wall pressure fluctuation« in a turbulent houiutory layer. 1 would like to 
state that, in general, his experim« nts aiat r with those that I did at the C'alifurnia 
In.stituti  of Technology  which will soon l»' availabli   as  ar NACA technical nod'. 

However, ' would like t.) poim out thai Dr. Harrison's value lor thi> root mean 
squan pressure 

is considerably higher (9.0 • 10 I than the value 1 found (6 ■ 10 ) and higher than 
the value found by others {■ 4.5 10 t m unpublished NACA leehnieal notes. I don't 
know why this discrepancy exists. 

My measurements of the nondimensional spectra air. of course, lower than 
Dr. Harrison's,but show qualitativ« K iiu same liehaviur at low »-.ilut sof the Stroultal 
nunil'ir ( * r ). I was able to measun the spectra at various stream veloi'ities and 
bouiulary layer thicknesses. The data arc shown in Fu;. Dl. It can be seen thai the 
hif.'h-ffequeiH'y response is affected b\ the size of the transducer, i have attempted 
to correct these spectrausing tlu methodof Ulieroi and Kovasznay with the assump- 
tion.- that the entire pressure pattern is "frozen" and passes Iry ihe transducer at 
d.fl'i . and that Die statist: il proixitu's of the pressuri have radial symmetry in 
'hi  i nordinate system nioviiv, .i! 0.83 '       The results are shown m Fii;. 02. 
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KiC.  !)^ (drri'iti <i mmdiriu-nxional 
uf tlif »•.»11 •.r-i-Min 

The noiidimcnsional spectra aiul Hpatinl eurrcluticiii in Fit;. 2 are defined by the 
relations 

■ 'k 
2    •; U,   ,1 

I   ■'*.' 

K" r' 
K  i 

Ik,    II, (1) 

Here in the two dimensiunul spectrum in '.vavi'-numlier space and K is the presbure 
currelatiotl with respect to distance aloiif» the wall. It can he seen in Fit;. 2 that the 
"corrected" spectra are not in agreement tor the various ratios of transdwer radius 
in displacement thickness, i,    '. 

I believe this is caused by the lower cowectionveloeily <>( the siiiall-scale pres- 
sure fluctuations.   The reasoning is as follows:  if evervthinn is movint; at O.KS I' 
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then tht« wave number is given by k f).H3(2 ii . The correction factor lor the 
speUra, which lakes into account the transducer size, tc.rned out to be quite small 
even for the highest frequencies or wave numbers. The corrected data, however, 
obviously still dopend on the transducer size. Thus, the wave number at high fre- 
quency must be much smaller and that means that the convection velocity must be 
considerably lower than 0.83 li, lor the high frequencies. 

Finally, I think that we have found out something about the turbulent bourn iry 
layer when we see that the cross-spectral density of the pressure is a function of the 
parameter > o.M v.. Both Dr. Harrison and 1 are in agreement on this point. My 
measurements of the cross correlation of  the pressure,    see Fig. D3, taken at 
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veloritics between three and seven times that ui Dr. Harrisun's stream velocity, caii 
be written as the ftinction Ri \. O.H.I IM v , which means, in my case, that the cross- 
spectral density (i.e., the transform of the cross correlation) can be expressed as 
the function (s i.M I . "u\ v n.« i i. 1 do not understand why Dr. Harrison's 
results do not show this additional dependance onx. I believe this is an important 
result. It means that the low frequency or larger scale motion dies out much more 
slowly than the small scale motion, and that the rate of decay of a disturbance of any 
luven scale is related to the distance it travels downstream. 

M. Harrison 

As Dr. Willmarth pointed out, in the flat part of the spectrum you might expect 
the convection velocity to travel because of the scale over which the velocity is 
fluctua'.ing. The very high frequency components on the part of the curve that is 
falling might be related to a region approaching the inner part of the boundary layer, 
but not really there, so you might expect the convection velocity for the spatial pat- 
tern, which is made up of higher frequency components, to travel at a higher velocity. 
I tried to measure that but, unfortunately, from the way my pressure components 
were constructed when I used them for making the wind tunnel measurement, I had a 
miK-h lower frequency range *r work in So, I may add, all my measurements on the 
cross-spectral densities were really over the flat part of the spectrum. Con^quwiUy 
I wasn't able to measure the convection velocity very far down, where the spectrum 
is fallingano I got essentially a constant convection velocity with a »light tendency to 
fall for the higher frequencies, or higher wave numbers. This was rather marginal 
so I didn't report it because I wasn't sure whether it was real or just an experimental 
error. 

H. S. Ribner (University of Toronto) 

Given Iwo microphones at a specified separation, Willmarth measures the product 
signal as a function of time delay. Harrison, on the other hand, puts the product 
signal through a tuned filter and measures a spectral density, with and without 
selected time delays. Harrison is to IM? commended for developing this cross- 
spectral density technique. He has given a very nice demonstration that his cross- 
spectral density and Willmarth's space-time correlation must be Fourier transforms 
of each other. 

Harrison's experimental cross-spectral density functions, as plotted, look like 
damped cosine and sine functions. The paireu curves exhibit a damping factor that 
varies as the product t ,x. The Fourier transform of y function that simulates 
Willmarth's measurements, on the other hand, shows a damping depending on i„ and 
x separately. Moreover, the inverse Fourier transform of Harrison's curves appears 
to become infinite at the origin, which is inadn '-.siblc. One wonders if Harrison's 
two curves should not really be two families, With damping depending separately on 
t    and i in each family. More combinations of i   and « in the data points are needed. 

O. M. Phillips (Johns Hopkins University) 

This paper provides a clear verification of the concept of convection velocity of 
the surface turbulent pressure fluctuations.   This is central in Lighthill's theory of 
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aerodynamic sound and in recent attacks on the problem of wave generation by tur- 
bulent wind blowing over a water surface. 

There are two remarks that 1 should like to otter. The first concerns the theo- 
retical prediction of the instantaneous pressure cuvarlance on a fixed surface when 
one point is held fixed and the other is integrated over the entire plane. This pre- 
diction has been made, under conditions of increasing generality, by Phillips,' 
Kraichnant and Phillips, and expresses the fact, required by the Incompresslblllty 
and boundary conditions, that the mean-square-linear momentum, per unit area of 
the boundary layer, normal to the surface vanishes. It requires that the surface 
pressure covarlance should be somewhere negative to balance the positive contribu- 
tions to the integral. Figure 7 of this paper gives little Indication that the transverse 
correlation will be negative; it Is still about 0.2 for x .* ■ 10. Perhaps the longitu- 
dinal instantaneous correlation has negative regions. Unfortunately, Dr. Harrison's 
data do not appear to bear on this question. The theoretical result appears to be 
sound, but we would be happier with experimental confirmation (or denial!) of It. 

The second remark concerns the spectral densities shown in Fig. 4. The pres- 
sure fluctuations are associated with the turbulent velocity fluctuations, whose mean- 
square-magnitude Is proportional tothe square of the friction velocity r'. One would 
expect, therefore, that this, rather thani',,, would be the relevant velocity scale to be 
used in making i 11 dimensloniess. If this minor modification Is mi' le. It Is found 
that the points for v      isnn «m s.. are raised by about 30 percent relative to those 
for i       firm  s,., and those for r.     aorni cm sec by about 15 percent, bringing the 
three sets of results into very close coincidence over the flat, low frequency range 
and removing the apparent Reynolds number effect Indicated by Fig. 4. 

i-it'ty Mfftlnu.   Washinutun, 0. C, May,  ;>•'«. 

tu V. Phi lijis.   1 'mi-. Ktiy. Sue . A. HA 
tu It Kl-ai i i.i.,ir. .1. Ai mist . Stu- . An ii- r 

(1 V. I'M 'lilK,. all«   in   Ai oust; i al  Sin- 
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THE FLUCTUATING SURFACE PRESSURE 
CREATED BY TURBULENT BOUNDARY LAYERS 

ON HYPERSONIC VEHICLES 

Kdii.miil K. Call.i.uh.in 

\ I f ; ' 'II .'     \ 1*  : .>" \   < i.-im M ' »■*•    fnt     IrMirtriu f t i 

There are a t>reat number of specialized problems which result from flight at 
extremely hinh speeds. Some of these problems are new, others are merely magni- 
fied by the higher speet*: The fluctuatint; surface pressures generated by subsonic 
turbulent boundary lay«.c «■ '<• is received considerable attention in recent years. These 
fluctuating surface pressures are transmitted through the vehicle skin and result in 
lüt;h internal noise levels. The current crop of jet transports has required consider- 
able insulation to minimize this effect and achieve reasonable passenger comfort. 
The question arises then as to what levels might be expected by flight at hypersonic 
speeds. It is the purpose of this paper to make some estimates of the order of mag- 
nitude of the levels which might be expected for several cases of current interest. 

The fluctuating surface pressures created by a turbulent boundary layer are, of 
course, dependent upon the physical characteristics of the boundary layer. A con- 
siderable b»dy of data now exists, which relates these surface pressures tu the local 
flow conditions lor the case of subsonic turbulent flow over a flat plate. In general, 
these results show that the rout mean square of the fluctuating pressures on the sur- 
face are directly proportional to the local dynamic pressure of the flow and are 
largely independent of both Reynolds and Mach numbers. This general result stems 
from the fact that turbulent boundary characteristics over flat plates rhange only 
slowly with both Reynolds and Mach numbers. If. for example, we take the skin 
friction coefficient as a measure of boundary-layer characteristics we can see that 
only small chaiiges occur over wide ranges of Reynolds and Mach numbers. Indeed, 
if we look at dimensionless velocity profiles, either mean or turbulent, we see that 
such relationships are quite general in nature. Hence, the fact that the dimensionless 
ratio of root-mean-square 'luctuating surface pressure to stream dynamic pressure 
is: essentially constant for the case of subsonic turbulent boundary layers on flat 
plates or slightly curved surfaces is nut surprising and, in fact, provides a clue that 
subsonic results may I»' extrapolated to hypersonic speeds for cases where the 
boundary-layer characteristics are not greatly altered by effects uf cooling, pressure 
gradient, or gas dissociation. 

The data to dale arc summarized in Table 1. The agreement is excellent even 
though the tests were mad« in widely varying environments. The data of 
Willmarth was obtained in ;i small 4-liich-dianieter pipe. The data of Serafini was 
obtained in a specially designed rectangular acoustic channel, 8 18 inches. In these 
tests the pr« ssurr gradient was controllable. The flight data of Mull was obtained on 
the wing and fuselage of a Jet aircraft. 
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Table I 

Ratiu of Root-Mean-Squarr Fluctuating SurlatT Pressure .. to 
Stream Dyntttttic Pressure q from Various Sources 

r p Mach Reynolds Pressure Type of 
—                       - —i 

Author 
<\ number number Gradient Tesi 

3.5 10' 0.3 to 0.8 1 to 20    10'' Favorable Channel Wlllmarth - 
NACA TN 4139 

5.0 10" ' 0.65 10 to 100     ID'' None Channel Sorafinl - 
NACA unpublished 

5.0 10   ' 0.3 to 0.8 2 to 20    10' Favorable or 
none 

Flieht Mull • 
NACA unpublished i 

6.0 10   ' 0.3 to 0.7 2 to 20    10'' Favorable Channel Wlllmarth - 

1 NACA unpublished 

It would appear that a mean value of about 4.5 10 ' could be chosen to repre- 
sent all these data; especially when It Is remembered that all these data were 
measured usliv. microphones and the results measured in decibels. 

If we choose the ratiu of p <\ - 4.S 10 ' and assume that this ratio holds even 
at hypersonic speeds, then it is obvious that the highest values of p will be obtained 
when n is a maximum. With this in mind. let us consider what cases might currently 
be of most interest. Two immediately come to mind: the high-speed nose-cone 
reentry and the take-off of a powered rocket. At the present time wc can probably 
ignore the problems which might arise from sustained flights at hypersonic speeds. 
In this instance a great number of other problems must be salved before continuous 
flignt at Mach numbers greater than 5 will be achieved. 

We will, therefore, limit the discussion to the reentry of manned or unmanned 
vehicles and to the take-off and climb-out phase in powered flight. First let us con- 
sider the unmanned vehicle, i.e., the ballistic missile, since this represents a some- 
what different problem than the manned vehicle. The principal difference is in the 
deceleration rates which arc permissible. This aspect Is not too important for the 
unmanned vehicle; but it is extremely important in the case of a manned vehicle. 
particularly ifwe expect the occupant to perform a useful function. Even if the occu- 
pant is a passenger only, he would probably object strenuously to being both squashed 
and fried. 

Let us therefore look at the nose-cone reentry problem and see what is Involved 
and whether it appears likely that we can make such a calculation with some hope that 
the results arc correct. Considerations other than noise have determined nose-i one 
shape, that is, heat transfer. In order t" keep the heat transfer rates to the vehicle 
surfaces to acceptable values, current considerations dictate a blunt-nosed, high-drag 
body such as shown in Fig. 1. Such a shape has a very strong Shockwave ahead of 
it and even though the stream Mach number is of the order of 20, the flow field between 
the body and the shock wave Is subsonic or slightly supersonic. As a result, it should 
be possible to use the results presented in Table 1 with an excellent expectation of 
obtaining the correct result. Furtlicrmurr, the pressure gradient around the body is 
favorable and it would be expected that the boundary-layer characteristics would not 
be greatly different from subsonic results. Considering then the case of such a body 
recnterlng the earth's atmosphere, w.c will use the following notation to describe the 
quantities of interest, 
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M MACK  NO M SHOCK  WAVE 

f DENSIfV pl y        S1REAML. INE 

H IOTAI   PRESSURf H, y/^     BOUNOARV  LAYER 
q DYNAMIC   PRESSURE 

STREAMLINE 

STAGNATION 
'ITBEAMI INE 

M 

H 

H, =: Hl 
MAK i j, > 04512 H, , 

f : 1 5.10' q, 

K If .   1   -  lUmit-n. 

Bl  JNT   NOSED  BODY 

M. - 1.415 

\i\\y\\ ."t hyiH-rsunu   spct-iir 

The subscript I refers tu conditions immediately behind the shock at the nose. 
The subscript relates to local conditions between the shock wave and the boundary 
layer, aft of the mwc. Sine the root-mean-square pressure p is linearly related to 
a. the point on the body of most interest is where the value q, is a maximum. 

At high Mach numbers an extremely strong bow wave precedes the body and the 
value of M, is about 0.4 for a range of stream Mach numbers from 4 to 20. 

If we follow the path of a streamline through the shock and around the body, we 
get the following picture: Streamlines which go through the Shockwave near the nose 
are bent and flow around the body between the shock wave and the boundary layer. As 
a streamline moves around the body, the flow speeds up but the total pressure along 
the streamline is essentially constant. If we take a sticamllne which lies close to the 
boundary layer, we see that such a streamline crosses the shock wave very near the 
stagnation streamline and hence we can assume ti..' the total pressure H, along this 
streamline behind the shock ts essentially equal to the total pressure of the stagna- 
tion streamline behind the shuck n,. With this assumption, the total pressure of thU 
streamline behind the shock can be calculated quite simply from the normal shuck 
relations. The compressible flow relations tell us that the maximum value of n for 
a given total pressure II, or n, in this case, occurs at a Mach number of 1.415. This 
then determines our point of interest and is independent of the geometry, i.e., we don't 
need to know the exact shape of the nose; we will pick the particular point where maxi- 
mum 'i, is obtained. This value is uniquely related to M. at a value of M. ■ 1.415 and 
the ratio q, M, - 0.4312. It should be noted that the calculation procedures used here 
do not account for any effects associated with extremely hifh temperatures, such as 
dissociation or variable ratio of specific heats. It Is felt that all such effects would be 
small in terms of the final answer, which !« i cilrfd only to perhaps the nearest i3 db. 

If we concern ourselves only with the maximum value of <i, and, hence, the max- 
imum root-mean-square pressure at the surface i< it is possible tocalculate p during 
reentry using the normal shock relationships and the reentry calculation procedure 
described by Allen and Eggers in NACA TN 4047. 
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Allen and Eggers derived an equation which yields the velocity at any point along 
the trajectory from reentry into the atmosphere until impact. The velocity at any 
point was found to be dependent on the Initial velocity at reentrante VK and a param- 
eter herein designated as . The parameter . describes the characteristics of the 
vehicle, I.e., its drat; coefficient (.',,, its mass m, its area A, and its reentrance angle 
into the atmosphere K. It can be assumed that over the trajectory range of Interest, 
i.e., where the Mach numbers and q values are high, that - is essentially constant. 
That is, for a given missile dues not vary along the trajectory. Knowing the rela- 
tionship between vehicle velocity and altitude, an equation relating local dynamic pres- 
sure and altitude can be derived in terms of parameter . and reentrance velocity VE. 

Figure 2 shows the variation of u, with altitude for a reentrance velocity of 20,000 
fret per second and for several values of parameter . The vehicle reent .*s the 
atmosphere at approximately 200.000 feet and plummets toward the earth. The values 
of .i increase to a maximum and then decrease. The peak or maximum value of q, 
along the trajectory is dependent un . High values give low maximum values which 
occur at relatively high altitudes, whereas low values give large maximum values of 
'\ which occur at relatively low altitudes. High values give rapid vehicle decelera- 
tions at high altitudes where heat can be radiated rapidly away from the body, which 
is desirable from heat transfer considerations. The high vehicle deceleration at high 
altitude results in low vclucitlos at low altitude, which may nut be dcsiiablc. 

In any case, the maximum values uf >i shuwnhere arc much highcrthan anything 
heretofore experienced. Even with a value of 7000, the peak of q, is over 4000 
pounds per square foot, which is five to ten times ihe values towhich we are normally 
accustomed. The sound pressure levels associated with values of i, using i> - 4.5 
10' ' - are shown on Fig. 3 where sound pressure level Is platted as a functio of 
altitude. The reentrant velocity for these curves is 20,000 feet per second. Curves 
are bhown for    values of 7000, 4000. and 1000. 

It can be seen from this figure that one result of achieving low values will be 
increasing values of surface sound pressure level. For exar.iplc, if a   value of 1000 
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is achiovcd, the maximum suundprcs- 
sure level will be 170 db. This is 
extremely high and mlght well result 
in structural deterioration o( the 
vehicle. This is particularly true since 
other forces and temperatures are 
also i near maximum values at this 
same stage. 

One important .actor which must 
be considered is the exposure time. 
For a value 'f of 7000 the time for 
the vehicle to fall from say 140,000 
feet to 50,000 feet is perhaps 30 sec- 
onds. For a value of 1000, the time for 
the vehicle tu travel from 140.000 to 
40,000 feet is of the order of 15 
seconds. 
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Figure 4 shows the variation uf 
the maximum sound pressure level 
encountered during reentry, i.e., this ' lK 

corresponds to the peak or maximum 
of the curves shown on Fig. 3. The 
sound pressure levels corresponding 
to this condition have been platted as a function of the parameter for various 
rcentrance velocities. It is evident from this figure that quite high values of sound 
pressure level will be encountered tor nearly all unmanned missiles under current 
consideration. 

It is obvious that the hif.h external levels may well create a structures 
problem or result in high Internal levels which could affect the operation of the 
vehicle. 
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Let us now considtr bncl'ly ilio flight of a manned apace vehicle. First lot us 
looU at the powered or take-oil phase and then the reentry phase. Again, as in the 
previous example, we will consider only what is happening on the nuse cone, which in 
this ease contains the occupant ami related equipment. Figure 5a gives Ihr- velocity, 
acceleration, and altitude as a function of time from take-off to first-stage burnout. 
The weight of thepayload chosen is 3000pounclsand the orbital altitude approximately 
200 miles. As can be seen from the figure, the maximum acceleration is about 130 
ft sec J or 4 g's. The velocity at the end of burnout is 8600 ft/sec and the altitude, 
about 164.000 feet. The sound pressure levels which would be expected on the nose- 
cone region using these results are shown in Fig. 5b. The shape of the nose cone has 
been assumed to be similar to that for the unmanned vehicle except that it will prob- 
ably be even more blunt in shape. The results shown represent the maximum value 
achieved at a single point on the nose-cone surface. The solid curve is the noise 
which results from boundary-layer turbulence.   The dotted curve shows the levels 
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whii'h miglit bü expected from tho rocket itself. Rocket noise predominates for the 
first 40 seconds and then the boundary-layer noise takes over. The principal reason 
for the decrease in rocket noise is that after a flight Mach number of 1 is achieved, 
the rocket noise is directed predominantly rearward and only a very small amount 
can bo propagated forward. It is apparent from the figure that the levels are low and 
in fact no higher than we currently experience subsonically. This results from the 
fact that high dynamic pressures are never achieved since the high velocities only 
occur at high altitudes. 

It would appear that no serious noise problem should occur around the nose region 
of such a rocket during the Initial powered phase of the flight. 

Let us now look at the reentry portion of the flight. The velocities, deceleration, 
and altitudes as a function of time for the assumed vehicle are shown in Fig. 6a. The 
deceleration is a maximum of approximately 200 feet/secondJ or a little over 6 g's. 
Notice that high deceleration rates, over S g's, exist (or about 20 seconds. It mlgh* 
be possible that higher deceleration rates (10 g's) can be used but it would seriously 
impair the occupant's ability to perform useful functions. If it is noted that the 
velocity decreases from 26,500 feet 'second to 4000 feet 'second between 200,000- and 
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about 120,000-foot altitude, then the low values of sound pressure level experienced 
during reentry (Fig. 6b) are not surprising. Figure 61) shows a maximum value of 
sound pressure level of about 135 db. which Is quite low and should not create any 
serious problems. 

In conclusion it can be said that the noise levels in the nose-cone region for 
manned vehicles will probably be low, largely as a result of human limitations to g 
forces. 

The unmanned vehicle, i.e., the ballistic missile, may well have extremely severe 
noise problems which could result in structural failures or instrument malfunctions. 
The absolute levels are quite high, perhaps 155 db, for cases of current interest and 
will probably increase as heat transfer problems are solved. 

DISCUSSION 

L. S. G. Kovasznay (Jotme Hopkins University) 

All the data which shows this rather spectacular constancy of sound pressure 
level compared to dynamic pressure is based solely on data available up to Mach 
number 0.8, yet we know that the general nature of supersonic boundary layers is 
somewhat different. This disturbs me, because Mr. Callaghan has shown that the 
maximum dynamic pressure "q" will be experienced at a Mach number of 1.415, and 
we do not yet have boundary-layer noise data for this Mach number. 

Now, when looking at, say. shadow pictures of shells, one sees another kind at 
interesting sound wave pattern and we know from the little information we have 
obtained, mostly by hot-wire measurements in supersonic tunnels just outside the 
boundary layer, that the boundary layers don't seem to emit anything spectacular as 
long as the wall is smooth, uninterrupted and there is only a little sound. But if there 
is any edge of roughness, then the amount of sound increases tremendously. This 
may be especially true for ablation cooling, or any kind of pitting on the nose cone, 
and I expect strong effects of this nature. 

There is another question, and it might be possible to treat it theoretically. If 
one has a hypersonic, blunt body, where the shock wave is hugging the contour, there 
is an interesting space of subsonic flow between the shock wave and the boundary 
layer; any disturbance present there will affect the location of the shuck wave causing 
the shock wave to move or "Jiggle." There will be an interactive zone which might 
give reinforcement of fluctuations. 

My only caution is that even these aspects of the problem have to be considered 
in great detail before we accept this type of treatment as even approximate. 

1. Dyer (Holt, Beranek, und Newman, Massuihusttts) 

Huri' is u short list of the sources of pressure fluctuations that may also be of 
importance in missile flights. 
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Wc c;in certainly have rookel engine noise, as Mr. Callaghan has mentioned; 
rocket engine vibration, which is directly transmitted from the rocket engine to the 
missile itself; boundary-layer pressure fluctuations, i'S Mr. Callaghan has also 
mentioned; and another phenomenon that hasn't been m-1. .oned which we call wake 
noise. Wake noise is associated with the field downstream of the missile or 
re-entering body. Also, we have what we might call base-pressure fluctuations for 
supersonic conditions, and these fluctuations arc going to be particularly important 
for re-entry; oscillating shocks, mentioned by Mollo-Christensen, which depend on 
the particular design of the missile or re-entry body; the possibility of transmission 
or convection of vorticlty through shocks, a problem which was discussed by Ribner 
not too lent, ago. Finally we have the convection of a missile through a turbulent 
atmosphere. 

While many of these sources of pressure fluctuations are probably not tooimpoi 
tant, I think in re-entry we are probably going to have to worry about base-pressure 
fluctuations probably to the same extent that we might worry about the boundary- 
layer pressure fluctuations. This is what preliminary measurements and calculations 
si em to indicate. 

One final comment is this: that the base-pressure fluctuations wuuli likely 
maximize at the maximum dynamic pressure of the missile, just as in the case of 
boundary-layer fluctuations. 

It may bi difficult, on an experimental basis, to look at pressure fluctuations as 
a function of time and decide whether it is one or another mechanism. An important 
(cuture is the scale of the pressure fluctuations. The base-pressure fluctuations are 
apt to be of a much larger scale and hence more important in exciting vibrations of 
the missile, even though they may only be ;.ne same order of magnitude in pressure 
as tlie boundary-layer field. 

G. M. C.'onos (University of California. Berkeley) 

There is very little reason to expert that the pressure fluctuation level at the 
wall of the boundary layer ought to be imlependent of pressure gradient. This is a 
general comment, not restricted to this paper, since other participants have pointed 
out possibly more serious other sources uf noise. Since shear force at the wall and 
turbulence level depend on the pressure gradient, I think it's a fairly safe guess that 
the pressure fluctuation would also depend on the pressure gradient and generally 
increase in positive pressure gradients. 

II. S. Kibner (University o| Toronto) 

Me, ( allaghan maken frequent reference to the fluctuatingpressures in terms of 
hi/u.'.<i,.-.  s.sui'«   levels"; thi se "hydrodynamic" or incompressibly generated pres- 

sures  are not   sound m  tin   strict sense,   and 1 would prefer Dlokhintsev's term 
"pst udo-sound." 

I . I . ( .illav'.liai; 
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in extrapolating subsonic results to low Rupersunic speeds. A recently doclusBiiied 
paper ' shows no Mach number effect on 1' ■< for a ranne of flinht Machnumbors from 
0,8 to 1.4. 

It is certainly agreod that the type of lalculations performed in this paper can 
merely predict order of magnitude. It would be expected that strong favorable pres- 
sure gradients would lower the ratio of P i whereas adverse gradients would raise it. 

In regard to jiggling the bow wave, it would be expected that as long as the 
stream Mach numbers are 3 or larger the bow wave is exceedingly stable. It woulc'. 
only be at the lower Mach numbers, say 2 or less, that shock wave instability would 
give rise to large surface pressure fluctuations. 

It is impossible to assess what effect ablation type nose cones will ha\. on 
internal noise. Undoubtedly, the rough surface resulting from ablation will greatly 
increase the surface pressure fluctuations. On the other hand, the ablating material 
would be expected to have a very high transmission loss, so that one effect may 
balance the other, 

I agree completely with Dr. Curcos. The case discussed here asaumes that the 
pressure gradient is favorable but not strong. Strong gradients should greatly alter 
the results. We do have some unpublished flight data which show that strong favorable 
gradients reduce the ratio of P q considerably. We also have data in the presence of 
a strong adverse gradient, and for such a case the levels are very high. In one case, 
separated flow on a wing resulted in a sudden increase of 25 decibels. 

For Ute most part, I must agree with the comments by Dr. Dyer. We have looked 
at the possibility of noise generation of the type discussed by Ribner^ and even if we 
assume very severe atmospheric turbulence the noise levels generated are very low. 
Mostly because severe atmospheric turbulence is not really very turbulent at all in 
comparison to boundary layers or jet mixing, etc. 

The question of fluctuating base pressures may well be a vt>.*y severe problem. 
It looks very much like the kind of a problem which must be studied in either wind 
tunnels or rocket-powered models. 

Norman J, McL.uud and diirrlli Jordan, ' I'liliminary flight Surviy nf Kustlai;«' and 
Btiundary Layer Sound Hreosur« I,.'V.1K, ' NACA KM ll^lUl, l^n. 

^11. S.  RibniT,  "Shock-Turbulenci-  Intfrartion and Ihr Gpm*ration u{ Nmsi-,    NACA 
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EXCITATION OF ACOUSTIC RESONATORS 
BY FLOW 

Utiu Inyiinl and   l.i'i" Vi. IKMM   111 

.--    ■.. In ■    /..■:■■,■.       ■    /•    ■•.    (.,, 

INTRODUCTION 

The study of excitation uf cavities by wind ur jets of air has a long history. All 
wind instruments and their antecedents consist of cavities excited by a jet or a larger 
flow uf air which is blown through them or across their openings. The effects on the 
frequency and quality of the tone, which arc produced by varying the dimensions of 
the cavity or the strength of the air stream, have been studied for centuries. 

Helmholtz (1) in 1868 published what appears to be the first significant paper on 
the actual uieehanism of excitation. He descrii>os the boundary between two layers 
of fluid moving with different velocities as being composed of parallel vortex threads. 
If these threads initially lie in one plane — so that the boundary between the two 
regions of fluid is flat — they will remain so in unstable equilibrium. However, If 
one is disturbed from its position, it will continue to move out of line so as to cause 
the dividing surface of hump and eventually curl over, Helmholtz concludes that the 
"vis viva" of the oscillations which is lost by radiation is replaced by energy from 
the blast of air blowing across or through the mouth. This blast is directed slightly 
into or out of the pipe in proper phase for reinforcement by movement of the vortex 
threads at the boundaries. 

The understanding of the mechanusm of excitation has advanced only slightly 
since this early paper by Helmholt .. P. M. Morse (2) in 1948 indicates that there is 
a nuiilinear coupling between the driver, or air jet, and the pipe. He also points out 
that the presence of a pressure node at the opening of the pipe identifies the excitation 
as a pressure flu., lation because the system aligns itself so as to extract a maxi- 
mum of energy from the jet. His concluding remark ■ "A great deal of experimental 
and theoretical work is needed before we can say we understand thoroughly the behav- 
ior of any of the wind instruments" — points not only to the lack of a good theoretical 
model for the mechanism of excitation, but also to the general lack of experimental 
evidence. This report describes some studies of the excitation of a pipe by flow past 
the open end of the pipe. These studies arc restricted to one particular pipe geom- 
etry, but most other parameters arc considered, including the internal damping of 
the pipe resonator. 

IIDS v.'irk v.,i- rluni' il Ihv Aiouxtii» L.tlii'iMlury .il Mami.u lumt'U» Institute ut 
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It appears thutonc can cliHttnguish two different regions or nifchanisnis ofoscii- 
lalion ul the pipe, a linear and a nonlinear region. The linear region corresponds to 
low flow speeds in which the acoustle oscillations in the resonator do not affect the 
How about it. The pressure fluctuations about the resonator are then determined 
solely by the geometry of the pipe at the mouth and the nature of the incident stream, 
and they arc independent of, for example, the length of the pipe. The acoustic oscilla- 
tions in the pipe are then linearly related to the pressure fluctuations in the flow 
Which are already present in the incident stream ' r which are caused by the turbu- 
lence generated when the slieam strikes- the pipe. \s the flow speed increases, there 
is a transition to more violent nonlinear oscillatu «s in which the sound field in the 
pipe indeed reacts back on the flow. 

The sound generated in the linear region is gene -ally very weak and can be con- 
sidered as background noise for the purposes of thi.' report, which is con Tned 
mainly with the nonlinear oscillations. 

Blokhintzev (3) has investigated the behavior of a pipe -csonator in the linear 
region and finds on the basis of dimensional arguments that the .s'-und pressure in the 
resonator is proportional to the square of the How speed. His theory does not explain 
any of the features of the nonlinear oscillations. There are several discrete modes 
of nonlinear oscillations, o* which only the fundamental is considered in this report. 

This study starts with an investigation of the flow about the mouth of the reso- 
nator involvingboth schlieren photography and hot-wire measurements. The acoustic 
response of the resonator is then studied as a function of flow speed and the angle ot 
attack of the flow. Finally, a study is made of the effect of internal damping of the 
resonator on its acoustic output, with particular emphasis on a determination of the 
critical damping beyond which the nonlinear oscillations no longer can be sustained. 

STUDIES OF THE FLOW  PATTERN ABOUT THE KESONATOR 
AND THE MECHANISM OF OSCI1.I ATION 

Schlieren Studies 

liit pipe. 2 cm in diameter und 30 cm long, was placed in an airflow the speed of 
whicli could be varied from 0 to about 4000 cm sec. The air stream was uniform over 
an areaof about 3 • 3 cm.  The mouth of th.'resonator was introduced into this region. 

To obtain some over-all ideas concerning this oscillation mechanism of the flow, 
explorntorj experiments wire made which were designed to study the flow pattern 
about the opening of the resonator. After several attempts involving hot-wire meas- 
urements, a schlieren system was arranged which made possible direct visual 
observation of the How Held (Fig. I). It utilizes two optical systems. One. consisting 
ol tin littht source, condenser. Hat mirror, concave mirror, and knife edge, is 
arranged so that the light sourer is Imaged In Hie plane of the knife edge. The other, 
consisting of the camera, is arranged so that the field of view, located directly in 
Iront ri( the mirror, is focused onto a screen or photographic plate. Each point in 
Hu Held receives li^hi Irom every point ol the source. Therefore, the field, as seen 
irom fit camera, darkens uniformly when the knife edge cuts off part of the image 
ot tin source, Local density gradients In the field bond Hit light rays, causing a 
Li: ■! i or smaller numUer ol them to be Intercepted It) the knife edge with the result 
lii.ii '.In Held appears in ally lighter or tlarker. In practice, the knife edge is moved 
!  ic!. an i lortli u.ilii Ihc Held is unitormlv illumiiwlfd. 

riii* system using .i coiif.iveiiiirrorli.is Ihrtv iniiin advantages over "111' in which 
Hi«  iniii'or !:■ 11 jilaci (I bv .1 lens and thelii'lit source isplacedto the light of Hie lens 

■   i.-,    witli  tin   i.iiiin.i.    Firsl. Has syMi-m  is inm-i' sensitive Ivecuise light passes 
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Uiniunh the field twice, Second, the size or the field is limited to the size of th« If us 
or mirror; lar^e mirrors are easier to maks. Third, schlieren systenu; are 
extremely üensltive to chromatic dispersion, which is avoided by use of a mirror. 

In order to increase the contrast, the air flow was heated by loops of a heated 
wire placed in the air stream. In the direct visual observations, stroboscopic illumi- 
nution was used - obtained by means of a steady light source followed by a rotatinj; 
disc chopper. The photograph of the flow pattern shown in Fin. 2 was obtained usinn 
H hinli-inlensity flash source. This picture does not show the field as clearly as 
direct observation under stroboscopic illumination. HoWevet, it doCo indicate the 
general features of the flow field. 

Mechanism of Oscillation 

The flow field about the mouth o| the resonator appears to be similar to the flow 
about a knife-edge oscillator.   When the flow strikes the downstream «due of the 
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resonator, eddies ».re shed at a rate corresponding to the resonance frequency of the 
resonator. There is a class of hydrodynamic oscillations in which a disturbance 
produced at an edge travels downstream. On meeting a second edge, a sound signal 
is sent back which triggers a second disturbance. This causes reinforcement at a 
particular frequency, the period of which is approximately ■! t' • >l r, where I' is the 
velocity of the flow, > the speed of sound, and .1 the distance between the edges. 
Ordinarily, il I' is much greater than I < so that the frequency of oscillation is of the 
order of H I. The jet-edge oscillator is a striking example of such a system (4,5). 
In addition to this hydrodynamic "feedback." there may also be an acoustic coupling 
resulting from a reflection of the sound wave from a boundary in the neighborhood of 
the edge system. If the reflector is a distance I. away, the sound signal will return 
a'^r a time 21. .•. 

In general, one might expect that both of the feedback mechanisms described 
above might be of importance in hydrodynamic nonlinear oscillators. Furthermore, 
it is expected that in the case of such a dual feedback the oscillations should be par- 
ticularly strong if  i t' and IL < are the same. 

In the present pipe-resonator oscillator, the major feedback mechanism seems 
to be acoustic, as indicated by the acoustic characteristics discussed in the next sec- 
tion. The two edges referred to above are represented by the edges of the pipe open- 
ing. The acoustic reflector is the rigid termination at the end of the pipe. The fre- 
quency of oscillations is found to be approximately equal tu < 21. for a relatively large 
range of flow velocities, where I. is the length of the pipe. The characteristic time 

i V corresponding to the hydrodynamic coupling hetween the two edges seems to be 
of less importance in the pipe-resonator. Similar acousto-hydrodynamic oscillators 
have been discussed by Anderson (6) und von Gierke (7). 

Hot-Wire Measurements of the Flow Gradient in the Mouth of the Resonator 

In addition to the schlieren studies mentioned above, some measurements were 
made of the flow in the opening of the resonator by means of a hot wire. The varia- 
tion in the flow speed as one goes from the outside into the pipe is shown in Fig. 3. 
The velocity profile has a stron<! gradient, which can be shown to promote transfer 
of energy from steady to oscillatory flow (8). This is further evidence to support the 
picture of a nonlinear mechanism producing oscillations at the mouth of tht resonator. 

ACOUSTIC MEASUREMENTS 

The sound field generated by the flow as it passes the pipe was measured at a 
distance of 15 cm from the mouth of the resonator. Some measurements were also 
made when the microphone was inserted at the bottom of the resonator. However, 
the sound-pressure levels inside the pipe often exceeded 140 db. the upper limit of 
the dynamic range of the microphone without special acoustic attenuating devices. 
Therefore, most of the measurements were taken outside the resonator, as indicated 
in Fig. 4. Both the sound-pressure amplitude and the frequency were measured on a 
General Radio Wave Analyzer with a 4-( ps bandwidth. 

The air supply consisted of a compressor and regulator set to deliver air at a 
constant pressure of 30 psi gauge. The volume flow was measured on a Flowruter. 
The air then passed through a settling tank, and issued from the tank into the room 
through a pipe 3 cm in diameter and about 10 cm long. The air velocity was meas- 
ured by u hot-win aneimmieter and was found to be uniform over an area of about 
3 y 3 cm in front of tin pipe. It was in this region thai the mouth of the resonator 
was placed. 
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Sound Pressure as a function of Flow Speed and the 
Angle of Attack 

Measurements of the sound pressure were made for flow speeds up to about 3500 
cm sec and angles of attack from 0 to 50 degrees, as defined In Fig. 5. 

^O 

SCREEN 
^ 

T—1  A 
(a) (b) 

Kin. 5 - Rcsunatur pipf (with (Liiiipin^ Rcreen) 

In Fig. 6 are shown results of such measurements. There is a critical angle of 
about IS degrees and a critical air speedof about 1000 cm sec below which no oscil- 
lations are observed. Not only is there a lower limit of the flow speed but also an 
upper one at which oscillations cease. This uppe. limit increases with the angle of 
attack. With the flow equipment available in the present experiment, the highest flow- 
speed was about 3500 cm sec. The largest angle of attack at which oscillations could 
be sustained at this speed was about 50 degrees. 

The envelope of the preMtire versus flow-Speed curves for the various angles of 
attack indicates a sound pressure which is approximately a linear function of the 
flow speed. At the lowest measured sound pressures shown in Fig. 6. it is difficult 
to decide whether the oscillations are nonlinear with an i>scilluting flow pattern 
described above or if they result from the turbulence already present in the incident 
air stream. 

One interesting aspect of the problem is that the air How must be directed into 
the resonator for oscillations to occur. In fact, the more the air stream is directed 
into the resonator, the stronger the oscillations become. It may be that the disturb- 
ances produced at the mouth of the resonator by the sound field direct the main flow 
into and out ot the tube. The oscillations would then lie driven by a switching o» the 
air flow rather than by vortexes which would lie generated regardless of the angle of 
attack. This aspect of the problem could be clarified by mure detailed observations 
of the flow field in the vicinity of the mouth ol the resonator. 

Frequency "I Oscillation vs Flow Speed 

As already mentioned, the frequency of oM'illational the tube stays almost con- 
stant, independent of the flow speed. Some measurements of the sliglil frequency 
variation that does occur are shown in Fig. V. This result is for an angle >>( attack 
of the flow ol 'W degrees. It is seen hnw closrly (lie oscillations are held i<> a single 
frequency Im u Aide ranne ol the flow speeds. Phis result supports the observation 
that in most of the flow rangethe coupling hclwcen the flowand Uu soundwave seems 
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to be dominant in the mechanism of oscillation. On the other hand, in a purely hydro- 
dynamic self-oscillator, such as the jet-edge system, the hydrodynamic boundary 
conditions determine the characteristic frequencies of oscillations which are of the 
order of i D, where It is the flow speed and l> is a characteristic length of the system. 

The Effect of Damping in the Resonator 

A factor which affects the oscillations uf the resonator to a considerable degree 
is liampint;.  The damping in the pipe system consists of radiation damping and the 
viscous and heat conduction losses at the walls of the resonator.  The damping In a 
systum is oftendescribed in terms of the (,) value which for I.I      I equals   .,     .where 

is the resonance frequency and      is the half-power b    (width of the resonator. 
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The largest value which ordinarily can be obtained with acoustic resonators in air 
under standard conditions is of the order of SO. The resonator tula used in the 
experiments described above wan about 42. 

Variation of the Q of (he Resonator - It is of considerable practical importance 
to investigate the effect of the damping on the flow-excited oscillations. In order to 
vary the damping in the resonator, a damping element in the form of a fine screen 
was introduced into the tube, as indicated in Fig. 5. The particle velocity is zero at 
the rigid termination of the tube. If the screen is placed close to the wall, the damp- 
ing effect of the screen is clearly negligible. The damping effect increases as it is 
moved toward the mouth of the tube. In fact, if the screen does not change the orig- 
inal flow distribution ro«fw« 21.) appreciably, it follows that the y value will vary 
with the position of the screen as 

W,, 

I   <   (K,   Hi  (cos  jjj 
(1) 

where % is measured from the open end of the tube, K, is the screen resistance, and 
K is the resistance caused by the radiation, viscous, and heat-conductiun losses. 

Using a fine-mesh screen (open area 29 percent, 306 holes cm-, diameter of 
strands 0.101 mm), the',) value of the resonator may be varied from the maximum 
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value of 42 down to a value of about 19 by movint? the screen from the bottom to the 
mouth of the tube. This is shown by the top curve in Fin. 8. The second curve in the 
figure shows the measured o value in the case when three screens are introduced 
into the tube. In that case, the 0 value was brought down to a value of about 8. The 
curves obtained in this way are in quite t;ood agreement with Eq. (1). 

It is interesting to note in passing that this method of introducing damping into 
the tube may readily be used for the measurement of small flow resistances. 

In the measurements of the p value as given in Fig. 8, the microphone itself 
formed the rigid termination of the tube. The frequency response of the pipe to an 
incident soundwave was determined and the o value was evaluated as the ratio „ . 
Here is the "width" of the pressure-frequency curve at the points where the pres- 
sure is 6 elb below the maximum pressure 

The Effect of 9 on the Flow-Excited Oscillations - Varying the Q value of the 
resonator as described above, a series of measurements was made of the strength 
of the flow-excited oscillations of the resonator pipe as a (unction of the c value. 
The angle of attack of the flow was kept constant at 35 degrees. The sound pressure 
was measured at the bottom of the resonat r, but the experimental setup was otherwise 

•      ■   ' I 
■1    - 
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x (CM) 

Kin. 8 - Varialion of the Q of th« rcsonatur 
with the pusilion of thf »rrecn («ee Kin. 5). 
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binatiun of thro«! screent. 
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identical to that described above. The flow speed was varied as before The results 
of these nuasuremeiits are shown in Fig. 9. In this figure, the value 100 on the 
velocity scale corresponds to a speed of 1150 cm sec. At the lower wind speeds, 
the sound pressure increases quite rapidly at first and then levels off so that it is 
approximately proportional to (,i for larne values of p. At the higher wind speeds, 
oscillations wen obtained only for lar^e values of u. For example, with a wind speed 
corresponding t( 120 m the figure, a decrease of the n to about 34 stopped the oscil- 
lations completely. At lower wind speeds the limiting Q value, below which no oscil- 
lations can be sustained, is not defined as sharply. 

As indicated already in Fig, 6, the resonator can be kept in oscillation only In a 
certain flow speed range. This ranne depends on the <; value of the resonator as 
illustrated in Fin, 10, where the upper and lower flow speeds, which define »he oscil- 
lation range, arc plotted as a function of o. The .jurve refers to an angle of attack of 
about 35 decrees, and the sound pressure was measured with the microphone ft 'mlng 
the termination of the resonator. 

As far as the lower speed limit Is concerned, it is often difficult to decide when 
the oscillations are of the nonlinear type and when they are excited (linearly) by 

Kin. '■' V.iri.itiini oi   ti'i 
(,l.if 11.,-  ; 

souii-l   prrssiirt-   with   the 
t'Miii.iUir 
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turbulence in the incident flow. Althomih presumably there is a stnuoth transition 
between these two kinds of oscillations, it seems reasonable in the present case to 
use a sound pressure of 0,02 dynes cm- as representing; the dividing line between 
the two regions. Above this pressure the oscillatiims were definitely of the non- 
linear type. 

As the (,) decreases, the raiw of oscillations clearly decreases until it narrows 
to a point at a f) value of about 11. H'low this Q value, only the weak ''backuround" 
oscillations will remain, but the self-sustained nonlinear oscillations can be consid- 
ered to I»' completely stopped at the particular angle of Incidence of 35 degrees. 
The existence of a limiting 0 value, below which the resonator cannot be brought 
into oscillations by flow, should be of particular interest in connection With noise 
control in cube:; -."here some of the noise is produced by air rushing past cavities of 
various kinds. 

The shape of the curve in Kin. 10 Is also interesting inasmuch as it indicates a 
rapid increai.'e of the range of oscillation in ihe region of high (.' values, A small 
ineriasi' of c in this region would produce a relatively large increase in the oscilla- 
tion range. This same characterlhllc feature' is probably typical for all acousto- 
hydrodynamit oscillators. 
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DISCUSSION 

M. Strasberg (David Taylor Model Basin) 

It might be worth describing a possible phcnomenological explanation for the 
excitation. It is based on certain observed facts, namely, the sound only occurs when 
the speed is in certain ranges; there are jumps in these ranges of speed; and, another 
fact which was not mentioned, but which I believe Prof. Ingard has observed, that the 
radiatior impedance seen by the mouth of a resonator is a function of the air velocity 
past the mouth. This means that the flow past the mouth of the resonator provides a 
possible mechanism for varying the acoustic impedance seen by the resonator. 

Now one can assume that there is some instability in the flow, causing a varia- 
tion in velocity of flow past the mouth. This instability is inherent in the flow a.id 
has nothing to do with the resonator; it would occur even for a hole without a reso- 
nator. The flow instability results in a periodic fluctuation in the mass reactance 
scon by the resonator. Now, for a mechanical or acoustic system which is linear, if 
there is a periodic variation in one of the parameters of the system, and if the varia- 
tion occurs at the right frequency and amplitude, it is known that an instability of the 
system can cause self-maintained oscillations. 

More specifically, suppose one has a simple mechanical system, whose difft-ron- 
tial equation can be represented by: 

'■l-\    It 2]   ■   *h \    ,i,l     v       I'. 
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This is called a Muthieu linear differential equation and is discussed by T. Brooke 
Benjamin in his comment on Prof. Meyer's paper in this Proceedings. 

In the present situation it may be possible that these fluctuations of the flow past 
the mouth uf the resonator, which occur even if the resonator were not there, cause 
such a periodic variation in the frequency, and if the amplitude a of this fluctuation 
is large enough, instability can occur and the system will oscillate naturally. 

If the instability inherent in the flow past the neck is at twice the frequency of 
the resonator, i.e., if *, 2w„, oscillations will occur at small amplitude ». If there 
were no damping, zero amplitude would do it, but with damping a certain finite ampli- 
tude is needed if instability occurs at twice the frequency of the resonator. If it 
occurs at a frequency that is equal to that of the resonator, oscillations will also 
occur at relatively small amplitude; in fact, oscillations will occur at small valut - 
of the amplitude whenever »■„ is an integral or half-integral number of times »,. 

This doesn't explain the details, but it is a possible way of looking at what hap- 
pens. There is one way that we could ascertain whether this is a reasonable expla- 
nation, and that is to actually observe the flow past the hole in a plate in the absence 
of the resonator and sec if it is essentially the same as with the resonator. 

M. C. Harrington (David Taylor Model Basin) 

Some experiments which have been done in the David Taylor Model Basin are 
related to those mentioned above. * In this case, the flew passed over a plate in which 
the aperture was located. The resonant cavity was situated behind this plate. It has 
been mentioned in some of the previous papers that the Increase in the frequency of 
resonance with increase in the speed of air flow was relatively small. In our experi- 
ments, however, we found that the frequency increased considerably, in some cases 
by 30 or 40 percent of the initial frequency with which the resonator started to oscil- 
late. The frequency approached a final value asymptotically and as the air speed 
was further increased the oscillation died out abruptly. This increase in frequency 
of resonance may be explained by a decrease in the equivalent acoustic mass react- 
ance of the air in the opening with increasing turbulence as the air speed increases. 
Thir interpretation is consistent with the results reported by McAulilfct and Ingardt 
in which the resonators were driven by an independent source of sound uf known fre- 
quency and intensity. There it was found that the resonant frequency increased 
(within limits) with increasing air flow through or past the opening. 

In the Model Basin experiments when the air speed was doubled, provided that 
this was within the range of speeds available, the oscillator began again to resonate 
at the same frequency and the regime was repeated. If the actuation of resonance 
can be explained in terms of vortices, there would appear to be a double set of vor- 
tices in the second case. Occasionally resonance was actuated again at triple the 
Initial speed. 

M.C ll.irrinnUin, "Kxcitatiun "I  (Javily Rcxunanro  by Air Klow, Alintr.ut   .11. Juur. 
AimiKt. Soc. Am. .l');!«? (I'JS?). 

tc..K. M< Aullfff, "Thf liiflm'iicr of Mx^h S|iiiil Air Klow tin Ihr IWli.ivior of Aiimsliv 
l.li-tiniiis," M.S. ThfuiB, M.I.T.    I9W. 

tK.V.   Inuiircl,   "On   the   Thuory   «"»l   DUHIKII  uf   Aioustii-   Kisoiiaturs."   .lour.   Ainust 
SIK . Am , iV.Km- 101.1 (I9SJ). 

149 



U. liiK.ird and I.. W. U.-an, III     , 

E. R. Covert (Massachusetts Institute of Technology) 

At MIT, we have been conducting a series of tests on cavities that are similar 
in nature to those that Dr. Harrington just reported on. They are essentially holes 
in the bottom of a wind tunnel with a solid wall. There are several shapes: trian- 
gular, circular and rectangular, and we have been running them from Mach number 
of 1.5 up to 3. These cavities seem to vibrate at the Helmholtz room frequencies. 
If they are deep and long they seem to vibrate in the up and down mode. If they are 
shallow they seem to slosh back and forth, much in the same manner as reported by 
Krishnamurty of the California Institute of Technology. 

We have observed that for the most part, for the rectangular boxes, the behavior 
is independent of the cross-wide characteristic length. In other words, the behavior 
is two-dimensional, as you would expect. However, at the higher Mach number a 
narrow box seems always to sing out fairly loud and clear at about 165 decibels. The 
wider boxes are not easy to excite and we don't know why at the moment. 

Another point of interest is that these can be correlated in terms of a Strouhal 
number if one uses the correct velocity of sound within the box and the Mach number 
of the free stream. They exhibit also the same edge-tone type behavior that every- 
or«: else has remarked on, where it will take off at a certain frequency and at some 
speed will jump to a higher frequency. We have taken some observations with rec- 
tangular boxes that had glass walls, and it seems that the sound is radiated from the 
upstream edge of the box. We get nice circular waves moving down into Uie box. Of 
course, this gives us a shock wat'e at the leading edge and we get nice waves going out. 
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FROM BOUNDARY LAYER TURBULENCE 
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A theory of nuise gtinefation by the action of boundary layor turbii- 
U'tice on,ui cUiKtic systi-mhas been developed,with particularreforvncu 
to tiii(l4'rw<it4'r application. The elastic sysltrni considered »Ka rt-claniiu- 
lar plate closed off by ,\ mtan^iilar hqiiid-fillfil voliimi-, A Hiniplc yet 
physically meaningful lorn, in assumed for the boiiiulary layer preiiHure 
correlation. The resulting plate vibration and sound radiation are 
derived! takim; into account coupling between the plate infitiim and the 
»ound field in the liquid. In the theory, coupling is manifested by 
radiation-indoi ed masses and viscous damping which, in effect, may be 
added to the mass and danipin^ of the plate considered to be vibrating 
in vacuo. It is shown that the noise in the closed space decreases with 
decreasing free-stream speed ami boundary layer thickness. Also the 
noise decreases with increasing mass and dampinguf the plate, and with 
increasing distance from the plate. The use of plate damping as a means 
of noise reduction is predicted to be limited on the one hand by radia- 
tion damping, and on the other hand by correlation decay in the assumed 
turbulence pressure field. 

INTRODUCTION 

Noise caused by boundary layer turbulence is important in several fields of appli- 
cation. Boundary layer turbulence is believed to be an important factor in the gener- 
ation of noise by onderwater devices, and is the prime motivation for the present 
study. In addition, the noise In aircraft cabins at high speeds and at high frequencies 
is determined mainly by boundary layer turbulence. Also the vibration caused ty 
boundary layer turbulence may have an important bearing on problems of equipment 
damage and structural fatigue in missiles and aircraft. 

There are two mechanisms of noise generation by boundary layer turbulence. 
First, the turbulence pressure field may excite the plate adjacent to it; the plate 
vibrations then radiate noise to the surrounding medium. Second, the boundary layer 
turbulence may radiate noise directly by virtue of the fluctuations in the fluid prop- 
erties. For nonrigid plates such as met in practice the first mechanism is more 
important, and consequently we exclude consideration of the second mechanism in 
the present invfstlgatinn. 
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Wc wish to study the mechanics of excitation of plates exposed to boundary layer 
turbulence and the consequent transmission and radiation of the vibrations. In par- 
ticular, we wish to treat the case in which the excited plate forms one of the surfaces 
of a closed space. Figure 1 show s the Idealized geometry we have chosen for study. 
The boundary layer is assumed to be in contact with a large flat plate, the other side 
of which is in part a closed volume. 

The problem may be thought to consist of three elements: determination of the 
boundary layer pressure field, calculation of the vibration in the plate adjacent to the 
boundary layer, and calculation of the sound field radiated by the plate vibrations. It 
is tempting to assume that these elements can be investigated Independently, but only 
in the case of a plate Immersed in a gas is this assumption likely to be acceptable. 
Fur a plate in contact with a liquid, it is well known that the sound radiation will 
greatly influence the vibrations. On the other hand, it is probably acceptable to 
assume that the boundary layer pressure field can be investigated independt ♦ly ol 
the plate vibrations, provided that the resulting plate displacement is small compared 
with the boundary layer displacement thickness. In what follows wc shall assume that 
the boundary layer pressure field can be specified Independently, while the plate 
vibrations and consequent radiation arc coupled phenomena. 

In the present investigation we are not primarily concerned with the basic prop- 
erties of the boundary layer pressure field but rather with the mechanics of excita- 
tion and consequent transmission and radiation. We are primarily concerned with the 
understanding of the structural and acoustical elements jf the problem, with the 
ultimate ubjective uf devising geometries and treatments that may lead to boundary 
layer noise control. 

Several recent works have direct bearing on the present investigation. Kraichnan 
(1), Ribner (2), and Corcos and Liepmann (3) computed the noise radiated from plates 
excited by boundary layer turbulence. Because thcirwork concerned plates immersed 
in air, no account was made of possible plate vibration and sound radiation coupling, 
such as may be important In liquids, Kraichnan considered the radiation from finite 
square plates while Ribner and Corcos and Liepmann considered radiation from large 
plates. 

Lynn (4) made theoretical and experimental studies on the excitation of strings 
by a random pressure field resembling that of boundary layer turbulence. Bringen 
(5) studied the excitation of beams and plates to a purely random pressure field, 
without particular reference to boundary layer excitation, Strasberg(6) used boundary 
layer pressure measurements by Harrison (7) to compute the excitation of both finite 
membranes and finite plates. 

In addition to Harrison, Willmarth (8) has made spectral and correlation meas- 
urements on boundary layers in wind tunnels. Kraichnan (9) studied the boundary 
layer pressure field theoretically as a preliminary to his later work on plate excita- 
tion (1). Kraichnan's (10) most recent work on turbulence holds promise of providing 
additional information on boundary layer turbulence. In addition to the foregoing, 
there is a very rich literature on turbulent boundary layers and their more general 
aspects. 

Boundary layer pressure fields have also been measured on airplane wings by 
Mull and Algranti (11), Their results arc subject to some uncertainty, however, 
Ix'cause the microphone used was not small compared will, the boundary layer dis- 
placement thickiuss, F.arlicr, Rogers and Cook (12) made measurements relevant tu 
the lioundary layer noise problem in aircraft spaces. Also Dyer (13) has reported 
boundary layer pressures as determined indirectly from noise measurements within 
aircraft cabins.   These latter two studies are largely heuristic in nature. 
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GENERAL KQLATIONS FOH PLATE KXCITATION 

The vibration un a plate cxpouud to an external pressure licid f(v,v,t ila assumed 
to obey the classical thin-plate equation; 

i    ",   v Ti x.\. I i (1) 

where »u.y.i i is the displacement of the neutral plane of the plate, nthe bending 
stiffness, M the mass per unit area of the plate, the damping coefficient, and P, the 
sound pressures on either side of the plate (at / I.,). Figure 1 shows the geometry 
relevant to the problem.   The bending stiffness is given by 

Fl 
\2  1 (2) 

where E Is Young's modulus, h the plate thickness, and Polsson's ratio. The 
damping coefficient is assumed to include both viscous and hystcretic damping, a 
step that is possible only If we make a special assumption on the time dependence in 
Eq. (1). as we shall do later. 

Boundary conditions (assumed time-independent) and initial conditions for Eq. (1) 
are specified in a later section. 

The sound field on cither side of the plate Is assumed to obey the non-dissipative 
linear wave equation of acoustics 

(3) 

'     P, 

I      '■ •■-  ■■■■ ■«    y.,-. ■). 

1        id£*M 

!• in.  I  - i H ■HI.it r. .»ml iiMirilitiiitr »ystvin fur 
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where . Is the velocity potential and < the sound speed. We have assumed that the 
f'uld is the same on both sides of the plate, but it will prove simple to consider the 
more general case should the need arise. The velocity potential Is related to the 
sound pressure and sound particle velocity V by 

(4) 

where is the fluid density. The space j i is taken to be free from boundaries, 
except at 2 i.,. The space ) 3 is a closed space with reflective boundaries. More 
precise boundary and initial conditions must also be specified with Eq. (3) but we shall 
leave this also to a later section. 

Equation (3) is coupled to Eq. (1) by virtue of the continuity condition on velocity: 

w •2: 
l.'l., 

We may associate with Eq. (1) the corresponding equation for the Impulse 
response > < * y i K   y,. t „) of the plate; 

(x -x„ i •   fy- y.l  .-(t - t„) («) 

where    Is the   DLac delta function.    Then an integral equation for * may be 
written (14): 

»( r.n      I     .ltr,    /   .IS,, «ir.t   >(,.t0i),fft«0.fi| a) 
where we have abbreviated r for x.. and <tsi: for ix.iiy,,. We note that Eq. (7) Is a 
sum of all responses of the plate for every time t; before time t. For the uncoupled 
case In which F is independent of w, Eq. (7) Is a solution for ». For both UM coupled 
and uncoupled cases, however, we require a representation of the impulse response R. C 

We may obtain a formal representation of the Impulse response In terms of the 
elgenfunction or normal modes of oscillation of the plate. The normal mode »„,„ for 
a mode desigimUfd by the two order numbers m and n. Is of the form 

«m,/'••V'" •„„'"•V   ,V--',„„t   "I   U*1 W) 

where iim„ is the modal damping and n„l the damped resonance frequency. Both .i^,, 
and   n„ are positive and real.  The normal mode satisfies the equation 

B( I - i|-».'S (9) 

where we have made explicit division of the damping Into hystcretlc damping (deter- 
mined by the loss factor ) and viscous damping (determined by the resistance 
coefficient   „). 
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Substitution of Kq. (8) into Eq. (9) i.Uis the equation for the cigenfunctions 

where the eigenvalues        arv taken to be real.  It Is convenient to have the elgen- 
functions normalized such that 

ihn     pn 
|S m,  (11) 

when; is the Kruw cker delta. Solutions of Eq. (10)are to obey the same boundary 
conditions a; tin ( of Kq. (1). The eigenvalues mn are then determined by the par- 
ticular boundar   < nulitions of Interest. 

The nu t.i! ilamplng and damped resonance frequency are determined by the 
damping coeldcients and eigenvalues as follows: We assume that the damping meets 
the Inequalities 

'     3     ""1     2.n'nM    T (12) 

These restrictions Insure that the damping is not too large, but they do not 
exclude cases of practical interest.  Then the modal damping Is given by 

4 n 

""'"      W     2»'  

which fuliows as a consequence of Rqs. (8), (9), and (10). Important limiting values 
of • „ are 

'■•"'' r      ,',« a*) 

"  ' «'    ■ ^ (") 

■   '    m n 1 i 
"mn 2        2M '      " ," "" ' 'WJ 

The damped resonance frequency Is also determined from Eqs. (8), (9), and (10). 

i     ■ B    A 2 
""     M (17) 

and requires simultaneous solution with Eq. (13).  However, for most cases of prac- 
tical interest     „ may be closely approximated by 

■("Y 2 j as) 

and is independent of dampin<r. 
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Wr now turn to the representation for the Impulse response. We introduce the 
Green's function 1, which is the Fourier transform of !■, 

uM.t   i,,.!,»      2      I     0(r.r„.   I i-xp.-i .fl - »„)! <l • , «gj 

substitute into Kq. (6), and obtain 

4!       4: .x    K„)     >    y.i (20) 

where 

4       -M ■  i 

Hr  1        ■     1 
(21) 

The  Green's  function r. can  ix'  expanded  in terms of the el|;enfunctiuns     , : 

O'r.r,,   i      1,  H.,uir  .   i  .„,/n . (22) 

We evaluate the coefficients A.,, by placing Eq. (22) in Eq. (20). using Eq. (10). 
multiplying by   ,  , and IntcKratinp; over s.  The result is 

' r > 'r •■fi "M 

0(r.i       i       \' 4 4 
(23) 

We then use Eq. (19). which Is evaluated by the calculus of residues at the poles 
t i.,, to obtain (14) 

iin     i t - t,. i l'{ t ■ t (24) 

wherr 1  t   •     is the unit step function. 

Equations (7) and (24) complete  the  formal representation for the plate dis- 
placcnutit ■.. 

THE BOLNDARY LAYER PRESSURE  HELD 

Although it is not (nir pui'imsi to investigate the basic sir icture of a turbulent 
boundary layer, wr must oljtain an approjuiate description of the field to understand 
satisfactorily the mechanics of < xcitation and the possibilities for noise control. We 
assume that the boundary layer pressure field has the following characteristics; 

1. The pressure field is a stationary random process. 

2. The pressure correlation decays with lime, 

■'.   Ihc pressure correlation has .i spatial extent small compared with the plate 
si/e oi interest. 

■1. The pressure cnrri lation is runvfcli'd almu; tli< surface of the plate, in the 
rlircrtion nf tlic Irie-slreaui Veloi'ity. 
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5. The spatial correlation is homogeneous, depending upon the difference in the 
spatial coordinates in a frame of reference moving with the mean convection 
speed. 

Accordingly, we adopt the form given in Eq. (25) as a possible phenumenuloglcal 
description of the boundary layer pressure field: 

ffx.v.t ll'fx' ,y',t' 1 lJ ••X| 

where 

symbolizes the time average operation 

* denotes the complex conjugate 

K   a the normalized pressure correlation 

fJ is the mean-square boundary layer pressure 

v is the mean convection speed,  taken to be in the positive * direction 

is a measure uf the inverse radius of the turbulence "eddy" 

is the mean statistical lifetime of the turbulent state. 

The currelation area A is obtained by integration of Eq. (25) over    and   : 

2 
A     T' (26) 

Recent measurements by Willmarth (H) show that the ruot-mean-square boundary 
layer pressure is given by 

' •  •''■•   '>    <-J (j,, 

where r is thc^ free-stream vclority. Harrison (7; obtained a numerical cuefflcient 
somewhat greater than that given in Eq, (27), namely 9.5 10 '. (Earlier results by 
Dyer (13) from aircraft cabin noise measurements yielded a value very close to that 
ut Eq. (27).) We shall use the valii' g'ven In Eq. (27) In examples later in the report. 

The normalized pressure correlatinn <>f Eq. (25) is shown in Fig. 2 tor an arbi- 
trary valur of the product . We see that the currelation dec IT uses as the time 
delay increases, and that the corn latiun peaks for (mrticutar values of . Measure- 
menus on pressure correlation generally exhildtth«: • i |.,ir;iete-istii,s(as do measure- 
ments on velocity correlation (15)), However, thi r.u ii'-uremenls also show thai the 
correlation is somewhat less peaky than that MKAVH,  ami tends to hecmK   sHglUly 

157 



1.   Oycr 

03 

0.6 

- 0.« 
ti 

o| 

- 0.2 

-0.2. 

I '0.5»fl 

-I 1  

«■0 
«v9« 40 

t 

J« I,5v8 

X 
0 O.Z        0.t        0.6        0.8 1.0 1.2 1.4 

ITI/9 
i.e 

Fie.   Z   -  Normali/.i'd   Inmiuiarv   layiT  pri'Bsurc  curri latiim  fur 
.in arbitrary value of -v 

negative and oscillatory beyond the major peak. Thus, Eq. (25) lb an idealization of 
the pressure field. althouRh it contains all the elements assumed to be of importance. 
The added complexity required to obtain a more exact fit with measurements does not 
appear to be warranted for the present investigation. 

The spectral density S(   i may be determined from the pressure correlation by 
the Fourier inversion 

sr 2    I        W r. t it *( r. t ' i    mp i    '   t| ■ (28) 

With the use ot Eq. (25). thr. spectral density is found to be 

(29) 

wherf" 

v ' (30) 

is a characteristic frequency determined by the sum of the "eddy" convection 
frequency and the inverse time constant of the decay.   Si   > is plotted in Fiß. 3 as a 
function of       ..  Measurements by Harrison (7) and Willmarth (8) arc in general 
accord with Fig. 3, except that the data fall off more rapidly with frequency above 

equal to about 3. 

Comparison of F.qs. (25) and (28) with measurements (7,8) hud to the following 
sell-consistent estimates for the purametcrsdrscribint; the boundary layer pressure 
field: 
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where H is the displacement hounda.y layer thickness. We see that the characteristic 
frequency ., appears to he determined mainly by the eddy passage frequency, a result 
obtained theoretically by Kraichnan (1). Thus, the spectrum S( > for boundary layer 
turbulence is nearly Independent of the lifetime , although the correlation R r, . n 
is strongly    dependent. 

The correlation area A is of the order of <)', as may be seen from Eqs. (26) and 
(31). If wr make the relatively unrestrictive assumption that A is much smaller than 
the plate area L,L , we may simplify Eq. (25) to the form 

l(r,Mt*<r'.''i    ' Af'••(', -V'V -t ■;) exp (32) 

In essence, Eq. (32) is a valid simplification of Eq. (25) for a i, where i. is 
the smaller plate dimension. Equation (32) gives analytical simplicity to the boundary 
layer pressure field, while at the same tlmo retaining the essential properties of a 
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decaying anci  convccttnK field of small scale.   Lyon (4) used a correlation of the 
form of Fq. (32) to compute the response of strings in a convecting turbulent field. 

It is of interest to note that, in the limit of very short lifetime. Eq. (32) 
approaches 

M i , i ii '■ i '. i   i       • JA   IJ    (    -vi    i   )    i   i (33) 

Also, for v small compared with . the correlation approaches that of a purely 
random field, sometimes described as "rain on the roof." for which Eringen (5) has 
computed the excitation of finite plates. On the other hand. In the limit of very long 
lifetime, the exponential factor In Eq. (32) Is unity for nearly all , corresponding to 
the case of convection of a frozen pattern In the turbulent field. 

In what follows we shall use the form of Eq. (32) and the estimates ol tht .itld 
parameters given by Eq. (31) as a description of the boundary layer pressure field. 
It Is Important to emphasize that this description is not precise, but is intended to 
display in a simple way the essential features of boundary layer excitation. 

RESPONSE OF A FINITE UNLOADED DAMPED PLATE 

We consider here the case ol a plate immersed in a low-density fluid* such that 
the radiation reaction on the plate may be neglected (i.e., p, - i-, ')• Then the 
sound field external to the plate and the vibration field on the plate can be considered 
independently. Actually we shall find that the effect of fluid coupling does not change 
the form nf the results, so that much of what is done here can be carried over with 
appropriate modification to the more general case. Thus, we proceed to the limit of 
zero fluid load, and the plate displacement becomes 

■kir.ti        |     ■!<       (   ilS, yir.t,   r„.t„U(r,|.t<,1 . m\ 

Also, Lyon (16) has shown that the correlation may be obtained from an ensemble 
average, and may be written as 

»■fr.t)w*(r   .t'i I     ill       j     .It '   |   .IS    |    IS'.fir.t   r   .1,1 

•'"        • (35) 

•   |S*( r ' .t '   r'.O     t' r ,. t,, It *( r'.t.', I    . 

The source correlation required in Eq. (35) is given by Eq. (32): we now proceed 
to the explicit form for the eigenfunctions required in the impulse response e. 

For simplicity, let us assume simply supported boundaries at the plate edges: 

.2 .2 

• j     "      "      "•  'x : * *      "      V     I«. I      . (36) 

These boundary conditions are not apt to be met precisely In practice, but they 
lead to relatively simple eigenfunctions.   Furthermore, the use of Fq. (36) is likely 

•'III'    (|u,iiit it.il :V"  ri'quiri'iiu'lil   'in tin- di-r.silv   will I». I'ViiliMil Iruin   llic n silts ..i th. 
ni'Xt  sri t ion . 
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to lead to error only (or the very lowest modes: the eigentunctions and eigenvalues 
are not too sensitive to the boundary conditions (or higher modes. Normalized solu- 
tions ü( F.q. (10) that olx'y Kq. (36) are 

if' -l.JV1 ^"'l.' s"''i.' (37) 

with 

(0 (38) 

Equation (35) Involves the product of two doubly Infinit-? sums, a typical term of which 
is the cross-product of two modes (   n) and (p.n): 

,\f 

(39) 

■    - 111     ..,,1 I  -   t     1   Sill     .      1 I.. >     I        - v   ,, i    ■(        > . 

The > Integration is simple because of the delta function v \ >. Thus they' 
integration follows readily and yields iv 2. The \ integration is equally simple If 
we assume 

I-, (40) 

The quantity v Is essentially the greatest distance over which the source is cor- 
related. From Eq. (31) we estimate v to be about 24 i. Consequently we require the 
plate length to be much greater than alxmt 24 displacement thicknesses, or about 3 
boundary layer thicknesses,* a condition that Includes all but the very thick boundary 
layers or very small plates. 

With the use of Eq. (40) the \   and x    Integrations yield 

2    ..,"'■• 

where 

(41) 

may be termed the convection frequency, and is interpreted as the frequency at 
which the turbulent field is convectert past a length of plate equal to the -modal 
wavelength. We see that by virtu« of the Krone cker deltas. v,l and ,. the plate 
modes are statistically independent. Physically this result is due in essence to the 
Uin'eness of the plate compared with live correlation size of the source. 

;.   ,   r,   ,, •     , -   • ■,.    Ijimiiii.t r.    l.i v* r   ' ..i •■ ;.< ^ •■    . -.    .ilt.nil     1 (I    I ;n .■ •-    l\-v    ii:spl.u t'tr.nil 
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We now turn to the time Integrals of Eq. (39). To facilitate inteRration we intro- 
duce the variables 

; i    ■ i ' i -   ( t - t ,, * 

' t '    t'1   •  (t - t,, > 
(42) 

The new coordinate system   ,   . is shown In Fig. 4 In relation to the coordinates t„, 
t ,.   By use of the Jacobian, the differentials become 

.it „.H;,    J-.I..I. 

and the limits arc. as can be seen from Fig. 4, 

(43) 

to   ..   tor 

f to    .   for 

Then Eq. (39) becomes 

Af2 

»fr.tH'lr'. »')•„„ y-j :mn(r) .■„,/>■) !,„„(• i 
mil 

(44) 

where the time correlation integral Inm.   1 Is given toy 

(45) 

K;ii.   1  - I .j.t» j v il ;"i. .i:i'l i .Miriliii.iti   s\ stfii 
lllr  till ■   ll.m .in. 

I<i2 



Suuml fruITi    iVi'niid.i :-v   l.tiyrr   lurlmlm. ■. 

Equatiün (45) is similar to an integral used by Lyon (4) in the string response prob- 
lem, except that he specialized to the ease n. Because (if the absolute value sign 
in the luteiirand we must integrate Eq. (45) in separate regions, depending in part 
upon whether     is greater than or less than       (i.e.. n or n).   Figure 4 
slumsthe regions within which the integral must he evaluated. Thus.Eq.(45) becomes 

/  '     C 

/  "    I j 1-  '•xp -■ 
(46) 

The integral for        o is identical to Eq. (46) except that    is replaced by - 
throughout.  Although the integrals of Eq. (46) involve elementary functions, they are 
exceedingly laborious to evaluate in generality.  Rather It is more convenient to give 
the results for special cases, in order to avoid horrondously long expressions and to 
maintain physical clarity. 

It is of interest to note that the results expressed by Er    (44) and (46) ran be 
obtained in a somewhat different but equivalent way. using the formalism of Powell (17). 

Mean-Square Response at Coincidence 

We consider first the case of great importance in aircraft and missile applica- 
tions, where the mean convection speed v of the boundary layer pressure field can be 
the same order as the free flexural phase velocity cD In the plate.* 

Integration of Eq. (46) shows that for ' l maximum response occurs when the 
convection frequency equals the resonance frequency (i.e.. ).  The foregoing 
condition l (or   ,mi      I) corresponds to the requirement that the boundary layer 
pressure flcid be correlated over a distance greater th'n the - -modal wavelength. 
Inasmuch as the correlation distance Is also taken to be smaller than the plate length 
see Eq. (40). we find that for maximum response at „the mode number^ is 
restricted by 

"■    ■—      '• (47) 

With the use of Kqs. (18). (38), and (41), we can see ihat is equal to . „ for a par- 
ticular speed v   given by 

v        ! nty!'2 

i i •    ,"-: ! (48) 
'11 "ll-v'  j 

The speed v. is termed the hydrndynamic coincidence speed. We see that for modes 
M •■. v is approximately equal tor,,, corresponding to the situation expected in 
one dimension (2.13). For n the same order or greater than   . the coincidence speed 

• i • .    1 :-. ,    !li' s'.IMl   fh.is,    '.rim ll',   lur H.lll j.l.ili'S   i-i  ivs. n     ■.   r,, •'    H M 
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isincTcasrd by tin- requirement that matching occur with the component of v projected 
on t!ie direction of the standing wave. This result is similar to the result of Ribner 
(2) lor infinite plate excitation. 

The time  correlation  integral I    i   i is now   specialized to       n as well  as 
„.„ (i.e.. ■,     v).  We find 

'■•"■"n \-J'>       •|,    '    .:, •   l,-1    ■   -1    -       ^   14     ■*. (49) 

Equation (49) plus Eq. (44) gives us the mean-square displacement »-' at hydrudynamic 
coincidence (v     v ). 

We may specialize Eq. (49) further.  Consider the case of low damping.  Then 

■■■""" ' ;■..„■     "■■•.. «• (50) 

As expected, the mean-square response in this case increases with increasing life- 
time and decreasing damping. 

Next consider the ca .■ uf very high frequencies.   Then we get 

I ■ ' (51) I      (Hi ,     . 1 

Note that the mean-square response may be proportional to a'* if i.,t. Is much 
greater than unity, corresponding to the situation in which damping decreases the 
displacement at resonance without appreciably broadening the bandwidth of the 
resonance. 

Mean-Square Response Below Coincidence 

In underwater applications the mean convection speed 's much smaller than the 
coincidence speed (i.e.. v v.,). Consequently, we Investigate Eq. (46) fur i ,,„. 
Also we specialize to the case n in order to obtain the mean-square response. 
The result is 

' " "„'„   j 
(52) 

1 ""    .   "'  ••! ' '•„,  .n^..,! 

.' ' •'.,„  ' ' "   j 
i .    1  2       J     J   .   t:l . }).! 1       I   ' 

.      "" I»"     J 

For ease in interpretation, we consider two special cases uf Kq. (52), for low damping 
and for high frequencies, respectively: 

.   2 I 
(Mil ,i 1 

1 • i ■ :„ J       ■" (53) 
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and 

,.n"M     '        a        !'     '    . 
I ) I 

llltl 1     •     . (54) 

Noti' that for underwater problems we cannot apply these results directly because we 
have assumed the plate to be immersed in a low-density fluid. However, we may 
anticipate a result of the next section that shows the correct result to be of the same 
form.   Consequently, we may proceed with a discussion in the frame of underwater 
application. 

Fur definiteness. let us make       small, so that ,.„, „„-•   The resulting value 
of I. ,/<'< is plotted in Fig. 5 for various values of . Several important conclusions 
and comments may be made from Fi^- 5 and the lore^oing: 

1. For usual underwater conditions the plot is estimated to cover the frequency 
range from about 10 to 10,000 cps. with some extension below 10 and 10,000 cps pos- 
sible, depending on 

2. I..,"1' is proportional to the mean-square modal velocity. This quantity has 
a varying slope as a function of ,. „. At low frequencies the slope is about-3 db octave. 
at intermediate frequencies about -10 db octave, and at high frequencies about -6 
db octave. 
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3. With the use of information presented previously in the Section on Boundary 
L,ayer Pressure Field it is found that I,,,/11 varies with al-out the 3rd power of I1, at 
low frequencies and about the 5th power of i at high frequencies. Also the dependence 
on boundary layer thickness is the 3rd power at low frequencies and the 1st power at 
hi^h frequencies. 

4. Hysteretic damping is an Important mc;ins of noise reduction. Above a certain 
frequency, however, damping is seen to have a decreasing influence on the response. 

We wish to expand upon the last comment. Damping appears to be an important 
mechanism for boundary layer noise reduction. Recent researches on the mechanisms 
of damping by applied treatments (18-21) are therefore of major interest inthepresent 
problem. As Implied above, however, there is a transition frequency , above which 
increased hysteretic damping brings diminishing returns. This frequency is given by 
the condition a,,,,      i from Eq. (54), and is 

■■,     ..'    • (55) 

Equation (55) Is charted in Kig. 6. A typical small value of for underwater 
applications is estimated to be about 3    10 J sec (corresponding to f   ' 20 fps ' 12 

LOSS FACTOR   7) 

Viji,   '>   -   Tranbition fruqui'iicy   for 
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kmiis und i 0.02 it). Wcsrcloi .xamplr, that il is 10 -' (a quality factor i,1 of 10-') 
tlu ro would br diminishing returns in introualng ubuvc 1000 cps, ulthuu^h greal 
bpnrfit would be derived below 1000 cps. Qualitatively, wo may conclude that dampinn; 
of a plate and decay of turbulence play analogous roles in the plate response below 
coiiu-ideme. and that usually, but not always, damping is the dominant factor. 

We may understand the foregoing result on damping effectiveness by appeal to the 
following physical arguments. In general, the response of a plate to an arbitrary 
spatially extended driving force is a combination of the "forced motion" (which would 
result if the plate were unbounded) and the "free motion" (which takes into account 
boundary conditions and is manifested by resonances). For short lifetimes ( small) 
the plate response is largely that of the "free niütion" of the plate, and is therefore 
damping controlled. For longer lifetimes ( larger)the plate response contains more 
of the "forced motion." and is therefore controlled less by damping. Thus, for fre- 
quencies less than the transition trequ. icy. the plate response is largely that of "free 
motion," and the plate vibration is controlled by hysteretic damping. Above the 
transition frequency, the reverse situation is obtained. 

Displacement Correlation Below Coincidence 

With reference again to underwater applications, we consider , „ for    dif- 
ferent from zero.   For the case of low damping, integration of Eq. (4C) yields 

I    > ■ i 
xp - i..„   '      o»    ,r„ 

V-i   ; - ".. ' (56) 

from which, of course, we could have obtained Eq. (53).   Then from Eq. (44) we get 

»i r. t i» ' r' . t 
A     f 

(57) 
■<r -■■!.., 

1 l 

In general, the plate correlation Is required for the computation of the radiated 
sound field. Eq. (57) reduces to the result obtained by Eringen (5) for the case of zero 
lifetime. 

SOUND RADIATION INTO A CLOSED SPACE 

We shall investigate the radiation of boundary layer noise into a closed space 
with reference to the geometry ol Fig. 1, and in particular to the underwater ease. 
Our major concern is the sound within the closed space. But we shall see that the 
radiation into free space influei" •■* tne resulting sound field in the closed space as 
well, and hence must be considered. 

Influence ol the Closed Space on Plate Vibrations 

Consider first the closed space I, .'). The Fourier transform 'i', of the velocity 
potentiil    .satisfies the Heimholt/ equation 

•'•)•,   ■   I ■'!',      ■• i:)h) 
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where k , .   Assume all the interior surfaces with the exception of the exposed 
plate are pressure release surfaces, i.e.. 

M (1.    I 

I1-,        H,        •'   V       ".   I (59) 

These boundary conditions correspond approximately to an interior lining of, say, 
air-filled rubber, or adjacent air-filled compartments, when the closed space is 
liquid filled. 

A general solution of Eq. (?'<) that obeys Eq. (59) is 

•I'2.x,v./..l       £   Bml  .,„;r,  sir. knc|/ (60) 

where 

and wh >te : and are the eigenfunctions and eigenvalues given by Eqs. (37) and 
(38).  Because of the coupling condition given in Eq. (5), 

^ WWW" «••" W'    ■ g «™-W" (62) 

where B ,,,, is the modal plate velocity. Consequently, the modal coefficients are 
related by 

ll... 
(63) 

The pressure transform is equal to -1 'V,. We form the ratio of the coefficients 
of the modal pressure to the negative of the modal velocity; at / lt this ratio is the 
impedance ?|rn felt by the plate as a result of radiation into the closed space.   Thus 

tin Is,.,,!.,      -i   Mj 
(64) 

where Mj is the effective mass per unit area associated with coupling to sound waves 
in the closed space. We see that M, may be positive or negative, rorreHpnnding to 
the situation where the radiation load is truly a mass, or a stiffness, respectively. 

Equation (64) tells us tha; we can include the influence of the closed space on the 
plate response by adding Mj to the mass M appearing in Eq. (44). It is important to 
note that for liquids, Mj may be the order of or appreciably greater than M. 

Let us define a sound coincidence frequency, , . such that c . „. Then from 
Eq. (61), k.„ is imaginary for   .,, , and real for      , .   Thus 

f    , I mill k  ,I.,  . 

M,      .! (65) 

t:..1  k     I. 
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A 1-inch steel plate in water, for t-xample, will have a coincidence frequency 
., •,. 2- ' 10,000 cps. For thinner plates the coincidence frequency will be cor- 
respondingly higher inasmuch as , is proportional to ir1, For the frequency range 
of interest in most practical applications. „„ will be less than ,, corresponding to 
Mj positive (i.e., massive). 

It is of interest to add that Berry and Reissner (22) have computed the analogous 
case of radiation into a cylindrical enclosure by vibration of the cylinder surfa e. 
Dyer (23) has applied this work to the case of missile vibration. 

Influence of the Free Space on Plate Vibration 

The situation for radiation into free space is not as clear cut. A rigorous treat- 
ment of radiation from two-dimensional standing waves on a plate is not yet available. 
However, Morse (24), Gocsele (25), and Wcstphal (26) have studied the case of one- 
dimensional standinc; waves. Their results show that for frequencies higher than , , 
the radiation reaction on the plate is purely resistive, corresponding to the propaga- 
tion of energy away from the plate. On physical grounds we may take this to be the 
case for two-dimensional standing waves also. 

For frequencies less than it was found that the resistive reaction became 
small, corresponding to very little radiation of energy away from the plate. Also, 
Morse found that the reaction was priinurily massive such that a fraction of the plate 
length 

behaved as if it were an infinite plate having a mass impedance determined (in 
present notation) by 

Ml      k,.t  ' (66) 

Inasmuch as we are primarily concerned with frequencies below the sound coin- 
cidence frequency, Eq. (66) ma. be used us an approximation to the present case, 
provided that the mode number is not too low. 

Correspondingly, when the mode number is low. we must expect that radiation of 
energy away from the plate is the important phenomenon, giving rise to a resistive 
impedance (viscous damping): 

,       - (67) 

where s is the radiation elfieieney.   Fur     , , and lor infinite plates,    s is zero 
because of complete destructive wave interference in the fluid. For finite plates, s 
may !«■ greater than zero because ul incomplete destructive wave interference. The 
higher the modi- number for a given plate size, the lower s becomes because lit 
Increased destructive interference. 

!■ .,r ■■   i;.:.f..M ■.. -   !• .    ■:  ■!,. n . !!•.< .1 ■ ■ :    ■: .1 iiislim 
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As a routih approximation formula for tho radiation efficiency we  may talce 

r. . a 1 ( T'T (68) 

where 

1 ■  i I.     i (I. 1...' 

The ft it term in Eq. (60) is suggested by the aforementioned work on one- 
dimensional standing waves: the second term, by the classical radiation efficiency 
of a piston in a flat plane. 

For frequencies less than , the Influence of radiation to free space is thus that 
of viscous damping ( ,) at low mode numbei& ami mass reaction (M,) at high mode 
numbers. Unfortunately, these quantities have not as yet been determined rigorously, 
but the rough approximatiüns presented above will be of use in estimating boundary- 
layer excitation. 

Plate Excitation 

Equation (44) gives the modal displacement correlation for a plate in a low-density 
medium. We have seen that the effect of radiation into a medium of arbitrary density 
is to add to the mass per unit area and to the viscous damping. Thus, Eq. (44) may 
be applied directly to the ease of liquid coupling with the use of a new mass M and 
damping <.,„ such that 

and 

M'      MM,- M2 (69) 

. 4 

"     . m"B        •        ' ,„«v 
2M'      2\r ....     W l'0' 

Liquid coupling below sound coincidence thus influences the modal plate response 
in three ways: It tends to increase the effective mass of the plate, thus reducing the 
motion. Because of the increased mass, coupling tends to reduce the resonance fre- 
quencies, as may be seen from Eq. (17). And it changes the damping, coupling adds 
the term in ,, but reduces the original terms because of the increased mass. On the 
other hand, the forms of the plate response solutions discussed previously are 
unchanged. 

For most cases we can set theplate viscous damping coefficient „ equal tozcro. 
Then we see Irom Eqs. (16) and (70) that hystc retic damping is an important noise- 
reduction mechanism it 

..„\r- '"D 

The equality sii;n in Vx\. (71) detines a set of conditions on either ..„ or ■ for 
which noise reduction by hysterellc damping is nut efficient.   These condition's can 
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\)v cstimiittcl for a partu'ular case with the uso of Kq. (68). However, noise reduction 
by liyateretic damping nan be achieved efficiently for hinh enough mode numliers, 
inasmuch us , tends 10 zero in this range. Hence we see that there are two factors 
limiting the use of hysteretic damping for noise reduction; one the limit of energy 
radiation tuvenbyF.q. (71), and the other the limit of turbulence decay given by Eq. (55). 

Sound in the Closed Space 

In general, we desire the sound pressure correlation to describe the sound field 
within the closed space. Thepressure correlation isdeterminod bythe plate displace- 
ment correlation, as in Kq. (57). plus the velocity potential field, as inEq. (60). Dyer 
(27) has recently worked out an analogous problem, that of noise propagation in a 
circular space, the methods of which apply to the present case. We shall therefore 
pass onto a simpler problem, that of determining the mean-square pressure adjacent 
to the excited plate. 

The modal mean-square pressure |>J at the plate is simply determined by Eqs. 
(44) and (64): 

, ■! -        •»     „ •! 
f',,,, **„        ■,;   "i 

(72) 

'   I.,lv\MrJ   ■•",    C S    ""   r"' 

and the spatial average of p-;'   is simply 

(73) 

As an example, consider the following case of a steel structure in water: 

I, = 1 2 in. 

L, - I.v     5 ft 

I., = 1 ft 

i    - 20 fps - 12 knots 

I - Ü.02 ft 

• 3     10 -' sec 

= 10J (Q    100)' 

In this case the sound coincidence frequency is about 20,000 cps. Let us restrict 
attention to the case  Then for frequencies less than 10,000 cps we may- 
approximate i:, by .,„. Furthermore, for simplicity, let ur. restrict attention also 
to frequencies greater than about 200 cps, in which case M' ' \l ■ J .,M ' \1. and 

,  ' ", as can be calculated from Eqs. (69) and (67).   Under these conditions, 

U'j ,,        ^y (74) 
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und   nn is the uncoupled resonance frequency given approximately by Eq. (18).*   c-, is 
the longitudinal bar velocity in steel (' 17.000 fps). 

Equation (73) can be evaluated with the use of Eq. (52) (or Fig. 5)and the informa- 
tion given above. It is customary, however, to measure noise in frequency bands of 
width i. The average number of modes N in a band i may be determined from Eq. 
(18), and is approximately 

r.h (75) 

Thus, the mean-square pressure as measured by frequency analysis in bands of width 
. will be on the average 

"2 f2
8MJ ■ ""■ <76) 

where we now consider .imi tobe a continuous frequency variable, and where . is the 
density of the plate. Note that the plate area docs not appear in the expression for 
p-. Equation (76) is plotted in Fig. 7 lor the conditions given above, in terms of the 
Spectrum Level (SI.) defined by 

SI.        ID   In^,,,    'P2      , .Hi. for I   .ps . /<J7J 

where the reference pressure p,. is 1 microbar (1 dyne. cm2). 

Of course, measured spectra would tend to appear less regular than that show 
in Fig. 7, particularly at the lower frequencies where the measurement bandwidth may 
be small compared with the frequency spacing of the resonances. Also a hydrophone 
spaced out somewhat from the excited plate would be expected to record considerably 
less than that predicted in Eq. (76). From Eq. (60) we see that the mean-square 
pressure for a location away from the excited plate would be reduced by the factor 

smh 

1 sinh (78) 

As an example, if ? n.w L,, the above (actor is about -2 db at 100 cps and -17 d' it 
1000 cps. Even larger reductions are predicted at frequencies larger than 1000 cps, 
but these are not likely to be realized in practice because of the presence of non-ideal 
boundaries, dissipation in the water, and other noise sources. 

On the basis of Eqs. (76) and (78) we may reach the following tentative conclusions 
on possibilities for the reduction of boundary layer noise associated with underwater 
devices: 

1. The slower the speed and the thinner the boundary layer, the less the noise. 

2. The greater the mass per unit area of the excited plate, the less the noise. 

'Mit*   f-iiifiarnrnt.'tl   rt'sonaru'i'   ill  tl.«'   [il.tlf   i nnsuit-rrd   tu   In1   vibiMtm^ in   v.u m> is at 

«boul i^ c-ps. 
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100 
"I       5     6    7    8  9 

1000 
FRCQUENCY,k.CPS 

4      &      (    7   «  9 
lOpOO 

fin, T - Calculatpti averagi.' irifan-square prpsnur« at tlif «xcitrtl platr.   Uevcla arc 
ifiiutLti i unsirii'r.ihly al  lucatiuns removed from tli.' platr (»ee ti-xt for condition»). 

3. The tirtattr the plate damping, the leas the noise (within the limits noted in 
the foreROing). 

4. The greater thn distance from the excited plate, the less the noise. 
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DISCUSSION 

H. S. Itibncr (University of Toronto) 

Dyer's formulation in his Eq. 25 is. I think, a plausible space-time correlation 
function for the turbulence pressures. With his numbers, it is almost a frozen, con- 
vected pattern: coMvectlon contributes about 50 times us much an fluctuation to tne 
observed microphone frequencies. A different view is that an eddy is convected about 
5U times its length before it has been destroyed by fluctuation. The ratio of 50, for 
convertiiin-lo-fluctuation, can be approximated as infinity in two ways: the time 
scale <;in i«' made infinite (frozen pattern, treated by Kilmer and by Kraiihniin). or 
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Uii' length settle cun be set equal to zero. Dyer does the latter—he effectively reduces 
the eddy size to zero—by inserting delta-functions in his correlation. The entire 
later analysis utilizes this modified correlation, Eq. 32. 

The assumption of zero eddy »ize appears to be related to Dyer's finding that the 
plate modes arc statistically independent. It seems unlikely that such an independence 
can hold in reality for modes of wavelength less than the eddy size (the high frequency 
modes). 

Further, zero eddy size implies that the cutoff frequency ( ,,) goes to infinity: 
the analysis implies excitation of the plate by "white" noise. For a given mean- 
square pressure, the "white" noise spectrum robs from the low frequencies to add to 
the high frequencies. The analysis, therefore, presumably leads to t lerexcitation 
of the low mode.- and overexcitatlon (failure to show a cutoff) of the high modes. In 
this matter of' :v correlation function I cannot resist the conclusion that the frozen 
convected pattern would give more realistic results, since it preserves the eddy size 
and exhibits a realistic frequency spectrum. 

Dyer discusses the role of "coincidence" of moving pressure waves with possible 
free-running, sinusoidal, flexural waves in the plate. The speed of these free waves 
is a function of the wavelength. Thus only certain Fourier components of a moving, 
fluctuating pressure pattern will have the correct wave length and speed for coinci- 
dence. The assumption o' «rhat amounts to zero "eddy" size in the pattern will 
grossly change the   Fourier components and therefore the degree of coincidence. 

I. Dyer 

In comment to Dr. Ribner's statement 1 wish to note that the eddy size, in my 
estimation, has not been taken out of the problem. While the delta function appears, 
the eddy size is still retained in the quantity Hi Of course the delta function was used 
as a matter of analytical simplicity. Th onsequence of this is that the modes one 
obtains are statistically independent. 1 ..unk that in practice this is probably a very 
good approximation. While there are probably some modes that would be poorly 
approximated, they world have tobe fairly close together in frequency space In order 
for any kind of correlation. 

G. M. Corcos (University of California, Berkeley) 

I wish to compliment Dr. Dyer for the clarity of his presentation. I would like 
him to comment or. three points. 

First, I fall to see the origin of the "viscous damping" term in the differential 
equation. It was assumed that the boundary layer was undisturbed by the plate, and I 
don't sec how a plate oscillating normally to itself will dissipate energy if it doesn't 
modify the boundary layer. 

Second, there have been at least two detailed attempts at solution of essentially 
the same problem by normal mode methods, one by Dr. Kraichnan and the other by 
Dr. Powell, and there have been other attempts using slightly different methods. 
Since the analysis is on the heavy side, it would lie informative to indicate what new 
information, ueyond that already available, has arisen out of the work presented 
here. 
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My third point is in iv^.ird tu Ifac use of normal mudos. Is it possible to offer a 
simpler solution of the diflcri'iUial equation by using a fundamental solution which, in 
effect, ignores the etfect of the boundaries? An answer is provided, in my opinion, 
by some work, to be published soon, by Dr. Paul Weyers of the California Institute of 
Technology, who has studied the generation of sound on the outside of a very thin 
plastic tube, inside of which Is a fully developed turbulent flow. The point is that in 
the problem you consider, the scale of the turbulent phenomenon is small compared 
to the size of the plate. In Weyers' case, even though they are of the same order, the 
transmitted sound spectrum exhibits no peaks for frequencies higher than the very 
lowest range. Most of the energy is contained in the continuous portion, and I wonder 
why the use of a fundamental solution, ignoring all the details of effective boundaries, 
has not been considered. 

I. Dyer 

Dr. Kurtze will answer the quest ion about how one can get viscous damping with- 
out modifying the external field. 

As far as what new results are obtained, I think the primary result of this work 
is that it shows in a clear way the influence of the decay of the turbulence on the 
design of damping treatments for the reduction of boundary layer noise. I would say 
that this is the prime result and that the solutions at high frequencies ought to merge 
together and be independent of the particular details of the modes. In effect the 
fornmla is a manifestation of this. 

Skudrzyk has also made some calculations along these lines and you might be 
interested in seeing what he has done on that basis. The use of that theory is not 
unique; it's just a matter of taste and convenience on my part. 

K. U. Ingard (Massachusetts Institute of Technology) 

It might be of interest to mention work by Dr. Lyon on the problem of excitation 
of a membrane caused by a flowing turbulence. It is interesting in the sense that in 
Dr. Dyer's treatment it was assumed that the convective velocity of the turbulence 
was small compared to the flcxural wave speed and hence the resonance effects 
obtained in that manner were completely ignored. On the other hand, if one uses the 
membrane, the tension of which can be varied as you please, he can very easily adjust 
the flexural wave speed of the membrane to be coincident with the convective speed 
of the turbulent flow and, in that way, both theoretically and experimentally, show the 
resonance caused by this coincidence. Such experiments have been performed and 
have been shown to be in agreement with the culculatiuiii.. 

E. Mollo-Christensen (California Institute of Technology) 

Figure DI shows the results obtained by Weyers for the sound radiation from his 
pipe at the high frequencies only. This is the high-frequency part of his result. One 
finds this spectrum is practically continuous, in agreement with Corcos' comment. 
At the low frequency Weyers finds that he gets a Bpcctrum with peaks in it, which 
then descends into a continuous spectrum for higher frequencies. 
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One may ask why the author did not find the stream directionality ol the radiated 
flow field to free space. Listtnint! to the bend of a garden hose lying on the lawn, one 
is impressed by the strong directionality of the emitted sound field. 

7«l0-,6r 

• tb = 17t ft./■■€. 
• Uo = 207 ft. /MC 

• t^. 231 ft./ate. 
• l^ = 268 ft./tec. 

o Uo» 296 ft./ice. 

4_ 

' .».«^ 

10 12 14 

Kiu.   !)1  - SiiiuUirity "I |>ii'A<'r sjitilr.! of pi 1 
t      ll.Od I;' in . ■!      1 in.,  r   i      v' 1 m. 
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I. Dyer 

The spectrum, of course, that would be predicted on the basis of the theory would 
also exhibit these peaks corresponding to the modes, I think, and wha« I plotted In 
the last slide was essentially this portion of It. There should be no directionality to 
the emitted sound field as long us essentially the flexural wave speed on the plate Is 
less than the wave speed in the water. It Is only above thai so-called coincidence 
frequency that such directionality should occur. 
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RECENT INVESTIGATIONS ON SONIC AND 
ULTRASONIC CAVITATION IN GÖTTIN6EN 

K.r'Ain Mi'ytT 

INTRODUCTION 

The investinatums to be discussed here are divided into the following subjects: 

1. The noise spectrum ot cavitatiun with steady sinusoidal excitation and its 
relation tu the oscillation ot the bubbles, 

2. The eavitation caused by a single underpressure pulse, 

a. excited with a barium titanate calotte 

b. excited by the sudden retardation ot a moving water column. 

3. The relations between sound pressure and luminescence. 

4. The measurement ot the surface tension and surface viscosity from the 
excitation of capillary waves at frequencies up to l.S Mc s. 

It is nc'iicrally known that the onset of streaming or ultrasonic cavitation is 
accompanied by noise: the noise has a very broad frequency spectrum and in many- 
cases the audible part of it is so noticeable that it is often used as a criterion for the 
unset of cavitatiun. It *-as, for example, during the war very easy to determine the 
upper limit fur the creeping speed of a submarine as function of the diving depth by 
simply listening to the onset of cavitation or the onset of formation of air bubbles 
caused by a sufficient number of revolutions of the screw with a kind of a stethoscope 
attached to the screw shaft: already with the first experiment the increase of the 
critical number ol revolutions ot the screw with the square root of the diving depth 
(static pressure) was stated. 

As was shown in an older papei by Th. Lange (1) also for ultrasonic cavitatiun 
the onset ot noise is so sharp that it is preferred to the formation of visible bubbles 
as a criterion for cavitation. It is tu a far ••xtent without significance which part ot 
thi noise .spectrum is used tur detecting the onset of cavitation. From the work of 
Th. Lange only ono figure (fig, 1) will be given to confirm the above statements. 
Vibration cavitation was excitedwitlia quart/ crystalatbTS kc s. Thedriving voltage 
ot thequart/. is plotted unthe abscissa against the noise level in the frequency interval 
fruin 520 to 540 ke s on the ordinate. Here the onset ot cavitation is much easier 
recognized than by using e.g. the nonlineariiy ol the sound pressure increase of the 
exciting frequenry '575 kc  s) as a criterion. 
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:i' ISK SPKCTHt'M AND SOUND PRKSSL'RU OSCILLOliRAM
JOR IHl ONSKT OK CAVITATIOK AND THKIR
RI LATION TO THK OSCILLATIONS OK HCnilLKi

In a IhnruuKh invcatit:atii>n R. Ksrhf (2) has sludud llw K|M'ftrum ol sonic or 
ulirasomc ca\ilatiun lor a f.rcal number oi Ircqui ncicK ranitini: from 1U> c s up to 3 
Me ». He found out.that liuTc is aUays aline and a eoniinuous spectrum simuUane- 
I'usly. In lh»- lim' speetrum lh«- exrilim: irequeney appears, ol course, with hiKh 
intensily and also the harmonic.- are observed. This se-enisto be nln’iuus. DM Lsrhe 
could, perhaiis lor Hu- first t iiu'. ai^certain that also a numtier of siibharmunic fre
quencies iH-cur. In his investi»:atii>n he came to thi' com-lusion that tin- occurrem-e of 
a continuous spectrum miuht be apruper method to distinguish true cavitation (forma
tion ol bubbles containing only water va|Hir) from that iy|M- of cavitation when air 
bubbles are formed.

Th«- iM'curreme ol subharmonic trequem-ws (Kits. 2) is ot special interest, as 
suiiharnwnics imc-half. one-lhird, and one-fourth the exc..inn irequem-y are uitserved. 
Also the overtones of the subharmonics are present. In a nmre recent investiitalion 
• >n the detailed structure oi the spectra L. Dohn (3) tound not only subharmowes 
within the ramit of the lundamenial freqm-ncy but also - musiiy as overtones of half- 
order subharmonics - uplo the 30lh or 40lh order, their levt I sunn-liines beinp 10 db 
under the level of the inle|-er harmonics.

The iH-currenre of subharmonics is not difficult to understand. In a hiith-inlemilly 
so-and field the oscillalini; air bubbles chantie their votunae to a itreai extent durinp 
om' period. That nu'ans that the compliam-e ts air and the nuss of water taking part 
in the o.scillation are functions of time. In this case we have a rheolinear oscillation, 
the differential equation of which admits also subharmonics as solutions. W. Ciith 

starts from the piineiple that the oscillation is nonlinear, since the compllam'e of 
iht air cushion is a function of the oscillation amplitud><. Tin- compliance increases 
with increasinK amplitude. The resonam e curve of such a system Is. as Is well known, 
not symmetrical. Th<- maximum of the curve moves towards lower fri'qui iwies with 
increasing amplituih-. At the sanu-tlme tb« occurrence of subharmonics in possible. 
It IS. however, surprisini; that especially one-halt the excilini;frequency ard thi' cor- 
re.spond.ni;ovi riom s an- so clearly nbM-rvable. This nM-ans that inihe oscilLilioi. of 
thi' bubble a periodic amplitude or |ihase nsidulalion with one-hal< th>- i.scitint: fre- 
quem-y is very prominent.

Varyinu Ih*- cisidilions for <iltr.isonic cavitation such as air content or exciiini: 
amplituilie. nsire a.siunishim: results with res|M-cl to th»- .soumi pressure oscilloi;ram 
or to IIm soumi s|s clruiii may Is •4s.iinid. Such invesimalions wi re carried oui »-v

liiU
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L. Bohn (3).  His apparatus was very simple in principle (Fin. 3).  Twenty-one mag- 
netostrictive systems with a resonance frequency ot 14.6 kc s connected in parallel 
were arrangod in such a way that the sound was focused on a small area. In the focus 
a microphone was placed, consisting of a 
thin nickel wire of about 0.5-nimdiameter 
(5).  Only the tip of the nickel wire was 
sensitive  to sound since the rest of the 
wire immersed in the water was covered 
with a thin plastic tube.   The part of the 
wire outside the water had considerable 
length and its end was  covered  with a 
wedge-shaped layer of wax so that only 
progressive waves are excited at the tip 
of the  wire.    These  cxtenstonal  waves 
generate an ac voltage in a solenoid around 
the nickel wire. The microphone responded 
to frequencies up to 1 Mc, s and it is of 
minor importance whether the frequency 
response curve rises with frequency, as 
corresponds to the principle of the mag- 
nclostrictive transducer, or is leveled out 
by an electrical network. 

The cavitation bubbles have to be 
formed at the tip of the microphone to 
excite directly the microphone with their 
vibrations.   In order to really accomplish 
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thr onset of cavitation at the very tip of tke microphone, eapecialljr with degassed 
water, a current pulse (shurti ned cundeniier dlacharite) was led thron|h the wire Udo 
the water; so by either increasing the temperature of the water over a very small 
area or by a weak, transient electrolysis gas bubble nuclei were Ipjeeted at the tip 
of the wire.

Of special interest is the cavitation nolae for weak excitation in saturated or 
moderately undersaturated water. Then the caviUtiun bidibles are excited (by pulses) 
intheir natural pulsation oscillation and reverberate with this frequency. Thebubbles 
arc preferably stabilized at certain sixes. Sometlaws cloudsof very tiny babbits are 
then intermittently pushed away from an 04cillatiag bubble. This is probably caused 
by strong oscillations of the bubble surface excited by the high acceleration related to 
the pulsation. K therefore suggesU Itself to asauam that in this case the natural pul
sation coincides with a natural surface oscillation of the bubble. For weak excitatioii 
the surface vibrates on a sabbarmonic overtone based apoa one-hall the natural fre
quency o.' the pulsation oscillation. For strong excitation a higher order of the surface 
oscilUtion coincides di.-ectly with the iwtural frequency of the pulsation osciUaliea.

hi Fig. 4 the elgeafrequency fof the 
pulsation oscillation and, the half
order sMarmoaie fjaswellaathe 
differeni overtones ff, to f^^lfrom the 
secoad to the seventh order are platted 
agaiaot the reciprocal bt*ble radius 
according to the formuia given by 
Minnaert. t is evident from the graphs 
that for 43, 47, lU, aad 210 kc a the 
eigenfrequency of the pulsation oscil
lation for the correapondiag bubble 
sixe coincides with the aevealh, sixth, 
fifth, and fourth order respectively of 
thr surface oscillatioa. The third 
order can also coincMc with oar-half 
thr fundamrmal frequency of thr pul- 
sat tun oscillatioa, resulting in a

K.z. i - •>■ I)..' r.rl..>. 117 kc S.
• Ml illation* and «>f aon •* ii <al« a oi aiirl.i* >

oaKiiutuma for air a i., »at. r a. . A qunmiUUve coafiramtioa of
f'lMti.ir. ..f Uo- r.'i .prot.ii radaia statements is given in Figs. 5 aad 4.
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Soaic ami Ultrasonu C.ivilaliun in (i«>ttjn>:fn

1

sk.
- W , /

t» - Bubble oscillations clurinj* tavilatmn :»roc- 
»‘ss, tixcilini! frequency: i4,f> kc/s. Ampiitufle ca,
1 atiii, Nalurai frequent v of tmbble; (.S - 70 kt /s. 
S.ituration of water: HO - ‘*0^ ,

Here wi' have weak cavitation: the sound pressure is 0.7 atm and the saturation with 
air about 70 to BO percent (Fig. 5). The corresponding values for Fig. 6 are 1 atm 
and bO to 90 percent saturation. In the oscillogram as well as in the spectrum the 
preference of a certain frequency range - using aterm from physiological and music^ 
acoustics one might say formant frequency - is obvious. In Fig. 5 this «110 to 120 
kc s. in Fig. 6 it is 65 to 70 kc s. Also lower ' formant" frequencies might occur, as 
for example the frequencies 15.8 and 16.6 kc s respectively and 22 kc/s in Fig. "Mor 
a sound pressure of 1 atm and air-saturated water. On the other hand also h^r 
formant ranges are possible (see Fig. 8); the saturation corresponding to Fig. 8 is 60 
t‘.) 70 percent and the sound pressure is relatively high (2 atm).

For \-ery strong sound excitation things become rather complex. There occur 
reverberating oscillations of the bubbles at certain frequencies. Also stabilization in 
the above oescribed sense is observed. As is ejqiected, the energy of the spectrum in 
all cast s increases with frequency. There are sharp maxima in the oscill^rams 
with a pulse width <if only some microseconds. The width of these pulses can M ciU- 
culatecl from the minima in the respective frequency ranges of the spectrum^ Fig. 
9 a spectrum of this type is given. There is a marked minimum at about 200 kc, s.

Another e.\ani|)le illustrating how the 
noise spectrum extends to higher frequencies •••••••• •
whi n the exciting sound pressure is raised 
from 1 to 4 atm is given in Fig. 10.

On the other hand in saturated or. 
better, oversaturated water larger bubbles 
are formed which are in re.sonance with the 
exciting frequency of 14.6 kc, s. Then there- 
are no sharp sound pulses and the oscil
logram re sembles more or less a sine- 
curve-.

Vi rv sharp puls -s are naturally observed 
III 1 xtri iiiely unde-rsaturate d water at higher 
excitini- sound pressure amplitudes. The 
spe ctrum is the n e xclusively give n by the
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- Bubblf oscil latiuii du ririj; ta\ it.ition prijc- 
fhsi. KxtrUinj. frequency; M.bki/.s. AnipljtutU- 
c.i. 1 atrn. Saturation ol uati*r: ou - 7U7t.

I I r-r -r

Kii; ' - Hr. »^ur.- .-hoc k , au-.-d by bubbi.- , 
Exdti..^ l.-ccu-ncy: U.c. k. s. ,..„i < ..t,,;
Saturation of x^alfr: TO'"-.

form ..f th.- I.U1S. S (Fig. 11). Th.‘ i nvelo.,.. ol the- spectrum can easily be .riilained 
With the* assumption of a cosine pulse of 6 to 7 sec duration.

The oreui rem.. of a continuous spectrum has often been the subject of detailed 
discussion For some time il was believed tliat the continuous spectrum was a 
criterion for real cavitation, that is. cavitation oi vapor tiulibles. A more simple 
reason for the < xistence of a continuous spec trum is that the amplitude or the phase 
of the gas bubble oscillation is subjected to statistical fluctuations, which ronse- 
qucntly re nder a eontinuous spectrum. The va|.or bublile cavitation, if it at ill has 
to I). distinguished from th«. formation of gas l.uMiles. is supjiosed to be the stronger 
the hi^;he*r thi* tr<*qurncics in the* sprclrum arc.

.S!n:ultancou.s!y icith the above iiieniiom-d investigations K. Muiidrv and \V (Jiith 
(ti) lilmc d the gasliulible osrillafioii itse lf. In the.se experiments the oscillating cavi
tation t'ublile IS gem rated at tiic tip of a niagne(o.strietive nickel rmi (2..i ke .s) The 
biihldi IS liehli || .I|> with an interniitlent eleetric .spark am! Iheu lecordl d on a 
statioii.li yliliii with tin help ol a revolving mirror; the ni.i.vimal nuniln r of exposun s 
IS aboul 105,000 li-ames see. As soon as theliulilile has lieeii regisiere.: ihe sound is

IK4



Sunn and Ultraüunic Cavilalion in nüttinuen 
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cut off at unco and the sizi- of tin1 

bub.ile ;.l rust is measured, The film 
is thoiu'valuati'd byplanimeU-rinKthe 
bubble Thus an "average" bubble 
radius is found. This radius is plotted 
as a function of time for a number of 
bubbles of different sizes in Fig. 12. 
The average radius ol the bubbles in 
this figure ranges from 1.42 mm down 
tr 0.3 mm. These sizes are indicated 
with theriash-dot lines in the detailed 
pictures in Fig. 12. The dashed lines 
{live the corresponding decay curves 
according to the theory of Rayleigh. 
Two conclusions may be drawn from 
the results. Firstly, the time interval 
during which the bubble is larger than 
in the equilibrium position (under- 
pressure phase) is longer than the 
time interval during which the bubble 
is smaller. This means that if gas 
diffusion occurs the direction of the 
diffusion from the liquid into the 
bubble is preferred to the opposite 
direction, so that the bubble is grow- 
ing. Even more interesting than this 
phenomenon is the reverberation of 
the bubble excited by the implosion. Kspecially forthe smaller bubbles this is clearly 
visible. The reverberation frequency is practically given by the natural frequency 
ol the pulsation oscillation calculated according to the linear theory of the bubble 
oscillation. In Fig. 13 a number of 'xaniples of such measurements are collected. 
Plotted against the measured length ol the period of the natural oscillation of the 
bubble is the measured radius of the bubble in equilibiium position. The line cor- 
responds to the calculations ol Minnarrt. The results are obviously in good agn e- 
ment with the above mentioned investigations on the cavitation spectrum. 

KM ilinc »uiinil Air 
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It is also possible to make the shock waves, caused by the implosion ot the bubble 
in the water, visible with a schlieren method (Fig. 14). Thereby a number of shock 
waves are observed in temporal suv.cession, all of them having their center on tin 
surface ol (hf transmitter but at dillerent points. This is no wonder. It only indicates 
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that tlnri' an' dillcrcnt ccnttTH oi imploHion. That agtttn may Iw taki'i1 is an optical 
aruuniiTit or proof lor the occuiTcnco oi u continuous spi'i'trum inlht- cavitatiun noi««'; 
ihr shock waves illustratid in FljJ. 14 for ixamplr arc generated within a tinu- inter- 
val ul at least 80   sec. 

A more (icuili'd .study ol the shuck waves shows a slow pressure increase at the 
t'runt ul the Shockwaves whereas onlhelnicksidt there is a steep decrease.  Ai cording 
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III W. (;iiih (7) thiii ran Ih- l■x|lluim■<l liy liiokini: at lh» arri'ii ratiuii ol thi wall r an a 
lunrliun ol limi'; wr havi- an incri'ani' ol Ihr arri-li-ralion lu Ihi-rrnirr andihina 
Kudcli n ri'lardalion.

Al ihik poim soiiu abort rrmarkii will br pul in on rli'anim; ot nurfarrii with 
ullranonics. which in Ihc panl years iM canie .*n ollen-uned practice. J. Dial han 
worki'd on thin protilem in our iniititule. Ilv makini: meanurenienls in a larger Ire- 
quency rantie he has found out that tor iIm' speedy cleaninK ol a dirty surface (in his 
case iilassplateswithpolishinKrouKeffe .O ) 
contamination) cavitation is absolutely lU'ces- 
sary. II ■ without ehant(inttthe soundpn ssure 
- the cavitation is prevented by a hiKh static 
overpressure the cleaning ellerl is prac
tically itoni'. The differences in the ricanini! 
elicct at different frequencies are ol second
ary nature. They are for example caused by 
the directivity ol the transmitter a.o. It has 
also to be kepi in mind that al hiich<-r fre- 
qiM'M'ies cavitation is Kem-raled at hipher 
expense.

CAVITAIION IIY A SINOLi:
UNUKliPKI'.SSURK PU1.SK

Kor the elucidation of Ihe formation and 
prowthof cavitationbufables it is of advantape 
mS lo US4- |M-riixlir umhTpressure intervals 
but to aiiply only one sinple underpri ssure 
pulse. Thisprolilem wastackled byG. Kurl/e 
(9). Hi.s xiM rimi nial i.etu|i is piven sche
matically in Kip. lb. A barium litanale 
caltSle ol 10-cm diaiiM-ter and 6-nim Ihick- 
iM'SK IS terminaleil al its backside by a lonp

h 14 - Sc til!«'r«-n •«I tar«*K
«»l •«
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brass cylinder. The front surface is 
adjuiniHK to a liquid. The sound is 
focused into this liquid. The liquid 
under test is contained in a thin- 
walled t;lass sphere inthe focal point. 
The static pressure inside this glass 
sphere can be reduced to the vapor 
liressure of the test liquid. The sound 
is generated by slowly charging the 
barium titanate calotte to 12 kv and 
discharging it with a time constant of 
2.5 sec. The time constant is slightly 
higher than half the period of the 
natural vibration oi the barium titan
ate calotte. Thus during the rever
beration of the barium titanate the 
underpressure amplitude is dominat
ing. The brass cylinder onthe back
side of the barium titanate calotte is 
long enough to delay the sound 
reflected at its other end until the 
process in the test liquid is finished. 
The oscillogram of the sound pres
sure in the focal point as a function 
of time was measured with the help 
ot a tiny barium titanate cube of 
1-mm ’ volume. There ispractically 
only an underpressure pulse (Fig. 16).

With this aiiparatus 't is possible to measure the sound pressure necessary to 
initiate cavitation and to observe the growth of the cavitation bubble. Of course, for 
that purpose it is indispensable to make a large visible bubble. This could only be 
achieved by subjecting the test liquid to a static underpressure. On the other hand 
the growth of the bubble could be calculated under certain assumptions as for example 
^ j o^*****^*"'”*’ hydrostatic pressure and an underpressure pulse of 1- sec duration 
and 2G-atm amplitude. The results are plotted as a dotted line in Fig. 17. The two 
experimental curves show that the assumptions made lor the calculation can be 
realized to a certain extent.

K:c. - KxptTimfu! •! f»*rup i.-r .............  t-
t>l I .1V ;• rt! I. »•: bv i -iiiclf •

•s-ir.,* jj-il-r

•4
Kiu. I.. - I'r. s.s.ir.. m II..- i.. ;h„„i

nt.in.il.- i.ilollf as a turivti.m of tun#-. St*«nd
prfs.-ur«*: JiJ .ilm.
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Sonic and Ultr.i.-,onic Cavitatiun in Güttlngen 
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Fig. IT - Bubble radius ai afunctiun uf time with a gin^lo 
pulso uf 4*..sec pulse width ancl^O-atm pn-ssurc anipli- 
tude (H„ U) 

In the apparatus described h'-rc the cavitatlon threshold reaches 20 atm for all 
liquids under test such as water, transformer oil, carbon tetrachloride, and others 
after exposing them for a longer or shorter time to air and is independent of the dis- 
solved air content. 

Also another method to obtaina single cavitatlon process was studied in Gottingen 
(J. Schmid (10)). A water column contained in a glass tube is given a high translatory 
velocity which is then suddenly retarded. Th'is high retardation forces are set free 
and the water is torn apart. To let this happen at a given point a bubble nucleus is 
injected by a short-time electrolysis. The process is filmed with a high-speed 
camera. Two examples of such registration are given in Figs. 18a and 18b. The 
maximal diameterof the bubbles isl.äand 1.2cm respectively. The camera operates 
at the rate of 5000 and 63,000 frames, sec. The growth of the bubble takes about 2.b 
ms, the decay about 0.9 ms. Naturally also in this case an oscillation is observed 
during the decay of the bubble. The growth of the bubble during the second period is 
diffuse and irregular in relation to space. This is generally known and was already 
observed by W. Giith (7) for the collapse of hut water vapor bubbles. It is worth 
mentioning that the implosion at the first as well as at the second collapse of the 
bubble is so violent that the radiated shock waves can directly be photographed without 
;iny schlieren optics (Fig. 18c). I igure 18c shows that there is a nunilfr ot implosion 
centers which are located close togethfr but act in temporal suc('essU>ii. 

RELATION BETWEEN PRESSUKK AND 
LUMINESCENCE  FOR VIBRATION CAVITATION 

Closely related lo sonic or ultrasonic cavitation is suimlumim scence, this beim' 
the phenomenon that small oscillating gu» bubbles contained in the liquid emit light. 
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Ki^. 18,1 - Cavltation excited by the »udden petardntton of a font moving Wüler 
column. Repetition frequency! 4800 frame»/»cc. Maximum diameter of the bubble 
about 1.5 cm. I'ini« of jjrowth about t.* m». Time of decay »bout 0,9 ma (without 
rebound). 
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^■l^. iHb - Decay and  rebound of a buhfale.   Repetition frequency, 
Maximum diameter of the bubble about  l.~ ■'" 
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Wa*rncr lound out that thf rmlsslun of Ut(ht Ic certainly not connUnt with time, 
as is the case when, for example. Luminul Is added to the water, but that It Is emitted 
In pulse s. The must Important result, however. Is that the emission of light coincides 
rather aceuratelv with respect to time with the underpressure phase of the alteriiatliit; 
sound pressure (Fw. 21). I hese measurements were carried out in water saturated 
with air i>r with krMitou. In the case Of krypton the luminescence Is considerably 
stronger. In Fig. 21 the upper oscillogram gives the course of the sound pressure 
and the lower one tlie corresponding output voltage of the photomultiplier. In the 
sound-pressure diagram. o\ rpressure is always pl<4ted upwards.

In Fig. 21 the temporal duration uf the emission of light Is relatively long, which 
Is probably due to statistical fluctua'.ions of the cavitation as well as the emission of 
light. The sound pressure curves are often distorted because of the cavitation, and 
withcMii cavitation there is no luminescence. But also In the case of a more sinusoidal 
course of the sound pressure light pulses are utsterved. With proper exciting con
ditions the light pulses can be short and high.

It must be mentioned that the measuring curvettc allisrs for variation of sutic 
pressure and temperature of the liquid under teat. Most of the figures given here 
were made with an overpressure of 0.5 atm. At very high overpressures cavitation 
is prevented and also luminescence U nU to be ubsc*rved anymore.

This Is Just a short summary of the resulU of the Investigation. They shunr that 
the hot-ap<it theory prubablv does mil hold true in thU ease, since the luminescence

^ u;. ml • StMiiifl t in r
sfMiii#* jifi ssurf (*»\f MHii upvt .i r t»Hi . r.tit :
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does not coincide with the overpn-ssure phase. But there is the preassumption that 
the bubbles are smaller than the resonance size, i.e., that they are vibrating in phase 
with the sound pressure, which Is not known with certainty.* 

SURFACE TENSION AND SURFACE  VISCOSITY 

Surface tension and an eventual surface viscosity may play an essential part for 
the nuclcatlon in the 'iquid. and I will go into the particulars of a new work by W. 
Eisenmengert 12) dealing with thedytuimic surface tension anda potential surface vis- 
cosity in liquids. During the recent years we have made several approaches to this 
problem at Gitttingen. In the betuiming th • problem was studied with gas bubbles in 
liquids, especially very small bubbles, where the surface tension has a decisive influ- 
ence on the resonance frequency. The logarithmic decrement of the natural vibration 
of the bubble was measured. Unfortunately these measurements, which were made 
with all sizes of bubbles down to very small ones with a resonance frequency of alxr't 
300kc/g, show that the high thermal damping in the gas contained in the bubble makes 
any statement alxuit the surface viscosity impossible. One thing was learned from these 
experiments: one has to make a really tree surface and to use capillary waves at the 
boundary surface between liquid and air. This has been tried formerly, but without 
much success. In our case the trick is to excite rheolinear oscillations of the surface 
with the help of a parametric excitation: a small volume of water is set vibrating 
vertically and the exciting amplitude is increased until at a critical amplitude capillary 
waves occur at the surface. The frequency of these capillary waves is one half of the 
exciting frequency. 

The plane capillary wave is described by 

.1      ( t l   ens   l.x 

where n Is the amplitude. The onset of the capillary waves is given by the solution of 
a Mathieu differential equation in the first ranges of instability: 

>    • • 

Here   ,,     /TV'    Is the capillary wave frequency, in which T is the surface tension 
and . is the density,   ii .ns   At   is the rxrltlng oscillation of the water volume, and 

, is the viscosity damping. For small capillary wave amplitudes,   „     z.k1. where 
is the viscosity and k is the wave number.   The solution of the above equation 

renders for the onset amplitude of the rheolinear oscillation the expression 

;  h, 
This onset amplitude i,   of the exciting frequency is given by the surface tension r and 
the viscosity   . 
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Whmilii' uni|ilitude ii of the exciting vibraiio'i is increased over the rriliral point 
of unset = . the- capillai > wave amplltudi i follows this law:

wrrre (' is a constant. In other words, the dampInK of the capillary wavrs has an 
amplitude- and frequency-dependent additional expression of the form

I r
•f;

where : is. aceordim; to the theory of Klenim. ttlven by

where is introduced byKleniin as a surface visco.sity. tnforlunately inihe expres
sion for ‘ . fitiil is. in tlie constant r. a further additional expression has to
Ik’ added, piven l>> the second power of the normal viscosity damping. This term is. 
Iiowever. inde|M-ndent of frequency.

The experimental setup is very simple in principle. For frequencies up to about 
200 kc s hollow iiarium titanate i ylindcrs with Mason horns attached to them were
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ust'd. There arc sntallgrooves at thetops of llu-Masiin horns [iUcdwith water. Thus 
plane capillary waves are forcibly excited. The absolute amplitude (ii) of the exciting 
Mason horn is measured electrostatically with a second Mason horn. The amplitude 
(.) of the capillary waves is determined optically from the reflection of a li^ht beam 
at the steepest parts of the sinusoidal capillary wave. 

In the frequency ran^e from 400 kc s to 3 Mc s ci icave barium titanate shells 
filled with water are used. A very thin, platinized copper foil is placed in the focal 
plane of the shell so that a water droplet on its surface is at the focal point. In the 
first case plane capillary waves are excited in the grooves: in the second case the 
capillary waves generated have the form ot crossed graiinus. Examples for both 
cases are found in Fig. 22 for exciting frequencies of 94.5 kc s. 178 kc s, 1 Mc s, 
and 3 Mc/s, Photographs of this kind allow for an easy measurement of the capil- 
lary wavelength and tor the determination of the surface tension therefrom. In Fig. 
23 this was done for a larger frequency range (up to A 2 , 1,5 Mc s) in pcre 
water for the onset amplitude of the oscillation, i.e., for a capillary wave amplitude 

i - 0.01. In another case the same measurements were made with a higher 
amplitude i 0,12) and there it became obvious, as a first result, that the surface 
tension is amplitude dependent, but this only at higher frequencies. This effect is 
obviously caused by the fact that the filllng-in of the extended surface with water 
molecules from inside the liquid needs a certain time. 

It is also not without interest that the measured onset amplitude h   of the capil- 
lary waves, substantially given by the viscosity of the medium, satisfies the equation 

very well. In Fig. 24 the measured values are compared with the theoretical curves 
for T - 75 dyne-cm1. - 20 C, and 10 -'dyne-cm J-sec for the given frequency 
range. 

The relation between exciting amplitude U and capillary wave amplitude i tor 
values up to i - 0,12- is treated very thoroughly for 41 kc s. The curve is displayed 
in Fig. 25.  Given as abscissa is the exciting amplitude ii or   ii     hi..  The curve 
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is in very good agreement with the theoretical relation. For the constant C, intro- 
duced above, one finds c » 16.7. The respective values for other liquids with different 
surface tensions arc uf the same order of magnitude. 

It is only necessary to determine the constant r for water for a number of fre- 
quencies in order to find out about a potential surface viscosity. It is thereby stated 
that for water the frequency dependence is very small and that a potential surface 
viscosity is certainly smaller than 10's dyne-cm  '-sec. 

Realizing that a higher surface viscosity, as it was supposed by other authors, 
was not found in water, the question arises whether the admixture of surface active 
substances would render a higher frequency dependence of c, thereby also indicating 
a higher surface viscosity. Therefore different concentrations (10 4 and 10'' weight 
percent) of an emulgator (Renex 6Rf>) and two wetting agents (Hostapal and Twccn 80) 
were examined.  In this case the whole range of amplitudes of the capillary waves as 
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a (unction of the excitation was nut measured. Only the onset amplitude h. and the 
exciting amplitude ! for a given ratio * « 0.122 was examined. The corresponding 
value   i.-i.     ' ,, Xil is plotted in FiR. 26 versus (rcqurncy.   The considerable 
frequency dependence of Renex 688 is evident. Here we find a surface viscosity of 
about 1     10 '4 dyne-cm ' -sec. beiin; much higher than for "pure" water. 

The above paper contains a short survey of some investigations specializing on 
sonic and ultrasonic cavitation carried out in Gottingcn. I do hope, that some of the 
••esults might I« of general interest. 
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DISCUSSION 

T. Brooke Benjamin (University of Cambridge) 

I wish to comment upon the formation of capillary waves on the surface of a mass 
of liquid which is contained in a vessel undergoing vertical vibrations. This was the 
subject of a paper by Ursell and myself and the problem has continued to interest 
me since it appears to excmpllly very nicely a general class of phenomena, many 
instances of which arise in practical acoustics. For example. Murray Strasberg and 
I have shown that the waves in question have counterparts in the behavior of small 
bubbles undergoing radial pulsations in response to a sound field: such bubbles may- 
develop large nonspherical oscillations when the amplitude and frequency of the radial 
motion take certain values, and the explanation which we suggested is the same, 
exactly, in principle as that for the waves on a plane free surface. 

I think it may be of interest to remark that the mechanism ot these waves was 
the subject of a historic controversy extending well over a century. They were first 
studied by Michael Faraday about 130 years ago. He observed that a pattern of stand- 
ing waves sometimes appeared on a layer of liquid covering a vertically vibrating 
plate, and he noticed that the frequency of the waves was only one-half that of the 
plate. About 50years after, the famousGermanphysici.st Matthiessen re-investigated 
the pioblems and found in his experiments that the waves were synchronous with the 

!■■•,,..!■■■.. s ...  .■'    Ai ( . '   ii 



vibrations of ilu> vessel. The discrepancy between this ami Faraday's result led Lord 
KayU-inli to make :i further scries of experiments,which supported Faraday's obser- 
vation. You may recall. Incidentally, that Hayleif,!" t;a '" the waves the appealing 
term "crispatious"; this term will perhaps be rememln • ed by anyone familiar with 
Rayletgh's textbook "Theory of Sound.'' 

The theory set out in the paper by Ursell and myself appeared, happily, to recon- 
cile the observations of Faraday and Hayleijjh and those of Matthiessen: for it was 
siiHwn that both half-fmiuimy and synclmmous waves can be generated in suitable 
i itcumstiuicis. The essential explanation of these waves, and also of the many 
similar phenomena which I wish to keep in view here, can be summarized without 
need for much mathematics, 

1 tnii ^ that to emphasize the general character of the explanation we should con- 
sider any mechanical system in Which free vibrations are possible in certain normal 
modes. Now. suppose that one of the physical parameters of the system is made to 
v.iry in simple-harmonic fashion with time through the action of some external agency. 
'We may consider, to fix our ideas, tuat the parameter varied is one that would enter 
the equation for the frequency of the normal modes: o,g.. it is a stiffness or inertial 
coefficient.) No"-, with liiis modification, small displacements in the system will be 
determined by an eiiuation of motion having at least one periodic coefficient. This 
c'luaiiun will be Iwiear. of course, provided the displacements are small enough and. 
in the absence of dissipation, it will nearly always be reducible toMathieu's equation, 
whose standard form mm be written 

2T 
If 

In general. ■<.  is the amplitude of. sa\,the ut 
is tue frequency of the applied oscillation, 

the amplitude of this oscillation, and r       .' 
vibrations in the nti   mode. 

mode of disturbance, and I       ■ wnere 
Also, the parameter ■] is proportional to 

•' where    .  is tne frequency of free 

Now. the general solution of Mathieu's equa- 
tion Is known to be unstable for certain values of 
; and i. i.e.. it becomes unbounded as I . . and 
ihispro\ idestne explanation of why the mechanical 
system in question may spontaneously develop 
larL'e oscillations. The stability (hart is sketched 
in Fig. 1)1: the diagram is symmetrical about 
the t -axis, and the third and fourth quadrants do 
not concern us here. 'Note that when r I, I.e., 
when -      .  inslabilit;,   is possibli   for small 
values of   . 

When ;. ». instabiliu may .o.ain occur fur 
small values of ;. and the developed frequency 
is then . i.e., the applied and itiVcloped oscil- 
lalions are sviu hrniious. 

In the capillary wave prohii m. ilu  disturbed 
ition ol tin   tree surfacr is IN   Mini   ,ts it tin 
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vessel wore at ri'st, and the gravitational acceleration wert given a periodic compo- 
nent in addition to the constant «. We now see that the plane, free surface becomes 
unstable when the amplilude and frequency of this component have the appropriate 
values. The waves are not, of course, forced vibrations in the usual sense: they de- 
velop quite suddenly as p or ■! is varied so as to brintf the point (p.q) into an unstable 
region of the stability chart, and they prow in amplitude until eventually they are re- 
strained by non-linear effects, not so far considered, or until the free surface 
diriintegratcs. 

The effects of friction tend, of course, to inhibit the growth of waves. For 
instability to occur in practice, the point (p.q) must lie somewhere inside an unstable 
region of the chart, so that tiie rate of growth of the frictionless solution exceeds the 
rate of frictional damping. Thus, as Professor Meyer has pointed out in his paper, 
an estimate of the damping can be obtained from a careful experimental observation 
of the onset of instability. In my own experiments on these waves, the frequency of 
the vessel was about 30 cycles per second, which is considerably less than in the 
experiments at Göttingen. In mine, most of the damping was evidently due to the 
boundary layer at the sides of the vessel and was quite small. I was unable to get a 
good agreement between experimental and theoretical estimates of the rate of damp- 
ing, and I concluded that the discrepancy was mainly due to extra dissipation in the 
vicinity of the meniscus at the edge of the free surface. However, 1 am very pleased 
to learn that at Göttingen this method has given satisfactory measurements of the 
damping at high frequencies. 

E. Meyer 

The point here is that this is not only the damping of this surface, but also the 
damping given by the normal damping, i.e.. by the viscosity of the liquid itself. Then 
there is an additional term, the damping by the surface, and this is very difficult to 
separate. There is also a quadratic term for the normal damping and you have to 
distinguish this from the surface damping. The distinguishing term is the frequency. 
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CAVITATION NOISE 

llu^h M. Kit/.piilruk 

Many uf thf features uf lavitatiun nuisi' may be illustrated by 
cunsidcratiun ul tht* prussuru field ^urruundin^: an idealized spherical 
cavity jiroviinij and cullapsinu m an mcumpressiblc fluid. The pertinent 
hydrodynamu relations are reviewed and extended to the computation 
ol 'hf frequency spectrum of trif sound. Some criteria for the limits of 
applicability uf the incompressive theory aT>' given. 

INTRODUCTION 

This paper is concerned with the sound pressmv generated by a growing and 
collapsing cavity in a liquid, for example, a cavity which, in the (low of the liquid past 
a curved rigid boundary, grows in a region of low pressure and subsequently collapses 
in a regionof higher pressure downstream. The existence, circumstances, and typical 
behavior of such cavities have been so fully discussed in the literature (1.2.3) as to 
require no further elaboration here. The discussion will be restricted to those aspects 
of the sound which may be elucidated by consideration of spherical cavities. In the 
earliest history of the study of the dynamics of cavitation, the concept of a spherical 
cavity was recognized as a useful idealisation. Thus, Rayleigh's famous solution (4) 
gives the motion of an empty spherical cavity in an incompressible liquid of infinite 
extent with constant external pressure. More recently. Rayleigh's concept I s been 
extended to allow for time-varying external pressure and the bubble motions s«. -om- 
puted have been shown to correspond reasonably well with actual behavior of cavities 
which grow and collapse in fluid flow (5). The present work, without adding an>lhing 
new in principle, extends the description to include the pressure radiated by the 
growing and collapsing cavity. 

HYDRODYNAMIC RLLATIONS 

The relation between the radial motion of a growing and collapsing cavity and the 
pressure in the surrounclini; liquid have been treated extensively in the literature 
relating to cavitation und to underwater (xplosions—at least for the case of incom 
pressive flow of the liquid (6. 7). It will be useful to take the relation valid for 
incompressive IU,:>: as our local point since during the whole of the period of growth 
und the greater part ol the collapse of the cavitythe incompressive theory adequately 
describes  not   only  the motion  ol   tin   cavity Inn   also  the sound pressure which 
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appears (aftor an interval of um«1) at a distance. Accordingly, wo note the relation 
for iiu'ompressive flow (6): 

R2K   ■   3 RK2      .R4!^ 
,..,.,>     pet) | 2f4   . (1) 

Here, p r. 11 is the pressure in the liquid at radial coordinate r and time t: ^ is the 
density )f the liquid, K (equal to KM I) is the radius Jf the cavity at time i; and R and 
K are the first and second time derivatives, respectively, of R. 

In the special case, i      K, Kq. (1) yives the differential equation relating the 
growth and collapse of the cavity to the "drivin;; pressure" P - p,: 

RK    } kl   r - ,.„. (2) 

Here, 1' has been written for pi W i i and p   for pi ■ ,t >. 

At a sufficiently great distance from the cavity, the second term on the right side 
of Eq.(l) is negligible.  The remainingpressure will be called the sound pressure, p.; 

P.,        r
R    KK      2^   . (3, 

or. identically. 

i' R 
P.       tr        ,,.• (4) 

Thus, the sound pressure associated with the growth and collapse may be com- 
puted from the motion of the cavity or. indirectly, from the environmental pn'ssurc 
which the cavity encounters. 

THE CAVITY MOTION 

In general, il the pressure difference !' p(, is given as a function of K and t. 
Kq. (2) can be Integrated (to llnd Ri t ) only by nonanalytic methods (5.9). Kxceptions 
are two special cases discussed by Kayleigh (4,6). 

In the case of an "empty" cavity collapsing or rebounding under the influence of 
a time-varying external pressure, positive and equal to r at the instant of complete 
collapse, a series solution useful in describing the motion in the region of collapse 
and rebound mav be obtained in the lorm 
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Heri'. R, i.s a r:i(liiis chiinii tciisuc ol' Hi«' iiuilimi ;ii (■«Uiipsf   and clclincd so that the 
limitiiit; value appmuchid by the kini'tic incr^y 

at collapsi' is equal to   t  \ 

S'M-;- 

The time i    is the instant of collapse. 

The CIK llu-ients A.   may be evaluated by substilutinn Kq. (5) in Kq. (2) and equating; 
the loeltieients ol  like powers of   i ■   t Thus, il the time-varying pressure dit- 
ferenee is expressed as a power series; 

r, Mi) 

The I'oel'ficients are uiven below 

■ 

2 1.330325 
b -0.284733 

13 -0,10f)77:ji,, 
14 -0.035B48 

18 -0.Ü5593 
19 -0.Ü26B9 
20 -0.009007 
23 -0.034418 

24 -0.0139 ... 
-0.00516 I*,-' 

25 -0.010133 i, 
26 -0.002810 

I Kur other values ol    . (■■    26). A      0. 

The series conveim s rapidly enough to provltte a usetul solution ol F.q. (2) tor the 
period ol collapse and the period o! growth alter rebound. For the purpose o! 
describing the later >,ia^es ol collapse, ime or two ttrms ol the series sul'tice. 

THK SPECTRUM OF Till. SOUN'I) PHKSSLHK 

Typical behavior patterns tor the growth, collapse, and nuiitiple rebound ol a 
cavity and for the pulse ol sound pressure have been shown in a previous survey (8). 
Thespectral distribution oi the energy radiated as sound may be determined by means 
of the Fourier translormation applied to the sound pulse. Let ;>.. r.i be the sound 
pressure which appear* at radial coordinate i at time t. Then a Fourier transform 

i   '    corresponding to Ihe sound pressure is defined by 

< I (7) 

A spectral density 
respect to I requencv. 

describes the distribution ul the sound 'energy" with 

(b) 
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In ordrr ID lon.sidt'r Ihr uctUill cncrny rii.diatrd acoustic ally, it is necessary to 
depart from the assuniption of iiicomprt'ssihility of the liquid to the extent necessary 
to include the process ol acoustic propagation. According to the usual laws of 
acoustics, the energy radiated in a hand of Irequencies  H will hi' 

and the total radiated energy 

equals 

• -« .11 

Here, c is the velocity of propagation of sound in the liquid. 

THE LIMITATION OF INCOMPRESSIVK THEORY 

The use of incompressive flow theory (to determine the grosB flow and the pres- 
sures) and the laws of acoustics (to account for the radiation) represents the slightest 
possible departure from strictly incompressive theory. A crude criterion for appli- 
cability of this procedure in estimating the sound pressure radiated by a collapsing 
empty cavity is that the wall velocity not exceed about one tenth of sonic velocity. 
Substitution of this condition (R . = 0.1) in Eq. (5) results in values of the radius and 
"time before collapse" as given by 

(9) 

and 

r if. (10) 

The value of i - for water is approximately 21,000 atmospheres. Equation (9) shows 
that the collapse of a cavity under an external pressure of one atmosphere or more 
begins to be influenced by the compressibility of the water while the radius of the 
cavity is still as large as one-sixth of its maximum value. At that stage, the effect 
of the vapor and the minute amount of gas ordinarily contained in the cavity is quite 
negligible. Thus, whatever mechanisms are involved in the collapse and rebound, 
the compresHibility of the liquid plays a primary role. 

Equation (10) gives a rough criterion for the range of frequency tor which the 
sound-pressure spectrum, computed according to the incompressive theory, is valid. 
It may he assumed that the details of the pulse of sound pressure associated with the 
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part of the motion where comprcssivc effects are present do not greatly affect the 
spectrum tor frequencies several times smaller than the reciprocal of the time inter- 
val appearing in the numerator in Eq. (10). If the numerical factor is taken, conserv- 
atively, to be 4 , it follows that the required upper limit on the frequency is 

s 

n.ons     „    - •  -rl 

A number of investigators have presented theories which take into account, in 
some degree, the effects of compressibility and which show remarkable agreement 
with experiment in certain respects (9,10). A full explanation of the generation .*> 
cavitation noise awaits a solution of the flow problem involved not only during the 
later part of the collapse but also during the early part of the rebound. 
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PRESSURE WAVES FROM 
COLLAPSING CAVITIES 

!  ,   I', n i. ii-1-   I'n-t.j.i rr  i ti 

['hi'   T   i[.u    i.l    thl> IHiptT    rtl.itrs   t.i   the   |MMilK.ll   pruhU'ln   itt'   notSI' 
ui"uiMtiil in tli«> ii.ll.i|isi' pluisi- .1 i .iMt.itnm. I'he . i i ■'.nl is uumvU 
tiu'-i rvtu'.ii,  ljut it tipirt' rt'tf rt'ia t- is tn.ifit   In r...nu*   rcvt'nt  fxi>i'rinu'iil> 
-r. i^.'l.ttiMi «..i|» i\ip l>ulil)h'S I'!"- i -liiji !•»■>■.. 1*11 ll\ i»f Water is pmtlti'il out 

t ' l'f uti t'H-vrtiti.il i , insiili-i*.ilt.>:i ;ti thi^ .i-.|M'it of i'ti\ it.itiott, aiui .1 it-r- 
t.iin :)n)j)frl\ ..t .»lisi-rM'ci CiivitutittM :i'»isr spi-ctr.i is tnlfr|iri'tt'M .1.. 
i". di'JU-f of tin' pn-MTui- ..t shoik »aves A inftlml IM (IIMIMIISIr.ilfii 
wi.r n :/. .! thriiv, •( tin , ..ILips. .1' . ,r. iti>- ■• 111 1 uinpri'ssibli* liC|Ui(l9 1. u 
in pnticiolt' ii. lim i-lojji'ci tu an a rliit IM r-. 'If'iiret* of accuriiry; and Ihv 
st-i nKl-artii r i'()[>r ixini.ition is |,TTMIIIIII as illnnlration. This ap|irwxi- 
i;;at:.in is dvl'itiitf ill tla SJT.SI' tluit all si-tontl anlrr t'ffri Is arri/or 
rvitl'i ri'|)rt's»'ntf<l, ami :t riM.tls .in error in llif Ki rkwoui-l'iflhi' 
!i\ JJ .thesis m v. tm h mm Ii |>r< ■. ; ms wuri  mi tins probU-in has bt'fii basrei 
; la- si'iMiKi-orrttT tlv«-or\ is sli'!«(i t., admit Ihv po.iHitjtUty tli.it, as a 

L ontifqiu'tlCi' of loniprt'ssililllts .' tia- tsquict, thi'vnllapH«1 of an rmplv 
i'avitN it'ii In' . 'tu !.uli'! at a 'ittitt' r.i.liai v*'!oi*it'>- HoWt-vrr, well 
Itioiicii t'ti;> |i .-.stljiitf. ri'iti.iitis wlirti hiyht-r approximations art' workt-ii 
.. it, the a itlior 'IO^ 1 .-nstiii'rs it to bi- 'i,;!iki.l\ Sonu- very n-ifnt idiMH 
■m i'i; • niattiT, winch haw luan ih-vclopv«! sinci- Ihr first draft of tins 
pap.  I* Mas  MflUi'ti,  ,. rr  sat: 1:0.1 r;,','!  '.ti  an  apprllflix. 

■\ ftaturr ol the prr^t-t.t tlit-or'. is that itaiiounts 111 a strai^'ht- 
t .f-A'arti ti.anta r t .r nonlito-af <i.,.t irti .t. if tlu- transmitted pressori. 
waVf I i.i' i onrhtiotis imcti-r whii'li llo. wave ndiated from a piilsatmi; 
^as-li!leci lavils will develop a Mi".! front are txamined; and a sitttpU* 
pr.ti to ,il 1 nterion for   »hoi k f .rmali .t    ;,-, tie rived. 

I.  INTHORUCTION 

NotwithMandint; the varietyo( moans hywhich transient cavitation maybe jjener- 
alcci in liquids, one can in general Identify three distinct phases in the history of any 
individual cavity. The sequence begins with its initiation from a microscopU' nucleus 
and a brief period during which the influence of the nucleus contents remains sii;nifi- 
cant. The cavity then ^rows to observable size, and belnivcs almost exactly as if it 
wcrr completely empty ;ind in an incompressible inviscid liquid. Finally, as the 
formative agency is removed,  it collapses back to microscopic si/e and may then 
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disappnar or perhaps "rebound." It is in this third phase that the more remarkable 
effects of cavitation arise. If the eavity contains only vapour or a very srnallquantity 
of gas, the collapse even under a very moderate hydrostatic pressure takes place 
with great violence; in the concluding stages enormous velocities and accelerations 
are attained by the inrushing wall, and a large transient pressure is transmitted to 
distant parts of the liquid. The abruptness of such pressure pulses accounts for the 
sharp crackling sound which is often audible from severe cavitation, as may for 
instance occur In the draught-tube of a hydraulic turbine; and also much of the noise 
energy is contained in the ultrasonic range of the frequency spectrum. The practical 
importance of cavitation noise in the context of Naval Hydrodynamics need scarcely 
be pointed out here: it is sufficient to recall that the spectral properties of noise 
from severe propeller cavitation make it quite distinct from other forms of under- 
water noise. We may also note that the cavitation erosion is a consequence of the 
large pressures developed in the collapse nhase. 

These remarks merely rephrase some familiar ideas. To anyone interested in 
cavitation, the violent action of a contracting cavity is likely to form a vivid intuitive 
concept; and it is easy to appreciate in a qualitative way how cavitation noise pulses 
arise. However, this third phase of the cavitation process is by far the least 
amenable to precise experimental or theoretical study. On the experimental side, 
the extreme rapidity of the vital events makes adequate observation difficult, and a 
further source of difficulty is the minute size of cavitation bubbles at the stage having 
most interest. The theoretical side of the problem is even more formidable. Towards 
the end of the collapse many factors become important which can safely be assumed 
to be insignificant when the cavity is fully grown; and to account for them compre- 
hensively would seem a hopeless task. Nevertheless, as in many other physical 
problems, a lot may be learned from even severely simplified theoretical models. 
The effect of compressibility of the liquid is the factor probably worth closest study, 
and the theoretical model of an empty spherical cavity contracting under constant 
pressure in a compressible liquid appears to be a primary key towards physical 
understanding of cavitation collapse. Other factors arising in the final stages include 
viscosity, in stability of the spherical form, and compression of the enclosed vapour 
due to delayed heat exchange with the liquid. 

This paper reports some current researches on the collapse of cavities and the 
resulting pressure waves. The main topic considered is the effect of compressi- 
bility on the radial flow, ani some new results will be summarized concerning the 
motion of an empty cavity and the formation of shock waves. No attempt is made to 
survey all that is known about this phase of cavitation; several excellent reviews of 
the literature are available (for instance that by Fitzpatrick and Strasberg (1)), and 
we may turn to these tor background. Rather, the aim of this paper is to explain the 
objects of work still in progress and to offer some ideas about aspectc of the prob- 
lem which remain debatable. 

Although a passing reference will be made later to some recent results from the 
author's experiments'on isolated cavities (2), the material of this paper is mainly 
theoretical. This choice of subject matter reflects a belief that in the present state 
of the subject the greatest need is for further clarification on the theoretical side. 
The general physical characteristics of cavitation noise appear now to be fairly well 
established: for instance, there is plentiful experimental evidence that shock waves 
are always present when the cavitation is reasonably severe, and many measurements 
of cavitation noise spectra appear tocomply with a well-defined general picture. This 
state of affairs owes notably to the caretulexperimental work of Meilen (3,4). On the 
other hand, a good deal of existing theoretical work seems open to doubt. It is not of 
course disputed that perfectly sound qualitative doscriptions have been given of such 
effects as shock-wave formation  (r.g.,  sec (1)).    Further,  a certain  measure of 
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success has undoubtedly been achieved in predicting the motion of a cavity over cer- 
tain ranges of the radial velocity. But it remains that the theory of collapsing cavi- 
ties, taking account of the compressibility of the liquid, has yet to be put on a secure 
foundation, so that results of a definite character can be calculated. 

The valuable theoretical work of Gilmore (5), Meilen (4), and Flynn (6) has in the 
past gone furthest towards the solution of the present problem. All three of these 
authors developed their theories from the assumption, which recalls the Kirkwood- 
Belhe hypothesis in the theory of blast waves, that in radial flow the quantity r . t 
(where r is the radius and the velocity potential) is propagated approximately 
unchanged along a characteristic. The Kirkwood-Bethe hypothesis Is accurate for 
spherical disturbances whose wavelength is small compared with radius (e.g., a blast 
wave in its initial stages), owing mainly to the fact that the motion Is then approxi- 
mately the same as in a plane wave. Again, It is accurate for weak spherical dis- 
turbances far from the centre. These facts provide some Justification for the use of 
this assumption in the cavitation problem, when even the fluid velocities are com- 
parable with the velocity of sound; and some further justification may be found by 
comparing results calculated on this basis with numerical solutions of the equations 
of motion (S). However, a more cautious assessment shows the assumption to be far 
from as well founded as one might wish. It wouldsecm in general to represent merely 
a correction to acoustic theory and does not appear even to be an accurate second- 
order approximation (in the sense that incompressible-fluid theory comprises a 
zeroth-order and acoustic theory a first-order approximation). Nevertheless, although 
errors in the Kirkwooc" Bethe hypothesis are easily detected, it Is a quite different 
matter to assess the accuracy of complicated calculations based on it. The principal 
aim here Is only to emphasize the need for further study, and to suggest alternative 
ways of dealing with the problem. 

In this paper a method is given by means of which the theory of collapsing cavi- 
ties in a compressible liquid can be worked out without recourse to any special hypoth- 
esis. The method is one of successive approximations, and can in principle be carried 
through to an indefinitely high degree of accuracy—although of course the work 
becomes more laborious in successive stages. The second-order approximation will 
be given explicitly: this Is a formally correct approximation in that all possible 
second-order effects are properly included; and there appears to be a discrepancy 
between this and the theory based on the Kirkwood-Bethe hypothesis. The method is 
an example of Lighthill's celebrated "technique for rendering approximate solutions 
to physical problems uniformly valid" (7), and has previously been applied by Whitham 
(8,9,10) to several problems of spherically symmetric flow. Readers will recall t»at 
Lighthill i technique obviates a type of difficulty which often arises when the solution 
of a physical problem is attempted by a conventional perturbation method, whereby 
successive approximations are obtained in powers of a suitable small parameter. If 
the zeroth-order solution has a singularity within the domain of interest, progress- 
ively worse singularities appear in the higher-order solutions. The principle of the 
technique is to expand the independent variables as well as the dependent variable in 
terms of the small parameter, the expansion of the independent variables Ijeing evalu- 
ated term by term in the process of determining the dependent variable. 

In the present application, successive approximations are made to the "charac- 
teristic" variable for outgoing spherical waves. This closely follows the work of 
Whitham cited above. Although the method provides a uniformly valid approximation 
over the whole flow field, this particular advantage may not be specially worth while 
in certain cases. Dr. Ian Proudman at Cambridge has recently investigated the col- 
lapse of an empty cavity by using a Lighthill-Whitham type of approximation for the 
"outfield," that is the region far from  the cavity,  yet using a more conventional 
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perturbation method forthe "infictd^'adjoiningthccavity wall. This rnurse apparently 
leads to a considerable simplification of the *ork in getting higher approximations. 
Dr. Proudman has carried his calculations to terms involving the fourth powerof the 
Miich number at the cavity wall, and has accordingly found fairly strong evidence that 
the method of approximation is convergent even when a substantial part of the flow is 
supersonic (although the condition of unit Mach number does not appear to have any 
particular physical significance in this problem1. 

Now, the first object of most theoretical work on the present problem is the deri- 
vation of an ordinary differential equation for the radius K of a spherical cavity as a 
function of time. The equation will o.' course be only approximate, and if the cavity 
is taken to be empty so that the collapse proceeds to completion, there is necessarily 
some uncertainty in deciding from the equation how the velocity Ik di behaves in the 
limit as R -* n. This uncertainty derives from the fact that although the behaviour 

IK it » is always indicated as a possibility, the method of approximation leading 
to the equation for K breaks down for very large velocities. (We recall that the ter- 
minal velocity is definitely infinite according to Rayleigh's theory (11) which neglected 
the compressibility of the liquid.) However, on the basis of the second-order theory 
presented below, it will be shown that another possibility, which is perfectly consistent 
with the overall approximation, is that IR H has a finite value as K • ", a result 
wKch apparently has not been noted before. This remains a consistent interpretation 
on the basis of the more accurate calculations worked out by Dr. Proudman—which 
seem to give by far the most complete analytical results yet available; and since the 
apparent terminal velocity is not especially large, being not much greater than the 
velocity of sound in the undisturbed liquid, there would appear tobe reasonably strong 
evidence in favour of this conclusion. (It may be noted that previously obtained 
approximations to the equation for K,such as Gilmore's (5), also admit this conclusion 
when the solution is appropriately Interpreted.) At the time of writing the first draft 
of this paper, the author was strongly inclined to the view that an empty cavity does 
have a finite velocity of collapse; but upon further reflection this conclusion now 
appears doubtful. The main reason for this change of mind was a numerical calcula- 
tion performed with the EDSAC II computer. The results indicate that the velocity of 
collapse of an empty cavity increases indefinitely; and although this indication is not 
yet conclusive, since there is still some slight uncertainty about thecontrol of errors 
during the computation, the need has obviously arisen for thinking again. Some recent 
considerations concerning the asymptotic behaviour of a collapsing empty cavity are 
summarized in th'> Appendix to this paper: work now in progress along these lines 
seems to be leading to a final clarification of the interesting theoretical question of 
how the collapse is concluded. 

Nevertheless, though this question may at first sight seem crucial and the idea 
of a finite terminal velocity may now seem a possible serious misinterpretation from 
the point of view of the physical application of the theory, the matter is after all not 
particularly important physically. The more important conclusion is that in any case 
the energy of the motion near the centre towards the end of the collapse becomes 
vanishingly small; the greater part of the overall energy has already been stared in 
a rompressive wave well before the collapse is terminated, and so what happens in 
practice very close to the centre may well have an insignificant effect on the wave as 
observed from a distance. This conclusion is important since it implies that there 
is often justification for neglecting tue additional physical factors arising near tht 
end of a collapse, such as viscosity and vapour compression. 

An advantage ol the theory to be presented is that it provides a very simple 
description of shock-wave formation by rebounding gas-filled cavitatinn bubbles, and 
leads easily to an estimate nf how seven- a collapse need be for a shock wave to 
develop 'mild "gassy"cavitation .nay of course still give rise to brief noise pulses; 
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but atypical pressure wavewill not have ashockfront). The generation of Shockwaves 
is a feature of cavttation which has practical importance in several ways, notably in 
relation to cavttation damage. In the next section of the paper we digress slightly 
from the main discussion to comment on another effect attributable to this cause. 

2.  THE EFFECT OF THE PRESENCE OF SHOCK WAVES 
ON CAVITATION NOISE SPECTRA 

Discounting experiments where Isolated cavities are generated by special means 
(4,12,13), cavttation is in most circumstances anerratic process duringwhich a large 
number of transien. cavities appear in scattered positions throughout the region under 
reduced pressure. The behaviour of individual cavities with an irregular assembly 
can sometimes be observed, as was done by Knapp and Hollander (14); but in meas- 
urements of the radiated noise, the contribution from any particular cavity is gener- 
ally impossible to identify. Determination oi the frequency spectrum is then the most 
useful object of noise measurements, and reasons can be found for supposing that the 
spectrum of the aggregate of the received pressure waves Is not widely discrepant 
from the spectrum of a typical i-omponent pulse (we note that the spectrum of a 
random sequence of similar pulses has the same form as the spectrum of a single 
pulse). Thus, theoretical spectra calculated on the basis of single-cavity models 
may be relevant to observed cavttation noise (31: and indeed a fair measure of agree- 
ment has established (1). 

A usual feature of measured energy spectra is a slope of approximately -6 
db octave at high frequencies, i.e., the spectral density varies as t -', where i is 
frequency. It has often been pointed out that this feature can be explained by the 
presence of shock waves in the received pressure signals, A shock front in water 
would appear an abrupt discontinuity In pressure unless It could be observed on a 
time scale much less than theorder of 1 microsecond;and this apparent discontinuity 
would therefore exert a dominant influence on the high-frequency end of the spectrum 
well into the megacycle range. The discontinuity need not have the familiar form ol 
a fully developed shock (e.g., the blast wave from an explosion) for it to affect the 
spectrum in the required way: the only essential property is that there should be a 
finite discontinuity in some part of the wave form. 

Although this explanation of the asymptotic form of the spectrum appears to be 
fairly widely known, a mathematical demonstration of it seems worth giving here 
since this has apparently not been done before. It is instructive to consider the 
special case of > -' dependence us part of a general classification, and Indeed this is 
the only way of showing that the presence of shocks is necessary, not merely suffi- 
cient, to account for this case in practice. We restrict the argument to a single noise 
pulse possessing only one singularity: the extension of the argument to a random 
sequence of identical pulses is quite straightforward; and although an extension to a 
more general type of random noise would be difficult tn make with complete rigour 
it seems clear intuitively that the spectral properties due to an isolated singularity, 
as considered below, are common to any noise in which singularities of the sort in 
question occur at random. 

Suppose that :• t is a typical noise pulse witli unite duration, as for instance 
detected by a hydrophone.   Its energy spectrum may be defined as 

where 

P..'!.. (2.!) 
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If desired, sonic convenient normalization factor can be introduced intothe definition; 
hut this is unnecessary for the purpose of the present argument. 

We suppose pi i to be always finite, although there is a singularity of its deriva- 
tives at, say, i ".A large class of such singularities is characterized by the 
behaviour pit i (n t : > as t -> ", where n but is not an integer; thus, If 
MI - 11 n where n     1 2 < ...    then the nth and higher derivatives of ;'i i tend 
to infinity as t ?> u. (For complete generality we would need also to consider cases 
where p( M is an odd function in the neighbourhood of t ", and where the singularity 
is logarithmic, but this would be a pointless digression here.) To find the asymptotic 
form of ci i i in this case, the most satisfactory course is to make use of a theorem 
giver by Bromwlch (15). It is sufficient here to quote the final result: we find that 
S( n o ( -'' •' as i * ' . Thus, all possible asymptotic slopes of the spec- 
trum (on a logarithmic plot) are covered except the cases where the dependence of 
Hi 11 is r'. f1, f-' ... . 

The latter cases are more interesting to us than the intermediate ones. They are 
given by functions of t which undergo abrupt discontinuities or whose derivatives do. 
To deal with singularities of this type, the following method is quite lucid though to an 
extent only intuitive. For further detail we may refer to various treatises dealing 
With asymptotic expansions. 

The case which directly concerns us, as it represents a shock front, is where 
pi t > changes abruptly at t o from a value p(0 i to another value pro* i; here (V 
and <>* indicate arbitrarily small negative and positive value of t, respectively. All 
the derivatives of pi 11 are infinite—or rather, meaningless—at t "; but it can be 
assumed that the derivatives are integrable over the whole range ( . ). Hence, 
integration of Eq. (2,1) by parts gives directly 

p(0* )   -   pill    i 1 ■•    ,|n ,   , ., 
^", }   lt •  2   M    .1      I.   '    ■   '      ■'«■ (2-2) 

According to the Riemann-Lebesque theorem, the integral in Eq. (2.2) tends to zero 
as f -» . Therefore, if the step in pit < is of finite height (i.e., pfo i i pio'i), we 
have that 

«ff)   oi f'i    US     f    .     . (2.3) 

Hence, si 11 decreases asymptotically at the rate of lo it,Ull/r'^ -e.oj db octave. 
It is now perhaps obvious that no function other than one with a finite discontinuity 
like a shock wave has a spectrum with this asymptotic property. 

Incidentally, an extensjon of the above line of argument, wherein the Integral on 
the right-hand side of Eq. (2.2) is reduced by successive integrations by parts, leads 
to the following rule: if p. p', p" ... p""" are all finite and continuous, and If p'"1 

is finite yet discontinuous, then «(fi oil" '< as t -• . It follows from this 
that if p< 11 and all its derivatives are continuous. Si 11 must decrease asymptotically 
more rapidly than any negative power of t, i.e., it must decrease at least in exponen- 
tial fashion. Thus, even when shocks are present in cavitation noise, the spectrum 
must ultimately decrease exponentially when the frequency issohighthat its reciprocal 
is comparable with the time of passage of a shock front, so that on such a time scale 
the shock no longer appears discontinuous. 

We also note that if the signal pi t > is passed through a recording system which 
is resonant at I      f,,, the "apparent'' spectral response (i.e., the speclrum of the 
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forced vibrution) is of the form (.„in nf n I 2 (f2 fo
2)1. Therefore, at fre- 

quencies much above t,,, the "apparent" energy spectrum for a discontinuous fignal 
has the property 

s^ff)      ufi i 2    0(f2i    ixi *). (2.4) 

That is, the spectrum is sustained at a slope of -12 db/octave. The author has 
remarked in the past (16) that this may be a useful consideration regarding the 
response to cavitation noise of practical hydrophones, which are always subject to 
self-resonances at a number of frequencies. 

3.  SOME POINTS FROM THE THEORY OF CAVITATION 
IN riCOMPRESSIBLE LIQUIDS 

Although the main interest at present is in effects due to the con.pressiblUty of 
water, it will be helpful to fix our ideas by recalling some simple results according 
to incompressible-flow theory. In awareness of the severe difficulties arising when 
compressibility Is taken Into account, problems of radial bubble motion ir. an incom- 
pressible liquid appear on the whole refreshingly straightforward; of course they are 
not always easy, particularly as the equations of bubble motion are non-linear; but, 
generally speaking, treatments of these problems are clear-cut and unequivocal. The 
subject is well-covered by the contributions of Rayletgh (11), Lamb (17,18), Cole (19), 
Plessett (20), Noltingk and Neppiras (21), Robinson and Buchanan (22) and numerous 
others. 

Consider first an empty spherical cavity of radius R( t) collapsing to zero volume 
in a large expanse of incompressible fluid. In the later stages of the coll&pse, the 
motion becomes Insensitive both to the way it was started and to the (hydrostatic) 
pressure F at a large distance from the centre. The only crucial parameter is the 
total energy F of the motion, which may be assumed to be approximately constant. 
Note that if the cavity starts contracting with a radius R,, and If P Is a constant l'n, 
then obviously r. 4 3 '¥„(** - R'1) which tends to a constant value as R >o. If r 
varies during the Initial stages of the motion, E will vary In a rather more complicated 
fashion, but the final stages occur so rapidly that E will again be practically constant 
towards the end. Putting the kinetic energy of the fluid equal to r, we have 

2     R'R:*     E. (3.1) 

where R denotes <» <it and . the density. This equation «.'«i the integral 

("*)S (-t) 
\ (3.2) 

on the assumption that the collapse is completed at t n. This gives the well-known 
result that -R->0(-t r3 * as R -> ". The velocity of the cavity wall thus becomes 
infinite in the limit. Further, the pressure throughout the fluid becomes momentarily 
infinite, but the velocity at a fixed point is zero at the instant of collapse, being pro- 
portional to R2R. Thus, In the limit aa R > •>, the energy of the motion becomes con- 
centrated wholly at the cenire. 

It can easily be shown that the pressure p at a radius r from the centre is given by 

R 
l>      P 1 - 2R2 (3.3) 
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This expression demonstiat<-s somu fenturcs of the pressure distrilmtion which have 
particular interest in theprcsent cnntpxi. Note first that : " at i ", which is con- 
sistent with the assumption of an empty cavity. Next note that in lhi> later stages of 
the collapse, V is negligibly small compared with K'; and so the term in I' on the 
right-hand side of Eq. (3,3)can be neglected in any region not too far from the cavity. 
Thus, the pressure is seen to rise from zero at the cavity wall In a maximum value 
.1 4n ' K-'al t 41 'K, and to decrease steadily for greater i. Figure 1 illus- 
trates changes in the pressure distribution as K decreases. The vertical and horizontal 
scales are arbitrary, but the figure is easily interpreted. The three curves represent 
the pressures when, respectively, the cavity radius is I, 1.5, and 2 in arbitrary units. 
Since i';-' is proportional to K ', the maximum pressure in the last case is eight times 
that In the first. The figure shows clearly how towards the end of the collapse the 
pressure increases very rapidly in magnitude and its distribution becomes less 
dispersed. 

Now, if we allow that behaviour at least qualitatively similar to this may occur 
in a compressible liquid, an interesting possibility is suggested. Positive pressure 
distnlnitions of the kind illustrated in Fig. I suffer a tendency to steepen in the 
direction away from the centre, and so develop into shock waves. Admittedly, the 
wave-form is being carried rapidly towarH« the centre of collapse, and the process of 
shock formation necessarily occupies a certain time. But it seems at least conceiv- 
able that a compressible liquid moving inward to close an empty cavity could develop 
a shock at some moment before the instant of final collapse, the shock being con- 
vected inwards by a supersonic flow. This point will be taken up again in a later part 
of the discussion. 

It scarcely needs to lie said that the present simple model of i avitation collapse 
ceases (o be valid we ' before the cavity disappears. When the velocities and 
pressures near the cavity become large, the effects of compressibility are nn longer 
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ii 'Eligible, and also thr assumption of an empty cavity rnay become unrealistic. How- 
ever, as Ravleigh (11) was first to point out, the singularity In the Incompressible- 
lluid solution is avoided if the cavity is assumed tocnclose a quantity of insoluble gas. 
The compression of the gas eventually arrests the inward motion, and a "rebound" 
lakes place. It may be shown that as the t?as pressure rises, the peak in the pressure 
distribution illustrated by Fig. 1 is displaced inwards; and ultimately, at the instant 
when the collapse is halted, the maximum pressure occurs right at the cavity wall. 

While serving to remove a mathematical difficulty, the chief merit of this modi- 
ficatton is that it represents a definite feature of cavitation in practice (and, inci- 
dentally, leads to a very useful account of the pulsations of underwater explosion 
bubbles (19)). There is plentiful evidence that rebounds often occur (e.g., (13,14)), 
and presumably they are due to the action of the cavity contents. Of course, the model 
of a gas-filled cavity surrounded by incompressible liquid still falls far short of 
reality; for instance, no mechanism lor energy dissipation is included, whereas 
rebounding cavitation bubbles appear always to be considerably smaller than their 
maximum size before the first collapse. Nevertheless, this model ir, definitely 
relevant to cases of fairly "mild" collapse, and gives a useful first approximation to 
such quantities as the peak noise pressure. 

Some numerical results calculated on this basis will be useful for reference- 
later. We consider a cavity initially at rest with K Rn and containing gas at pres- 
sure ;. The hydrostatic pressure I is constant and greater than o, so that the initial 
motion is inward. The gas is assumed to be compressed according to the law 
iiV      i-'.nst l>, i.e., its pressure is given by i>     V'K,, Rv'1, and its inertia is 
neglected.  The equation of motion of the cavity is expressible in the form 

From this  the minimum   radius ä   is easily deduced,   since it is  a root of v -    . 
Assuming that   Rr '•    'is fairly large, we find that, very approximately, 

K,.  K„        IK     '   ■'     ' (3-S' 

where ■ I r v.   The maximum gas pressure is therefore 

i: K    K,    !        ('IK' (3.0 I 

Also, the peak pressure rise (i.e.. above I') at a radius r K., > is I'K r. The maxi- 
mum velocity of the cavity wall is found by differentiation of Eq. (3.4). This occurs 
when :■:     H' , this radius being given by 

K    K. '      '     '   . (3.71 

and is very approximately 

k       .'r i -'■■-''. (3.HI 

Kquations similar to '3.:')) and (3,6), although rather less accurate, were niven by 
Noltingk and Neppiras (21). Lamb (17) obtained Kq. (3.6) in a related problem con- 
cerning underwater explosions, but gave the formula incorrectly; the mistake was 
reproduced in !iis well knov.-ii ' 'ink (18). 
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FiKUir 2 shows graphs of I', I vs : g for throe values of . Graphs of the value 
in cm sec nt K„ corrcspondini; to I' 1 bar and 1 % cm ' are alsoshown: forolher 
values of i" or . ;<. can be scaled proportionately to T ' ■'. On the graph of R,..lho 
dashed line denotes the speed of sound in water at a pressure of 1 bar. Figure 2 
illustrates clearly how the maximum pressures generated during a collapse m ly 
greatly exceed the hydrostatic pressure. For example, if a cavity contains air at an 
initial pressure of one one-hundredth the hydrostatic pressure and the air is com- 
pressed adiabatically ( 1.4), the air pressure at the end of the collapse is 4420 
times the hydrostatic pressure. When we consider that r is of the order of 1 bar in 
many instances of cavitation, the extent of the magnification of pressure is most 
impressive. The feature of Fig. 2 which has particular interest later in the discus- 
sion is >viat for 1',,, l' or in S. the magnitude of ft,, is still a reasonably small fraction 
of the speed of sound, so that the error due to neglect of the compressibility of water 
is probably still fairly small. 

4.   THE NAJURE OF THE PROBLEM  FOR COMPRESSIBLE  LIQUIDS 

To develop a theory on a secure basis, the attempt must be made to solve the 
exact equations of radial motion in a compressible fluid. We shall now derive a 
second-order approximation to the effects of compressibility: but, as remarked in 
Section l.this is done primarily as an illustration of method and toshow how the way 
is clear to higher approximations. 

For spherically  symmetric   isentropic flow,  the velocity   ixitential    satisfies 

'( 
(4.1) 
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whcrr .■ is the local velocity of aound which in nem.Tal varies with pressure. (It is 
worth noting that Lamb (18, 285) presents this equation in Its correct form, but 
under the unnecessary restriction that ■ is constant.) As a reasonable first step 
towards a solution, one may use a linearized (acoustic) theory in which the terms on 
the right-hand side of Fq. (4.1) are neglected and > is taken to be a constant i„, the 
sound velocity in the undisturbed fluid. According to this theory, the characteristic 
curves in the (i,i)-plane are straight lines, given by» r .•n consi for outgoing 
waves. But there arc two respects in which a linearized theory is inadequate. The 
first, the obvious one, is that for the very rapid flow near a cavity in the later stages 
of collapse, the non-linear terms in Eq. (4,1) may have an effect which is by no means 
negligible. Second, the linearized solution is well known to become progressively 
less valid at lar^f distances from theorigin. Even though the magnitude of decreases 
steadily (like r '), the effect of the non-linear terms accumulates and eventually 
predominates over that of the linear terms. For instance, the characteristics at the 
head of a positive pressure wave diverge, tending to form a shock wave if one is not 
already present. The linearized theory is therefore not even a valid first approxi- 
mation at large distances. 

A great deal has pre- jusly been written on this matter (7,8,25), and there is no 
need to go into any general detail here. To obtain an approximate solution of Eq. 
(4.1) which is uniformly valid over the whole flow, the Lighthill-Vhitham method is 
used; the solution is expressed in terms of an implicit exact characteristic , to 
which successive approximations are made. This approach seems the only way to 
proceed without ambiguity to high-ordu- approximations to the equation of the cavity 
motion. It appears that the inethod would remain tractable even when a fully developed 
shock wave is present, but we shall not deal explicitly with this case here, being con- 
tent to examine the circumstances of the initial formation of a shock. 

If p denotes the pressure relative to the constant pressure I' far from the centre 
of the motion iso that p •" for large i and p '• at the wall of an empty cavity), 
the Bernoulli integral of the equations ol motion can be written 

(4.2) 

where u r is the velocity.   Now, the density    is a function of p only: and so, if 
' is expanded as a Taylor series and integrated term by term, the r^.ht-hand side 

of Eq. (4.2) becomes 

1     .     .     > 
' i'    .  '  i I'     ..   ''.."  ■  ■ • ■  . 

Here      is the density where p        and.,;' ip   1   i,,    . Only these first two terms 
of the expansion are required at present: the third term is "i'-,;4!, and we are ^oing 
to develop the theory only as far as n •■■•,.   Thus, a sufficient approximation to Kq. 
(4.2) is 

1 - I        - 
i    ■ (4.3) 

The sound velocity is next expanded as 

!  (4.4) 
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Ai'.uin, tfrrns alter the second can be ne^k't'tci, beim; of fourth order. Hence, using 
Kq,   "1.3), we may write 

,    .1 ' '    -'i 
,,- '   '      ■    'I (4.5) 

Here is a dimensionless coefficient of tl«' older of unity; for water it is about 2.7. 
(Experimental data on the propertic.-i of water under high pressures (see f6) for a 
review) show that a linear relation between sound velocity and pressure, as assumed 
here, holds approximately up to pressures ol the order of 2000 bars. To deal ade- 
quately with the case of pressures niucii higher than this, the expansion Eq. (4.4) 
would have to be taken further than the first vo terms; but this is not justified in a 
second-order theory. In fact, it will appear that the variation of •■ does not affect 
the cavity motion to the second order, although this has an important effect on the 
surrounding pressure field.) 

We next suppose the characteristic curves in the i i  • t-plane to have the form 
i •      c<i:.st.  The equation determining    is then 

■  , {;;)._   .  ... 

We may also arbitrarily introduce the condition 

(4.7) 

which lends to tin useful interpretation of a retarded time" measured with respect 
to the cavity wall. 

To complete the basic details of ilu mathematical problem, the boundary condi- 
tions at the cavity wall will now be written down. First, there is the kinematical 
condition 

v.     "' (4.8) 
'  ■ i. 

Second, there; is the condition that the   relative) pressure of the cavity contents, say 
-.is the same as the pressure just insidt the liquid .surface tension being neglected 

in this account).   According to Kq. (4.3), this implies that 

1      1 s , -M (4.9) 

We also have, of course, that ■ ■   lor 

ii.  THE 1 INI AHl/l-l) THEORY 

This has been used by several authors 2;i,2-ly (o derive an equation of cavity 
motion with a lirsi-order correction for the ttfects of compressibility. The right- 
hand side ol K(j.   4.1 i is neglected, and one puts .   The solution then is 

1 (5.1) 

t'-rethi r with 
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r R 
(5.2) 

(Note that Eq. (5,2) Is the first-ordei- solution of Eq. (4.6) subject to thf boundary 
condition Eq. (4.7)). 

From Eq. (5,1) it follows that 

.J '.r (S.3) 

When this is substituted In Eq, (4.8), i    i can easily be calculated as far as terms In 
i-,;l, A first estimate gives f (   >   R2(   i K(   i; and a second gives 

f      R2R -    '   iK 'H      2R2R"! 

From Eqs. (5,1) and (5,4), we get 

-it  )■ 
1        R 

(5.4) 

(5.5) 

-RR    JR'     ,    iKJR   f.RRR    JR' 

which, when substituted in Eq. (4.9), leads immediately to 

RR  •  ", ft2 -   ,,   iR2R   • f>RRR     2R(       S, (5.6) 

This is exact to Ofr^S.   To the same order, the equation may be arranged in 
several other ways, for Instance in the form 

RR   fl  - (
R V •] R2   fl   -   ,|M     S  •   .'   (R -|  •  RSJ. 

6.  HIGHER-ORDER SOLLTIONS 

To proceed to higher approximations, one may write 

(5.7) 

.rr. ' ) 
1 1 

2      -2' (6,1) 

where .Vr. •) is the linearized solution given above, and then solve Eq, (4.1) to suc- 
cessively higher powers of i*;' (i.e., .3 is first determined, then „etc.). At the 
same time, successive approximations are made to the characteristic determined by 
Eq. (4,6),   The solution of the latter equation is most suitably expressed In the form 

1      Fi r.   1, 

which, of course, in the linearized theory reduces to 

r     Ki    1 
1 

(6,2» 

CO» 
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Thus, the present method isclcarly seen to lu> an instanccof UghthlU's generaltpch- 
nlque of "coordinate perturbation" (7,25).   In applying the method, it is helpful to 
rewrite the equation for     in terms of partial derivatives with respect to t (i.e., with 

constant) and     (with r constant).  Thus, Eq. (4,1) is replaced by 

i ■    i   .        i     ,■     , ,i i    ■        ,.    i it (6,4) 

the terms on the ri^ht-hand side beinn equivalent to .   •' times the non-linear terms 
on the right-hand side of Eq. (4.1), 

Let us now work out the solution as far as terms in < ,/'. We first observe, on 
substituting Eq, (4.5) in Eqs. (4.1) or (R.4), that the variation of ■ does not affect the 
equation for to this order. Next, the linearized solution is used lüobta)•, the second- 
order approximation to the right-hand side of Eq. (6.4):  this is 

\-2'[       -".,'- (6.5) 

with  M    i    K"'     i  K'    i. 

An approximation to the explicit form of Eq. (6,2) is now found. When Eqs. (5.1) 
and M.5) are substituted in Eq. (4.6), the integral of the equatio . to m. ;,' i is 

' -    ■ it'll l.v   ,    •   ' -      '_   '   _[   .   A 

where i      is given by Eq, (5.4) and A     is an arbitrary function arising in the inte- 
gration.   If A is chosen so as to satisfy the boundary condition Eq. (4.7), we have 

/i  »N  ''   -'      i,.., ' . '-': "•l   /'    IN 
I <      J        ,„■' i„J    \v     t*J      (6,0) 

This expansion is far more accurate than we need at present, but it will be useful 
later. 

When Eqs, (6.1), (6.5), and (6.6) are substituted in Eq. (6.4), the first term on the 
right-hand side (i.e., the first term in Eq. (6.5)) is cancelled, and collection of the 
second-order terms gives 

■'-.-'       J        A'*' (6.7) 

which has the solution 

!■■ R"R' (6.8) 
i     "   in ,' 

The arbitrary   function K   i is   determined   from   Eq. (4.8).    Hence,   the   complete 
second-order solution Is found to he 

\   V'K     '   IR'H    JR-,R-!.      ' , .K!4i< • VKK • " K'KM       
K"■K', 

„,,.-■ ,.        (6.9) 

''20 



I'r ■>. MI IT W.i\ is irun   ' iill.i|iHiiiy i .ml . K 

This result is oxact to the second-order. The last term on the rit?ht-hand side 
is ne^Huible far from the cavity, but near the cavity it has the same importance as 
the other second-order terms. The appearance of a term in r " In this solution does 
not imply that powers between r ' and f5 -xrc absent from higher-order solutions: 
in fact terms in i - arise in the next approximation (compare the solution of the blast 
wave problem given by Whitham (8. sec also 25)). Note that the present result dis- 
closes an error in the Kirkwootl-Bethe hypothesis, which states r , to depend 
only on   . 

An equation for R t i corresponding to Eq. (5.G) can now be obtained by putting 
Eq. (6.9) in Eq. (4.9i. However, at this point it is convenient to introduce a simplifi- 
eatlcn which has been suiriiested by Dr. Proudman (it was in fact used in his work 
referred to in the introduction). We have remarked earlier that the motion of a 
cavity towards the end of a collapse depends very little on the hydrostatic pressure, 
but is controlled essentially by the total energy f. Therefore, for the concludimj 
stages of the collapse of an empty cavity, it is permissible to put s = " in Eq. (4,9). 
The vital parameter F then enters as a constant of integration in a first integral of 
the differential equation for R. (The case of a gas-filled bubble near the end of its 
collapse may lie simplified in a similar way by putting s equal to the absolute (Instead 
of relative) pressure of the gas contents, which is justified when this pressure 
becomes very large compared with the pressure P far from the centre; however, to 
illustrate the theory we shall consider here only the case of an empty cavity,) The 
step of putting s = i) can also be justified by considering that the motion in the final 
stages would be the same approximately as for a cavity which collapses from infinite 
size under zero pressure, but which is initially given a finite kinetic energy. Hence, 
after a certain amount of straightforward calculation, we arrive at the equation 

RR     ' R-'     «' • H K     n . (6.10) '!> 

Consider now the expression 

jW i 1   •   A   R       I!   R 

where k. A, and 11 are constants. On differentiation this is found to satisfy Eq. (6.10) 
to ')<>;/1 if A -4 3 and n y lo. Also, k can be identified with F. 2 ; for we 
must li'ave 2 „R'R- F. when the cavity is still large enough for the velocity to be 
small and the effect of compressibility negligible (see Eq. (3.1)).  Thus we have 

f     2   ..R K     ' " .»   ..      TO   _. .. (6.11) 

This result shows clearly that compressibility of the liquid slows down the cavity 
motion: i.e., at a given radius R, fie magnitude of the (negative) velocity R is less 
than if the terms inR i-n were zero. 

Now, there are various ways one might Interpret this equation. If it were sup- 
posed to remain a valid approximation right up to the instant of total collapse, one 
would conclude that -R • (' iR ' 4> as R • o , so that the velocity ultimately becomes 
infinite. However, this argument is obviously unsound. Equation (6.11) is only a 
second-order approximation in terms of R .,; and clearly in successive higher approx- 
imations the series in powers of k ., would be carried on Indefinitely. Thus, if k is 
in fact infinite in the limit, the truncated series would IM- incapable of determining 
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tlio ex.ic t iiuturiul the .siiinulaniy. Onlhc other hand, there is. an approxlmate solution 
of Eq. (6,11), satisfyinu the equation to the sreond order in » ■ ,,. which gives a finite 
velocity in the limit as |< . i\ At first sight it seems possible that this solution is a 
uniformly valid approximation right to the end of the collapse, so that the finite 
terminal velocity is a realistic result; for we note that in order to keep the right-hand 
sid< ul Eq. (6,11) constant as R > '!. it may be sufficient for the series in R ■ „-of 
which only the first three terms are given in the present approximation—to diverge 
in a certain way for some finite value of K. 

To (il)tain  the   result   in question,   we introduce  the dimensionless  variables 
v     N j     ■ J K  '   ' and si  .'    ' M; .'     < ^ ' '.    In terms of these,   a solution 
accurate to the second-order is found to be 

•      1 '      ) ,..     j (6.12) 

'.      ' 
(6,13) 

Aiio)ding In Eq. (M2). th( culUpse ends at        1, ■' -.  When this value is put in Eq. 
(6,13), the velocity at the end Is given as   '■'     .',  i 

It was noted In the Ir.trorliiction that this spe(illation about the terminal velocity 
ol < ollapsi is probably wrong. The author became convinced of this only very 
reci nlly. Previously the available analytical evidence seemed substantially in favour 
of a finite collapse velocity—for instance, this interpretation was consistent with a 
fourth-order apj)roxirn.it!'i;i nbuined In Dr. Proudmun(which at lirst sight would ap- 
piar mori' n.-llabh' than a theory based on the KlrkwoiKl-Bothc hypothesis). However, 
sufficient evidence for rejecting this interpretation was provided by a numerical 
solution of the' problem which Mr. C. Hunter at Cambridge1 has found by usr of the 
EDSAC '1 digital computer. The numerical results indicate that the velocity-R 
incr( ase K without Ijound as :• • . which is as Gilmore (5) suggested a number of 
years ago. Fhis te mpurary mistake' might nevertheless be' said to fit naturally into 
the' story ot recent work on thi.- problem: and even though a finite' eollapse velocity 
may not after all be' a true theoretical result, it is not inconsistent with the physical 
picturi of events at the' centre' of a cavity collapse. The chief physical implication 
ol a llii oretically finite' ve'loclty (in fact the' only really significant aspect of such a 
result) would be that then is no e-oncentration of energy at the centre, as we noted in 
Seition 3 oe'eurs in tin case ol an ineompre'sslble liquid. This apparently is a valid 
conclusion. Some re ce lit work, to be summari/e'd in the' Appendix, has demonstrated 
that the flow field surrounding a eollapsing empty cavity po.sse>sses an inner core 
which holds a vunishingly small share of the' total e'mrgy of the motion. It therefore 
appears that the pressure wave radiated from a practically empty cavity would be' 
seareelv affeeted by i vents near the' eTIltre inintedialely pre'te'ding the tinul ilosure ni 
the cavity: the' properties ol the wave' are' mainly determined by the flow oulsidi ilu 
central core, lor which part o! the How the above' the'ory provides a valid sevntul 
approximation. 

It remains In iirniisidir tin possibility that a shock is fornu'il hi'furi' tin iiul 
ul the collapse', .is sut'gesti d i arliii in tin paper. It this occurrid, I'aliulali.'n'. >'i 
tin si presi nt sort woild subsequently become' invalid, AnaKiual »urK o:\ Ihr. 
question has so l,ii Ini'ii incoiickisive. Iml tin machine iMlculatioir. it".iM ,,:. 
I)'. Mi. Ilutiler have inelicaliil that no shock is in tad fonnetl up to tin m-l.c.-.l 
win ii ;■    • 
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7.   THE PRESSURE WAVE 

An advantage of the preceding method of analysis is that It provides a uniformly 
valid approximation for the pressure pulse transmitted away from the cavity, even 
when therr is distortion of the wave-form due to non-linear effects. To Illustrate 
the theory, we shall now focus attention on the question whether a rebounding gas- 
filled cavity may generate a shock wave. 

At a lartic distance from the cavity, the pressure due to the radial motion is 

'' .  '   r   ' (7-1) 

where t    • is prescribed on the cavity wall and is K-'R to a first approximation; also, 
according to Eq. (6.6).    is given by 

1 

(7.2) 

The last term in this expression has the effect that in a positive pressure wave 
(t ). the characteristics progiessivcly diverge from the approximate charac- 
teristic •      r .given by the acoustic theory.   Thus, as wc have icmarked carller. 
the acoustic approximation always breaks down  when the wave  has travelled far 
enough. 

The result of the diverging of characteristics is that a positive wave is made 
skew in the outward direction and may eventually develop a shock as Its slope becomes 
infinite. Now. since i is continuous, we can only have p i —* if ■t—* ; 
i.e,, it   x •   .   Therefore, from Eq. (7.2), the condition for the initial formation 
of a shock is approximately (taking I ■.    r R   to be large) 

i 

(7.3) 

This gives the radius at which a shock first appears. Clearly, the shock develops at 
the point in the wave where the slope t Is positive (i,e., at the head of the wave in 
time) and a maximum-i.e.. at a point of inflexion. It might be supposed that for a 
positive pressure pulse such as produced by a rebounding cavity, a shock always 
occurs, because the condition Eq. (7.3) can always be satisfied by taking i to be large 
enough. However, if t is everywhere small, the required value of i becomes 
enormous, which means that in practice there will be no shuck. The effects of dis- 
persion by viscosity and heat conduction will eventually cancel the very gradual tend- 
ency to build up a shock; for. although the magnitude (.1 these effects on spherical 
waves is extremely small, thev depend on i in contrast to Wv r for the latter 
effect (13). 

We an now in a position to estimate the practical conditions under which a 
rebounding cavitation bubblewill c.ive rise to a shock. The maximum value of i ■ is 
required: and as v. first apprnximation it is sullicicnt to lake R*K for i. We assume 
for simplicity that the pressui« inside the bubble is given by I K '■' '. where ' is 
the maximum pressure and k tin mininium radius (this assumption imolies an 
adiabittic compression with t   '; it is [ound that other values of    do not signifi- 
cantly chang«1 the end results "I the present culculation). Dy a straightforward 
method along the same lines as tin calculations at the end of Section 3. the maximum 
ul  : is  estimated  to  lie   sinipl-.      ~  '•   ' ' •',    Next,  values of      and    for 



water arc substituted in Kq. (7.3). IIMU'C, we di'dute tliat the condition lor a shock to 
be- lornied at radius r in water is 

l„ U    fl        lnr     I   ,     1!  .     •'     '       kl I..(„US. (7.4) 

The value of K in Kq. (7.4) is nearly the same as K, but it is really unimportant which 
value precisely is considered. The followinn table shows some values of r juslsatls- 
tyiiij» Fq. (7.4). tfiven as a funclion of r  K': 

i   K in'        I""       til''       pi"       in-' 
i,    '..i i..h.iis! I  i.<i    M     j.)    j :     vi 

We see that the necessary value of I',, varies very little over orders uf magnitude of 
r ':. This table indie ites a [jood practical criterion for shocks to form within 
"reasonable distances": this is simplythat the maximum pressure in the bubble should 
be at least about 2 or 3 kilobars. If I', is much smaller than this, shock waves are 
unlikely to be detectable, both because dispersion may overcome the tendency towards 
shock formation and because anyway the pressure wave will l» of extremely small 
amplitude at the distance where a shock might appear. 

As a check on this calculation, we observe from Fig. 2 that for value of P.. 
around 2 kilobars the maximum velocity of the bubble is still reasonably small com- 
pared with the sound velocity. Therefore compressibility of the water will not have 
any important effect on the bubble motion: and so the estimate of t from the 
incompressible-fluid theory is probably quite adequate. 

After a shock is initiated, it develops rapidly since its velocity is less than for 
a continuous wave uf the same amplitude: thus, the shock is continually "fed" by 
.wavelets arriving from behind. In the present problem, it would be feasible to 
account for the progress of a shock after incipience bv using the methods given bv 
Whitham (10), 

8,   CONCLUSION 

>'he present theoretical work is intended to throw some further light on the 
physical mechanism of the collapse of cavitation bubbles and the noise arising 
therefrom. It has been shown that the theory of cavity collapse in compressible 
liquids can with advantage be developed by means of the Lighthill-Whitham technique 
of coordinate perturbation, successive approximations being obtained In powers of 
the parameter 1 • „. Fur the hypothetical case of an empty cavity, the approximate 
theory admits the interpretation that the collapse is terminated at a finite radial 
velocity; and although this is now believed to be an incorrect theoretical result, it is 
nevertheless true thai the "imperfect" theory provides a uniformly valid physical 
approximation, since the finite terminal velocity is a reasonable represenfaiion of 
the apparently true fact that only a limitingly small part of the overall energy !s 
carried right to the centre of collapse (in other words, most of the energy is stored 
in a compressive wave IK fore the collapse ends). 

In reality the concluding stages of a "severe"collapse (i.e.. where the cavity has 
a negligible gas content) will IM1 greatly affected by compression of the enclosed 
vapour and by other effects which have not been included in the present theory. But. 
in the manner suggested above, compressibilily of the water may have enfeebled the 
ending of the collapse before the latter effects become Important, so that they play 
an Insignificant role in  the   overall   mechanism.    By  similar   considerations,   the 
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possibility of a cumplctt1 collapse without rebound from a certain minimum cavity 
size now appears fairly reasonable. Of course,as soon as the collapse is completed, 
a strong shock wave will be formed (the shock will probably originate from the 
centre; but as it expanis it rapidly becomes independent of the "inner core" left 
unexplained by the simple theory); and this shock wave will have a rarefaction phase 
behind it which might re-open a cavity. The question whether or not rebounds occur 
in usual circumstances remains one of the most debatable topics in cavltatlon studies. 
In the author's experiments, no evidence has over been found of a complete collapse 
without any rebound. Several other experimenters have, however, reported such 
evidence 

Another aspect of cavltatlon which has been considered concerns the case of a 
comparatively mild collapse. It has been shown that even a gas-filled bubble can 
generate a shock wave If the pressure of the gas rises beyond a ce/taln limit at the 
instant of maximum compression when the rebound begins. Experiments by the 
author have revealed cases of Incipient shock formation; and the observations appear 
to support the theoretical estimate of the critical conditions, although a precise 
comparison has not so far been achieved. 

Finally, I feel this Is an appropriate place to acknowledge my Indebtedness to the 
British Admiralty, which has supported my work on cavltatlon for a number of years. 
In particular, I should like to express my gratitude to Dr. Jackson, Dr. Vlgoureux, 
and Dr. Byard of the Royal Naval Scientific Service, whose advice and encuuiagcrncr.t 
on many occasions In the past have greatly sustained my Interest In cavlUUon, 

APPENDIX 

The methods given earlier In this paper were shown to lead to what Is very prob- 
ably an Incorrect answer to the theoretical question of how the collapse of an empty 
cavity Is terminated. In view of the results of Mr. Hunter's calculations with EDSAC 
II, this question has been reconsidered by him along different lines, and as some 
progress has been made since the date of the meeting in Washington, it seems worth- 
while to include the following summary of what has been done so far. 

Suppose the collapse ends at i ". and suppose the velocity -K of the cavity does 
In fact Increase without Lound as K ><•, The pressure just inside the liquid then 
also Increases Indefinitely; and since the sound velocity < Increases with pressure, 
eventually the situation develops where the value •-,, right at the cavity wall Is insig- 
nificant compared with the values of > Inside the liquid. It Is therefore reasonable to 
assume that the motion very near the centre Is the same as that of a gas flowing Into 
a vacuous spherical cavity; for the gas the value of • is actually zero at the boundary 
of the cavity, in contrast to the "Insignificant" value • which the liquid still possesses 
at zero pressure. Thus, the liquid motion contains an Inner core which tends to the 
solution of this corresponding gas-dynamical problem in the limit as K    > o. 

For such a gas flow there Is a "similarity solution" (i.e.. a "progressive wave) 
of the type considered by Guderley (26) and others In studies of strong spherical and 
cylindrical shock waves (see Courant and Friedrichs (27), Chapter 6C, for a general 
account of the subject). We take the motion of the contracting Inner boundary to follow 
the simple power law K A'-1 , where A and are positive constants, and assume a 
solution of the form 

„   ; v, ,.    ,.   -,'(••', (AD 

where r K     i  A'  i i. The inclusion of a minus sign in Hie expression for .   makes 
C    i a positive quantity over the whole flow,  since .  is necessarily positive.   In the 
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(r.t )-plane, the lines "MISI spread 
from the origin as Illustrated in Fig. 
Al, the inner boundary being =1. 
The boundary conditions are id) 1 
and C( i > n at the inner boundary 
r    R, and also U(M    Cf' I     " 

As shock waves are absent, the 
How can be taken to be itu ntropic; 
hence, i> ■ ' is constant everywhere 
and <• is proportional to P''"1 ^ • To 
apply the solution of the gas-dynamical 
problem to the cavltation problem, we 
shall take . 7, recalling the approx- 
imate homentropic equation of state for 
water p > B const T, where B = 
3000 bar» (in effect, the present argu- 
ment assumes thai inside the central 
core of the liquid motion, pressures 
become much larger than B). 

Now,  there is a particular  line 
in the (r t)-plane which, if it 

occurs inside the flow, has u crucial role in the determination oi the solution Eq. 
(Al)—as it docs in shock-wave theory (26).   This is the   -line whose slope ■!'   it Is 

- ' , and which is the.'»,* .re a characteristic curve passing through the origin (see 
Fig. Al).   Hence, accoi-; • . tc Kq. (Al), we have 

I' c       1 (A2) 

where i    and (   denote the values o! i and <" at .   Also, the relevant charac- 
leristic equation (sec p. 46 in (27)) tor isentropic flow can be put in the form 

(A3) 

in which '      .' 
i.e., along 
of Eq. (A2;, to 

i   ami ttirilifteremial ions are performed along thecharatteristic. 
The substitution oi Kq. (Al) into Eq. (A3) now leads, with the use 

I 
(A4) 

Some important properties of the solutiim are implied directly l>v this quadratic- 
equation lor r 

We wish particularly loknow the possible values ol in this problem, since from 
tin tu ihr asymptutic behavioiir i)i a cotlupstng cavity in a liquid might be inferred. 
The first poSHibility which need be considered is-: that I,   This value clearly is 
admissible according to Eq. (A4) whose roots beeomo r " 1. indicating that there 
is no "critical characteristic" inside the flow; or rather it could be said that tin» 
characteristic has become t and thus coincides with the boundary i      ;:.    For 

1, the velocity iK h is constant. as are all velocities along rays i i .■>• in 
the ' ■ .'-plane. This case would therefore be relevant to the cavltation problem i: 
the I« rminal velocity ol colla|we were Unite yet very lar,;e compared with . . ("ourant 
and I-r ( drichs f(27j. p Ktl) have noted Hull the present i;a.s-d\namical probien: docs 
havi    i sulution with        I.  .it leasi   lot   the value i  t appropriate to air.    On 
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further invcstinatiun, howpvcr, it appears then" is mi solution appllcabli1 to the cavi- 
tation probUni.   This fact can most easily be demonstrated as follows. 

When the expressions Kq. (Al) are inserter, into the dynamical and continuity 
equations for spherical isentropic flow (see (27), p. 37) and use is made of the fact 
that  i    I.      k.  .-, we obtain the equations 

in   i iii' i v rr      i-'        'f   kci (A5) 

rti'   > k (V    1 K"       c    (3 • kit  -k    ' (A6) 

We recall that i. 1       1 and O 11     »; hence, for 1, we find from Kq. (A6) that 

r,, , ' (A7) 1 Ik 

and from tqs. (A5) and (A7) we find that 

k   C. 1 !   •' l"i 1 )   1   • 1"( 1 
V_k-2i (A8) 
.k • 1.-' 

This result shows that for a real.solution it is necessary that '..     2, which mi'ans that 
2.   With T as at present, there is thirefori'no solution with        t. 

Further investigation shows thai there is only one admissible value of 1   ; 
but there appears to be no simple way of calculating this value. However, a lower 
limit to can at once be specified on consideration that Eq. (A4) must have real roots. 
With i      I  \, corresponding to       7, the conditions for real roots become 

:     > 7    -    .1      1 

!..■., ci.S54.17, (A9) 

By means of some fairly simple analysis, details of which we shall omit here, one 
may conclude that the actual value of is only slightly greater than the value in I'q. 
'AD).   But. to obtain    accurately, the following course is necessary. 

From Eqs. (A'>) and (A(i), a differential eqjation can be obtained in whul. < and 
( occur, respectively, as Independent and dependent variables and inwhich isahsem. 
This has the torm 

! r   r \U 

where k and are involved as parameters in 'he function t ul c and :. It turns m , 
(which implies c I r; see Kq. (A2j) corresponds in i\eiuial tui slnnularity 

ul this differential equation: and Kq. (A4) accordingly assumes tl« role nt ,i Kondition 
on the parameters k. which is necessary tor a physically realistic solutimi. llu' 
(■(jrrfct value ol can apparently only be found by subslltutlnu trial values in Kq. 
(AlO)aiul observint! whether corresponding solution meets all the requin ments ol 
the physical problem (this procedure recalls the Aork ol ti'.iu ilev l2t))). As the 
solutions to Kq. (A10) can be lound only by numerical intev.ration, the task ul 111101111: 

( ntails .1 p.reut deal ol computation. But tins work has been d<m< by Mr. Hunli 1 ;ii 
Cambridge: and for        7 he has determined the viUn  01    at about ('.ifii):'. 

Thus it appears lairly well established what the asvmptotic lu'haviour shuukl !»< 
'   'he cavitation probleni it the terminal M IIM it\ ol eoll.ipse is in fact iniiniii .   Noli 
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that Iho abovt'value ot     iniplics that     IK'  H      K" '"'  a.s K    >". this exponent bcinn 
1  -   1.   However,  it has not been proved that  the terminal velocity is infinite:  this 

has been inferred only because the results of the machine computation seem to indi- 
cate it to be so. 

The total energy of the ga.« flow consuieretl above is found to be infinite; but this 
fact is not necessarily Inconsistent with our application to the cavitalion problem, 
since only the niolion very near the centre is supposed to be the same in the two 
cases. Actually, a very important conclusion with respect to the cavitation problem 
follows on consioerini; how the energy of the gas flow is distributed, With = 7 and 

■■ 0,5352, it can be shown that in the limit as p 0 the total kinetic and compres- 
sional energy within a sphere of radius t is p.-oporlional to r1'"''. Thus, evidently 
the energy of the liquid motion also ii spread away from the centre of collapse, there 
being no concentration of energy at the centre (a.s happens in the case ol incompres- 
sible flow) despite the infinite velocity which occurs there. The physical signlficancs 
of this fact was noted earlier in this paper. 
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NOTE  ADDED  IN   PROOF.   A . ..npl. n—tuiK ol th.   .i.-.vmj.lulu  Ihrorx   refer r«1«! to in 
the Al*]ieMciJN i-  |u*e.sentefl in ,i [mper l>v C.Hunterj "On lb»' CoUapav nf an I'itnptv Cav- 
ly in V.'.n.:,' J. Kt.ii-I Micli.H^ll (lVi.O). 

DISCUSSION 

C. A. Gongwer (Aerojet General Corporation) 

At Aerojet wo have been able to generate a transient bubble of (our-feet maxi- 
mum diameter which is a true cavitation bubble, i.e., oi",> with negligible permanent 
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t,ras content. Because it's so lurgc, Uie time scale is expanded and we can take a lot 
of time studying it. 1 would estimate from movies, that the velocity of coliapse is on 
the order of several hundred feet per second. What gas is present is possibly air 
which is drawn out of the water. It becomes incandescent on recompression and 
there is a flash. This is possibly the source of the luminescence occasionally 
observed in cavitation experiments. When the bubble becomes small it looks like a 
'porcupine" in that sharp spikes extend radially from it. There is debris in and on 
the surface of the bubble which is overtaken by this lar^e, collapse acceleration and 
is left behind projecting like radial spikes all over the bubble. 

Tlu bubble center is 5.5 feet deep and 10 feet away.   The charge is about an 
ounce of this ne"'gas8ing explosive. 

Figures Dl and D2 are representative pictures of the bubble at maximum size 
and near the final collaose. 

r...:). M.ixi-i. ■X:;.ih.-lolK 

s. !,u 
i - \f tr final cul .up««'; .     11 • Al. 1 

■, roil 
.IMI: 

.' i U . f.ii-.i 
nx.   1 im-h.' 

'IT    . US . huhbl 

This bubble lasts about one-tenth of a second, and one sees a little jet extending 
upward with a few bubbles in it. This is because the integrated displacement (vs 
time) of the bubble provides an upward impulse lo the water comprising the virtual 
mass. 

The implosion shoekis of the same order as that produced by the explosion. The 
collapsing bubble (see Fig, 2) has sharp project ions on it. sticking out radially like 
(Hitlls on a porcupim as it comes together. One sees a little residual burning, but 
when tlu1 luiniiiescencc ilisajipears Ihere is virtually no gas. For our purposes the 
bubbli   is empty. 
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Thmc is cuouyh dissolvod air on the surface of tho 4-foot bubble in a layer of 
water 5 1000 of an inch thick lo supply what appears to be the residual gas. This 
bubble is about 4 foot in diameter. It represents a potential enertsy at this stage of 
approximately 150,000 foot-pounds. 

Further analysis uf the film gives the raaius-time curves, shown in Fig. D3, 
plus a derived curve of pressure vs. lime in Fig. D4.   This data was analyzed by 

Mr. J, Levy of Aerojet.    Further work 
-i is   being   done   on   the   explosive to 

reduce even further the amount of 
residual gas and thus approximate 
more closely the conditions presented 
in Dr. Benjamin's paper. 
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F. S. Hurt (Admiralty Kesearch Laboratory) 

Witli respect to ib«' question .is lo whether ui- not :ebound folkiws tlie collapse of 
a vapor cavity, it may be worth while referring to .some experimental work which 
was carried out at the Admiralty Reseat ch Laboratory in l'J52 by Mr. A. L. Kendrick. 
In these experiments, single vapor cavities wen initiated by a nucleus of permanent 
Has produced eleclrolytieally - the instabilily liiiiic induced thermally. 



T.   h.   hrniainin 

Photographs taken with a high-speed camera ut the rate of 16,000 frames per 
second showed that any rebound that existed was extremely small. However, several 
well-defined rebounds could be observed when appreciable quantities of permanent 
gas were introduced into the cavity. 

M S. Plessct (California Institute of Technology) 

Dr. Benjamin's paper contains several remarks which are somewhat obscure 
and p izzling. I refer to the discussion on the collapse velocity of a bubble and to the 
remarks about the development of a shock before the end of collapse. In connection 
with the latter, I was interested to see the remark that "the machine calculations 
organized by Mr. Hunter have indicated that no shock is in fact formed up to the 
instant when K n." The author has also made a very questionable point to the effect 
that his analysis reveals an error in the Kirkwood-Oethe approximation which has 
been applied to this problem. 

Or. Benjamin has apparently not given much consideration to the numerical 
integrations of the compressible equations of bubble collapse which were carried out 
some years ago. One of these was made by A. J. R. Schneider ' up to a bubble collapse 
velocity corresponding to a Mach number of 2.2. A summary of these calculations 
has been given in the paper by F. R. Gilmure^ which is referred to by Dr. Benjamin, 
A numerical integration ot the compressible equations was also per formed subsequent 
to Schneider's calculation by Dr. Gilmurc. (Gilmore's results have been reported in 
the Proceedings of the First Symposium on Naval Hydrodynamics. )t Both Schneider's 
calculations and the c made by Uilmore show rather good agreement between the 
numerical integrations and the results obtained from the Kirkwood-Bethe hypothesis. 
As expressed by Gilmore, "the calculated bubble-wall velocity agrees within 6 per- 
cent with that given by the analytical theory (baaed on the Kirkwood-Bethe hypothesis) 
over the calculated range of 0.2 to 4.9 times the velocity of sound in water. The 
inward velocity thus appears to increase with the radius to the minus one-half powor 
as the radius becomes small, instead of with the minus first power given by the 
acoustic theory or the minus three-halves power given by the incompressible theory." 

T. Brooke Benjamin 

Apart from expressing admiration fur the resources of Aerojet, 1 wish to make 
only one minor comment upon the exciting experiments described by Dr. Gongwer. 
This is that the buoyancy effects are probably nut duplicated by typical small cavita- 
tion bubbles owing '.o the great differemts in respective values of the gravitutijnul 
scale factor !■ vHfi. wiiere l,, is Hie t'liviiomm-ntal pressure and K,, is a linear 
measure of bubble size. Otherwise Dr. Gungwer's bubble appears to provide a must 
effective model of a cavitation bubble, 

A. .1. R. Schm'id« r, ' Siiti.i-   f;<imprtssiUli'   Mfcrts   in r.i\ w.ii i..n   Ivuhii'.,-  Hvnaitiu*,' 
llnsis, California Inntiluti' ol   li'ihiuilouv,  1 •I1». 

♦ K. H. üiliii'.n-.      ! !!<• Cr-.-.vih  ur Ciilla|i.*i'  i,l .■  Sjih. rif.tl  n.iM'.r  i;. „   Vi.si'u.i.« Con - 
pri ssilil,-  Liquid," llytl.*«. !vna:i H . I.aliurutury Ki'imrl Nu. .!i - I,  ( .ilifn-iua '.r.-wt .n, 
of  l <•! hmtUiuy .   1 'I^Z. 
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Mr. Uurt h;is clone ii valunblr service in clruwinn uttenUon to A. L. Kendriek's 
experiments, which I have lonn regarded as an important contribution to cavitation 
KtudiiB and which deserves wide recognition. It is hoped that a full account of these 
experiments may yet lie published, cvn idler so many yeur.s have passed since the 
work was done. 

I hope that the several changes incorporated in the final draft of my paper will 
help to allay some of the miSKivings felt by Prof. Plcssel. But I still fail to see what 
is questionable about my remark quoted in Prof. Plcsset's third sentence: 1 still do 
not find it in any way directly obvious that the shock could not form shortly before— 
rather than immediately at—the instaat of final collapse of an empty cavity, even 
though I fully accept the evidence of the machine calculations that it does not. Prof. 
Plcsset's comment seems to imply that this fact is self-evident. 

Again, 1 see notliing questionable about my demonstration of the second-order 
error in the Kirkwood-Bethe approximation. This error certainly exists, though in 
the paper 1 have not considered exactly how important it may be. I also purposely 
refrained from making a critical examination of the theories which, as Prof. Plesset 
mentions, his two colleagues have worked out on the basis of the Kirkwood-Bethe 
approximation. The principal aim of my paper was merely to show how better approx- 
imations than this one can be made, so that a theory of cavity collapse can be devel- 
oped on a more secure basis. As one definite criticism, however. I may point out 
that since the Kirkwood-Bethe approximation becomes wildly inaccurate for highly 
supersonic flows with velocities approaching infinity, particularly near the centre 
where the effects of spherical divergence arc largest, the asymptotic law of velocity 
variation referred to by Prof. Plesset is obviously a spurious result. If the collapse 
velocity docs become inlinite. the correct law can only be established by some self- 
consistent asymptotic theory such as the one outlined in the Appendix to my paper. 
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NEW DEVELOPMENTS IN THE THEORY 
OF SUPERCAVITATING FLOWS 

M.irsluill P.  lulin 
■   \.i. il  II iir, ',,   I  „ulun 

INTRODUCTION 

Cavity flows in fluids occur in nature under a variety of circumstances. The 
least sophisticated of these are the cases where the flowing fluid Is a heavy liquid 
such as water or a volatile fuel, and when the cavity Is filled with a light gas such as 
air or steam or volatilized fuel. The gas may he supplied externally as in the case 
of ventilated flows such as occur when a surface-piercing strut proceeds at such high 
speeds through water that a cavity forms behind it into which rushes air from the 
atmosphere, ur the gas may be supplied by vaporization of the flowing fluid due to 
flow-induced reduction of pressure. This is called cavitatlon and commonly occurs 
when hydrofoils, ships' screws, hydraulic machines, or fuel pumps are driven too 
fast, or when the pressure of the approaching fluid is originally too low. These cases 
are least complicated because ihe pressure of the gas in the cavity is nearly constant 
and known in advance. Most of the recent interest in cavity flows has been motivated 
by problems of cavitatlon. 

It is, of course, fortunate that the external flow may so often be considered non- 
viscous: when this is not the case complications naturally ensue. In fact very little 
isknown about the effect of viscosity on cavityflows. As an interesting extreme case, 
very viscous flows involving gas cavities in fluids occur sometimes in oil bearings 
into which atmospheric air Is sucked, and when gas is forced up through oil-filled 
soil. Such interesting problems have recently been studied by Sir Geoffrey Taylor 
and Phillip Saffman at the Cavendish Laboratory and will be discussed at this sympo- 
sium by the latter. 

Perhaps most sophisticated of all cavity flows are those involving homogeneous 
fluids which "separate" from the obstacle around which they flow. It will be remem- 
bered that the original infinite-wake theory of Kircholl was intended to deal with such 
a flow past a bluff obstacle. The difficulty in dealing with these flows lies in the fact 
that although the pressure In the cavity may be roughly constant it is not known in 
advance. But that difficulty is not Insuperable, as an interesting illustration demon- 
strates. Professor M. J. Lighthill (1) has treated the problem of a bluff two- 
dimensional obstacle placed in the path of the flow along a flat plate. It is known that 
a "dead-water" region forms ahead of such an obstacle.   Postulating conbtancy o* 

I in- .iiithur ^i^lii-s Ui i'xprvKK apjirt-v i.ititm ti.ttic Oft'u »' »>1 N.iv.il Ki-.-iMt-.; 
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pressure in the dead-water, it maybe shownthat forward extent of that region depe.ids 
on the pressure therein, as does the pressure distribution ahead of it. Lighthill 
reasoned that the boundary layer on the plate must Just separate at the beginning of 
the dead-water, and he was thus able, by matching boundary layer behavior and dead- 
water pressure, to determine the latter, and show how it depends on the extent of the 
plate ahead of the obstacle and the state of the boundary layer on the plate. Separated 
flows of all kinds abound in nature, and it is probably not too much to hope that cavity 
flow theory will soon be put to further use inproviding understanding of some of them. 
Particularly tempting and important problems involve bluff-body flame holders and 
stalleü cascades, about which Mr. Cornell will speak at this symposium. 

Most of the recently devised theory ot supercavltallng flows upplles directly to 
problems of truly cavltating or ventilating flows and It Is those problems that have 
most benefited by timely recent progress. Indeed, as will be revealed here by 
Professor Lerbs,and by Mr. Tachmindji and Mr. Morgan the application of low-drag 
hydrofoil sections to the design of supercavita'.ir.,; propellers was carried out success- 
fully at the David Taylor Model Basin immediately the theory was available in early 
1954. with ihe consequence that the possibility of operating ships' screws efficiently 
at such high speeds that considerable cavitatlon occurs was for the first time con- 
clusively proved. At the same time the mental barrier that had existed In designers' 
minds as regards the '■lie and efficient use of hydrofoils at very high speeds was 
also lowered. Indeed, many of us now take for granted the eventual existence of ships' 
screws, hydrofoil boats, and hydrofoil-equipped aircraft, all operating with super- 
cavitating or ventilated sections. For this change In atmosphere we are In great part 
indebted to theoretical developments. 

In retrospect, the most significant feature of these recent developments has been 
their concern with lifting hydrofoil *"ctions, a complete departure from the wartime 
trend which emphasized bodies of revolution such as torpedoes. In fact there now 
exist reasonably adequate mathematical tools to deal with lifting problems of con- 
siderable complexity. The fact that so much use has been made of linearized theory 
requires no apology. It is very fortunate that so many practical engineering con- 
figurations are reasonably slender. It should also be noted that experimental studies 
have provided murh valuable Information concerning lifting hydrofoils under cavltating 
conditions; the tests performed between 1955 and 1957 In the Hydrodynamics Labora- 
tory of the California Institute of Technology and In the Langley Laboratory of the 
NACA are particularly to be noted. 

In the papers to follow, the behavior of supercavltallng hydrofoils In a variety of 
situations will be discussed. I have on different occasions in the past discussed my 
own results for blunt struts and lifting foils. Including the particular possibility of 
designing for low drag (2-4). For my part now I would like to give some new results 
for several different and varied cavity flow problems. The topics Involved are the 
cavity flow past smooth two-dimensional struts with unspecified cavity detachment 
points; effects of high speed on cavity flows past blunt struts; and the three-dimensional 
cavity flow pas) slender delta wings. 

I am sure that tho speakers to follow mc will provide both a thorough review of 
their recent advances in the general field of cavityflows and a thorough discussion of 
praciieal applications. It was iry interpretation of my role here that I try lo say 
something about the future. I have thus chosen these diverse and what I hope are 
provoeavive topics. I hope thai I will lie excused If they have not been dealt with as 
conclusively us one minhl wish. 

VM; 



Nt'w Developments in lUc Theory uf Supercavilatin^ F'low 

THE SUPtRCAVITATING FLOW PAST SLENDER STRUTS 

In the first application of linearized theory to problems of supercavitating flows, 
I considered the case of slender blunt-based struts of such shape that the point of 
detachment of the cavity was necessarily at the very end of the strut. In that way the 
problem of determining an unknown detachment position was avoided. The case con- 
sidered was of practical interest, however, and it was possible to reduce the problem 
of calculating cavity shapes and drags to one of quadratures. Later the problem of 
minimum drag struts was considered; I gave some reasons for preferring a simple 
parabolic shape. 

Now I would like to show how linearized theory may be used in the more general 
case of slender struts whose cavity detachment point in unknown at the outset, and to 
present some results for struts of simple shape. 

The pertinent two-dimensional steady flow, symmetric about the x-axis.is shown 
schematically in Fig. 1. The wetted boundary of the smooth strut and the cavity wall 
are continuous streamlines, the cavity wall being in addition a surface of constant 
pressure. 

The point of detachment is not known in advance. However, something can be 
said about the behavior of the flow there in the rase where the flow is truly cavitating. 
The curvature of the cavity just at the detachment point ciumol be infinite and curved 
towards the body, lest it intersect the body; nor can it be infinite and curved away 
from the body, lest the pressure in the stream just away from that point be less than 
the cavity pressure. Nor can the curvature of the streamline at the point of detach- 
ment undergo a finite jump, for it is well known that the pressure cannot be constant 
along a streamline in the neighborhood of such a discontinuity. As has long been 
known then, the cavity in a cavitating flow must have just the curvature of the smooth 
body at the detachment point. It can in addition be stated that since the cavity must 
be convex (from the oulbide), the body itself must be convex at the point of detachment. 

The condition uf continuous curvature is just sutlicient to allow solution of the 
present problem, when used together with  the conditions imposed  in the earlier 

Detachment Point 

Slender Strut (Wetted Portion 
Shoded) 
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linearized problem in which the detachment point was known in advance. For struts 
considered here (third-degree i.'jlynominals). only one convex solution is iound for 
each strut. It seems clear that the smoothness and convexity condition, while neces- 
sary, are not sufficient to yield a physically meaningful solution representing the 
infinite cavity past a truly cavitating body, for it need only be supposed that a very 
small but very sharp bump be placed near the nose of such a body. Surely a convex 
cavity with continuous curvature at detachment will still exist with a detachment point 
close to its previous position, despite the fact that the local pressures near the sharp 
bump will fall far below the cavity pressure. The struts considered here do not, of 
course, have small sharp bumps on them. When slender enough they have in fact 
monotonic curvature, increasing in some cases, decreasing in others. For those 
cases where the wetted body is convex and the curvature is nondecreasing (i.e., the 
convexity is nondecreasing) it seems likely that with smooth detachment the flow is 
a truly cavitating one, for it has been shown (5) that such is the case for bodies of 
nondecreasing convexity (accolades). Some of the struts considered here are not of 
that type however, and it must only be hoped that the flows produced are meaningful. 
No verification is attempted through computation of the pressures on the forebody. 
Interestingly enough it is found that tor some of these struts which have monotonically 
decreasing curvature two smooth cavities exist: one detaching forward and initially 
convex, the other detaching aft and concave at detachment. The latter is clearly 
meaningless with regard to cavltatton problems. 

The pertinent linearized problem here Involves the determination, subject to the 
conditions illustrated in Fig. 2, of a harmonic function ., the potential of the perturba- 
tion velocity, and at the same time, of the proper cavity detachment point and cavity 
length, these being unknown in advance. 

The determination of the cavity shape for arbitrary detachment point was, in 
fact, made in the earlier work on blunt-based struts. The method employed involved 
the determination of the unknown source distribution for the cavity through inversion 
of the well known integral equation of incompressible thin airfoil theory. 

h 
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The results are Riven below: 

whei-f' 

,;    i    ,. 

For a niven strut shape . y ,i t >. The first of these expressions may be dif- 
terentiated to yield the cavity curvature; and thus may the detachment point -i be 
determined by imposiny, the condition of smooth curvature there. For cavitation 
numbers other than zero, the second expression, stating that the cavity is closed, 
must simultaneously be used. 

The actual exploitation ol these relations may not be simple because of compli- 
cated quadratures, but it oiüyvery long cavities ( n 1) and simple struts (polynomltl 
shapes) are considered, results are readily obtained. 

For very lorn; cavities: 

-i'     , x-.i  - , '     and ,,     , ,       "     . 

For struts of the shape. it      i ,t"'      > ,i'. then. 

21' 1- '■ 

i   ■ 1 
x - .i    ■ 4.1 .      i      fi.i ,     ix       \ i tii    ' i I 

and, differentiating to obtain the curvature. 
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The smooth curvature condition is consequently satisfied only when < satisfies 
the relation: 

i .1.    •   4.1 ,1    ■   Kll,.l,l  . 
•I   ■       2i 4       1, .,       ' 

The other necessary relation which follows from the cavity closure condition is 

.i    2.1.   •>-.(., ,.,   •   if, S »n1; . 
1-2.4!, ' - ' 

rinse two relation!-: may fortunately be combined to give simple formulas relating 
(a) detachment point to strut shape and cavitation number, and (b) cavity lenp.th to the 
same quantities.  These „re: 
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In the case of zero cavitation number and infinite cavity length, the detachment 
Ki,»2, and is independent 

which define a strut, cannot be 
t may be taken as unity: in 

point is given by the vanishing of the quadratic, .., 
of the strut thickness.   The coefficients .,,  .^, n, 
chosen independently of one another.   If  ., is zero, then 
order for the strut ordinate to vanish at t ", I then ., 1. If H, Is not zero then 
it may be chosen as unity and again for a strut spanning the interval 0,1 it must be 
that ,.2 -(BJ i n; a one parameter family of struts results. It may be shown that 
these struts arc segments of the third degree polynomial whose zeros are at 
(o,  I.  1 ii,); the coefficient >, must then be less than unity. 

The position of the detachment point is plotted against the parameter »j in Fig. 3. 
For values of ., between 1 and 3 4, two detachment points are found. The forward 
point, falling where the body is convex, may have physical meaning, but the after one 
clearly does not as the body is concave there; only the forward point is plotted in 
Fig. 3. The fact is illustrated, however, that at least for very slender bodies, the 
continuous curvature condition is not sufficient in itself to guarantee truly cavitating 
flows. 

Calculations have been made to determine the movements of detachment point 
with . These indicate that the point moves aft very slowly with increasing cavitation 
number, and that its position depends on the strut thickness. If » is the ratio of 
strut maximum thickness to strut chord, and is the displacement of the detachment 
point forward of its position for zero . the approximate results hold that is propor- 
tional to the square of the ratio of to and that the cavity length . is inversely pro- 
portional to . The calculated constants of proportionality lor three different struts 
are shown in Fig. 4. 
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The resistance of any strut, the detachment point having been determined, may 
be obtained using the result ol previous work. Neglecting terms of order -'. the drag 
coefficient based on maximum strut thickness T is 

.'■ 1 

i -■ r 

K 

ill ,,   .J 

The theory indicates that the very slow forward movement of the detachment 
point contribute only terms of order higher than to the drag integral, so that just as 
for blunt-based struts: 

C,,     •       C-./o,     I  ■ 

The drag coefficients ( ") of the polynomial struts considered here are shown 
in Fig. 5. The conclusion might be drawn that blunt noses are harmful to resistance: 
this is certainly the case for the family considered here. However, the superiority 
of parabolic struts has been shown before. In order to put the present results in 
proper perspective, the shapes and drags of three struts which cover the entire range 
of those considered here are compared with three other struts from outside the family 
in Fig. 6. These are a symmetric diamond strut, a symmetric strut with parabolic 
nose and tail, and a blunt parabolic strut. 

All of these results concerning drag and positiuii of detachment point mav be 
boldly presented as no experimental results for two-dimensional struts seem to be 
available (although some results for bodies of revolution are available: see Fisenberg 
(6)).   It would dearly be worthwhile for someone to carry out pertinent tests. 

Finally, Implications of some of the results obtained here with regard to the 
uniqueness ol smooth cavity Hows past dosed struts may be stated. First: as men- 
tioned belurc, it was found that lor certain of those struts whose curvature is 
monotonicallydecreasing two smooth cavities were found, one concave at detachment, 
the other convex.   Second:   struts given by higher degree polynomials 'than three) 

241 



(0,53) 

-w J L 

>Vt2(i-t) 
-2 -1 

0s 

| ^ td-tHI-dat) 

y--.  '-■■  -   Dr.i.; .■:  ii..); ri^;r. .u   -I vil- 

,^^~>N 
ü,  -a0 ^- 1     Blunt Parabolic 

~N ^Cr-O.SST   ""  C 1     CD»0(39T 

>.—^as^C /-^~\ Parabolic Fore 8 Aft 
V >CD»|.|3T     *  C^^ CD»0.78T 

o3*+l 

"Cn'i.wr     '    "^—^   ^)»I,26T 

^-^^ ^^*^^^ Symmetric Diomond 

//ö/i? //'O/ the strjt aj=-<»- 
/■ juJ the strut as - *\Diit 
furred around 

may very wt'll yield mort? than two mnuoth cavity Hows, lor It is dear that the 
position of detachment satisfies an algebraic equation of one decree less than the 
ili'^rco uf the polynomial defining the strut. It would be interesting to see whether a 
strut could be found for which more than one smooth and convex cavity flow presents 
itsell. 

HUiH-SI'Kl:» KFFKCTS ON SYMMITRIC ( AVIIY  FLOWS 

It is probably not loo IrivoUm.s an undertaking to try to say something about 
cavity flows in compressible fluids, for Ihe successful and general application of 
cavity flow information to the study of gas flows with 'dead-water" wakes such as 
mav exist in the case of bluff-body flame holders and stalled cascades will certainly 
require some unIcrslanding of the effects of highspeed.   In addition, problems of 
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symmetric cavity flows should be tcmptiun to the students ot compressible iluids lor 
not only art' thoy relatively simple flows, but they are flows with finite drag at sub- 
sonic speeds. The subject is, indeed, not a new one. For certain polygonal obstacles 
including single wedges, the infinite-wake flow for zero cavltalion number may be 
determined exactly (for Mach numbers at least as great as unity) through the use ol 
a suitable hodograph method, for then the transformed boundaries of the flow are 
known, the boundary conditions imposed thereon are linear, as are the transformed 
gas-dynamic equations. Students of transonics have been particularly Interested in 
this possibility and attempts at making calculations for wedge forebodles have been 
made by Imal (7) and Maekle and Pack (8). Most recently. Helllwell and Machte (9) 
have treated the flow past slender wedges trailing free streamlines with sonic velocity 
thereon; they used vonKarman's transonic approximations and Roshko'sfrce stream- 
line model. 

In the absence of exact results of sufficient detail or even of the pertinent tran- 
sonic solution, the use pi a suitably modified Prandtl-Glauerl rule to extrapolate 
incompressible results for low cavitation number flows past suitably slender fore- 
bodies, the cavity detachment point being known, s«.ems particularly Inviting. 

For suitably low cavitation numbers, even an unsleiuler body will possess a very 
slender cavity, since the thickness ratio of the latter is. at least In an Incompressible 
flow, proportional to . The Mach number of the flow In the vicinity of these slender 
cavities will be very close to the Mach number corresponding to tlie cavity pressure 
coefficient. This cavity Mach number, M,, will generally be greater than ffee stream 
Mach number, M , except in the case of an Infinite cavity when they will be equal. No 
matter how slender the forebody. therefore, the streamwlse perturbation of the free 
stream does not tend to vanish, but, instead, approaches on the body and cavity a 
constatt value equal to (\ic - M ). The proper llnearlzutlon of the nonlinear gas- 
dynamic equations is, then, 

and .he Prandtl-Glauerl rule must be suitably modified. 

As implied above, this linearized equation must be a very good approximation 
for slender bodies because of the cavity enforced uniformity ot the near flow field. 
For still another reason, the Prandtl-Glauert rule seems especially useful; accord- 
ing to linearized theory (2), it is a consequence of D'Alembert's paradox that the 
cavitation drag of the forebody must be Identical with the "nose drag" of the end ol 
the cavity (which in turn depends only on the radius of curvature of that nose). Jones 
and van Dyke (1Ü) have recently shown (but not rigorously) that the Prandll-Glauert 
rule is particularly applicable to the estimation of nose drag. In fact they have 
shown that even though it may fail to predict exactly the distribution of pressures, 
the P-G rule docs extrapolate the overall drag ol a parabolic half body exactly for 
Mach numbers up to one. All of which implies that were the shape o! the cavity 
behind a given slender forebody known lor all Mach number», the drag could be 
estimated without error for zero and with small error for suitably small . Dm'or- 
tjuately the changing shape of thi cavity is not known in advance, but must be esti- 
mated; hence the use of the I'-G rule involves unknown errors. However, as 
remarked previously, the cavity enforced unifornuty of the perturbation flow gives 
reason to hope that nonlinear distortions of the cavity shape which are not predicted 
by the P-O rule will be limited in Importance to very high subsonic Mach numbers 
and llv.it this completely linear theory has ;i large range oi applicability. Confirma- 
tion ot Hits speculation awaits thr solution ot the pertinent transonic problem. 
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Figure 7 shows the cavity flow in the real physical plane (on the left) and in the 
affincly transformed incompressible flow plane (on the right). The primed quantities 
refer to the incompressible transformed plane. The application of the P-G rule Is 
well discussed by Sears (11) and only results for the case of cavity flows are presented 
here. Certain results for incompressible cavity flows presented by Tulin (2) are "Iso 
utilized without derivation. 

Important results are that the drag increases with Mach number as 

1   ■      (I   ■   M,2) 

/I - M/d • ■) 

and that the cavity becomes more Blender as ■'' 1 - Mr
J) , the length increasing as 

11 -M.V and the thickness as d - \th'H. All of these quantities maybe readily 
determined for a given forebody utilizing the available Incompressible theory. Some 
results are summarized below: 
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,2 
H   •    • (1   - M.^1 

./( 1 - M/ T 

where CD Is based on the strut maximum thickness, r, and where y„ is the ordlnate 
of the strut, which Is itself of unit length. 

where ' Is the cavity length. 

2   n    M.;2) 

\    r 4T    CV001 

where f is the maximum thickness of the cavity. 

The re rule predicts infinite drag for sonic cavity Mach numbers and transonic 
theory must be invoked before such speeds are reached. As previously noted, Helll- 
welland Mackie (9)have considered the case of slender wedges trailing free stream- 
lines with sonic velocity thereon.  According to their results, the drag coefficient, 
'-n' of a wedge of semi-apex angle equal to    is, when c,, is based on wedge total 
thickness and when the base pressure Is taken into account: 

_      l.iw   2 ' 

which result implies that the Mach number distribution on the wetted portion of the 
wedge is insensitive to changes in free stream Mach number; this effect is not really 
surprising as, in the case considered, the velocity at the apex and shoulder of the 
wedge are fixed and Independent of M,. If the Mach number on the tree streamline Is 
not fixed as unity but is instead taken as equal to M, ( 0>, then the reason for the 
insensitivity of the wedge Mach number distribution to M, is partially removed, it is 
conjectured that, in fact, the wedge Mach number distribution would in that case be 
closely proportional to M,. The drag coefficient of the wedge would then e relatively 
insensitive to M, for subsonic Mach numbers close to unity (since cp 4 > • 1 il-MHJ). 
It would be interesting to verify this conjecture by actual calculation using transonic 
theory. 

The estimated drag of slender wedges of semi apex angle, 2-1/2, 5, and 10 
degrees with infinite trailing cavities, - o, are presented in Fig. 8: the ratio of 
specific heats, ., is assumed to be 1.4. 

These brief considerations have been undertaken mainly to discover some effects 
of speed on simple cavity flows, but it is well that they serve at the same time to 
indicate for the symposium record the existence of the interesting transonic theory 
for cavity flows. It is worthwhile to note that a very recent pertinent paper by 
Nonwciler (12) contains the interesting result (hut a half-body whoBt- ordinates vary 
as »2 s has a sonic surface velocity everywhere, except at the nose, when the free 
stream speed is sonic. This gives hint that the asymptotic form of infinite cavities 
at sonic speed will be of the form ** s; the result of Jones and van Dyke (10) shows, 
of course, that the iisymptotic form of cavities for all subsonir speeds must be x1 ,. 
arid that a different form must obtain at sonic speed. 
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SUPERCAV1TATING FLOW PAST SLENDER DELTA WINGS 

Without implying that interesting and important problems'" do not remain to be 
investigated, it may be said that the behavior of two-dimensional, thin, lifting foils 
with full cavitation in steady unbounded flow is now fairly well understood. Despite 
the very comtiderable work that has been devoted to two-dimensional problems, 
however, there do not seem to exist any theoretical results pertaining particularly to 
the behavior of three-dimensional lifting wings with full cavitation. It Is true that the 
direct application in practice of standard aspect ratio corrections to the case of 
lightly loaded propellers has so far givon satisfaction, but no attempt to rationalize 
the procedure, even for the simple case of a high or moderate aspect ratio plane 
wing, has been made. 

When the wing cavity length is somewhat shorter than the span of the wing, no 
difficulties would seem to present themselves in the direct extension of lifting line 
results, but when the cavity is longer than the span then even the forces on the high 
aspect ratio foil may very well be affected not only by the decreased effective angle 
of attack due to the trailing vortex system, but also by the difference, due to the 
finite span of the cavity, between the two-dimensional and actual cavity shapes. For 
a given cavitation number, clearly the cavity at mid-span must become fatter for 
decreasing cavity aspect ratio. It is not clear now to what order this fattening of thr 
trailing cavity will affect the lift on the foil, and it is this very point which requires 
future clarificatiun. 

the 
In the extreme case of very low aspect ratio (or slender) supercavilating wings, 
flow pattern becomes primarily dependent   on the "tip" effects, and  different 

: I'Or iTi.4l.1n1 
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considerations apply than in the case of moderate aspect ratio wings. This extreme 
case is, however, very interesting in its own right and seems to offer a special oppor- 
tunity to study three-dimensional cavities. Some considerations of the flow past 
slender supercavitating wings, in particular past the mathematically tractable flat 
delta wing, are now presented. 

As is well known, it is possible to visualize the flow past lightly leaded, low 
aspect ratio wings having thin cross-sections and fully wetted, as a changing two- 
dimensional flow in the transverse plane being convected with the main stream. The 
theory for such purely lifting slender wings allows, even for incompressible flows, no 
downstream effects to be propagated upstream. If the slender body has significant 
thickness, however, the flow at a particular point on the body does depend on the shape 
of the body everywhere else. If the body is smooth and slender and its shape known 
in advance, the slender body theory reduces the problem of finding the flow to one of 
quadrature (fr- the thickness effects) plus a set of two-dimensional potential prob- 
lems, the normol derivatives of the potential being specified. Thus is the problem 
solved. 

In the present case, and characteristic of cavity flow problems, the cavity thick- 
ness is not known in advance. Instead the pressure on that part of the top of the 
wings just under the cavity is specified. This pressure has, in general, contributions 
from both the thickness effects and the transverse flows. Unfortunately, adequate 
boundary conditions in the transverse flow planes are not really known in advance, 
but must be determined through consideration of the interaction between thickness 
effects and transverse flows and their additive effect on the wing pressure distribu- 
tion.   This involves a complicated procedure. 

In tht case of flat, slender, ddtas the possibility exists that the supercavitating 
flow past such wings is essentially conical. The deleiminatlon of the transverse 
flow and longitudinal thickness distribution may then be simplified. In the present 
analysis it is shown that an almost conical flow may be found for all cavitation num- 
bers: the flow being more conical at the apex of the delta than at the trailing edge. 
Let it be stated in advance that the cavity, which is itself conical in shape, does not 
cover all ot the wing top in any case but as the cavitation number decreases, grows 
from theleading (or side)edge region until at - n it covers allot thewingtop except 
for a wedge-shaped region along the wing centerline which region is wetted by a sort 
of re-entrant jet flow. The theory, in fact, imposes a very special relationship 
between the cavity shape and the amount of fluid in the impinging jet. The cavities 
carried off downstream are assumed to take up such a shape that the prcssur .'within 
them has the proper value, and they are assumed to have an important influence on the 
flow over the wing only at the trailing edge where, of course, the flow cannot be truly 
conical. The elfect of these cavities, diminishing toward the apex, will at anv rate 
only be such as to change the ambient pressure field equally on the top and bottom of 
the wing and it is here neglected. 

The flow about a flat, slender delta wing of apex angle . inclined at an angle of 
attack ■, operating at cavitation numbers both very large ( I) and very small 
( 1) is shown schematically in Fig. 0.   It is these extreme cases for which 
numerical results are provided in the presc-.'. paper. Some assumptions about the 
flow are already introduced into the figure. These are that (a) the flow over the wing 
is assumed to be similar in the various transverse planes - and thus conical, and (b) 
the conical cavity envelops only part of the upper surface of the wing. 

Sonie of the nomenclature to he used is illustrated in Fig. 10. 

Fur simplicity, a delta wing ul unit length has been chosen. 
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everywhere on the hottom of Ihe winn.   The available boundary conditions have now 
been stated. 

Kor sufficiently slender bodies (13): 

!■  \ . \ . / ' ' y. /; x i       11 \ ■ 

where 

and 

4 \   I '       x    x, '        ' 

The term s ,■ \ will be recognized as tht two-dimensional flow in the trans- 
verse   >      /   plane while the i  \   is a flow due to thickness. 

The two-dimonsional potential may be expressed in terms of a contour integral 
around the boundary of the body in the transverse plane (Green's Theorem). For 
small angles of attack, the cavity thickness is also small and the integration may 
thus be made .uound the projection of the wing and cavity on the horizontal plane 
(i.e., along the top and bottom of a symmetric slit in the / axis).   Then 

..' * („     „) «- /'i"     \ -   1/'. 

The assumption thai the flow is conical over the wing leads, through considera- 
tion of the above integral and the definitions \     is s,  /     2/ s. to the following: 

where 

•i'   X  ' 
,       (y./i 

'',.-   " siXl ,•" 

4 "21        s     '   '' 
■   i 

and     •.. /   inharmonic.   The latter represents the two-dimensional tlow in the   non- 
dimensionalized cross-flow planes. 

The tact that the two-dimenslonul flow    makes a contribution to the total flow 
which is only a function ol \ (the term    » ) is especially to be noted. 

The boundary conditions now become' 

On tin holtiim (i! the winf,. 

I'       .. 

and, on ihe |iari i'i thi  winu inp cuvered hv tin  .'avitv i 11. 
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In ofdiT that this condition be satisfied, 

and 

However it may readily be shown, utilizing the delinitionsol i and u givenearller, 
that near the apex of the delta ( x   ^i'), 

V k 

where V is defined such that s M     Jk      .   (s \ i is the contour integral of    !■   M in a 
transverse plane.) 

Thus, in order for the flow to be conical as assumed and still to contain a constant 
pressure region, the contour integral of !• n (or . n) inthe transverse plane must 
be identically zero. If a growing cavitvexlsts at all then, the outflow in the transverse 
plane that it will cause must be accompanied by an inflow just sufficient to make the 
net source flow in the transverse plane null. The inflow may be imagined to go into 
two symmetrically placed re-entrant jets. It is just this situation which was antici- 
pated in Figs. 9 and iO. The present theory does not, of course, allow a detailed dis- 
cussion o. the behaviour of the flow in the vicinity of the juncture of cavity and 
wetted region on the top of the wing. It is believed nevertheless that the theory will 
reproduce the general features of the real flow. 

The new condition has been obtained that the flow in the transverse plane cannot 
be source-like, or 

Since I and v\ are then identically zero. 

"■., 
/ t'i    \    n, / 

Since . must be symmetric wiih respect to /. 

i 
■    "   ■  I   .1 / 
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velocity on the cavity.   Two conditi ■     exist ini- [hci" .simultaneous drttrmination. 
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and (I)) that 

.(n.li      r 

The boundary value problem in the transverse plane is illustrated In Fit;. H- 

The lift. I . on the delta wing may readily be determliu-d in terms of the solution 
in the transverse plane. 

.11. 
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Therefun 
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It  . is the I'nmpkx poloutlal m the transverse plane, then 
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where .' The   iiZ term is omitted since the flow must be non source-like. 
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It is oasilv shown that A, is pure Imaginary, and that 

t. 
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iA, 

iv is the complex velocity in the transverse plane, and I /. then 

I. i    I- 

1   2    V    S-'. I ,       -'      1 

Incidental)y. the condition that 

becomes 

The boundary value problem illustrated in FIB. 11 is more easily solved by con- 
sidering the complex velocity   i /   in a transl'ormed plane, 

The reason for this is that the problem in the '/ plane has no symmetry about the 
plane on part of which the boundary conditions are stated, whereas the plane has 
been choser in order that * be symmetric about the plane on the whole of which 
either ■ or v are specified.   The problem for is illustrated in Fl«. 12. 

. ic proper solution to the problem posed in Fin. 12 niay be found by inspection. 
It is 

,     „        1 "    -1 „■ 
"'      ' .-     .1     ,    .^j  ,    .   n, 

The lirst two terms on the right represent the appropriate flow past the two plates 
A    n\>.' and CC"     I) having zero horizontal velocity on that part of the    axis outside 

ot the plates. The third and most 
complicated term on the right repre- 
senis a distributiunbelween BB' and 
tc of elemental vorticesoi strength 

,   . J    i. each in the  presenc,   ot the 
two plates (i.e.. having null vertical 
velocities in that part of the    axis 

*   ■■'■'■       ' * where the plates exist). 

The two parameters • and . yet 
i'' main to be .simuHaneously deter- 
mined. Very complicated quadra 
lures unfortunately appear, espe- 
ciallv in the evaluation oi at the 
witH! leading edge, lor he purpose 
ol  iliis paper we .->liall l>e satisfied 
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with having described the appearance of these conical flows and with certain approxi- 
mate results for the cases of very high ( • 1) and very low ( - •) cavita- 
tion numbers. These cases correspond, respectively, to the cases of veiy short 
leading edge cavities and cavities covering the entire delta upper surface except in 
the immediate neighborhood of the wing centerllne. 

( i). The following asymptotic results for high cavitation number regime 
maybe derived making use of various conditions and results previously given herein. 
The tedious calculations are omitted. 

The  nondimensional width, ■, of the cavity measured in the transverse  plane 
fron: the wing leading edge to the inboard end of the cavity is 

- (Y 
The lift coefficient for a delta is increasingly reduced by cavitation and equals 

!. 
i 2   rJs2n i "  "   '>       2   ('  -'   .V> 

As the region of cavitation vanishes (        ->o) the lift approaches, as it should, that 
of a fully wetted delta wing according to linear slender body theory. 

It is to be notfU that the effect of cavitation is to reduce the lift, but that the 
effect only appeared in terms of the order of '. It is well known that other nonlinear 
effects associated with separated vortices (which may exist above the top of Hie wing) 
will alter the lift to the order of -': these effects serve to increas» rather than 
decrease the lift on the wing. Their nature will certainly be affected by the possibility 
of cavitation, but their existence can .irobably not be Ignored In any proper theory. 
This fact should be kept in mind when comparing the present theory (without separated 
vortices) with actual experiments. In particular, the reduction of linear lift through 
cavitation may not be nearly as severe for small angles of attack as the present 
theory predicts - due to the compensating effect of separated vortices which tend to 
incr-.-ase the lift above the linear prediction. 

According to present theory, the transverse velocity on short bubbles is, as 
might have been otherwise deduced, simply related to i and   : 

(■    ')■ 

( 1).   Ab llic laviluliüii number is decreased the cavities cover more and 
more of the wing, but always with a re-entrant flow along the centerllne. Whether 
this re-entrant jet actually wets the wing or is somehow dissipated before doing so U 
problematical, but. at any rate, almost all of the top surface of the wing will be at the 
pressure In the cavity. The transverse velocity on the very wide bubbles depends 
only on Hu wing angle of attack: 

(     ') 
The Im lor this rasi   of asyniptoUeully small cuvilation numbers is related to 

IIK cav'tv width: 

I 
r • 
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vhcrc. it will be remembered, i is the width of the wetted portion of the winn top - 
or tolook at it in another way. the width of the re-entrant jet. I'hc actual relationship 
between    and is of fireat interest, but has not been obtained here.   Presumably 

becomes verv small as •• <>. with the implication that at        " a winR of given 
geometry develops approximately 4 10 of its fully welted linear lift. Full ravitation 
is then just alittle more effective in reducing lift than is pU.ning: it may be recalled 
il4) that the lift jf a slender delta surface planing on smooth water is 

v -' -' 

just one-hall of its fully wetted linear lift. 
The drai;. '), of the cavitating delta is simply I. •  . i.e.. 

iv     m       J,"   •    - *. 

It may be shown that one-half of this drag is associated with the kinetic energy 
in the vortex wake (induced drag), the other half. then, being due tu cavitation. 

Generally speaking, the cavitation drag increases with cavity volume: thus the 
problem of minimizing cavitation drag for a given lift Is equivalent to the problem ol 
minimizing the volume ol the cavity. Hven without deriving a theory for the super- 
cavitating flow past a more general slender wing it is clear that the same sort of 
planforms and cambers which reduce spray drag for slender planing surfaces will be 
effective in the present case. Thus, reduced cavity sizes and drags (relative to the 
uncambered delta) should be obtained with surfaces whose planform curvature is con- 
centrated on the forward portion of the surface, and whose (positive) camber is'.-on- 
central ed alt; for example, a surface whose planform shape is of the form - .iJ ■' 
and whose bottom surface shape is \     ix '. 

The results described above which relate the lift on the delta wing to the cavity 
width are displayed in Fig. 13. Kxcept in the case of very high cavitation numbers 
( I) the relation between cavity width and other physical parameters has not 
been given. In place of an exact theoretical prediction of the variation of lift on a 
given delta, only a rough estimate based on the asymptolic results obtained here is 
presented in Fig. 14. The highly nonlinear behavior of the lift as a function of angle 
of attack is especially to be noted; it is. of course, a consequence of the widening ol 
the cavities as the angle of attack increases, the cavitation number being fixed. 

It is to be hoped that the near future will provide experimental results for 
slender supercavitating wings such as the deltas considered here, with the conse- 
quence that our understanding of these complex and interesting flows may be very 
much broadened. 

SIJMMAHY 

The three separate topics discussed hen1 concern the cavity flow past smooth 
two-dimensional struts with unspecified cavity detachment points: effects of high 
speed on cavity flows past blunt .itruts: and the lluee-dimensional cavity flow past 
slender delta wings.   The use ol linearized theory is emphasized. 

The dependence' ol cavity detachmenl point on strut shape and cavitation number 
(  ; is studied.   It is shown that for snnll     the detarhnunt point  motion is rearward 
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und of thr order i. The clru^ ol u family of struts is calculated and the dependence 
01 resistance on stiut shape discussed. Some interesting indications concerning the 
non-uniqueness ot the Hclmholtz flow past closed struts are revealed. 

A Prandtl-Ulauert rule for the estimation of Mach number effects on cavity flows 
past blunt struts is derived. Kor infinite cavities ( = 0) it is shown that the cavity 
drag varies inversely .is 1 - '.'■'. For finite cavities the length Is shown to vary 
inversely as (I - MJ). while the maximum cavity breadth varies inversely as 1 - v-. 
The situation for transonic speeds is very briefly discussed. 

The flow past slendci delta wings is studied under the assumption that it may be 
considered conical. Theory is developed for a flow involving cavities which spring 
Irom the leading edges and cover a part of the top of the wing. Results are obtained 
for the two separate asymptuUc cases in which the cavitation number is either very 
small or very large. The width of the cavities on the wing upper surface increases 
with decreasing and the lift decreases. It is shown thai Ihe upper surface never 
beconus completely enveloped ir 1 cavity, even for ". Finally, the lift of a fully 
cavitated wing ( '1) is estimated to be approximately 4 10 of its fully wetted 
lilt. 
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DISCUSSION 

E. H. Handler (U. S. N. Bureau of Aeronautics) 

As a consequence of the work by Marshall Tulin of the Office of Naval Research 
and Virgil Johnson of the National Advisory CommiUee lor Aeronautics, the Bureau 
of Aeronautics has awarded a contract for the design, construction, installation, and 
evaluation of a Grucnberg, supercavitating, hydrofoil system mounted on a JRF-5 
seaplane. While the hydrofoil boat operates at essentially a fixed trim angle, the 
hydrofoil airplane must trim up many degrees during the actual process of take-off 
or alighting. The Gruenberg system, with the foil just aft of the center of gravity, is 
ideal for seaplane use. The forward planing, or feeler, skis are a low-speed sta- 
bilizing device and a high-speed safety device. 

The JRF-5 airplane will fly within a year and the results will be published by the 
Bureau of Aeronautics. 

E. Müller (Max-Plank Institut für Strömungsforschung) 

The Max-Plank Institut für Strömungsforschung is currently performing experi- 
ments with delta wings for cavitation numbers ranging from 0.02 to 0.13. The flat 
delta wing with an apex angle of 60 degrees has been tested, and drag and lift were 
measured as functions of the angle of attack and cavitation number. The shape of the 
wing is quite similar to the shape of the bodies assumed by Mr. Tulin but, as he has 
said, his work is for an apex angle of not more than 30 degrees, while our work is 
for an apex angle of 60 degrees. Thus, the results cannot be compared, but experi- 
ments with the same bodies as were considered by Mr. Tulin will be made in the near 
future. 

L. M. Milne-Thomson (Brown University) 

As Mr. Tulin observes, no account is taken in his paper of viscosity or gravity. 
In regard to the effect of gravity, I would like to indicate a method of apprnach which, 
as far as I know, has been overlooked in th. literature. 

Consider an inviscid liouid in steady ir rotational flow under gravity. Fritz John : 

has given i*v following cqu« ion for a surface of constant pressure, assuming the y- 
axis to be vertically upwards: 

Here is a certain parameter and st > is an arbitrary real function. Toeach specific 
problem there belongs a specific function Si ) which, if we could divine its form, 
would solve the problem. The integration of the above equation can be effected by- 
finding a complementary function and a particular integral. This observation would 
be completely trivial, were it not for the fact that in many problems we know the 
complementary function / in advance. Take the case of a jet from an orifice in a 
flat plate in the absence of gravity—a well-known Helmholtz problem.   Here 

Ciimii nii.s.   Pur.- ..rid A|i|i;. M.ith,  i :1 '7   MM ( I'lM). 
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wlui h dcicM-miiu a s      insufar as  ;      is indept-ndtifit of    in the gravity problem. 
This is a matter fur invcstination In cath casi?. 

If we IIDW regard    as a funt'tloti uf an auxiliary parameter,   , wc can intettratc 
the full i'quation in the form 

where t'i   < is a tktciminatc function and at the ed^ü of the orifice.   This equa- 
tion reduces to /      i when «     ''. and gives 

at t.if edge of the orifice.    It remains to see whether the condition at infinity is 
satisfied. 

Thus, in the case of an orifice of breadth 2 i and a vertically downwards jet. this 
condition is satisfied when 

where I' is the sKin velocity on the jet in the HctmhoUat problem. 

W. A. Clayden (Armament Research and Development Establishment) 

Concerning Mr. Tulin's work on cavity detachment, we have noticed in our work 
with cavitating spheres at ARDE that the flow does not separate tangentiaily to ihe 
surface, but separates with a non-zero angle which may be well over 90 degrees. 1 
think that this effect lias also been studied by other workers in more detail. 

We have also performed some tests on vawed cavitating cones which may be 
considered to behave in a manner similar to slender delta wings, and the cavities- 
have been kidney-shaped, or distorted ellipses, in cross section before rolling UP 
into a pair of vortices as predicted by Mr. Tulin's calculations. 

I should like to take a few minutes to tell you of the work on cavitating wedges 
that ha« been done at AHDE by my colleague. A. D. Cox. He considered the following 
two cases: 

1. An inclined wedge with non-zero cavitation number The mathematical 
model used is the familial re-entrant jet at the rear of the cavity and a subsidiary 
leeward cavity.   This work is an extension of the zero cavitation number case. 

2. A generalized image-model for non-zero cavitation number and zero 
incidence in which the cavity is closed on another wedge of arbitrary angle. It is 
shown tint the standardimage-modei ot riesset and bhafferand Ihe dissipative model 
ol Uoshko are special cases of the generalized model. Tin model ni.iv also be applied 
to ii.: lud" a repiTsentalioii of the familial' jet flow at the rear of the cavity 
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In rcnanl lu the lirsi problem wliercin, for a nivi'ii strut, oiu1 is ablt to find, by 
Mi'. Tulin's method, tlie doluehmcut |)uinl of the cavity and the cavity itself. I have a 
slight pliilosuiilik-al problem, it seems tu me that oiie is gettingsomcthinK fornothint! 
by obtaining all this information without considering boundary layers and turbulence. 

Also, I wish to express great pleasure in seeing this consideration of compres- 
sibility ellect in cavitv flows. 

R. H. Parkin (California Institute of Technology) 

In connection with Mr. Tulin's two-dimensional solution. I wisii to cite some 
experimental results which are quite old. and which are familiar to Mr. Tulin und 
perhaps to other members of this symposium also. These measurements concern 
the role of surface tension and viscosity in the inception of caviiation on a smooth 
symmetrical body. 

About five years ago, R W, Kermoen and I investigated the nature of the separa- 
tion zone on a blunt, axially-symmetric body just after the cavity flow had become 
established. Aithough we did not investigate the flow in detail we did obtain some 
magnified motion pictures and still photographs which showed the shape of the small 
cavities near their point of attachment on the body. These photographs indicate that 
such cavities originate in the boundary layer. They are siu.pecl somewhat as shown 
in the schematic diagram of Fig. Dl. 

The boundary-layer and displacement thicknesses are shown in Fig. Dl so that 
we may judge the effect of the changing velocity of the water in the boundary layer 
upon the shape of the liquid-vapor interface. The water lias zero velocity on the body 
and its velocity increases continuously as one progresses from the surface of the 
body to the main flow. From the shape of the free streamline in the neighborhood of 
the cavity leading edge it is evident that the flow does not separate from the body in 
accordance with the assumption commonly employed in potential problems which 
involve flow separation. In view of the fact that this difference is found in the boundary 
layer flow on the body, even for those cases in which very large cavities are attached 
to the Dody. its effect upon the overall flow should be small, once the location of the 
separation point is established. Therefore it does seem that Mr. Tulin's solution 
should give a valid picture of the flow in tiie large when the point of separation cor- 
responds doselyto that which one would observe in practice. Because of the physical 
evidence discussed above one might ask if Mr. Tulin's theoretical solution, althoui; 
mathematically determinate, must always give results which correspond to thosi 
obtained in an actual flow: might not there still be some ambiguities remaining to be 
resolved V It one were to adopt the most pessimistic view, as a believer in cause and 
effect,he might even suppose that it would be necessary to trace the whole history oi 
the inception process in order to fix the position of a separation point on the bo<iy. 
(Jne may certainly hope that less-stringent measures would be required. 
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fi«. V.iutir ravity attachrd it) t!;»' surfiic« >f a smooth hoilv 

M. Tulin 

Mr. Cornell's philosophical problem is "Id as far as potential flow theory is 
concerned. One can read about previous attacks un the problem within the framework 
of potential flow theory, ignorint; any effects of viscosity and surface tension. The 
problem has been formulated, murc-or-less. in the same way as in my linearized 
version, and in a few cases it has been solved. There is a very i;ooü discussion of 
the problem by Dirkhoff and Zarantonello. I did touch on the question of the unique- 
ness of these ilows. The sufficiency of the condition of smooth detachment is also 
discussed. There is no conclusive statement to be made about i'. but 1 think this 
condition of smooth detachment is sufficient fur the bodies that have been tried. It 
gives one a meaningful problem: I have only linearized its formulation. 

Now, I should have saida few words about the possibility that this maybe fantasy, 
because we just don't know enough about the role played by viscosity and surface 
tension in disturbing the detachment point. This is a very good piublem. The way i 
might wiggle out of it is this: I try to show how, using linearized theory and the usual 
linear conditiuii fur an ideal fluid, one can solve the problem for slender bodies. 

When we know enough about the effects of viscosity or surface tension, then we 
still presumably must solve some potential flov problems. Perhaps they will be 
something like Lighlhill's problem, where he achieves a matching between the bound- 
ary layer behavior ahead of the plate on the bi)d\ and the constant pressure flow. If 
so. then one still needs to solve a potential flow problem to calculate the pressures 
on the body and determine where the boundary layer separates, or where viscosity 
or surface tension is involved, anJ include its effects. 

This is definitely a stibjccl for future research, both experimental and theoretical. 
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JETS, WAKES, AND CAVITIES 

Ci.irrctt  Birkhoff 

My talk today is intended as a sequel to the reviews made by Cox and Maccoll 
and by Gilbarg at the 1956 Naval Hydrodynamics Symposium (1). Whereas "hydro- 
ballistics" can be loosely considered as a branch of engineering, and "free streamline 
theory" as a branch of pure mathematics (specifically, ol potential theory), my talk 
will be from the standpoint of the applied mathematician.^ My primary concern is 
thus to survey mathematical methods for predicting accurately the behavior of real 
jets, wakes, and cavities—especially the latter, which are the central theme of this 
part of the present Symposium. 

If my tone is that of the "cautious critic" (1, p. 233). it is because I think a care- 
lul (not, I houe, agonizing!) reappraisal will help us to discern profitable lines of 
future work. In this vein, I shall point out a number of specific questions which seem 
t.actable by available methods.provided the necessary interest, ability, and financial 
support are available. 

I shall not try to offer any new and major chalUtiges to intellectual giants; such 
men usually seek out their own problems. The level of the problems is intended tobe 
that of high-level Ph.D. theses in applied mathematics: this is perhaps the highest 
level on which research can be systematically planned. 

In Gilbarg's review (1), attention was focused almost exclusively on two problems 
of pure potential theory, which may be roughly defined as follows. 

Helmholtz Problem' Given stationary obstacles walls, etc., having fixed bounda- 
ries, find those irrotational, incompressible, steady flows bounded by streamlines 
which (piecewise) cither coincide with these boundaries,or are free (i.e., at constant 
velocity). 

In the Helmholtz Prob'em, it is understood that the flow behavior at large dis- 
tances is specified. If we refer to solutions ul the Helmholtz problem as "Helmholtz 
Hows," then the second problem is the following. 

Kclmhcltz-BrUlouin Problem: Find those Helmholtz flows past given fixed 
boundaries, in which the maximum velocity is assumed along all free boundaries. 

Before I liisc.ss the physical significance of these problems, I shall survey some 
purely mathenia;: ii. questions not covered adequately at the 1956 Symposium (1). 

111  Hi.'    .fns, 
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MATHFMATICAL RIGOR 

Though not always attainable in applied mathematics, rigor is desirable—and one 
should always have a clear idea of the extent to which it has been achieved. Contrary 
to an impression which seems widespread among physicists and engineers, not even 
all pure mathematics is equally rigorous. Far from being exceptional, free stream- 
line theory seems to be especially confused today on this fundamental issue. I should 
like to begin, therefore, with some questions of rigor. 

Plane Flows 

Even in the simplest case of plane Helmholtz flows, only a few results have been 
rigorously established. For example, the class of all Helmholtz flows has been 
rigorously determined, with full generality, only for the case of a single flat plate.* 
Determinations in othei cases involve topological assumptions (usually tacit) about 
flow separation. Though these assumptions are very plausible, the analysis in the 
section called Cavity Separation will show that they are actually rather arbitrary. 

II the flow topology is assumed known, then plane Helmholtz flows ^ast polygonal 
fixed boundaries can be treated rigorously by classical methods. In the case of 
curved fixed boundaries it is, however, much more difficult to establish existence 
and uniqueness theorems. In this connection, I recall that the first rigorous general 
existence theorem for the Dirichlet problem was not given until 1899. This was 50 
years after Kelvin and Dirichlet had attempted to found the theory on a nonrigorous 
minimum principle,' and ISO years after potential theory had been usefully applied 
to solve problems in mathematical physics. 

Existence and uniqueness theorems for flows with free streamlines are very 
much harder to establish. Though Irvi-Civita, M. Brillouin. and Villat discerred 
some of the most important facts inthe decade 190t-lS,and succeeded in formulating 
them mathematically: in the two-dimensional case, the first rigorous proofs were 
obtained by Weinstein and Leray in the decade 1925-35. I cannot overestimate the 
technical difficulty of these proofs; as extended by Kravtchenko, Huron, and others 
so as to cover more general cases, they run to at least 1000 pages of close and 
delicate mathematical reasoning. Moreover Leray has informed me that at least one 
extension (Oudart) is not complete. 

In spite of all this work, even the Helmholtz problem has not been solved in all 
cases: especially little is known about the existence and uniqueness of plane jets from 
asymmetric nozzles. What is more striking, the only solid obstacle for which the 
Helmholtz- Brillouin problem has been solved, is the circular cylinder! However, I 
would not advise any applied mathematician to try to extend these results. 

Thin Hydrofoils 

More fruitful, it seems to me, would be the rigorous justification of Tulin's 
"linearized theory" of thin hydrofoils, dealt with elsewhere in this volume. The 
brilliant applic itions of Tulin's approximation to engineering design problems should 

K.H    /.ir.iiili.nrllu. .:    rl.- iit.ith. |>ur.->. i-I .i|i|il,     ■.(:.'.■'-H.) (i i^-l) 
:■>.■.•(;. IJ.  Ki-Mi,m.,     Mi.iiMiti.il lliinry,'  i'.li. XI.     1. 
A .   i     iiiu'iii.ir nimlitif.ir ititi'i;r.il<•cju.ilu'li, <■< »hull «■• »ill nunr in Ww mM  HC, turn. 
',.■.■    K<!.     '..    O:.    VII,    lu-    IM    cXIlLMllull   1)1    -'.lli>      .'I    Uli'   iiu.n-     .u ,.■--.!.V    r,-,.,.::-. 
[■ iirt ii.-r  M-I'' c'ln •■■   .i r-'  ru rn tin. pr. 



.1.1-..  \\ ik. - .   ui.I >...<■. itu-.-; 

uliml us lo ihi' liU'i that it involvi's all itif usual ussumptions ol tho pure 
in.  hpnvatU'lan—and an udditional lincarlzatton as w.'ll. 

Thi' suci'i'bsiul corrt'lalion ol Tulin's formulas with those ot Lcvi-Civita (3. Ch. 
V '), besides rii'.ori/in^ the linearization, should have two other useful consequences, 
first, it should give better i stinnites ol the errors involved in linearization, and on 
how to correct them. Second, it might indicate improved ways to solve the Integral 
equations to which Levt-Ctvlta's torniulas lead—including especially the determination 
ol paranieU rs. 

Axially Symmetric Case 

The methods mentioned above do not give any informalion about the axii'lly 
symmetric case, of the greatest importance lor hydroballistics. One is, oi course, 
free to conjecture that natural analogs ol existence and uniqueness llieorenia, proved 
lor symmetric plane flows, will also hold for axially symmetric space flows. But 
iuch freewheeling conjectures, however suggestive, are not a part of science. 

It was therefore most gratifying when wh;'l may bo termed the "Stanford School" 
(GaraUcdian, Lewy, Schiffer, Spencer. Oilbarg. and Scrrin) obtained positive results 
for axially symmetric space flows also. The technical brilliance ot their achieve- 
ments canhardlybe overestimated—even after making due allowance tor contributions 
by niabouchinsky. Lavrenticv. Polya-Szegö, and others to tVbasic methods involved. 
However, brilliance does not imply infallibility, and the time has tome for sober 
appraisal of what has actually been proved. 

The existence proofs of Garabedian el al. (4) are based on the synthesis of a 
variational principle due to Klabouchinsky. Steiner symmctrization as recently 
exploited by Polya-Szegö. and a principle of analytic continuation due to H. Lewy. 
The details are again delicate and highly technical—even in the plane case, when use 
can be made of Schiffer's technique of interior variations. 

Though I have not myself studied all the details, I have given considerable thought 
to many aspects of the proofs, and have discussed them with other competent analysts. 
On the basis of this thought and discussion, it is my impression that only the case of 
finite cavities has been worked through completely. For infinite cavities, I think 
many details must be supplied before the proof sketched in (4) can be accepted as 
rigorous. A complete and clearly expounded proof for infinite cavities would be very- 
valuable. 

Weinstein has called my attention to a much simpler difficulty regarding the 
uniqueness proofs of Gilbarg and Serrin. with particular reference to the conditions 
under which "slarlikeness of the obstacle inipJes »tarlikeness of the free stream- 
line." In the plane, this can be proved rigorously; in the axially symmetric case, 
its proof by Serrin (5) depends on a plausible principle of potential theory, which has 
however itself never been rigorously proved. Thus, in the axially symmetric case, 
a rigorous proof of uniqueness lias only been given within the class of flows with 
starlike free streamlines—contrary to what is implied in Ref. 3. p. 96. 

■' m hi'i'i.    'tu   v     -Iti ':*.}»" t .i Yi.i.ir.it t.  • i'ri't-i tiun li-rui. w hu h »  .ulii i»» fstutuiU'»! l»v 
,  ,.iu :.• .-■■..ii I , ,.1.  il.iii .11. 
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In thinking; about this difficulty, I have come to realize that the appeal in Ref. 3. 
p. 96, to Levinson's theorem (6) about the asymptotic shape ol axially symmetric 
infinite cavities requires 'hat one also assume Levinson's hypotheses. Basically, 
one must use these to prove th«.1 existence of a similarity transformation of one free 
boundary, making it lie entirely outside the other—except at one or more points of 
tangency—so as to make Lavrentieff's comparison method rigorously applicable. 
Presumably, Levinson's hypotheses and "starlikeness" can be combined into one 
elegant (and plausible) assumption; this would certainly seem worth doing. 

In the same vein statements have recently been made about free streamlines 
under gravity, which seem to me not rigorously proved. I shall comment on these 
later in connection with the paper by Taylor and Saffman in this volume. 

NUMERICAL METHODS 

The recent development of high-speed digital computing machines, with multi- 
plication times of a millisecond or less, has enormously Increased the class of 
economically computable formulas. The impact of this development on applied 
mathematics is incalculable because it is economically computable formulas that •he 
applied mathematician requires. 

Unfortunately effective rigor in this area is hardly ever achieved, in the sense 
that rigorous error bounds are usual1 ' far too pessimistic. In practice, errors are 
usually estimated by repeating the calculations with doubled mesh length. This 
sometimes gives a reliable estimate of the truncation error: in other cases, the 
significance of the estimate so obtained is only statistical. 

I shall now discuss some numerical methods which have been successfully 
applied to free streamline problems, with special reference to their mathematical 
accuracy and their potentialities for further development, using high-speed computing 
machines. In specifying mathematical accuracy, I mean of course the agreement 
with exact solutions of analytically defined Helmholtz problems—always assuming 
that these problems have been "well set" in the sense of evistence and uniqueness. 
Some aspects of physical accuracy will be discusheU in the following sections. 

Integral Equation Methods 

Perhaps the most highly developed integral equation method concerns the solution 
of plane Helmholtz problems by discretization of equivalent singular, nonlinear integral 
equations. This method has been described in Ref. 8, reviewed in Ref. 3, pp. 215-219, 
and briefly criticized in Ref. 1, pp. 224-225. The Integral equations are those of 
Levi-Civlta and Villat. mentioned in the preceding section. 

For symmetric flows past obstacles having curvature of constant sign, very con- 
sistent results have been obtainedwith this method. There Is even a rigorous tlienry* 
of its convergence (9), though the assumptions involved are nut easy to interpret. 
This is not to say that error bounds have been calculated, or even that error estimates 
are available. However, the method always gives a potential flow with free stream- 
lines past an obstacle whose shape differs slightly from that of the given obstacle. 
Therefore to get error estimates, it would suffice to solve the following problem. 

|..i rf ,i ■it.i r. Uif    . itn'U l.i r i*;  .(i   I hi   ;• rji.ir.i! urn f mint i .»m i (    im   ihlt u ulu . 
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Jets, Wakes, and Cavities 

Problem: Given two functions defining the curvature K K, (• i as functions of 
the slope c, i 1.2, estimate the changes in the flow pattern and pressure distribu- 
tion due to \K(i)     Kj(i1 - Kjf."'). 

The method involved is capable of various extensions. Thus, various classical 
problems involving plane flows with free streamlines under gravity, and straight 
fixed boundaries, can also be transformed into nonlinear integral equations (3, Ch. 
vm, §11). Though the singularities involved are nastier than in the case treated in 
Ref. 3, the problem should be tractable. We had also originally hoped to apply simple 
modifications of the method, to calculate asymmetric flows and compressible flows 
in the Chaplygin approximation (3, p. 191). Adaptations of the method to Jet calcula- 
tions should also be feasible. 

By using slope-length equations »( ) in place of curvature-slope relations 
K KO ), one can interpret plane cavity flows past obstacles having points of inflec- 
tion (curvature of variable sign) in terms of integral equations (3, p. 136). It would 
be interesting to perfect a technique for solving such integral equations numerically; 
in principle, this would seem not too difficult.t 

Thin Hydrofoils 

An especially timely extension would be to the calculation of asymmetric cavity 
flows past thin hydrofoils, such as are considered elsewhere in this volume by Drs. 
Tulin, Johnson, Timman, Cohen, and Di Prlma. Such calculations would give a 
clearer idea of the correction to be made for finite thickness. Conversely, a study 
of methods effective for the linearized approximation might suggest more effective 
methods for solving the exact nonlinear equations. 

The general case of a smooth asymmetrical hydrofoil in an infinite stream 
involves three parameters (3, Ch. VI, ' 7): SJ, T , „. These are presumably deter- 
mined by the pitch angle of the hydrofoil and the two points of flow separation—though 
the relation between these and the location „ of the stagnation point may be hard to 
determine, unless the hydrofoil has a sharp leading edge. The angle of pitch should 
presumably be carried as a free parameter in calculations—but the angles ,. , of 
flow separation or the condition of "smooth separation" used to eliminate the other 
two parameters. 

For fixed M. Tn, , the iterative methods described in Ref. 3, Ch. DC, should 
converge rapidly, provided the hydrofoils involved have a sharp leading edge, since 
the curvatures involved (hence v.) are then small. However, for nonconvex hydrofoils, 
one would presumably t have to use the Villat integral equation. 

Axially Symmetric Case 

Even more valuable would be the perfection of numerical techniques for solving 
axially symmetric  Helmholtz problems.     Two approaches to this problem are 

:,Kor one  case, »<•<• Rcl,  7 and H. fiarabcdian   Hrui.   Ruy. Soc. (London) A-MlrTb^-SO 
(I'tST).     The   radius   of  lurvalun-  at  thi   buU Av  vertex   »ei'ms  hard  to   determine 
accurately. 

'Hcrsutis  inturusUd in  tins  probU-m should runsult v.ith Ur. Ili.ns   Rremerniann of 
Stanford University, who spent Horn« lime on it. 

Ipurhap« not. if the curvature had lunstant sijin on i.uh side of the stagnation point. 
Alternatively, one cuulfl trial the   fust   six   loeffutents :i(|,   ,1, as of the   Levi- 
Civita function    ft ) as free parameters. 
Kspecially In i ause no analytual solution i-, known. 
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reviewed in Ref. 1. In both approaches "certain similarity principles between ... two- 
dimensional and three-dimensional problems are involved" (1, p. 222). 

Approaches based on assumed analogies between plane and axlally symmetric 
flows have long been used to make engineering estimates. For cavity flows, the 
recent assumptions of Plesset and Shaffer are perhaps best known. The evidence 
reviewed In Ref. 1, pp. 225-227, shows again that such estimates have a purely 
engineering significance. 

Variable Dimension Number 

The preceding analogy can also be put on a scientific basis, as first shown by 
Garabedian (10). The correct approach is to consider one-parameter families of 
flows satisfying 

l!      ■ ^ l'    » u        v     - ^ v    • v        O /i\ «x     v    v       yy       ««     >■    y       yy \l) 

in P ■ 2 dimensions, with p a continuous parameter. This Idea of considering flows 
infractional dimensions,* which would not normally occur to a physicist or engineer, 
illustrate the practical value of pure mathematical abstractions. 

Garabedlan's methods and conclusions are summarized In Ret. 3, pp. 288-289, 
except that Gilbarg fails to emphasize Garabedlan's plausible but arbitrary Interpo- 
lation with respect to p (p - 21. Because of this arbitrariness, though I believe 
that Garabedian has obtained genuine estimates for corrections to the widely quoted 
lesults of Plesset and Shaffer (and of Trefftz for lets), I am not convinced that these 
estimates can be relied on Myond 130 percent. 

• 
It would be very valuable If Garabedian could extend his method so as to obtain 

asymptotic estimates of the relative length • <i and diameter <im .) of cavities behind 
discs of diameter i as functions of the cavltatlon number Q. The extension to other 
obstacle shapes seems to Involve formidable difficulties. 

Difference Equation Methods 

Most promising, In my opinion, are attempts to calculate Hehnhcltz flews approxi- 
mately, by covering the domain Involved by a fine mesh, and replacing the Laplace 
equation over tills mesh by a suitable difference equation. In both the plane and 
axlally symmetric case, this procedure (with due attention to boundary conditions) 
leads to vector equations A» i< Involving well-conditioned symmetric matrices. 
Clearly, such equations are moat tractable for small domains—e.g., for flows having 
finite cavities In finite channels. By way of contrast, the methods based on Integral 
equations and variation of the dimension number n p - 2 are most effective for 
infinite cavities In an unbounded stream. Therefore, their ranges of application are 
essentially complementary:  neither is to bo thought of as a substitute for the other. 

Relaxation Methods 

The approximate numerical solution of Hclmholtz flow problems, through approxi- 
mating difference equations, was first accomplished (uslnt; hand "relaxation methods") 

•Prcviuusly applied to uthfT |irul>lcim by lltl) riiini, Bi-r» and fi.lljari, and Wi'instiin 
(Trims.  Am.  Matii. Sen. i!j;J4^-4Iv4 (I'-lnj. »luTf i-nrlii r n-NTi'tu i's .ir<- «ivcnl. 
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by Sir Richard Southwell and Miss Vaisey (11), in an important pioneer paper. Though 
not mentioned in Ret. 1, Ref. 11 seems to deserve further study at the present time, 
for two reasons. 

First,many of the approximate solutions obtained in Ref. 11 can now be compared 
with results obtained by other methods, and this will give a better idea of the trunca- 
tion errors involved—a subject about which little information is now available.* Thus, 
such a comparison is possible for the two-dimensional Borda mouthpiece in a channel: 
Example 1 of Ref. 11 is tractable analytically as described in Ref. 3, Ch. V, §8. 
Though a numerical parameter (ratio of mouthpiece width to channel width of 1/6) 
must be determined a posteriori in the exact analytical formulas, the amount of work 
involved is not really great. Again, as to the cusped cavitybehinda circular cylinder, 
treated as Example 10 in Ref. 11, one can use the formulas of Ref. 3, Ch. VI, § 10, to 
reduce the problem to the solution of a nonlinear integral equation involving two 
parameters M and Q, connected by an implicit relation. For one value of Q, this 
equation and the relation have been solved numerically (8, Case 22a): it would be 
interesting to make a comparison with the relaxation solutions' for 0 = 0.234, 0.562, 
.... as well as for the infinite cavity of zero drag, 

Analytically, the various plane flows with free streamlines under gravity treated 
in Ref. 11 as Examples 4-8 are also reducible to mildly singular integral equations, 
which should be tractable by Iterative numerical methods, as explained above. 

Second, the numerical labor required to "relax" has been so shortened in many 
cases with the help of ultrafast computing machines, that it seems reasonable to hope 
that this will also be true of the "free streamline" flows treated in Ref. 11. The 
general procedure followed, in both hand and machine computatlom, is to solve a 
sequence of problems involving fixed boundaries, which are adjusted by successive 
trials until the condition of constant velocity is met on the (then) free streamline. 
Since the difference equations are the same, the only question is at to how effectively 
one can substitute regimented automation for free human intuition.! 

Very substantial contributions to the automatic solution of Helmholtz problems 
are embodied in Ref. 12.  Using a square mesh, to which the successive overrelaxa- 
tion (extrapolated Liebmann) method of Young and Frankel is ideally adapted. 
"Riabouchlnsky" flow past a disc in a channel was treated on the NORC at Dahlgreu. 

Surprising though it may seem, the NORC calculations did not give results which 
were clearly better than those previously obtained by Miss Vaisey (3, p. 232). In 
fact, no convergence proof or error estimate is available for either method, and 
somewhat variable results were obtained by both, so that the problem is still unsolved. 
I should like to make some specific comments in this connection; I understand that 
Dr. Arms of the Naval Proving Ground also has some ideas. I believe that recon- 
sideration of convergence speed and truncation errors, in the light of these comments 
and ideas, would make a successful attack possible in the near future, using new and 
more powerful machines. 

''Even itir solutions of tin- Dirichlt-t problum;  tho  case  of (n-i- boundaru-s  is   much 
more «liffnult! 
SIT R.V. Southvu-U, "Relaxation Methods  in  Theoretical HhysicB," Oxford, p.  J.J.H, 
1946,   A tontisi. revision of much of Rei.  II is presented in pp. ■il.i-.Jii. 

I Human  intuition Has  many  advantages of flexibility—as   in the  easy introduction   of 
local mi*i;h refinements suggested by experience. 

'•Thus,   with   the   PDQ-01    IVttis   Code,    and   rectantiular    meshes   (with   independent 
spacinKS   in x and y),    in   rectangular  domains,  fixed  boundary  problems    involv'ng 
7S0O |)ijmts »an be solved on the IHM-7n4 in 1(1 to IS minutes! 
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Perhaps the major computational difficulty centers around the (mild) separation 
singularity. The square mesh usually used in Ref. 12 is not well adapted to treating 
the local behavior near this singularity.* Successive overrelaxation is also com- 
patible with rectangular subdivisions with unequal spacings, which could be used to 
concentrate meshp.ints near the separation point. On the other hand, the type of 
local mesh refinement used in Ref. 11—which seems better adapted to the problem- 
does not satisfy Young's property A: that net-points can be divided Into "red" and 
black" points, such that adjacent net-points have opposite colors. Other mesh 

refinements having property A might be tried, such as those sketched in Fig. 1. 

i       —— i  ■   '    ■ —      —^ 

-■■   -•    ■ ' i        m        i ■     ■♦ --I 

>      ■ — -■— — — —— —• 

- ■ —■ ——     - ♦ ■     fr       « 

1 

J 
Fi^j.  1 - Mesh refinements having pruperty A 

One alternative would be to apply second-order Richardson or Chebychev poly- 
nomial methods to meshes having local refinements of the kind used In Ref. 11. 
Though these methods require twice as much storage and computing time with a square 
mesh' as successive overrelaxation, I am sure they are still much faster (using 
ultrafast machines) than hand computation. Or. one could try successive overrelaxa- 
tion, hoping that it would converge rapidly even without theoretical justification, t As 
a third alternative, one could use linear interpolation during mesh transitions, as 
proposed by Arms. 

PHYSICAL RIGOR 

Solutions of the Helmholtz problem are In equilibrium under inertial forces and, 
in the case of wakes, under gravity. Unfortunately, as realized by Helmholtz himself 
(1868), this equilibrium Is very unstable In single-phase flow. Gravity is neglected 
in representations of (two-phase) cavity flows, but the equilibrium is much more 
stable (14, p. 54). Moreover viscous forces, turbulence, surface tension, evaporation, 
air content, and impurities in solution are neglected in any case. 

It is obviously important to know how best to approximate physical reality by 
Helmholtz flows, and also how to allow for the various forces neglected. I reviewed 
this question ten years ago; in Ideal cavltatlon. one might expect to observe 'he 
nominal equation of state (3. p. 7) 

it  p l\ 

pv  .Isr i Krullrt i 

(2a) 

(2b) 

'A loial analytical cxpansion was  generally usi-d instcul ul  lural mvüh refinement. 
!R..S   Varna, J. Soc. Intl. Appl. Math. Sri'Md (1957( 
Siuli justifuatmn   may artually  !«•  implicit m  rucenl  »i>rk by  Kalian   and  Var>;a. 
(CimitiinU uf Dr. Youn^.) 
r;. liirkhoff,   Hro«;. 7lli Int. Cunnress  Appl. Mrch., Lomlon, J:7-li.  (1'HH). also  Kef. 
14,   p,   SI   antl   Ref.   <.   Cli.   1.     The   use  uf  K.i|i*. U.i) and {Zh) nues   hack  at   least  to 
Kiabuiu iiinsky, Demtcheivku, Ackeret, ami W  nut; (1 '.'<>- 1^). 
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If inertial forces alone are considered, this equation leads naturally to the Helmholtz- 
Brillouin Problem.* 

Reentrant Jet Models 

Unfortunately, one can show that Helmholtz-Brlllouin flows past a single obstacle 
necessarily Involve infinitely long cavities and zero cavitation number Q, whereas real 
cavities have finite length and positive Q! To avoid this paradox, It is customary to 
use the Riabouchinsky and reentrant jet models, and to take 

v     1 2   v* 

as an empirical constant.  (Here p  is the local ambient pressure; r,. is the (mean) 
cavity pressure, which is pv in ideal cavitation.) 

These models give almost identical predictions for drag and cavity dimensions 
in two-dimensional flow. However, it is very hard to find accurate published state- 
ments about the conformity of such models and reality: usually, authors are content 
to mention the qualitative «ccurrence of reentrant jets. 

This is partly due. of course, to the limited practical interest of two-dimensional 
cavity flow, and partly to experimental difficulties. Anyway, the most frequently seen 
comparisons refer to integrated, artifically rotated (Plesset-Shaffer) pressure dis- 
tributions on wedges for ideal Bobyleff flows, as compared with drag measurements 
en cone heads in water tunnels. Since the theoretical Interpretation of the calculated 
drag coefficients is obscure, those comparisons have questionable scientific 
significance. 

The published experimental values c,/?) o.ss < 0.40 for flow past a circular 
cylinder agree, at Q », with the numerical value calculated by Brodetsky. It would 
seem desirable to redo these experiments, and to check the values for 0 n against 
calculations recently performed   on the MANIAC. 

But agreement between calculated and measured values of cB( CM ■ however useful, 
does not te" the whole story. Especially in cases where, as with cones, the separa- 
tion point is determined by a sharp corner, such agreement is almost built in. As 
observed nearly 15 years n^o by L. B. Slichter.the difference between the stagnation 
and separation pressures outside the boundary layer is fitted by the choice of Q. 
Again.the pressure distribution is a convex exiufunction in most cases treated. One 
can therefore expect fair engineering estimates oi c„( ou without knowing mucn about 
the flow as a whole. Especially uood estlmuU-s may be expected when, as with cones 
(follovting Armstrong (1. pp.226-227)), one can match the local pressure distribution 
near the vertex and the separation point to a higher order. 

fiilliarv '1- |). .iK')) r.illi* llcltiiM.lt/, • hrill.iuin t'Um« "pi.ysu .il'\ uivi'ptabU'." but tin^ 
si-cms l*> ttir n lunfuMiun '»i [in^sus with uirt.iph'. HU s lu't'auttv ul all li.i pi.ysu'al 
•.ariiililrs n<'nl"'tttil. 
F'irst ol.Ki-rvitd 1J> I), 'iill.iiry .ii.tl K A AmlirMnn, .1 Appl. Pius. I ':lr'"-i • I »4«»; 
(HT alsu Kri. '• I'lalc II I ^.. j)r<-'l;i timi : <,1 n .i!i tnipttrtiitit iinwiiUi'il |>r>>ijUm, 
Kitl'trutii i I |). -.!7 arul !'., !Vrf. .mil M.S. Hlt'SKvl. pp. ^Hl-.'i.l i>| ihv Ri.ihiiiu hirrnkv 
.luljil.i- Vulutiii-. "uM Si;. IVii, Mm rlc I'Air I'.ins I'M. fi.ir.tl" (li.in1* wthul.i- 
lit/Hh  lt»r .'i fllKI   .ir-    Itl'  rt'      . ■.■!.;! ;i   irlt 
(1 liirki.'.n II II (iclilslir,.' .uulKll /.j(r,int"iivlUi Kriul. Si-tii Mat. Tiirmt. IV.^O^-.; < 
■ I trtA ) >'ti\t. (Uts*- ^ V t. An uiipir.i: ^ ;.t (i ri»iiu*< ' ' •• ^ »>1 M.t r'\ rr r's d.it.i u.is tti.uii- !r, 
•,i,.   lal'   l<   I    Kii.ipi)   .if IIIMI   I •!■ .    'Hi i' I1,!- ii.-vi U.utmiti'  I 
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Approximate agreement between theoretical and measured values of CrfQ) does 
not, in any case, imply agreement as regards separation angle, cavity size, or 
behavior at the rear end of the cavity. In particular, I think that the differences 
between ideal and "reentrant jets" has been Insufficiently emphasized. 

Thus, I take exception to the phrase "observed experimentally" in Ref. 1, p. 286, 
line 13. In spite of Fig. 16 on p. 230, 1 doubt thai Fig. IS of Ref. 1, p. 230, accurately 
represents the flow of Fig. 14 on p. 229. Whereas Ideal reentrant jets are irrotational 
and steady, most real reentrant jots have vorticity and are unsteady. This seems 
especially likely for very small cavities, like that of Fig. 14. Again, as shown con- 
clusively by Swanson and O'Neil (1, p. 230) (see also the paper by Campbell in this 
volume) one loses axial symmetry at the rear end of long cavities behind axially 
symmetric obstacles.  This is because of gravity. 

Cavity Size 

In principle, the preceding models give unambiguous predictions as regards 
relative cavity diameter A <i and length • <i, as functions of the cavltatlon number 0. 
Until these functions have been calculated effectively, one cannot ascertain the cor- 
rectness of these predictions. My guess is that, for small c, the predicted tL -i will 
turn out to be too big, and the predicted - <l much too big because of the neglect of 
gravity. This Is, of course. Important for some aspects of hydrofoil design; I would 
guess that linearized "thin hydrofoil" cavity theory would be subject to the same 
trend (again, for very long cavities).* 

It seems reasonable to expect that the correction will begin to be large when the 
twin vortices, first observed by Swanson and O'Neil (1, p. 230). are a dominant fea- 
ture at the rear end of the cavity. In this connection, one should consult Campbell's 
paper again. 

Similarly, in the case of water entry of missiles, the Froude number F v2 K<I 
has always been supposed to be the primary variable determining similitude (e.g., 
'\m <l and <i). Since F and Q have very different dimensional dependence, while v and 
.1 can be varied Independently, r and Q can hardly both determine i\n M and ' I. 

To clarify the above questions, I think more accurate measurements of (P„ -r.) 
will be needed than are now available. 

Wake Models 

Before World War H, potential Hows with free streamlines were taken as models 
for "wakes" (and for homogeneous jets') in hydrodynamics, with only vague qualifica- 
tions. This was in spite of the extreme instability of the free streamlines, already 
known to Helmholtz himself. As a result of this instability, viscosity and turbulence 
have an accentuated importance lor wakes—though gravity, fortunately, has only a 
hydrostatic effect. It is therefore especially challenging to try to approximate real 
wake behavior by models involving potential flow. 

■Simtr t'XpurimiWtal dat.i hrann^ i>n ttii- aiuivc1 mnarks may lu- t'uund in Kpt. K-7i.t> 
(if thf Gallic 1. llyilr.id.i.iinu n Liil). !)■, R.L. Waul, ami li I'rujiit Rpt. Vt til tin- St. 
Anthony Kails Hvlra;;!..   i.ih, \t\  K. SiHn'rtiuin. 

! AH shi.un ;ti Cnrnt-il *■ jtapt-r m tins \<>tumr. pnai pri'tlu turns uf t ov'. r.u'tu-n I.H-I'I:- 

i ii nts r<  I'.r )f\n i an ■iti-i: i..- r.ail.   (,;. liif last luu' »I Rii.   '•, Ch.    , ' 7. 
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Since the pressure in real wakes, as In cavities, Is below the ambient pressure 
i-,. it ia natural to try to represent the flow outside them by the Riabouchinsky and 
reentrant jet models. Again, considerable success in estimating pressure distribu- 
tions with such models Is possible (3, p. 28, Fig. 3) in cases where the separation 
point is fixed by a sharp corner. However, unlike cavities, wakes have irregular and 
unstable boundaries. Hence, though the models with "dead water" wakes are in 
nominal near equilibrium when 8  • • 1, real wakes are in fact highly turbulent. 

A better model for real wakes is probably provided by an old discontinuous poten- 
tial flow model of Joukowsky. with variable Q o, recently discussed by Roshko;: and 
Eppler.' In this model, the wake or "cavity" terminates in a strip bounded by fixed 
parallel streamlines, thus predicting an asymptoticclly constant displacement thickness 
downstream, as seems reasonable (3, p. 366). It would be interesting to compare 
this model (for the right Q) with Flachbart s photographs of the wake behind a flat 
plate, and to see whether agreement was also better locally than for the Riabouchinsky 
model (3. p. 35C). Moreover, comparisons of the p; edlcted with real displacement 
thickness 3 (Q> and pressure coefficient distribution c^x.y.Q) would be interesting, 
as functions of the Reynolds number R too! (This plays no role In the Roshko-Eppler 
model.) Finally, it would be interesting to make similar comparisons for curved 
obstacles: calculations could be made by the methods of Ref. 3. Ch. VI. 

In any event, the Roshko-Eppler model seems a definite Improvement on earlier, 
otherwise analogous models* with Q o, as regards simulation of flow outside the 
wake. 

The pressure recovery which is observed in real wakes Is also obtained by 
another model, recently suggested by Batchelor. This model, which has some meta- 
physical plausibility as a representation of asymptotic behavior when R approaches 
infinity, involves the assumption of constant vortlcity in the wake "bubble." In the 
light of observed wake instability for R so. however, it seems obvious that neither 
of the above models resembles physical reality at all. within the wake itself (except 
possibly in supersonic flow). Similar objections apply to the Karman "vortex street" 
model for periodic wakes (3, Ch. XIII). even in the most favorable range of Reynolds 
numbers, though with much less force. 

Impact Forces 

More critical comparisons between theory and experiment arc also desirable. 
as regards the "impact forces" arising during the first half-diameter of entry "( a 
missile into water. This important subject was reviewed briefly in Ref. l.pp. 216-20. 
but witn emphasis on favorable comparisons. I should like to record my opinion, 
that unfavorable comparisons should receive equal emphasis—I see no reason why 
such comparisons should be taboo. 

For instance, consider Ref. 17. p. 403. Fig. 1. which gives the impression thr.t 
all is sweetness and light. A more careful study shows that the "experimental points" 
plotted there represent stverages of variable observations, which decrease by (actors 
1.5 to 3-5. Obviously, in such cases, the "experimental" k will depend on the Interval 
of averaging-and Watanabe's data disagree dimensionally with the formula i" Hy* 
predicted by Wagner's similarity argument. 

*A. Koslik... J. Air   Sei. iiilH-iii (I'^SM 
•R.  Eppler. J. Ral.  Mech, Anal.   i:S'M.t.-H (I'M). 
I St'i:   Hi-i.   II,   anil   reforentes   vurn   Iticrf   In   earlier  wurk  of   Prandtl.   Si hiiiuMin 
Squire, anil uthur».    Alsu    ^,'.- R    vim  Misrs.  'I'luury nt ll>j;l\l." p.   101. 
J. Kluid   Mii'i.   1:177- in .mil I: IKH-)H (I'Ht'i)     Tlu»  IIUHII'I is rrmoti-ly   renuniiui'nt 
of Kijpjil's ulil rnmli'l nt .1 vnrtt'x-p.u r (>,  |».  ^6 1). 
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In the abuve case, I would guess that the discrepancy is due to experimental 
difliculties, but this question should be settled scientifically and not by prejudice. In 
the cases of the "expanding lens" and other pscudo-mathematical models also reviewed 
favorably in Ref. 1, the theory rests on a less firm foundation* and critical compari- 
sons with observation of all "theoretical" predictions seems especially needed. 

CAVITY SEPARATION 

It is well known (1. pp. 224. 234. 285) that the prediction of the separation point 
for cavity flow past smooth obstacles is especially difficult, and lliai potential flows 
past analytic profiles have their only singularity there. However, it is not clear to 
what extent or how viscosity, turbulence, and surface forces affect separation. 

In Rcf. 1. pp. 224, 295, Maccoll and Imai point to boundary layer theory as the 
key to the problem. T shall discuss this suggestion below, showing in particular that 
a laminar boundary layer theory implies a unique separation point. 

For wakes, observed pressure distributions do not indicate a unique separation 
point (16. pp. 422. 497); the separation point is strongly turbulence dependent. 

Low Velocity Effects 

As shown by Eisenberg (15, pp. 10-11). the same is true of cavities at large Q: 
the problem is the old one of predicting conservation of the liquid-gas balance in the 
cavity. In a similar vein, it is known that cavity formation is drastically delayed by 
spinning spheres.1 because of boundary layer turbulence. Again (14, p. 63), Slichter 
has observed a downward refraction of spheres at low speeds, when entering water 
at angles of 20 degrees with the horizontal, at moderate speeds, and explained this 
as due to the effect on separation of insufficient ventilation. Finally, Worthington 
himself observed elf ect» on separation of the surface condition ("wcttability")—off ects 
recently confirmed by May.! 

As regards cavities, all these anomalies occur at relatively low velocities. I 
therefore repeat my suggestion (made In 1948) that solutions of the Helntholtz- 
Brillouin problem should give good indications of the separation angle as a function 
of C for cavities behind slowly decelerating macroscopic missiles, in the range ISO 
fps     v    1400 fps (Mach number M    0.3). 

At lower speeds, one should expect delayed separation and other scale effects. 
Thus viscosity and surface tension, in combination, will make the cavity separate at 
a finite angle, and not tangentially. An approximate computation of this contact angle, 
as a function of the variables involved, would be very instructive. 

Separation Curvature 

Actually, the Helmholtz-Brillouin problem was first formulated to avoid tL- 
mathematical indeterminacy in the separation point which would otherwise arise for 

*tvi!n   tlit   lakulationB   of  llillman,   repurted  in   Ref. 17, art1   Hubject  to  the gel» ral 
Iruncatjun errur uncertainly 1 discussed earlier. 

1 H.  Wayland and K.c;.  White, Proc. Symputlium Fluid Mecli. Meat Transfer, Stanford, 
pp. 51-M. 1949. 

IA. S.   May,  J.   Appl.   Phys.   i£:lilt-UU  (H51)j   Ref,   1,   p.   ilt>.    For   the  case  of 
circular struts, see Wet/.el's paper in this volume. 
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Heimholt?, flows past smooth obstacles. To solve It, Brillouln postulated that the free 
streamline curvature must be finite at the separation point (3, p. 139)—now called the 
condition of "smooth separation" (1, p. 285). Villat related this condition to the solu- 
tion of the Levi-Civita integral equation (3, p. 139), and also assamed that this condi- 
tion, of a lowest order singularity possible in potential flow, actually determined the 
separation of flow. 

The condition of smooth separation has always seemed to me without physical 
basis; I cannot see why nature should abhor infinite pressure gradients. If infinite 
curvature is ruled out, then so is Kirchhoff-Bobyleff flow past a flat plate I My view 
seems to have been shared by von Mises and Schmieden who, aa recalled In the 
previous section, proposed the "wake of zero drag" as a first approximation to wake 
flow with turbulent boundary layer. Indeed, it seems obvious to me that separation 
should entail both a mathematical and a physical singularity; thus boundary layer 
theory (cf. infra) even predicts a jump in slope at the separation point (16, p. 57, 
Fig. 22). 

Much more reasonable is the condition for ideal cavitation, corresponding to the 
nominal equation of state (Eqs. 2a and 2b) which leads to the Heimholte-Brillouln 
problem if inertial forces alone are considered. 

Though significant deviations from Eqs. (2) can occur under exceptional condi- 
tions (3, Ch. XV), variations of one atmosphere in pressure change the pressure 
coefficient cn rp -pa> I 2 v2 by less than 0.03, if v = 200 fps, and by less than 1 
percent if v = 400 fps. Hence, in such cases, the Helmholte-Brillouin problem is 
a priori very reasonable. Even air-filled and vapor-filled cavities should behave 
similarly, since we have pv    p    P,, under these circumstances.* 

Unfortunately, the Helmholte-Brillouin problem is not easy to solve mathemati- 
cally, and one seldom knows whether it has a unique solution. 

Boundary Layer Theory 

I agree with Drs. Maccolland Imal (1, pp. 224, 295)that the Influence of viscosity 
on the separation point should first be studied using boundary layer theory. This 
theory makes it obvious why separation must occur behind the point of minimum 
pressure—I.e., why the Helmholte-Brillouin problem predicts separation too far for- 
ward. It also suggests a way of Improving agreement between theory and observation 
(a "viscosity correction"). Experimental data ran he corrected by displacing the 
liquid-solid and liquid-gas interfaces outward by an easily calculated displacement 
thickness rs i. It would be Interesting to study the resulting potential flows as solu- 
tions of the Helmholte-Brillouin problem for the displaced fixed boundary. Perhaps 
this would explain the discrepancy noted In Ref. 1, p. 224. 

On the other hand, I do not think that boundary layer theory Is an adequate sub- 
slitulf- fur Eqs. (2), as suggested by Imal. * I do not even agree that, according to 
boundary layer theory, the asymptotic curvature must be finite. Why should not a 

"It sfem.s unlikely that une can attain cavity overpresuure by "hyperventilation"--i.i'., 
that furcin« air into the lavily will make 0 0. Cf. Proc. Kirsl Symp. Appl. Math. 
Am. Math. Sue, p. I, I'M''; Rif. 14, p. SM; Proc. 7th Int. Congress Appl. Mech., 
London, f.ll 1948. 

tRef.  I, p. .!>S; ami .1. Phy». Sue. Japan H: Vfl-AOS. (I'm). 
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brief adverse pressure gradient, followed by a mild singularity4 inducing separation 
with infinite curvature, be compatible with conventional boundary layer theory? 

It is attractive to speculate that the separation point can be located by combining 
free streamline and boundary layer theory, as follows. Consider the one-parameter 
family of cavity flows, with variable separation point, which is possible if the maxi- 
mum velocity occurs before separation—as suggested by boundary layer concepts. 
Then find which flow is compatible with the usual boundary layer separation criteria. 
This could probably be calculated numerically, in the case of a circular cylinder, and 
I think such a calculation would be very desirable. 

However, it is clear that such a calculation will predict a fixed separation point, 
independent of the flow velocity. For, inside the boundary layer, the equations are 
invariant under the group1 

0) (3) 

Outside  the boundary layer, the flow scales inertially (14, p. 97), completing the 
verification. 
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CAVITY FLOWS OF VISCOUS LIQUIDS 
IN NARROW SPACES 

Sir Geoffrey Taylor and  P. G. Safiman 
t'nn '•' ' l t\  n I   f'.nnhr l tif 

This communication is concerned with the motion of the interface 
between two immiscible viscous fluids contained in the narrow space 
between two closely spaced surfaces. One of the fluids may be of 
negligible viscosity and density, corresponding to the rase of a cavity. 
When the surfnrps are fixed, parallel, and plane, the configuration is 
known as a Hele-Shaw apparatus. 

The penetration of a viscous flu<d into a more viscous fluid con- 
tained in a straight-sided channel in a Hele-Shaw apparatus is discussed 
under certain simplifying assumptions about the physical conditions at 
the interface. These are that the pressure change on crossingthc inter- 
face is constant, and that the sheets of the more viscous fluid left behind 
after the interface has passed are of constant thickness. The problem 
is not unique, possessing a singly infinite family of solutions, and some 
analytical teatures of the solution which single out a particular flow are 
described. 

INTRODUCTION 

Taylor (1) has shown, and Lewis (2) has verified expertraentally, that the surlace 
between two superposed fluids of different densities and negligible viscosities which 
are accelerated In a direction perpendicular to their Interface Is stable or unstable 
to small deviations according as the acceleration Is directed from the more dense to 
the less dense fluid or vice versa. 11 the fluids are confined within a long tube or 
channel, a final steady state appears to be attained In which a long bubble or finger 
of the less dense fluid advances along the tube whilst the more dense fluid drains 
away round the sides. This situation occurs when a vertical tube filled with fluid Is 
closed at the top and opened at the bottom to the atmosphere. The steady motion of 
large bubbles or cavities rising through inviacid liquids In tubes and channels has 
been studied experimentally and theoretically; see, for example, Oavles and Taylor (3); 
Garabedlan (4), where other references may be found. 

Saffman and Taylor (S) have shown that analogous phenomena occur when two 
superposed immiscible viscous fluids are forced with uniform velocity through a 
Hele-Shaw cell, that is, between two closely spaced, fixed parallel sheets. When the 
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interface between the two fluids is straight and perpendicular to the direction of 
motion, a steady uniform motion is theoretically possible; but it can be shown that 
the interface is unstable to small deviations when the direction of motion is from the 
less viscous to the more viscous fluid (i.e., when the less viscous drives the more 
viscous) and stable when the more viscous pushes the less viscous. Actually this 
statement is strictly true only when the plates bounding the cell are horir.ontal, or 
the fluids have the same densities, so that the stabilizing or destabilizing effects of 
gravity are not important. When gravity effects have to be considered, the statement 
holds if the uniform velocity with which the fluids move through the cell is greater 
ti'an a ceitaln critical velocity (which may be negative) depending upon the density 
difference. However, when the plates are very close together or the fluids are very 
viscous, the pressures required to drive the fluids will be large compared with the 
hydrostatic pressure so that gravity may effectively be neglected even if the plane ci 
the cell is vertical.

The instability was demonstrated experimentally and the motion into which the 
insUbiUty develops wa-’ observed. This consists of the penetration of the more 
viscous fluid by "fingers” of the less viscous one in a way analogous to the later 
stages of the instability of accelerated interfaces as reported by Lewis. A charac
teristic feature of the later stages of the growth of "instability" into "fillers" U the 
tendency of the fingers to space themselves so that the width of the fillers and the 
columns of more viscous fluid between them are of approximately the same breadth. 
Another characteristic feature was the inhibiting effect on the growth of its neigh
bours by any finger which gets ahead of them. These features are shown in the three 
photographs of Fig. 1 in which air was used to drive glycerine downwards through a 
Hele-Shaw cell consisting of two vertical rectangular sheets of flat glass 0.09 cm 
apart. The first photograph (a) was taken shortly after the beginning of the motion 
and shows the instability in its initial stages. The second photograph (b) was taken

I' ^

-Id
Kig. I - The development ul the inst.ihiUty of an air-glycerine interface. The ai. is 
above and the glycerine below; the direction of motion is downwards, (a) An early 
stage, Ih) a .’.Iter s'.ige f' ) a later stage than (b).
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at a later stage of the instability (not the same experiment) and shows the tendency 
of the fingers to be separated by a distance approximately equal to their width. The 
third photograph (c), taken at a still later stage with another experiment, shows the 
inhibiting effect, because the three fingers on the right-hand side of this photograph 
all started to grow at the same time but the middle linger, which was slightly larger 
than its neighbours, has almost completely inhibited the growth of the others and has 
spread laterally. 

In attempting to understand the mechanics of the formation and propagation of 
fingers from an unstable interface, the authors were led to the consideration of a 
single finger of fluid, or a cavity, propagating steartlly through a channel of fixed 
width in a Hele-Shaw cell containing a more viscous fluid. Actually, it appears that 
if the superposed fluids with an unstable interface are confined within a sufficiently 
long parallel-sided channel in a Hele-Shaw cell, then "instability" finally develops 
into such a motion with the penetrating finger of less viscous fluid In the middle of 
the channel and a certain fraction of the channel width. Thus this problem will be 
closely relate^ to the rise of an air bubble through a long vertical channel, closed at 
the top and open to the air at the bottom, in a Hele-Shaw cell, i.e., between two closely 
spaced sheets. 

THE ANALYTICAL DESCRIPTION OF THE MOTION OF 
TWO IMMISCIBLE FLUIDS IN A HELE-SHAW CELL 

For a viscous fluid moving between two closely spaced, fixed, parallel plates, 
the components of the mean velocity across the stratum are given by (see, for exam- 
ple. Lamb (6)) 

-i'2 / v       \ -i>2    P (1) 11      12.: V   *      • «) ■ v      TT    "v • W 

where i> denotes the (small) distance between the plates, p the pressure (assumed 
constant across the stratum), ■ the density and . the viscosity of the fluid, and u the 
acceleration due to gravity. The plane of the plates is here taken as vertical, * and 
y are coordinates measured in the plane of the plates with the x-axis taken vertically 
upwards (the y-axis is therefore horizontal), and u and v are the components of the 
mean velocity averaged across the stratum in the «• and y-directions, respectively. 
The case in which the plates bounding the cell are horizontal is obtained by putting 
l!       0. 

The mean velocity field is two dimensional and can be derived from a velocity 
potential 

2 
JJ    (p   • . u>;l. 

By virtue of the equation of continuity, 2. n and there exists a stream function . 
which is the harmonic conjugate of   , so that the complex potential '  i. is an 
analytic function of * > iv. (This result was used by Hele-Shaw (7) fur the purpose 
cf demonstrating the streamlines in the irrotational flow of an inviscid liquid in two 
dimensions.) 

Consider now the motion of the interface between two immiscible fluids of vis- 
cosities , ,. j and densities • j. • j. and suppose the direction of motion of the inter- 
face is away from fluid 2 towards fluid 1; i.e., fluid 2 drives fluid 1. For a cavity flow, 
...i and    .will be zero, but for the moment we shall suppose this is not necessarily 
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so. Now fluid 1 is not necessarily completely expelled or replaced by fluid 2; a film of 
fluid 1 may wet the plates and adhere to them whilst a tongue of fluid 2 advances along 
the middle of the gap between the plates. The thickness of this tongue is a fraction, 
t say. of the gap between the plates and it may be expected that t will depend upon the 
viscosities of the fluids, the velocity of advance of the tongue, and the interfacial tension. 

That is, the motion may be, in fact, a combination of two different types of 
cavity flow. There is that flow viewed by an observer standing In front of the cell 
looking in a direction perpendicular to the plates; he sees the motion of the two - 
dimensional interface between two regions, one occupied by fluid 1 and the other by 
fluids 2 and (possibly) 1, and is observing in fact the projection, on the plates bound- 
ing the cell, of the boundary of the region containing fluid 2. The velocity of the inter- 
face he sees is actually the velocity of the tip of the tongue between the plates. On 
the other hand, an observer standing at the side and looking between the plates 
(assuming this is possible) sees the penetration of a viscous fluid between two 
closely spaced parallel plates by a tongue of another viscous fluid, and this cavity 
flow, although schematically similar to the first, is in fact governed by different 
equations, namely those of slow creeping motion which reduce to the biharmonic 
equation for two-dimensional flow, whereas the first type of cavity flow may be 
described (under assumptions formulated below) by solutions of Laplace's equation. 
The two flows are not independent, but, by making plausible assumptions about the 
thickness of the tongue, It is possible to analyse the motion as seen by an observer 
standing In front, and this communication Is concerned with cavity flows regarded 
from this viewpoint. 

Suppose first that one fluid completely expels the other so that t l. In this 
case the tip of the meniscus viewed by an observer In front represents an Interface 
completely separating the two fluids. Also, the streamlines which would be seen by 
this observer If the fluids were marked are those of the mean velocity field. The 
mean velocity across the stratum of fluid 1 ahead of the Interface can be derived 
from the velocity potential 

and that of fluid 2 from 

(1)' 12. jUp • ■ ^xi 

12 j"'1 *    »R»' 

where ■, and . 2 both satisfy Laplace's equation. Since i> Is small, the width of the 
projection of the meniscus onto the plates is small compared with the length scale of 
the mean motion, and the Interface may be regarded as a sharp line. It follows from 
continuity that the component of mean velocity normal to the interface is continuous 
across it and Is equal to the velocity of the interface normal to Itself; I.e., 

.j     n 2     .1. or     .,        .j 

at the interface, where     n is differentiation in the normal direction. 

(2) 

The authors (S) have given some evidence to show that, in cases likely to be met 
with In cavity flows of this type, t may be- within 1-1/8 percent of unity. However, 
the conditions determining the value of » and the mechanics of the second type of 
cavity flow are far from being fully understood, and the assumption t i will .tot be 
reasonable In all the cases likely lo be encountered. On the other hand. It appears 
that the thickness of the tongue may be sensibly constant for some ca&es, and if this 
is so it transpires that it is possible to analyse the motion in a way similar to the 
case i     I. 
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Suppose now that the thickness of the tongue is constant. The interface can now 
be identified with the tip of the tongue. Ahead of the tongue, the mean velocity is 
given by Eq. (1); behind the interface, the velocity distribution across the gap between 
the plates can be worked out making the same approximation used in calculating Eq. 
(1) that velocity gradients in directions parallel to the plates are small compared 
with those in the perpendicular direction and that the pressure is constant across the 
gap. The mean velocities in the tongue and the layers adhering to the plates can be 
shown to be derivable from velocity potentials which satisfy Laplace's equation, and 
continuity considerations at the interface give a boundary condition between the veloc- 
ity potentials on each side. It can then be shown that the interface moves as if it 
were an interface completely separating two imaginary fluids of different viscosities 
and densities, one of which completely expels the other, i.e., (or which t l. For the 
case in which a viscous fluid is penetrated by a cavity (i.e., . 2 .2 n), the motion of 
the interface isthe same as if a fluidof viscosity t , anddensity . ,• 1 • < 1 -1K1 -12P 
were completely expelled, the pressures in the two flows being the same. 

In other words, the case t constant is equiva'ent, for the purposes of mathe- 
matical analysis, to t i. The analysis will henceforward be based on the assump- 
tion that t constant, since otherwise a simple description of the motion is not pos- 
sible; so that it is sufficient in fact to consider only the case t l without loss of 
generality. The available evidence indicates that this is a reasonable assumption, 
but further work remains to be done. 

To complete the description of the equations governing the flow, it is necessary 
to know what is the pressure drop across the interface. If the fluid wets the plane 
surfaces, it might be expected that under static conditions the pressure drop would 
be T( 2 i> i s», where R is the radius of curvature of the projection, on the plane of 
the plates bounding the cell, of the meniscus. When the fluids are moving, the pres- 
sure drop across the interface may depend upon a variety of physical circumstances 
which are not yet understood. The simplest assumption we can make is that the pres- 
sure drop has the same value as in the static case and hence that 

T 
Hj  - f1! ■  roiistmil (3) 

on the interface. Further, the pressure gradients in the viscous fluid -xre of order 
ii 13:>2, where u is the velocity of the interface, so that if r u ua i3i>J, i.e., 
iiR3 <\7T\i2)      1 (which is likely to be the case if the motion is not very slow), it 

seems reasonable to neglect r R and take the boundary condition at the interface as 

r-,   -   ",       cfilist ■nit        0,   s.'iy. (4) 

The pressure inside a cavity is effectively zero, so that for cavity flows the boundary 
condition in this case is r    " at the surface of the cavity. 

THE PENETRATION 0* A CAVITY INTO A CHANNEL 

The authors (5) have investigated the propagation of a finger of fluid through a 
straight parallel-sided channel in a Hele-Shaw cell containing a more viscous liquid. 
They showed that when the fluid in the finger has negligible viscosity, and hydrostatic 
pressures can he ignored, and it is assumed that the viscous fluid is completely 
expelled, i.e.. i 1 (or, as is mathematically equivalent, t const.), and the pres- 
sure is assumed constant on the interface, i.e., Eq. (4) is used, then the potential 
and stream function of the mean velocity (across the stratum) of the viscous liquid 
satisfy the boundary conditions: 
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VX    MS    X     -.    '     i 

where v denotes the uniform mean velocity of the fluid at infinity ahead of the finger; 

•V     on    >      •! . 

since the walls of the channel which are taken as > ' i are streamlines of the mean 
velocity (edge effects which occur at walls in the Hele-Shaw cell and invalidate Eq. 
(1) within distance i> of them are neglected); 0 on the interface, by virtue of Eq. 
(4): and (assuming the finger is symmetrical about the centre line of the channel) 

Vy      on     .       0 , 

where v is the velocity of propagation of the finger. The solution of this free boundary 
problem was shown to be 

.   • i .       2    . ,       if, -■(.   •  i • ll ,., 
X ' ly y - • (ll lOU j       j^l • LXP y j. (5) 

and the velocity of the finger is related to the mean velocity at infinity by 

V     I' . (6) 

where is the fraction of the channel width occupied by the finger after the nose has 
passed; i.e., 2 is the distance between the straight sides of the finger. The equation 
of the interface is the image of .     o and is easily seen to be 

l - 
; {> s >■) (7) 

It was pointed out further that the case in which the fluid in the finger has a nrn- 
zero viscosity and hydrostatic pressures are not neglected can be reduced to this 
case, provided the same simplifying assumptions, namely those embodied in Eqs. (2) 
and (4), are made about the physical conditions at the interface. In particular, the 
equation of the interface is still given by (7). For the case of a cavity rising through 
a vertical channel in a vertical cell, the relation between the velocities is 

•l"      V   ■   i 12    h2U 1 -    )• K, 

v    o corresponds to the case in which the channel is closed at the top. and the veloc- 
ity of rise is then 

Now there is nothing in the analysis which leads up to Eqs. (S). (6). and (7) which 
specifies the value of . the fraction of the channel occupied by the finger after the 
nose has passed. That is, if only the conditions at infinity in front of the cavity are 
specified, the mathematical problem does not appear to possess a unique solution 
and there is an infinity of possible shapes for the interface, each wild a different 
velocity of penetration. (It is worth notint; that, according to the analysis, the family 
of possible shapes is independent of the physical properties of the fluids.) The cal- 
culated shapes for    - U.2, 0.5, and 0.8 are shown in Fig. 2. 

II was noted recently by Garabecliun (4) that the analogous fret*-boundary prob- 
lem of an air bubble rising through a vertical tube or channel containing an inviscid 
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Kiu - Calculated  profiles with      =  O.J. O.V 0.8 for a  finj-cr   prop- 
agatin{> through a channel 

liquid also does not possess a unique solu- 
tion. I. is nice to be able, in the present, 
much easier, problem, to demonstrate ex- 
plicitly a singly infinite family of solutions. 

This motion was investigated experi- 
mentally using a variety of fluids. In the 
first series of experiments, a finger of air 
was blown through a channel containing 
glycerine and photographs were taken of 
the interface. It was found that the value 
of for several experiments was within 2 
percent of 0.50. The observed shapes of 
the interface were compared with the cal- 
culated shape with ■ 0.50, and the agree- 
ment was found to be very good. In Fig. 3 
the line is the photographed interface and 
the circles arc surrounding points calculated from Eq. (7) with 
ment scums to justify the assumed boundary conditions. 

Ki 
ulis 

<   - 
erve 

Comparison   between   an 
il   profile  and  the  irterface 

calculated from Eq. (7) with      -   1/J 

= 1/2.   This agree- 

The question now arises why in practice the finger with = 1, 2 la singled out 
from the infinity of theoretically possible solutions. It might be thought that a 
hypothesis of a maximum or minimum rate of energy dissipation might single out a 
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unique value ol . but this in fact is not so. since it is easily seen that for given con
ditions ahead of the finger the rate of energy dissipation is independent of .

Further experiments were carried out in order to see whether depended upon 
the ratio of the viscosities of the fluids inside and outside the finger or upon any other 
of the physical properties ol the fluids. These experiments showed that it was often 
ixissibie to obtain very uniform fingersiFig. 4 shov's an example with water penetrat
ing a narrow channel filled with an oil), and that the value of was always close to 
1 2. provided that the speed of the finger was not too slow.

Fig. 4 - .A phutograph shuwing a uniform liiigt-r of 
wati-r pi-notrating a channel filled with oil

At low speeds, the value of increased from 0.5 to the limit 1.0 as the velocity 
tended to zero, but it was found that the wider forms did not conform to the corre
sponding profiles calculated from Eq. (7) with the same value of . This indicated 
that surface tension, or some equivalent surface stress, was affecting the shap; of 
the interface, and that the boundary condition (Eq. 4) U not applicable when u is too 
smail (as is indeed to be expected according to the previous discussion). Restricting 
attention to the case of cavity flows in which the viscosity of the fluid in the finger is 
negligible, it would then be expected on dimensional grounds that the value of in a 
channel of given shape would be a function of i t oniy. when the fluid wets the flat 
sides of the channel. The results of some experiments are shown in Fig. 5 and justify 
this expectation.

1

..I-, ■ «5i'

pU/t

Kij;. *> - l>«*|wn4 *nve of on I* T
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The value of rapidly decreases lu 1/2 as u T increases, i.e., as the effect of 
interfacial stress in determining the shape of the interface becomes less important 
in comparison with that of the viscous stress. This indicates that when the physical 
conditions are such that the boundary condition (Eq. 4) is a reasonable representation 
oi the actual physical conditions at the interface, then the only one of the infinity of 
possible shapes given by Eq. (V) that can actually occur is that for which ■ 1/2, a 
conclusion which is supported by the evidence of Fig. 3. 

The authors (5) were unable to put forward any theoretical reason for this deduc- 
tion from observation.   Further work still in progress has not yet succeeded in 
accounting for this phenomenon, but a number of mathematical results, which how- 
ever lack an obvious physical significance, have been discovered which single out 

a 1/2.  These will be described in the following section. 

SOME MATHEMATICAL RESULTS WHICH DISTINGUISH    = 1/2 

1. The first result is of a geometrical character. Consider the area between 
the surface of the cavity, its asymptotes y • •, and the tangent at the vertex of the 
finger.  This area is, according to Eq. (7), 

)*,.>       -2f,:>-f    10.1(1   -.cs^jcly 

4  In« 2 
1 1 

Hence, the arbitrary criterion that A is a maximum gives    ■ 1/2! 

2. An exact unsteady solution, under the same simplifying assumptions about the 
physical conditions at the interface, has been discovered (8) which represents the 
change with time of the interface between a cavity and a viscous fluid in a channel In 
a Hele-Shaw cell. Initially, the shape of the interf ce is such that it is almost flat 
and extends right across the channel; as the time becomes large, the shape tends to 
that of a long finger propagating steadily through the channel, that Is, the solution 
represents the growth of a finger from a flat interface which Is disturbed Initially In 
a particular way; by reflecting in the channel walls we have a solution for the growth 
of equal and equally spaced fingers irom an unstable Interface. 

There is a singly infinite family of these unsteady solutions corresponding to 
different values of the ratio of the width of the final finger and that of the channel; 
this parameter is denoted by . It was shown that the shape of the Interface for each 
value of    is obtained by eliminating the real variable % 'rom 

"»■ a 1 x   •   iy      s   ■       '1 -    >   loc  , jl   '   n( ' )'• r  '  «onst.int. 

where »i 1 is a function of the time which is small when ' 0 and which tends to 
one as     - ■ (giving Eq. (7) in the limit).  It was also shown that 

lon( I ■   .1 >        • :ls      ■    ■•  ' '   . 
f 1 -     1 

so that the rate at which .1 • 1, which corresponds intuitively with the rate at which 
the final asymptotic state is attained, is a minimum when - 1/2, thus distinguishing 
the finger which is half the width of the channel. 
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Actually, this result is puzzling, since it might Intuitively be expected thai the 
actual shape would correspond to a maximum rate of formation. 

3. Consider the mtutfl (two-dinicnsional) velocity field in a channel due to the 
supposition of a uniform mean velocity V 2 and a "source" of strength 2V, i.e., a 
source of viscous fluid which gives rise to a (two-dimensional) distribution uf mean 
velocity whose magnitude is v r near the source and rad*ally outwards. Using the 
notation from the preceding section, it  is easily seen that the  complex potential 

.     i. is related to /     x • i y by 

v,    v 
Int.  (j  smli  T     z] lot'  (<•''-   1) . (8) 

At z , the mean velocity is zero, at « the mean velocity is uniform of mag- 
nitude v. 

The equation of the equipotential .     n is 

l'.;    , |l       ens     >     jj  . 

and, on it . 2Vy. Hence, the mean velocity field in a channel due to a ■source'" of 
strength \ moving wi'h velocity 2V and u uniform mean velocity 1 2 v is identical 
with the mean velocity field in a viscous fluid being driven through the channel by a 
finger whose width is half that of the channel (provided the conditions at the inter- 
face may be represented by the simplifying assumptions), which is a mathematical 
featuro to distinguish    =12. 

All the flows with = 1 2, that is, for all combinations of viscosities, densitias, 
and various values of <, can be so obtained by a superposition of a uniform stream 
and a moving source of appropriate magnitudes. Zhuralev (G) has pointed out that 
two-dimensional cavity flows in a porous medium (which is mathematically analogous 
to flow in a Hele-Shaw cell) maybe constructed by a suitable superposition of sources 
and sinks and he refers to the solution (Eq. 8). It is, in fact, possible to demonstrate 
that the flows with > 1, 2 can be consiructed in a similar way, but it turns out that 
the system of sources required is murh more complicated involving line sources and 
line dipoles instead of the simple source which suffices for    = 1 2. 

4. Before we give the next feature, it is first necessary to describe briefly a 
stability investigation. The stability to small disturbances of the interface of a cavity 
penetrating a channel was investigated theoretically since it was thought that this 
might throw some light on the occurrence of =12 in practice. Taking the origin 
at a point fixed in space (and neglecting hydrostatic pressures), the steady mean 
motion is given by (   denotes time) 

'■    v •'•      ""      ' '■"■ '■'     •■■   V: v    ' (5). 

where the !' term arises because the origin is fixed in space and imt fixed relative 
to the bubble us in the derivation of Eq. (5). and r is taken as a function ol . so that 
in faclwi arc working in the potential plane. Suppose the motion is slightly disturbed, 
so that it is given by 

'     ' ' 'i 'i     V lvi 
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where is small. The conditions that the disturbance vanishes at Infinity and that 
the walls of the channel are streamlines are x, -. o as . - and y, o on . v. 
respectively. If we assume that the boundary conditions at the interface are unal- 
tered, i.e.. the interface is taken as . n and the value of t is supposed to remain 
unaltered, then it can be shown that the condition satisfied by «i and vi on the inter- 
face is 

 j'l  l .*y , * - •     *'"' • v'    _LL   ,,   ,,       „ 
V VI       ,(>s(    .  V) 

to the first order in   .   It is then easy to show that 

satisfies all the necessary conditions, and that any disturbance which leaves the 
straight sides unaltered at (i.e., which vanishes as x -• - ) can be expressed as a 
sum of disturbances of this type. The arn are real constants determined by a set of 
simultaneous equations. Since the amplification factor is positive, the conclusion of 
this analysis is that all possible shapes calculated using Eq. (7) are unstable; a con- 
clusion which is manifestly wrong (see, for example. Fig. 4). 

This indicates that surface tension, or some other effect of interfacial stress, 
must stabilize the motion in some way. even when i' T Is large, and thai it Is not 
legitimate to discuss the stability under the same simplifying assumptions about the 
physical conditions at the interface which were used in calculating the steady motion. 
Jo explain why surface tension can be neglected in calculating the steady shape, but 
yet is apparently important in its effect on the stability, is a problem which has not 
yet been resolved. Partly, the difficulty is that our knowledge of the actual physical 
conditions at the interface is limited, though it is hoped that further work will clarify 
this, and also throw licht on the mechanism which selects the value of , It should 
be noted that, along the straight sides of the finger, the velocity of the fluid is expo- 
nentially small so that c T. where r is a local velocity, must eventually be small; 
and the surface tension effect may be expected to be large relative to the viscous 
stress along the straight sides, although It will still be small relative to the viscous 
stresses at the nose. 

In this connection, a mathematical feature which distinguishes - 12 of the 
stability analysis given above may possibly be relevant. If we express the velocity 
potential and stream function in terms of the physical coordinates in the region of 
the straight sides of the finger (i.e., as x - - ). it can be shown that the perturbation 
of the pressure behaves as 

2;i-;n , ■..":"'.-os;;-'., >o^'7^ 

where i' > and m I are exponentially growing functions of the time. It so happens 
that w > n for any disturbance when = 12, liut th» physical significance of this 
is not yet clear. 

MOTION O*' A FINITE BUBBLE IN A CHANNEL 

In a further attempt to find an explanp'ion for    - 1, 2, we were led to the theo- 
retical consideration of the steady motion .hruugh a channel in a Hele-Shaw cell of a 
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bubble of finite area bounded by a closed curve symmetrical about the centre line of 
the channel, under the same assumptions about the physical conditions at the Inter- 
face as were used for calculating the shape of the long fingers. Restricting attention 
to the case in which the fluid in the bubble is of negligible viscosity and hydrostatic 
pressures can be neglected, a solution is required of the free boundary problem for- 
mulated enrlier in this paper, except that the interface has now to be closed instead 
of infinite. For brevity we shall omit the analytical details and confine ourselves to 
quoting the final result. 

It may be verified that 

t   IM 
1 

4 (i!- n     ...I "" I'll /      . i 
tnnli                              ■*, t .''iin T -  [fmn    -v 

V !    ,. ^ i Inn ,    I 

1   2 

J 
gives the velocity potential and stream function of the mean velocity when a finite 
bubble bounded by the curve 

2 t'-l 
n     tinili (I v)-^(]v)^{\y^ 1   2 

moves steadily with velocity r, the velocity at Infinity ahead of and behind the bubble 
being uniform and equal to unity. The bubble is symmetrical about its centre. Its 
length is 

4 u -1 ,   . . 

its maximum width is 2 , and its area is 

16   U - 1 
I' 

tanh" ,.(J.,.) 
If r - i, keeping u fixed, the area of the bubble tends to .. and It is easily shown 

that we can recover Eqs. (5) and (7). This is, of course, only to be expected since a 
long finger may clearly be regarded as the front of a large bubble. It is clear that 
the motion is mathematically not unique. For a bubble ol given area and for given 
conditions at infinity, there is again a singly infinite family of mathematically pos- 
sible shapes. 

When is small compared with one and v remains finite, the dimensions of the 
bubble are small compared with the width of the channel, so that this is the case of 
the motion of a small bubble.  The equation of the interface reduces to 

X2 .s.2        .2 

(V    112 

so that a small bubble is (according to the analysis) an ellipse of axis ratio v - t. 
where n is really the ratio of the velocity of the bubb'e to the velocity at infinity. 
When v   2, the interface is circular. 

Now the analysis has so far been based on the assumption that the pressure drop 
across the interface is given by Eq. (4). For small bubbles, surface tension is likely 
to be of some effect, in which case the pressure drop is more likely to be given by 
üq. (3).  It is worth noting that the above solution for small bubbles is valid exactly 
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using the boundary condition (3) when the bubble is circular. Furthermore, the effect 
of surface tension may be expected to tend to reduce the length of the perimeter and 
make a small bubble circular; and we should therefore expect the motion of % small 
bubble to be physically unique with the bubble circular and moving with twice the 
velocity at infinity (if t     i). 

Visual observations of small bubbles indicate that they are indeed circular when 
sufficiently small. When larger, they are often pear shaped with a rounded front and 
pointed back; some, on the other hand, seem to be ovoid with the sharper end pointed 
in the direction of motion. These latter shapes are not predicted by the analysis and 
are probably due to the physical conditions at the retreating Interface over the back 
of the bubble being different from those at the front; there is, however, no clear evi- 
dence on this point. When the dimensions of th bubble become comparable with the 
width of the channel, the front of the bubble resembles closely that of a long finger, 
but the shape at the back is different, for probably the same reason. 

Returning to the exact solution for a bubble of arbitrary size, a particular shape 
is singled out by making the arbitrary hypothesis that D should be a minimum for a 
bubble of given size. It is easily seen that this gives v 2. When the bubble is 
small, the circular bubble is singled out; when the bubble is large, i.e., i' 1, this 
gives ^     1/2(1) and in the Umit the finger which is half the width of the channel. 

The product u of the velocity of the bubble and its maximum width does not 
have a clear physical significance, although it may be identified intuitively with the 
rate at which fluid is pushed aside by the bubble. Attempts to give this result a sound 
physical basis have so far failed. 
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DISCUSSION 

G. Birkhuff (Harvard University) 

I agree that surface tension is probably an important stabilizing factor in the 
experiments considered, «specially for shorter wavelengths as in the experiments of 
Lewis (1950) on ordinary Taylor instability. In analyzing the experimental data, it 
would be interesting to tabulate the dimensionless parameter 

..V (. )»iJ F :n- )". 

This, roughly, expresses the ratio: (viscous pressure gradient)/(gravity pressure 
gradient), if <\ is the plate spacing (about 0.09 cm). A casual inspection of Fig. 13 of 
Saffman-Taylor (1958) suggests that, perhaps, gravity might explain the marked 
deviation from (17). 

As regards , it would be interesting to see how stable the value -12 was 
against its initial width, which could be controlled by forcing an air bubble into a 
channel from a narrow orifice. It would also be interesting to see how stable the 
centering of the bubble about the channel axis was. by forcing air from an orifice 
near one edge. Further, it would be interesting to know how stable the bubble shape 
Id against small variations tn<l. For example, if the plates are not parallel how 
great is the tendency for the bubble to migrate towards the side where the spacing is 
greater ? 

Finally, I should like to mention that the first demonstration of non-uniqueness 
in such problems was made by Carter and myself" using simple considerations of 
symmetry (see sketch), I should also like to record my personal impression that 
Garabedian's discussion is not rigorous. As this point has been explained^ I shall 
not discuss it further here. 

P. C. Saffman 

With regard to Proltssor Birkhoff's first comment, the plane of the Hele-Shaw 
apparatus was horizontal in most of the experiments. The dimensionless parameter 

v i. -. ')u.ii7 is not relevant to these experiments, and in particular the deviation 
shown in Fig. 13 from the calculated shapes is not capable of being explained by 
gravity effects. Indeed, the same family of shapes is given by the analysis irrespec- 
tive of whether the plane of the apparatus is vertical or hoOisr,: ntal although the 

::G. liirklmff and D, Carter, Appendix 0 of Kip.  1.A-I9i7 of Uli' I-os Alamus Siirntiiic 

^G. Uirkhoff and 1). Carlir, Arth, Ratl. M.-ih. Anal. ii;7t.4-7«U (19^7). 
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velocity field is different. For example, in the case when the viscosity of thp fluid 
inside the finger is negligible, the velocity of the fluid outside adjacent to the straight 
sides of the finger is at rest relative to the plates if the plane of the apparatus is 
horizontal, but not if it is vertical. 

Systematic information on the stability of 12 against changes in the initial 
conditions or small variations in I is not available. It should be noted that is 
expected to be a function of the spacing 1. as well as of ..UT. 

In connection with the sketches shown by Professor Birkhoff, we should like to 
mention that we have found exact solutions in closed form4' giving asymmetric finger 
shapes, and there is a whole series of these shapes which go continuously from the 
symmetrical one shown in the middle sketch to the shape shown in the third sketch. 

"G. I. Taylor and H. G. Saffman. (to apptar,  1959) Quart. J. Mech. Appl. Math. 
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UNSTEADY SUPERCAVITATING FLOWS 

T.  Y. Wu 

t'.'t! t tm tn'i   In^tlltltf  "I   i''tlum l'ij'\ 

INTRODUCTION 

The problem of unsteady flows with wake formation of with separated free 
streamlines has recently stimulated some research interest. To fix ideas, consider 
the flow past a plate with its broad side facing the stream and oscillating about a 
fixed point as shown in Fig. 1. The flow separates from the plate at points A and A', 
and we can adopt the hypothesis that the free streamlines AB and A'B* bound a region, 
called the wake or the cavity, of constant pressure P, which may be different from 
the pressure at infinity, P,. to the absence of the unsteady motion, the streamlines 
of constant pressure in this incompressible irrotational flow imply streamlines of 
constant velocity. However, the velocity on the free streamlines in an unsteady flow 
is no longer constant since the pressure depends also on the time-rate of change of 
the local velocity field, and furthermore, the unsteady motion of the body causes 
vorticity of varying strength to be shed from the body and carried downstream along 
the free boundaries. When the plate inclination decreases to a small angle with the 
undisturbed flow, the wake may disappear, the two vortex sheets then coalesce into a 
single sheet, and the flow becomes that considered in the unsteady airfoil theory. 
Thus the unsteady flow with wake formation differs from the airfoil theory essentially 
by the presence of two vortex sheets instead of one, and the problem is thereby con- 
siderably complicated. 

Flj;-   I   -   Flow past a plate 

Aside from these conspicuous points, other new features may arise in the prob- 
lem of the unsteady motion with wake formation; they may be basically different from 
the corresponding features characterizing the steady cavity flows and hence are per- 
tinent to the general formulation of the problem. One of these features is the pos- 
sibility for the volume of a finite or infinite wake to vary with time. For cavity flows 
of an incompressible liquid surrounding a vapor cavity, it is obvious that, when the 
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volume of the vapor cavity changes, the conservation of mass and conservation of 
volume of the entire flow become incompatible because of the difference in the liquid 
density and the vapor density. Consequently, any variation of the cavity volume must 
come from a source distribution whose net strength depends on the time rate of 
change of the cavity volume. A direct consequence of this source distribution in a 
two-dimensional flow of infinite extent is that it generates a pressure field which is 
logarithmically singular at infinite distances. Thus it is clear that the change in the 
cavity volume depends on the flow conditions imposed at infinity. More precisely, 
the cavity volume will change if the flow at infinity is of a source type, and it will not 
charge if otherwise. Physically this can be seen as follows. Consider an obstacle 
moving through an incompressible liquid contained in a rigid container, large enough 
to make the wall effects negligible. After the cavity trailing behind the body is estab- 
lished, e.g., by removing the liquid through openings of the container and by allowing 
the obstacle to move fast enough, the container is then assumed to be perfectly rigid 
and free from leakage. Then, as the velocity of the obstacle changes in time, the 
cavity, whether still attached to or detached from'the obstacle depending on the later 
state of the motion, certainly cannot change its volume. On the other hand, if the 
liquid has a free surface above the obstacle, then the cavity volume may change with 
the velocity of the motion. Therefore, in order to make the problem completely 
specified and the solution uniquely determinate, the condition of the velocity and 
pressure at infinity must also be given as functions of the time. For simplicity, we 
shall confine ourselves in this work to the case in which the flow at infinity is source- 
free, and hence the cavity volume will remain constant. However, it should be 
remarked here that the generalization of this argument to the case of separated flow 
in air would be open to question; for in this case of one-phase flow, the fluid inside 
the wake may actually consist of fluid particles originally outside due to the turbulent 
mixing in the unsteady motion. In any case, if the fluid particles outside a cavity 
essentially remain outside, then one may assume that the wake or cavity does not 
change in volume. This is perhaps a reasonable assumption when the unsteady part 
of the motion is only a small perturbation of a basic steady flow. 

Another question about the unsteady wake flow is whether the wake pressure may 
vary with time. For a liquid flow with a vapor-gas cavity, the thermal process of 
changing phase on the free boundary and the process of any gas diffusion across the 
boundary may be regarded to be almost instantaneous with respect to the unsteady 
motion. Furthermore, the inertia of the vapor or gas inside the cavity has negligible 
effect on the outer flow because of the large difference in density of the two phases. 
Hence, for this case at least, the assumption of constant pressure in the cavity is as 
realistic as for the steady motion. On the other hand, the same assumption, when 
applied to a separated flow of a single-phase medium, such as air, seems somewhat 
questionable, because the unsteady motion of the body imparts acceleration to the 
fluid both outside and inside the cavity, and they respond in turn with the same inertia. 
However, the assumption of constant pressure in the wake may still be retained as 
the first approximation The effect of gravity, which arises in the two-phase flows, 
is neglected here as usual. 

In the following we shall first describe the particular case when the time and 
space variables can be separated. Next, the hydrodynamic motion shortly after an 
unsteady motion is introduced will be considered. The discussion will then be con- 
centrated on the case in which the unsteady part of the motion is only a small per- 
turbation of the basic steady flow. Two methods of approach will be described. For 
a blunt body with a wide wake, the small perturbation is made on the velocity poten- 
tial; whereas, when the body-wake system is very thin, the acceleration potential is 
employed. In the former case, the acceleration potential of course also exists, but it 
is not divergence free.   Consequently the value of using it is greatly reduced. 
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FINITE CAVITIES WITH CONSTANT SHAPE 

In 1349 Von Karmän (1) treated an accelerated flow normal to a flat plate which 
is held fixed in an inertial frame such 'hat with given acceleration of the flow, the 
flow will separate from the plate to form a closed wake of constant shape behind the 
plate (Fig. 2). This incompressible, irrotational flow has a velocity potential of the 
form 

'Ix x, > .t )       li( t )  . ' x.y 1 (1) 

where x and > are the Cartesian coordinates in the flow plane, fixed with respect to 
the plate and with the x-axis parallel to the undifturbed uniform stream, and t is the 
time.   The pressure is given by 

Hf)- I'^i-.r.-i.!    )2     Cm. (2) 

Here,  .  is a harmonic function of  < and y, and salisfies the following boundary 
conditions: 

(i)     at infinity . „     I. v 

(ii)   on the plate „     n 

(iii) on the free boundary of the wake,   p     p,     mnst. 

(3) 

h-iusi -H 

h'.L.:. 1  - A( i fie r/iied   flow   prisl   .i   fixed   pl.ttr   iMrnuri^ a 
i Ujsi-fi w;)!«!.' ot i onst.uit  sh.Uif 

The only buundary cunditiun that involves t is (iii). Heiico . will nut depend on t, as 
assumed, when and only when the two time factors in Eq. (2) are proportional to each 
other; that is. 

r (4) 

■vhere I is a real constant. . i ii it . ■< i 'i and the initial velocity of the 
flow at infinity'' i i- is assumed to be positive Imt otherwise arl)itra;\. 1;ien 
condition (iii) beconws 
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f..r:,,i    )2 ■ IU .      n        on the free boundary. (5) 

The arbitrary constant k is dctormint'd such that   he problem of . with conditions 
(3i). (3ii). and (5) possesses a solution.   Now Eq. (4) has the general integral 

'■MI     '.-„I     V; (6) 
(■ :•) 

which characterizes the flow velocity at infinity. Von Karmdn obtained the solution 
of . fu; a pa: titular case in which the two branches of the free boundary of the wake 
meet and close the cavity at a stagnation point, and showed that a closed wake of con- 
stant shape is possible only when the "Froude number" 

/   2 • 1V 3     1 1 • > 
It)       'a :,r'' <ns i  2 ^ 1»! "■S'w (7) 

where is the half-width of the plate. It can be seen that when the flow at infinity 
obeys (6) and (7). the velocity on the free boundary decreases from 3.Ill' at the 
separation point to zero at the rear. This is the only case for which a stagnation 
point can occur on a free boundary of constant pressure. 

Writing « IF i/. with / x ■ iy and F the complex potential, we see that F «, 
and hence ; as determined from ilF ». is evidently Independent of t by virtue of (1). 
It then follows that the wake shape Is constant in time. In fact the rear end of the 
wake is at a distance 1.135 ' from the plate (see Fig. 2). Furthermore, the pressure 
coefficient defined by 

cP    fp - IV) \  v* 

is also independent of t by (2) and (4). and so is the acceleration coefficient 

This flow is thus also characterized by having Cp and C constant in time. It there- 
fore follows that the drag coefficient has a fixed value which can be verified to be 

C,,      Drn« . I'2,       10,4K. (8) 

The lagnitude m' m drag/acceleration may be called the cavity-induced mass: then 
by (7) and (8). 

i"!   c,, n     6.2f.   ■2. (9a) 

If the flat plate had undergone un acceleration a normal to the flow without wake for- 
mation (a postulated Dirichlet flow), then the induced mass would be 

„.;.       . ■2. (9b) 

Thus, 

iv' 11/     I. «eis. (9c) 

As pointed out by Tan (2), the law of motion (Eq. 6) for preserving the wake pat- 
tern (with Eq. 7 as a special case) is general and unique.   The law is general in the 
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sense that it applies to any body shape with well-defined separation points, provided 
there exists a solution for . The law is unique because no other fluid motion will 
produce such a preserved pattern of the wake flow. For the case of the flat plate, the 
class of flows characterized by (Eq. 6) has been investigated by Gilbarg (3). It was 
shown that only under (Eq. 7) the flow (which is that given by Vor. Karmdn) has a 
stagnation point in the rear, whereas for other values of acceleration obtained from 
'he solution of ., the cavity shapes all have cusps at the rear. Another type of the 
flows in this case was discovered to contain a doubly covered cavity subregion (3); 
these flows were considered as physically unrealistic. The case of polygonal obsta- 
cles was also treated by Gilbarg (3). 

It should be remarked that the wake flow generated by a flat plate accelerating 
broadwise through the fluid which is otherwise at rest in an inertial frame is a prob- 
lem different from the present one since the pressure equation in this case assumes 
a different form. 

SUDDEN ACCELERATION OF CAVITY FLOWS 

It is of importance to note an esser al difference between the unsteady flows with 
and without free boundaries. In the determination of the velocity field of the unsteady 
potential flows without a free boundary, the time appears only as a parameter since 
no knowledge about the time rate of change of the physical quantities is required in 
the problem. Only when the pressure field is calculated does the effect of unsteady 
motion explicitly appear (through the term •t t in the Bernoulli equation). On the 
other hand, when the wake is prese.it, the flow will depend on its previous time his- 
tory, because the explicit role of the time enters the problem through the boundary 
conditions on the free surface. However, when a basic steady wake flow is given a 
sudden acceleration, there will be no past history of any time-varying disturbances 
at the moment of the application of this sudden change. Therefore, the problem of 
finding the flow characteristics at the initial instant of the unsteady cavity flow is 
expected to be not any more complicated than the general unsteady flow without a 
cavity. For this reason we shall first consider the initial stage of the reaction of a 
cavity flow to the sudden acceleration of a rigid boundary in contact with it. 

Let :<*) be the velocity potential of an established steady cavity flow past a sta- 
tionary rigid body. Suppose now the body is given a sudden acceleration n at time 
t 0 in the direction opposite to the undisturbed flow, say. Then the velocity poten- 
tial for small t     o will assume the form (4) 

'I'  x'.tl      . Cxi   •   nt A(xl   ■ Or t2i . (10) 

The quantity A will be referred to as the "initial acceleration potential" for unit accel- 
eration. Since * of the resulting flov and of the basic steady flow are botii har- 
monic functions, it follows that 

'A     o (11) 

From the momentum equation we see at once that the pressure will assume the form 

IVx'.ii     I«'*')  • pjfX'T  • Ort), P| ;iAr.o. (12) 

where \Ui\ described the pressure field of the original steady flow, and p, is the 
pressure generated by the sudden acceleration. 
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From the boundary condition that the relative normal velocity on the rigid body 
must vanish, i|> n - «i n,, where n is the unit normal vector on the body and n, its 
component along the direction of undisturbed flow. Since the displacement of the 
rigid body is 0(t2), this boundary condition can be applied on its undisturbed position. 
Hence, at t     o*, we have from (10), 

A   11     - n,        on the rigid boundary. (13a) 

By hypothesis, the pressure in the cavity remains constant. Hence, at t 0% we 
have from (12) 

A    0        on the free boundary. (13b) 

Furthermore, since this pudden acceleration of the body cannot affect the flow at 
infinity, we require that 

A - n   as   x   -        in the (low. (13c) 

The acceleration potential A is then uniquely determined by (11) and conditions (13a)- 
(13c). It may be noted that A depends on the basic steady (low through condition 
(13b), in which the location of the free boundary must be specified. 

Sudden Acceleration of a Helmholtz Flow 

A simple interesting case is the sudden acceleration o( a flat plate in the 
Helmholtz flow, which has been treated recently by Gurevich (5). The steady 
Helmholtz flow past a plate set normal to the stream is given by the solution 

4' 
4   ■ 

2» » ,1 
;  • ,  •  tann    w 

n - *^.2    > - *2 (14) 

in which the origin of ? x iy is chosen at the plate center, • is the half-width of 
the plate, the region of the complex velocity » u - iv is u -' 0 and » 1, and 
» 1 at 2 . The parametric representation of the free boundary is obtained by 
letting » exf f- i ), since we have there » 1. The boundary condition of Aon 
the plate is now 

A   x      -1     on    x     n, >        -, (15) 

The solution of (11) satisfying conditions (15), (13b), and (13c), with the (ree boundary 
determined from (14), is readily obtained.   It is conveniently expressed as 

loi; - ,   •   ( •   • 2) I 
1       » ( 1   •  »M 

where G     A     iB, n is the conjugate harmonic function of A, and the real part in' 
giws the solution uf the problem. 

The additional dra^due to the sudden acceleration of the plate can be shown to be 

I), (     p,   .Iy M     I     A   K       l.ftK'tf, . a1 . (16) 
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In this case the initial value uf the cavity-induced mass, defined by D, a, is 

m'       D,   a       1.6306 .  '2       at     t        0' . 

The ratio of m' to the induced mass m^ of (9b) is therefore 

m'   m'        1.6RP6  "       0.5377  (     7  13) . 

(17) 

(18) 

The result that this ratio is less than unity may be explained in that the cavitated 
side of the plate, being located in the region of a constant pressure, has no capacity 
of imparting kinetic energy to the exterior flow. 

It may be recalled that the induced mass of an unsteady flow without a cavity or 
other free boundaries has always the same value whether the flow in the past has 
been steady or not. However, this is certainly not the case in the presence of free 
boundary for the reason previously given. Consequently, the present analysis is appli- 
cable only to the initial instant when the original steady cavity flow is subjected to a 
sudden change. Even though its application is limited, this theory nevertheless gives 
us some general idea about the reaction of a cavity flow to a sudden change of state. 

Basic Steady Flows with a Finite Cavity 

Since the steady flow will be the basic reference on which the small unsteady 
perturbations are tobe superimposed, the use of the simplest possible representation 
of the basic flow will obviously facilitate the analysis of the problem. There are sev- 
eral mathematical potential flow models proposed to give a good representation of the 
steady cavity flows, such as the Rlabouchinsky image model, the reentrant Jet model, 
and a third one which will be called here the dissipation wake model, as investigated 
independently by Joukowsky, Roshko, and Eppler. The physical significance underly- 
ing these models and the accuracy of their results in estimating the flow quantities 
in comparison with the experimental observations have been discussed elsewhere 
(e.g., see Refs. 4 and 6 and the references cited therein). 

For a simple example of the dissipation wake model, consider the case of a flat 
plate set normal to an otherwise uniform flow, with the physically realistic situation 
of cavity pressure pc less than PT. The flow in the physical space is represented by 
this model as shown in Fig. 3. According to this model, the flow separates from the 
plate at points A and A', and becomes parallel to the undisturbed flow at D and D', the 

Fi'j,.  i   -   1 x.iMiplf  u!   lltjw   acrortUng   t"   tlu*  dissipatum 
Wake   MHillfl 
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location of which can be determined from the theory. The wake pressure in between 
A!) and AD' takes the assigned value p,, and the flow further downstream of n and D' 
is supposed to be dissipated insunh a way that the pressure increases gradually from 
pr back to p in a strip parallel to the flow at infinity. Outside the approximated wake 
the flow is assumed to be everywhere irrotational. Thus, from the complex potential 

f(/1       . I x.y 1   ■    i . fx.y1 (19) 

the complex velocity » can be derived as 

*<t)       .If  ■\?       u  -   iv       rjc"' (20) 

where q and are the magnitude and direction of the velocity. The pressure is 
given by 

P * 2q       p-  ' i  l    • (21) 

By hypothesis, p p(. on AD and AD'; hence we have there i qc i by normaliza- 
tion.   Then, in terms of p(, and .|(.     I, 

i!    vi ■    i'1 2    n.-,"12.        -     (p   -pr)/l.v2 (22) 

where - is called the cavitation number, an important parameter of the flow. Since 
PC p, , then (i and V l. Also by hypothesis, along DE' and DT, o, while q 
decreases from unity back to the free-stream value i'. 

The boundary condition of ((*) is that . " on ECADE' and on ECADF'. In view 
of the qualitative shape of the streamlines . const, near the point * ü in the 
»-plane, it is obvious that f must have there a singularity of the form (w - in-1. 
Hence the boundary condition on . can be satisfied exactly by using the method of 
images, first reflecting f« - IM1 into the unit circle and then into the line u o, to 
give 

f     „/    1               1             V2 r'   \ 
(23) 1     Bl »■ . u      * • u - Ä _ ,,-1 w  • V1) 

where B is a real constant.   Hence 

•* Hi cl»      2B f       (V2 - I'"2**              1 •> p- I' timir1 

- 
(24) 

If - is the half-width of the' plate, so that i     i • at » - i. then B is dete rmined by 
the relation 

■ r|;:S-i[2 "■••2'.-Hh (25) 
The drag coefficient of this flow is readily obtained from the above solution 
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For small values of -, (26) may be expanded to yield 

Ll'„ • 4   ! fi(4   •   ■ (26•) 

which provides a good approximation of (26) within 2 percent error for « ' 1. The 
above result (26) agrees with the result of Riabouchinsky's model or of the reentrant 
jet model within 0.5 percent for i (or 0.707 V'% 1). In some other known 
cases of inclined or curved (or polygonal) obstacles, the result yielded by using this 
moriel has U.-cn found also to be in good agreement with the experiments (6, 7). 

Equations (24) and (25) are Roshko's solution (8), which here has been rederlved 
conveniently by the image method. For the general case of the steady cavity flow 
past an inclined obstacle witn small curvature, it is possible to generalize this 
method with linearization of the curvature. The same problem solved by using 
Riabouchinsky's model or thp reentrant jet model would be considerably more com- 
plicated. Because of the simplicity of the mathematical details generally involved in 
the dissipation model relative to the other models, this model is preferred here lor 
representing the basic flow. 

The Effect of Cavity Size on Accelerated Cavity Flows 
Consider now the problem of the sudden acceleration of a flat plate in a cavity 

flow characterized by the cavitation number - as defined by (22). By using the dis- 
sipation model, the solution of the basic steady flow is given by Eqs. (23)-(25). When 
the plate is accelerated with acceleration a, opposite to the undisturbed flow, the ini- 
tial acceleration potential A again obeys the boundary conditions (13b), (13c), and (15). 
By the conformal transformation 

f     TT ,     ,,5 '  ' (27) 

the entire flow region is mapped onto the upper haif   -plane, with the plate lying on 
o, i and the cavity boundary at        n,   '     ^ t.   Again, with G    A • iB, 

condition (13b) may be written as 

(IC        A ,   , 
Rr - n    on n,      I ,! s J . (28) 

On the plate, by making use of condition (15), we have 

.IG <IG ih        v    A 
Im — ■ —        ■   — 

tl' <U il ••;     x 

where the value of   y     on the plate can be calculated from (23) and (27), to give 

Im Im   -    - —      - on     -       0.      I .1   <   1 (29a) 

2 
2 for     |    !       1. (29b) 

The solution of thifc mixed boundary value problem, prescribed by (28) and (29), is 

■«     i    i';. vV7' - ■•,, , (so) 

with   y       given by (29b). 

.1     1 
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The additional drag due to the sudden acceleration of the cavitated plate can be 
calculated from 

r r'     ■ r1 -A 
D, p, dy      -.a A-^,1 n    I      v(:)—d-,. 

■'- ■ J-i      ' ■'-1 

Substituting (29b) and (30) into the above expression and evaluating the Integrals for 
small values of <, one obtains 

where 

1.68Q6 . .i '2 ji • n.zeq.2 • 0.075 • * » 0.049 ■ * • or-8)! (31) 

In the practical range of interest, the cavitation number - Is general' not large, 
hence Is always appreciably less than unity. Consequently (31) ma) be used to 
cover a wide range of -.  For 1 in particular, (31) may be approximated by 

D,    i.siwi. .-1 ^ 1 • 0.067   2n--)• or-V . (32) 

As - - 0, this result reduces to the previous solution, Eq. (16). 
It is of interest to note that the effect of the cavitation number on the part of the 

drag due to sudden acceleration, denoted by D,, starts with the term of oc*2); hence 
D, increases at a much slower rate than the steady part of the drag, Do (see Eq. 26'), 
with increasing   . 

PERTURBATION OF UNSTEADY PLANE FLOWS PAST 
BLUNT BODIES WITH FINITE CAVITIES 

Since the general case of the unsteady wake flow having a large time-varying 
part is virtually unsolved, we shall first consider the special case of the small 
unsteady perturbations superimposed on the basic steady flow past a blunt body. It 
is convenient to formulate this latter problem by dividing the flow into two parts, 
namely, (a) the basic steady flow, the problem of which is in general nonlinear, and 
(b) the small unsteady perturbations, the problem of determining them to be linear- 
ized. This method of approach has already been used in several recent wcilu on 
this general subject. A scheme of small perturbations of the basic steady flows has 
been applied by Ablow and Hayes (9) to treat two unsteady free surface flows: the 
hollow vortex and the problem of the Borda mouthpiece. The problem of unsteady 
flow past curved obsta -les with an infinite wake has been treated by Woods (10-12), 
applying small perturbations to the basic Helmholtz-Kirchhoff flow. Here this method 
will be generalized to the case of finite cavities. 

Suppose for 1 0 the rigid body in the cavity flow is given an unsteady motion 
of small amplitude. The small perturbation assumption then implies that for t ' 0 
the complex potential, complex velocity, and the pressure of the resulting flow may 
be expressed as 

\UiM 1     .IK .1/     .t.,' /i   •«,'/.! )     0 <■'' (33) 

l'( x, y, t )       i' .( x. \ 1        P|i x. y . I 1 
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in which f0(z), w0(j>, and p0(x.y) represent the basic steady flow, which, as was 
discussed in the section "Basic Steady Flows with a Finite Cavity," are assumed to 
be known here. The time-dependent perturbations f , *,, and p, are assumed to 
have moduli much smaller than those of the basic flow, except possibly at some 
isolated points. Consequently, relations among the flow quantities are assumed to 
hold only to the first order in the small perturbations. Here, the space variable «, 
following the Eulerian description, is not perturbed. It is further noted that f jfz.n 
and «,(2,1) are both analytic functions of i for every t andccntinuouslydifferentiable 
in t if the motion of the rigid body has a continuous time derivative. The pressure 
equation is now 

r •     ' . »o» (34) 

where ., is the real part of t,, Q      w , and c may be taken as a constant. 

To apply the boundary conditions, it is convenient to introduce the new variables: 

W. In« if« - (35a) 

Hence, to the first-order terms, 

Ion (■•V1 'I,, 
(35b) 

so that -, represents the percentage change in the velocity magnitude, and   , denotes 
the change in the flow angle, both with respect to the basic flow (see Fig. 4).   Thus, 

, is an analytic function of >, and hence 
of any analytic function of », and , is a 
small quantity of the first order. The 
equation for the pressure disturbance, 
from (21) and (34), is 

Pi % (36) 

The boundary conditions of the per- 
turbed flow may be stated as follows: 

1. In general, the motion of the rigid 
boundary consists of a small translation 
and a small rotation. Let (»„.y,,) be a 
point on the rigid boundary in the basic 
flow; then its perturbed position may be 
expressed as 

X       x„ 

v    y„ 

'ft  IV,, 

Fin. ■i - Unsteady »low exprrssrd a» a 
ptTturbation on  the   basic stt-ady   flow 

Ml 
(37) 

where , , and are arbitrary functions of t with small magnitudes. From this 
expression, the perturbation velocities <!„ and q of the flow normal and tangential to 
the rigid surface arc readily obtained. Since the motion is infinitesimal, the vuluc 
of ('ir,.'0 at (x,Y) may be apprcximatcd by their value at (x„.y„). Doing so, we have, 
to the first order in fiM and r|s. 
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.     tan1    -  " "    on the unperturbed rigid surface (38) 
1 %    ■    "s 'Li 

where qn is the component of the velocity (• - vci ■ - y0'<, • ii01 • x„i) normal to the 
rigid surface.   Hence    ,18 known over the rigid boundary. 

2. Over the free boundary, the pressure everywhere in the unsteady cavity 
wake Is assumed to retain its value in the basic flow. Hence, to the first order of 
approximation, 

P,    n,       over the unperturbed free boundary. (39) 

Hence (33) becomes 

,.- - % •      o    over the free boundary. 

Let s be the arc length along a streamline; then from 

„       t* > , 1 •! Q -  'lo 

we can write the above equation as 

.,   (in'O '   .►'    n  on the unperturbed free boundary. (40) 

This equation may also be written as 

(   t    '   ""      s)^"2'!1        0 

which expresses the fact that, for any disturbance in r, due to the unsteady motion 
of the rigid boundary, the quantity q,,2 f, is convected downstream along the free 
boundary with the basic flow, unchanged in magnitude. In particular, it can be 
asserted at once that for any t - n, , o over the portion of the free boundary for 
s * s,,, where sr is given by 

J ' '«" % 
Since qD is a known function of s, the above condition reduces the problem to that of 
determining the value of T« at the points of separation. The physical significance of 
qn

2', can be shown to be the vortlcity variation due to the unsteady motion, and the 
above conflitinn is actually the statement of the conservation of vortlcity. It can also 
be seen that the disturbance in t, will generate a surface wave along the free bound- 
ary; this surface wave is sustained by the velocity field of the flow in much the same 
way as the wavy water Jet emitted from an oscillating garden hose. 

3.  At z     i, we further require that the perturbation does not change the flow 
direction and pressure at infinity; that is, 

(:,)     , -. n   -is    1/  .. . (41a) 

dii   P, - o   MS    !»i -. • . (41b) 

304 



Unstrady Superravitatiny Flows 

Furthermore, by Kelvin's circulation theorem, the unsteady motion cannot, for any 
finite i, result in a net vortex at infinity; that is, 

(r)     Ri- «,( /, t )  A?.      tl       for     t (42) 

where    is a closed contour with   2        Ut.   It Is not difficult to show that these con- 
ditions ( 11 ic) implythat theperturbptlonflow at infinity lias no net source or vortex 
ajid 1 1 , may at most be 

01? (43) 

The problem of determining , " j * > 1 with the above boundary conditions of 
a mixed type (I.e., with , given over a part of the boundary and 1, governed by (40) 
over the remaining part) can in principle be solved, sometimes conveniently with 
application of the Laplace transform. Such a detail, however, will be omitted here. 
Because many of the functions that appeared in the numerical calculation of the general 
problems are not yet tabulated, a few relatively simple cases have been carried out. 
Woods (10) treated an interesting example - the problem of a flat plate in the basic 
Helmholtz flow undergoing an Impulsive 
motion and a harmonic motion. The result 
shown in Fig. 5 corresponds to the case 
when the velocity of the plate is increased 
impulsively irom u to (21 20 W for the 
time period - ■ 2 and is then reduced 
back to v. 

UNSTEADY CAVITY FLOWS P\ST 
THIN BODIES: ACCELERATION 
POTENTIAL 

^ 

10 .     "- 
0 _ 

08 ^ 

10 

•w*- 
Fig. S - Result ol irr.yulsivi'ly increas- 
ing the velocity of a flat plate in the 
basic Helmholtz flow from U to (21 20)1! 
for the time period      = 2 

For the case of unsteady cavity flows 
past slender or thin bodies the method of 
ubing the accelerationpctentialis readily 
applicable, provided the body-cavity sys- 
tem remains slender in the flow motion. 
Thus the rigid body under consideration 
will be a thin body of small thickness and 
camber, held at a small angle to the flow and with the finite cavity extending down- 
stream of the body. The unsteady motion may consist of a translation and a rotation, 
both of small amplitude. It is further assumed that (a) in the absence of the unsteady 
motion, a steady cavity of finite size has already been established, with cavitation 
number - o and hence u and % related by (22), and that (b) the unsteady motion is 
again only a small perturbation of the basic flow. Because the body-cavity system 
is very thin, it is reasonable to expect that the flow is perturbed by the system only 
slightly from the uniform state, and the problem may therefore be linearized with 
respect to the uniform flow, taking the steady and unsteady part as a whole. Based 
on this approach, a few cases of interest have been treated by Parkin (13) and Wu (14). 

The General Formulation 

It is of interest to note that, unlike the thin airfoil theory, there are in this prob- 
lem two characteristic velocities instead of one: n, the characteristic velocity near 
infinity, and i(, the other characteristic velocity in the basic steady flow near the 
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cavity. Since the flow quantities near the body and cavity are of direct interest, it is 
convenient to take q(, as the reference for the entire velocity field. 

The flow outside the body-cavity system is governed by 

f • ci •   H       -   r. (44) 

When the motion is steady, this equation can be integrated to give (21), and hence the 
relation (22) between v and >it, follows. For the unsteady flows in general, (44) implies 
that the acceleration vector has a scalar potential -fx.y.n such that 

'I . . 2 ii      —  ■   (n ■     1 'i      r^.   «rail   ., (45) 

where 

T-P.). rlc' . (4«) 

In the above, the constant cavity pressure n,. and the constant velocity ir on the 
cavity of the basic flow are chosen for convenience. For deftniteness, we take the 
Cartesian coordinates (x.y) in the flow plane, with the planar body-cavity system 
lying over a certain region of the x-axis, and write the total velocity as 

n 'i,.     (l ■ u.vi (47) 

so that (H.V) represents the nondlmensional perturbation velocity. 

Now we shall introduce the small perturbation assumption that the flow is only 
perturbed slightly from a uniform state (v0) 80 that u , v i almost every- 
where in the flow and all quantities of second and higher order in (u.v) may be 
neglected.  Then (45) is linearized to yield 

_     L _i'. .   >'.        __   _L _i: . _v. ,4av 

Hence from the continuity equation <i.\ <{    |>. it follows that 

V     ". (49) 

The above formulation can of course be extended to thrp<>-dimensional cavity 
flows past slender bodies as well. It may also be noted that w.iile the acceleration 
potential defined by (45) always exists (even in the flows past blunt bodies), satis- 
fies the Laplace equation (49), to the first-order terms, only in the planar or slender 
flows.» 

For two-dimensional problems, (49) implies the existence of a conjugate har- 
monic function   rx.y.i < such that 

(50) 

■For Die case of  cavity   flows   jjast   lilunt  bodies  a.s   ircaticl   in  the previciu« section, 
■Aritinn 'i      M'./X.VI      'ii'x.v.t >   and  assuiniiiy     -;. M'^   ,  one    readily   obgrrvvs 
that     " At n, vn.      ■   II    ."i. ' whuh   is   m general no!  /ero; hem e the merit of uain|t 

in that c ise is unatly  refine ed. 
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Hence, the complex acceleration potential o . • j; must be an analytic function of 
i     x     i> at any time instant: 

Cfa.n     ..rx.y.t i • i (x.y.t r. (51) 

This potential r. is related to the complex velocity w    u - iv by 

17    (I   -t  '£)*<*■"■ (52) 

It may further be noted that although »(z. n is still an analytic function of < for all 
t, ii is in general not regular everywhere inside the flow, because vortex sheets may 
be shed continuously from the botiy due 10 its unsteady motion, whereas Oft.t), with 
its real part corresponding to the pressure, will certainly be regular there. It is for 
this reason that tht- analysis is simpler with the direct use of or z. n. 

The boundary conditions of this problem are as follows: 

1.  At upstream infinity, where the disturbances are required to die out, P    p, 
and v     o.  Hence from (46), (22), and (48), 

2(1 (53) 

2. The cavity pressure is assumed to remain constant, r     pc.  Hence by (46), 
we have on the cavity boundary 

(54) 

which, after linearization, may be applied on the portion of the x-axis that is the 
projection of the cavity boundary from above or from below. This condition is valid 
as long as the intermediate portion of the cavity boundary does not reattach to the 
solid surface. For simplicity, the body length is normalized to unity so that it occu- 
pies the region o x i and the cavity extends from certain known separation points 
to x m, ' i or l. The value M > is determined as a part of the problem 
for given cavitation number -, or vice versa. 

3. The motion of the wetted rigid boundary may be described in general by 

y       lifx.tl (55) 

with h ) for all t, and the motion is limited to such a type that the wetted por- 
tion of the boundary always remains being wetted. Then the y-component of the flow 
at the rigid surface, in the linearized nondimensional form, is 

wx.0,n     J.   J! • Jl,        r,     x     i. (56) 
1,        t X 

Hence from (48) and (52), on o     x     1, 

— i (x.n.t i     -1~   — ■ —] vx.K.t i     . / -L   _ . —\   |1( „.,,. (57) 
x Vn,.     i      x/ \ ()_.     t      x/ 

Here, again, both the above conditions may be applied on the projection of the wetted 
rigid surface on the x-axis. The integral of v in terms of may be obtained from 
(57) as 
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vfx.O.t) llf  .('.1      -TJ—)'l   ■ llfx.y.i)     --.'x.y.t) (58) 

provided, of course, the integral converges. In this integral the condition that v o 
at x is used.   It may be emphasized that the solution satisfying the boundary 
condition on acceleration (57) will also satisfy the boundary condition on velocity (56), 
provided (58) satisfies (56) also. 

4. The condition that the cavity boundary and the wetted rigid surface must 
form at every instant a closed contour enclosing a constant cavity volume may be 
expressed by 

A v(x  O.t )  dx       Im      ffwfz.tldz       0, for  all   t 
i x (59) 

where c is a contour enclosing the boundary of the body and the cavity. 

5. The Kutta condition for the lifting problem, fully cavitated or not, is that 

Q(t.x)   is regular at the trailing edge for all t. (60) 

This completes the formulation of the problem. With tiie cavitation number * given 
and the motion of the wetted boundary prescribed, the cavity length 'it.*) and the 
complex acceleration potential 0(».t.o satisfying these conditions can, at least in 
principle, be found. 

Hydrodynamic Force and Moment 

Since 0(».t,-) is an analytic function of i for all t, regular everywhere outside 
the body cavity system, the expansion of G near t    ^ must assume the form 

Gr/.t.->     .-.„ >  ii>n •  • j— •  ••• (61) 

in which the coefficients i,,, bn may depend on t and -.   From (53) it follows that 

These two conditions and condition (59) in general determine the cavity length Ut.-) 
since they contain no other unknowns except ' and <. 

It is of interest to analyze the singularities of the solution G( z, t.o. From the 
boundary conditions imposed it is not difficult to see that for ~ o (and hence 
'ft ') - <) Gfz.t,') may admit singularities only at the leading edge of the rigid 
body and at the rear end of the cavity. Near the cavity end z -, we take a path «« 
«'»circling the point i ' from the lower to the upper side of the cavity boundary; 
then ar«ff - ') increases by 2" along •■;, Since on the lower surface, ■■ o and i - o 
(it can be seen from (48) and (50) that near z ' > , N -vt and v is positive) and on 
the upper surface, " and > - o, the image point in the n-plane of the point z on 

, describes in the G-plane a path along which nr« o decreases by , provided along 
this path > 'i (so that P i P, ). Then it follows from the theorem of conformal 
transformation that 
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Ci/.t.)      '.Ut)(/.~-)   '    I   ■0(z-'):      ni'.ir    t      '(t) (63) 

where S is a real coefficient which may depend on t. One may interpret this result 
by saying that the detailed structure of the wake behind the cavity, often represented 
by an image of the rigid body or a reentrant jet in the nonlinear problems, is now 
collapsed to a point singularity in planar cavity flows. This singular behavior of the 
solution also facilitates the calculation of the drag force. 

If a sharp leading edge in a lifting flow is wetted on both sides, then it is known 
in the airfoil theory that 

G(z.t,-1      r^tit'.X      0(2)' n. ir    i     0. (64) 

However, if the leading edge is cavitated on one side, then an argument similar to 
the above leads to the conclusion that 

Ofz.t.O      C/t)/'4   1   -0(7.) nonr    z      0. (65) 

The leading edge singularity is thus weaker than in the former case. 

From »* 3 above solution it is readily found that the lift coefficient is givenby(14) 

Lift 
Ct (*"'] 

4 H • - ) b,(t.-1 
fchor.h (60) 

where b, is defined in (61). Similarly, the moment coefficient about the leading edge, 
positive in the nose-up sense, is 

Moment  *    . • ,..     v 
-      -4   ,1 •■M.jO.-). 

fchor.M2 (67) ""   ff^I 
The calculation of the drag coefficient is more complicated.   However, it can be 
shown (14) that for t(t) > i, 

CD -  2^1'.OK2 - fvO,,., CL  '   —p-1    &   [v,   [   .,(:.y,nd.,  . „h.Lic (68) 

where K is defined in (63) and B denotes the contour enclosing the rigid surface only. 
For ' •  i, the first term on the right side should be halved. 

Oscillating Hydrofoil at <     o 

An interesting example of the theory, treated by Parkin (13), is that of a flat 
plate held at a small angle of attack «„, fully cavitated with an infinite cavity (« o), 
and performing a small plunging oscillation normal to the undisturbed flow. The 
hydrofoil motion is given by 

y      li0 r <•' ' ' 0      x      c (69) 

where r is the chord of the plate, h,, is the nondimensional amplitude, j iTisthe 
imaginary unit for the time motion, and 2" is the frequency. The solution obtained 
by Parkin gives 
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T{'O • [if;k2   'kWfk)] ^ei"',) (70) 

where k r u is the "reduced frequency" based on the full chord, and «do is a 
special function which is plotted in Fig. 6. The term ^„2 gives the steady part of 
the lift as experienced by an Inclined lamina in the Helmholtz flow. The second term 
with 9k2 16, being independent of the forward speed when the lift coefficient is con- 
verted to the lift force, represents the contribution of the apparent mass to the lift. 
The last term accounts for the influence of the cavity upon the lift. On the other 
hand, the unsteady lift on a flat plate üir'oil without separation is 

^■»'[l^-i^^e^} (71) 

where C(k 2) is the Theodor sen circulation function. A comparison of these results 
shows that the apparent mass of an Inclined flat plate with an infinite cavity is only 
9/16 the apparent mass of the plate in fully wetted flow. Furthermore, as plotted in 
Fig. 6, Wk) is quite different from m 2). This is probably due to the wake structure 
and the presence of two vortex sheets instead of one single sheet as in the airfoil 
problem. 

Rewrite (70) as 

2( ' j Vl>0e jt (72) 

0.8 

0.6 
M 

i 
U. 
O 0.« 

02 

-0.2 

-0.4 

THEODORSEN'S  FUNCTION-^ 

_i I I I u 
02 0« 0.6 0.6 1.0 

REAL PART OF W(k) 
1.2 1.4 

I'm.  (i  - .Sjifi ;.i!   (uiuliun in Eq, (70) 
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with 

4 [16 
k   Im W(W) k Rr V(k). 

The quantity ^ Is usually called the "stiffness derivative," and 'j the "damping 
derivative." In flutter problems it is the sign of 2 in a certain degree of freedom 
which determines whether the motion in that degree of freedom is damped or not by 
the hydrodynamic forces. The damping derivative 2 is plotted in Fig. 7, with its 
value in the fully wetted flow shown for comparison. The same problem with more 
general locations of the upper separation point has been treated by Woods (11) by 
using the method described In the section "Perturbation of Unsteady Plane Flows 
Past Blunt Bodies with Finite Cavities;" his result for the present case agrees 
exactly with this theory. A comparison with the case of the fully wetted flow shows 
that there is a loss of damping for plunging oscillation in the cavity flow.  In fact, as 

A    -1.8 

-2.0 

•3.0 

t'lL. 7 - iMut (UI|J Lurvt') of thf (l.im|iini> cU-rivativt' ', of 
Etj. i7.ii, i ciiiinnil u ;ih Ihr i.i>rr«'njiomlinn iiuantit;. for 
i'.ijv. withuitl si. .a rat.) , 
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shown by Woods, when the flow is allowed to separate from different locations on the 
upper surface of the plate, in almost all frequency ranges there is a loss of damping 
effect for both plunging and pitching oscillations, and this loss increases with increas- 
ing extent of flow separation. It was also predicted by Woods that a fully stalled air- 
foil pivoted at its midchord would tend to flutter in the frequency range 0.4 k 1.6 
in our notation. 

Supercavitating Slender Wedge in Plunging Oscillation 

Another example is the problem of a supercavitating slender wedge of half vertex 
angle y performing a vertical plunging oscillation. The instantaneous position of the 
wedge surface is given by 

li(x.l >        •   x   '   ll,,«'1    ' on     v        •(». 0   •  X   '    1. (73) 

It has been found (14) that the lift and moment experienced by the cavitated oscillating 
wedge have the same expression as those experienced by an oscillating airfoil, except 
that the reduced frequency for o is k <- n, instead of <- u as for the fully 
wetted flow. The drag exerted on the cavitated wedge due to the cavity formation, 
however, is now 

2 
(1 •-),_%■  2 1 I  ■    ) k'k'C 

">,...       ' ,     . .   2., 2 r2i (jj)r2i' (74) 

where k      c »,., n k 21 is the Theodorsen function, and    is cavity length given by 
the relation 

üfrr-,   -(^r- «"*t?^). m) 
The first term in (74) gives the drag coefficient of the basic cavity flow over the 
wedge, while the last term expresses the contribution of the unsteady motion. 
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DISCUSSION 

B. R. Parkin (California Institute of Technology) 

I would like to put a question to Professor Wu concerning his first topic, that is, 
his elucidation of the theory of Von Karman. As Professor Wu has mentioned, the 
coordinate system is chosen in such a way that, being fixed to the body, it is net an 
inertial frame of reference, and thus it introduces a pressure gradient at infinite, 
niiiiceu uuuugiiuui läe Iluw. I wuulU appic-ciaU- Pi'Olcääui Wu's indicating the bear- 
ing of this pressure gradient at infinity on the values of the coefficients which he 
quoted from Von Karman's work. Would these coefficients and the cavity shape be 
any different from those which would obtain if the liquid at infinity had been at rest ? 

P. Kaplan (Stevens Institute of Technology) 

My comment is concerned with the application of Wu's results, and results to 
follow, in the general field of naval hydrodynamics. In particular, the requirements 
of supercavitating devices, which are being emphasized, are such that they have thin 
sections, combined with great sensitivity of the hydrodynamic forces to the camber. 
This makes the problem of hydroelasticity appear important for high-speed opera- 
tion. The forces on the oscillating supercavitating foil are also essential for the 
study of flutter, and I am happy that Dr. Wu has mentioned the applicability of some 
of his results to this problem. 

T. Y. Wu 

In reply to Dr. Parkin's question, I wish to say that the wake flow generated by 
a flat plate accelerating broadwise through the fluid, which is otherwise at rest in an 
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inertial frame, is a problem different from that treated by Karman. In this case one 
may take a coordinate system fixed with respect to the fluid at infinity so that at 
infinity the velocity is zero and the pressure is equal to p,, a constant. Then the 
plate will be moving with acceleration <. If the shape of the free boundary may still 
be constant in time, then when the condition of constant pressure is applied on the 
moving free boundary, one has a different expression for the pressure equation. 

Next, I wish to give a uniqueness proof with respect to the leading-edge sin- 
gularity, z'1 4 or z ' 4. The first time I looked at the 3/4-power singularity I 
thought this singularity may be ruled out by the argument that the energy is not 
integrable at the leading edge. Though this statement is true, 1 was not too happy 
with this answer. Then I looked for other physical requirements and found a satis- 
factory one. I imposed another condition, namely that the pressure outside of the 
solid body and the cavity wake must not be less than the pressure in the cavity. 
That is, 

u     Ri *    - i co in the flow field. 
2    P 

Suppose that the solution of » has, in the neighborhood of the leading edge, the 
expansion 

. .      J   4 „-14        „,14. 
«       IAZ ■   iBz • Of r       ) 

where A n are two real coefficients so that ^ n on the cavity. Then, with / r<-' , 
we have near r     o. 

»       Ar   '  4 sin  (3    41       Pi    '   4  sin  (     41   •  Ofr1   41 . 

From this result we notice that the tr-m sin (3- n will change sign, whereas the 
term sin i 4) will not, as changes from o to 2 , Since the first term violates thib 
physical condition on the minimum pressure, we must therefore have A    o. 

»i> own viewpuiui wilii respect iu ihe existence of the now source is as follows. 
Suppose we have a two-dimensional cylinder and let it pulsate with its radius K as a 
function of t in a uniform stream of velocity I'; then, the velocity potential is 

.(f.   . t i       17 r       R"'  r )  ins        • RR   In«  r . 

so that we have now a source of strength ? RP which depends on the rate of change of 
the cross section of the cylinder. For the problem of unsteady cavity flows, however, 
it seems that the physical requirement must be imposed that the pressure be finite 
at infinity. Otherwise, we would require an infinite amount of energy, and hence an 
infinite time, to create such a flow. Thus the question arises: Why don't we let the 
cavity volume grow and have an infinite pressure at infinity? At the first sight it 
seems to me th?.t the affirmative is not the case. One flow model which avoids Ihe 
How source at infinity is tnat. when the volume of the cavity near the body changes. 
tnerc will be a wake which becomes thinner or fatter in the opposite sense. 

In regard to the philosophical question about the physical backgr nd of these 
!liiw models and their agreement with experiments,I have Ihe following point of view: 
W< realize that all the wake flows are the end product of the real fluid effect. In 
order tc solve the problem in an easy way. however, we want to keep the potential 
problem as a possible approximation by making some mathematlciil assumptions, 
wnich we call mathematical models. If any mathematical model gives a goodappro.xi- 
mationuf the flow quantities near the »olid body, so that we can predict ver> accurately 
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the total hydrodynamic forcos on the body, then, as far as I am concerned, Ihr modi;! 
should be quite acceptable. However, we should not expect that the simple model i:. 
also capable of providinga good description of the complicated wake flow downstreatu. 
The problem of the wake flow in the wake is entirely different from those considered 
here and I believe one cannot obtain a good result without considei inu the viscous 
effect, vortex shedding, the turbulent mixing, and so forth. 

Several experimental results have been available for a few special eases of the 
cavity flow past a flat plate jnc':ned at a small angle. These results cive substantial 
support to these mathematical models. With respect to the present linearized model, 
there are certain features which are different from the nonlinear cases. Here, 
again, the validity of this model depends on its agreement with future experiments. 
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THE INFLUENCE OF DEPTH OF SUBMERSION, 
ASPECT RATIO, AND THICKNESS ON 

SUPERCAVITATING HYDROFOILS OPERATING 
AT ZERO CAPTATION NUMBER 

Virgil   E. Johnson. Jr. 

ri.e hncanzt-'d llK'ur> lor mliniti' (ti'ptli i« apphi'd twdrsiyn two ne» 
low-dr.ti! sjpt'n.i'. itatiiii; iiyiroioils I'M' Imi'iirt/.inj Bututiun fur ihn 
L'ii.')ractcTl8ti( H "i sujjiTt av iiatiny r-./droIoilH ojjt-ratitiL: al /oro i a\ itatiun 
number at iinilf dvpth is aliso atioinplifihed. It t- itti'^t» ol* lamljfr 
dt'termined irmithi- linear tM'or. are ioml»ined with the exact nunlmcar 
I'lat-platv solu'iun tu pruihue nonlinear exprextiionii lor the iharacter- 
istiLt of arbitrary sections. I he reiiultini; llu-oretiial expreseions arc 
corrected fur aspect ratio b\ t onventiunal aeronautical methods. Agree- 
ment between tiieorv and experiment ;* l.'iinil to be i;oud lor the lift 
coefficient, dray loefluunl tenter of pressure, and location of tile 
upper cav;t'. streatnline. Tie tlours i.s used to tumpare the maximnm 
hit/drag ratios obtainable from vanuus lambervd sectiuns of equal 
strciiut: At an aspect ratio of 1 and a depth of I i liord. a five-term 
section »iii. C| ,, 0.1 has a maximum I. D ol 10.5. Muwever. the 
maximum I. D is not yreatl>. dependent on the type oi camber since a 
circular an si-ctiun of C| ,, 0.1 has a maximum L 0 of about '.5. It 
:s i im hided from tue anafy sis that for operation at a depth, ureater than 
about 1 i :.ord. a hft/draj; ratio .i! about 10 is close to the maximupi 
value t:.at can ever be attained on a single hydrofoil supported with one 
strut and operating! at zero la'.itation number. 

INTRODUCTION 

One of the missions of the Hydrodynuniics Division of the National Act onautics 
and Spare Administration is to find means of improving the takeoff and landing per- 
formance of seaplanes, particularly in rough water. The desirability of using an 
auxiliary lifting surface such as a hydro-ski for reducing seaplane hull loads and 
improving rough water performance has been established. It is possible that hydro- 
foils with higher aspect ratio and thus higher efficiencies could ho superior to the 
hydro-ski: however, only the low-aspect-rat io |i!aning hydro-ski has so farbeen suc- 
cessfully applied as landing gear to modern high-speed aircraft. This is because the 
conventional hydrofoil presents problems not experienced by a hydro- ski. 
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As atiydrofoil nears the free »un'ace (during a takeoff run) the low pressure side 
01 the foil almost always becomes ventilated from the atmosphere. This phenomenon 
results in a severe and usually abrupt loss in lift and reduction in the lift.'drag ratio. 
For conventional airfoil sections the loss in lift may exceed 75 percent. The speed 
at the inception of ventilation depends on the angle o' attack and depth of submersion; 
but, except for very small angles of attack and relatively low takeoff speeds, the 
inception speed is usually well below the takeoff speed of the aircraft. 

Even if the ventilation problem is overcome by using small angles of attack and 
incorporating "fences" or other devices for suppressing ventilation, the onset of 
cavitation presents a second deterrent to the use of conventional hydrofoils at high 
speeds. The loss in lift accompanying cavitation of conventional airfoil sections Is 
not abrupt, but the ultimate reduction in lift and lift/drag ratio is comparable to that 
of ventilated flow. Eventhin airfoil sections of small design lift coefficient enter this 
cavitating regime of poor lift drag ratios at speeds In excess of about 80 knots. 

Since the takeoff speed of supersonic aircraft may be in the range of 150 to 200 
knots, lifting surfaces with cavitating or ventilating characteristics superior to those 
ol conventional airfoil sections are desirable. Fortunately the theoretical work of 
Tulin and Burkart (1) has shown that superior configurations do exist, and they have 
selected a cambered configuration for operation in cavitating or ventilated flow which 
has two-dimensional lift/drag ratios at its design angle of attack and zero cavitation 
number about six times that of a flat plate. If such a cambered foil can be induced to 
ventilate at very low speeds, while the aircraft hull still supports most of the load, a 
stable and efficient takeoff run may be possible. This new philosophy is to design 
for operation with a cavity; whereas in the past the philosophy has been to try to 
avoid cavitation and ventilation. The situation is very definitely one of, "If you can't 
beat it, join it." 

The present paper is concerned with some theoretical and experimental work on 
supercavitating hydrofoils which has been carried out during the last few years at the 
L angley Research Center, Langley Field, Virginia, of the National Aeronautics 
and Spare Administration. A large percentage of the information contained in this 
paper has been previously published as Refs. 2 and 3. However, since these reports 
have only recently been declassified, the principal results contained in them are 
reviewed, although in some places details are omitted. The purpose of the investi- 
gation has been to determine the characteristics of practical supercavitating hydro- 
foils; therefore the effects of aspect ratio, depth of submersion, and hydrofoil thick- 
ness are subjects of particular interest. The theoretical portion makes frequent use 
of the linearized theory for cavitating flows developed in Ref. 1 and extends this theory 
to include the problem of hydrofoils which operate in a ventilated condition near the 
free surface. Conventional aeronautical corrections for finite span are employed. 
The theoretical results obtained are compared with a variety of experimental data 
obtained in the towing tanks of the NASA. These tanks include the new high-speed 
facility which is presently capable of speeds up to 175 fps and which will soon be 
capable of speeds n ;aring 260 fps. 

SYMBOLS 

A   aspect ratio 
A^A,,    coefficients of sine-series expansion of vorticity distribution on equiva- 

lent airfoil section, that is, 

(x)      2V (A,, cot   • A, sin  • A2 sin 2  ■•• A,, sin n I 
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where 

A ?  f   •'icos.i'dr. 
n :■   j      dx 

An li.All h   coefficients of sine-series expansion of vorticity distribution on hydro- 
foil section 

a   distance from equivalent airfoil leading edge to center of pressure in 
chords 

Bn.Bn   coefficients of cosine series defining location of image vortex in airfoil 
plane using z    -7. transformation 

!> parameter defining location of spray at infinity In t plane (see Ref. 4) 

cD total drag coefficient, D qS 

cf skin-friction drag coefficient, Df qS 

c, total-lift coefficient, t qS 

cL total-lift coefficient of equivalent airfoil section, t qS 

cL 1 lift coefficient exclusive of crossflow, L, qS 

cL crossflow lift coefficient. L   qS 

Cm pitching-moment coefficient (about the leading edge), M qSc 

c^  pitching-moment coefficient of equivalent airfoil section (about the leading 
edge), v qSc 

Cm 3   third-moment coefficient of equivalent airfoi' section (see Ref. 1), M., qSc4 

cN   resultant-force coefficient on arbitrary section, F qS 

CN ,   resultant-force coefficient of flat plate, F qS 

Cn.C0   coefficients of uine-scrics expansion of vorticity distribution on equivalent 
airfoil section at arbitrary depth using 7     - -7. transformation 

Cp  pressure coofficirm, (P - r,) <i 

c   chord 

D   total drag force 

Df   drag force due to skin friction 

.1   leading edge depth of submiTsion 
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E Jones' edge correction, ratio of semiperimeter to span (see Ref. 5) 

F resultant force 

f distance from hydrofoil leading edge to stagnation point in chords 

K acceleration due to gravity 

L total lift force 

Lc lift force due to crossflow 

Lj lift force exclusive of crossflow, L - Lc 

'   perpendicular distance from hydrofoil  reference line to upper cavity 
streamline 

M   moment about leading edge 

M,  third moment about leading edge, 2 j    p(x) x3 dx 
n 

m     CL   : 

p pressure, lb sq ft 

p(, pressure within cavity, lb, sq ft 

Pn pressure at mean depth of hydrofoil, lb, sq ft 

PV fluid vapor pressure, lb sq ft 

n free-stream dynamic pressure,   1 2   V2 

R cavity Ordinate - aspect ratio correction factor 

S area, sq ft 

s span, ft 

ii perturbation velocity in X-direction 

V speed of advance, fps 

v perturbation velocity in Y-direction 

X Y coordinate axes 

x distance from leading edge along X-axis 

x,. p    distance from leading edge to center of pressure u» hydrofoil 

geometric angle of attack measured from reference lino radians 
unless otherwise specified 

.,   angle-of-attack increase ductocamber. radians unless otherwise specified 

,   induced angle oi attack, radians unless otherwise specified 
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■„   angle  between hydrofoil  chord line  and reference line, positive  when 
chord line is below the reference line, radians unless otherwise specified 

■ '   angle of attack measured from hydrofoil chord line. ■'      •■  •   „• radians 
unless otherwise spec it led 

circulation, strength of single vortex 

>   central angle subtending chord ul circular-arc hydroioil 

o   spray thicknes . at infinite distance äownstreani 

t   deviationof resultant lorre vector from normal tohydrofoil reference line 

'.   complex airfoil plane.   -   plane 

n  ordinate in the    plane 

parameter defining distance along airfoil chord, % ■  c 2 fl - cos   ) 

.   mass density, lb-»eeJ ft4 

,   abscissa in the . plane 

cavitation number. (P„ - PC)<I 

.   cavitation number at inception 

correction factor for variation from elliptical plan form 

■i   angle between spray and horizontal 

.   vuriiciiy 

'  >   indicates "function of," for example, CN ^     CN ,: i ■   c'   also () 
sometimes used 

Z    X « iY 

• =   tap-1 ^ ■ ♦< 
l-L 

Subscripts 

r effective 

0 zero depth of submersion 

t total 

infinite depth of submersion 

c.p. center of pressure 

r due to camber 

A0 due to A,, 

Barred symbols refer to equivalent airfoil section and unbarred symbols refer 
to the supercavitating hydrofoil section. 
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DESCH1PTI0N OF SUPKRCAVITATING FLOW 

The parameter defining cavily How is (pn - pt.) 'i where p0 is the pressure 
at the mean depth, p( is the pressure within the cavity, and 'i is the dynamic pressure. 
The magnitude of for the condition at which cavitation is incipient is defined by the 
particular value ■.. If ■ is reduced below -,. cavitation becomes more severe; that 
is, the cavitation zone extends over a larger area. When a hydrofoil operates at suf- 
ficiently low values of , the cavity formed may completely enclose the upper or suc- 
tion surface and extend several chords downstrean. as shown in Fig. la. The 
re-entrant flow formed at the rear of the cavity is caused i ythe -cessityfor constant 
pressure along the cavity streamline. When the cavity is St. .iciently long so that the 
re-entrant i.^w is dissipated without impinging on the nody creating the cavity as 
shown in Fig. la, the flow is defined as supercavitatim; Theoretically, if the cavi- 
tation parameter is reduced to zero the cavity formed will extend to infinity. 

Low values of cavitation number, and thus su.iercavHating flow, may be obtained 
by increasing either velocity or cavity pressure or both. At a constant depth and 
water temperature, for normal vapor-filled cavities is dependent only on the 
velocity, since pr - pr is then P0 - pv and is constant. 

If part or all of the boundary layer of a configuration Is separated, the eddying 
fluid in the separated region can be replaced by a continuous flow of lighter fluid such 
as air (6.7). Regulation of the amount of air suppliedwlll control the cavity pressure 
and thus the length of the cavity formed. If the quantity of air supplied is very large, 
the cavity pressure will approach the ambient pressure p0 and a very long cavity will 
result even at low stream velocities. 

The ventilation of surface-piercing hydrofoils is therefore a supercavitating 
flow due to large quantities o: air supplied from the atmosphere to separated flow on 
the suction surface of the foil. Supercavitating flow as a result of ventilation also 
occurs when a non-surface-piercing hydrofoil of moderate aspect-ratio operates 
near the free surface (Fig. lb). As pointed out in Ref. 8, air is entrained in the 
trailing vortices and drawn to the suction side of the foil, causing a long trailing 
cavity to completely enclose the foil upper surface and extend far downstream. The 
ventilated-type cavity described in Ref. 8 differs in shape from those formed in deeply 
submerged flow because of the proximity of the free surface. It is similar to planing, 
with the spray forming the upper surface of the cavity.   Since the cavity pressure is 

pc » ATMOSPHERE 

h'ii!,. i - Uc-fimtum skelcli: (a) superravitatin^ flow at finite 
cavitation number ( '•), (l,) supiTcavitatinn or ventilated 
flow near the free surface ( ■      0) 
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approximately the same a.* the ambient pressure (at small depths of submersion), 
the cavitation number for this type flow is neatly ^ero. The present paper is con- 
cerned with the theoretical predictions of the characteristics of practical hydrofoils 
operating in the venuiated or zero-cavitation-number regime. 

FORCES AND MOMENTS 

Two-Dimensional Theory 

Flat Hate. Infinite Depth-The characteristics of a two-dimensional inclined flat 
plate in an infinite fluid, operating at zero cavitation number, have been obtained by 
Kirchoff and Rayleigh (9). The resultant force on the plate is given by the well-known 
equation 

C 2"   Sin    ' M\ Ln.f       4   •   •; sin   : (l) 

Flat Plate, Finite Depth—Similar work was performed by A. E. Green (4,10) to 
include the effect of the free surface (but neglecting gravity). The solution is neces- 
sarily obtained in terms of spray thickness rather than the more useful depth of 
submersion and is given as two parametric equations in terms of the parameter b: 

2 (1) - ■ 1.    - O  sin   i cos 
(2a) 

!> -  ens   i 
D (2b) 

where 

*in   i   ♦   ■■    * t*ns   :   '  '" t,os   ! " '>  In .  , «     . 

This result is plotted as  the variation of m with     <- for various angles of attack 
in Fie.. 2. 

Although gravity is neglected in Green's solution, the forces on the plate can 
still be obtained in terms Oi c from Eq. (2) if the Froude number v2 «>• is large. 
On the other hand, the relationship between the spray thickness and the actual leading 
pdi,e depth of submersion cannot be determined from Green's two-dimensional 
analysis. However, in the practical case, at small angles of attack the depth of sub- 
mersion and spray thickness may be taken as identical even at relatively shallow 
depths. From Fig. 2 it may be seen that for depths greater than about 1 chord the 
depth and spray thiexness may be considerably different without affecting the value 
of m. Thus at depths greater than about 1 chord the assumption that a c - e is 
adequate *n determining the forces. However at large angles of attack and shallow 
depths a better relationship is needed between .1 <• and . c if adequate accuracy is to 
be maintained. In theoretical solution for the relationship has been obtained. How- 
ever, to '..ive an idea of the relationship between th se variables, experimentally 
obtained lines ol constant I . fur in as led ratio-1 ilat plate ?.re shown in Fig. 2. 
Experienc has ihowi, ihat these lines ate sufficiently accurate for determining the 
value of m for mod. rat aspert ratios. The lines of constant .i r were faired tc a 
value of ■    00 degrees obtained from the equation 

<■        -I r   •   I   .■ (3) 
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Fi^. 2- - (Ireen's solution lor the lift-iurve slope of a two- 
dimensional flat plate (with approximate lines of < onstant 
il c) 

where f c is the dimensionless distance from the leadim edge to the stagnation line. 
The distance f r can be obtained from Green's work and tor     * 90 degrees is 

(ii - -i. 
A, ■ 1, (4) 

where b has been previously defined in Eq. (2). Equation (3) is based on the assump- 
tion that the stagnation line for the condition = 90 degrees is parallel to the undis- 
turbed water surface. 

Linearized Solution for Cambered Sections at Infinite Depth—The case of cam- 
bered surfaces at infinite depth can theoretically be analyzed in two dimensions by 
the method of Levi-Civita (10). However, like many conrormal mapping problems the 
method is very difficult to apply to a particular configuration and only a few specific 
solutions havebeen obtained. Among these Is th- work 01 Rosenhead (11) and Wu (12). 
Although the solution of Wu is applicable inprinciple to arbitrarysections.it has been 
carried out only for the circular arc. A particular advantage of Wu's solution is that 
it includes the effects of nonzero cavitatiun numler. 

The most useful treatment of camlored surfaces is the linearized theory o: Tulin 
and Burkart (1) which is readily apolicabk to any surface comiguration (with positive 
lower surface pressures) as long as the angle of attack and canver are small. The 
principal results of this lin-'arized theory are iumnurized below. 

The supercavitating hydrofoil problem in the 7 plane Is transformed into an air- 
foil problem in the 7 plane by the n lalionshlp / - >. Denoting properties of the 
equivalent aln'oil with barred symbols and those of the hydroroil with unbarred 
symbols, the following relationships are derived: 
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ilv I,   ,    > (5) 
Ix Ix 

II  (  X 1             ;l(X-) (6) 

CL      C..,       2(Af,       A,       V) '7' 

CD     X*~<CLh      1(A0.*
,)2 (8) 

Cn         ^„,.3         3?   'SAn    •    7A1   "   ^2 ■   «3   "   A4   2,■                                           («) 

The coefficients A., are th' thin airfoil coefficients in thf' sine series expansion of the 
airfoil vorlicitv dist ■ihution 

ix)        2V   (An cnt   2   "   2^   An  sin n   j 

where 

x       '  <•  ( 1   -  cos     1 (0  ■   •   ■      ) 

and can be mund for a given configuration irom the following equations: 

1 /"   '«y 

(10a) 

(ICb) 

I   'Z ■'    • ' *.'. (11a) 

A"       j   .ix c05,,   ''   ■ (lib) 

The first term in equation (10a), that is, the A0 term, is the vorticity due to angle 
of attack and the second term is that due to camber. In order to isolate the effects o: 
cumber. Ao will be considered zero. Any section profile derived on this basis will 
also, for convenience, be orientated with respect to the X-axis in such a manner that 
A,', o. From Gq. (9aI these conditions require that > also be equal to zero. Thus, 
the derived orientation is defined as the zero-angle-of-attack case. 

When Ao is set equal to zero, the hydrofoil lift drag ratio for a g*ven lift coeffi- 
cient is obtained from Fqs. (7) and (8) as follows: 

*''   2J W.-AjV (12) Cn A, ^4 2Cl.      T      ">/      ^l-' ' 

Obviously, for maximum lilt drug ratio. -Aj A, must be as large as possible. How- 
ever, ii the assumed condition thai a cavity exists only on the upper surface is to be 
real, the vorticity distribution given by Eq. (8) must be positive in the interval 
o , ; ■ ; thai is, the pressure on the hydrofoil lower surface must be positive over 
the entire  chord, otherwise a   cavity will exist   on the lower   st     ce.    Thus   lor 
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maximum  hydrofoil lilt drag ralio, -i\2 A, must be as large  as possible and still 
satisfy the condition 

!)       2V   >     A fO (13) 

Tulin-Burkart Siction-With the stipulation that the vorticity distribution is 
defined by only two terms in Eq. (13), Ref. 1 finds the optimum relationship between 
A, and Ajas -A2 A, 1 2 This results in a hydrofoil configuration given by the 
equation 

iD-Ul) cr 
From Eq. (7) the design lift coefficient (that is, for    = 0) for this section Is 

5    A. 
H,rt H 

and the lift/drag ratio for this condition as obtained from Eq. (12) is 

D       4   (2CLj 

(14) 

(15) 

(16) 

Since - 2CL represents the lift/drag ratio of a flat plate, the configuration given by 
Eq. (14) has a lift/drag ratio 25 4 times as great as that of the flat plate. When the 
hydrofoil given In Eq. (14) is operated at an angle of attack, the lift/drag i-atio becomes 

^.„y (17) 

In Ref. 1 it Is pointed out that configurations superior to the one given by Eq. (14) are 
possible.  In Ref. 2 two such superior configurations are selected. 

Three-Term Section—If the vorticity distribution given by Eq. (10) is assigned 
three terms, it is shown in Ref. 2 that the optimum vorticity distribution for low drag is 

(*)      2V A.  (t - sin 2'   ' i sin 3) 

The shape of the hydrofoil corresponding to Eq. (18) is 

i ;ö[5^-2''(n32-M.x)2-M(cx)52 

By using Eq. (7), the lift coefficient of this hydrofoil becomes 

^ ,(■•"■) 

or for '     n the design lift coefficient is 

.A, 
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The following drag coefficient may be obtained by using Eq. (b): 

For .     0, the lift/drag ratio is 

D     ''(A)- (23) 

Th.s value is nine times as large as that for a flat plate and 1.44 times as large as 
the value for the hydrofoil of Ref. 1 where L D 2S/4 f" /Xl), The following lift/drag 
ratio may be obtained for finite angles of attack by dividing Eq. (20) by Eq. (22) 

? c.- 
0 (..^y (24) 

Five-Term Section—Another hydrofoil section which theoretically has lower 
drag than either of the previously discussed profiles can be obtained by assigning the 
following value to Eq. (10) 

- 4 3 sin  2     '43 sin 3-23 sin 4-    '   1 3 sin S' ) 

The shape of the hydrofoil corresponding to Eq. (25) is 

(25) 

i        315 

.'   2 

210  |?j  - 2.240  (*)'        ■   12.600 |*j    - 30.012 (*) 

•  3S.K40 (?)    - 15.360 (?) 

By using Eq. (7), the lift coefficient of this hydrofoil may be given as 

(26) 

or for  -     o the design lift coefficient is 

5    A 

(27) 

(28) 

(29) 

(30) 

This lilt drag ratio is about 11 limes as largo as thf value for a flat plate and nearly 
twice as ctliciint as the configuration of Rot. 1. 

The following drag coefficient is obtained by using Eq. (8): 

\2 

C, li      2 

and for •     " the lift drag ratio is 

(• *')' i (■ -vr 

I. 100    /        \ 
I) '»    12C, ) 
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Fur finite antüles of attack, 

,.        ■ ■ ? c,. „ 
D {■■JZf 

(31) 

A 

Circular-Arc Section—Because of the geometrical simplicity of the circular-arc 
profile, it is desirable to Include its characteristics so that the circular arc may be 
compared with the other low-drag sections. Denoting the central angle subtending 
the chord as and using the chord line as the reference axis, the coefficients for the 
circular arc determined from the linearized theory are 

A
;     - S (32a) 

j (32b) 

A2     - s (32c) 

A,,     o        (n  • 2). (32d) 

Since for the reference axis used, Ao is negative, positive lower-surface pres- 
sures cannot possibly be realized near the leading edge unless the angle of attack is 
Increased at least to the point where < - . « 0, Because A,, o for > 3 and 
Aj sin • A, sin 2 is everywhere positive in the interval o i ; >, the condition 

^ - .HO is sufficient to specify positive pressures over the entire chord of the 
hydrofoil. A convenient way of treatingthe circular-arc section to make It comparable 
to the other low-drag sections is to reorient its reference line an angle ■ *< above the 
chord line so that for this orientation A; O and ■ 0. Using this new reference 
linf the lift coefficient of the circular-arc section is 

ci     2  (   • iij: (33) 

or for '     " the design lift coefficient is 

C
L,.I     32    • (34) 

The following drag coefficient is obtRir.cd by using Eqs. (8) and (34): 

(35) ci>     2  V   ' 4)       2 V     M   
C
L..I) 

and for       n the Hit, drag ratio is 

I.        Ml 
D     Ifi   2C, (36) 

This Uli drag ratio is about 5 times as large as the value for a flat plate and 
aimosi as great as the Tulin-Durkart section. 
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For finite anvil's of attack 

(37) 

Comparison of Sections—The shape of the four sections discussed in thepreceding 
paragraphs are shown for comparison in Fig. 3a. The pressure distribution on these 
sections is presented in Fig. 3b. It may be noted that the locatioii of maximum pres- 
sure moves rearward with increase in the ratio -A^ A,. 

The lilt drag ratio given byEqs. (17). (24), (31). and (37) are compared in Fig. 4. 
The great improvement over the L n of a flat plate offered by positively cambering 
the lower surface and operating at the design angle of attack is most encouraging. 
However, a comparison at what amounts to a fictional design angle of attack is not 
justified. It is obvious from a structural standpoint that hydrofoils with any strength 
must be operated at finite angles of attack (corresponding to the dashed lines in Fig. 
4). Thus the maximum lift drag ratio for any section depends on the minimum angle 
at which it can be operated with a cavity from the leading edge. A meaningful com- 
parison of the hydrofoil sections just discussed is not possible unless the influence 
of the upper surface of the hydrofoil is also included, for it is this surface which 
controls the maximum lift drag ratio of the section. Assuming infinite speed and thus 
zero cavitation number, it is clear that if any portion of the upper surface becomes 
wetted, the lift will decrease and the drag increase. Thus, a knowledge of the profile 
of the given hydrofoil upper surface combined with the location of the upper cavity 
streamline at various angles of attack will permit the prediction of the angle of attack 
at which the maximum lift drag ratio will occur. Only on the basis of maximum 
lift drag ratio can the best supercavitating hydrofoil be selected. A comparison of 
the various sections based on calculated cavity streamline locations and hydrofoil 
thickness is presented in the last section of this paper. 
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cLid=.2 
ci.,d«.4 

HYDROFOILS   OPERATING AT DESIGN CL(asO) 

CIRCULAR ARC (a0 = -£) 

Fij;, 4 - Lift/drag ratios   for   low-drag  hydrofoils  calculated 
from two-dimensional linearized theory 

The practical use of the formulas presented in the preceding discussion is also 
limited by the assumptions made in their derivation. In fact, the restrictions imposed 
by the assumptions of the linearized theory prevent its use in the calculation of the 
characteristics of hydrofoils suitable for use as aircraft landing gear. Here, because 
of the high hydrofoil loads on necessarily thin hydrofoils the aspect ratio may be as 
low as 1 or 2. Also the hydrofoil must operate near the free water surface and In 
some instances at large angles of attack. Thus, the effects of these variables on the 
characteristics of Hiipprcavitating hydrofoils (particularly oi cmuhvttd sections) is 
needed. Much of this information can be obtained by additional application of the 
linearized theory combined with certain modifications to the two-dimensional theory 
discussed in preceding paragraphs. 

Modifications ot Infinite Depth Theory 

Nonlinear Equation for Lift at Infinite Depth—It > 
which makes A,',      0 , then Eq. fvyinay be written as 

(■ ••.-*) 
( . 

o refers to the reference line 

(38) 

where ^ is the effective increase in angle of attack due to camber (A| - A2'2). Thus, 
the solution for cambered hydrofoils is merely the flat-plate linearized solution 

2 with ' replaced by > • ,.. This is exactly analogous to the influence of camber 
on airfoils in an infinite fluid where there is an effective increase in angle of attack 
due to the camber. By carrying this procedure further, and by applying it to the 
resultant force rather than the lift, the nonlinear solution of Rayleigh becomes appli- 
cable to arbitrary configurations simply by replacing < by > •  >,.; that is. 

<\ 
2 '   sin   ( i 

4   i (39) 
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The lift will then be 

2.i sin f i   • ,.) 
■' sin ( i   *   a  ) (40) 

InEq. (40), ■• ' ^, where • denotes the deviation of the resultant-foroe vector 
from the normal to the hydrofoil reference line. For large values of », * is small 
compared with > and ens cos >. When < is very small, e Is a maximum and will 
almost always be less than about 3 degrees, for which the cosine is very nearly 1 or 
cosine ( . • o ms i 1. Therefore, cos in equation (38) may be replaced by 
-ns < with little lose in accuracy and great gain in simplicity. Equation (40) then 

becomes 

2«  sin ( i   »   ic') 

i  '   ■■  siiW i   ♦   i (41) 

For a circular-arc hydrofoil of central angle •, it has been shown in Eq. (33) 
that >,. o if>) . It has also been shown that for the circular arc the reference 
line must be chosen at an angle * to the chord line so that A'a 0. The result 
obtained by substituting t c-i tm , into Eq. (41) is compared in Fig. 5 with the 
linear solution of Tulin and Burkart (Eq. 38) and the nonlinear solution of Wu (12) for 
two circular-arc profiles, /he agreement of Eq. (30) with the more exact solution 
oi Wu is good over the entire range of angle of attack from 0 to 00 degrees. Similar 
agreement is expected for any configuration of small camber. 

The successful modification of the Rayleigh equation to include cambered con- 
figurations leads at once to a similar modification of the solution of Green. However, 
in this case the argument for replacing by ■ ic is very weak unless the section 
coefficients which determine  -, are known as a function of the depth of submersion. 

CENTRAL ANGLE 
y. OEG 

CL    3 

    EXACT 

 LINEAR THEORY 

I-'if.'. '-•      I «u ■iliiiii-ii.sic.ii.il  tl.i'iirif'M   lur tin' hfl   i urflit ii-iil ill 
a firvular-.m   iiydr^ifuil .it intitutr tirpti. 
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Linearized Solution for Lift of Cambered Sections at Finite Depth—An examina- 
tion of the linearized expressions for the lift coefficient of arbitrary foils at infinite 
depth and at zero depth reveals that both the lift-curve slope and the increase in angle 
of at ack due to camber do change with depth of submersion. At infinite depth the 
linearized expression for lift coefficient is given by Eq. (33). At zero depth the lift 
coefficient must be one-half the fully wetted value obtained from thin-airfoil theory 
as pointed out in Ref. 13; that is, 

(v., •  r) (42) 

where A0 h and A, h are the thin-airfoil coefficients of the section in the hydrofoil 
plane and are given by the expressions 

An..,      -U .lx 

|    .lx 
ly ros 

(43a) 

(43b) 

For the Tulin-Burkart section at zero angle of attack these values maybe determined 
as 

A0 h     0.227 A, (44a) 

A,,,,      1151 A, . (44b) 

Thus, from Eqs. (38) and (42) it is seen that, for a flat plate at small angles, the lift 
coefficient goes from . 2 at infinite depth to i at zero depth (as given by Green), 
whereas for the Tulin-Burkart ^pninn a» 7pro angle of attack these values arc 

n.25 A,) 2 at infinite depth and (O.goa A,-, at zero depth. Althuugh lite flat-plate 
lift coefficient doubles in going from infinite to zero depth, the ratio is only 1.28 for 
the cambered section. The important point to note is that the value of ,. for the 
Tulin-Burkart section changes from 1.25 A, to n.so.? A,. 

It is now desirable to determine ,. for finite depths of submersion. This can be 
accomplished by modifying the linearized theory of Ref. 1 to include the effects of 
the free water surface. 

Rigorous Sclution—The rffect of the free water surface may be obtained by 
finding the transformation which will map the free water surface, the hydrofoil, and 
the cavity streamlines into the real axis of an auxiliary or equivalent airfoil plane 
denoted as the plane tc distinguish from the / plane used at infinite depth. The 
transformation required is 

in   - li (45) 

where l is the depth of submersion ot the leading edge, nr more exactly the spray 
thickness . The 7 plane and its transformation in the plane are shown in Fig. 6. 
In the linearized theory developed in Ref. 1 points of corresponding perturbation 
velocities ii and v remain constant in the transformation; therefore, the boundary 
conditions shown in the 7 plane arc sluivn in the plane in their corresponding loca- 
tions.   The potential How problem shown in the    plane is exactly the thin airfoil 
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problcin. It is weil known that the thin airfoil problem can be solved by distributing 
vortices along the chord so that the condition v My rixW is satisfied (14). The 
desired distribution of vorticity is (xi as given in Eq. (8). With (x) known, u(x) and 
\<x) are known. These values of u and v on the airfoil are exactly the same as the 
values of u and v on the hydrofoil if the relationship between x and x satisfies the 
equation 

In (1 

Equation (46) is obtained directly from Eq. (45)by noting that 
(46) through iiy <■ gives 

(46) 

1 • x.  Dividing Eq. 

X 1      i\ 
X   -    111   (1    •    X)' (47) 

When .    1.  x     <■.  therefore 

- In H   > r) (48) 

Using Eqs. (47) and (48) the relationship between » > and x i- may be determined for 
both positive and negative values oi x r. It can be seen in Fig. 6b that negative values 
of x •■ correspond to points in front of the airfoil which in turn arc related to points 
on the upper cavity streamline. The relationship between x r and x <• isprcsentcd in 
Fig. 7. With the aid of Fig. 7 and ;i knowledge of Ihin-airfnil theory the solution tothe 
supcrcavitating hydrofoil problem at finite depth is easily determined. The word 
easily refers (o the comprehension of the solution: the actual labor is considerably 
involved because of (he necessity in frequently resort toplotting curves and employing 
a planimeter. 
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UPPER CAVITY 
STREAMLINE   4 

HYDROFOIL 

Fiy. 7 -  Thi- influence of depth of submersion on  the relation- 
ship  between points   in  hydrofoil and  equivalent airfoil  planes 

The procedure for determining the pressure distribution and ihus the forces and 
moments on a hydrofoil at arbitrary depth is as follows: 

1. The shape of the hydrofoil is known as y     yfx) and thus 

ily      cly ;ly /x\ 
.-■       .-■ (x)    or      .       -1 . 

ilx      ilx ilx \' / 

2. The slope of the equivalent airfoil at the point * c is exactly the same as the 
slope of the hydrofoil '<v'''x(x/c-) when x >• and x c are related as shown in Fig. 7. 
Thus   >y .ix(x'r) is found. 

3. The vorticitydistribution on the airfoil is then obtained from Eqs. (8) and (9). 

4. The perturbationvelocity u in terms of the vorticity    is Riven by the equation 

"(.") H") i«) 
Thus the velocity uf x <■) is determined at every point along the airfoil. 

5. The perturbation velocity ufx r) on the hydrofoil is exactly the same as the 
velocity ufx <-) if x <• and x r are related as shown in Fig. 7. Thus the velocity 
ufx r > is determined. 

6. Stop 5 also determines the linearized pressure coeffitifint sirre cp is given 
by the equation 
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Cp(c) Ao,■0,    ^   *   ü  *-   Si"   " (60) 

where    is related to x c by Eq. (10b) and Fig. 7. 

7.  With a knowledge of rn(x <•) the  lift, drag,  and  moment  coefficients are 
determined as 

KCK (51a) 

x \ <ly  .x 
'u    i "-p icy dx "c 0 (51b) 

c      f c (*]x<\] 
(51c) 

Approximate Solution-Thc calculations by the rigorous method outlined above 
were so cumbersome that the solution by this method was abandoned when an approxi- 
mate method was discovered. The approximate method continues with the simple 
transformation I = ->I used in Ref. 1. The advantage of the simpler transformation 
is that if the vorticity distribution in the presence c the water surface can be 
determined in the Z plane, the simple Eqs. (7) and (9) for the lift and moment coeffi- 
cient will still be applicable. It is shown in Ref. 3 that the influence of the free sur 
face on the equivalent airfoil in the z plane can be approximated by locating a singular 
vortex in the position shown in Fig. 8. The strength of this vortex Vii» equivalent to 
the total circulation about the airfoil.   Using the model shown in Fig. 8 and equating 
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the airfoil elope at the point x to the streamline slopes induced by the sum of the 
airfoil vorticity and the image vortex; the airtoil vorticity was determined in 
Ref. 3 as 

fx)       2V (c,, rot   2   •   E   C„  si" "■ ) (52) 
1 

where 

21) (53a) 

2Al(2-B0i -^„B, 
4  » B,  - 2B. (53b) 

f2A0  < A,)Bn 
An " 4 > B. - «   • (53c' 

The B coefficients are given in Fig. 9 in terms of the center ol pressure location 
ac where a is given by the equation 

l"       2 

The A coefficients (Eqs. S3) are the section coefficients for infinite depth. 

The C coefficients are computed by iteration; that is, a value of n is assumed, 
thr B coefficients are obtaine i from Fig. 9, and the C coefficients determined from 
Eqs. (53). If the value ot a determined from Eq. (54) does not agree with the original 
assumption, the procedure should be repeated. 

If the C coefficients are determined for the case of • or Ao o, the ratio of the 
lift coefficient due to camber at finite depth to the lift coefficient due to camber at 
infinite depth may be determined from the following equation: 

/ rL \ C'.   • C1   "   2 

\CI.J,.„ . A2        ' ' A.     - 

C„ 
(55) 

A,- i 

The values of   ^CL C,   . >_.     given by Fq. (55) for the four sections of interest are 
presented in Fig. 10. 

The true linearized lift-curve slope m for finite depths of submersion in the equa- 
tion t, m(a ,, , is that shown in Fig. 2 for ■ n. Therefore, the effective angle 
of attack due to camber ii, is obtained from the following relationship: 

> ;■•;•■ (a,.„ (56) 
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Thus 

Fig.  9  -   The   B  cuefUcients  (a)  B„ and B, .  (b) B^, B,. 
» and B. 

2m(i=.M     f't.' 

Values of i(,  •,   , arc plotted  agains«   ' >  in Fig.   11   for  the  Tuiin-Burkart,  the 
circular-arc. and the three-term and I.    -term sections. 
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1.35 

1.30 

1.25 

Ci,    120 

2 4 6 6 
RATIO OF OFPTH OF SUBMERSION TO CHORD 

Fig. 10 - Influem e of depth of submersion on the lift i.oeffi- 
tient of cambered sections operating at ti.e design annle of 
attack ( i      0) 

Fi({. 11 - Influence of depth of iubmersion on the effective 
angle of attack i of cambered sections, operating at the 
design angle of attack (i   0) 

Equation (57) is obviously limited by the linearizing assumptions made in its 
derivation. An important llmllacion is due 10 the assumption that the free surface is 
always horizontal and thus r dr. At small depth/chord ratios and particularly 
for large magnitudes of camber the free water surface is not horizontal and .> c t d c. 
Thus, for small values of <i c and large magnitudes of camber the values of i,. i 
given in Fig. 11 are probably too low. 

Nonllnear_Eguatlon^ f^rUft at Finite Depth—With a knowledge of the angle of 
attack due to camber- >, at finite depths of submersion, Green's solution is now modi- 
fied to include camber by treating the effective angle of attack as > •   ■_, where ^ Is 
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obtained from Fig. 11. This is exactly the method used in modifying the Raylelgh 
equation tu obtain the nonlinear approximation for the lift coefficient at Infinite depth. 
With this assumption, the resultant-force coefficient for a cambered hydrofoil at any 
positive depth of submersion is obtained in terms of the spray thickness ° e from 
Eqs. (2) as 

Equation (58) states that the resultant force on a cambered section Is approximated 
by replacing In Green's solution for a flat plate by the effective angle of attack 

i • \.. It will be shown that the resultant force will deviate only slightly from the 
normal (as previously pointed out for the condition of Infinite depth) and therefore 

V1'        CN.f''    *    V   lOS    '• (56) 
Three-Dimensional Theory at Finite Depth—Lift-The flow about a super cavitating 

hydrofoil may be constructed by a suitable combination of sources and vortices. The 
vortices contribute unsymmetrical VP' city components and litt; the sources con- 
tribute symmetrical components which provide thickness for the cavity but no lift. 
For a finite span the vortices cannot end at the tips of the foil, and a system of horse- 
shoe vortices must be combined with the sources to describe the flow. If it is 
assumed that the influence of finite span on the two-dimensional lift coefficient is due 
to the effects of the trailing vorticlty, then the resulting effect of aspect ratio is 
exactly the same as for a fully wetted airfoil. Jones (15) gives the lift of a fully 
wetted elliptical flat plate as 

CL     I 2-(: -  :.) (60) 

where f; is the ratio of semlperlmeter to the span and > ^ Is the induced angle of attack 
caused by the trailing vorticity. Thus the effect of aspect ratio is to decrease the 
two-dimensional lift curve slope by a factor i F and to decrease the effective angle 
of attack by an increment .. Therefore for the finite aspect ratio supercavitating 
hydrofoil at infinite depth Eq. (38) is modified to give 

CL.I     E   2 '    '  > ' V (61) 

or more genprally for finite depth, Eq. (59) becomes 

ci...     F. CNV'  '   '. " V '•os  ' (62) 

where tor reetangulai plan form of aspect ratio A.E    (A • n A   and 

,       V " • M (63) 

wbore ■ is a correction for plan form (see Rcf. 14). 

Another effect due to finite aspect ratio is the concept of additional lift due to 
crossflow (5,16). This , rossflow lift is assumed due to the drag on the hydrofoil con- 
tributed by thp com;)cncnt of free-stream velocity normal to the hyarofoil. In the 
present case of zero (avitation number, the crossflow drag coefficient is the Raylelgh 
valut, 0.88. Since this lift Is caused only by the spanwise flow (flow around the ends 
of the plate) it Is also modified to account tor the aspect ratio by the Jones' edge 
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correction, i F. Since oniv the spanwise flow is considered, K Is now the ratio of 
semiperimetcr to chord. Because the flow being considered is normal to the plate, 
the  induced angle for this flow is zero.   Thus for a flat plate, the crossflow lift 
ci. <■ ls 

CL.i Ä   *   1   0HR  Sin2'   COS    ' ' (M) 

No experimental or theoretical information on the crossflow lift of cambered 
surfaces is available in the literature. In order to approximate this component the 
following assumptions are made: (a) the crossflow force acts normal to the hydrofoil 
chord line, and (b) the effective direction of the free stream on the plate is altered 
by the increase in angle of attack due to camber ic. Thus, the crossflow lift on 
cambered sections is assumed tj be 

CL  c       A  !   1  0R8   si"1'''   '    'c1   cos   '' (85) 

where i' ; • ta, in which i0is the inclination of the chord line to the reference 
line of the section (positive if the chord line is below the reference line), and xe is 
obtained from Fig. 11 for the depth of interest. 

The total lift on a finite aspect ratio hydrofoil operating near the free water sur- 
face is therefore obtained by adding Eq. (65) to Eq. (62) to give 

ci/11    A-i cn.f'' + lc - V cos ' ' A'I 0'i8 ,i"2f,' V COä »' •        (66) 

In view of the very approximate nature of Eq. (65) it is desirable to examine the 
effectof this crossflow term on the total-lift coefficient. Fora Tulin-Burkart, aspect- 
ratio-1 section (A, - 0.2) operating at d c = 0.071 the ratio of the calculated cross- 
flow lift, cL ^ to the calculated total lift was 0.157 at ^ = 4 degrees and 0.283 at » • 
20 degrees. For a five-term section with A, a 0.075. aspect ratio = 3, and d c « 0.071, 
the ratio has been calculated at 0.014 at - 4 degrees and 0.072 at - = 20 degrees. 
Thus any inaccuracies in the crossflow lift as computed by Eq. (65) will appreciably 
affect the total-lift coefficient at large angles, small aspect ration, and large cambers. 
On the other hand at higher aspect ratios and small cambers, errors in the crossflow 
component do not greatly influence the total calculated lift. 

Equation (66) may be written in terms of the slope m (given in Fig. 2) as 

where 'r is obtained from Fig. 11 for the depth-chord ratio of interest and >. is 
obtained from Eq. (63). In Eq. (63) CL , is the first term in Eq. (67). Equation (67) 
is solved by iteration and the convergence is quite rapid. 

Drag—The drag coefficient of a supercavitating hydrofoil of finite aspect ratio 
operating at zero cavitation number and finite depth of submersion is 

C,,      C,   ,   tanf<   ♦ O  • CL c tan   >'   * Cf (68) 

where ct , is thr first term in Eq. (67) and is the deviation of the resultant-force 
vector from the normal. For a flat plate f o, i' i, and thus CD CL tun .i » C,. 
For cambered surfaces similar to the circular-arc or Tulin-Burkart section, >. 
becomes very small at large angles of attack and maybe neglected; however, at small 
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angles of attack, the effect of < on the drag coefficient cannot be neglected. An 
approximation to the value of • can he made by determining its value from the two- 
'jimensionai linearized solution and then modifying the result for the case of finite 
angles of attack and aspect ratio. Either the rigorous or approximate methods of 
obtaining the linearized drag coefficient may be used. Using the approximate method 
of determining the influence of the free water surface on the equivalent airfoil in the 
7 plane, it is shown in Ref. 3 that the value of may be determined from the following 
equation. 

IC,  - 20,1 Ai   •   '2C,.   i   2C,   • Cji A, - A4 C2 

<(s-.-^ 
where the c csefficients are obtained from Eqs (53). The value of > given by Eq. 
(69) is adequate only for the case of small angle of attack and camber and depth 
chord ratios larger than about 1. For large angles of attack, large camber, and finite 
aspect ratio, it is pointed out in Ref. 3 that an effective depth of submersion (d/c>, 
should be used in determining the c coefficients in Eq. (C9). The value of fd/c), is 
the value of d c on the i     o line in Fig. 2 corresponding to the value of m - m,. where 

CL       n       nv ••   •    •■,.   -   i, ■     „ 
m.-      C,    ,     2       m'.   •    .     -   ..\   2' CO) 

The value of the C coefficients are then determined for M r>r and Ao a - ^ . It has 
been found after several calculations that the value of is not greatly affected by the 
depth of submersion. 

Center of pressure—The linearized expression tor the center of pressure of a 
finite-aspect-ratio, supcrcavitating hydrofoil operating at zero cavitation number and 
finite depth of submersion is 

r4 
Cri,l 1       SCn    *   ^l   "   7C2   *   Xi'    2 

X<-.P.,1      C.   ,       16 / Cj\ (71) 

(C..C-'') 

where the c coefficients are determined at the effective depth of submersion given 
byEq. (70) «ad for A0 a - i.. Superimposed on this flaw is the crossf low component 
of lift which Is assumed to be distributed uniformly over the chord and acting in a 
direction normal to the chord line. Thus, the distance from the leading edge to the 
center of pressure of the crossflow-lift component xr n  c is given by 

Admittedly, this assumption is crude and accurate only for a flat plate. For cambered 
surfaces the crossflow will not be uniformly distributed and for low-drag cambered 
sections such as the five-term section the crossflow is probably concentrated on the 
rearward portion of the hydrofoil. 

By combining Eqs. (71) and (72) the center of pressure of the combined flows is, 
therefore. 

,1 * 0-5cu pc;.   ^-V f3) 

341 



V. IC. Joiinson,  Jr. 

As in the case of ^, a few calculatiuiis reveal that a fair approximation for 
obtained by using C,,      ' - :, and cn     nu in Eq. (71). 

is 

Comparison Between Theory and Experiment 

Lift-In Fig. 12 the lift coefficient as given by Eq. (67) is compared with experi- 
mental data obtained on four different hydrofoils operating ventilated near the free 
surface.  These models were 

1. Flat plate, aspect-ratlo-1, <i r = 0.071 

2. Tulin-Burkart sertion, CL (l = 0.392, aspect-ratlo-1, <i c = 0.071 

3. Five-term section, CL(I = 0.392, aspect-ratlo-1, d c = 0.141 

4. Five-term section, CL H = 0.196, aspect-ratio 3, H c = 0.141. 

The models were tested in Langley tank No. 2 at speeds between 20 and 80 fps and In 
the high-speed facility at speeds up to 180 fps. All force and moment coefficients 
obtained in the ventilated condition were found to be independent of speed. It may be 
seen that the experimental lift coefficients obtained were in excellent agreement with 
the theory. 

In Fig. 13 the theory Is compared with experimental data obtained on the four 
models at an angle of attack of 20 degrees operating ventilated for a range of depths 
of submersion. Again the theory Is In excellent agreement with the data. It should be 
noted that the depth of submersion over the range of d c from 0 to 1.0 has only a 
small effect on the value of cL, particularly for the highly cambered model 3. The 
greatest influence of depth is found for the flat plate where the lift coefficient at zero 
depth is about 25% greater than that claculated for the infinite depth. 

EXP   THEORY SECTION 
o    FLAT 0 
D  TUUN-BURKART .392 
O  FIVE TERM 392 
A  FIVE TERM .196 
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EXP THEORY        SECTION          CL d 
A|^T 

0         rLAT 0 I 
D         TULIN-BURKART    392 I 
O         FIVE TERM .392 I 
a         FIVE TERM .196        3 

Fig.   13  -  The intluencc  ol depth uf submersion on the  lift 
coefficient of four low-aspect-ratio hydrofoils ( i  = 20 degrees) 

Drag—In Fig. 14 the drag coefficients of the tour models obtained from experi- 
ment are compared with the theoretical values computed from equation (68). The 
agreement is excellent except for the highly curved model 3. The deviation between 
theory and experiment for model 3 is attributed to the inability of the linearized 
theory to accurately predict the pressure distribution when the camber is so gross. 
On a shape such as the five-term section only a small error in pressure distribution 
can greatly influence the drag without appreciably affecting the lift. 
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Center of Pressure—In Fig. 15 a comparison is made between the centers of 
pressure determined from Eq. (73) and those obtained experimentally on the four 
models. The theory Is in good agreement with the data obtained on models 1 and 2, 
and about 10% too low on models 3 and 4. 

LOCATION OF UPPER CAVITY STREAMLINE 

The desirability of operating as near the design lift coefficient as possible is 
obvious from Fig. 4. Therefore, the minimum angle at which a hydrofoil with a finite 
thickness can operate with a cavity from the leading edge is needed. The angle can 
be determined by determining the location of the upper cavity streamline. The 
minimum angle at which this upper cavity streamline clears the upper surface of a 
hydrofoil of finite thickness is the angle desired. An approximate solution for the 
location of the cavity streamline is derived in the following analysis. 

Two-Dimensional Theory-Arbitrary Depth 

Green's Exact Solution for Flat Plate—The equation of the upper cavity stream- 
line for a two-dimensional flat plate may be obtained from the solution of Green as 

sin  i 
0> ~ ros 

■n.-ros   -1   ['■nS 

I  t2 - I ■ 1, In (t ■   r 

M  - 1)   -   f 1 - 1. cos   i )   I 

1) -    I/ - i   I .,(...M.V-t.^.)]       (75) 

where x is distance from the leading edge along the plate, ' is the perpendicular dis- 
tance from the lower surface of the plate to the cavity streamline, and    is the spray 

JULIN-BUWKART, CL|(j-.S92, A.I              m 

THEORY.f^TT ' D Q D O O 

FIVE TERM, CL|(|'.I96, A.3 
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iliickiicss. Fin a sclPdoo value of . , !> is knuwn from Eq. (21)). Thus <• tor a 
(jivrn x i   may Ix' üluainrd l)y using the equhticms 

I     N    , , , (76) 

and Fq. (75) for various values of the parameter t. The cavity streamline computed 
in this raanner for several angles of attack and spray-thickness-lo-chord ratios are 
presented in Fit;. Hi. The subscript Aci on i riA is to indicate cavity ordinato due 
to angle ol attack. It can be seen in Fig. 16 that for finite depths the cavity streamline 
i apidly approaches a straight line. The angle between this line and the plate is 
denoted as and is given in Ref. 4 as 

I,   c r,s -   1 
1.   -   CIS (77) 

The magnitude of is shown for each -..treamline in Fig. 16.   In Fig. 10 it may be 
seen that the cavity ordinate varies almost linearly with angle of attack for angles 
less than about 8 degrees, The value of i «IA, or more generally (■ r>An A0 canbe 
readily obtained and is given in Fig. 17 The value of f' i-)Ai A0 for infinite depth is 
the same as the linearized result obtained in Ref. 1. Figure 17 shows that the cavity 
ordinates at a depth of about 0.5 clu rd are nearly twice as great as those obtained at 
infinite depth. 

The Linearized Solution for Cambered Sections—In order to determine the cavity 
ordinates for a cambered section it is necessary to use the rigorous linearized solu- 
tion previously discussed in the section on forces and moments. The problem of 
obtaining the hydrofoil cavity ordinates is simple in principle. All that is required 
is tu find the vertical velocity perturbations v(-\ n ahead of the equivalent airfoil 
shown in Fig. 6. The value of v is needed because from it the value of v on the 
hydrofoil cavity streamline can be found. Since the linearized slope of the cavity 
streamline ,iv   1\ is v V. the shape of the cavity is determined. 

The procedure for determining the vorticity distribution on the airfoil is exactly 
the same as Hit' firsl three steps given in the procedure for determining the linearized 
solution for the forces and moments. The value of vi x i-1 can be determined by inte- 
grating the increments of v induced at a point - x <• due to the distributed vorticity 
given by Eqs. (10) and (11). Obviously this integration becomes very complicated, 
particularly if there are many terms in A,, sinn . The problem can be simplified 
however by dividing the velocity v into two part:-;, vAn and v,.. where \A is the com- 
ponent contributed by the first term A(i mt 2. and vt. the component contributed by 
the camber terms. A,, sinn . Thus the final nondimensional cavity ordinates r 
will IH- broken down into two components i    f>A   and (■ r\  suchthat 

The distance is measured from the reference line of the section along a line normal 
to the reference line. There are two advantages to dividing the vorticity into its 
angle of attack and camber components. First, the value of ( <*Ai is known from 
Green's solution and has been given in Fig. 16. The linearized version is shown in 
Fig. 17.   Thus, half the job is done if A,, is knuwn or can Ire determined. 

It is now important to review the meaning of the coefficient An. The angle of 
attack is measured from the orientation which makes A(i =• n when the depth is infinite. 
At tliis orientation and infinite depth 

K.   - ' j' Z ''    " C91 
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(c) 

a, OEGREES 2,0 

Kig, H* (Coutinui'd) - Cirron'^ ^olulinn lor the ti[>pt,r rav.ty 
atrfiimlinf of a flat plait-, (a! »/v ü.^'', (b) «/i- U.SO, 
(< )   «/i        1 Ü, (<1|   */i      i.U, (ii   il/i        'i.O. 
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a, DEGREES 20 

Fig. 16 (Continued) - Gri'tn's solution for the upper cavity 
streamline of a flat plate, (a) tic - 0.25, (b) «/c ■- 0.50, 
(c)   «/c   - 1.0, (d)   «/c  - 2.0, (e)   »/c  = 5.0. 

^nd for angles of attack measured from this reference orientation, A0 i, However 
it .he angle of attack is measured from this reference line at finite depths it is found 
that the value of A ^ : n. This means that at finite depths there is an induced angle 
of attack K'B due to the camber. The magnitude of An' is directly proportional to the 
slope of the foil and thus to CL ,,. The calculated value of An' CL ,, is given in Fig. 18 
(or the four sections of interest for a range of depth-chord ratios. To obtain the value 
of { v iA , one obtains »0' from Fig. 18 and A^ by adding >; that is, An i • Ao'. 
Then (    <• )A  is obtained from Fig. 16 or 17. 

The second reason for dividing the vorticity distribution into the Ao and camber 
contributions isthat the : An hin n contribution usually hasonly small strength near 
the leading edge. In fact for low-drag sections, it is desirable to distribute the 
vorticity as near the trailing edge as possible. Thus the velocity Induced at points 
ahead of the airf-jil due to the A,, sin n or camber contribution may be adequately 
approximated by concentrating the entire camber vorticity at one point, the center of 
pressure i, as shown in Fig. 19.  The value of n is given by Cm C. or 

f. 
(80) 

The strength ul the äingular vortex can be obtained from the equations 

i-,        , v    c,. _, v-       A,.- ; v2. 

Therefore . 

(81) 
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The vclotUy indtlct'd at a point on tho x axis due to      is Uierefure 

t-V 

2':"    ""        2     ("    -c') 2   (■■'   -c) 

(82) 

The velocity v in front ol the airfoil at a point - x <• is exactly the same as v on 
the cavity streamline if the relationship between-« <• and x .• given in Fig. 7 is main- 
tained. Thus v V and therefore the slope of the cavity streamline due to camber 
v  'v i\ r )   is known.   Integrating ^K 'l\ from the leading edge to a point x >■ gives 

(:), T :!:(:)■': (83) 
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Fig.    19   -    Linearized   model   fur   calculatii.g   upper  cavity 
streamline at arbitrary depth 

Fig. ZO - Ihü influence of depth of submt-rsion on tin- cavity 
ordinatcs due tocambrr: (a) lircular-an liydrofoil ( :„ ■ S), 
(|j) Tuiin- burkart li>drufihl 
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Therefore, since ,iy dx (x c)   v v, and v    v, combining Eqs. (82) and (83) gives 

C), H 
■I., 

i. (,-) (84) 

where * r takes on negative values and the relationship between x c and x c is found 
in Fig. 7. Since c, , is a function of A,, then f c), CL ,, can be determined from 
Kq. (83). The magnitude of ( c),, cL ,, as a function of the depth/chord ratio Is pre- 
sented in Fig. 20 for the four sections of Interest. Thus the total ordlnates of the 
upper cavity streamline arc obtained for the two-dimensional hydrofoil operating at 
zero cavitation number and arbitrary depth by usinp Figs. 16,18, and 20 and Eq. (78). 

rin. do (CunUmu'it) - Ihr influnui- of dviith ot »ubmt'rMun 
on thri.ivity ortiutfitt's cliu' loi.irnlirr; (i) thrrt'-ti'rrn hytlru- 
luil, (til f". i-drni hydrofoil 
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Correction for Finite Aspect Ratio 
Equation (82) shows thai the cavity ordinatesare directly proportional to the cir- 

culation on the equivalent airfoil and thus the circulation of the hydrofoil. Therefore, 
if the hydrofoil circulation is reduced from its two-dimensional value by finite span, 
the cavity ordinates must also reduce. Another argument for this decrease In cavity 
ordlnates is that If the two-dimensional drag coefficient is reduced because of finite 
aspect ratio the maximum cavity thickness must also decrease as pointed out In Ref. 
17. It is now assumed that for finite aspect ratios the cavity ordinates will be reduced 
from ii>e two-dimensional value in proportion to the reduction in CL ,. This reduction 
occurs In two places, first be' -use of the reduced angle j and because of the reduced 
lift-curve slope m. More specifically, assuming the cosine terms are about equal to 
unity, the first term of Eq. (67) can be written an 

CL.I     A*I ^c..,-.,)<''-:i' ' A*i V..,...,)'■• («5) 

where the subscripts on m indicate the angle at which m is determined on Fig. 2,  If 
(, Is broken into two components A0'  and '/.thatis,    ,.     «„' 4    .'. Eq. (85) becomes 

r* A— /.-*'.\.A 
A • 1 '"( V- 'i' • A-t V., .. . '.■'• W) 

The value of the cavity ordinates at infinite aspect ratio and angle  '  ' An  -  ^ i is 

'' ^tot«!      '' c1(A„..1)   '  ('  c\ (87) 

where (■ c-)(A ., y is determined from the nonlinear solution of Green and '■ c)c 
from the linearized theory. Therefore the effective lift-curve slope at infinite aspect 
ratio and angle Ao - i. is "', Ao . . _, for the first term in Eq. (87) and m,, , 0, for 
the second term.  Thus at finite aspect ratio the corrected cavity ordinates are 

'"(■♦■.-■',» A.l A- 1   "' '", ■■,)     |   _ A • 1     "•■.■■,1   .        | (88) 

or 

where 
*-'    '^ (89) 

A 
A'l 

A 
A * 1 

ra(A  ■■    i 

The preceding analysis assumes that the induced angle ■■. Is constant over the 
span. Since ^ actually varies ov<'r the span, except for the rase of elliptic loading, 
the cavity ordinates will also vary over the span. This effect can be included 'jy usinc 
the appropriate spanwisc distribution of ^ determined from finite span airfoil theory 
(14). Also the influence of the crossflow component of flow on the cavity ordinates 
has been assumed to be negligible. However, near the tips the cavity shape is largely 
determined by the crossflow. For example, at zero aspect ratio the cavity is entirely 
determined by crossflow. Thus, it seems that the true cavity shape is detrrminrci at 
the tips by the crossflow and at the center by the main flow: the cavity shape in between 
is some transition rx'twern me two extremes. 
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Comparison Between Theory and Experiment 

Figure 21a shows an aspect ratio one flat plate operating at a depth of 0.05 chord 
and an angle of attack of 16 degrees. The plate had 3 pins located along the span so 
that the upper ends of the pins were 0.34 chords rearward of the leading edge and 0.17 
chords from the lower surface of the plate. These pins were spaced 0.G21, 0.198, and 
0.375 chords from the right tip of the plate. From the photograph the cross section 
of the cavity may be estimated as shown by the solid line in Fig. 2tb. The horizontal 
dashed line is the calculated location based on a uniform distribution of <.. The other 
dashed curve is the calculated streamline assuming the airfoil induced angle distribu- 
tion for a rectangular plan form (11). It may be noted that near the tips the cavity 
shape is primarily due to crossflow. whereas near the center the calculated value 
oascd on the more nearly exact distribution of induced angle of attack is nearly cor- 
rect if the draw-down due to the strut is overlooked. The cavity shape based on uni- 
form induced angle distribution is about 20 percent too low. 

In Fig. 22 the calculated cavity shapes based on uniform ', are presented for 
two aspect-ratio-one hydrofoils operating at ■' c o.s. It may be seen In Fig. 22a 
that for the flat plate the calculated streamline at an angle of attack of 4 degrees 
just touches the upper surface of the model. If it is assumed that the speed is suf- 
ficiently high so that no significant negative pressure coefficient can exist in the flow 
field, and if the forward portion of the upper surface is wetted and positive pressures 
occur, then the lift will decrease. Thus it may be concluded from the calculations 
that the maximum value of the lift drag ratio for this flat plate hydrofoil should occur 
at the 4-degree angle of attack. Experimental data obtained at speeds up to 180 fps 
reveal that the forward portion of this flat-plate hydrofoil does become wetted at an 
angle of attack of about 4 degrees. The maximum lift drag ratio also occurred at an 
angle of attack of about 4 degrees. 

The hydrofoil section shown in Fig. 22b has a lower surface conforming to the 
Tulin-Burkart profile with CL ,, 0.3Q2. The details of the upper surface maybe 
found in Ref. 3. The calculated location of the cavity streamline «s «hnwn for angles 
of attack of 4. 8, and 12 degrees. It may be noted that the calculated streamlines are 
almost identical with those shown in Fij. 22a for the flat plate. The reason that both 
foils have about the same theoretical cavity streamline location is peculiar to the 

^THEORY OISTRIBUTED a 
, . ^  _ . ___- EXPERIMENT 

THEORY, UNIFORM a 

3 4 5 6 7 
DISTANCE FROM TIP IN CHORDS 

10 

Ki^. £\ - Cavity CTMSS st-ctiun fur flat pliitv; avpuct ratiu, 1; 
rl c (J,1); i 1(J tkurccs: (a) viewof vt-nlUaU'd flu», (li)sfr- 
tiun at (J. )4 churd from lt>aclinu i-dui" 
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Fig. II  - CaU'ulated  cavity shapes  for   flat and  > ambered 
models; aspeit ratio,   i;  .1 i- = O.b 

aspect ratio of 1. There are two compensating effects due to camber which cause 
this similarity In streamlines. The cambered foil cavity ordinates are increased 
because of the foil curvature, but simultan, ously the camber causes increased lift at 
a given angle which produces a greater induced angle of attack. The greater induced 
angle of attack results in a decrease in cavity ordinates, thus effectively cancelling 
out the increased ordinates contributed by the foil curvature. Experimental uata on 
both foils were in agreement with this theoretical phenomenon; in fact, at a 20-degree 
angle of attack the flat-plate cavity streamline obtained from both theory and experi- 
ment was slightly higher than that obtained for the cambered model. 

Figure 22b indicates that ventilation from the leading edge of the cambered model 
will rot be possible at angles less than about 10 degrees. Experiments conducted in 
ventilated flow up to speeds of 180 fps were in excellent agreement with this prediction; 
that is, at angles less than 10 degrees the forward portion of the upper surface was 
wetted. However, the maximum lift 'drag ratio of the cambered model occurred at an 
angle of attack of about 7 to 8 degrees. The fact that the lift/drag ratio continued to 
increase even with the upper surface wetted is attributed to the curvature of the upper 
surface and finite speed. A' a speed of 175 fps it is possible to support a negative 
pressure coefficient as low as -0.07. Thus, it is possible at finite speeds for the 
upper surface to add to the lift and puä»ibly decrease the drag. Theoretically at 
higher speeds the maximum lift'drag ratio will occur closer tothe predicted 10-degree 
angle of attack. 

THEORETICAL COMPARISON OF PRACTICAL LOW-DRAG SECTIONS 

The experimental data given In the preceding section indicate that a reliable 
approximation to the cavity streamline location on high-speed moderate-aspect-ratio 
surfaces can be obtained theoretically. Using the theory developed, it is now possible 
to determine the best of the four section shapes (i i» cular-arc, Tulin-Burkart, three- 
term, and live-term) when opcraling under practical  conditions.   Tin-  uperallng 
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condition chosen for comparison was at a depth of submersion of 1 chord and an 
aspect ratio of 3. The structural characteristics of the section were arbitrarily 
chosen as (a) thickness lalio t r = 0.03 at 0.2 chord from the leading edge and (b) 
t c = 0.04 at the chordwisc location of the niaximu'u lower surface ordlnate. The 
leading edge and these control points were assumed to be connected by straight lines 
and the upper surface rearward of the latter control point was taken as parallel to 
the reference line of the section. Because of the almost uniform gradation of the 
various characteristics of ihe four sections, only the extremes, the circular-arc and 
five-term section, were compared. 

Over the range cf cambers from C. d - 0 to 0.3, the calculated cavity stream- 
lines first touched the upper surface of'the assumed hydrofoil sections at the 0.2- 
chord control point. Thus the second point at the maximum lower surface ordinate 
did not influence the maximum lift/drag ratio of the sections. The friction drag 
coefficient was estimated to be 0.004. Using Eqs. (67) and (68), the lift and drag 
coefficients of the sections were calculated. A plot of lift/drag ratio versus lift 
coefficient is presented in Fig. 23. Also shown in Fig. 23 is the line denoting the 
minimum angle at which the control point at 0.2 chord just clears the calculated 
cavity streamline. The area above this line is shaded to indicate that these regions 
are not attainable under the design conditions. The important result shewn by these 
plots is that either type of camber can give higher maximum lift/drag ratios than the 
flat plate. The optimum amount of camber for both hydrofoils correspond to a value 
uf cL d of about 0.1. The optimum lift coefficient is about 0.17S for both sections. 
The hydrofoil cross sections shown in the top of Fig. 23 are for CL , = 0.1 oriented 
at the minimum aiigle of attack revealed by the analysis. The analysis as presented 
in Fig. 23 also shows that the five-term section is superior to the circular arc. The 
maximum values of the lift/drag ratios are 10.5 and 9.5 for the five-term and circular- 
arc sections respectively. Although I. D of the five-term section is sl'ghtly higher 
than that of the circular arc, it is not twice as high as predicted from the two- 
dimensional theory. 
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The thickness distribution chosen for the analysis is not conservative, but a bare 
minimum. Structurally, an aspect ratio of 3 is close to the maximum when the hydro- 
foil is supported by a single strut. Therefore, the calculated maximum lift/drag ratio 
of about 10 at a lift coefficient of 0.18 is very near the optimum that can be obtained 
on a single supercavitating hydrofoil supported on one strut and operating at zero 
cavitation number. More severe structural requirements than those Imposed in the 
present analysis will reduce the maximum attainable lift/drag ratio. 

CONCLUDING REMARKS 

In conclusion, it maybe stated that the concept of combining the linearized effects 
of camber with nonlinear flat-plate theory has proved satisfactory. The results of a 
comparison of this theory, corrected for ispprt ratio, with experimental data obtained 
on four low-aspect-ratio sections may be summarized as follows. 

1. The tiieoretical lift coefficient was in exccllnnt agreement with experimental 
data. 

2. The theoretical drag coefficient was in excellent agreement with experimental 
data on all models except the highly cambered five-term section whose CL ,, = 0.392. 
The disagreement is attributed to the inability of linearized theory to accurately 
predict the pressure distribution when the curvature is very great. 

3. The theory predicts centers of pressures slightly low for the five-term sec- 
tion; however, the agreement may be improved by taking the center of pressure of the 
crossflow component rearward of the mid-chord. 

4. Theoretical cavity shapes based on a uniform induced angle of attack are in 
good enough agreement with experiment to warrant their use in engineering 
calculations. 

Using the theory presented and selecting sections of similar structural geometry, 
it is shown that the highest lift/drag ratio that can be obtained on a ventilated hydro- 
foil supported by a single strut at depths of 1 chord or more is about 10. The best 
section for optimum lift/drag ratio is the five-term design; however, the camber 
profile may range from the five-term to the circular arc with only about a 10 percent 
changr in the maximum lift/drag ratio. 
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DISCUSSION 

D. Savitsky (Stevens Institute of Technology) 

I would like to congratulate Mr. Johnson on accomplishinB a most clever corn- 
hination of established aerodynamic and hydrodynamic results to develop practical 
solutionsfor a most difficult hydrodynamic problem. As istypical for semi-einpirical 
approaches, the approximations used can often times be questioned and more refined 
approximations suggested. However, the choice is usually the author's to make and 
if the calculated results agree with data then he's chosen correctly. 

Working within the framework developed by Mr. Johnson,! would like to address 
myself to the subject of the two-dimensional cavity shape associated with the design 
lift coefficient at various depths of submersion. The design lift coefficient is, as 
usual, that existing for the "shock-free'' entry condition. The study of the cavity 
shape is, by far, the most pressing one since the intersection of the cavity with the 
foil's upper surface is the strongest obstacle in the way to achieving the very high 
lift-drag ratios which are potentially possible with super-cavitating hydrofoils. 

In Fig. 20 of Mr. Johnson's paper a plot is shown of the influence of depth of 
submersion on the cavity ordinates due to the circulation developed by a cambered 
foil when operating with shock-free or design lift coefficient at infinite draft. It is 
seen in Fig. Dl that for a fixed value of circulation the cavity opens up as the free 
water surface is approached. Now it can be shown from Johnson's work that the 
design angle (shock-free) of attack for a given cambered section decreases with 
decreasing submersion while the design lift coefficient remains essentially constant. 
Using this result then, Fig. Dl can be interpreted as representing the cavity shape 
relative to the horizon when a given circular-arc hydrofoil is maintained at a constant 
design lift coefficient by reducing the geometric chord line angle of attack when 
approaching the free-surface.   Superposed on Fig. Dl is a circular arc hydroi'oil 

1 
JBu \  i 00 \ ü    ~^-0?0__        Ü40       -„. 
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Fin-   "I  - Cavity ordinates U>r cirrular-an- 
hydrofoil —.lohnson'.■: rt'xults 
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oriented to the design angle of attack for il c . and >i <■ 25. It is seen that the 
intersection of the cavity with the hydrofoil is, within e: gineering accuracy, very 
nearly the same for the entire range of submersion. 

Figure D2 shows the collapsed results and points up that the cavity interaction 
with the hydrofoil can be represented by one curve for all depths of submersion when 
the foil Is maintained at design lift coefficient. In effect then, while the cavity does 
open up as the free-surface Is approached, we rotate the foil Into the cavity as the 
geometric angle of attack Is decreased to maintain the design lift coefficient. 

Hence, the problem of the cavity shape Is equally obstructive at all drafts and 
whatever can be done to alleviate the cavity Interference problem at one draft should 
probably hold at other drafts. 

90 100 

Fiu.n? - r.avityordinates for circular-arc hydro- 
foil—collapsed results for hydrofoil at design 
angle of attack corresponding to each draft 

M. C. Eames (Naval Research Establishment. Halifax) 

I thlnkl am correct In saying that Mr. Johnson's paper presents more Information 
of use to the practical designer than can be found in any single paper on conventional 
hydrofoils. That this has been accomplished so rapidly In this new field of super- 
cavitating hydrofoils is a remarkable achievement. 

1 would like tu supplement Mr. Johnson's Introduction from the point of view of 
the surface ship - as opposed to that of the aircraft. 

It is well known that the limit on speed resulting from cavitatlon on conventional 
hydrofoils implies a corresponding size limit due to the so-called "square-cube" law. 
That is to say. as the size of craft is increased, retaining a constant design speed, 
the required size of the hydrofoils increases rapidly, and the weight associated with 
the hydrol'uils soon becomes a prohibitive proportion of the total displacement. 

Attempts at delaying cavitation to higher speeds are of limited value because 
they imply lower lilt coefficients, and hence, again, large hydrofoils. 
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Thus to the surface ship designer, the successful development of supcrcavitating 
hydrofoils offers the possibility - at least - of radical increases in the size of vessel 
for which hydrofoil support is feasible. Thore will be serious engineering problems 
involved in the desigr of large hydrofoil ships, but there no longer appears to be any 
fundamental objection to inci casing size. 

Undoubtedly the most important contribution made by the NACA work is the 
concept of using a fully-ventilated cavity. Prior to this development, three regimes 
of design were recognized, below a speed of about 40 knots, cavitatlon presented no 
problems provided reasonable lift coefficients were used, and it is» lair to say that no 
problems remain in the design of hydrofoil craft up to this order of speed - accepting 
the size limitations that I have referred to. B> careful foil selection it is possible to 
delay the onset of cavitation to about 60 knots, still retaining reasonable lift coef- 
ficients, but in this regime'difficulties begin to be encountered in rough water. This 
is because the range of angle of attack over which cavitation free operation can be 
obtained is very limited. Moreover, with the type of section required here, the onset 
of cavitation is not a gradual process, but can be as sudden and abrupt as complete 
ventilation. 

Above RO knots it was thought that super-cavitation would take over. At this 
speed a fully developed vapour cavity would be feasible, but there remained the prob- 
lem of ensuring that this would not ventilate. 

Mr. Johnson's solution to this problem—refusing to solve it—is one of those 
delightfully simple touches that characterize a major technical break through. Not 
only does tiie "super-ventilating" foil, if I may use this term, solve Hie problem of 
stabilizing the cavity in the presence of a free surface, but it also means that the 
transition from conventional to super-cavitating operation can be made at a much 
lower speei. It is likely that the troublesome "cavitation delaying" hydrofoils 
required for operation in the 40-80 knot range have no place in future developments. 

As many nf yon will be aware, the Na"».! Research Establishment in Halifax has 
been concerned with the development of hydrofoil craft in the 40-60 knot range of 
speeds, and this new concept is therefore of very great interest to us. 

In the course of our work, in addition to the R-100 "Massawippi" and R-103 
"Bras d'Or" hydrofoil craft, which have received a fair amount of publicity, we have 
developed a new research vehicle, known as the "R-X", which we intend to use for an 
investigation into the practical application of "super-ventilating" foils for surface 
craft. 

The new R-X is not intended to represent a scale model of any possible opera- 
tional protoiype. It was designed as a basic research vehicle with the capability of 
exploring a wide range of hydrofoil configurations and types. A full descriptioii is 
out of place here, but it is felt that some of the unusual features which make this 
craft particularly suitable for fundamental studies will be of interest. 

Figure D3 provides a general view nf the 3-ton boat. The important feature of 
the 25-foot plywood hull is the aluminum rail (A) which runs the full length of each 
gunwale By means of a slide attachment the main foil mounting structure (B) can be 
jjositionedat any point on (lie length of the hull. In Fig. D3,a three-point, two-leading, 
configuration is shown fitted. For a four-point, or tundem. configuration a second 
identical structure can be mounted aft. 

Figure D4 sliows a close-up of one of the main foil units. The mounting structure 
consists uf a rinid uthwartships beam (C). which is pivoted tc the gunwale slidt r. (Dl 
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F*n. D3 - The R-X research craft

port and starboard. Chance of rake or fine adjustment of incidence can be accom
plished by means of a screw thread (E). Rigid cantilevers (F) can be clamped to the 
beam in any athwartships position tnus providing lor alteration of foil track, and of 
the span of individual foil units. Tiie frames (G) which carry the foil struts are con
nected to the rigid cantilevers (F) only by way of dynamometer elements (H). There 
are four such elements to each strut, enabling lift, drag and cross force to be inde - 
pendently measured and recorded. This, and other instrumentation is currently being 
developed.

For three-point configurations, the stern unit (Fig. D3. K) is mounted on a 
telescopic tube fitted into the stern of the hull. By this means the fore and aft posi
tion of the stern unit can be varied over a distance of 5 feet. This is sufficient to 
investigate configurations in which the stern foil supports between 10 percent and 33 
percent of tne aU-up weight without changing the foil base length. Figure D5 is a 
close-up of the stern unit, showing the telescopic tube (L). the steering bearings (M) 
and the mounting beam (N). The foil struts are attached by clamps (O). thus allowing 
lor units of different span, while the beam (N) can be tilted for adjustment of rake or 
incidence by a screw thread device not visible in this view. Tiic lieam assembly is 
attached to the steering bearings only by way of four dynamometer elements (P).

For three point, one-leading, or ’canard." configurations the telescopic tiibo can 
be removed from the stern of Ihe craft, and fitted in the bow. This nect ssitates
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Fig. iM • One of the main toil units

removal of the (alM bow (Tig. D3, Q), and steerliiK would then be accompllahed hf 
turning the bow unit. The game mounting atrurture is used lor the bow unit.

The cralt is being powered by conventional means to provide a speed of at least 
40 knots with a minimum lilt-to-drag ratio of 5; instrumentation will imosle the 
recording ol thrust, torque, r.p.m., pilch, roll, vertical accelerations and foil unit 
forces on a time base. A strut unit lor measuring altitude, speed and angle of yaw 
is also being developed.

It is felt that the versatility of this craft is unique and that although '’teething 
troubles" will no doubt be encountered, due to attempting to fit a quart into a pint pot, 
its potential value for extending laboratory experiments on ventilated hydrofoils to 
actual operating conditions is high.
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***«. 1>S - Th«* •trrn foil unit

P. Ward Bruwn (SlevrnH Institute erf Tt*chnoluf:>’)
Thcrf in »uch a ureal wealth oC inlurmalion in Mr. Jalinatir.'s paper, and au many 

novel ideas scattered liU rally througlKHit it, that it is perhaps unurarkmato rommeid 
in a.., other way than l»y prolimped applause.

Ntmetheless. I wiiuUI like to discuss the niethiHl of calculatinu lift at finite depth. 
Mr. Johnson develops an ingenious, but approximate, linear solution lor the lift of a 
.siipercavdated hydrofoil at linite depth. In order to improve thi- approxiniatiini he 
calculatesthe approximate lift at finite di-pth wrth a desipn anple of atUck for infinite 
depth. Through this calculated|x.iiit he draws aline having Hu- slope pivenby Green's 
iHMi-line:ir Ihi-ory at finite depth and desipn aii(i;le of attack for finite depth. It wo.ild 
lUM-iti to Is more correct to calculate Ihi- lift at finite ch plh and at the desipn anple of 
attack for finite de|Sh. aisl Its n to us«- Ihi- slo|s> pixeii iiy Crei n's tls-ory.

A.K. fir. .11, ... !h.- loe; ..t
f;.oi.ti. l■hll..s.K,. ..;:.:is-jv

fi .1.
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The diffiTi'iii.'c ljtt\ ecu tlicso two approaches for a circular-arc foil is shown in 
u     1 and 2, for the case of zero depth.   The lift curve for infinite depth is shown 

I "        erence. 

WäGNER, "X ■ o 

0 . tk-o) 

Fig. Du - Kfft'ct of (lf]»th .HI lift 
corfficirnt — Johnson'h   iiU'thod 

Fijj. 0~ -  Effect of dfpth on lift 
coi'fl'icifiil   -   proposed  method 

Figure 1 shows Johnson's method. Point B is the lift calculated (or zero depth 
at »he design angle of attack for infinite depth and the lint BC lias the slope BJven by 
Green. The alternate method is shown in Fig. 2. Point D is calculated for zero draft 
and at the design angle of attack for zero draft. Again, DE has the slope given by 
Green but gives a different intercept on the lift axis. 

It is interesting to note that the line DE given by the second method is exactly 
that predicted by Wagnertand the very small change in design lift coefficient with 
depth may also be noted. In fact according to Wu's non-linear theoryt the design lift 
coefficient of a circular-arc hydrofoil at infinite depth is exactly the same as the 
design lift coefficient given by Wagner for /.ero depth. 

Il seems that the lift at finite depth might be written as follows; 

<■■     ■•< '■•-     ,, i ■    • r (l) 

where the slope," . and the design angle of attack, ,, , are both functions of the draft- 
chord ratio, i ' ■      (as given IJV Green and Johnson, respectively) and the design lift 
coefficient, C"    . is indepenrienf of drall. 
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It is not always ncetssary 10 »'orrect tor dcptli effecls. Recently at the Experi- 
nienial Towin« Tank, Stevens Institute of Technology, under contract with the Office 
of Naval Research, the lift and dmi; of a lully ventilated, surface-piercing, dihedral 
hydrofoil, haw been measured. Analysis of the experimental results shows that after 
eliminating aspect ratio efi'erts there is no residual depth effect. Thus a surface- 
piercing, dihedral foil has an efteelive draft-chord ratio of infinity. The tests also 
confirmed the linear slope, II, of the lift curve up to 16, but there was no fall off 
in lilt as predicted by Wu's non-linear theory. However, the experimental design lift 
coefficient svas only 70 percent of that predicted by the linear theory. The results of 
these tesis will be published shortly. 

Hirsh Cohen and R, C. DiPrima 

In reply to Marshall Tulin, we would like to say that we are in agreement with 
his remarks. What we were trying to point out was simply that the linearized theory 
thai has been used to estimate boundary effects dues give the correct qualitative 
effects, but does not, at least in the cases considered here (the 15" half angle wedge, 
and the flat plate at angle of attack of 12'), give the accuracy of a non-linear theory. 

The question ol slotted wall tunnels has been brought up by Dr. Silverleaf and by 
Prol. Silberman, It seems to us that judging from the results presented in this paper, 
little effect on force coefficients is to be expected. It seems reasonable to expect the 
results for force coefficients to lie between those for solid-wall and free-jet test 
sections. On the other hand, blockage effects on cavity dimensions are of some 
interest. For a given model and tunnel size, lower cavitation numbers may be obtained 
with a slotted wall tunnel. It certainly seems wonhwhile to make blockage studies 
for the slotted wall case. There seems to be need of some caution in using such test 
sections, as proven by the instability problems experienced at A.R.L. The possibility 
of cavity-slotted wall instability interactions should be looked into. 

Professor Silber man has raised a point which has, indeed, troubled us. He 
remarks that for very low cavitation numbers the drag on the 15" and 12,5' wedges is 
lower in the free jet than the drag predicted in an infinite stream by the exact theory. 
But this is borne out in his experiments only l)y the single point, n. The linear 
theory predicts that the drag in a tree jet will be lower than in the infinite stream at 
al! cavitation numbers. One feels that this should also appear in the experimental 
results. If there is an abrupt rise in the drag as the cavitation number inereases 
from zero it certainly should 'vt becume greater than the infinite stream value. 

■1J.W.   i'rown,   " 1 In    t'orci' CharacU'ristics of S.irfai:e-Piiri ing,   Fully   Ventilati'd, 
Dihedral Ilydmlii-.l-," S.I.T., K.i.T, Rip. Nu. o'.m.   (To bf pubÜHhid). 
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WALL EFFECTS IN CAVITATING FLOWS 

Hirhh C'.otu r. .ii\d  K. C. DiHrinia 
/,'   "    ■■ ! u.'i   /'•■ ( > r.', hmr   lust i ( u r ,• 

INTRODUCTION 

In this paper WL would liki'tu review some recent work on cavity Hows in bounded 
regions. In particular we shall consider the effects of solid walls and free surfaces 
on finite cavity flows. While our discussion will not, of course, be all inclusive, we 
hope it will be sufficiently comprehensive to make certain giinral conclusions about 
boundary effects. 

There are three major points of distinction to be made in the general problem 
we have chosen to discuss. The first is the geometry of the flow. It is natural to 
distinguish between symmetric flows past symmetric bodies and unsymmetric flows 
past symmetric or unsymmetric todies. The second point concerns the types of 
boundaries to be considered. The boundaries which are of interest a«* those which 
confront the experimentalist in testing devices — water tunnel walls or free jit sur- 
faces — and those which provide interference in actual applications. These would 
include free surface effects on cavitaUng bodies traveling near the surface and the 
interference of solid bodies such as hulls near cavitating bodies. Finally, we shall 
emphasize in this discussion finite cavity flows. There is a famous and abundant 
literature dealing with cavities or wakes of Infinite length. Obviously, infinite cavi- 
lies will seldom be encounU-rcd in testing procedures or anywhere else. The infinite 
cavity theory does form, however, an interesting and often useful limiting case and 
it will be pertinent to make reference to many of the results. The need for a finite 
cavity model is obvious for physical reasons and has been met in several ways math- 
ematically. All of these finite cavity flow models have been employed in discussing 
boundary effects and their use will be related here. 

Most of the discussion to follow deals with two-dimensional flows. Few studies 
have been made of three-dimensional boundary effects. The three-dimensional 
cavity flow theories that have been available to the present time have been extremely 
difficult to use. The results for bounded flows that are available, which are referred 
to later in detail, are obtained by an indirect method. 

For the cases reviewed and discussed in this paper, one of the more interesting 
conclusions seems to be that the presence of boundaries does not greatly alter the 
force coefficients acting on cavitating bodies, providing the same cavitation conditions 
can be attained with and without boundaries."    This  statement  must be carefully 

Note;    The  re-search presented in  this   pajicr v.a«   sponsored  by  the  Offiic  of  Naval 
Research. 

'This lonelusion seems to lonfirm in part the btalen.cut of  the   Principle of the Sta- 
bility of th'' Pressure Coeffu ient su^Kestcd by Birkhoff,  Plesset,   and  Simmon« (1). 
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understood; (or bodies placed within solid wall boundaries, blockage effects are often 
very large and do not allow for great fruedom in modeling the cavitation conditions 
in an unbounded medium. 

Our discussion will follow the following outline: A general formulation of the 
bounded cavity flow problem is given. The need for, and the particular character- 
istics of, the various finite cavity flow models are discussed and the general line- 
arized problem is set out. Also, a study of the effects of a free surface on a wedge 
traveling parallel to it, given recently by DiPrima and Tu, is mentioned briefly (2). 
The effects of solid walls are then taken up in detail. The various theoretical and 
experimental results for both symmetric and unsymmetric flows are compared. A 
similar discussion of free jets is given, followed by some comparisons of flows in 
solid channels, jets, and in an unbounded stream for the two-dimensional case. 
Finally, a brief discussion is given of bounded, axially symmetric flows. 

FORMULATION OF THE TWO-DIMENSIONAL PROBLEM 

The general problem under consideration is that presented in rather compact 
form in Fig. 1. The solid body B is located in the bounded region D, which contains 
an incompressible, nonviscous fluid whose velocity at upstream intinity (x -.-■«) is 
u,. Attached to u at the known points s, and s,, is a constant-pressure region C, the 
cavity. The pressure in the cavity, p(., the pressure, r,, corresponding to U,, and 
the constant fluid density, . , define the cavitation number fp^p^/n/JjoU,2. 
The boundary of the combination B and c is a streamline. A distance in the x direc- 
tion may be associated with each of B and c (a chord, c, and a cavity length, ')• The 
boundaries of n are the streamlines . „ and .,. The leading edge of B is at distances 
hu and IM from i and .,, respectively. Besides being streamlines, a second con- 
dition is required on . and .,. In the free jet case the pressure is constant and 
known; in the solid wall case the lines themselves are given. 

Unfortunalely, as is well known, a satisfactory solution to the problem just 
sketched does not exist except under special conditions, even for h,, and li, both 
infinitely large. If one is willing to accept cavity shapes concave to the flow with 
p - pw or to consider cavities of infinite length, a solution may be found within 
classical potential theory. This is essentially the content of a "non-existence" 
theorem of Serrin (3). This theorem, then, implies that finite cavities of the shape 
required are not available from the classical theory. The hounded infinite cavity 
case, the Kirchhoff-Helmholtz theory, has been taken up at some length by various 
authors. The work of Rethy (4), Valcovici (5), and von Mises (6) is discussed by 
Birkhoff, Plesset.and Simmons (1). Actually, a certain amount of prior credit seems 
to fall to Joukowsky (7) who considered virtually all of the cases taken up by the other 

Fij;. I - Ointr.ii two-ttimenoional 
ravily  flow problem 
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authors plus several not discussed by them. It la Important to observe that as the 
cavity becomes infinitely long the cavitation number may or may not approach zero. 
If the streamlines .„ and . represent solid walls at downstream infinity, then 
approaches a limiting value r, and the water tunnel is effectively blocked by the body 
and its infinite downstream appendage. On the other hand, If either , u or .., or both 
of them, represent free surfaces at downstream infinity, approaches zero as the 
cavity length becomes infinitely long 

We turn now to a discussion of the finite cavity models. The fundamental element 
supplied by the exact finite cavity flow models is a mechanism fox explaining dissipa- 
tion near the downstream end of the cavity. The Rlabouchinsky model achieves this 
by netting an image body symmetrically located downstream from the forebody. The 
re-entrant jet theory allows the free streamline to reverse direction at th • rear of 
the cavity and flow toward the forebody. The transition flow model provides a gradual 
"dissipation" downstream of a constant-pressure region along streamlines whose 
direction is prescribed. These models all prove to be useful and to give comparable 
results. An excellent description of them and a comparison of their usefulness is 
given in a paper by Wu (8). Further details will not be related here. A common dif- 
ficulty of these models Is that they are not very flexible as to the shape of the fore- 
bodies which can be handled with enough facility to produce computable data. The 
cases which have been discussed, even for unbounded flows, are virtually limited to 
straight-line boundaries. Furthermore, the Rlabouchinsky and re-entrant jet theories 
are additionally complicated for unsymmetrical problems; the transition flow model 
does not have this difficulty. All of the flow models mentioned have been used to 
describe bounded flows; the results of these analyses will be related In subsequent 
sections. 

Because of the difficulties associated with these models It would appear useful 
to consider a non-exaci model. Tulln (9) has applied the Ideas of thin airfoil theory 
to finite cavity flows to obtain a linear cavity flow theory. The linearization Is in 
terms of a slenderness ratio or a small angle of attack and involves the usual Intro- 
duction of perturbation velocities. The conditions along solid contours and constant- 
pressure surfaces are expressed In terms of these velocities. Instead of trying to 
satisfy conditions along the body or the unknown constant-pressnrp surfaces, the 
boundary conditions are satisfied on a known mean chord line. A cunditiuu w; xh 
Insures that the body-cavity combination Is closed and another condition, either pro- 
viding a smooth body-cavity juncture or a smooth flow at the trailing edge of the foil, 
seem to be sufficient to yield a useful flow theory. 

If the linearized theory is applied to the problem of Fig. 1, the problem becomes 
a mixed analytic function theory problem defined over the strip bounded by . u and ., 
and exterior to the cut along the x-axis.  (See Fig. 2.) The cut will represent the 

u^ffU 

( = 0 

-v = (l+|)aU. 

Ml+floU. 

Kin. & ' Linearized i-avity (low tar a lifting foil 
bttwrrn solid wallx 
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distance from the leadlt.g edge to the f-nd of the cavity for the case at fully cavitating 
flow. For partially cavitating flow (the cavity closing on the body), the cut will be the 
mean chord length of the body. It Is clear that unless there is symmetry about Ute 
x-axis or the cavity is infinuely long wc are faced with solving a mixed boundary 
value problem in a multiply connected domain. 

The general problem can be represented as one defined over the annulus shown 
in Fig. 2 with either the perturbation velocities u or v prescribed on tlie inner circle* 
and u and v prescribed in alternate segments on the outer circle. Furthermore, cer- 
tain continuity and singularity conditions are imposed on the complex velocity func- 
tion on the outer circle. It would seem as though this is just the type of problem to 
be handled in very general form by the methods of Muskhelishvlli (10). As it turns 
out, however, there are difficulties in finding the analytic continua^'onsof the analytic 
functions needed in the Muskhelishvlli method. This is also pointed out by Woods (11) 
and in fact. Woods has developed an alternative approach to such boundary value 
problems. The original cut strip of Fig. 2 may be mapped to a periodic array of 
rectangles, periodic in both vertical and horizontal directions, by elliptic mapping 
functions. Then, using a Cauchy integral method, Woods (12,13) has given a formula- 
tion for fully wetted foils between porous walls which can be easily extended to the 
cavity flow problem. In the limiting cases, the porous walls of the Woods theory 
become solid or constant-pressure surfaces. An examination of this method, now 
underway at R.P.L, for Mth fully cavitating and partially cavitating flows, shews, aa 
Woods has warned, that the expressions obtained for such required relations as those 
between and « and for cL and are very difficult to handle. However, it the walls 
are far from the body it appears possible to achieve some results. 

Using the same mapping to the periodically repeated rectangles, Timman (14) 
has considered the problem of an oscillating airfoil between solid walls by finding 
appropriate Green's functions. In adopting his method for the bounded cavity flow 
problems, we find that the partial cavity flow past a lifting flat plate between solid 
walls requires the solution of the following rather interesting integral equation: 

}*"'' f    2K- f" J >(^  snf   ) Hf:,) <l-       - j1  '*. 2 sn-   <     I >( ^ »n{ :) H(:, •;) a- 

•2,' 1 4  J    -f O «ii(,-) h(:,r,) dA. 
0 i 

where Kdo is the complete elliptic function of the first kind, < is the local Inclina- 
tion of the forebody, and ? represents a cavity dimension. The kernel H(.;',»;) Is a 
singular kernel with an analytic term and has the form 

«r.,    „., ^^L! .«ErA;-"1^«- 

*U .    und  ./ refer to different types of boundaries, ir and v will be specified on sepa- 
rate- portions of the inner circle. 
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Here q is the elliptic integral nome, n ««p(-nKVK). The modulus '< is a function 
of channel .wight and the body and cavity dimensions. The unknown function, /(:), is 
related to the cavity slope in the constant-pressure region. This singular integral 
equation may be reduced to a Fredholm equation with regular kernel by the methods 
of Carleman and Muskhelishvili but this is nul very attractive procedure. One may 
also do a perturbation solution starting from Jie case q o, which corresponds ' o 
the walls at infinity, as the zero-order solution. This is, in fact, the method which 
has been adopted and is now being calculated. It can be seen that, although analytic 
methods are available and some are being used, the general linearized boundary value 
problem set forth above has not been solved. Furthermore, it can be anticipated that 
its general solution will be of such complexity that usable data will be hard to obtain. 
The bounded finite cavity problems that have been treated successfully to date by the 
use of the linearized method are those which can be reduced to a potential problem 
in a simply connected domain, either by the use of symmetry or the linearization of 
a transition flow model. (See for instance 15,16,17,18 It 19.) The results obtained 
in these cases will be discussed later. 

In this connection, DIPrlma and Tu have recently used the linearized theory to 
consider the problem of a fully cavitating symmetric wedge placed under a free sur- 
face or a solid wall (2). Since the problem Is unsymmetric, it Is necessary to use a 
distribution of vortices, as well as sources and sinks to represent the flow potential. 
The distributions are coupled by two simultaneous Integral equations. By perturbing 
in terms of a parameter, » ■ chord length over twice the distance from the free sur- 
face to the vortex of the wedge, It Is possible to find a first apprcKlmatiou for CL. 
Further, It was observed that for small« the effect of the WP'I or free surface on the 
" - 4, and Co - a relations was 0( ^2). it Is interesting to note that in this problem, 
If the approsimale body boundary condition introduced by Tulin is used, the term of 
order 6 in the expansion of cL is Identically zero. It was found that t^ cD - >, aod 
o - i relations were Insensitive to the approximate body boundary conditions, but 
that c, was very sensitive to any changes in the approximate conditions Imposed on 
the body. The results of this analysis are more fully discussed in Ref. 2. 

SOLID WALL CHANNELS 

Earlier in this paper, reference has been made to solutions for two-dimension.)' 
cavity flows In solid wall tunnels. We would now like to consider these In detail, in 
the following discussion, we adopt the notation: T is the maximum width of the body, 
c Is the chord length, ' Is the cavity length, h Is the width of the Jet or channel, n is 
half the maximum cavity width, / Is the half wedge angle, and - > Is the angle of attack 
tor lifting foils. Further, if D Is the drag per unit span, the drag coefficient cD is 
defined as om 2), U'T, and if L is the lift per unit span, the lift coefficient c, is 
defined as L/( 1/2) fu,2.-. 

The finite cavity problems which hive been considered theoretically are the flat 
plate set perpendicular to the walls and the flow, slender wedges placed symmetri- 
cally In the channel, and lifting foils at small angles of attack placed anywhere between 
t>ie walls. The first of these problems were considered by Gurevich (20), who made 
use of the re-entrant jet model; and by Birkhoff, Plesset, and Simmons (21), who 
employed the Riabouchinsky model. Slender symmetric bodies have been studied by 
Cohen and Gilbert (22) using the linearized theory, and lifting foils have been con- 
sidered by a linearized transition flow model in a paper by Cohen, Sutherland, and 
Tu (19). For all of these cases except the last, there are infinite cavity solutions 
given by Uie exact Kirchhoff-ilelmholtz theory. 
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One of the central problems In 
water tunnel tettlng of cavity flows 
is the blockage problem. Asthecavi- 
tation number decreases, the cavity 
lengthens and eventually a large por- 
tion of the channel downstream from 
the body becomes adeadwater region. 
For r. given ratio of body height to 
channel width, T/h, cavltation num- 
bers below „ | the cavltation number 
at which an iriftnite cavity would re- 
sult, are not attainable. Thus, not. all 
cavity flow conditions can be modeled 
In a water tunnel. 

Fig.    3 -    The    dependence    of    blockiige 
< avitation  number on T li 

In Fig.  3,   T has been plotted 
against T h for the flat plate and for 
a 15-degree half-angle wedge. These 
curves   give   an   Indication  of how 
drastic the blockage is, and one can 

expect that the wall effects on cavity length and width will be similarly large.  This 
is borne out in the calculations made by Gurevlch and by Cohen and Gilbert as shown 
in Figs. 4, 5, 6, and 7. 

The other consideration of importance is the effect of the tunnel width on the 
relation between drag coefficient and cavltation number. For the flat plate, Gurevlch 
has calculated CD vs for small values of T h and finds that all of the values lie on 
virtually one curve, independent of T h (Fig. 9).* Now, for each value of T h, there 
will be a minimum cavltation number, , corresponding to an Infinite cavity. If one 
plots cD for these values of , (T h increases as , increases) even these minimum 
CD values fall on the single curve mentioned above. 

There are at present no exHct model results for the symmetric wedge in a solid 
wall channel. The linear theory results of Cohen and Gilbert are shown In Fig. 8 and 
will be discussed presently In connection with the experimental data. 

There are experimental results for both of the symmetric flows mentioned above. 
Waid (23) has carried out a set of tests with flat plates and small angle wedges. For 
the flat plate with a T h ratio of 0.027 the experimental points agree well with the 
curve given by Plesset and Shaffer (24) who used the Riabouchinsky model for a flat 
plate In an unbounded stream (Fig. 9). Also shown Is the curve given by Gurevlch. 
The re-entrant jet theory seems to give a slightly better fit than the unbounded flow 
results in the partial cavltation' region. 

The Plesset and Shaffer results also give an excellent fit to the experimental 
data for the 15-degree wedge, with T h « 0.027 (Fig. 8). As can be seen, the linear 
theory data lie consistently above the exact theory and, in this case, the experimental 
data. This overestimation seems to occur generally, as has been pointed out by 
Wu (25).  In the present case, wc have again plotted a curve showing the value of cD 

*".'/> l.avc rvi'lotU-d Ciuievuh's curve usii.,; data from the figure in his paper; hence 
it is possible that live curve in Fin. '' nuy be very sli^litlv inaccuratr. 

: Waid uses the term partial i.uvilationlo mean that the cavities are filled witha rap- 
idly moviim combination of bubbles and water. In the fljjures sui I. lavities are 
denoted by a solid i ircle. 
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Fiu. 4 - The dependence of cavity lennth on cavitation number 
{or a IS-degree wedge 

at the ', corresponding to any given value of T I», the Infinite cavity curve. These 
values of CD will be the minimum attainable for the given value of ". We have also 
plotted cDas a function of for T h = 0, the unbounded stream result. If one takes 
a constant, then only those values of c,, lying between the two curves can be obtained 
by changing T h. If one takes T h constant, a curve can be drawn beginning at the an 
value corresponding to T h and lying always between the curves for T 'h ■ 0 and for 
the infinite cavity condition. Thus, although the linear result does overestimate the 
drag at any given value of , it gives a qualitative confirmation to the idea that the 
change in force coefficient is indeed small for fixed cavitation number. 

One must keep in mind, however, that the boundaries do invoke limitations on 
the cavitation numbers. Waid has measured values tor cn just below = 0.2 for the 
15-degree wedge and these must be very long cavities since Cohen and Gilbert 
obtain , = 0.212 as the blockage cavitation number for the 15-degree wedge with 
T 1. = 0.026. 

For cavity width, Gurevich's results obviously follow the data more faithfully 
than the Plesset and Shaffer result for the unbounded flow (Fig. 7). Gurevich has 
computed widths and lengths for rather high values of cavitation number (< > 0.S) 
which is strange, but it appears that his results give the proper correction forWaid's 
data. For the IS-degree wedge, the Cohen and Gilbert data also seem to give the 
proper correction (Fig. 6). 
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Kig. 5 - The dept-ntlence of (.avity length on cavitiition number lor P flat plate 

Unfortunately, Gurevich's calculations are not very useful for cavity length com- 
parisons. The values of used are so large that they fall in the partial cavitation 
range (Fig. 5). Gurevich's results are given in explicit form and may be extended 
with some labor. The Plesset and Shaffer unbounded flow results are compared with 
Waid's nata in Fig. 5. For the IS-degree wedge, the wall effect curves given by 
Cohen and Gilbert again seem to give the right correction (Fig. 4). The magnitude 
of the correction is large here; for - 0.3, T h * 0.026, the correction to the Plesset 
and Shaffer unbounded flow results is about 50 percent and becomes larger as - 
decreases. 

Thus far. we have considered only symmetrical flows. When a thin foil is placed 
inside a water tunnel at an angle of attack, the flow is obviously no longer symmetri- 
cal. In order to avoid the mathematical difficulties which arise for the multiply- 
connected domain involved in this finite cavity flow, a linearization of the transition 
flow model was used by Cohen, Sutherland, and Tu (19). 

The general solution was obtained lor any ratio of h h, (see Fig. 1). Three 
special cases were considered in detail .'or the flat plate foil. In the first, the foil is 
located midway between walls (liu I.,). The lift coefficient is obtained as a function 
of cavitation number as shown in Fig. 10 for the particular rase, • = -6 degrees; 
curves were plotted for several values of <- h. On the same graph we have shown 
the result (ur h, h,, li 2 • , and the results for the case of the infinite cavity. 
For the range of cavitation numbers shown, the wall effects which lie between the 
two Iwundini; curves ;irp, indeed, small.  U a choice of c u is made, one begins at 
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the proper value <>f   T on the infinite cavity curve and proceeds along the C, vs < 
curve as is shown in Fit;.  IG.   Also shown in Fig. 10 is a curve of   ,, vs •  h for 
h,      h,,      ti 2 . 

Park:n (26) has considered lifting flat plates experimentally. For the 12-degree 
flat plate, his data are given in Fig. 11 along with Wu's transition model theory 
results (8) for the unbounded stream and the results for the bounded flow using the 
linearized transition model (19). Here again the linear theory overestimates the 
lorce coefficient; however, it does predict only a small change in C, for fixed with 
varying T h. 

The second case considered in Ref. 19 describes the flow behavuir when h. . ■ 
or li„ -    ; i.e., the liftirg foil near the upper or lower wall.   For infinite cavities. 
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the effect of the nearness to one wall is shown in Fig. 12. The lift coefficient for 
both l>.. ii,, - i  in the linear llU'ory is ^ - 2.  In the case where the toil is close 
to the upper wall, the lift coefficient decreases as the distance from the wall de- 
creases. On the other hand, when the toil is close io a lower wall, the lift coefficient 
increases as the distance from the wall decreases. It should be kept in mind, how- 
ever, that these results are for the infinite cavity case with U (since lor either 
h,, or h. infinite »here is no blockage cavitation number), The relation between c, 
and for values of greater than ziro has been obtained (19) fur this case but has 
not yet been computed. 

It would seem that the latter results may be ul interest In observing 'he effect 
of larger bodies, suchas ships' hulls, on hydrofoil characteristics, To our knowledge 
no Experiments have been carried out on such problrms. 

THE  FREE JET 

Finite cavity flow in a jet seems to present a more difficult mathematical prob- 
lem than the solid wall case just discussed. The preliminary results from the method 
of L. C Woods mentioned previously Uad to complicated expressions for the desired 
quantities The linear transition flow model, although applicable, leads tu byper- 
elliptic integrals which are cumbcniitme to use and evaluate. The cases which have 
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been studied theoretically are the flat plate perpendicular to the flow direction in 
terms of the Riabcuchinsky model by BUKhoff, Plesset. and Simmons (21), and the 
slender symmetrical body by Cohen and Tu (27) using the linearized theory. 

The exact expressions obtained by Birkhoff, Plesset, and Simmons arc very 
involved and, as far as we know, no calculations have been made from them. As a 
matter of fact, no curves or data of any kind are given in the paper. Using the 
approximate expressions appropriate for small cavitation numbers also derived in 
iiic r-ar61", we have calculated the relations between t „, cavity length, and the cavita- 
tion number. These are shown in Figs. 5 and 9 and for several values of T li. Ao 
can be seen, a boundary correction is predicted here not only in the case oi the 
changing cavity length, but also for the force coefficient. 

Cohen anü Tu have used the linearized theory to carry out calculations for the 
case of u 15-degree wedge, The effect on <'u of changing in a jet with T u - 0.052 
at infinity is shown in Fig. B. These results are compared with unbounded flow 
results for the wedge ubtained by Plesset and Shaffer i24) and also with unbounded 
flow results from the lineartheory. In addition, the experimental resullsof Silberman 
(28) are shown. The linear theory in this case seems to give the right correction 
and the agreement with experiment is good,   Silberman was able to obtain data at 

0 by venting the cavity to the iipHtrcam pressure. Here the linear theory fails. 
1ml the Kirchhoff-Heimholt?; theorv results of Slao and Muhlurd (29) are not far off. 
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For the cup lor scoop channel) and the circular cylinder with a ratio of body 
width to jet width of 0.0375. the experimental results for c,, are in good agreement 
with the theoretical predictions for an unbounded flow (30). For this value of T h, 
it appears that the boundary effects on r,, for these bodies are negligible. 

In the case of the lifting flat plate in the jet, experimental data have been com- 
pared with unbounded flow solutions. The agreement between the experimental results 
and the theoretical values obtained by Wu (8) using the transition flow model are quite 
good for cavitation numbers above 0.15. The values of C, predicted by Wu (16) using 
the linearized theory lie consistently above the experimental data. The results for 
the drag coefficient are not in such good agreement. It is impossibU to say whether 
this can be attributed to a boundary effect, since there arc no computations for a 
lifting plate in a jet. 

As for cavity dimensions, the jet boundary corrections given for the decrease of 
cavity length with diminishing jet width by Cohen and Tu for a symmetric wedge are 
confirmed by the experimental results (Fig. 4). The fit is not as close as for the 
force coefpeient data but shows clearly the direction of the correction. Silberman 
has also compared cavity leneths lor a lifting foil with those obtained theoretically 
for the unbounded stream flow by Wu (8) using the transition model and Tulin (IS) 
using the linear theory. Both theories give reasonable agreement for greater than 
0.1 but are not consistent with the experimental data for    less than this value. 
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SOME COMPARISONS AND OBSFRVATIONS 

We have given separately the details of the elfeets of solid walls and o( tree jet 
boundaries or force coefficients and cavity dimensions in some particular bounded 
flow problems. In the present section we would like to compare these effects. We 
will then discuss the theoretical and experimental "Ua presented thus far on two- 
dimensional flows and offer some observations based on the examples '-onsldered. 

For the purpose of comparison we have chosen the 15-dei;ree wedge. U one 
bi'ginswith an unfunded st ream nowiny; past the wedge, the cavity length can Increase 
from zero to Infinity as the cavitation number decreases to zi-rc L'S fhown in Fig. 4. 
For a jet bounded by constant-pressure streamlines, the same is true, although the 
cr-ily length isalways smaller at any given value of . On the other hand, if the flow 
is bounded by solid walls, the cavity length increases at a more rapid rale than in 
the unbounded stream and attains infinite length at the blockage value . For a 
given cavitation number, say for example 0.35. there may be as much as 100 per- 
cent difference In cavity lengths for the same size wedge in a jet and a tunnel of the 
same height ( I :. 0.052). More important, however, is the fact that cavities of very 
lor.g lengths may be modeled in ii solid wall tunnel at high cavitation numbers if 
desired and at low cavitation numbers in a jet If this is desirable. 
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Cavity width behavior in the jet and solid wall channel is similar to that of cavity 
length. In channels at blockage cavitation numbers, the cavity width has its maximum 
value. These, of course, are strongly limited by the tunnel height so that continuity 
of flow maybe maintained. In the jet, the cavity may have any width, becoming infinite 
as    approaches zero. 

In comparing the drag coefficient for the wedge in the solid wall channel and in 
a jet, it must be kept in mind that the linear theory seems consistently to over- 
estimate the force coefficient. The value of cn predicted by the linear theory for the 
unbounded flow lies above that predicted by the Riabouchinsky model. If one remains 
within the framework of the linear theory, howe.er, for a given value of , the value 
of cD is lower in the jet thap in the solid wall channel and both of these lie below the 
value predicted by the linear theory for the unbounded stream (Fig. 8). Actually, the 
experimental values for the solid wall channel lie below these linear results and, it 
will be recalled, coincide with the exact Riabouchinsky model results for the unbounded 
stream. On the other hand, the experimental results for the wedge in the jet coincide 
with those predicted by the linear theory. It would almost appear as though the solid 
walls do not affect the drag; whereas the jet boundaries do. The effect of the jet 
boundaries for the flat plate case (Fig. 9) is the same, although there is experimental 
verification for the wedge only. It is very Important to keep in mind, however, that 
the solid wall channel does not allow the modeling of all cavitation conditions. For 
the experimental case cited in this report where T h = 0.027, the minimum cavity 
number for the 15-degree wedge is 0.212 and for the flat plate it is 0.3. Thus there 
is a rather severe limitation on the use of solid wall tunnels for low cavitation num- 
ber testing. 

These comparisons serve to point up the more interesting results of the present 
survey. First of all, the experimental results of Waid (23), together with the theoreti- 
cal analyses of Gurevich (20) and Plesset and Shaffer (24) for the symmetrical flows 
past fiat plates and wedges, confirm the idea that the drag coefficient is insensitive 
to boundary changes in solid wall channels, providing is held constant. The linear 
theory provides the same result qualitatively for the wedge flow and also for the un- 
symmetrical flow past a flat plate toil in a solid wall channel. The linear theory 
results for these cases seem characteristically to overestimate the force coefficient 
when compared with the experiments. For the lifting flat plate foil the unbounded 
stream results given by Wu (8) using the non-linear transition flow model provide 
excellent agreement with the water tunnel data, further strengthening the remarks 
made on the insensitivity of the force coefficient. This observation seems to con- 
firm at least a portion of Birkhoff's Principle of the Stability of the Pressure Coef- 
ficient (1). 

The theoretical and experimental results examined do not yield quite such con- 
sistent results in the case of the free jet. Small boundary effects on c,, are predicted 
by the theory for the wedge and the flat plate and, in the case of the IS-degree wedge, 
are observed. On the other hand, fairly good agreement results when unbounded 
stream values of r, are comparedwith the experimental values for a lifting flat plate 
in the jet. 

Thus, in only ont- case do the experiments show the need for boundary correc- 
tions for C,,. It minhl be pointed out, however, that these experiments were run at 
the highest value of r h of all those reviewed. Furthermore, and even more impor- 
tant,these C,, comparisons are made on the basis of constant cavitation numbei. The 
hlonkage computations show how difficult it is to obtain the cavitation conditions 
necessary to reproduce the (',, values in an unbounded stream. If (ine is tempted to 
discard wall effect computations because of theexccili nl a^ntimnt for (',, values with 
unbounded stream results, it is important to rcnieniDi r thai  mc must also measure 
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blockage effects. Blockage formulas may be obtained which involve cn, , and T h 
by rather elementary means (see Ret, U but it is more convenient to have and T h 
related independently from cß. Such a relation requires the solution of the bounded 
flow problem. 

Besides the flows bounded by two free streamlines or two walls, flows near a 
single boundary h&vc been discussed. There appears to be no experimental data for 
these cases, although it would be useful. When the lifting foil is near a solid wall 
above the foil, the lift coefficient decreases as the foil nears the wall and increases 
when the foil nears a solid wall below the foil. Further theoretical work on these 
single wall cases is probably necessary. 

Note: After this paper h. ' been completed, the authors obtained a copy of the 
original Simmons report (35) from which much of the Slrkhoff, Plesset.and Simmons 
paper (21) has been derived. The original report gives the results of a limited num- 
ber of numerical computations for the flat plate in a channel or a jet which are not 
included in the published paper (21). In particular, for the case of the flat plate in a 
channel, the dependence of , on T h and CD on given by Simmons verifies the results 
of Gurevich (20) mentioned earlier. For this same case, in order to compare the 
theoretical results with the experimental results of Wald (23), the following points 
have been computed from Simmons' data: T h = 0.025. = 0.416, ■ T = 27.5, H T = 
4.35; and T h = 0.0295, = 0.578, ■ T = 12, . T = 3.25. (Due to the complexity of the 
computations it is impractical to determine the complete dependence of a T and - T 
on for non-zero values of T h.) These points are indicated In Figs. 5 and 7 by 
small squares; they agree well with the experimental results for T i< = 0.027. 

AXIALLY SYMMETRIC BODIES 

The literature on boundary effects onaxlally symmetric cavity flows is extremely 
limited. In contrast to the recent analytic and numerical studies that have been made 
of the unbounded flow past a disk, the theory of bounded, axially symmetric cavity 
flows rests on a combination of plausible assumptions based on physical nhservatinn. 

Reichardt (33.34) observed that for an unbounded stream, certain cavity charac- 
teristics were approximately functions of only; i.e., they were essentially inde- 
pendent of body shape. In particular, the fineness ratio. 2<<, (a now refers to max- 
imum cavity radius) and the drag coefficient based on maximum cavity radius, 
Kn 2D . t, a2, depend on only; and further, the drag coefficiem based on welted 
frontal area, i^2, can be written as c,, C^OHI - >, where cD(Oi is the dr_» coef- 
ficient at =0. Thus if c,/«)), the • a - relation, and the K,, - relation are 
known, one can compute a i> and ■ h for given values of    . 

The - n - relation, and the K,, - relation can be obtained analytically by 
assuming that the flo« around a cavity can be represented by an axial source-sink 
distribution. The constant pressure condition on the closed stream surface will, of 
course, be only approximately satisfied. That such a method will give meaningful 
results Is a consequence of the "non-dependence" ol ' a and K,. on changes in the 
body shape. For an unbounded flow. Simmons (35) has used a source-sink distribu- 
tion of linearly varying strength to determine the above relations. The value of cn(0 i 
can be taken as the experimental value, or may be computed by assuming that the 
pressure distribution on the axially symmetric body is the same as on the equivalent 
two-dimensional body. < 

•••In par'itnlar, tin1 work uf Cjrtr..bt'ilJan ( SI, *,',)  ehuiiUI !)•■ nu-ivl UJIU-«!, 
' The   latte;'   method.   vUiile   IIMI i ur.ite, dues   nive   v.ilueh 
much in error for the  c ast of a iir« .I' r disk. 
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The melhuds discussed above have been 
extended by Campbell and Thomas (36) to 
the axially symmetric cavity flow in a solid 
wall tunnel of radius R. In order to com- 
pute a I) and i> for this case, it is neces- 
sary to make the additional assumption that 
Cy (1 • ) is insensitive not only to changes 
in but also to the presence of boundaries. 
The results for the cavity dimensions are 
similar to the two-dimensional case; for a 
given value of both n u and     i> in- 
crease as b R increases. 

A relation between       and i> R can be 
obtained by simple continuity and momentum 
considerations, and the above assumption on 
Cn. This relation is shown in Fig. 13 for the 
case of a circular disk.   For a given value 
of T ii     i. R it is clear  from   Fig.  13 that 
the limiting cavitatlon number is much less 
for axially  symmetric  flow than for two- 
dimensional flow.   However, a better meas- 
ure of blockage for this case is the ratio of body cross-section area to tunnel cross- 
section area M> ft)2.   If   , is plotted against n> R^, the resulting curve is closer to 
the   , vs T h curve for the two-dimensional case.  Even so,    r for the axially sym- 
metric case is less than for ..he two-dimensional case. 
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a circular disk 

The case ul aa axially symmetric cavity in a circular free jet or tunnel has been 
considered by Armstrong and Tadman (37) who also used the source-sink methods 
mentioned earlier. One of their conclusions is that for small values of and • :R the 
Iiactional decrease, based on the unbounded flow, in cavity tpngth and width in a jet 
and the fractional increase in a solid wall tunnel due to the boundaries are propor- 
tional to f' 2R)'. The corrections in a tunnel are roughly four times as large as the 
correction in a free jet. 

Since these analyses are based on assumptions on the role of cD, they do not, of 
course, yield any Information about the drag coeffic.cnt. 

As far as we could ascertain, there is no experimental work on boundary effects 
on cavity dimensions which could be used to check these theories, with the exception 
of the study of Self and Ripken (38) in a free jet tunnel. However, their conclusions 
are that the cavity dimensions arc insensitive to changes in the position of the bound- 
ary. This is somewhat surprising in view of the above discussion, and the known 
large effect that boundaries have on cavity dimensions in two-dimensional flow. 
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DISCUSSION 

E. Silberman (University of Minnesota) 

I have had the pleasure of carrying on a stimulating correspondence with one of 
the authors, Dr. Cohen, in connection with our two-dimensional free-Jet cavity studies 
at the St. Anthony Falls Hydraulic Laboratory of the University of Minnesota. The 
comments in the paper are in agreement with our own experience und ideas, on the 
whole.   However, one point could stand amplification. 

The statement by the authors that force coefficients appear to be insenttitivc to 
boundary conditions is apparently correct for blunt bodies at all cavitaiion numbers. 
The following figures comparing experimental data obtained in a free jet at T it = 
0.0375 with results from unbounded fluid-flow theory and closed-tunnel data illustrate 
thispoint vthese are data referred to, but not shown by the authors). Figure Dl is for 
the cup (or scoop) channel and compares data with theory. Figure D2a is for the cir- 
cular cylinder at small cavitation numbers, comparing data with theory also. Figure 

D2b is for the cylinder at larger cavitation numbers, 
comparing free-jet data wUh closed-tunnel data obtained 
by Märtyrer.* 
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c-0 275" 
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chanrwl on dra^ loci- 
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On the other hand, bodies with sharp leading edges, 
when operated in a free Jet at small cavitation numbers 
(that is, at cavitation numbers generally below those 
obtainable in a closed tunnel), experience significantly 
smaller force coefficients than in unbounded fluid. The- 
oretical results at zero cavitation number, Illustrated 
by Fig. D3 for the flat plate, confirm this statement. 

The following three figures show pertinent experi- 
mental data: Flg. D4 presents drag coefficient uata for 
the 15-degree semiangle wedge in a free Jet; it contains 
much ol the information shown in the authors' Fig. 8, 
but an experimental point obtained at zero cavitation 
number has been included, as well as the theoretical 
result at zero cavitation number (indicated by an arrow). 
The solid line in the figure represents the linear theory 

''V,. Murlyrer, ' Kraflsnu'ssun^fn an WidiTstand» Korpvrn und riugelprofiK-n i 
Wasstrslrom hvit Kavitation," pp. i6S-<JHli in "llydron-.i'ili.mische Problenie do 
S< hiffsrnt ru-bs,"  I-.d. by G. Kenipf and K.  KOITSUT, Hanilmri; (I'H^). 
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for the free Jet while the broken line represents Wu's linear theory for infinite fluid 
and the dotted line represents the infinite fluid solution by the Riabouchinsky model. 
Figure D5 gives similar information for a 12.5- 
degree semiangle wedge. The free-jet linear theory 
is not available for this case.   Figure D6 contains 
data for two inclined flat plates in a free jet.  The 
unbounded fluid result is represented by the solid 
Mne taken from Wu's nonlinear theory.   This solid 
i ifte also represents closed-tunnel data obtained by 

irkin at cavitation numbers exceeding the mini- 
iwi for the tunnel (as shown in the authors' Fig. 
Vk   The arrows again represent the  theoretical 
suits for the free-jet How at zero cavitation num- 

tet. It appears that the free-jet coefficients approach 
Ike unbounded-flow coefficients only at some finite 
cavitation number well in excess of zero. 

A comment also appears in order reKardini; the 
authors' final statement referring to experimental 
data for three-dimenbional cavities.   It should not 
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seem surprising that shape effects on three-dimensional cavities in a free jtt are 
very small or even nonmeasurable as compared to those on two-dimensional cavities. 
Nevertheless, it should be noted that the experimental work by Self and Ripken was 
performed in a free-jet tunnel with a contact window touching the jet for its full length 
and closing an eighth of the jet circumference (45 degrees). The tunnel might thus 
be considered slotted wall rather than free jet. Self and Ripken performed a limited 
experiment using two contact windows opposite each other and enclosing a quarter of 
the circumference. Close inspection of their data shows a small but systematic 
increase in cavity length for the more closed section. There are, Incidentally, some 
Interesting problems associated with cavity flows in slotted-wall tunnels, both two- 
and three-dimensional. 

A. Silverleaf (National Physical Laboratory) 

In addition to the work described here, I am particularly interested in several 
cases which are not mentioned and do nut appear to have been studied. In hydrofoil 
work in the Lithgow Tunnel at N.P.L. we have been using slotted-wall test sections, 
and 1 feel that these configurations have advantages outweighing the difficulties they 
introduce. We are interested in three cases: first, the two-dimensional foil in a 
two-dimensional slotted-wall section having solid sides and slotted top and uottom: 
second, three-dimensional foils, or wings, in slotted-wall and in closed-throat sec- 
tions; third, two-dimensional foils in a section with solid sides, slotted bottom, and 
a free surface, such as might be incorporitcd in a free-surface water tunnel or cir- 
culating water channel. 

At N.P.L. we hope to complete within the next eighteen months some compara- 
tive tests with the same foils in a number of different test sections in a water tunnel 
and in an open towing tank. Using forced or artificial cavitation I think we can obtain 
better experimental data on wall correction coefficients than if the work is carried 
out only in a tunnel. 
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W. A. Clayden 

As Professor DiPrima suggested, A. H. Armstrong at ARDE extended the work 
of Simmons and computed the cavity size and drag of a flat pialu as a function of 
cavitation number and blockage ratio for a free jet. In our work we measured the cav- 
ity length for various two-dimensional flat plates in our free-jet tunnel. Armstrong's 
boundary corrections were then applied. This had the effect of collapsing the results 
onto one curve which is in close agreement with the theoretical curve obtained by 
Perry, Plesset and Shaffer. A similar result was obtained for the widths of the cavi- 
ties as well, although, since the blockage correction is considerably less, the effect 
is not so striking. 

M. P. Tulin (Office of Naval Research) 

Professor DiPrima has made a general remark about the validity of linearized 
theory. It should be dated in defense of such theory that questions of agreement 
between linear and non-linear theory must certainly depend upon the angle of attack, 
the camber, and the thickness of the bodies producing the flow, as well as upon their 
shape. For example, the force and moment predictions made by a linearized theory 
for the case of a flat plate hydrofoil become asymptotically exact as the angle of 
attack approaches zero. At the same time the linearized theory becomes increasingly 
awry as the angle of attack is made larger. As is well known then, the case for line- 
arized theory may thus be made as bright or a» gloomy as one wislies, all depending 
on the angle-of-attack ranges chosen for discussion. 

The important fact exists that linearized theory is proving quite satisfactory in an 
increasing number of important applications to very practical engineering problems. 

R. Timman (Technische Hogeschool, Delft) 

Dr. DiPrima mentioned the Winterhall correction we had been doing for some 
years previously. We got the exact solution in the integrals. It turned out, however, 
that if we wanted to nave numerical results it was somewhat more convenient to work 
with integral equations and do the thing numerically. 

Of course, one can go back one step and introduce integral equations along the 
walls.   I think that would be sufficient unless the walls are too close to the hydrofoil. 

Hirsh Cohen and K. C. DiPrima 

In reply to Marshall Tulin, we would like to say that we are in agreement with 
his remarks. What we were trying to point out was simply that the linearized theory 
that has been used to estimate boundary effects does give the correct qualitative 
effects, but does not, at least in the cases considered here (the IS-degree, half angle 
wedge, and the flat plate at angle 01 attack of 12-degree), give the accuracy of a non- 
linear theory. 

The question of slotted-wall tunnels has been brought up by Dr. Silverleaf and by 
Prof. Silberman. It seems to us that judginj; from the results presented in this paper, 
little effect on force cneffirients is to be expected.   K seems reasonable to expect 
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the results for force coeffitients to lie between those for solid wall and free-jet test 
sections. On the other hand, blockage effects on cavity dimensions are of some 
interest. For a given model and funnel size, lower cavltation mimberß may be 
obtained with a slotted-wall tunnel. It certainly seems worthwhile vo make blockage 
studies for the slotted-wall case. There seems to be need of some caution in using 
such test sections as proven by the instability prob'ems experienced at A.R.L. The 
possibility of cavity-slotted-wall instability interactions should be looked into. 

Professor Silberman has raised a point which has, indeed, troubled us. He 
remarks that for very low cavitation numbers the drag on the 15-degree and 12.5- 
degreo wedges is lower in the free jet than the drag predicted in an infinite stream 
by the exact theory. Dut this is borne out in his experiments only by the single point, 

= 0, The linear theory predicts that the drag in a free jet will be lower than in the 
infinite stream at all cavitation numbers. One feels that this should also appe »r in 
the experimental results. U there is an abrupt rise in the drag as the cavitation num- 
ber increases from zero, it certainly should not become greater than the Infinite 
stream value. 
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SOME AERODYNAMIC CAVITY FLOWS 
IN FLIGHT PROPULSION SYSTEMS 

William G,   CurneLl 
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Soniv examples ar»' pivcn of the apiiluation ol the Helinhul'.z- 
Kirthol'l liv»'-»ircainhni' theory of ittcumprcssibte lotential flow, along 
with rruHing calculations, to the practical estimation of separaterl j;as 
flows üctiirrin(j in several '"unfiguratiuns taken from flight propulsion 
■ivstems. Conflgiiration« considered are the perforated plate, the 
compressor-blade cascade, the vee-gutter flameholder, the target-type 
thrust reverser, the butterfly valve, and the perforated lombustor liner. 
Results include cavity shape, drag force anil total-pressure loss. 1 he 
theoretical predictions are cuuipared to experimental results in most 
cases and reasonable agreement is found m the areas wherein the 
theoretical assumptions are justifiable. The effects of compressibility 
and scale are discussed. 

INTRODUCTION 

In the development cf modern air-breathing flight propulsion systems, powered 
by aircraft gas turbines anr1 ramjets, certain internal aerodynnmir problems arise 
due to the occurrence of separated flow, viz., streamlines which separate as a result 
of boundary layer action from the contours of immersed bodies or passage walls. 
Similar hydrodynamic problems arise in the fuel and propellant systems of liquid 
rocket engines. 

In such separated flows, "dead water" regions arc formed downstream of the 
points of separation of the fluid from the solid boundaries. Within the separated 
regions the fluid is more or less at rest relative to the moving fluid nearby. The 
separated regions may be styled us "aerodynamic cavities" in allusion to the true 
cavity flows in hydrodynamics, where gas filled cavities occur in similar liquid 
flows. In some cases, the separated flow is designed for fe.g.,the separation rosions 
of hot gas behind bluff-body flame holders in aircraft gas turbine and ramjet com- 
Oustion systems). In other cases, the separated flow Is not desired,but occurs under 
certain operating conditions (e.g.. the separation regions of air behind stalled axial- 
compressor  blades in  aircraft  gas  turbines  operating at  off-design  conditions). 

3!J1 



W. (,. t;orncll 

In order to obtain optimum designs of the configurations in question, it is desired 
prior to model tests to predict the characteristics of the separated flow fields. The 
desired results are usually overall results rather than the complete details of the 
flow field (e.g., force on and geumelry of separated region behind an immersed bjdy, 
angular deflection and mass flow of a jet of gas, average total-pressure loss of gas 
flowing through a passage). 

In cases where flow velocities are low (incompressible flow) ana the flow con- 
figuration is made of or can be approximated by solid surfaces composed 01 linear 
elements, along with separated streamlines upon which static pressure Is constant, 
and where the streamwise cavity length is long compared to conflgurational element 
size, the desired results are conveniently obtained by application of the free stream- 
line method originated by Helmholtz (1) and Kirchoff (2) and perfected by Michail (3) 
and others. The method assumes an infinitely long cavity with steady, two- 
dimensional, body-force-free, potential How of an incompressible, nonviscous fluid. 
As a result or.e obtains immersed-body force, separated region geometry, jet deflec- 
tion, and mass flow. Mixing calculations then yield total-pressure loss in passage 
flow cases. With good approximation, certain three-dimensional flows can be treated 
by consideration of "equivalent" two-dimensional flows having the same "cross- 
se^tional" areas for flow. In passage flow cases with higher flow velocities, the 
compressibility effect can be accounted for at least approximately by a compressible 
generalization of the mixing calculation, if theory or experiment is available for 
estimation of the geometry of the separated flow region. Scale effects (viscosity 
effects) may be neglected in cases where the separation points are fixed by sharp 
edges and where the fluid-friction forces in the average streamwise direction arc 
negligible. In other cases, the qualitative nature of the scale effect maybe estimated, 
as discussed elsewhere in the paper. 

PHYSICAL CONCEPTS OF FREE STREAMLINE FLOWS 

Early work (2) on free streamline flows included the case of a small sharp- 
edged orifice in an infinite plate and the case of a flat plate normal to an unbounded 
stream. In the former case, the theoretical contraction coefficient agreed well with 
experimental values obtained on both two-dimensional slits and round holes (4). In 
the latter case, the theoretical drag coefficients were found to be far lower than 
experimental values (5). This discouraging result impeded further practical appli- 
cations of 1' ? method for many years. 

At the root of the large difference between the two cases is the difference between 
two basic types of flow: (a) The relatively restricted flow of a jet through an opening, 
as in the case of the sharp-edged orifice, and (b) The relatively unrestricted flow of 
a free stream over an obstacle, as in the case of the flat plate. In the latter case., 
instability of the free boundary small asymmetries, entrainment, etc., cause »niall 
motions in the cavity, the velocities of which cannot be neglected relative to the free 
stream velocity. In the former case, velocities likewise occur in the cavity, but are 
more nearly negligible relative to the large velocity of the jet. Thus, the fundamental 
assumption of a stagnant cavity is more justifiable in the case of the orifice than in 
the case of tK* plate and consequently there is belter agreement between theory and 
experiment. This important point can be understood best by considering the two 
cases in qv i'suon as limiting cases of the more general case shown in Fig. 1. The 
general case may be considered as a cascade consisting of an infinite number of 
sharp-edged flat plates of breadth   i.. spaced apart by spacing i along a line normal 
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to the uniform parallel flow infinitely far upstream of the plates. The upstream flow 
at Section 1 in Fig. 1 has velocity ».. Alternately, this rase maybe considered as 
an infinite number of sharp-edged orifices of opening t - h, spaced apart by spacing 
t. Separation regions or cavities extend infinitely far downstream and are enclosed 
by the free streamlines originating, Irom the sharp edges T and r of the solid bound- 
aries. The static pressure is assumed to be consiani at the downstream value on the 
free streamlines and within the cavity. Under the assumptions used, the fluid velocity 
is then constant on the free streamlines and discontinuously drops to zero ii. the 
cavity. Infinitely far downstream at Section 2, the cavities have width t and are 
interspersed with jets of velocity *_, and breadth fl - n, or alternately, it - ui, 
where is the "contraction coefficient" for the orifice case. The model is completed 
by visualization of a mixing region between Section 2 and Section 3, where a uniform 
parallel flow of velurity «3 exists. The basic geometric parameter of the configura- 
tion is ii t. The case of the single plate is obtained by \, t —^ <>, viz., t -^ . . The 
case of the single orifice is obtained by ii t —> •, viz., h —» .In the general case of 
fi 1, t , the jet velocity «2 »! by reason of continuity of flow, the ratio «_, ». 
increasing as b t Increases. Thus, the validity of the stagnant cavity assumption 
increases as h t increases, a result which is borne out by comparison of theory and 
test. 

Therefore, internal flow configurations having cavities enclosed by jets having a 
velocity relatively high compared to the upstream velocity arc particularly amenable 
to free streamline analysis. Since there is interest in other configurations (notably 
single bluff bodies) in which this is not the case, and since hydrodynamic cavities are 
frequently of finite length, numerous other theoretical methods based on various 
models of the flow have been developed in order to obtain bettor agreement between 
theory und experiment. Among those should be noted the model of Riabouchinsky (6) 
which employs a downstream "reflection image" of body and cavity, the mndel of 
Gilhari' and Rock (7) which has a finite cavity "ventilated" upstream into aiMher 
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"Rtemann sheet." and Ihe model (if Roshko (8) which uses an infinite cavity havinR 
linear boundaries far downstream. All of these models suffer from the requirement 
that either the drag coelfici'.-nt or the pressure within the cavity be known from 
experiment in order that the flow model can be defined. A model proposed by 
Weinitf (9) utilizes free streamlines which terminate in "winding points" in order to 
account somewhat for free boundary instability. Tulin (10) developed a "linearised" 
theory for relatively slender bodies. Any of these models can be used to improve 
the results of free streamline analysis of single bluff body or finite cavity cases, 
although analytical difficulties are sometimes large. The fact that such a large 
variety of models gives good results demonstrates the fact that the exact shape of 
the criviiy does not affect the results too strongly. 

The effect   of  compressibility and scale  are discussed later in the  paper. 

ANALYTICAL METHODS FOR DETERMINATION 
OF FREE STREAMLINE FLOWS 

The classical meihod for solution of free streamline problems grew' under the 
efforts of Helmholtz (1), Kirchoff (2). Michell (3). Plarck (13). Christoffel (14), 
Schwarz (15). and Rayleigh (16) to the presently accepted method as delineated for 
example by Lamb 117) and especially well by Milne-Thomson (18). Thus, a flow field 
comprising linear solid boundaries and separated free streamlines is represented In 
the "physical" or / x • iy plane by a Laplacian net of streamlines ('I1 - constant) 
and potential lines (i' - constant), described by the complex potential *' * i*. The 
complex vulocily of flow is given by , u iv i r M t'.ic, where r is an arbitrary 
reference velocity. Thus, maybe used as a position variable to define a "hodograph" 
or plane having the real coordinate u r proportional to u, the x component of physi- 
cal plane velocity, and the imaginary coordinate v r proportional to the > component, 
likewise, a "logarithmic hodograph" or 11 Im i plane may be defined, having the 
position variable I! In u- v-'i '- i tm-'iv m. Accordingly, the free stream- 
lines in the ? plane may be conformally transformed to circles about the origin in 
the plane and lines parallel to the imaginary axis in the l* plane Likewise, the 
linear solid boundaries transform to rays from the origin in the plane and lines 
paral' 1 to the real axis in the II plane. Thus, the physical flow configuration in the 
' plane may be studied in terms of the relatively simpler configurations of circular 
arcs and rays in the    plane and of straight lines in the M plane. 

The physical problem involves the determination of the complex potential w t.\, 
the complex velocity /1 and finally the static pressure ;i from the Bernoulli relation 
P t 3) ii- v-'i - constant. The relation w^/iis obtained indirectly through an 
auxiliary variable '/ so defined that the ? plane is a half-plane on the real axis of 
which is mapped the polygonal boundary of the flow field in the II plane, by means of 
the Schwarz-Christoffel transformation function. Also mapped on the 7 plane is the 
(rectangular) polygonal boundary of the flow field in the v o» iT plane. Thus. Lie 
relations Hi ?i and 'V ' are obtainable from the mappings. Then, the relation n ?.\ is 
obtainable by integration as >r'i .1 ''i r-"1*1 IWI.^I i^ .iz. Finally, having 1.:' , 
v / i, and «(7.\, there is obtained, at least implicitly, "i /1 and. therefore,   i ■/1 and pi / ■. 

The "classical" method just described can be used in any free streamline prob- 
lem, although therein !■■.: guarantee that a closed-form solution can he obtained, since 

-,...    MiNovui   ■ '■ '■ ■   ■I'.I\   Hirl'l.i.ll   i IZ*   u.r    inl.ii'   liuu   lii.-.tofi. .11    ii;-.   issivMir,   ,,|   i!,, 
1.,, tlM.tl ni'l .1        ■■■<■ li.  1: .1: ' I!...II. 
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integrals süiiietimes occur wl ich cannot be evaluated analytically. A less general 
but simpler method can be used in some cases, viz., when the flow field '( , in the 
hodograph plane can be synthesized by physical reasoning. Then "V t is obtained by 
integration of />   i     , 1 •■5      "'i .I'V  :  i-l . 

EXAMPLE OF THE SLAT CASCADE 

As an example of the sort of application of the free streamline method considered 
herein, the slat cascade may be treated. The two-dimensional model is shown in 
Fig. 1, characterized by the blocked area ratio h 1 . Equivalent configurations of 
practical interest are the three-dimensional (same blocked area ratio) sharp-edged 
orifice plate, the sharp-edged orifice symmetrically placed in a channel, the per- 
forated plate strainer, and the ribbon screen. It is desired to predict the total- 
pressure loss, the drag force on the solid elements, and the flow through the cascade. 
The solution may be obtained as a special case of the solution for the stalled flat 
plate cascade (19) or, for illustrative purposes, maybe developed as follows, utilizing 
the alternative physical synthesis approach discussed above. Let the r x ■ iy 
plane contain the slat cascade with the origin taken at the center of one of the infini- 
tesimully thin plates. Under the previously stated assumptions of the free streamline 
theory there exists a complex potential function 'V <ii i*. where .|> and T are 
respectively potential and stream functions. The nondimensional complex velocity of 
the flow is taken as m - ivi *_, where u and v are respectively the * and v com- 
ponents of / plane velocity .\nd where » , is the uniform velocity of the jets at x 
Since \'\  ■ ,'/ is an analytic function of /, assuming'! tobe likewise, the   7   plane 
may be conformally transformed to or mapped upon the plane, (nondimensional 
conjugate hodograph plann) yielding another Laplacian net of * ard I1 lines, which may 
be visuali^ed as a physically fictitious potential flow field in itself. A point-to-point 
reciprocal correspondence then exists between the planes of / and . defined by the 
transformation function /     /'.us yet unknown. 

The flow field in the    plane is shown in Fig. 2, and may be physically deduced 
to be so as follows:  The flow in each strip of width 1 in the / plane maps into the 

-u/W, 

€- i_ _^_- 

A A 

F, j. .'.   •  ll.Mi,,,;r i;.|, |.Uiu    l.ir  -.l.i!  > ,1.-1 .ui.. 
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unit semicircle in the plane. All streamlines (total volume of flow = »,1) emanate 
from the point , \, the transformed image of the line /, - , and terminate In 
the point ' , tl, the transformed image of the line /, ■ •. The plate surfaces TT' 
map into the imaginary axis. The free streamlines T2 and T 2 map into the unit 
semicircle. All streamlines of the flow in the /-plane strip map into streamlines 
contained within the plane semicircle. The mapping is repetitive in that each *- 
plane strip maps into the same   -plane semicircle. 

The nature of the flow at ,18 that of a source of strength (volumt flow) u,!, 
while at 2 there must exist a double sink of strength 2w,t. This follows from con- 
sideration of the symmetric nature of the , flow and from the requirement that the 
imaginary axis and the unit ccmicircle be streamlines of the -plane flow. The latter 
requirement further demands the existence of the sources (strength »,0 at 4, s, 
and f) and the double sink (strength 2wtt) at 7. The "reflection singularities" added 
in the plane are without (or on) the boundary of the unit semicircle and hence do not 
imply nonphysical image singularities in the z-plane flow. Finally, all required 
boundary conditions in the z-plane and -plane flows are satisfied and the -plane 
flow field is given by the complex potential due to the six singularities as 

».■(i      Ujt   21   ln(   2 -   \2)  ■  li)(   2 -  1   \2i  -  2  ln(   2 -  H' . (1) 

The complex velocity of the   -plane flow field is then given by 

■ IS d       (»,t  2  l 2    r2 -   \21  • 2   ( ■2     '.   \2i - 4    (   2 -  1>  . (2) 

The derivative of the transformation function n   ) is thei1 given by 

,1«  (I .I«'   rf 

■" •'      ,i"; ,u 

i * ] t   2 ■*,   i   2    (   "        \"     ■   2    (   " -  1   \" i   - 4    ( ,    -   11 

which equation may be integrated to yield 

(3) 

1\'..::;-..>;:;.2u1.:;-).c1 /      .\.   2   ^^ In      , x  •   \ln v ., ■   2 U.  . .,{• C, (4) 

where c, is an arbitrary constant of integration.  Equation (4) is the transformation 
function «i   i linking points in the t and    planes. 

The   -plane parameter \ may nowbe evaluated from use of the physical condition 
that the plate breadth ;. is given by the relation 

(5) 1.          (1    1 '.I/ ,    ■  ,T.. 

Substituting (4) in (5) with    ,■ i and    , i, yields the relation 

i. t 1      \       J l 1         \-'; lr   ' ,  M (6) 

which gives iUe parameti'r \ i, «, implicitly in terms of (he blockade i. i. Thus, 
the plane is eompleti'ly determined for a chosen /-plane geometry n t. and the ,- 
plane complex velocity u iv «_, ean lie determined at .my point. In particular, 
at the point    ,, the complex velocity is u,      .,      .,  '.. 
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Continuity of flow in the z-plane requires that 

»jid ■   u    *jt (') 

so that 

,      1 - A (8) 

is obtained for the cavity wiJth parameter and  .      .(i> 11 Is obtained from (6) and (8). 

T^ie result may be expressed in terms of the  contraction coefficient defined 
geometrically by 

(1 -   .I f i - 1. 11 

which yields .     .(li 11 from (6), (8), and (9). 

(9) 

The drag force per unit span D on one of the slats may be expressed as a non- 
dimensional drag coefficient cD   n M 21 *, b as 

(10) (i      u2( t ID \2 

from application of the momentum principle to one strip of fluid of breadth t and 
from consideration of the Bernoulli relation for the lossfree flow between Sections 1 
and 2.  Then, (6) and (10) yield CDni 11. 

The total-pressure loss pT PTI - rj, may be calculated under the assumption 
of constant momentum mixing of the jets and cavities at Section 2 to yield a uniform 
stream of velocity »., », at Section 3. Thus, applying the momentum principle and 
the continuity principle to the fluid between Sections 2 and 3 and noting that PT2    PT) 

as assumed, it follows that the total-pressure loss coefficient 
given by 

■pT fl   2V 

I 1 ^,2 N2 

is 

(11) 

so that (tf) and (11) yield   M. n. 

Plots of velocity ratio \, contraction 
coefficient ., drag coefficient c,, and loss 
coefficient against blockage i> t are shown 
in Fitss. 3a-3d, compared to two- and three- 
dimensional (same blockage) experimental 
data on various configurations. Figure 3a 
shows the theoretical prediction for \(\> t i 
compared to experimental data of Betz and 
Petersohn (20) for the cases of water dis- 
charging Into air (circled points) and air 
into air (x points). It will be noted that the 
former tests agree most closely with theory. 
Figu-e 3b compares the theoretical 'i. n 
wilh inpe orifice water tests of Weisbach (21) 
iind ax:symnietric nozzle air tests of Grey 
and Wilsted (22). The two-dlnumsional 
theory Is compared tothethree-dlnitiisional 
data at the same blockage 1. i. Figure 
3c  .shows  the   thcorrtical   prediction  da- 
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CnUj »j)2, or drag CDefficient based on jet velocity head, compared to air tests of 
Langer'(23), who measured slat forces with a two-component balance. Figure 3d 
compares the theoretical 'bit to the test results of various investigators (24) on 
perforated plate .'trainers, ribbon screens, and strip screens. The test results agree 
reasonably well v/ith the theory, especially at high solidity or blockage > i. for which 
cases the stagnant cavity assumption is most valid. Generally, experimental values 
of 1 - V f||, and are less than theory predicts, undoubtedly due in part to the 
lack of perfect sharpness of the experimental plate edges. 

THE STALLED CASCADE OF ARBITRARY STAGGER 

In oll-dusign performance analysis of axUMlow compressors for aircraft gas 
turbines, it i.s important to be able to predict the performance of blade rows oper- 
ating in stalled condition. A simple model (19) of a blade row is the two-dimensional 
cascade of infinite.simally thin flat plates shovn in Fig. 4 and characteri/.ed geonut- 
rically by solidity i • and staw't- , The configuration is a gencialization of that of 
the slat cascade ( ^ 90 . , = 0 ) previously discussed and may b«- analyzed by a 
similar method. 
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Fig. ic - Comparison of theory and experiment for 
normal-force coefficient of slat cascade 

In the generalized case, the flow is complicated by the tact that the cascade 
causes a  deflection , -    j of the jets, while the mixing of jets and cavl'ies 
causes a further deflection, to yield an overall deflection i "   .<•   The situation 
is conveniently visualized in terms of the conventional "velocity triangle" of the 
cascade, as shown in Fig. 5. It is noted that », and *3 have equal * components 
(normal to cascade axis) as a result of continuity o! flow, while »j and »3 have equal 
y components (along cascade axis) as a result of momentum considerations. The 
conventional   vector mean velocity" *, and its inclination •. are defined such that 

2  tnn     ,        tin     ,   •   tnn 

v,       .-os     , 

1       "'"     3 

W      Wi COS        .    COS 

(12a) 

(12b) 

The free streamline analysis of Bclz and Peiei BOUII (20) yields the jet velocity 
parameter \ w, w2 and the jet flow angle 2 as functions of cascade geometry 1 t 
and    and of angle of attack , -    .  The cavity width parameter    then follows 
from consideration of continuity of flow as 

1   -   A cos (13) 

Analysis of the mixing of jets and cavities (19) then yields the overall cascade 
performance. Thus, the final velocity w, and its inclination , are obtained from 
continuity and momentum consideration as 

2      2     ,1 i ^ Wj       sin     2. 1   '   ( I   -  . 1     tnn        j 

tiln     ,       tan      .,  (1   -   .. ) 

(14a) 

(14b) 
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The vector mean velocity ». and its inclination are then obtained from (12) and 
the overall changes in static and total pressure are obtained from continuity and 
momentum considerations as 

'I-,      I»,)   i I   2)   A
2

       ,-<>s; 

'I'Tl        S'l.i1   "   2)   * 

r 2        (1   -     .) sr. ;!   ,1 1    -     \J1     X- 

M . 1 -' . 

(15a) 

(15b) 

The force N on each plate is normal to the plate and may be expressed in terms 
of a normal force coefficient rN v . 1 2v **. referred to » . Tlien. conventionally, 
the total plate lorce may be resolved into the lift I. and drag H forces, respectively 
normal and parallel to « .   Then, the lift and drat; coefficients are given by 

V        ')     1   2,   .-1       C-N 
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The nortn;il force coefficient c"N is 
obtained from momentum considerations 
as 

HI   1 ) 

<      sin I 1    •      \J 1    \J 

_'   COS ,     Sill 

( 1    '» i   s in   (     , (17) 

Then, (16) and (17) maybe used to obtain 
c,    and Cj, . 

Typical theoretical results (19) are 
shown in Figs. 6a-6c lor the case of the 
stagger     =30   and the angle of attack 

<■. Companion results for n (tur- 
bine case) are given in Ref. 19. Figure 
6a shows the relation among jet velocity 
ratio \, jet turning angle , solidity I t . 
and angle of attack . Figure 6b shows 
the relation among overall turning , 
loss coefficient .it. and . Figure 6c 
shows the "polar diagram" where lift 
coefficient c, "V»! * ,5 's Pi0!'6*' 
as   a   function   of  drag   coefficient 

Fip.    4   -    Model    for   flow   in   ätalled 
cascade of  stuüüfr 

■i   -   Vcl'ii if»    '.ri.un.-li'    fur    .il.illcil   i .isi .iii( 
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ci) CD'S'I '*; ,2 *or various i' t and . Figures 7a and 7b show comparisons of the 
theoretical results with experimental results of various investigators. Figure 7a 
compui-es the thi-orutical predictions of \ and with experimental air test data of 
Betz and Petersohn (20) for i t = 12. inlet angle , = 0. and various stagger . 
Figure 7b shows theoretical normal-force coefficient rNc.i, ■*1\1 for various solidity 
I t. and several values of angle of attack and stagger - 90". compared to air test 
results of Langer (23). Experimental values of \ and exceed theoretical predic- 
tions, the discrepancy undoubtedly being due in part to the lack of perfect edge sharp- 
ness. The low values ui normal-force coefficient at low incidence probably imply 
the lack ')! fuily developed stall. The force coefficient comparison shows improve- 
ment in agreement between theory and test as solidity increases, a trend shown by 
other experimental data on \ and    (19). 
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THE VE;E-GUTTER FLAMEHOLDER 

In afterburners of aircraft gas turbine power plants and in ramjet combustors, 
various bluff bodies are used as flamcholders, the downstream cavities being used to 
stabilize combustion. A typical configuration is composed of concentric rings of vee 
cross-section. A simple model (25) is the two-dimensional vee-gutter cascade shown 
in Fig. 8. The configuration may be considered to be a generalization of the slat 
cascade ( i = 90 ), with the additional geometrical variable of gutter-included half- 
angle . The desired results are again the cavity width parameter , the drag coef- 
ficient (',, and the total-pressure loss coefficient    for a chosen cascade geometry 
given by blockage i. t and half-angle 

The configuration of the vee-gutters and cavities is aerodynamically equivalent, 
under the assumptions made, to the two-dimensional contraction of wall angle > and 
area ratio 1 - i> t. The contraction was analyzed by von Mises (26), utilizing the 
classical method, in order to obtain the contraction coefficient . (1 - .. y d - l> n 
as a function of i. t and , a result useful in Hie prediction of flow through conical 
exhaust nozzles (same area ratio) of turbojet engines. The theoretical results of 
von Mises (26) are shown in Fig. 9 in terms of    as a function of i> t and •. 

Then, as in the case of the slat cascade, drag coefficient C,, and loss coefficient 
are calculated (25) as functions of i. t and by application of the continuity and 

momentum principles. The theoretical results are shown In Figs. 10» and 10b. In 
Figs, lla-llc, the theoretical results are compared (25) to experimental rebdlts of 
various investigators. Figure 11a compares theoretical values of wake width to 
pitch ratio for various half-angle and blockage i> t to experimental results of 
Grey and Wilsled (22) for air leslu of conical nozzles. The experimenUUy deternt'.ned 
contraction coefficients are expressed in terms of equivalent values of for the 
comparison. Figure lib shows theoretical drag coefficient C,/», «ji3 for « 140.5° 
and various i> t compared to experimental data of Langer (23) from air test.-,. Fig- 
ure lie compares the theoretical prediction for loss coefficient for =45' and 
various i> t withair and combustion gas test results of Noreen (27) on two-dimensional 
single-gutter flanv lölder nodels. In general, theory and experiment compare best 
at high blockage i> 

THE TARGET-TYPE THRUST 
REVERSER 

In order to slow down jet aircraft 
upon landing, without decreasing engine 
rotative speed so much that large 
engine acceleration times would be 
required should landing pluns be aban- 
doned, a variety of jet thrust spouers 
and rcversers have been investigated. 
One type of jet thrust rcverser is the 
target type, in which an obstacle of 
concave form on the upstream face is 
inserted across the jet in order to 
deflect the jet upstream, thereby pro- 
viding some reverse or negative thrust. 
For design purposes, it is desired to 
obtain the shape of and velocity in the 
deflected jet us a function of target 
geometry, so that effectiveness of 
thrust reversal may IK- studied. 

V\£.  n   -  Mtjfit-l for How  m 
v • c ~L' nt t«' r"   i -t -*i ,tclc 
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Fig. 4  - Theoretical wake width to pitch ratio 
of vee-gutter cascade 

Considering a cylindrical thrust reverser of internal diameter n and axial length 
<, positioned symmetrically across a jet of diameter a, the equivalent two-dimensional 
configuration is shown in Fig. 12. The model reverser has axial length c and breadth 

the upstream jet breadth being n, where c .1 and i> a     ,0 h2 define the 
equivalence of the two- and three-dimensional configurations. The initial jet of 
breadth > and velocity *, splits into two symmetrical jets of width a 2 and velocity 
A,, since the jets are bounded by the free streamlines along which the velocity is 
taken as constant. The desired result is the jet deflection angle as a function of 
target and jet geometry i n and c ». Sarpkaya (28) has analyzed the configuration by 
the classical method in order tn study the flow in water turbine "scoop" buckets. 
The theoretical results are shown in Fig. 13, compared to three-dimensional test 
data of Siao and Hubbard (29) and De Haven (28) taken with water jets in air. The 
check between theory and test is best at low i> a and low c .<, suggesting that fric- 
tional effects may be responsible for the lack of better agreement. 

A similar analysis may be made uf a conical target of Internal diameter n and 
included angle 3' - i positioned symmetrically across a jet of diameter l. The 
cquivalont two-dimensional configuration, shown in Fig. 14, has breadth ii and included 
angle 2i the jet breadth being ■•, where (0 tit2 defines the equivalence. 
The desired result is jet deflection angle as a function of target ana jet geometry 

i und . Siao and Hubbard (29) analyzed the model configuration by the classical 
method in order to study water turbine bucket flows. Their theoretical results are 
.shown in Fig. 15, compared with results of their threc-dimc-nsional experiments on 
water jets in air. Measured deflection angles arc lower than predicted and increas- 
ingly so at larger l> n, presumably due mostly to the effect of friction and possibly 
;ilso to the lack of perfect sharpness of test plate edges. 
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Kin.  1-  - Model for llow avvr i ylindriv.il Iliriif:'. 

From the point of view of thrust rpvprser cffrctivcntss, viz., lai'gcst deflection 
antile for smallest target size, the results of the two iünfij;\irations show that 
thrust reversal ( 90 ) begins at i. < = 2. smaller targets giving 9C . Little 
additional deflection is obtained above about ;. . = 4. For the cylindrical target, 
increasing axial length much i-.bove about . i = 1.5 gives little additional deflection. 
For the conical target, the included half-angle , must be less than 90   in order 
to get reversal.  As is decreased from 90 , deflection increases at a decreasing 
rate. Generally speaking, the conical target requires greater axial length ♦han the 
cylindrical target, for the same diameter and deflection angle, making the latter 
preferable because of smaller size and weight. 
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THE BUTTERFLY VALVE 

Butlerfly or damper valves are (icqueiitl> used as flow reguluturs in liquid 
rocket engine piping, aircraft gas turbine control system piping, and aerodynamic 
test facility ducting. It is desirable to predict the flow characteristics and total- 
pressure losses of such valves, as well as the forces acting on the regulating plates. 
A two-dimensional model of a butterfly valve is shown in Fig. 16. A plate of breadth 
t is placed in u channel of the same breadth making an angle with the channel axis. 
Gaps of breadth M 3i< il ,!)t(I - sm i exist at each side of the plate. A cavity 
is formed behind the plate, having breadth i      il 2 in ■ infinitely far down- 
stream from the plate. The asymmetry of the cunfiguralmn causes different breadths 
.'< 2 and r 2 of the jets outside of the cavity. The velocity »_, exists in HHh jets, 
assuming uniform static pressure at Section2. The "average"contraction coefficient 
of the valve may be regarded as M 2 n   '   •  .   .. 

Ehrich (30) made an approximate analysis of the model configuration b\ treating 
the flow in two parts as shown in Fig. 17. The two approximate component configu- 
rations have unknown upstream breadths respectively equal to i ' : and i 2. where 
i ' • t i ; otherwise boundary conditions are the same. Then. Ehrich recognized 
that the configurations of F'g. 17 were equivalent to von Mises' (26) two-dimensional 
contractions (or. likewise, the author's (25) vee-gutter cascades). Thus the con- 
traction coefficients  .' and      may bo obtaine'', a»     '■■' • ■.met        .  .   i,  where 

1 .i and-. 1 ■ < i" are respectively the blocked area ra'.ios of the two 
approximate configurations and and    are the wall angles. Then, the contraction 
foefficlep    ' 1 2 ■'   '  ■      'is obtained   in terms  of valve  closure angle        1'  '-ich 
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obtainud the (normal) forct1 ailing un the valve plate by consideratiün of momentum 
and continuitN. in terms o! cuinponcnt axial and lati ial force coefficients as; 

1 ■"   r.-l 

(18a) 

(18b) 

wluic ■   •      i        ii     .    'Ituis.  the   valve force   is obtained   as a function of   valve 
closure 

The total-pressure loss across the valve nia\ be obtained by assuming complete 
mixing ojlhe ("tvity and jeis to yield a uniform flmv of velocity   '■ ,  at Sections 



Acrndvnaniit Cavity  Flows in  Flight I'ropulsion Syslcms 

as shown in Fig. 16.   Thus, from coiiUnuit>  and momentum considerations (as in the 
case of the slat cascade analysis), the total-pressure loss coefficient    is given by 

liT,l   ( 1   2 )  v i    2t   (•( T.l ,        | V      1 (19) 

which yields   ( o. 

Figures 18a and 18b show the theoretical results of contraction coefficient and 
loss coefficient as functions of valve closure angle >. The theoretical loss coef- 
ficient is compared to three-dimensional test data of Weisbach (31), with the latter 
being largest, presumably because of the approximation introduced in the analysis 
(compare vee-euttcr cascade results). 

Other interesting valve configurations analysed by Ehrich (30) include flapper, 
needle, orifice plate, gate, and spool valves. 
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THE  l'EKFORATED COMBUSTOR 
LINER 

In primary combustion systems for 
aircraft gas turbines the combustor con- 
figuration usually consists of one or more 
cylindrical containers, each having a con- 
centric inner cylinder perforated with 
various holes, slots, and louvers. Air 

flowing axially in the annular space between the cylinders enters the inner cylinder 
through the perforations, is mixed with fuel, and burned, leaving downstream. Thus, 
there is considerable practical interest in the flow of air through a sharp- dged 
opening in a wall having air flow along it. It is desired tu prec ict the flow through 
the opening and the "penetration" (described by flow angle) of the jet into the down- 
stream space. McNown and HSL (32) have studied the model shown in Fig. 19. A two- 
dimensional channel of breadth ,.■ has uniform velocity ", it in'inity. A slut of breadth 
t in one wall forms a jtl having area I and velocity ».> at infinity. The jet is 
deflected through an angle . relative to the upstream flow at Section 1. The remain- 
der of the flow passes out of the channel with velocity «4 at Section 4 at infinity. It 
is desired to predict the contraction coefficient and the jet deflection angle for 
various slot'channel breadth ratios i .■ and various amounts of jet flow as charac- 
terized by the velocity ratio v., >,. McNown and Hsu obtained the solution by the 
classical method. Tue theoretical results are shown in Fig. 20. where ami arc 
shown us functions of i i and«.. ■-,■ 
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Ehiii:h (33) analyzed a different ease having combustion interest, wherein air is 
fed lhro%h a sharp-cdyed slut into a parallel flow 'vhieh is directed along the wall. 
For the case of equal total-pressures of the two streams, the surface of separation 
between the streams was calculated, as well as the free streamline separating the 
jet from the downstream wlH boundary. Qualitative agreement was obtained between 
theoretical jet shapes and those obtained experimentally. 
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COMPUESSmiLITY EFFECTS IN AERODYNAMIC CAVITY FLOWS 

The various solutions discussed above assume incompressible flow and yield 
reasonable results as long as this and the other assumptions are justifiable. How- 
ever, in cases of his;h blockage or high inlet Mach number (ratio of flow velocity to 
velocity of sound) or both, results are a strong function of Mach number, since very 
high velocities then occur in the jets. In such cases, the compressibility effect is 
important. Analytical methods are not available for handling the general case. 
However, for specific configurations, solutions can bo made in a manner entirely 
similar to the incompressible calculations. 

An example of a compressible case is that of the slat cascade, treated by the 
author (24) in the study of flow through sharp-edged screens   In this case, the con- 
traction  coefficient     was estimated as a  function of blockage h t   and jet Mach 
number •!,.    The estimation of    was based on air test data on conical flow nozzles, 
taken over a range of nozzle pressure ratios.  Then, compressible mixing calculations 
yielded the theoretical results shown in Fig. 21. where loss coefficient    is shown as 
a function of inlet Mach number \1, for various blocna^es   -.     .. t.   The loss coel- 
ficient     rises with ':, for a ^iven   . i. as might be plv, sically expected.   A subsonic 
flow limit curve is siiown. the locus of conditions »urn that '.'._, ^ 1    The curves .ire 
shown hashed beyond this limit because they arc extra:-..lations. the one-dimensiural 
mixing calculations used b'ing invalid in this region,   further, additional shock wave 

sses will occur in supersonic jets.   The curves ar • terminated by the envelope 
a ve labeled "upper bound fur i liuke.' the locus of coiu'stions such that sonic velocity 
sists across the entire opening of breadth i A 'tual choking conditions will 

obtain somewhere between the subsonic flow limit am. the upper bound for choK" 
Additional calculations could be made t« yield compress.ble drag coefficients for .nt 
slat cascade. 

A comparison ol theoretical ;)redictions of loss cntfficunt with experimc .il 
results (24) is shown in Fig. 22. for air tests of two pei toraled plates. Keasocnk' 
agreement is found between theory and test. 

SCALE  EFFECTS IN AERODYNAMIC CAVITY  FLOWS 

In cases where separation points are definite;-, tixe i n the geomem (s' p 
edges) and where fluid-friction forces in the averagi ueamwise direction aittn on 
solid surfaces are negligible, e.g.. the slat cascadi ttle sc üe effect is found i. •' 
At very low Reynolds numbers (based on upstream - i city . iind slat breadth "U1 

loss coefficient may be expected to fall and then risjc agai'i is the Reynoldsnur.i.'cr 
is decreased, and likewise for the di ag coeffU .ent r . The . ontrai'lion cixflicn t 
mav be expected to rise and then fall again as the Reynold» n iinlitr f.ills, siniila; to 
the case of the single sharp-edged orifice. 

In cases where separation points are geometrically fixed, but ikiul-tnctuinfiu v: 
in the avenge streamwise direction are not negligible, e.g.. the vee-gutter casctulc. 
some scale effect is to oe expected    At low Reynolds numbe: s tin- los« i oeft'k-leni 
ma\  lie expected to iise with falling Reynolds number, and likcws,   for  ilie di ■ 
coefficient ',     T"'    untraction cueffUietit  may   hi-  expected to fall  with fall'tii; 
Reynolds number, similar to the case of the rounded flow mizzle. 

In cases  where the separation points  are not   geometrically  fixed  and lib .: 
fi iction fort es in the average streamwise direction arc not negligible, e g,  a cisi ,;de 
ii|   ■vlintler«,  :i large scale effect  ix to bi- evj>ei ted     As in tie case of the sinule 
cir ula. i vlinder. the locations of the separation points will var;   with the Heynouis 
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numlxr and, possibly. Ihr 'ntiif charactor ul the flow will likewise vary. Fur 
example, experimental data on round-wire screens (24) show a strung increase in 
drag coefficient c. as the Reynolds number decreases in the iet;ion uf low Reynolds 
numbers. 

CONCLUSIONS 

In aerodynamic cavity flows, viz.. lony cavities or waXes of ;datively low veloc- 
ity trailing behind solid obstacles in gas flows, reasonable results can be obtained in 
predictin« cavity shape. d;an force, and total-pressure loss by use of the free 
streamline mf thod of Helmholtz-Kirchoff, along with mixing calculations, if the flow 
velocities are low enough to justify the assumption of incompressible flow, solid 
surfaces can be approximated by linear elements, the Reynolds number is not too 
low, and jet velocities adjacent to the cavities are high enough to justify the assumption 
of a stagnant cavity. 

Results can be ontained foi higiicr velocity flows, if the effect of compressibility 
on cavity shape can be estimated analytically or otherwise. Scale effect (Reynolds 
number effect) will not be large in caseswhere the separation points (cavity inception) 
are fixed by sharp edges and where one may neglec* the fluid-friction forces in the 
average streamwise direction on the solid surfaces. In other cases, the qualitative 
nature of the scale effect may be estimated. 
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NOMENCLATURE 

■i = jet breadth upstream of thrust reverser (ft) 

, = breadth of configuration element in direction transverse to upstream flow 
direction (ft) 

. = axial depth of cylindrical thrust reverser (ft) 

c, = drag force coefficient, referred to upstream velocity head 

C. = lift force coefficient, referred to upstream velocity head 

(\ = normal force coefficient, referred to upstream velocity head 

n = drag force per unit span length (lb/ft) 

i. = opening of butterfly valve, measured normal to valve axis (ft) 

i - breadth of bleed slot in wall of combustor liner (ft) 

,■ =. breadth of channel upstream of bleed slot in combustor liner (ft) 

, = V-l 
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1  = chord of flat ..late cascade 'ft) 

1. - lift force per unit span length (lb/ft) 

H = i n      = non-dimensional  complex position   variable   in  the  logarithmic 
hodograph plane 

M = Mach number 

N = normal force per unit span length (lb/ft) 

P - static pressure (lb/ft2) 

Pi = total-pressure (lb/ft2) 

s = blocked area ratio of butterfly valve or perforated plate 

t = pitch or spacing between configuration elements (ft) 

u = x component of fluid velocity (ft/sec) 

r = reference velocity (ft/sec) 

v' -■ v component of fluid velocity (ft/sec) 

« =• luid velocity (ft/sec) 

iv =(!   f  it = complex potential (ft Vsec) 

x a abscissa in the physical plane (ft) 

\ =   >rdinaU in the physical plane (ft) 

7 = x + ,s   =. complex position variable in the physical plane (ft) 

7. a complex position variable in the auxiliary half-plane (ft) 

= included half-angle of vee-gut'er cascade or valve closure angle of but- 
terfly valve or external half-angle of conical thrust reverser 

= fluid angle measured relative to normal to cascade axis 

,   = stagger angle of flat plate cascade 

= j   -      = anglf of attack in flat plate cascade 

„T   = pT1   - pT,  = total-pic-ssuiv loss (lb/ft"') 

= ,   -     , = overall dofloction angle of flat plate cascade 

= (u ■   iv i I   = nondimcnsional complex position variable in ll'i- hodograph 
plane 

-    ,   -      , = jet deflection angle of flat plate cascade 
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-   i>r (1 i)  w] = total-pressure   loss coefficient,   referred   to upstream 
velocity head 

v = », »2 = velocity ratio 

.   - cavity breadth as a fraction of pilch i 

= jet deflection angle of thrust reverser or combustor liner 

-   = contraction coefficient (jet breadth as a function of configuration aperture 
breadth) 

= fluid mass density (slug/ft3) 

i'  = potential function (ft Vsec) 

I1  = stream function (ft Vsec) 

Subscripts 

ax   = subscript referring to axial force in butterfly valve analysis 

Lit   = subscript referring to lateral force in bu; °rfly valve analysis 

1 K subscript referring to runditions infinitely far upstream of configuration 

2 = subscript referring to conditions infinitely far downstream of configuration 

'.   = subscript referring to conditions after mixing of jets and ravilieb 

4   = subscript referring to conditions downstream of bleed slot in combustor 
liner 

= subscript referring to vector mean velocity in flat plate cascade 
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DISCUSSION 

G, Birkhoff (Harvard University) 

This is an excellent review of the favorable side of the Icdf-c-i, as regards pre- 
dictions of real wake behavior from mathematical solutions of the Helmholtz Problem. 
Perhaps in Dr. Cornell's discubsion ol general conformal mapping methods more 
emphasis might have been put on the parameter problem: in most cases. Hie greatest 
difficulty comes in determining iht- auxiliary constants (parameters) of the Schwarz- 
Christoffel transformations involved. 

I was unable to understand clearly tiie "constant momentum mixing" hypothesis 
used, and wonder if H is mathematically equivalent to the following naive method of 
calculation. Let two parallel streams of equal d-nsity , thicknesses i,, r.. and 
velocities ■. ,, . ,,  mix iis  they flow   di.wnstream undei   Melmhultz instability.    The 
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mean downstream velocity, v0     fTjv,   T^vj) (T, 'T2), should be regarded as zero 
relative to this, by the Bernoulli equation 

1   2 . f\ O 

In 1943, 1 suggested this method of calculation to the late John von Neumann as a 
basis for calculating wake underpressure (in this case, Tj     '  and 2).    He 
pointed out that for most cases (though not for a broadside flat plate) it seriously 
over-fblimated the wake underpressure. 

M. Tulin (Oitice of Naval Research) 

Has there been any application of cavity-flow models to the prediction of flameout? 

W. G. Cornell 

With respect to flameout, I would say no. So far, most applications have been to 
predict so-called dry losses in the flameholders which are put in to stabilize 
combustion. 
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MECHANICS OF VENTILATION INCEPTION 

Kenneth   L. Wadlin 
I.aridity   Xtrnnnut i < n I   /.ii'-nr d f or v 

Satmnnt   t^t:.s«rv I.'OüKB 111 *■»'   inr   ■lirofliiut i f) 

The research programs conducted by NACA in connection with 
ventilation are reviewed to provide examples of ventilation and to indi- 
cate some significant parameters influencing its inception. It is shown 
thai low pressure is not T sufficient requirement lor ventilation but that 
separation of the boundary layer is also required, 'fh'j influence of the 
free water surface un boundary layer separar.on is prcscnteil as a dclei- 
mining factor involved in ventilation inception. An image system is 
presented for a surface-piercing strut to indicate the manner in which 
the free water surface may influence separation of the boundary layer 
and therefore the inception of \ entilatiui . 

INTUODUCTION 

Ventilation is an interesting and important subject which has been associated with 
seaplane hull steps for some time. However, only recently with the renewed interest 
in hydrofoils and the advent of hydro-skis has .■luch effort been made to understand it. 
By ventilation is meant the entrance ot air from the atmosphere to low pressure 
areas on lifting surfaces or bodies operating in water. The NACA Interest in ventila- 
tion has been primarily in connection with seaplane hull steps, hydrofoils and hydro- 
skis. However, ship hulls, rudders and propellers are also susceptible to this 
phenomenon. When ventilation occurs, areas which previously were experiencing \cw 
pressures arc subjected to the relatively high atmospheric pressure or pressures 
approaching atmospheric pressure. This results in significant changes, in the flow 
patterns and the force characteristics of the elements involved. These force changes 
may result only in a simple change in static equilibrium. However, in many cases 
the flow reverts to the unventilated condition before equilibrium is reached and 
instability occurs. Such instabilities may be manifr ted as porpoising or skipping of 
a seaplane and heaving, yawing, or stumbling of a Hydro ski or hydrofoil equipped 
craft. It therefore becomes important to define those areas whrre vpntilatton may be 
expected in order to avoid them or to make modifications to provide a stable transi 
iion from the unventilated to the ventilated condition. 

Ventilation is also of interest in connection with supercavitating hydrofoiL since 
the fully ventilated condition is analogous to the zero cavitation number case. As a 
matter of fact data for the zero cavitation number case are obtained in NACA experi- 
mental investigations by inducing ventilation. The lilt-drag ratios 'J hydrofoils 
designed for supereavitating flow are generally depreciated if operated in the fully 
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wptt< d rondltion. Therrforr early vemllatior may be of interest for efficienry as 
well as stability reasons when su|>ereavitatini: hydrofoils are required for high-speed 
applieations. This paper presents a review of some of the work done by NACA in 
connection ..ith the ventilation ol hydroloils. hvdro-skis. and struts. A possible 
explanation ol the cause oi ventilation ineep'ion is also developed.

EXAMPLES AND EFFECTS OF VENTfLATION

On burfuce-piercing hydrofoils and struts ventilation generally occurs, as might 
be expected, by air entering along the hydrofoil from the water surface. Experi
mental st'idirs in connection with this type of ventilation have been carried out by 
sever.il investigators (sec Refs. 1-5). Figure 1 is an example of such a hydrofoil 
that has ventilated. The photograph is of a surface-piercing dihedral hydrofoil having 
an NACA 64 A series airfoil section. Ft can be seen that the ventilated area extends 
from the water surface to a point near the tip of the hydrofoil. Ventilation in this case 
started at the water surface and rapidly extended toward the tip of the hydrofoil. 
The cavity is open to the atmosphere and is very long.

On fully submerged lifting surfaces, however, ventilation occurs through the 
trailing vortices. Ventilation of this type has been investigated by NACA in connec
tion with experimental studies of hydro-sk‘> operating in the fully submerged condi
tion (6-0). Such ventilation resulted in large and sudden changes in the force charac
teristics ot the hydro-skt and thus stimulated further investigation of ihe subject. 
The development ol the vortex type of ventilation and the resulting flow changes are 
shown Echematiraily in Fig. 2. Air enters the low pressure area in the core of the 
trailing tip vortices at a point some distance aft of the lifting surface and travels up 
the vortex core to a point which draws closer to the lifting surface as the speed is 
Increased. This cominues until the aerated portion of the vortex contacts the surface 
and the flow separates completely from the leading edge of the surface and complete 
ventilation occurs. Photographs lif two phases of this process are shown in Fig. 3. 
The surface shown is a flat plate havirat an aspect ratio of 0.2S. The upper photograph 
shows the flow after the low pressure in th«> vortex core has vented to the atmosphere. 
The air appears to e nter the vortex at the turbulent area at the- base ol the roach 
and extends to a point well forward but not in contact with the plate. The lower

Fu. ! I’lu.l..,;r.»i»li .1 ..tirt.i< 4'
'. ■.:llll.*l«.f| Ik II... .|ltllKHph*.ri.
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photuttritph sbuws thi- f!sw after the aeration of the vortex core had moved proifrei- 
sively forward until r. contacted the plate and complete ventilation occurred.

The Imiuence of such ventilation on the lift of the plate ia shown In Fit;. 4. The 
lift int reused with speed with no noticeable influence of the vortiees beconiii*; 
aerated at speeds below 70 feet per second. However at 70 feet per second when 
ventilation occurred Ihe iifi imiiiediately drupi>ed to a much io ver value.

PARAMFTKKS INKLUFNCING VENTILATION INCEPTION
It IS ai>t rent from Fit>. 4 that Ihe elfeets of vemilalion eanbe quite importam in 

any particular u|>plication ol liilinK surfaces. Therefore it is important loknow when
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Fig. 4 - Influence of vurtex ventilation on 
the lift of a submerged flat plate having an 
aspect ratio of 0.25 

ventilation may be expected to occur. Figure 5 presents the ventilation inception 
boundaries for the surface considered in the previous figures. These boundaries 
define the speed at which ventilation occurred for a given angle of attack for several 
depths of submersion. The boundaries divide into two definite areas. At the high 
angles of attack the ventilation inception speed is almost independent of the angle of 
attack. However, the change in Inception speed with depth of submersion Is appre- 
ciable, increasing rapidly with increasing depth of submersion. At the lower angles 
of attack this is rnversed. Here the incipient ventilation speed is significantly 
affected by the angle of attack. However, the change with depth of submersion is 
reduced to a small value. From these tests it appeared that ventilation Inception 
was influenced by, if not the direct result of. boundary layer separation. It appeared 
that ventilation at high angles might be related to stall or turbulent separation. The 
ventilation at low angles appeared tobe related to laminar separation near the leading 
edge. 
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VENTILATION-SEPARATION RELATIONSHIP 

When ventilation inception is assumed to be associated with boundary layer 
separation, it immediately, as do all boundary layer problems, becomes a complex 
problem. The simplest case of ventilation is that of the surface-piercing strut. This 
case will be considered in an effort to gain some understanding of the ventilation- 
separation relationship. 

For blunt-trailing-edge bodies such as cylinders intersecting the water surface 
there appears to be a definite relationship between the depth of ventilation and the 
Froude number based on the depth of submergence. This is shown in Fig. 6 where 
data presented by Wetzel in Rcf. 4 have been replotted. The Froude number, based 
on the depth of submergence, at which cylinders of diameters ranging from 0.031 to 
2.00 inches ventilated to the bottom are presented for varying depths of submergence. 
It can be seen that beyond a depth of submergence of about 2 inches the Froude num- 
ber based on the depth of submergence at which ventilation occurred was about 1.7. 
This is a value which has also been found by others (5,9). The relationship between 
the base pressure coefficient at the lower end of the strut and this Froude number is 
cp „ -2 (fh)2. Figure 6 therefore indicates that at submergence depths greater 
than 2 inches the pressure coefficient at the tip was constant. However at depths less 
than 2 inches the pressure coefficient at the tip decreased rapidl". This is as would 
be expected since as the lower tip of the cylinder approaches the water surface it 
approaches a constant pressure or free stream velocity boundary and therefore a 
cp of zero. Since the pressure coefficient is decreasing, it is necessary for the speed 
or Froude number to be increased to provide the dynamic pressure head required to 
overcome the static water hrad. 

Though this relationship between the pressure coefficient and the Froude num- 
ber based on the depth of submergence applies to the bluff sections such as cylinders, 
flat plates, or wedges, this is not the case for streamline sections. This is demon- 
strated in Fig. 7 which was presented in Ref. 10. The strut shown has a chord of 4 
inches and an NACA 664-021 airfoil section at zero angle of attack. It penetrated the 
water surface to a depth of 8 inches and was being towed at a speed of 75.8 feet per 
second. Extensive cavitation can be seen which approached to within about 0.75 inch 
of the water surface. The presence of cavitationindicatcsiowpressuresapproximating 
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vaiKf pressure witliin 0.75 Inch of the water surface. Such pleasures correspond to 
wau r heads of over 30 feet and yet no tendency toward ventilation was apparent. Such 
ubs<>rvatiuns lead to the conclusion that the turtMilent wake behind the cylinder pro* 
vided low eneritv paths through which air could enter the low-pressure regions. &■ 
the rase of the airfoil section the flow about the foil was smooth and of high energy 
with no turbulent wake In its immediate vicinity and therefore no low energy path 
throu.:h which the air could enter. Of course, such sections do ventilate at higher 
an.il>.'S ot attack. In such cases the chordwise pressure gradient may have pressure 
p«-aks near the leadin.; c<lge followed by an adverse pressure gradient u’hich could 
result in boundary layer separation and susceptablliiy to ventilation.

•CXPERIMENTAL FLOW STUDIES

In an effort to . orrelate the pres«>nre of separation with the occurrence of venti
lation. an oil-flow technique developed at NACA by Donald Loving was used. The 
technique was de /eloped for use in air but worked as well in water. M consists of 
putting a thin film of oil on the surface to be investigated and then towing it at a 
constant speed. The oil lends to wipe off more rapidly in high-energy attached flow 
and turbulent areas than it does in low-energy separated areas. This results in a 
greater concentration of oil in the separated areas. The oil patterii is l.ighl> visible 
under ultraviolet light wllieh causi'a th<- oii to fluoresce. Figure 8 is a photograph of 
a typical oil pattern obtained on an unventilated surface pieicing hydrofoil havii^ an 
NACA 64 series set lion. At>ove the water surface the oil moved toward the trailing 
edge Below the water surface the oil accumulated in the center portion of the chord 
and was wiped cli>ar in the vicimly of Ihe leading and trailing edges. A laminar 
separation bubble is imlieati d by Ihe accumulated oil. As Indicated by the sketch 
the accumulation ol oii wgj du<‘ to Ihe forward motion of the boundary layer at thi- 
aft end of the bubble moving Ihe oii forward rather than p«>rmittiiv it to be swept 
downstream by the turbulent Mow aft ol the bubble.

Figure 9 is a photograph e-f Ihe same model where air was ertificially iniroductd 
into tiM' area which Ihe oil pattern indicalid to be stparalid. The air remained in an
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Fin- 8 --HhoIOKriph nl oil flow puKcrn -.liow inx 
laminar i»«*p«ration bubble

area whose forward portion closely resembles that of the laminar bubble iralicated 
by the oil-flow pattern shown in Fig. 8. This indicates that ventilation will occur if 
the foil has a sepai ated flow region and air can get to this region. However ventila
tion did not occur naturally in Fig. 9 but was induced by disturbing the water surface 
in the vicinity of the foil leading edge. When the disturbance was removed the cavity 
closed at the water surface as car he seen by close inspection of the photograph. The 
an in the cavity was then entrained by the water and the cavity gradually dissipated 
until fully wetted flow was again attained. The fact that the foil had separated flow 
regions of low pressure on it and still did not ventilate naturally or even

Fig. '* - I'hotiiurs-ih of ■•^ntilation of the laminar 
scp^rrftion bubble
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HYDROrOtL IMAGE 

IMAGE VOflTEX 

WATER SlIflfACE 

MYMOFt». 
(LEADING fOOt) 

«—%*- 

Fig. 10 - Horseshoe vortex system 
whii li satisfies the boundary condi- 
tions for a surface-piercing strut 

ventilation after initial ventilation wad 
induced indicates that the separated region 
did not extend to the water surface. This 
could be expected since separation of the 
boundary layer is strongly influenced by 
pressure gradients, and the water surface 
has no such gradient since it ts a constant 
pressure boundary. 

MATHEMATICAL MODEL 

In an effort to gain some insight as to 
the extent to which the proximity of the 
water surface might retard separation the 
method of images was employed. The 
image system shown in Fig. 10 was set up 
to satisfy the condition of constant pressure 

at the free water surface. A single horseshoe vortex was substituted for the hydrofoil. 
The bound vortex was located at the quarter-chord and the trailing vortices were 
located at the tip and at the water surface. The image vortex was located in a similar 
manner except above the water surface. The vorticity of the image was of opposite 
rotation as that of the hydrofoil vortex. Such a simplified image system cannot be 
expected to calculate the flow accurately, especially in areas close to the vortices. 
However flow directions calculated in the vicinity of the leading edge should provide 
an indication of the distribution of the load along the span. 

Figure 11 presents the spanwise distribution of the parameter f«'VI fC. 2 ) wh-ch 
defines the flow direction at the leading edge of the hydrofoil, where * is the flow 
velocity normal to the undisturbed stream velocity v and C, is the lift coefficient of the 
hydrofoil. It can be seen that the angle of flow rapidly decreases in the vicinity of the 
water surface, becoming zero at the water surface. Since this flow angle is an indica- 
tion of the loading, it indicates that the loading also becomes zero at the water surface. 
As the loading approaches zero, the chordwise pressure gradient must also approach 
zero and thereby reduce the tendency of the boundary layer to separate. The fact 
that the chordwise pressure gradient at the water surface is zero would indicate that 
separation would never occur at the water surface and therefore ventilation would 
never occur.   This is a limitation of the mathematical model.   Another limitation of 

0 

?0 
^"^O^     VISCOUS 

^U^ FLO« 

«»TER 
SURFACE 

PERCENT 40 
OF 

«TTED 
SPUt    60 

P0T£NTIAL\ 
FLOW         \ 

V 

60 [                                         / in 

100 .-      a— j-^f      . I             1 L- __, 
0        ?        4        6 i0       I?       14       ,6      i8 

Fl;;.   II   -  Kluv. ill'-i'. Imn .it  I'lr li-.iciiMi   i-iki'.■! 
.i MI rl.t' c -[Mr r. m •  si rut  tihtniir'tl l>v IIHI iu; t In- 
M,,.ttini|   '.I    in,.u.,... 

432 



Mfihanus ul* Vt-ntilation Irui'imon 

Iho mathematical model it thai it does rot account for the effect of speed which is 
quite apparent in experimental invt-Stigations. Both of these deficiencies result from 
the (act that the mathematical model assumes potential flow. 

EFFECT OF VISCOSITY 

Efforts to understand the intimate details of the mechanics of ventilation incep- 
tion have not been extensive. As a result no definite conclusions have developed as 
to the manner in which the separation at the water surface, which ultimates in ven- 
tilation, occurs. It is believed, however, that the usual concept of inviscid irrotational 
flow outside the boundary layer is not adequate near the water surface, especially in 
the vicinity of the leading edge of the hydrofoil. In such a case there would be an 
interactiuu between the two flows which cuuld result in substantial changes in the 
pressure gradients and flow. Thus both separation at the water surface and the 
influence of speed could be explained as a result of such an interaction. Referring 
back to Fig. 11 it will be noted that since the parameter (W V) (C, 2>i is an indicator 
of the flow angle and loading, it is also an indicator of the perturbation velocity. 
Viscosity will alter the distribution of this velocity. This is particularly true when 
the velocity gradients are large. The shear forces due to viscosity tend to average 
the velocities. That is, the lower velocities in the region close to the water surface 
will be increased over those predicted by potential flow, while the higher velocities 
at the greater depths would be reduced. The elfect near the surface is of interest in 
the case being considered. The dashed curve on Fig. 11 is intended to indicate this 
change in pcrturbat.^n velocity. It :an be seen that though the perturbation velocity 
approaches zero in the proximityof the water surface, its velocity gradient is greatest 
there and the effect of viscosity is to increase this gradient. These high velocity- 
gradients in the vicinity of the water surface are conducive to eddies which would 
provide low-energy paths to the separated areas farther below the water surface. 
Since these velocity gradients will increase with stream velocity, the tendency for 
eddies to form will increase with increasing stream velocity. This is a possible 
explanation for the influence of velocity on the inception of ventilation which is so 
apparent in experimental investigations. 

CONCLUDING REMARKS 

Some understanding of the mechanics of ventilation inception has been gained in 
that it has been shown that low pressure is not a sufficient requirement for ventila- 
tion but that separation of the boundary layer is also required. It has also been 
found that separation of the boundary layer is greatly retarded by the presence of the 
free water surface. However further investigation will be necessary before the 
mechanism of this retardation and how it is influenced by speed is understood and a 
means of calculating boundaries for the inception of ventilation can be developed. 
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DISCUSSION 

H. Saunders (Capt.. U.S.N.. Ret.) 

It seems a pity to me that tho use of •he single word "ventilation" to signify all 
aspects of the entrance of air to a region of negative differential pressure in or around 
or below the water surface has spread so widely within the latt few years. This word 
"ventilation." like everything else, has its proper place in the universe and, If we are 
to judge by Webster, "ventilation" is something which Indicates that air Is entering 
where it is desired or needed. It is most confusing to have the word used also for a 
siiuatlon where the air is definitely detrimental. To cover this second phase we have 
used the expression "air leakage." 

If you don't know whether the air is a good fing or not, then you can spjak of 
"aeration." 

.1. P. Dreslin (Stevens Institute of Technology) 

1 would like to touch briefly on a few of the highlights which were revealed by an 
exploratory study v which was conducted at the Stevens Institute Experimental Towing 

,1.!'.   IVrislin .m'l K. Skiil.iK. 'An KX[(UiriiUiry Study ut  V.-aliUti'd  Flown About Yawed 
Siirfar<--l'ii-ri ui« Striits," KIT Ri-jjort Nu. UUH. Ottubtr   IW. 
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Tank (SETT) under support of the Hydrodynamics Laboratory oi the NACA. Some of 
these results conoborate the findings on ventilation inception as given byMr. Wadlin 
and others are olferedas additional lae'.swhich may he of interest to thosewho would 
like to be able to estimate the forces on a ventilating body. 

The SETT tests were made with two vertical surface-piercing struts, one being 
a symmetriial, 2.5-inch circular-arc section and the other a 3-lnch cambered sec- 
tion (NACA 4» 12) which has a nearly flat pressure side. Three modes of inception 
were fourd: 

1) by Ingestion of air through momentarily developed "Hankine" vurtlces in the 
unsteady, separated flow attending Jtall conditions at large angles of yaw (Fig. Dl), 

2) through aeration of the trailing vortex developed by the lower tip. and 

3) through the action of a slight disturbance applied at the suction side near the 
1 -idingedge at the juncture with the free surface when underway at speeds and angles 
of yaw well below those lor which ventilation occurred spontaneously at stalling 
conditions. 

The first mode was observed in quite some detail through the use of a motion 
pictur? camera. 

The discovery of the high sensitivity of the flow to slight disturbances (mode 3 
above) led to an investigation of the boundary layer by the NACA which was very 
effectively carried out through the use of the oil-ultra-violet light technique described 
in the paper. Similar observations at SETT also revealed regions of laminar separa- 
tion and re-attachment of the boundary layer which are sealed from the free surface 
by a relatively thin strip of nous parated flow over the length of the chord at liie 
juncture with the streaming free-surface. This strip is nonseparated because of the 
near-zero longitudinal pressure gradient imposed by the presence of the free surface. 
Momentary rupture of this seal permits air to replace the separated fluid and a new 
flow phase is thereby initiated. The presence of a laminar separation (which, inci- 
dentally, does not always give rise to noticeable anomalies in the side-force curve) 
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is a consequence of the low Reynolds numbers at which small models are tested. It 
is therefore advisable for towing tanks to take measures to Insure turbulent boundary 
layers in any experiment in which ventilation inception conditions are being fioughl. 
it is expected that at high Reynolds numbers the susceptibility to ventilation by dis- 
turbances around the leading edge at angles of attack well below stall will be small 
if there are no regions of separation present. 

However, a'tention is invited to the observed fact that once a ventilated flow is 
developed it is very stable and will persist down to small angles of yaw (or side-force 
coefficients) as may be seen in a typical set of data from the SETT tests shown in 
Fig. D2. The ventilated cavity will collapsp at rnnditinnK beyond that for natural 
closure only if sc -'e means of inhibiting the supply of atmospheric air is applied, 
Conditions for natural closure of cavities were observed and these are shown in Fig. 
D3. It appears that a suificient condition for the existence of full ventilation on the 
lested modols is given by 

Sull 
Vr 

(Dl) 

However, lor operation at '.\ values above this, ventilation will not be easily gen- 
cratet! unless boundary layer sc »aration exists. In the absence of such separation it 
is expected that a rathe«- '.trge i.sturbance is necessary to develop the other possible 
flow below stall, viz., lull vent: .aion. 

It has i>een noted, wiiliou« . laboration by the author, that u fully >. entilated flow 
is analogous to the flow about ;hc same body at zero cavitation index. This is true 
only at "infinite" Froudc number. At finite Froude numbers '.here appears to be a 
very plausible connect: on between the flow in a section of a ventilated flow and that 
about ♦he corresponding section in a two-dimensional cavitational flow. The condi- 
tions which must be imposed in order that these flows be similar can be obtained as 
follows: 

For any point on the wall uf a three-dimensional ventilated cavity IF     vj, we 
.lave 

■ u.i\ 

,.j   ',')■•',., 
M\ (D2) 

and 

On the wall uf a two-diniensiunal vapor cavity (p     •. ). we have 

(D3) 

(D4) 

Here 

is the vertical distance below   ne free surface to the point on the ven- 
tilated cavity wall (negative downward). 

i       is the "submergence" Froude number. 

is Ilic acceieralion of gravity. 
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N'i.-f hatiics of Vt-ntilaUon Int •■ptum 

i:    is the Irce-Siream speed, cr speed ot advance, 

i, \ ,.,i,    are «-, >■-. anil. , components of velocities produced by presence of 
body and cavity in three dimensions, 

\ >,/    are coordinate axes taken In such a way that the free stream is paral- 
lel to the negative x-axis and the /-axis is positive upward, 

P.    is the reference pressure at inlinity, 

i\    is the vapor pressure, 

P.,    i» the atmospheric pressure, and 

is the cavitation index. 

For points which are not near the extremities of the ventilated cavity. I.e.. where 
x is negligible, the flows may he expertpd to be quite similar.   Thus, the flows 

may be matched if we take 

(   i     - A     - ^ , -i, ■        o, (D5)„ 

which certainly Imposes the condition that u2     u, in all regions where the quadratic 
terms are negligible. 

Employing this relationship a bit freely leads to a formulation for the effective 
two-dimensional side-force coefficient of a ventilated strut as 

cs/.,v    *  f\(, -i (D6) 

which through use of (D6) yields 

(D7) 

C,   ( ■ i f..t n :   • . 

where c, , is the two-dimensional lift ot the cavitating section, and cL. is the mean of 
c,    between the limits       0 and        I r^. (It isdear that for F,, -   , c,     C, (  ,<M.) 

To account for aspect-ratio effects, in the main, we arrive at the side (ur'-e 
coefficient for finite span (3-dimcnslons) in the iorm; 

llns   ri-ntilt   wiis   iibtititit'd    by   I'frty'   whu  cli'l  mil,   Ivuwi'.'iT,   vmlicit«    rtstritl '..as 
iM.ijdsfi! Iiy Ihrii'-chinunaiunal IIIIIIK. 

t|i,  1', IT, . ' i.xiiirnni nt., mi St i-iits   I'itrcinn tin-   Walrr .Surl;u-i',"  C...!,   l-.'r.lUaro 
.ly-iaiiiun   l..il>.  Kcimrl   K-1)^-!,  Dfi i-inlxr   i')r>l. 
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Tiii. l)J - Measured and rompnted siHr- 
forci" coefficients for fully ventilated 
strut 

where 

and 

F is the Jones' edge-correction 
factor which is computed us 
perimeter less the chord 
length at the water surface 
divided by twice the span, 

(ij    is the cavitating section lift- 
slope at        . , 

A    is the geometric aspect ratio. 

r      is the angle of zero lift. 

Evaluation through the use of Wu's* 
results for the lift of a cavitating plate 
in the case of the NACA 4412 strut at 

aspect ratio 2.0 and yaw angle . = 20 degrees yields the curves shown in Fig. D4.   It 
is seen that the dependence of the side-force coefficient upon Froude number is well 
represented over the entire test range by the use of the cavitation analogy. It is also 
clear how large 
index (   =0). 

Kh must be before the flow may be likened to that at zero cavitation 

F. S. Burt (Admiralty Research Laboratory) 

At A.R.L. we had the advantage of a preview of Dr. Wadlin's paper, but we are 
not entirely convinced of the proposition that boundary layer separation is needed 
before ventilation can begin. It seems rather like the problem of which came first, 
the chicken or the egg. You can just as easily argue that low pressure producesven- 
tilation which produces separation as the proposition that separullon causes veutila- 
liun. In fact. Fig. 5^ of Wadlin's paper, showing the ventilation boundary, could quite 
well be explainedat the lower incidences, without necessarily postulating the existence 
of a laminar bubble at the lower incidences, by saying that lower incidences produce 
lower peak suctions; hence, higher speeds would be necessary to produce given values 
of suction. Whether the flat plate used to obtain the data in Fig. 5 had a laminar 
bubble would depend largely on the nusc shape of the leading edge, and no details of 
this are given. It would be of interest to know if this particular section has been 
tested in awind tunnel and the existence of the laminar bubble under these conditions 
has been demonstrpted. Tlu- oil picture <>{ the strut in Fig. 8 would appear to show 
ttic laminar bubble, but it would be of interest tu know what the Reynolds number of 
the t sts were andwhethcr they tied up with llu-Reynolds number at which ventilation 
occurred. 

The author surgosted that (he surface-piercing foil could be considered as the 
simplest case of ventilation, yet he showed that the effect of the free surface flow 
conditions are such as to inhibit the prime requisite for ventilation, namely, the free 
entry of the air. It w iuld seem to be much simpler to consider a fully submerged 
foil and to repeat the resu'1 of Fig, f> to see if their is any similarity in the test 
points at the lower incidences. 

,,,, ii " A V •■> <■ St i-.-.tn. In.' I h' ■. 
i .! I . , M, llydruilvu.imn - I. 
■'■.; I fit;.in   h in ii' i ■■ •■ -•   linn 

.1...1   l-'.ill-,   i  a\ ll.lli ii  1 Ivil; 
.     KeUM-l   .'I 
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MtiL'hanicfl of Ventilation incfutiun 

P. DuCane (Vosper, Ltd., England) 

Referring to tho iyp« of fluw described in Waolin's Fig. 2. I have recently 
observed what would soem to be a rather unusual example of such flow - at least it 
is an example which has not been seen previously and the explanation of which, it 
must be confessed, was not Immediately obvious. 

During the course of functioning trials in the case of an installation of roll damp- 
ing fins aboard a fast type of round form torpedo boat of the Swedish Navy we were 
employing the technique known as "forced rolling" to test the installation. This con- 
sists of reversing the signal from the controlling gyros in such a manner that the 
fins will at all times be ordered to increase the roll velocity rather than to reduce 
it, which is the normal "modus operand!" of such installations. 

In this way a roll amplitude is built up each side of the vertical, the magnitude 
of which is dependent upon the fin forces developed as well as the natural damping of 
the hull und its statical stability expressed in the form GM. 

Such forced rolling is a useful test of many features of the installation, especially 
if heavy weather is required for a trial and is liable to lead to much delay before the 
desired conditions are realized. 

While observing the mechanism in the engine room we were informed from a 
deck that "jets" of spray were emerging from the surface by the fins. The "Jets" 
emerged as the fin neared the surface and rose to some ten or fifteen feet for a few 
seconds while the ship was heeled to the maximum away from the side from which 
the spray was emerging 

It should be understood that in "forced rolling" the fin will still be trying to lift 
the ship even as it approaches the surface as in Fig. DS. It therefore seems quite 
reasonable to suppose that a flow approximating that shown in the lower illustration of 
Wadlin'sFig. 2 causes this sprayto emerge in the manner and at the angle described. 

This type of flow associatedwith a submerged lifting foil approaching the surface 
is sometimes referred to as Grec/.'s flow or Green's solution. It will be interesting 
to measure the change in lift as the surface is approached and ventilation occurs. 

T. Kiceniuk (California Institute of Technology) 

Mr. Waiilin's finding that low pressure is necessary,but not sufficient, tu induce 
ventilation behind a surface piercing body currobuiutes the findings made in the 
Free-Surface Water Tunnel at the California Institute of Technology.'^ Figures r»6 
and D7. taken from these earlier reports, show some do'ails of the flow which may 
give added insight to the mechanism fur ventilation inception. The electronic flash 
photographs reveal wiiat appear to be ventilated vortices shed downstream of the 
model. These vortices provide a feasible mechanism fur the deep penetration by 
air into the body of a dense liquid in motion. These photographs, as well as visual 
observations, indicate that real understanding of this problem must await careful and 

IV,   p. r-v. "Ksii'-i'ilni-nN   "H   S* r .'-    !';■■-. MU   \h<-   '.V.tt.r   Hurf.n i.'   CM    Ihiim.   1.,!,. 

t 1    K;i •■• ;.:r .    A I '!■•■!: ii.i ii.if,  I .%;..■:■ .11.1 ..t .tl  Si nl, nl  Wrlu .ii I Ktlrufnil^ ul   1..'w .A-■,.. i I 
H .I'm   Pi. n .in'    i   \V;.i.-r S.i. !.i, .-,     (  : ;    !!    ;.-...  I „i1..   U , jn.r;   \,i     K-'>•.,;. Iv. .'.'»•■'■I 
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Fi*. D6 - Electronic (lai>h photograph of the vrntilation behinil 
a MurfatC'pirrrinK body

Fi|t. D7 - Elect ronic flash photograph of the vntilaiion behind 
a Hurfacf-pirri me body shoa.nc posHible vortic**-*

detailed observations and measurements c>( the physteal pruresses taking place in 
the wake of the body. The use of time-averaited measurements such as the usual 
pressure coefficient, for example, may be irrelevant in a separated flow situation 
where the instantaneous low pressures existint; at a point on the body or within a 
vortex core trigicers the ventilation. High-s|ieed phutocraphs taken in the wake reitiun 
of surface-piercing bodies may reveal other phenomena whicii must be reconciled 
with any proposed theory.



K.   1 .  Wati'in 

The vortices in Fin. D7. if tliey are indeed vorticts, are being shed at a UH- 
quency which compares very well with those computed by RosbRo* for a bluff bady. 

B. Perry (California Institute ol Technolo(^y) 

In answer to Mr. Burt's question, some unreported experiments performed a 
few years ago in the Free Surface Tunnel at the California Institute of Technology 
may be of interest.  In connection with experiments on air-inflated cavity flow on 

cylindrical bodic with flat noses, we tried to 
induce a full cavity flow by introducing air 
through a probe at various points.   We found a. that air introduced several diameters aft of the 

ji nose, as at A in Flg. D8, was swept away as 
"' 'l ij^v bubbles,  while the  introduction of air  at  B 
- [   '    JX opened an air cavity attached to the rear of the 

* body as shown.  Only by putting the air supply 
|L "''  '" probe forward to a location such as C, i.e.. Into 

5^B  ^~-> a  ffina f\ixtiantvia corvirafinn   nmilrl a full  «'nvitv a zone of viscous separation, could a full cavity 
be  formed.    Once established,  howevet.  the J cavity could then be supplied with air with the 
probe placed anywhere Inside It. As I recall 

Fm. in - iniritductum of air at It. the flow velocity was of the order of 15 fps 
varuuisi point.- tu-ar a body in a and the body diameter was about 2 inches. 
flo'.v strvam These tests seem to be In complete agreement 

with the ideas put forward here by Mr. Wadlin. 
and earlier by Hoerner. 

Witn the mechanism of ventilation now understood, at least In a general way. It 
may be pertinent to consider an Inherent difficulty which faces the designer of high 
speed craft. If any zone of potential ventilation Is available, some inadvertent dis- 
turbance to the flow may cause a cavity to open up which will then, so to speak, pro- 
vide its own passage for air supply. Since this may cause a catastrophic change in 
flow pattern, one is led to the conclusion that In many Instances the only safe design 
procedure will be to assume that ventilation will occur. 

M. C. Lames (Naval Research Establishment. Halifax) 

The essential connection between ventilation and a separated boundary layer, ur 
wake, has been suspected for some time. It is perhaps unfortunate that a newcomer 
to the subject miuhl obtain the impression that this was being claimed as an original 
idea. Actually, in Ref, 9 of Wadlin's paper, for example, Hoerner refer? to "an 
accumulation of houndary-layer material and a negative pressure within the separated 
i'egion" as picmjuisite for ventilation. 

To m\ minci r.i' extreme value of tee more recent work lies in the experimental 
approacaes whir." have been develope'l tu denvunstrate this relation. The use of an 
oil li!ii! is a particularly nice technique, and the results are most gratifying. 

There is one point lowhich I should like to add emphasis. Experience in the full- 
si ali' opera'ion of hydrofoil craft suiwMs that significant retardation of ventilation 

.      ..!.•!    ■!.■ 'Mr:      I      i;,   .  ,■      1 -.. ,.    li;ii..•:,..;..■,,,!   Ill ill    l'."i, 
'    1. 
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Mechanics of Vftitilalion liin-ptiAHi 

liy Ihc influence of the tonslunt-pressure water surface can "nly be obtained under 
laboratory conditions, in openwater even the smallest ripples appear to be sufficient 
ID initiate ventilation at the water surface. This of course is an advantage to full- 
sc.ile operation since ventilation proceeds smoothly as speed is increased. The 
explosive type ol phenomenon which results when large iunativ( pressures are sup- 
ported in calm water and subsequently tripped by a small disturbance 'ould represent 
a very dantierous situation for a hydrofoil craft. 

The fact tiiai only a small disturbance is necessary would appear to add circum- 
stantial evidence to Mr. Wadlin's ingenious explanation of the mechanismhchind .sur- 
face »■entilaliuii. The high velocity gradients in the vertical direction provide a highly 
unstable situation requiring little deviation of the surface to initiate powerful eddying 
and thus give rise to the requisite low energy paths. 

Finally. I would like to ask Mr. Wadlin whether he has carried out any experi- 
ments using anti-ventilation "fences." In an "ad hoc" search for the smallest effec- 
tive fence we have found that on a particular secliun designed for uniform pressure 
distribution it is only necessary to extend the fence over the leading 50 percent of 
the chord. (Maximum thickness occurs at 5J percent chord.) I would have expected 
most of the low energy paths to exist behind this, and therefore the success of the 
half-fences surprises me. Perhaps Mr. Wadlin could clarify my thinking on this point. 

1 !; 



VENTILATION OF BODIES 

PIERCING A FREE SURFACE 

J. M. Wet/.el 
I I/mm   f\ll Is   Ihili ml l,    I ■ 

Experimental studies were coriducled at the St. Anthony Kails 
1','iraulic Laboratory to investigate the srale-effect problem assoi iated 
s ith the ventilation of vertual, sernisubmerged cylindnral rods and 
streamlined lifting surfaces. Two '.ypes of ventilation--« reepin»; or 
partial and a flash or delayed vent (ormatton--have been observed for 
these shapes. Data for the large-diameter rods can be i orrelated with 
the Froude number and submergeni e ratio, whe.eas un< oated rods of 
small diameter require consideration of several parameters. The use 
of Teflon-coated rods improved the Froude number correlation for the 
rods of small diameter. 

Ventilation of vertical, liftinu struts is primarily a function of 
veloi ity, yaw angle, submergence, and strut shape. Ventilation data of 
several strut shapes at high yaw angles can be correlated with the 
Froude number based on < hord 

INTRODUCTION 

As a surface-piercing body moves through a liquid, at a cprtain velocity an air 
pocket will form that will expose part or all of the rear portion of the body to the 
atmosphere. The formation of Ibis pocket of aim>>apiictic ölr »ill be called ventila- 
tion, although in some references it is niso referred to as air leakage. Knowledge of 
tho inception and mechanism of ventilation is of considerable importance as ventila- 
tion creates a distinct change in the hydrodynamic characteristics of the body. 

To investigate the ventilation phenomena, it was considered desirable to conduct 
experimental studies on models and extrapolate the model data to prototype conditions 
by means of suitable modeling parameters. During the course of model tests on 
inclined, streamlined bodies piercing a free surface, it was found that a scale effect 
existed; i.e., the extrapolated data from the model did not agree with the data from 
the prototype. As scale effect is a serious design problem, an additional series of 
tests was initiated to study the ventilation of elementary body shapes, such as cir- 
cular cylinders in a vertical position. In these tests with circular cylinders, the 
effect nf cravity. surface tension, and viscous forces on ventilation was investigated. 
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The studies were laier extended to include veilkal. yawed Btruts ol stieamlined 
siiape. Tins paper summarizes the results of this series uf tests, w.iili were pait 
ol a fundamental research program cundueted at tue St. Anthom Falls Hydraulic 
Laboratory under the sponsorship of the Offiee of .Naval Research, 

GKNERAL CONS1DEHA1IONS 

A relatively large amounl of data has been publisi.eo on the flow about semi- 
sü!5nierncd cylinders of finite length. Hay (1) has done considerable work in this 
field, although his primary interest was the resistance of cylinders rather than the 
mechanics of ventilation or the scale effect associated with ventilation. However, 
some 01 tie data presented can be extrapolated to a useful form for '■omparison 
purposes, Sevcval papers are also available from NASA (2) and the California 
Institute of Technology (3,4) regarding ventilation of streamlined sh.^ss in the 
presence of a free surface; the latter papers describe preliminary tests on struts. 

In general, two distinct types of ventilation on a vertical, semisubmerged body 
can be observed; (a) a "creeping" or partial ventilation where ti.. air pocket gradu- 
ally increases in depth with increasing velocity, and (b) a "flash" ventilation or 
"delayed vent formation" where the air pocket forms very suddenly at a certain 
velocity, with little or nu previous depression being observed behind the body. The 
size, submergence, and orientation of the body will generally determine which type 
of ventilation will bOiiuolly occur. 

In the case of the vertical, yawed strut, ventilation can usually be obtained for a 
given angle by increasing the velocity of the strut. For high yaw angles, as the 
velocity is increased to a certain value (which is dependent on foil shape and sub- 
mergence) a pocket opens on the suction side but does not extend completely to the 
bottom of the strut. A relatively large amount of aerated water is present in the 
lower portion of the pocket. As the velocity is furtner increased, the pocket will 
eventually extend to the bottom of the strut and full ventilation is attained. 

For the low yaw angles, air enters the suction side of the strut suddenly, creating 
a very marked change in the lift force. The water separates completely from the 
strut near the leading edge and forms a rather well-defined spray sheet. If the 
velocity >^ the strut is reduced slowly, the sheet will not reattach itself until a 
relatively low velocity is obtained, indicating a considerable hysteresis effect. The 
yaw angle that separates the partial and delayed ventilation is primarily dependent 
on strut shape but may change slightly with submergence. By consideration of well- 
known modeling parameters, it is possible to correlate ventilation data for various 
body sizes and submergences, although best results arc obtained for the creeping 
ventilation. 

EXPERIMENTAL FACILITIES 

The studies were conducted in a circular steel tank of 10-foot diameter and 2- 
foot depth. The tank was equipped with a rotating-arm mechanism as shown in Fig. 1. 
The rotating arm was driven by a 5-hp hydraulic motor through a Vickers transmis- 
sion, with fluid at high pressure being provided by a hydraulic test stand. Such an 
arrangement provides a wide range of velocities up to a velocity of about 20 fps with 
an arm length of 3.5 feet. The maximum velocity is restricted because of excessive 
turbulence and waves created by the moving body. The velocity was determined by a 
calibrated flowmctcr on the hydraulic test stand and also by a tachometer generator 
driven by a gear fastened to the drive shaft of the arm mechanism. The rotating arm 
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Vf-ntilalion cf Bodies Piercing » Free Surface

V ^

Ki^,. I !*hotoj:nph of rnt*linn-arm tank

can be adjusted to va^^au^ lentsUls, and the outer end is constructed to receive a 
variety of test4x>dy shapes.

The circuiar. impermeable beach absorber placed around the circumference of 
the tank is very effective in absorbiig; the waves created by the moving test body for 
velocities under 20 fps. A Si-loot-aiametcr permeable wave filter constructed of 
hardware cloth has been placed in the "enter of the tank to rechice wave action 
further. The magnitude of the circulation, or swirl, created by the motion of the 
body through the water was small, liut in some cases was taken into consideration, 
particularly for the streamlined, lifting struts. A sufficient period of time elapsed 
between runs for the circulation and excessive turbulence to be dissipated before the 
next test was begun.

Cylindrical rods with nominal diameters from 1^32 inches to 2 inches were 
tested at various submergences. Several of the rods were cov'ered with a coating of 
Teflon (letraliuorethylcne resin) sprayed to a 1-mil thukness; these rods will here
after be referred to as Teflon rods. A summary of the rod diameters and rod mate
rials used in the study is given in Table 1. All the rods had smooth surfaces, and the 
ends were machined perpendicular to their longitudinal axes. For the Teflon rods, 
the coaling completely covered the submerced portion of the rod. including the 
milled end.
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Table 1 

Rod Diameters (in.) 
and Materials Used 

Steel i Brass   Lucite ' Teflon 

0.031 0.124 1.500 1 0.052 
0.050 0.187 2.000 0.064 
0.0G2 0.250 0.127 
0.078 0.500 0.254 
0.095 1.000 0.503 

0.753 

The streamlined struts used in the ven- 
tilation studies were of NACA 0012 and NACA 
0024 profiles. Two- and 3-inch chord struts 
were available for the NACA 0012 section, and 
a 2-inch chord for the NACA 0024 section. 
The foils were made of aluminum with a special 
milling cutler, hand finished and polished. An 
NACA 0012 strut of 2-inch chord sprayed with 
Teflon was also used for the tests. The strut 
was fastened to a mounting bracket attached to 
the end of the arm. The bracket was con- 
structed to permit adjustment of the yaw angle 
(to within 1/2 oegree) and submergence. 

EXPERIMENTAL PROCEDURE 

Data were taken by visual observation uf the complete ventilation tu the bottom 
of the body, and the velocities for this condition were noted. Repeat tests have 
indicated that this point could be observed accurately ami data could be reproduced 
satisfactorily. Cylindrical rods with nominal diameters of less than 1/4 inch were 
braced to reduce lateral vibrations. Most of the rods were tested in tap water and 
also in water with altered surface tension and viscosity. The surface tension was 
reduced by addition of commercial detergents, such as Alconox or All. By varying 
the concentration of detergent, the surface tension could be reduced from about 72 to 
35 dynes/cm (0.00495 to 0.0024 lb/ft). The solutions were carefully mixed, and 
surface tension measurements were made several times during the test by the ring 
method, using a Du Noüy tensiometer. The viscosity was changed by heating the 
water with heating coils placed on the bottom of the tank. With this method, the 
kinematic viscosity could be reduced by a factor of nearly one-third. 

With the struts, a submergence and a yaw angle were set for a particular shape 
and the velocitv increased in small increments until complete ventilation was attained. 
The occurrence of complete ventilation was determined visually with little difficulty. 
Attempts were made to obtain the data for smooth-water conditions in the tank; 
therefore, in most cases boom rotations were confined to one or two. A brief scries 
of spot checks was made with the towing carriage to verify the data taken in the 
rotating-arm facility. 

DISCUSSION OF RESULTS-CIRCULAR CYLINDERS 

Effect of Froude Number 

The velocities for complete ventilation were used to compute the Froude number 
based on cither the rod submergence, H, or the rod diameter,!). Data showing tue 
relationship of the Fronde number and a dimensionless submergence ratio, H n. for 
the unc. ed rods are plotted in Figs. 2 and 3. The vertical broken lint is taken from 
results by Hay (1). His results indicate that the ventilation velocity for certain rod 
submergences and diamcterscanbe computed with sufficient accuracy by v . «H 1.7. 
The St. Anthony Falls data, particularly for the larger rods at all but Uie smallest 
submergences, appear i0 verify Hay's data. Data for the smaller diameter rods do 
not agree so well except at the large submergence ratios; a definite scale effect 
exists lor the lower submergence ratios when plotted in this manner. The Froude 
numbei of approximaicly 1.7 must be approached from the decreasing side before 

■orp'rtc ventilation of either basic typ»' would occur for most of the rods tested. 
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Figure 3 illustrates the same data plot'ed as a function of the Fro ide number 
based on diameter. For the smaller rods, the ventilation Froude number is nearly 
independent of the submergence ratio, i.e.. for a rod of given diameter, the velocity 
for complete ventilation remains essentially constant. As the rod diameter increases 
the same trend is true, but over a smalk-r range of submergences (low submergences). 
During the tests it was observed that the ventilation of the small-diameter, uncoated 
rods occurred in general as flash ventilation, with an increasing tendency for creep- 
ing ventilation as the diameter and submergence increased. For the large rods, no 
flash ventilation was observed. ..Relating this observation to the data of Fig. 3 it is 
apparent that the velocity for creeping ventilation <s dependent upon the submergence 
ratio, whereas the velocity for Hash ventilation is relatively independent of the sub- 
mergence ratio. 

Effect of Weber-Number Correction 

As the data for all rod diameters and submergences were not successfully cor- 
related with the Froude number, it was decided to determine the significance of 
surface tension. The effect of surface tension on ventilation was investigated by 
adjusting the surface tension of the water to maintain a constant ratio of the Froude 
number to the Weber number for a particular group of rod diameters (n -' .where 
i)   = diameter ratio mid    , - kineinuüc cupillarily ratio)   Rods with nominal diameters 
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of less than 1 '4 inch were used more extensively in these tests, as the small- 
diameter rods exhibited a relatively larRe-scale effect. The results of this study 
are shown in Figs. 4 and 5. As shown in Fig. 4 for the smaller rods, a reduction of 
surface tension decreases the ventilation velocity to some extent, but the reduction 
is not sufficient for satisfactory data correlation. For example, consider the data 
for the C.095-inch rod in Fig. 4. Two sets of data arc shown for this diameter; one 
set (solid symbol) represents data for a lowered surface tenslop, the other (open 
symbol) represents data taken with tap water. The latter set of data is included to 
compare directly the effect of lowering the surface tension on the ventilation velocity 
for a rod of given diameter. To satisfy the assumption that surface-tension forces 
are significant (constant Froude/Weber number ratio), the data for the 0.095-inch 
rod and = 42 dynes/cm (dosed symbol) should agree favorably with the data for the 
0.125-inch md in tap water wiU = 72 dynes/cm. It is evident that this assumption 
is not completely correct, as the data do not form a common curve. The reduced 
surface tension did not lower the ventilation velocity of the 0.095-inch rod sufficiently 
to make the Froude numbers equal. Figure 5 contains data for larger diameter rods, 
it is evident that surface tension has less effect on the ventilation velocity, particu- 
larly for the larger submergences. This is in agreement with the Froude number 
correlation previously found for the larger diameter rods. 

Effect of Reynolds-Number Correction 

To scale the inertia, viscous, and gravity forces simultaneously, it was neces- 
sary to maintain a constant ratio of the Froude and Reynolds number (Dr r

2 ', 
where r = kinematic viscosity ratio). This was accomplished by adjusting the 
viscosity of the water in the tank as described previously. Again the smaller diameter 
rods were used, as ventilation of the larger rods was correlated with the Froude 
number alone for most submergences.   Figure 6 illustrates the typical effect of the 
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Fig. 5 - Effeit of constant Froude/Weber ratio on rod ventilation 
(0.1»7-inch and 0.i5-imh rods) 

viscosity correction. For most rods two sets of data taken in water with different 
viscosities are shown for a particular diameter. The solid line Is faired through 
data taken in unheated water at 170C. The broken line is faired through data taken 
in water heated to maintain a constant Froude/Reynolds ratio. As an example, con- 
sider the 0.062-inch rod. The data for this rod with a lowered viscosity (open 
triangles) should agree favorably with the 0.095-inch rod in unheated water, as the 
ratio of the Froude to the Reynolds number has been kept essentially constant. It is 
evident that the ventilation velocity has been reduced, as shown by the broken and 
solid faired lines for the 0.062-inch rod, but not sufficiently to permit satisfactory 
Froude-number correlation with a larger diameter rod as determined from the 
original assumption. 

Teflon Rods 

In an attempt to reduce further the existing discrepancy between data for rods of 
different sizes, several of the rods were coated with Teflon. Plots of faire'4 curves 
of the data for the submergence ratio it n against the Froude numbers are shown in 
Fig. 7. The data fur rod diameters above 0.254-inch fall on essentially the same line 
for must submergence ratios, indicating that the Froude numbers can be considered 
the proper modeling parameter for these particular submergence ratios and diam- 
eters. From comparison of Fig. 7 with Fig. 2 or Fig. 3, it is evident that the use of 
Teflon greatly improved the Fruude-number correlation. 

One of the must significant ventilatiun characteristics uf the Teflon rod was that 
delayed vent formation was practically nil, whereas with the uncoated rods of small 
diameter it was the predominating type of ventilation. It would be expected that the 
effect of the Teflon would become less apparent for the large rod diameters, as 
above 0.254 indies. This also can be noted from a comparison of the previous graphs. 
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Fiji. 7  - Vrntilation of   Teflon rods as a function of 
the  Kroiul«' number and submerj;cnie ratio 

In observing the ventilation of the cylindrical rods, it was nutcd that a consider- 
able hysteresis olfect existed for the uncoated rods of small diameter, as is typical 
of flash ventilation. The Teflon rods exhibited no hysteresis, as the ventilation 
appeared and disappeared at essentially the same velocity. It also was found that the 
velocity at which the vent closes was independent Oi the rod material. 
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DISCUSSION OF RESULTS- 
YAWED STRUTS 

The basic data that have been 
obtained include the velocity for 
complete ventilation for a partic- 
ular submerpeiicc. and yaw angle. 
Typical data are shown in Figs. 8 
and 9 for various submergence 
ratios. In the course of the ven- 
tilation studies it was noted thr* a 
wide range of scatter was present 
for ventilation of the struts at all 
but the very high yaw angles. This 
scatter was believed to be caused 
by tne condition of the water sur- 
face or turbulence in the rotating- 
arm facility. It appeared that if 
the foil struck any surface dis- 
turbance, provided the foil was 
moving at a sufficient velocity, it 
would immediately ventilate, even 
though ventilation would not occur 
for smooth-water conditions. It 
was also found that a minimum 
velocity could be obtained for which 
the strut would not ventilate under 
any conditions. The difference In 
magnitude of this minimum veloc- 
ity and the velocity required for 
ventilation in smooth water was 
very considerable, the difference 
increasing with decreasing yaw 
angle. This can be readily seen 
from Figs. 8 and 9. 
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The rou^h-water curve repre- 
sents the minimum ventilation 
velocities that could be obtained 
by forcing the ventilation to occur. 
The ventilation was forced by 
creating a disturbance through 
which the strut passed. It also 
was possible in many cases to 
«tart ventilation by creating a 
disturbance in the wake of the 
strut, thereby permitting air to 
enter this region and move forward 
to the foil. With these artificial disturbances it was possible to obtain ventilation at 
relatively low yaw angles, as compared to smooth water. In a sense, the difference 
between the rough- and smooth-water curves represents the hysteresiseff :•! lor the 
struts, as the forced-ventilation data are essentially the points where complete 
ventilation disappears. 

The effect of surface ttnfakm has also been briefly investigated r. the rotating- 
aim tank.   The surface ••■nsion was loweri'd and repeal van» were made with the 
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same strut geometry. In general, 
It appears that the ventilation 
velocity was reduced slightly for 
the sizes of struts used in the 
tests. However, thin was rather 
difficult to auccrtain carefully as 
the conditions of the water through 
which the strut passes have also 
been shown to have a very marked 
effect on the ventilation velocity. 
The reduction of surface tension 
did create a different pattern in the 
spray formation about the strut but 
apparently did not greatly Influence 
the factors that are responsible 
lor the triggering of ventilation. 
Surface tension may effect ven- 
tilation of surface-piercing bodies 
in several ways. It may permit 
air to leak into the low-pressure 
side of the strut more easily, or 
it may permit air to enter the wake 
area more easily through the trail- 
ing vortexes. In both cases, it 
would be expected that lowering 
the surface tension would reduce 
the velocity for complete ventila- 
tion. More tests appear necessary 
to separate completely the effects 
of surface tension and rough-water 
or turbulent conditions on the 
aeration of the flow in the region 
uf the strut. 

Preliminary analysis has been 
directed toward correlating data 
for the sections utilized. Attempts 
at correlating data over the entire 
range of yaw angles have not been 
successful, but better results have 
been obtained by dividing the ven- 

■j 4    - tilation into two types which are 
.X. determined by the yaw anr'e for a 
V4H niven strut geometry.   As seen in 

Figs. 8 and 9 for a particular sub- 
11,1 mergence   ratio,   the   ventilation 

velocity is essentially constant for 
the high angles of yaw. As the 
angle L. decreased, a position is 
found where the velocity becomes 
very sensitive i0 small angle 

ihanges. Tl.c sl'.arp bteak in the curve occurs over a relatively small range of yaw 
angles. Foi ysw angles below the break in the ntrve, ventilation was very difficult 
to obtain In n-laiivth smooth water at the velocities available in the rotating-arm 
facility. The l-.ina-armlc ventilation (angles above the break) is essentially independent 
of yaw angle am; can lie im .«•ialeu IA the Fumde number based eilliei on bubim-i genee 
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KIR.  10  - Correlation of  hinh-ansle slrut 
ventilation data 

or on chord and the submergence ratio (dep'h in chords). This correlation is shown 
in Fig. 10 for the NACA 0012 and NACA 0024 sections and for two chord sizes. Also 
note that the data lor three foils tend to croup together for the higher submergence1 

ratios at a submergence Froude number of about 1.6. Foil thickness or shape 
apparently has little effect for this range of yaw angles. Struts of a rectangular 
cross section have been used in preliminary tests and have exhibited essentially the 
same properties. 

Some work of u preliminary nature has been done regarding the relationship of 
the stall angle to high- and low-angle ventilation. A brief series of tests was eon- 
dui'.led to measure the lift force with a dynamometer and thereby dcteriniiu> the 
wctted-flow stall angle fui the particular sections,   hi general, it was found that the 
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angle ti'at separated tne two regions of ventilation was approximately the stall angle 
(or the st.ut. Therefore, in the case of smooth water, it was difficult to obtain 
ventilation below t; e stall angle at the available velocities. Howe/er, if the flow 
pattern was disturbed by some external conditions, ventilation was achieved. 

CONCLUSIONS 

Based on tue tests descr'bed in the preceding sections, it is possible to derive 
tue following conclusions; 

1. Two distinct types of ventilation occurred—creeping and flash ventilation. 
The predominating type was determined by body size, submergence, and, for struts, 
angle of yaw. 

2. Creeping ventilatior p.edominated for large-diameter, uncoated rods and 
also for Teflon-coated rods. Flash ventilation predominated for the small, uncoated 
rods at all but very large submergences. 

3. Creeping-ventilation data could be correlated with the Froude number and 
submergence ratio. In geneial. flash-ventilation correlation necessitated conside.a- 
tlon of other parameters. 

4. Little hysteresis effect existed for creeping ventilation. A very pronounced 
effect was found for flash ventilation as the formation of the air pocket was con- 
siderably delayed. 

5. The two distinct types of ventilation that occurred for vertical, lifting struts 
were dependent on the angle of yaw. Above a certain yaw angle, ventilation was 
primarily a function of submergence and body shape, and the ventilation velocity was 
essentially independent of the yaw angle. Below this angle, the ventilation velocity 
became increasingly dependent on yaw angle, and less dependent on submergence. 
High-angle ventilation data were successfully correlated with the Froude number and 
submergence ratio. 
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DISCUSSION 

J. P. Breslin (Stevens Institute of Technology) 

This experimental investigation should be of paramount importance to all con- 
cerned with small model studies of ventilation and cavitation phenomena. Mr. 
Wetzel's results reveal the major effect of surface tension forces on the character 
and degree of ventilation of rods up to a diameter of 3/4 inch. The use of Teflon 
apparently prevents the development of highly curved Junctures between the body and 
the cavity Conseqiently. the relatively large surface-tension forces are avoided. 
Mr. Wetzel's Figs. 2 and 7(a) should be presented side-by-side and to the same 
scale to do justice tu the remarkable difference in behavior which the use of Teflon 
provides. 

The discovery of this large effect opens the question of the influence of surface 
tension on the equilibrium location of vapor cavities on curved sections and bodies. 
It may be that the extent of cavitation will be found to be remarkably affected since 
the radii of curvature at the forward cavity body Juncture should be very small. 
Perhaps there are researchers who have done such experiments. In any event the 
effect of a non-wetting material will be Investigated In a study of ventilation of small 
scale dihedral foils at the Experimental Towing Tank. 

Til regard to the remaining scale effects exhibited in Fig. 7(a), possibly the 
curvatures at the bottom of the ventilated pocket are small enough for the smallest 
rods to provide sufficiently large surface fractions to inhibit full cavity develop- 
ment. In addition, the effect of viscosity at low Reynolds numbers may also be 
expected to prevent scaling of the velocity distribution about the fore part of the 
smallest cylinders. 

T. Kiceniuk (California Institute of Technology) 

There were no photographs of the two regimes of operation. I was wondering it 
the two could be distinguished visually once ventilation was established, or whether 
they remained different. 

Although the effect on the surface tension of the added detergent was reported, 
no mention was made of the contact angle between the water and the model before and 
after the detergent was added. Also were the surface-tension values or contact angle 
affoctPd by change in water temperature which was being used to secure Reynolds 
Number variation? 

In past studies at the C.I.T. Hydrodynamics Laboratory we tried waxing the sur- 
face of planint; cylinders to determine what effect this would have on the spray-sheet 
formation and on the forces acting on the model. Surprisingly, the spray sheet still 
clung to the cylinder and trailed aft. and no significant change in the force picture 
could be detected. 

P. Eisenberg (Office of Naval Research) 

It may be of interest to reveal how Mr. Wetzel was led to examine the effects of 
a material such as Teflon on the surface-tension influences found to be of importance 
in the ventilation process. Some years ago, I was told of the discovery of a material 
or coating that was purported to allow slip at a fluid boundary and, therefore, to 
lower the Iru lional resistanc below expected values for a hydraulic-ally smooth 
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surface.   The evidence cited was the remarkable acceleration of a hydroplane racing 
boat on which the planing surfaces had been coated with this material. 

Doubting the slip hypothesis, I naturally looked for a more rational explanation 
of such exceptional performance. It occurred to me that, it the step in the planing 
surface could be ventilated at a lower speed than would normally happen, it would be 
possible to achieve the full-planing condition much earlier, and, therefore, to accel- 
erate more rapidly since the hump resistance would thus have been lowered. 

It was found subsequently that Teflon did indeed exhibit small, interfacial tension 
relative to water at the air-water interface. I believe it was Mr. Tulin, then in 
ONR's Mechanics Branch, who suggested that wc could both test my hypothesis of the 
effect of a material such as the one mentioned above and, at the same time, show 
perhaps that the surface tension effects could be eliminated In tliia way, thus making 
it possible to test at small Froudc numbers models for which ventilation phenomena 
are important on the prototype. We therefore arranged for Mr. Wetzel to carry out 
the tests described in his paper, with the results fully confirming the postulated 
behavior and so ably reported. We selected Teflon only because we were already 
acquainted with its properties in some detail. 

K. L. Wadlin (National Advisory Committee for Aeronautics) 

Mr. Wetzel has carried out a comprehensive study of the principal parameters 
influencing the Inception of ventilation. The answers to many of our questions about 
the mechanics of the Inception process are undoubtedly available In the data obtained 
by him. It Is Interesting to note that flash ventilation and hysteresis only occurred 
when the Reynolds number was low. Also the effects of viscosity, surface tension, 
and Teflon were noticeable only at low Reynolds numbers. That is, only these influ- 
enced ventilation Inception when conditions were such that the flow probably was 
close to the transition from fully attached flow around the cylinder to separated flow. 
These effects then probably influenced the separation point on the cylinder, partic- 
ularly in the region of the water surface. This would lead to separated regions being 
available to provide paths for the air as soon as the pressure gradients were suf- 
ficient to draw the air down. This results in creeping ventilation Instead of flash 
ventilation occurs when the pressure gradient Is present before separation. 

E. R. Tlnney (State College of Washington) 

The careful experimental work performed by Mr. Wetzel has clarified many 
points particularly with regard to some of the "scale effects" that can be expe«. ted in 
laboratory tests on ventilation. The writer suggests that a different manner of pre- 
senting the data on cylinders (particularly Fig. 2 of Mr. Wctzsl's paper) would add 
to the understanding of the ventilation phenomenon. 

At incipient ventilation it is a necessary, though undoubtedly not a sufficient, 
condition that tiiv. pressure be atmospheric in the ventilation region.  That is, 

«H     („   ^     o , (Dl) 
from which 

v ■'   1 
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For the Reynolds numbers at which the author conducted his tests (R( between 1.5 x 
10' and 1.5 x io5, based on diameter), the value of cp at a point on the cylinder 90 
degrees from the line of the approaching How is approximately -0.8 for long cylinders 
deeply submerged.  Substituting this value into Eq. (D2) gives 

v      is«. (D3) 
■ nil 

This value of 1.58 agrees well with the minimum value of 1.6-1.7 which the author 
finds as the asymptotic value for all cylinders deeply submerged. 

The value of cp is affected by the free surface to a degree that is probably 
dependent upon Reynolds number. It seems logical, therefore, to plot V/V'gfi as a 
function of Reynolds number for constant values of HD. This is done In Fig. Dl 
which shows that Eq. (D3) applies for all the cylinders tested. If the Reynolds number 
is greater than 5 x 104. This provides a lower limit for laboratory tests If "scale 
effect" due to viscosity is to be avoided. The limiting value of Reynolds number is 
seen to depend on the value of an. 

At lower values of Reynolds number an empirical relation can be developed 
which indicates the relative significance of both Reynolds number and submergence. 
This relation is 

V l.R .   106 

-" ,6,(gK>';- (M, 

This equation is plotted in Fig. D2 together with all the data given by the author on 
ais Fig. 2. From Fig. D2 it appears that the influences of submergence and Reynolds 
number on ventilation are insignificant for values of the parameter x D (R,.^3 2 greater 
than 108. 
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AIR ENTRAPMENT BEHIND ARTIFICIALLY 

INFLATED CAVITIES 

i. J. Campbell and D. V. Hilborne 
■Xiimtraity Htsfarrb l.tthuratttry 

TrMltlflton,   Mlilillrsit 

INTRODUCTION 

A fully developed cavity can be formed behind an obstacle moving through water 
either by boiling of the water In the low-pressure region round and behind the obstacle 
or by the injection of air behind the obstacle. The use of air Injection can greatly 
extend the conditions of speed and free stream pressure under which wcll-dcveloped 
cavities can tic formed. The air is, of course, entrained at the rear of the cavity and 
left behind In the water and the air supply must be continually maintained. 

The air entrainmrnt behind artificially inflated cavities was first Investigated 
experimentally in the Hydrodynamics Laboratory at the California Institute of Tech- 
nology (1). In the Caltech experiments the cavities were formed behind a circular 
disc supported in a free surface water tunnel. Figure I shows dlagrammaticiiy how 
the entrainment rate was found to vary with the cavitatlon number, other parametcrs 
being held constant. The part of the curve where the entrainment is nearly constant 
was observed to correspond to a configuration In which a re-entrant jet or splash was 
formed at the rear of the cavity; in these circumstances it was supposed that the 
water entering the cavity collected air by turbulent entrainment and carried it down- 
stream in tailing back through the cavity wall. In the region in which Q increases 
rapidly with decreasing ■ a pair of air-filled vortex tubes was observed trailing 
behind the cavity and it was supposed that the vortex cores acted as pipes along which 
the air was readily transporU-d away from the cavity. From analysis of a numb««- of 
such entrainment measurements it was found empirically at Caltech that the non- 
dimensional entrainment coefficient, CQ||, correlated, although rather roughly, with 
the product. <F of cavitatlon number with Froudc number based on disc diameter. It 
was also found empirically that the "twin vortex" regime held sway when F 1 and 
the "re-entrant jet" regime when   F < 1. 

A theory of air entrainment in the trailing vortex regime has been formulated by 
Cox and Claydcn (2), who employed some of the concepts of aerofoil tluoryto calculate 
the size of the vortex cores. The theory of Cox and Clayden contains one parameter 
to be determined by fitting the theoretical predictions to experimental data. 

The discovery at Caltech of the trailing vortex regime behind cavities and the 
application by Cox and Clayden at the Armament Research and Development Estab 
lishment of the concepts of aerofoil theory to this situation are the most interesting 
eonlrilMtion.i which have been made to the subject of cavity gas entrainment. 
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FU 1   -   Typical   I'ntraitinunl   curv«1   for   u   cavity 
behind a yivt*n disc .it a yivt'n speed 

formed 

In this paper wc report soniL1 air-entrainment measurennnts which we ourselves 
have made. Our experiments were very similar to those made at Calteoh, but a 
somewhat larger range of conditions was covered. As it might be suspected that 
viscosity and surface tension could affect the results, the hypothesis that the entrain- 
ment depends exclusively on Froude number and c;u'itation number was examined in 
some detail. As this involved the use of models of different sizes, particular care 
was taken to correct for the influei.^e of channel boundary effects. 

Also we propose a moditication to the theory. The theoretical model originally 
proposed by Cox and Claydcn Is not applicable to our experimental conditions. The 
modified theoretical model, which involves no empirical parameter.* gives predictions 
of gas entrainment which arc in broad agreement with our experimental results. 

THEORETICAL DISCUSSION 

Cox and Claydcn (2) point out that, since the pressure in the cavity is fairly 
constant, there must be a dilfenwe in the velocity on the free streamlines corre- 
spondutg to the differenee ;ii I > irostalicpressure at the top and IxMtom of the cavity. 
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Thiti i;iv('s risi' to n rircula'ion wliich can bi" i'valualwl. Cox and Clayden then arKiic 
iluii 'In- lumtion nf thi' cii'TOlation is ti) produce a tovcv wnich is equal and opposite 
to the buoyancy [oree un the hubble, This enables them to calculate the distance apart 
uf the vortices and. thus, their tncllnaticm to th" horizontal caused by the vertical 
velocity induced by each of them at the position of the other. They estimate the 
diameter ol ihe void x tubes from the circulation and from the condition that the 
pressure on their boundaries shall be cavity pressure. They then treat the vortex 
tubes as pipes atom; which the uir is transported away from the cavity. In this view 
th. air flows aloni; cacti vortex tune under the action of a pressure gradient which is 
imposed by the hydrostatic pressure variation and so is known fromthe inclination of 
the vortices to the huri/onlal. The mean air velocity, v,,, in the tubes is then deter- 
miiu'din terms of an equivalent friction coefficient, , [or airflow in the vortcxpipes. 
The coefficient is left as a parameter to be d'UTmined empirically by fitting the 
theoretical predictions to experimental results. 

As will be seen latei. application of this picture to our experimental results 
implies values of \, v,, which are in many cases less than unity. Velocity v0 is the 
free stream velocity, and the axial velocity of water near the vortex tubes maybe 
supposed to be approximately vu except in the immediate neighborhood of the bubble. 
When v. v., I. the mean air velocity in each vortex pipe is equal tothe axial velocity 
of the pipe walls. When v, vn 1, the pipe friction, far from restraining the air flow 
under the action of the hydrostatic pressure gradient, would actually aid it. In these 
circumstances the model of Cox and Clayden cannot be regarded as applicable. For 
this reason we propose a modification of Ihe model. We suppose simply that when the 
model moves through unit distaiic',', enough air has to be supplied to fill unit length of 
newly laid twin vortex trail. We now derive an expression for the entrainmont on 
this basis. 

Following Cox and Clayden and considering the vertical meridian plane through 
th ■ cavity (Section AA of Fig, 2). we write 

V,-'    -    V,f 2!!(|l,    "   H,,) 

where v, and v., are the velocities and II and n,, the hydrostatic heads of water onlhc 
upper and lower surfaces of the cavity. The circulation, .whichis setup In this way 
round the cavity is given by 

I'.t;    ■!■      C.ivLty liehiml .1 liisc 
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where c is the trace ot Ihe cavity on the vertical meridian plane.   For sufficiently 
slender cavities this integral may be approximated as lollows: 

I  Wx)   lx 'v\       vi,'    lx 

where the x axis is parallel tc '.he direction of the main flow and • (see Fig. 2) is the 
length of the bubble.   Since 

v I   "   v.i > Vl     "  vu '   ' Vl    '   VII ' v I     -   vii  *■'"n 

then    can be further approximated: 

) .lx 

K ,1   • v      4   '"■ 
O 

where c has been approximated by an ellipse, so that the integral then becomes the 
area oi the ellipse. 

If we neglect the inclination of the trailing vortices to the horizontal and assume 
that the axial velocity of the water in the neighborhood of the vortices (sufficiently far 
downstream) is vn,thcn the transverse velocity, qr, round the periphery of the vortex 
tubes is given by Bernoulli's equation. Thus 

1,22, 12 
Pc  •  2    (<■■„    ■  .lr )      Pn  •  2     v0 

i.e., 
2 2 

'"<■ '„ 

where is the cavitation number. In calculating rjr, Cox and Clayden allow for the 
inclination of the vortices and so include an additional term which has, however, only 
a very small influence, at least in our range of experimental conditions. 

The diameter, n, of the vortex cores is then given by 

whence 
»2     KV2 If. V.4 

According to our view the volume of gas entrained per unit time is given by 

'■'      2(4^)v.,. 

Hen-je the nondimeiisional en'rainmenl coefficient, c^,,, based on disc dianv »er, is 
given by 
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C ') - 
W      v ,1-      2 

(A2    ■•   uVKVfV 
Uj    32 V4,i.ij l.,y 

cw   32F4  \.r) i.ij (i) 

It is known from the cxpuriments of Relchardt (3) on cavities (ormed behind a 
circular disc that 

M .lm)2     1.1 • 

to a very good degree of approximation.   With this approximation we  can write 

C-    ^r-('i)2- (2) 

The ratio ■ il Is also,of course, a function of for cavities behind a clrculardlsc and 
so Cw is a function of F and . Reicharot's experiments also show that as a rough 
approximation wc may write 

<1    ■       0  7 

over a limited range (say 0.04 0.12). If we incorporate also this approximation 
AC  [illd lliat 

r,,,,        IS.sr4 * . (3) 

This makes it intelligible that it was found pobbibh- in the Caltech work to obtain a 
rough correlation between C^,, and K. In fact (3) is in reasonable accord with the 
Caltech results at the lower rates of entrainment. 

EXPERIMENTAL ARRANGEMENT AND PROCEDURE 

The measurements reported here were made on the small w'.«ter whirling arm at 
the Admiralty Research Laboratory; as compared with a water tunnel of normal type 
this equipment offers ready dispersal of entrained air and relatively small boundary 
wall interference. The inner radius of the channel is 3.8 ft and the outer radius 6.8 ft; 
in these tests the model was positioned at the 5-ft radius. Fur most of the tests the 
model was maintained at 8-1/2 in. below the surface in water depth of 18 in. In 
addition some measurements were also made in different depths of water and with 
dilft rent vertical positions for the model. 

The models consisted of a number of interchangeable discs of different diameters 
mounted at the front end of a stint;, which was in turn carried on a supporting strut 
(sec Fit;. 3). Provision was made for air to be supplied to the back of the discs and 
for measurements of dynamic head and cavity pressure. 

A rotating seal and conduit peiinitted a continuous supply of air to be Drought 
from outside the arm to the model. i\ second seal was used to take 'i direct con- 
necliun to the manometer used for measuring cavily pressure. In the ease of the 
dynamic head, which involved measuring a wide range of pressures, a strain-gauge 
transducer which could be placed to take advantage of (he halancing effect  »f radial 
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Fit:- 3 - Dine (3/4 in.) mounted in po-^ition on whirlini: arm

acci'leration was -scd. Pressure measurement and all filtering, metering, and control 
of the air supply took place off the arm.

In most cases the procedure adopted was to make a sequence of observations all 
at the same model speed iMt with differing air supply rates. Initially the air was 
supplied at a high rate and then the air supply valve was closed step by step, the air 
supply, total head, and cavity pressure bi-ing measured and the model speed checked 
at each stage. When eventually the cavity was on the verge of collapse, the process 
was reversed.

A typical example of the n suits ulHained is given in Fig. 4. It can be seen that, 
as the air supply valve was closed, the cavity pressure fell steadily until a point A 
was reached at which a further small adjustment of the valve in the same direction 
caused a sharp change to conditions of lower cavity pressure as at point B. It was 
not found possible to hold the cavity pressure at any intermediate point by adjustment 
of the air supply. If the pro«'ess was cor.tinu.'d the pressure dropped until the c."vity 
suddenly collapsed and a further large reductum in pressure o«-curred.

Reversing the process and re - forming a clear cavity.a similar change m-curred, 
this time in the opposite direction and at a consideralily great<'r rate of flow (C to D) 
but oth. rwise the results remained the same. The eavity pressure showed great 
seii.sitivity to .speed fluctuation Ixit was relatively insensitive (u changes of air supply 
at high cavity pr«'ssures.

The right-hand section ol the eiitrainmeik curvi- of Fig. 4 was o!vservi>d to cor- 
re.s|)ond to the trailing vorte.\ regimi- and tin left-hand section to the re-entrant j.-t 
regime. The measuremenf.s reported in thi.s paper apply only to Mie trailii'C vortex 
r< ginn In this paper the |Kiint A has Ihs ii taken as repr.’.sentuig Inc transition point 
lietween the tiailiiig vorle.x regim. and iht re entrant jet regime.
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DISCUSSION OF EXPEIUMENTAL RESULTS

The nuin reaulta are preai-nted in tcraphiral form 
in Fiits. 6 to 3. where r, , ia plotted a^ainat for var- 
iuuadiai aizes and for various model ap"eds. Individual 
experina-iital puinta an nut plotted; In fact a icreat 
many obaervationa were made and tlu’ae define the 
i-xpi'rlmental eurvea ahow.i very eloo.'ly. The rieht- 
hand end of earh curve in Fiica. 6 to 3 rorreapimda to 
the point in Fi|C. 4 laU'led A at which tranaitlon to the 
re>enlraiit jet rei;ime oi-eura.

The reaulta preaented in Fiua. 6 to 8 have already 
been eorreeted for inti 1 lerenee effects from the free 
surface and tlw elannel floor. Te obtain them- eor- 
rcetiwia. seta of measurenu-nta weic made in varioua 
depths uf water, in a<>‘ne caai'S with the model held at a 
fix< d height aluve the Imltoiii and in othera with the 
model held id a lixed di plh ladow llw free surface. It 
was found that tor each Imuislary Um- effect of an altera
tion of iMHUidary imisiII mi was to move tlw eiitiainmi'nl 
i-u -ve luiUly parulli 1 to tlic axis of l*y an amount 
di'|M'iiiliim -Ml till' distance, expressed in model diame
ters. of iIm- iiumIi 1 from die Umndary. As the effeit 
dimiiiislii s .'laiti rapidly willi mereasi' in dis(M.<. > .*
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Fi)(. 7 -  Cntrainment coefficient versus 
cavitatiun number,   )/4-in. disc 

was found possible to estimate the cavitation number (or a given cntrainmen oef- 
liciont in unbounded flow, „, and express the effect of boundary interference as the 
difference in cavitation numbers, „ - . The experimental results arc summarized 
in Fig. 9. This includes measurements made at different rates of cntrainment, Froude 
number, and Reynolds number. 

The boundary effects on entrainment are presumably associated directly with the 
boundary effects on the geometrical configuration of the cavity. Arguing from the 
theory of tunnel boundary effects on cavities and from the theory of 'ntrainment out- 
lined above, the proximity of a free surface might be expected at a given ■ to make 
smaller both the cavity and the gas supply required to maintain it.  In the same way 
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Fig.   8   -   Entrainment  cutfficient  versus   cavttalion number;   1-in.   disc 

the proximity of a fixed surface might be expected to have the opposite effect. This 
at least explains qualitatively what actually occurs. It should be noted in this con- 
nection that Uie bottom and sides of the channel, being covered with anti-swirl bar- 
riers, arc a rather complex shape. 

The distance of the nearest side wall from the model position was 14 times the 
diameter of the largest disc. Noting the effect of the bottom at this distance it was 
considered reasonable to regard boundary interference from the side walls as 
negligibly small. 

Comparison between the entrainment cunreb obtained at the same Froude number 
but with different disc sizes shows that entrainment is nut exclusively a function of F 
and .1. For example, the entrainment curve for the 1 2-in. disc at 18 fps is roughly 
parallel to the entrainment curve for the 3 4-in. disc at 22 fps but is displaced from 
it along the .axis: these two cases correspond to the same Froude number. The 
effect is small but seems quite definite. 

It appears that the entrainment curves (for the twin vortex regime) are bounded 
on the right by a value of which depends only on F. For a given value of F the 
entrainment curves for the larger discs lie above those for the smaller discs. Fig- 
ures 10, 11, and 12 Illustrate the situation. 

In Fig. 10 measurements of entrainment all at the same are plo ted against V 
for the different discs. The evidence is limited because it is difficult to select the 
data necessary for constructing such a diagram. The points clearly do not define a 
single curve but show a syslimatie trend of increasing entrainment with increasing 
disc size. 

Again in Fig. 11, in which the minimuni value of c, , capable of sustaininga cavity 
in the twin vortex regime  is given as u function "! !• fiir Hie vnrious discs, the data 
although somewhat scattered, define fairly clearly, roughly parallel curves, one for 
each disc, and the value of minimum ! , , fura given value .if ' incivast s »'ith increas- 
ing disc size. 
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In Fig. 12 the highest valuis of at which a cavity with thr twin vorU-x ti-gimc 
can be sustained art' plotUfl against F for the various discs. U follows from the 
smrUness uf the scatter that and i arc the principal factors which govern the 
transition condition. 

A few measurements were devoted to a check on the possibility that surface 
ti n.sion miuiit affect enlrainment. By addint; enough Teepol to the water to give an 
0.04;i percent solution, the surface tension was reduced from 02 dynes cm to 43 
dynes cm, i.e.,by 34 percent. When the entrainmenl curve for a 1 2-in. disc moving 
at I" Ips through this solution Aas compared with the corresponding curve obtained 
with micoataminaied «ater, no dilferenee could be distinguished. 
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Accordingly it seems unlikely that the parameters, uther than K and , on which 
r, , depends include the Weber number. The effects which we have described may 
possibly be Reynolds number effects; since the viscosity has not been varied, how- 
ever, it is impossible to a.sicrt that this is the case. 

The condition for transition from one flow regime to the other is ex.remcly 
important. Once the trailinn vortex reiiimr takes over, the entrainment rale can rise 
exceedingly rapidly. It is of interest to note from Fi^. 12 that the transition condition 
is quite well approximated by the rectangular hyperbola   1=1. 

Finally we compare the experimenlai resvttt.v with the theoretical predictions. 
In addition to the experimentally determlm".! curve«, Ki^s, G to K show also some 
corresponding theoretical curves. These have been derived from E<\, (2) uninu 
Reichardt's values ol I as a function of . It will be observed that the theory 
accounts for the measurements in broad outline. 
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The cases where the measured value o( C^,, lies below the value given by Eq. (2) 
are cases which would involve values of vm y() less than 1 in the model of Cox and 
Clayden. It is for this reason that we regard the theory of Cox and Clayden as not 
applicable in our range of experimental conditions. The model of Cox and Clayden 
may, of course, be applicable and our modified version not applicable at higher 
entrainment rates. 

The fact that the experimental results are broadly described by a theory which 
predicts dependence only on F and naturally confirms that these are indeed the main 
parameters on which the entrainment depends. 
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NOMENCLATURE 

i = diameter of vortex cores 

(', , = air entrainment coefficient based on disc diameter = Q vnri2 

1 = disc diameter 

• i„ = maximum diameter of cavity 

F = Froude r.umber based on disc diameter =  vn (n.ii1 i 

ii = acceleration c'ue to gravity 

ii - hydrostatic head of water 

= length of cavity 

r>0 = free stream pressure 

PI. = cavity pressure 

n -. voU'me of air at cavity pressure entrained per scconCt 

'i( = transverse velocity at periphery of vortex core 

vn - free stream velocity 

i,    =  mean air velocity in vortex cores in the theoretical model of Cox and 
Clayden 

= circulation round vortex tula's 

= equivalent friction coefficient for air flow in vortex tubes in the theoretical 
model of Cox and Clayden 

= density cif watt r 

- i-aviiution inimlic!  --   ; .     i.  •      [   v " 
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DISCUSSION 

W. A. Clayden (Armament Research and Development Establishment) 

It was our experience also that for low values of c0i1 (say less than 0.5) the 
vortex tubes degenerated into trails of bubbles and it is presumably a consequence of 
the bubble formation that there are no effects of the hydrostatic pressure gradient 
along the vortex tubes. For a steady flow pattern to be maintained similar to that 
shown in the author's Fig. 6, the rate at which the bubbles entrain air mi'st be equal 
to the rate at which the vortex tubes are laid down. For large air entrainment rates, 
however, fully formed tubes exist for some distance behind the cavity. In general, 
(',,, ro will not be unity and in our experiments values up to 5 were measured. 

It is perhaps worth pointing out that if these data are used to predict the trajec- 
tory of a missile, the air entrainment rate will be modified, since the circulation 
around tl - cavity which produces the vortices is proportional to i-os , where is the 
angle between the longitudinal axis of the cavity and the horizontal, and also depends 
upon the lift force. 

K. L. Wadlin 'National Advisory Committee for Aeronautics) 

The authors certainly have arrived at a simple relationship for the ca?e they 
considered, that is, where the cavity walls are not turbulent. It would be interesting 
tu know if the case where the cavity walls are turbulent has been considered by them. 
Tins is of interest since there is a significant diffcrer.ee between the character of 
ti i' cu". ity surface shown in the photograph and that which we experience at theNACA. 
Tin. j'n.Hograph indicates very smooth flow along the cavity boundaries by virtue of 
the glc&sy clearness of the cavity. Our experience, at somewhat lug! ..r speeds, has 
been that the cavity boundary, except lor an extremely small distance near tts origin, 
is opaque, indicating turbulence. This is tiue with andwithout gas being .njected into 
the cavity. This may mei'ii that at low Reynolds numbers the cavity wails do not 
entrain the gas but only the turbulent trailing vortices, while at »he higher Reynol is 
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numhc-rs the cavity walls wuulu be a lui^u ractui in Hit- inlrainiri'Tiil proccsn. It 
seems thai the method of analysis used here might be e.\teiicUd lo iiandk this cast 
also. 

I. J. Campbell and D. V. Hilborne 

Mr. Clayden's remarks imply that, even when the trailing vortex regime hold., 
sway, there are still two possible situations. In the one situation, at relatively low 
airflows, the air-filled vortex tubes break up into bubbles and this is the situation in 
our experiments. In the other situation, at high cntrainment rates, fully formed tubes 
exist for some distance behind the cavity anu that situation was realized in the exper- 
iments of Cox and Clayden.   We agree with this suggestion. 

We agree too with Mr. Clayden's remark that the air cntrainment rate must be 
modified when the direction of motion is no lonuer normal tu the direction of gravity 
and must depcndalso on the lift force. Appropriate experiments would be interesting. 

With regard to Mr. Wadlin's comments it has been our experience that clear 
cavities are associated with the trailing vortex regime. The only opaque cavities 
which we have encountered have been associated with the re-entrant jet regime: in 
these circumstances the wall roughness arises from the re-entrant jet splashing onto 
the cavity wall. What happens in the re-entrant jet regime is outside the compass of 
the present paper. Light might be thrown on the point which Mr. Wadlin has raised 
by experiments with roughened discs behind which cavities in the trailing vortex 
regime are produced. 

The authors wish to thank Mr. Clayden and Mr. Wadlin for their written con- 
tributions. 
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ON SUPERCAVITATING PROPELLERS 

II   W.   Lcrt)! 

This little paper is an attempt to answer the question as to thu efficiency of a 
supercavitating propeller, that is, of a propeller which is intentionally designed for 
full cavity flow with free streamline.? from the leading and trailing edges of the sec- 
tions. This question arose from time to time during my stay at the David Taylor 
Model Basin (DTMB) in relation with the propulsion of fast ships. One advantage of 
such propellers was immediately seen in reduction of erosion and there were also 
some indications lliat thv noise chararteristica might he improved with supercavitatin^ 
propellers. An open question that remained was the magnitude of the efficiency of 
such a propeller. It is well known that the efficiency of a conventional propeller, i.e.. 
of a propeller designed for operation near the limit of unset of cavitation, decreases 
for fully developed cavitation. This reduction becomes, in general, greater the 
smaller the cavitation number is. The question we were mainly confronted with was, 
therefore, whether or not the efficiency of a propeller which is intentionally designed 
for supercavltating conditions might be greater than that of a conventional propeller. 
It might be said beforehand that the prospect for a supercavltating propeller was 
unfavorable on account of those theoretical considerations which could be made 
before the papers by Tulin (1) and Wu (2) on the free streamline theory of fully 
cavitating hydrofoils were available. However, this situation became different when 
results from the papers just cited were applied to the propeller flow. Tiiese results 
have made possible a successful solution of this particular propeller problem under 
consideration. 

In the following contribution 1 wish first to outline briefly the statements on the 
efficiency of a fully cavitating propeller which were possible prior to Tuhn's and Wu's 
work and then give a few results when their findings are applied on fully cavitating 
sections to a propeller. 

The older papers are connected with the names of Posdunine and Baein. Bel/.. 
and Walchner. Of these the first two are of Russian origin. These two papers are 
related since the problem is treated in both of them by means of methods of momen- 
tum theory. To characterize the application of this method to our problem we will 
restrict ourselves to the paper by baein, which is the more complete one (3). In this 
paper a flow model of a cavitating propeller is assumed corresponding to Fig. 1. 

The essential feature of this model is that the density of the fluid behind the 
screw < | is assumed smaller than the density „ in front of the s'Tew. On account 
of the sudden change of the density at the disc not only the pressure but also'', speed 
will change abruptly at the disc. The results which are obtained for this model wlu-n 
applying the laws of energy, conunuay, ami inutuviitun) an ißlereäling. For instance, 
when su^-h a flow is realized, a positive tluust  might        generated under certair 
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cüiiditioiis with a nogatlve pressure jump ai the disc, 
H'l'iciciu'y in nonvisi'ous How. it aiUows that 

For the efficiency    ,, i.e., the 

i .1/ -'■T 

1 ./ 

where «'T TI -' I^,,-' is the thrust loading coefficient. It should be noted thai this 
expression dianges over into that given by the Froude-Ranklne theory if . „ ,. 
.-■'urtluru is Reenthat    , decreases if   ,,    , increases and that  ■, -> o If    „    j -»  . 

Tiie answer of this theory to our problems is incomplete for two reasons. It is 
firstly not possible to establish a relation between ,, i and the cavitalion number . 
However, one might guess that the ratio „ ( becomes great if the cavitation number 
becomes small. One would then conclude that the efficiency becomes small if the 
cavitation number is small and goes probably to zero if goes to zero. There are, 
further, no indications that a supcrcavitating propeller as defined at the beginning 
behaves differently from a conventional propeller. However, such indications might 
not be expected from momentum theory becaus > of the inherent assumptions on the 
geometry rf the propeller common to all momentum theories. 

It is therefore necessary to consider a supcrcavitating propeller from the point 
of view oi airfoil theory which requires the polar curves of supercavitating sections 
to be known. An approximate theory for the lift and drag as functions of the cavitation 
number and the angle of attack is developed in the aforementioned paper by 
Bctz (4). He starts out from the free streamline flow of a flat plate according to 
Helmholtz and Kirchhoff. From this theory the lift coefficient is approximated by 
<, 2 , which is only 1 4 the lift in the esual flow without free streamlines. In a 
cavitating flow, the lift is greater, since the pressure of the fluid between the free 
streamlines is assumed in the theory by Helmhultz and Kirchhoff to equal the pres- 
sure of the undisturbed flow, p,,. When the tree streamlines form the boundary of u 
cavity the pressure is smaller than p,, and equals the cavity pressure. From this 
follows an additional lift of order    so that 

Then the pressure drag coefficient for a flat plate is 

i 

Pi 

VIM. 

-  ^ Ph 

1       !• l..v. 
• ■ll.ll.UL1      I. 

and the total drag coefficient is 

■ p 

where r, is the frictional resistance coefficient 
of the pressure side of the plate. Further, the 
drag lift ratio    i.s represented by 

With these relations for a fully cavitating plate, 
one is able to estimate the efficiency of a fully 
cavilating propeller. It follows from propeller 
theory that the efficiency is 
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when.' . npiubinis thu lüssts which arise from the klnotic energy of the slipstream 
ai>d . thost from the drag of the sections. The first (actor is for optimum propellers 
a known function of number of blades, advance coefficient, and loading coefficient. 
The second factor may be written 

(1-2- 

where     is the effective mean of the drag, lift coefficients of the sections and 

Comparison of the efficiency of two propellers, both designed for the same con- 
ditions, the one as a conventional propeller at the limit of onset of cavitatlon and the 
other one as a supercavitating propeller, amounts essentially to a comparison of .. 
For the propeller of an MTB (motor torpedo boat) of 43.5 knots the conventional 
design gave the following results: , = 0.84, = 0.080, , = 0.444, ■, = 0.837, and 

= 0.7Ö3. Designing this propeller for equal conditions as a supercavitating propeller 
on a basis of Betz's theory, one obtains = 0.125 and . - 0.745. These latter figures 
depend somewhat on t!' choice of the lift coefficients and .aay be considered as an 
order of magnitude. I '.s means then a loss of efficiency for the supercavitating 
design of about 12 percent. Since numerous other numerical results were in about 
the same range, one is led to conclude that a supercavitating propeller is, in general, 
connected with an appreciable loss of power input. 

Tills L'onciusion, depends, of course, to a great deal on the accuracy of Betz's 
theory of fully cavitating hydrofoils. However, there was not much reason to consider 
this theory inadequate since tests by Walchner showed satisfactory agreement. 
Walchncr conducted cavitatlon tests on series of both ogival (5) and modified ogival 
stctions (6). The modified sections had a circular-arc suction surface and a flat 
pressure surface with rounded leading and trailing edges. With these modified 
sections the measurements have been recently repeated by Kermeen (7). His results 
for cavitating flow show poor agreement with those obtained by Walchner. There was 
in general more cavitatlon in Kermeen's tests at all cavitatlon numbers, so that the 
loss in lift in UK latter tests is greater for the same cavitatlon number. The dif- 
ference in forces amounts to a change 
in cavitatlon number of about 0.1. 
Because of these discrepancies 
between the experimental results,the 
approximations by Betz do not appear 
sufficient  lor a general application. 

The same conclusion is reached 
by the work of Tulin anil W'J. It is not 
the purpose of this paper to enter into 
these theories; only a few numerical 
results which are of interest for the 
propeller design will be given here, 
in Fig. 2 the pressure drag lift coef- 
ficient is shown as a function of the 
lift coefficient for Ixrth the flat plate 
and a circular-arc plate as follow 
iroin Wu"b theory (8). The figure is 
restricted to the limit -0. For this 
limit the result for the flat plate 
passes over into that from Raleigli'n 
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thi'cry of thf oblique lamina. The 
tiguri- shows clearly thu (onsidtT- 
abiu offcit of the section camber 
on the drag, lift coefficient in fully 
cavitating flow. For a comparison, 
the result of Beta's approximations 
is included. It is seen that there 
ia satisfactory agreement only for 
small angles of attack of a flat 
plate. This is to be expected, 
whereas the effect of camber does 
not follow from the anproximatlon 
because of the inherent assump- 
tions. 

1' i^i-   i  -   tiilfcl ul  camber 
on   propeUer efficiency 

It is this latter effect, which 
has made it possible to successfully 
design asupticavilaliiiKpropeller. 
Taking the same example of the 

MTB propeller as before and calculating the efficiency for equal values of both local 
lift coefficient and local cavitation number, one obtains for fully cavitating circular- 
arc plates a mean effective drag, lilt ratio = 0.055 and correspondingly ■. = 0.87. 
As compared to the conventional propeller the supercavitating propeller designed 
rrom circular arc plates shows in this panicular case a gain in efficiency of about 
4 percent. 

The effect of the camber of fully cavitating sections on the propeller efficiency 
is shown in a more general way on Fig. 3 (9). On the left side of the diagram, the 
efficiency of 3-bladed propellers is represented for flat plate sections, on the right 
side for circular sections as function of the advance coefficient and the thrust loading 
coefficient. To simplify, the limiting case - 0 has been considered and also the lift 
coefficient has been assumed to equal O.S. Similar diagrams have been calculated for 
different lift coefficients. Because of the first assumption, viz., = 0 the diagram 
gives the lower limit of the propeller efficiency which maybe obtained under extreme 
conditions of cavitation. For cambered sections this limit is considerably greater 
than was formerly expected. As a consequence I think I am right in saying that the 
possibility is indicated for efficient propulsion of naval vessels at unlimited speed by 
means of a screw propeller. 

Since these numerical results on the propeller efficiency depend on an ejq^eri- 
mental verification of the free streamline theories of fully cavitating sections, the 
papers by Parkin (10) and by Wald and Lindbcrg (11) are of great interest. In the 
first paper a flat plate and a circular-arc section are tested; in the second one a 
curved wedge-shaped section designed for full cavity operation by DTMB on the basis 
of Tulin's theory. L» both of theje investigations good agreement between the exueri- 
memal and theoretical lift coefficients is found. The drag coefficients as measured 
in the Intter paper, however, differ if 0.2 and 5 . Although the drag lift ratio 
and its ("end are affected by the discrepancies, there is fairly satisfactory agreement 
lor full cavity flow if tli ivitation number Is less than 0.2. This covers the range 
of cavitation numbers which is of interest for high-speed propellers. It should be 
mentioned that the discrepancies are not considered imperfections of the theoretical 
work but are attributed either to tunnel wall effect or to an ineomp.ete evaluation of 
the theory. 

The aforestated results for the eilicieney of fully cavitating propellers,designed 
from proper low-drag soctions, made it worth while to enter  into the pmblcm of 
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ck'vt'lopini; suih prot^llers. When this decision was made, the method of propeller 
clcsiiiii on a basis of circulation theory was well advanced at DTMB. This method has 
been applied to fully eavitatint? propellers. Without ttoing into details I only wish to 
mention that circulation theory has reliably worked also in tliiü case. Many difficulties 
irose from the necessity to satisfy both hyclrodynamic and strength conditions. Since 
most of the work to overcome these difficulties has been done after I had left DTMB, 
I hope that Mr. Tachmindji and Mr. Morgan are going to report in their oaper on the 
lurther progress on this problem. 
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EDITOR'S NOTE: 

The Symposium discussion of Dr. Lerb's paper was deferred until the next paper 
on the same subject had been read.  The joint discussion appears after the next paper 
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THE DESIGN AND ESTIMATED PERFORMANCE OF A 
SERIES OF SUPERCAVITATING PROPELLERS 

A. J. Tdchminciji   and W. B. Mor)ja 
«.11 r./   !,i\ i.,,   I/.,,/..;  li   >in 

This papor uuthncs thv procetlure whicil has been (levt lopeti for the 
design of supc rcavitatinp prupfllers and the possible range ol applica- 
tion in which such propellers can be used. This design method has been 
used to predict the performance characteristics of a series of s'lper- 
cavitating propellers and compared   with specific experimental results. 

INTRODUCTION 

The tendency toward increasing speed» is continuously imposing design limita- 
tions on conventional propellers and is providing the impetus for new types of pro- 
pulsion devices which operate satisfactorily at high speeds. A number of propulsion 
mechanisms (pumpjets, shrouded prcpcllcra) have beon investigated with the purpose 
of delaying the inception of cavitation and its associated effects of erosion and per- 
formance breakdown. It becomes apparent, however, that for very high speeds (50 
knots and above) suppression of cavitation becomes impossible and it is then neces- 
sary to investigate propellers which are designed to operate at low cavitation numbers. 

Operation in this speed range results in the back or suction side of the blade 
sections being completely enclosed within a vapor cavity which originates at the 
leading edge of the blade and extends beyond the trailing edge. Propellers exhibiting 
this type of flow configuration are usually known as supercavitating propellers. It 
should be noted that supercavitating propellers operate completely submerged and 
are to be distinguished from conventional speedboat propellers which are only par- 
tially submerged. 

It is the purpose of this paper to outline the pr jcedure which has been developed 
for the design of supercavitating (SC) propellers and indicate the possible range of 
application in which such propellers can be used. Certain criteria, which have been 
derived from experimental information, indicate the operating conditions at which 
these propellers can be efficiently applied. Furthermore, owing to the somewhat 
lengthy design calculations and for the purposes u( initial estimates it has been 
deemed desirable to investigate on u theoretical basis the performance characteris- 
tics of a series of supercavitating prcpellers. These results can then lie compared 
v. at' fxpcrimenUU results of specific propellers in order to indicate the accuracy and 
usefulness of this series. 
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DESIGN CONSIDERATfONS 

Range of Application 

the initial decision which hafi lu he majo is whether a conventional noncavltatfng 
or a supercavitatlng propeller is the most desirable lor specific operating conditions-. 
For conventional propellers it is desirable to have no cavitation on the blades, a con- 
dition which is impossible beyond a certain operating speed. In the caae of SC pro- 
pellers the vapor cavity wnich originates at the leading edge of the blade should 
collapse beyond the trailing edge in order to prevent erosion of the blades. Experi- 
mental results have Indicated (1) thi«t in order to have satisfactory supercavitatlng 
operation, the cavitation number* of the blade section at 0.7 of the propeller radius, 
should be less than 0.04S; and if the propeller operates at moderate «weds (35 to 50 
knots), this requires a high rotational speed. The high rotational speed, however, 
will result in an inherently low pitch and a correspondingly low propeller efficiency. 

Based on the foregoing considerations it has been possible to derive a diagram, 
shown in Fig. 1, which indicates the areas in which SC propellers become practical. 
This diagram has H v,,2 (which is proportional to the propeller cavitation index) plotted 
versus the speed coefficient J, where 

i    —- J       nD 
(1) 

and 
D - propeller diameter 

H ■ absolute pressure at the shaft centerllne minus the cavity pressure (in 
feet of water) 

n a revolutions per unit time 
vn ■ speed of advance 
V    = speed of advance in knots. 

I .i;.   I   -t.hnrt i>!   pr;ii Mi al applu atiuti of 
siipi-ri .iviialnij;  propellers 

Su,.  i-.rj, UO). 
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In this figure the marginal region (II) above a j of 0.6 is a region of operation in 
which partial cavitation will probably occur on both cunventiunal and SC propellers. 
This same region below a ] of 0.6 indicates an area in which the propeller efficiency 
will be low and should be avoided if at all possible. 

Study of this diagram will indicate that the speed of advance at which super- 
cavitating propellers become practical is relatively high. Further work has shown, 
however, that it is possible to decrease the speed of application by artificially 
increasing the cavity pressure, thus effectively decreasing the section cavitation 
number. This is achieved by providing an air passage from the back of the blade 
through which air can be sucked or injected. Such propellers are presently known 
as ventilated or force-ventilated propellers. For a certain cavitation index, how- 
ever, it is immaterial whether the cavity is a vapor or an air-cavity and the design 
considerations which are outlined in this paper are expected to hold equally well in 
the cases of ventilated propellers. The range of application for these propellers is 
then only limited by the resulting pressure which can be obtained in the cavity and 
the operating depth of the propeller. 

Choice of Design Parameters 

The design of a SC propeller for a given set of design parameters leads to a 
rather complex investigation and usually results from a compromise between the 
hydrodynamic considerations, the acceptable stress limits and the practical limita- 
tions on propeller diameter. 

The first problem considered in connection with the design of the propeller is 
determining the optimum diameter-rpm relationship. An estimate of this relation- 
ship can be obtained from the performance curves which are presented in this paper. 

A problem of equal importance with the diameter and rpm is the selection of the 
number of blades. The choice should be made primarily on the basis of blade stress 
and vibration. If possible, the number of blades should be chosen so that the blade 
frequency forces do not cause resonance with any natural frequencies of the ship. 
As far as stress is concerned (see Appendix A) an individual investigation may be 
>pcessary in each case. Decreasing the number of blades will result in an Increase 
in loading, section lift, and hence section thickness. The resultant stress may be 
either larger or smaller depending on whether the increase in loading or thickness 
predominate. 

For SC propellers the hub diameter may be used, within certain limits, to effec- 
tively reduce the blade stress. An increase in hub size will result In an Increase in 
ulade loading, but a decrease in bending moment. Since the thickness is a function 
of blade loading, this increase in loading will result in an incre: le In thickness and 
a decrease, up to a certain limit, in stress. Therefore, the changes in both moment 
and loading will result in a decrease in stress. However, the hub size should not be 
increased to the point where it materially affects the propeller efficiency. 

Other design parameters such as blade chord and section angle of attack are 
also governed by both the hydrodynamic psrformance and the structural character- 
istic» uf »he» propeller and must be investigated fnr a best compromise. 

Sections 

A critical feature of the design is governed by the choice of sections which are 
selected to operate in the supercavitating rangp.   The work done by Tulin (2,3) in 
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determining the char: uteristics of an optimum section within a series of similar 
shapes, has been the foundation for predicting the characteristics of SC propellers. 
The results of this work coupled with the experimental investigations of the shapes 
uf these sections (4,5) have provided information extremely useful to the designer. 

The work of a number of inveati^ators su^h as Wli (6), Hug (7), Cohrn (8), 
Johnson (9,10), and others have also been used in the prediction of section charac- 
teristics. Their results, however, are essentially similar with Tulln's results within 
the limits of the basic assumptions. This two-dimensional work has furnished design 
criteria regarding angle of attack, optimum lift coefficient, and expected drag/lift 
ratio« which are extensively used in the prediction of SC propeller performance. 
These design considerations are outlined in the parts of this pupcr describing the 
design procedure. 

DESIGN THEORY 

In principle the operation of «he SC propeller differs from a noncavltating pro- 
peller only in the type of sections used. Hence, the circulation, or lifting-line, theory 
applies equally well to these propellers. 

Two general methods of approach can be considered. The first, developed by 
Goldstein (11) and extended by Tachmlndji (12), deals with the optimum lightly-loaded 
propeller with a finite number of blades, and the second, developed by Lerbs (13), 
determines the circulation distribution for moderately-loaded propellers in which 
the condition of normality is not necessarily assumed. Comparison of the two meth- 
ods has shown (14) that for the range and load distributions normally encountered in 
propeller designs, the difference» between the two are small. Design calculations in 
the case of SC propellers have been made using both methods. These calculations 
have indicated that the circulation distribution factors and the induction factors give 
essentially the same result. 

Based on these two basic approaches, a number of calculations have been made 
(15-18) which give information directly usable by the designer. From the theory of 
the optimum propeller, the ideal efficiency ( ,) has been computed (19,20) and can 
be used in the case of nonoptimum propellers as a first estimate for the hydrody- 
namic pitch angle ( ,). 

The foregoing discussion on propeller theory has been restricted to a blade which 
has been replaced by a lifting line operating in a nonviscous fluid. In applying this 
theory to propellei design, the lifting-line considerations have to be expanded to 
include lifting surface and viscous effects. Lud«ieg and Ginzel (21) have examined 
the curvature of the flow at the midpoint of each section and obtained corrections to 
the section camber. Lerbs (22) has determined an additional correction in the form 
of an angle of attack due to change in curvature over the section chord. 

The viscous corrections for supcrcavitating sections and their effect on the ideal 
efficiency have been derived by Morgan (23). 

DESIGN PROCEDURE 

Once the propeller diameter, rpm, and hub size have been determined, the pro- 
peller can then be calculated. The design can bo made cither on the basis of thrust 
or power. Designing on the basis of thrust may be preferable since the variation of 
thrust between viscous and nonviscous flow is not as great as in the ease of power 
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and the speed-resistance lelatiunship is normally more accurately known,   'fhe fol- 
lowinf nondimensional coefficients are computeJ: 

v I 

in 
(2) 

and 

C"T ,     i (3) 

or 

c        2 QI,        ssn sir 

'" 02   v ' I)2   v ' W 

where 

1   = propeller diameter 

n = revolutions per unit time 

0 = torque 

sin = shaft horsepower 

T = thrust 

v^ = it - »r)iv  = £.peed of advance of the propeller 

V = ship speed 

■>„ = effective wake fraction 

= mass density of fluid. 

Since the propeller is calculated on the basis of a nonviscous fluid, the viscous 
thrust or power coefficient must be modified to their nonviscous values. An approx- 
imation for the nonviscous coefficients can be made by assuming that the hydrody- 
namic pitch angle ( ,) and the drag/lift ratio ( ) at 0.7 radius are average values for 
the propeller, then 

(•T      1     2 
T   | ii.oj to i.()s,r.r (5) 

1 "''1.7 

r,. , m.HS m d.'iKir,, (e) 
1    •'    , 

where 

Ü. 1     ,s     i    I li'l    isl r-.iti , 

With Kq. (2) iind 'i, or (V, from Eq. (5) or Kq. (6), the ideal efficiency    , of an 
optimum propeller <-;in lie obtained from Rets, li» and 20.   Usint; this value of ideal 

493 



A. J. Tachrnindji anri W    R    M^rjian 

efficiency the first approximation to the hydrodynamic pitch angle is computed using 
the relation 

t «n ' i (7) 
1       "'i 'i x 

where 

x = nondimensional radius 

= arclan(^x) = advance angie 

\i  = K/V. (for a free-running optimum propeller). 

For an optimum free-running propeller, the ideal efficiency i is constant along 
the blade. If the propeller is not optimum, then , varies along the blade and the 
assumption is made that the ideal efficiency at 0.7 radius is equal to that obtained 
from the curves. 

In order to describe each propeller section, it is necessary to know the radial 
distribution of hydrodynamic pitch angle ,, circulation a, coefficient of lift CL) and 
thrust coefficient <icT dx or power coefficient dtp ix. These values are derived 
from the following equations: 

n     ^   ^ (8) 

(9) 

(10) 

(ID 
fix        •■• tan      i-     .'V,,; 

v .iere 

u,        ftnn   'j        \ t im     l 
^       I--   —- "  ll ^ t ntuvnt i nl   irvliirr.l vrlooitv 

«,       \,a" /   ft 1112    v        ll 

D 
2     "i cos      j 

[I             "".I 

.icTi 

.icp 

•»" tm,      [I      2VJ 

i „ ii  v.,   i     nx i ;i 1    in<)tu-ril v.'toi'ity 

section chord 

Z     number of blades 

circulation distributiun fac-tor from Ri'I. 16 or Goldstein fiirtor from Ref. 
15. 
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It should be noted that the integral of •;( ,   clx or ilTp    ix along tht- radius should 
equal the design values of CT   or r,, ; 

-.M(.' y- (12) 

and 

ci',   4Z I ,..',;   ('   w;)" (13) 

where x, is the nondimensiünal hub radius. 

If the propeller is an optimum propeller the difference between cT| from Eqs. (5) 
and (12) and between Cp from Eqs. (6) and (13) will only be within the accuracy with 
which , can be read from the chart». For a nonoptimum propeller the above equa- 
tions are equally valid, but an iteration procedure is necessary in order to determine 
the hydrodynamic pitch angle. 

The foregoing discussion has been concerned with free-running propellers. For 
wake-adapted propellers the fact that the wake varies with radius must be considered. 
Therefore, for the design of these propellers the different coefficients arenondimen- 
sionalized on the basis of ship speed instead of speed of advance (14). 

Once the desired Cf or Cp is obtained, the pr-psllcr pprtinn shape, section 
length, and angle of attack c^n be selected. For SC sections the camberline is the 
pressure side of the foil and the thickness is applied between the camberline and the 
Tree streamline. The maximum ordinate of the pressure side of Tulin's section (2) 
can be written as follows: 

ly   ■ I.,..,,      n.5  sin 

where 

v   = face ordinate measured perpendicularly to the nose-tail line 

cL  = design lift coefficient 

=      ■   , 57.3 = geometric angles of attack in radians 

- design angle of attack in degrees 

,   = ideal angle of attack in degrees 

■   = chord length. 

(14) 

For small and 1 and Eq. (14) reduces to 

n.S ii ii2sr (1.011H2 

(K») 

The dislrilmtion ul the (ace ordinates; along the «•hurd is pven in Table 1. 

The thickness of the section, measured normal to the nose-tail line, is given by 
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Taille 1 

Distribution of Face Ordinates and Coefficients (or 
Calculating Thickness Alont the Chord 

\. v >■„„„ F 
1 

f          i 
1 

0 0 0 
J 

0 

0.0075 0.01888 -0.001326 (   254 
0.0125 0.03244 -0.002574 0. 1870 
0.05 0.14189 -0.016816 0.005704 
0.10 0.29150 -0.039520 0.010074 
0.20 0.56636 -0.078940 0.017349 
0.30 0.78458 -0.097600 0.022222 
0.40 0.93187 -0.092870 0.024647 
0.50 1.0 -0.071780 0.025710 
0.60 0.98340 -0.037750 0.025853 
0.70 0.87797 0.005940 0.025605 
0.80 0.68055 0.056880 0.024660 
0.90 0.38860 0.112090 0.023047 
0.95 0.20650 0.139620 0.022048 
1.0 0 0.166950 0.O20937 

FT, (16) 

FROM  TULIN'S  TMFO'IY 
MODIFltD TO INCREASE STRENGTH 

c ■<f. ,     NOSt   I»IL  LINE 

where the coefficients F' and N' are also given in Table 1. This equation gives a 
section slightly thicker than the theoretical cavity shape as shown in Fig. 2. Experi- 

mental results (1) have shown .hat 
this additional thickness is neces- 
sary in order to avoid leading edge 
vibration and does not affect its 
performance. 

One difficulty   encountered in 
the use of cambered SC sections is 
pressure face cavitation. If the sec- 
tion is operated at too low an angle 
of attack for a given camber, face 
cavitation will occur anil poor per- 
formance and possibly vibration will 
result. In addition, it has been suown 
(1,24) that a certain angle of attack 
is necessary for the section to have 
adequate strength.   By analyzing a 

number of experimental results, and noting that theoretically thr> design angle should 
be as small as possible in order to obtain minimum drag, the following relationships 
between design angle of attack • and the coefficient of lift (', has resulted: 

(17a) 

(!7b) 

Klf, I'-r    0.2      f. (17c) 

Fi^. d - Coin par it on oi t he o r o t i c a I :intl 
TMB moclilii'd thi c kni.'s a distributiun of 
Tulin's SC section 
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It should be noted that Eq. (17a) results in a flat-face section. 

Using1 the above relationships between c, and ■, calculations can be made lor 
the drag/lift ratio uf Tulin's section with part of the lift taken by angle of attack. 
These calculations have already been made (23) and the results indicate that an opti- 
mum lift coefficient for this section is approximately 0.16. This value can then be 
used in Eq. (9) for estimating the section chord ai 0.7 radius. The blade outline 
can then be chosen similar to the one given in Table 2. 

It is then necessary to determine the 
stress distribution in the propeller. (A 
simplified method is given in Appendix L) 
In many cases it may be found that the 
blade outline should be adjusted until ac- 
ceptable nominal stresses are obtained. 
This may also be accomplished by an in- 
crease in angle of attack towards the root. 

Once the chord, coeflicient of lilt and 
angle of attack have been selected the face 
and thickness can be calculated from Eqs. 
(15) and (16). The face ordinates, how- 
ever, must be corrected for the lifting 
surface effects (14) and are given by 

Table 2 

Radial Distribution of Section Chord 

f >■   ■ Ucorrcrtcin      k, k_,(y (18) 

X 'o.7 

0.20 1.088 
0.30 1.088 
0.40 1.088 
0.50 1.085 
0.60 1.062           i 
0.70 1.0 
0.80 0.871 
0.90 0.655 
0.95 0.475             1 
1.00 0                j 

where k, and k _, are obtained from Fig. 3 and 

A-      ,~      ' f      27. I     ( '  D> :lx       I'xpimclcil nrrn  ratio. 

The next step is the calculation of the pitch correction. There are three correc- 
tions to be considered; friction correction, effect of finite cavitation number, and 
correction from lifting surface effect (22). From the data available, it appears that 
the friction correction is small for these propellers and can therefore be neglected. 
The effect of finite cavitation number is combined with both the design and the ideal 
angle of attack into one additional angle of attack ( ,) and is given by 

.,      S7.3K. S7,3K, (0.084<»CL  ' O.fJlSU 0>tfK (19) 

where K   is obtained from Fig. (4) and the cavitation number ( J is computed for 
0.7 radius, as follows: 

auHfsin2 
2nM.I2 

V .*(.!' 4. mi 
(20) 

where v = acceleration of gravity. 

The correction for tin? lifting surface effect results from both free a..d bound 
vurticos and again occirs as an additional angle of attack    2 given by 

' W')' (21) 
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F.,-    7      Camber correction coefficients 
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where li is from Fig. 5 and 

i 

57 3 \     2     /  2-      D sin 

'■ L 
'). 7  ros cos 

/., r Rr 

in which 

fp Kl (g]    - n.40 - J^i-os      ,o.     ,      0.7 S.M ,.) xj 

j  t   y (m -  1)       for    m       1,2,3 ... Z . 

It should be noted that in Eq. (21) the values of , , and , arc taken at the 0.7 
radius and considered constant. This correction is then made at this radius and the 
same percentage change applied to the other radii. 

iP D ' * ■'0.7 (22) 

The final pitch is then given as 

/        '.PD^ 
r D     x 11 •  -----1 lulu (23) 

Flu. ") - l'it< ti lorrci i!.,i-. i cjr4l-i irnt (h)  fur x      11.7 
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With tiie ualculalion oi the pitch, the design of a propeller is ccr'plete except for 
checking tho ratio of c1 to r, or the ratio of c, to fp and determining the propeller 
efficiency. In order to make these calculations it is necessary to know the values of 
the drag/lift ratio along the radius. These values can be obtained from theoretical 
(23) or experimental (4) two-dimensional results but must be adjusted for application 
to propellers (1). Using the foregoing information the following equations for have 
been found to give satisfactory results: 

'i.7>ir,c.    ■ /
l>'Sf,',1, ford      r,      0.054* ,„.   . i /      r,\2 ss i (24a) 

C,. [^     ) 

' (0.4(7.   • 0.n32Nl2 n 4cs 
(2.14^-1.13, j'^iSc, "• /        '   w  SH   f"r',0S4R    C..    "•2  (24b> 

c,. ('-.. r)     j 
r ü.455 I i2.14C,    •   1.131    0.20250, , >,   ^   ^ tor ".2    C, 

L. C'- I1-   ■ )       J 
where 

r    v   ' ' section inflow velocity ;' sill    ' 

kinematic viscosity of the fluid. 

It is now possible to evaluate the thrust and power coefficient for viscous flow. 
This check, made at 0.7 radius, gives good results but can be made more accurately 
by taking into account the drag of each section. The following equations give the 
viscous thrust and power coefficients as a function of the radius: 

r 
,•' '^T i'1     tin '^P 

fl -       Mil     ,> '   'Ix (I  -  ■    t.m     .1      ,   '    Ix      (25) 
I '      iix ]     tun '      ilx 

and 

cr (> •.      -1    i i 'l" . -      . - .ix. (26) 1 [      I tun     ■ I     ilx f tan ilx v—'» 
'xi *x i. 

CT or Cp calculated from the above equutions should cunipare closely willi the 
design values. Also, by using Eq. (25) or Eq. (26) the power or thrust absorbed by 
the propeller can be calculated and the propeller efficiency    is given by 

rT Cp. (27) 

SC PROPELLER SERIES 

Propeller series results are usually determined by testing a nvonbur of sys- 
tematic designs and determining their characteristics. In the case of SC propeller», 
however, this procedure can become extremely costly and time consuming, since all 
propellers have to tie tested over a range of cavitation numbers as well as speed 
coefficients. With the availability of high-speed computers such characteristics can 
now be predicted by means of theoretical computations,  iiius. substantially reducing 
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the necessary effort required. The strength or weakness of such a method is of 
course dependent un the propeller theory on which it is based and the accuracy of its 
predictions. Calculations of this character should, therefore, be confirmed by means 
of experimental results in the case uf specific propellers, and only then can their 
accuracy be completely determined. However, if the absolute valuo of the results is 
not exactly correct, such a series does provide a means of rapidly determining the 
relative performance gain or losswhich can be obtained by a variation of parameters. 
Furthermore, such a theoretical series is not intended to replace the design of indi- 
vidual propellers, but can serve as a guide in determining the design conditions. At 
the present time, it is contemplated that after such conditions are determined the 
individual design should still be performed. 

This series has been derived (23) by designing thirty propellers tt cover a range 
of from 0.1 to 0.5 and CT. from 0.015 to 4.0 at a cavltation number ■■ of zero. Each 
propeller has three blades', an expanded area ratio (A,.. A0) of 0.5, a nondimensional 
hub radius of 0.2 and used Tulin's sections with the relationship between c, and < as 
given by Eq. (17). The Reynolds number, used in calculating the section friction drag, 
varied between 3.5 x 10A and 5.7 x 10'. The results of the calculations, at = 0, are 
plotted in Figs. 6 and 7 as the square root of the thrust coefficient and the square 
rout of the power coefficient versus the speed coefficient J for various pitch ratios. 
On these plots are included contours of efficiency and an optimum efficiency line for 
a given rT or cr,. 

Once the basic design is coräplciad for zero cavltation number the calculations 
are extended to include finite cavltation numbers { 07) of the section at 0.7 radius. 
These calculations result in a change in pitch and are plotted In Figs. 8 and 9 as a 
function of   C.,, .1, and   n 7.   The final pitch is, then, given by 

p o    <v D) .., -    rr D)C, (28) 

where 

T ni    „ = pitch ratio from Fig. 6 or 7 

r Di = pitch correction coefficient from Fig. 8 

c = pitch correction coefficient from Fig. 9 

,, j = cavltation number at 0.7 radius from Eq. (20). 

The maximum face ordinate at the 0.7 radius is given in Fig. 10 as a function of 
C, and j. Using this ordinate and the distribution uf face ordinates along the chord 

obtained from Table 1 it is possible to calculate the ordir ales uf this section. The 
radial distribution of chord can be obtained from Table 2, where ' D at 0.7 radius is 
0.351. and the blade thick.iess fraction (BTF) for this propeller series can be taken 
from Fig. 11. Additional information fur other radii, similar to that given in Fig. 10, 
is also given in Ref. 25. 

A simplified method for calculating the stress has been derived for this propeller 
s( ries, and the maximum stress (compressivc) in psi at the blade root can .o esti- 
mated by 

"f's   ('IVA (W (29) 
144 MmV iinrr 
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Figures 6 and 7 can also be used to calculate the optimum rpm for a given diam- 
eter and the optimum diameter for a given rpm. As an example, the optimum rpm 
for the following design conditions can be obtained as follows: 

T = 25,000 lbs 

v,, a 101.28 fps 

I) = 3 ft. 

From Eq. (3) 

0.3S 
i'-v,: 

and 
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Fin   •* " Hitch correction coefficient    (P 0) for Unite cavita- 
lion numbers for TMB J-bladed SC propeller se.'ie:) 

efficiency along this line represents the point at which the diameter is an optimum. 
An example, for the design conditions 

T = 18,000 lbs 

v„ = 101.28 fps 

n = 36 rps 

is as follows.  Assume that D = 3 feet.   From Eq. (3) 

0.25. rT      0.5.       .mil    j 
i) v.; 

,ii) 0.94 . 

This point is then plotted on Fig. 6 and a line is drawn through tMj ouint and tht- 
origin. The maximum efficiency along this line occurs at a i of 0.9, and the optimum 
diameter is 

t. n <II t 

504 



Design and Pi/forniance of SupePcavitäting Propellers 

zo 
■ 

> 
> 

!/ 
1 8 

6 

- 
 , 

- _ 
  

I" — 
._ 

^ 
/ / 

/ r 
  

14 — 
— i— 

— 

7 
- 

_ 

/ 
/ 
/ — 

12 

—■ 

— 
" 

- 

7 
- 

"1 

- - — —^ 

S 1.0 
Z 
/ — ] 

0.8 
" 
- — 

/ 
i - -] 

06  .   — — - / 
■ 

- - 
i ' 

04 

— / . i ri -p 1 

— — 7 A 
■ i - „ 

i I                 ' 

02 — - > / -! ; r j - :  *  t ~r T | 
~y . ■ *    i 

0 --r i iii     i 

0 002      004      006      008      010      012       014       016       OIS       020 

Fiy. 9 - Pitch  correction coefficlmtt C   far finit«; cavi- 
tation   number  for  TMB   S-bhidi'd  SC   propeller seru-s 

0 10 

009 

008 

0 07 

0J6 

'.005 

'I'M 

j  j  j—r-j- 

l 5 14  I 3   12   I I 

K;.;.   Ill      M.ixiiiiiiin  I.K r urilui.ilr .il  u,7  r.uii'.s  K 

1 Ml'.   1   I.I,ul.ti   SC 1 i-..;n il. r  h.-ri.-s 

505 



A. J. Tachmindji and W. B. Morgan 

Fij-. 11 - Blade thick- 
ni'ss fraction for TMB 
3-bladcd   SC   propeller 
»t-r ics 

EXPERIMENTAL RESULTS 

A number of tests have been conducted on SC propellers that indicate the ade- 
quacy cf the design method and practicability of using SC sections on propellers (1). 
Figure 12 gives the performance characteristics for a 3-bladed propeller designed 
for 50 knots, 3500 pounds thrust, and 3000 rpm with a diameter of 18 inches. Using 
nondimensional coefficients these conditions result in a thrust coefficient Kr of 
0.140, speed coefficient .1 of 1.125, and cavitation number ■„ : of 0.064. The physi- 
cal characteristics of this propeller arc given in Fig. 13. 
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iroir. Fig. 12 it can be seen that this propeller gives very close to the design 
thrust at the design .1 and also develops an efficiency of approximately 68.5 percent. 
This propeller has nearly the same characteristics as a propeller obtained from the 
series previously discussed. From this series for the above design conditions, 
CT = 0.278 and .1 = 1.125, the propeller would have a '' D of 1.57 and of 70 percent. 
It will be noted that these values are in satisfactory agreement with the experimental 
values. 

An interesting characteristic of propellers usinfc, SC sections is shown in Fig. 14. 
This figure is a cross plot from Fig. 12 showing the relationship of thrust coefficient 
K,, torque coefficient K,,, andefficiency to the cavitation number at design .). This 
shows that while cavitation has great effect upon the thrust and torque, it has little 
effect upon efficiency. The fact that there is a decrease uf thrust with decreasing 
cavitation number is not important as long as the efficiency remains constant and it 
is possible to meet the design conditions. 

Confirmation of the validity ot the charts by means of experimental results has 
also been performed for other propellers. These propellers, however, were 2-bladed 
and a correction regarding the effect of the number of blades must be introduced. 
Although such comparisons are not as direct as that performed above, they have 
indicated agreement between the experimental and predicted results to better than 
3 percent. 

CONCLUDING REMARKS 

The feasibility of supercavitating propellers in the case of higH-speed application 
appears quite promising,  particularly where they ran be used to »he full benefit of 

507 



A. .1. Tat i.mindji ami W. H. Morgan 

0.1: 
J= I 126 

0<» 05 0C 07 08 09 10 

Fig.  14 - Plot of K,,  K  , and     vorsua      for propeller 350c 

their hydrodynamic pertormance.   Tlicir range of application may 
to lower speeds by the use of ventilated sections. 

ilso be- extended 

The design method which has been presented in this paper appears to give results 
which are verified by experimental confirmation. Improvements in this method, how- 
ever, can be anticipated as mure designs are accomplished and test results become 
available. The characteristics for the SC propeller scries must also be confirmed 
by means of experimental results for specific propeliere and only then can their 
accuracy be completely determined. It is felt, however, that the series work which 
has been accomplished to date will provide a method of assessing the effec'.iveness 
of the various design paramolers. Furthermore, it can cerUunly be used as an 
impetus for the design of SC propellers which will exceed these performance 
characteristics. 
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J.Ol'ATION 

>,  ,\l     expanded blade area ratio 

mi      blade thickness fraction 

508 



id IV rlur m.-in. i' o( Supi-n avitpliilK ('rupellers 

r,     section lift eoetficient 

power coofficicnt   ( 

nonviscous power coefficient 

f ' ] 
j 

2     I'M 
\ 

„J    ,. ,1 

thrust coefficient /        T       \ 

c.r      nonviscous thrust coefficient 

C       pitch correction coefficient 

D     propeller diameter 

f     coefficient for detemininn section thickness 

;;    nondimnnsional circulation per blade 

acceleration of gravity 

I!    absolut" pressure at the shaft center line minus the cav'tv pressure (in feet 
of water) 

i, pitch correction coefficient 

I      I blade-section-area moments of inertia 

I speed coefficient (v , MT)) 

S,, torque coefficient ((;    n-'ir) 

'•.t thrust coefficient (r   M-'IJ-
1
) 

;. correction factor fur finite cavitation number 

■ I'KJ camber cuinction coefficifiith 

blade-section chord 

■.!,    ".'.., bending moments on blade heclinn 

v     ■,; bending monu'ntK on bkidc .seciimi 

N" coefficient for deterniiiiinn section itiickmss 

revolutions per unit tmit 

1  'i pitch ratio 

(; tontue 

\i iiiuxinuiiu propeller radiiih 
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i      radius of any propeller blade section 

s,      nominal blade stress 

SHT     shaft horsepower 

r    thrust 

i      section thickness 

i'     inflow velocity to section      ' 

u ,     axial component of induced velocity 

11,     tangential component of induced velocity 

v     ship speed 

v ,     speed of advance 

\\     speed of advance in knots 

«n     effective wake fraction 

»     nondimensional radius (r R) 

x      fractional distance along chord measured from leading edge 

v     pressure face ordinatc 

number of blades 

design angle of attack 

,     geometric angle of attack corrected for finite cavitation number 

angle of attack from lifting surface effect 

ungle of attack fur effect of uoui.il voilice» 

,      ideal angle of attack 

advance angle 

,      hydrodynanic pitch angle 

I' Di     pitch correction coefficient 

drag/lift ratio 

propeller efficieiu> 

,      ideal propeller efficiemv 

geometric ;iiigle of attack 

"It- 
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circulation diutribution factor or Goldstein factor 

advance coefficient 

\   t ;in 

kinemalic vlscoslt) uf the fluid 

density of fluid 

eavitation number based on propeller speed of advance (2HH V,,2) 

cavitation number based on inflow velocitj. tn the section D» V ' uh I'2) 

pitch angle. 
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APPENDIX A 

STRENGTH ANALYSIS 

At the präsent time there is no theory for which the stress in propellers can be 
adequately oetermined. This fact is particularly noted in the design of SC propellers 
where the sections are inherently thin at the leading edge. Consequently, these 
propeller arc subject to leading edge vibration and fatigue failure. For these 
reasons it is necessary to use a high-strength material and a large factor of safety. 
Fron Ref. 1 it has been concluded that for a material with a 140,000-psl tensile 
strength the nominal stress of the SC propeller should not be over 30,000 psl. 

The nominal stress at any blade section is calculated (26) from the bending 
moments (M. and My), the centrold (x, and v„), and moment of Inertia (iX| and lV|i) 
by the following equations: 

Stri'ss nt   IcBilint*  vt\%v 
Vl M, 

I. (Al) 

St ress  in  trni 1 tnu nlm-  on  fiu'i (A2) 

Stress on hack  ;it   nwixrmi'': Utivk  onliiKitt (A3) 

where, as shown In Fig. Al, x,, x2, and x, and >,, yj, and >, are used to denote the 
abscissas and ordinates of the leading edge, face, trailing edge, and point of maximum 
back ordlnate. respectively, measured from the centrold of the section. In these 
equations a positive stress denotes tension and a negative stress denotes compression. 

•IT 

I 
CG 

^ 
5*0 

-NOSE ■'AU   LINE 

Kiu. Al   - (ii'UMH'Iru   properties of a   Sr  sertiun 

In the foregoing equations the bending mumonts Mv, and 'i,   are computed from 
the thrust and torque moments (•.!,    and \1,, ) and the pitch angle    as follows: 

T, (A4) 
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where 
M„      % Vi„    <r)s   .       MT    sin  ...   ■   M(1    ins 

vt. 'i. ' Vt. 

(A5) 
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2       Z       * "       tan     ■        <lx 
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dx 

2 ?rvA j "■■" 
■1C„ 

1     )   ( x       xn)      i      ilx 

3 .' ,U-T 
R J     I > 

2      7    VA ' ,il"     i Wx '   "o)    ,|x"'',x (A7) 

and x   is the nondimensional radius of the section being analyzed. 

The assumptions that the pitch angle . in Eqs. (A4) and (A5) is equal to the 
hydrodynamic pitch angle j and that the drag/lift ratio ■ is zero in Eqs. (A6) and 
(A7) will have small elleci on the bending moments except for heavily loaded 
propellers. 

By comparing a number of calculations, it has been shown (24) that the term 
xMv, lv in the stress equation can be neglected for most SC sections. Therefore, 
only the moment of inertia I „   and the ordinates need be considered. 

Also, if the relationship between C, and <, as given by Eqs. (17), is assumed, tt 
is possible to considerably simplify the equations for stress. The equations for a 
flat-face section, (see Eq. 17:'.) are as follows: 

St ri'ss    it   ICäIIIUK cili! 
vi M  ,     «-SM. 

(A8) 

y^ M,        K-2MV 

Stfi-ss  .ii   tiMilmi:   i-'l ■.'.    on  fm** 
i. 

(A9) 
'('. 

Si r'ss  .it 

v., \ K'Ml 

I. v/ (A 101 
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The results for the other relationships given in Eqs. (17) are more complicated 
and have been combined into nondimensional coefficients "'y, u,,. V,; I»,,, and 
V, !,„ and are plotted in Figs, (A2) and (A3) as a function OJ cL and the camber 

corrections !i1 and U2. Using those coefficients and neglecting the last term in Eqs. 
(Al). (A2), and (A3), the calculations of stress for these particular SC sections are 
considerably simplified. 
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DISCUSSION 

H. P. Rader (Vosper, Ltd., England) 

The authors of the two papers have yive» us the benefit of their experience with 
superciivitatinB propellers which should be most useful to those interested in high- 
speed marine propulsion problems. 

I would like to take this opportunity to mention a few chararVristics of super- 
(avitalinn propellers which wc found during the study of the problem over the lasi 
five years. 

510 



ipc 11 dvikdini^  t-iu\mliv 

I      ,      ■      i      I 
ATMOSPHERIC 

I 

LOCAL' CAVITATION 
1    NUMBER 

,       1  ,1W0?0 

80°       b'J'        AO'       20" 0" 20°        40°       60"        90" 
fiuADE   FLrMFNT ANGLE  Of ATTACK AT   D 7   RADIUS lo07) 

Fii>. Dl - Lift rocfficientH of propeller blade 
sections at 0.7 radius as function of alible of 
attack ( 0 7) with local tavitation number ( o 7) 
as parameter. (Typical values for )>ood, liigh- 
speed propellers.) 

The advantages of cambered blade sections from the efficiency point of view have 
been stressed already by Professor Lcrbs. I should like to add that flat-faced blade 
oections arc not only le»s efficient but also inadequate as far as lift production is 
concerned. Let me explain this. In Fig. Dl the lift coefficients of the equivalent 
blade section at 0.7 radius for various local cavitation numbers between0.02 and 0.20 
are plotted as function of angle of attack. The curves are obtained from the analysis 
of the results of cavitation tunnel tests of a good supercavitating propeller with highly 
cambered blade sections. Please note how small the gradient of these curves is in 
particular at the low cavitation numbers. For flat-faced blade sections all these 
curves would be lower and flatter. That means that it 'a impossible to produce two 
propellers of the same blade area ratio (B.A.R.), one with cambered and one with 
flat-faced blade sections, which will produce the same thrust at the same rate of 
advance even if the pitch uf the propeller with the flat-faced sections is Increased 
until il luaiiies practical limits. The small gradient of the Uft-lncidence curves is 
no real drawback. On the contrary, il proves tu be a very useful characteristic for 
hißh-speed propellers which have to work in a nonuniform velocity field or on a shaft 
which is inclined relative to the inflow direction. The fluctuations or cyclic variations 
of the blade element lift components due to incidence changes will be much smaller 
for a correctly designed supercavitating propeller than for a propeller designed to be 
free from cavitation. 
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I 

LOCAL   CWITATION  NUMBER 

• - i y 004 

'^A   V,.-J0 08 

60«        AO"        2o" 

BLADE   E'.EMEN'   AMOLE OF   ATIACK   AT 07  HADIUS   (a07' 

\ \%. D2 - Dran-lift ratios of propeller blade 
sections at 0.7 radius as function of angle 
of attack (>« 7)wuh Im-al cavitation number 
(  d  7)  as parameter.     (Typical values for 

Figure D2 shows the associaleu 
values of the drag-Ult ratios. The 
curves for the different local cavita- 
tion numbers show more or less 
pronounced minim« which increase 
with falling cavitation number and 
move to higher angles of attack. I 
have to add here that the drag-lift 
ratios shown In this and the follow- 
ing figures differ from the drag-lift 
ratios shown by Professor Lerbs. 
The drag coefficients In the drag- 
lift ratios shown here Include the 
frlctlonal losses and effects due 
to finite leading edge thickness, 
whereas the drag-lift ratios shown 
by Professor Lerbs allow for pres- 
sure drag only. This explains why 
in Professor Lerbs' graph the drag- 
lift ratios approach zero as the lift 
coefficients approach zero, whereas 
In my graphs the drag-lift ratios 
have a minimum at a certain angle 
of attack and approach Infinity as 
the lift coefficients approach zero. 

L'.ood, high-speed propellers.) 

In Flg. D3, values of lift coef- 
ficients and drag-lift ratios of the 
equivalent blade sections at angle of 
attack i„ j =2.5°, for twelve geo- 
metrically similar, supercavltatlng 

propellers, are plotted as a function of the local cavitation number. The face camber- 
chord ratios for blade sections at equal radii are the same, but the thickness-chord 
ratios of the blade sections at 0.7 radius, for instance, vary from t c ■ 0.034 for the 
small blade area ratio propellers to t c ■ 0.016 for the large blade area ratio pro- 
pellers. The scatter of the lift coefficient values due to Inaccuracies of model manu- 
facture and experimental errors Is such that one can draw a mean curve with 
reasonable fit. This proves the theoretical prediction that for supercavltatlng con- 
ditions the lift coefficient of a blade section depends only on cavitation number, angle 
of attack, and shape of the face, but not on the basic thickness form of the section. 
The values of the drag-lift ratios, however, show a definite trend with the thickness- 
chord ratio of the blade sections. This is due to the fact that it Is physically impos- 
sible to use infinitely thin leading edges. It appears, however, that the drag-lift ratio 
for a given lift coefficient and cavitation number Is not a function of a representative 
leading eilge thickness but rather it is a function of the edge thlckness-to-chord ratio 
which, of course, Is directly proportional to the thlcknecs-chord ratio of the blade 
section. 

Remembering that for propellers of the same diameter which produce the same 
thrust at the same rate of advance the efficiency depends only on the drag-lift ratio, 
the possibilities of fully and super cavltatlng propellers can be assessed best by 
comparing their drag-lift ratios with those of noncavitating propellc * al the tamo 
section lift coefficient. Such a comparison is shown graphically in Fig. D4. Values 
für the supercavitating DTMB propeller number 3509, at the design rate of advance, 
I = 1.125, and the ship cavitation numbers, = 0.30, 0.35 and 0.40, have bc.'n added. 
It appears that in the uptimum incidence range the drag-lift rati' s of lully cavitattnii 
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propellers are about the same as for noncavitating propellers at the same lift coef- 
ficients. This implies, ot course, that the lift coefficients for cavitating conditions 
arc lower than for noncavitating conditions at the same angle of Incidence or rate o. 
advance. The drag-lift ratios for suptrcavitating conditions ( „ , = ?..5' and DTMB 
propeller number 3509) are higher than Hie absolute minima achieved because the 
angles of incidence required to obtain sheet cavitation emanating from the leading 
edge arc higher th.-in is consistent with the requirements for minimum drag. This 
applies, in particular, to supcrcavitating propellers with narrow blades which require 
higher face camber ratios and, therefore, higher angles of incidence than supcr- 
cavitating propellers with medium width or wide blades. 

One last point. Mr. Tachmindji quoted as the lower limit for the application of 
supcrcavitating propellers a speed of 50 knots, in my opinion this limit is much 
lower.  I would put it at about 35 knots u.- even lower provided of court".» the propeller 
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revolutions are high enough to obtain the low. local cavitation numbers required (or 
supercavitating conditions. Recently we have fitted supercavitating propellers to an 
00-ft. passenger launch with a cruising speed of about 35 knots. The performance is 
as good as it would be with good noncavitating propellers. There are no vibrations 
and so far the propellers have not shown any signs of cavitation erosion although the 
propeller shafts arc at an angle of about 12 degrees relative to tho direction of flow. 

M. C. Eames (Naval Research Establishment. Halifax) 

It is characteristic of the rapid and efficient manner in which both the theuiyand 
application of supercavitating flows have been progressed, that already we have the 
beginnings of a systematic series of supercavitating propellers. The authors are tu 
be congratulated on this achievement. 

I would like to add a word about some of the experimental results. The first 
open-water tests were conducted on the Canadian R-100 hydrofoil craft (Fig. D5) 
using DTMB propellers number 3509 and 3604. 

This boat displaces 8.5 tons and has a length of 45 feet. The propellers were 
designed (or a speed of advance of 50knots and were required to develop 3500pounds 
thrust at 3000 rpm. 
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l!.t' first |>iO|N'IU'r was dcsitim-d to thi- thtort tu-al ravity shape, that is to say. 
wit.iiiut till' modified thickness distribution shos-n in Fiit. U6 of the paper. This 
|ii opt 111 r failed from o\-erstressinK tht first time a take olf was attempted, and 
|H rfoimance characteiistics could not lie otitained. Ihe nature of the failure is shows 
in Fiu D6 It is believed that a hiith wake reipon generated by the stern hydrofoils 
•a the craft was responsible for this failure.

It «as anticipated tc.at the strenntii of this propeller winild be marginal, so a 
M'cond pi opt lierwi'.ii .i incorporated tlu- modified thickness distribution was provided. 
1 iii.s M'condpropeller is a member of the m-w DTMB series: Fin. 117 shows it mounted 
on t. e 1 - aft Tni' proximit. of the lower .'tern .‘-ydrofoil is apparent.

Unfiirtunateiy ti e e.xacidesiKn cisiditiisis coiiidnoi br* realized, and it is interesi- 
inc. in View of Di I.erbs' comments, to niSe that hr- niinrt have anticipated this. The 
.ii.:h-sp< t >) liftini foils i4 Ihe Iniit use a Walchm r section, and it has been lound that 
cavitation <scurs on liiese foils at a lower speed than predieied from Walchner's 
e.<|N . iiiieiitui results In «onsenui-wi- of this eaily cavitation. II*- diai; of the craft 
wa.- siunilicanth hiur.er than predicted and the (ksicn thj-jsl of 3500 peunds was 
ih nuiiKM li .It alMsit 40 kneSs instead of 50 knots.
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Fir. Dfa Propeller oi theoretical cavity shape, without modified 
thickness showing wake failure

Despite the fact that the propeller was operatiiiK of! its design condlUon, the 
results were most encouraging. Figure Dg shows the overall propulsive efficiency, 
defined as thrust horse power (t.h.p.)-to-shaft horse power (B.h.p.) at the engine, 
plotted on a base of speed in knuts. The dotted curve is representative of results 
obtained with a conventional propeller of N.R.E. design, while the full curve shows 
the performance of DTMB propeller SC 3604.

Since a hydrofoil craft, with its inherently high speed of advance, is a natural 
application for the supercavitating propeller, these results are of interest apart from 
their verification of the propeller design itself. They point out the difficulty which 
must be faced under take-of! conditions where a high drug exists in a speed range of 
low efficiency for the supercavitatiru: propeller. During these particular trials, take
off was only jus> achieved.
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D. C. O'Neill (British Admiralty) 

Our thanks are due to the authors for their informative and interesting papers. 
The propeller designer has been coflcerneU wilh the elimination of cavitation for 
many years. The effects of cavitation on propeller efficiency, vibration, erosion, and 
noise are well known. The present papers provide a solution to the problem when 
such high speeds arc contemplated that the existence of severe cavitation becomes 
inevitable. 

To the Naval Architect, perhaps the most directly informative feature of the 
Tachmindji-Morgan paper is Fig. 1 which indicates the region where the supcr- 
cavitating design of propeller is likely to be applicable. Inspection of this diagram 
shows that very high speeds of advance are required. For example, at .' = 0.6 the 
correcponding speed for a practical SC propeller is of the order ol 10-50 knots. At 
higher values of .1 this minimum speed rises to 70-80 knots. In each case, high shaft 
speeds and small propeller diameters are appropriate. To attain the high ship speeds 
in other than very small, fast craft, a significant increase in the power-to-weight 
ratio of existing machinery would be required. In this connection, the high shaft speed 
and the possibility of dispensing with reduction gearing is attractive. 

To refer to points of detail, the authors have stressed their requirement for a 
blade section shape having a very thin leading edge in order to form the optimum 
cavity shape. In uniform flow this condition may well be obtained, but in the inclined 
and nonuniform flow behind the hull of a ship, it appears likely that fluctuations of the 
cavity shape will OCCIM . leading to u reduction of efficiency and an increase in vibra- 
tion and noise. The model test results shown in the paper arc. somewhat disappointing 
as the propeller, although designed for 50 knots speed of advance and running at 3000 
rpm. falls within the marginal zone in Fig. 1. This serves, indeed, to emphasi?«' the 
limitation of application of SC propellers referred to previously. In this marginal 
zone the propeller characteristics behave similar to those of more conventional 
propellers designed to reduce cavitation. This applies even at a cavitation number 
of 0.3 where one might expect the "marginal" SC design to show an advantage due to 
the decline of the conventional propeller's performance with increasing cavitation. 

Further test results of model propellers designed and operated well within the 
superca.itating region will provide a more informative comparison with conventional 
"reduced cavitation" designs. It is hoped that the authors will extend their valuable 
researches to include tests of the propellers over a range of shaft inclinations and to 
investigate the effects of nonuniform flow. 

J. P. Breslin (Stevens Institute of Technology) 

The favorable prospects as outlined by Professur Lerbs should have a two-foiu 
effect on naval engineers: 

1. stimulate interest in the application of bupcrc:ivilating propellers to high- 
speed ships. 

2. provide them with the range of values of the controlling parameters to which 
any design must conform in order to obtain attractive efficiencies. 

In this regard, it is to be noted that m order to achieve high efficiency it is necessary 
to design for moderate values of the thrust- loading coefficient as in the case of non- 
cavitating propellers. 
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It would also be most instructive to have a design chart which would indicate how 
the hydrodynamic efficiencips of both noncavitating and supercavltating propellerb 
are confined or limited by the restraints imposed by structural requirements. Such 
a cha. would clearly show the importance of structural limitations and might thereby 
increase research on this subject. 

One favorable prospect for supercavitating propellers which has not been men- 
tioned lies in the action of such propellers in producing vibration-exciting effects. 
In view of the fact that a supercavitating section has a lift-slope of one-quarter of 
that tor a fullv wetted section, one might expect that the vibratory thrust developed 
by anSC propeller operating in a circumferentially variable wake would be something 
of the order of one-quarter of that produced by the noncavitating propeller in the 
same wake. In addition, heuristically one may at first expect that the strength of the 
Uuctuaiinf: pressure field would also be tnHigaied by the presence of the elongated 
cavity at constant pressure; however, recent work on the field about noncavitating 
propellers has indicated that the "thickness effect" of the blades is not at all negli- 
gible, s) it may be thai a blade with a cavity will produce a large pressure pulse by 
virtue of its enlarged "displacement." This field can and should be computed to check 
the truth of such a guess. It would certainly be an important asset of SC propellers 
if it could bo (.lemonstrated that in addition to providing high efficiencies they also 
provide a large reduction in excitation of ship vibration. 

Another aspect in regard to vibration lies in the fact that the applied frequencies 
will be considerably higher than now obtained because of the higher rpm. This may 
well be of significance although it may turn out that components which are not at 
present excited may be found to be at a resonant condition at supercavitating propel- 
ler blade freauencies. 

H. E. Saimders (Capt., U.S.N,, Ret.) 

I would like to point out that perhaps the low efficiency, which is found with even 
some of the modern supercavitating propellers, is not necessarily a drawback U) 
their use or further development. With the old. racing molurboats which used super- 
cavitating propellers, '■•arting thirty years ago. speeds of 100 miles per hour were 
reached despite propulsive efficiencies of only about 0.25. The supercavitatint- 
propellers did the job despite this low efficiency, and perhaps in many present and 
future applications, efficiency may not be the prime consideration. 

There is another point which I would like to emphasize. It was sh' 'n and 
explained to tame extent by Mr. Eames. in connection with the Canadian hydrofoil 
boat, that a standard density of the water is assumed in the inflow jet to the super- 
cavitating propellers. However, all of us, who have looked through windows of our 
naval vesst.s and have seen the so-called water in which the propeller works, realize 
that the inflow jet with its air bubbles looked like a howling blir^ard of snow on the 
western plains; one can hardly see the propeller for the entrained air. Also in recent 
years, we have found with our large, fast ships, for some reason not adequately 
explained, that greater and greater quantities of air are encountered in the inflow jet. 
Mr. Eames pointed out that he had cavitation behind one of the hydrofoils. He also 
had separation behind that sloping shaft. The upper blades on his propeller were 
certainly n-)l working in green water. 

Sonic of the air in the inflow jit comes down under the bow of the ship. Some of 
it is pulled («it of solution due ti low pressures along the ship's length. But just 
where all of the air comes from, we do not Knew. There are indications that on some 
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of our latest and fastest ships we have pockets of air in the inflow jet which are 
longer than the pitch of the propellers. Thus, these are not bubbles any more but 
really big holes. My feeling is that while we should continue our work on the super- 
cavitating propellers, we should also try to find out what to do about more air in the 
inflow jet as we get to higher speeds and perhaps even longer ships. 

F. S. Burt (Admiralty Research Laboratory) 

Mr. Tachminoji referred in his paper to the use of high speed computers for 
predicting propeller characteristics tor a propeller series. We are very interested 
in this and would like to know if the DTMB has actually programmed a complete 
propeller design for computation on their computer. This is quite a formidable task 
as propeller design involves the use of correction factors such as Goldstein's k-factor 
and a correction for the lifting surface effect, which in themselves require some 
effort in programming. It may be of interest for you to know that at ARL we are at 
the moment having Ginzel camber correction factors, for the lifting surface effect, 
programmed 'or our Pegasus computer. 

Incidentally, we would take slight issue with DTMB when they seem to use Lerb's 
angle-of-attack correction factor in addition to the Ginzel correction. We would 
argue that these conditions are equivalent and not complementary. 

The possible disadvartage with supercavitating propellers may be in poor per- 
formance at off-design conditions. What information is there available on the per- 
formance at low speeds and at the Incipient cavitation stage when the efficiency may 
be rather less than at the ultimate, fully cavitating state? 

F. H. Todd (National Physical Laboratory, England) 

My first contact with the problem of supercavitating propellers was in 1939 when 
an ordinary marine propeller was run up to supercavitating conditions in the propeller 
water tunnel at the National Physical Laboratory, Teddington. I presented the results 
of these experiments in a discussion on a paper given to the Institution of Naval 
Architects in 1944 by V. L. Posduninc. of the Moscow Academy, who developed a 
theoretical model of the flow picture and deduced expressions for the thrust and ideal 
eiheiency.* It is of interest to note that he spoke at this time of "wedge-shaped 
blades," and although he did not give any particulars of the shapes he had in mind it 
would seem likely that they resembled In general those used in the present propellers. 

In these early NPL experiments the efficiency at the point where supercavi.ation 
was just fully developed was some 49 percent, as compared with 61 percent at the 
same slip in the noncavitating condition. At still higher slips the efficiency continued 
to fall. This work was not continued because of the outbreak of war, but the results 
indicated what could be achieved by running a normal marine propeller under such 
conditions. 

The theoretical analysis carried out by Mr. Tulin, and first pre?' ited at a Sym- 
posiuni in England in 1955, has shown how. by using specially designed supercavitating 

*V.   I .   Posdunini', "On  tin- Working of Hupt'ri avilalinn Hropt'lli r-,'' |i,ipt'I'   pi ri!i'iiti>l 
to thi' Institulion ol Naval Arc hilcrf»,   1944. 
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sections, it is possible to regain a great deal of the loss in efficiency and so to 
produce propellers which, in supercavitating conditions, an- not greatly inferior ir. 
efficiency  to  the  corresponding  ordinary   marine  propeller  in  the  noricavilating 
coüdilion. 

in IJiio P^CT Mr. '''•j/-hminriii and Mr. Morgan have applied the pioneer work of 
Tulin tc the actual design prjblem (or supercavitatint, M»"F<-A1^.,. T; -■,->~»<"^ *►«> 
standard propeller design methods developed at the David Taylor Model Basin to this 
new problem, they have been able to calculate, on a high-speed computer, the per- 
formance of a large number of propellers and so produce the design charts given in 
their paper. The calculated performance characteristics have been checked by a 
limited number of experiments, which have shown that the charts can be relied upon 
for the design of supercavitating propellers within the region covered by the series. 
The authors are to be congratulated on making this approach to the problem, which 
has enabled them to produce design charts very much more quickly and cheaply than 
would have been possible If all the 30 propellers had had to be made and tested In the 
tank. Their work will be of great Interest to all propeller designers who are Involved 
in  the particular field in which such supercavitating propellers may be of value. 

In this respect the authors devote considerable attention to the question of when 
it is desirable and possible to use this type of propeller. It is interesting to study the 
charts which they give to see just what the practical speeds are In representative 
cases so that we may gain a clearer Idea of the possible fields of usefulness. In 
order to do this, I have worked out three examples - for a fast liner (Table 1), a 
destroyer (Table 2), and a high-speed motorboat (Table 3). 

For the liner a draft of 32 feet has been assumed, a maximum propeller diameter 
of ?0 feet, with 7 feet of cover above the tips and an atmospheric pressure equivalent 
to 33 feet of water, giving a total head. H, of 50 feet. Taking the points marked A, D, 
C. D and E on Flg. D9, Table 1 can be constructed The points A and B mark the 
limiting time for the use of such propellers, and we see that even In this case the 
speeds are high - ranging from 40 to 85 knots. Perhaps the most inteitaiing case Is 
that at point A, where the speed Is not too far beyond those at present in use or 
contemplated for Atlantic liners. 

Assuming a total shaft horse- 
power of 250,000, estimates can be 
made, from the charts given In the 
paper, of the efficiency and pitch 
ratio, and the optimum values are 
also given in Table 1. 

For conventional propellers, the 
quadruple screw arrangement using 
propellers of 18.6 feet diameter and 
1.23 pitch ratio, running at 200 rpm, 
might be expected to give an effi- 
ciency of theord^rof 0.68, assuming 
nc. cavitallon. This latter qualifica- 
tion is, of course, the crux of the 
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Fin.  09  -  Chart of practical applic •;ion of 
super,    vilating  propi'lh-rs 

"M. P. Tulin, "Supercavitating Flow Past FOIIH and Strut«," Symposium or Cavitatum 
in Hydrctiynamit», NPI , 195S. 
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Tabit 

High Speed Liner 
Draft 32 feet, propeller diameter 20 feet, H -• 50 feel 

I Point: 
t~r-- 
i iGG 11/ VK 

•t n 

Vk (knots) 40.8 

J 0.6 

Diam. (feet) 20 15 

458 

10 

688 rpm 344 

No. of screws' 

Propeller type 

. 
Diam. (feet) 

rpm 

Pitch ratio 

Efficiency 

305 

ß 

n 7 

84.5 

1.4 

15 

407 

4 

0.7 

84.5 

0.6 
I 

D 

O.i 

129.0 

0.6 

E 

0.3 

129.0 

1.4 
t 

10! 20    15      lOi    20 
-4    I   4—    t 

15 
T »r 10    201   15i   10 

-iH-4 
6101713195011426! 1090; 1450|2180j467 623 935 

2 4 

Supercavitating 

10 

688 

0.96 

0.61 

15 

407 

0.92 

0.625 

Conventional 
(assuming no 
cavitation) 

18.6 

200 

1.23 

0.68 

'Shaft horsepower;   ^50,000 

business. In present liners of this class, cavitation is already a problem and some 
already suffer from cavitation erosion. To design conventional propellers to run at 
40 knots or above and absorb 60,000 to 70,000 horsepower eachwithout suffering from 
cavitation would therefore be a real problem, and the supercavitating propeller may 
well be the answer !o it. Under such conditions the conventional propeller would lose 
some of its margin of efficiency anc* any remaining difference in this respect would 
have to be set against the absence of erosion. If we consider still faster cpeeds, 
mov'ng along the line from A to B, the problem of designing a conventional propeller 
becomes rapidly more difficult and the use of supercavitating propellers rr ire 
attractive. 

tu.' the destroyer and high-speed motorboal. Tables 2 and 3 can be prepared. 
In these two types of ship, it will be seen that even at the present top speeds the 
supercavitating propeller may already be considered as a rival of the conventional 
propeller, and it is in the- high-speed motorboats that it has already been adopted on 
numerous occasions, although without the benefit of the new type sections. 

In the past, the supercavitating propellers used have in general had normal 
sections of the aerofoil or crescent (hollow-faced) type, and the relatively low effi- 
ciencies of these propellers under such conditions of operation have been accepted 
as part of the necessary price of working in this area. It lias now been shown how, 
with the proper choice of sections, this loss of efficiency can be avoided to a large 
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Table 2 

Destroyer 
Hra)   i2 feet, propeller diameter 12 leet, cover 6 (eel, H = 45 feet 

! Hoinx: 

\ 100 H/Vl       I 

1 

J  1  
Diam. (feet)      12 

3.0 

38.7 

0.6 

6 

B 

0.7 

80.2 

1.4 

C 

0.7 

80.2 

0.6 

0.3 

122.5 

0.6 

12 

1728 3456 

0.3 

122.5 

1.4 

12 

740 1480 

Conventional 
(assuming no cavitation) 

12.6 

350 

1.18 

0.66 J 
^Shaft horsepower!    100,000 
^Comparison at 38.7 knots 

extent, and supercavitatingpropellers can be designed to give reasonable efficiencies 
under very advanced design conditions, thus extending the range over which marine 
propellers may continue to be used for high- speed ship propulsion. 

An inspection of the tables will also show the wide rens« nf revolutions possible 
with such propellers, and this feature may well be of great interest to the marine 
engineer, enabling him to consider the adoption of lighter, faster-ruiming engines and 
the elimination of gearing. 

Of course, as in most new developments, the supercavitating propeller also 
brings its own problems, and one of the most important of these will undoubtedly be 
the need to obtain sufficient strength in the blades, particularly near the very fine 
leading edge. To avoid distortion and vibration in this vicinity will lull for extremely 
hard and tough material. 

Also, it Is Important tu realize the limitations of this type of pvoprller. Many 
new ideas have been spoiled in (he past because attempts were made u pply them 
Indiscriminately in fields where their particular merits could not be realized. From 
the examples quoted above, it will be realized that the essential condition for the use 
of the supercavitating propeller Is a relatively hiuh speed. It will not assist the 
normal cargo ship tu go (aster, but in the field ot high-speed moturborlsand destroy- 
ers it may be considered as a practical propeller even with present-day speeds. 
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High Speed Motorboat 
Immerbion to centreline shaft assumed 7 feet, H = 40 feet 

Point: A B C D E 

100 H/Vk
2 3.0 ""o:7~ 0.7 0.3 0.3 

V,K (knots) 36.5 1       75.5 
1 

75.5 115.5 115.5        j 

J 

Diam. (feel) 4 

0.6 1          1-4 0.6 0.6 1.4 

"'2-l     4 
■ ■ 

2 4 

3185 

1       2 ,]    ^ 4 2   j 

rpm 1540 2055 3080 j 1363 2726 [6370 4875 1 97S0   2090 4180  1 

No. of screws1' 4 

ercavitaling 

  

(as 

4 

Propeller type+ 

- 

Sup Conventional 
suming no cavitation) 

Diam. (feet) 2.40 2.38                     j 

rpm ' 2570 1800                          j 

Pitch ratio 0.90 1.16 

Efficiency 
_. 

0.64 
 1 

0.67                      ! 

''Shaft horsepower:   8000 
'Comparison at 36.5 knots 

It is, indeed, interesting to note that its field of useful application begins Just about 
at the point which wc have now reached in such high-speed craft and even in Atlantic 
liners, and if the demand for still higher speeds in these classes of ships continues, 
then the supercavitatingpripellcr has a promt sing field in front ol it and the designer 
a useful new weapon in his armoury. 

A. Silvcrleaf (National Physical Laboratory) 

These papers summarize a very great amount of work, and the information which 
they give is an immense aid to those of us who do not yet have any personal expe- 
rience with supercavitating propellers. My first reaction to the paper by Mr. 
Tachmindji and Mr. Morganis surprise in that design methods developed for orthodox 
propellers (in the development of which Prof. Lerbs has played a major role) appear 
to work so well for supercavitating conditions. Do the physical conditions in the wake 
immediately downstream of a screw with iong cavities over the back of its blade« 
closely resemble those postulated for the conventional vortex-theory design method 
for propellers? Prof. Lerb's review of the flow models for supercavitating propel- 
lers suggests to me that a more complicated model may be necessary tu undrrbUuui 
fully the action of supercavitating propellers. 
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The pitch correction faciors prcscntcti by Mr. Tachmir.dji and Mr. Morgan are 
clearly derived froma very extensive analysis, but I find them difficult tounderstand. 
Does the correction for finite cavitation number take account of the very marked 
radial variation in the local cavitation number, which in most propellers covers a 
range of about 8tol? Further, can. Ludwigg-Ginzel curvature correction factors, 
which depend closely on the blade width, apply to supercavltating propellers? What 
is the effective chord of a blade which has a long cavity extending far downstream of 
Us trailing edge ? 

The principle of carrying out systematic design calculations before indulging in 
the costly, time-consuming, and often disappointing process of systematic model 
experiments is an excellent one, and undoubtedly Mr. Tachmindji and Mr. Morgan 
have applied it most thoroughly. Howevpr. I am not entirely clear how the curves of 
his Figs. 6 and 7 are computed; has the inverse of a design method been developed to 
calculate the performance characteristics of propellers with specified geometry, or 
has the design method itself been directly applied to determine the geometrical 
features of propellers satisfying a set of specified operating conditions? If the latter 
method has been followed, then presumably each of the thirty propellers for which 
calculations were made is an optimum design, and thus each curve of constant pitch 
ratio in Figs. 6 and 7 embraces a set of propellers which are otherwise not geomet- 
rically identical, unlike similar diagrams for conventional propeller series. 

Mr. Tachmindji and Mr. Morgan claim satisfactory agreement between measured 
performance values for a number of supercavltating propellers and those derived 
from the calculated series. How were the experimental values determined? If they 
were based on water-tunnel test data, then what tunnel Interference correction factors 
were used ? It seems unlikely that simple corrections are adequate. 

There is a brief reference to the possibility of using forced ventilation to operate 
supercavltating propellers at low ship and shaft rotation speeds. How much power 
would be needed to operate the necessary ancillary gear ? Experiments with model 
supercavltating screws in a towing tank should help to answer such questions. What 
is the efficiency of supercavltating propellers when rotating in the astern direction? 
If it is low, then I should expect supercavltating propellers to be used for ships with 
shafts rotating unidirectionally; if so, then controllable pitch screws would be neces- 
sary. How do supercavltating sections behave over a wide range of pitch settings ? 
Finally, it is important to remember that very large thrusts are needed to propel 
large ships; practical considerations of propeller blade strength may well be decisive 
factors in the ultimate adoption of supercavltating propellers for large, fast ships. 

H. Lerbs 

One question to which I would like to reply immediately was that by Mr. Burt. 
The question refers to the lifting surface effects of the propeller and the corrections 
which arc necessary when you take the section property from two-dimensional flow. 

Now, the lifting surface effect exhibits itself in the curvature of the streamlines, 
and if the lifting surface effect of the propeller were such that the curvature ^«rer the 
chord length would be constant, Ludwig' s correction wotilo suffice. Now, owing to the 
continuous change of the velocity the curvature of the flow is smaller at the leading 
edge and greater at the trailing edge, and in order to compensate for this change of 
curvature an angle oi attack Is necessary. 
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I'd like to reply briefly to a few points. Regarding Mr, Rader's comments on 
the question of speed, I think he has misunderstood the 50 knot question. The Impor- 
tant thing, of course, is cavitation number and not speed. The value of speed itself 
is immaterial. 

Mr. O'Neill told us on the one hand that the supercavltating propeller was not 
quite comparable to the ones at AEW and then he showed us very nicely that this was 
In the marginal region. This was the basic reason that the diagram of Fig. 1. was 
given, I.e., to anticipate the comparison with arbitrary propellers. Of course, it has 
been shown that the efficiency of conventional propellers drops quite rapidly at low 
cavitation numbers. 

On Mr. Burt's comments about computing machines, we do have at the Model 
Basin a complete program for computing machines. The method used there is induc- 
tion factor method rather than the Goldstein method. It's a bit easier to program 
this particular method. 

Dr. Todd has pointed out •' ? ranges and speeds of supercavltating propellers. 

Mr. Silverleaf has given a glimmer of some of the work necessary to produce 
this diagram and he is quite right in saying there is more to it than meets the eye. 

Regarding the estimated performance of propellers in water tunnels, the one 
which was given was tested in full scale and also tested in the Basin and most of the 
work which has been carried on in the water tunnels is duplicated in the Basin. 
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AN EXPERIMENTAL STUDY 

OF CAVITATINGINDUCERS 

A. J.  Auosta 

llul i f..itn(i   fisniud- "!   T'fhnnlngy 

INTRODUCTION 

The user of a turbomachine is mainly intereslcd only in the overall hydrodymunic 
performance of the device. However, the designer is almost always confronted with 
the problem of achieving the Intended performance in the face of many conflicting 
hydrodynamic and system requirements. In certain areas it may happen that a 
formerly delsteiious effect (such as the occurrence of cavitation) can be turned to 
good advantage as in the case of the supercavitating hydrofoil or propeller. Unfor- 
tunately, this happy circumstance is not the lot of the designer of a liquid pumping 
system w;wn the effects of cavitation are predominant. That this is so, follows from 
the fact that the dissipation effects in production of lift by a hydrofoil are relatively 
unimportant whereas dissipation is important in the decrease of energy of a fluid 
stream as in the case of a pump. 

The basic compromise in pump design that makes cavitation a problem is rota- 
tive speed. If the size and weight of a pumping unit were immaterial, then a suitable 
combination of rotative speed and pump(s) could always be found to eliminate virtually 
any problem of cavitation. Fortunately for the occupational outlook of hydraulic engi- 
neers, one rarely has such freedom. In fact, weight and overall size are of such 
importance in missile turbopump applications that ihe conventional limits of rotative 
speed and cavitation criteria have been far exceeded, so that the effect of cavitation 
on overall performance is critical. A substantial reduction in weight is obtained, of 
course, by operation at high speeds, since to a rough approximation the tip speed for 
a given pressure rise is tixed. As the rotative speed is increased, the diameter is 
reduced and the weight is reduced more or less as the cube of the diameter. Need- 
less to say, the weight of auxiliary driving equipment will also be smaller at high 
rotative speeds since, as is invariably the case, a high-speed impulse drive turbine is 
used and fewtr gears will be needed in the reduction train. The flow near the inlet 
portions of the pump is now quite susceptible to cavitation because of the large rela- 
tive velocities that occur in this region. Thus there is every incentive to operate a 
liquid pump .it the highest possible rotative speei!, limited only by cavitation. 

Thesf flows as well as non-rotating flows are governed by u cavitation index u 
except that herein thev are based upon the inlet relative velocity dynamic pressure, 
ihe upstream static pressure and the vapor pressure of the flowing fluid. Some appre- 
ciation of the fluid dynamic effects to be expected may be gained by a comparison of 
the cavitation numbers at which   •onventional pumps operate and those of modern 
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propeiiam pumps. A weii-designeu ceuU Üu^ul (oi AAUI) pump may be expected to 
operate with cavitation numbers as low as about 0.3 before serious deterioration in 
performance occurs. However, a missile propellant pump may be called upon to 
operate satisfactorily with values of k o, 03, say, although at some loss of efficiency. 
(To make the comparison fair, the service life of the conventional unit as determined 
by cavitation damage will be many times that of the propellant pump.) It is clear 
that with such low values of k, a cavltation-free flow catmot be obtained and, in fact, 
considerations of cavitation dominate the design of inlet portions of such machines. 

A characteristic feature of cavity flows in confined spaces is that for a given 
geometry there is a minimum cavitation number below which steady flow is not pos- 
sible. This effect may be termed "choking" in analogy with the compressible phe- 
nomenon or cavitation "breakdown." Example« of such limiting flows in ducts are 
given in Ref. 1 and in cascades in Ref. 2. In the case of a pump operating at a given 
speed and flow rate, there also exists an inlet pressure below which maintenance of 
the flow ratn is not possible. It is extremely important in design to be able to predict 
the minimum required inlet pressure, and to so design the machinery as to make 
this minimum as small as the circumstances allow. 

Fiu.a u« fuicgolng rc-iiuiks it «111 have heea anticipated that the inlet con- 
figuration of a pump designed for cavitation will be quite different from a conventional 
machine. At small cavitation numbers (czy lees than 0.1) the cavity length becomes 
appreciable, and for the limiting cavitation number, the cavity length is infinite-at 
least in all planar flows. It is no surprise, then, that the blade length of the inlet 
portions of pumps for cavitating service must be long, or at least sufficiently long to 
insure finite cavity lengths over the desired operating range. The length of the blade 
is conveniently expressed in units of the circumferential blade spacing, and the ratio 
of these lengths is called the solidity. The inlet portions of such pumps will there- 
fore be of high solidUy (at least greater than unity) and to avoid high local velocities 
will be predominantly axial. For convenience of manufacture, this inlet region is 
often made separately and subsequently joined to the main stage. Following super- 
charger terminology, this separate piece is called an "inducer." The function of the 
inducer is to pressurize the flow sufficiently to enable the following pumping equip- 
ment to perform satisfactorily. If the primary rotor is of the centrifugal type, the 
pressure increase of the inducer portion usually needs to be only about ten percent 
of the pressure rise of the system. The power requirement of the inducer is then not 
an overriding consideration and the necessary cavitation performance of this compo- 
nent can then be obtained at the cost of efficiency if need be. 

The inducer is thus only an extension of the main rotor. Its being separate, 
however, offers advantages in Uiat it may be rur at a different speed on a coaxial 
shaft and certain fabrication difficulties are alV uted. Figure 1 is a photograph of 
a typical pump-inducer combination.4 The inducer is hardly a new device. For 
example, one of the very first rocket engines, the Walter 109-509A engine 'or the 
Me-163 rocket plane, used an inducer-pump combination (3). In the intervening 
period there has been a rapid development of inducers and pumps for cavltatint; 
service by organizations interested in missile development. However, relatively 
little design information has appeared in the open literature. We find, for example, 
Zimmerman in 1950 discussing the effect of pump suction pressure requirements in 
terms of pumping machinery weight (4). Brumficld (5) and Ross (6) undertook an 
elementary analysis to show in effect that there is an optimum inle* diameter for a 

»For a novel scheme to eliminate the inducer, and for a yood discussion of the prob- 
lem,  see   W islireims, tj.F., "(.'ritual Considei-ation»  on Cavitation  Lunita of Cen 
trifuyal and Axial-Flow  l'umps," Trans. ASME 78:1707 (I'J'ib',. 
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Fi|i. « • A typical inducer installation on 
a centrifugal pump for liquid oxygen. 
(Courtesy of Mr. T. Carter. Turbocraft 
Corp., Pasadena.)

Civen speed and (low rate. Ross was 
particularly interested in demon
strating the effect of itJet conditions 
on weight and Brumfield pointed out 
the advantages of pre-whirl in attain
ing low inlet pressures. The first 
paper dealing explicitly with the 
inducer was by Ross and Banerian (7) 
in which the function of the inducer is 
outiinc'd and a general description of 
the flow is given. They report lew 
details about the internal flow In the 
inducer but show tlut extremely low 
inlet pressures can be achieved.

Both the photograph of Fig. 1 and 
those In Ref. 1 show the inducei to be 
generally helical in shape. It Is 
usually machined, and in these exam
ples cor.clsts of a helical surface, the 
lead of which may vary from inlet to 
discharge. The hub diameter as well
as the tip diameter may also vary along the axis. Although there are many design 
variables, the gem ral appearance of an Inducer is a rotor of high solidity, small 
number of blades, and small blade angle. The purpose of this paper is to report the 
results of some experiments on typical inducer shapes. These experiments are 
intended to show In a qualiutive way the general flow patterns in the inducer In 
various stages of cavitation from Incipient to near breakdown. For this objective the 
simplest (but sUil useful) iutlucer shace is chosen; a rigid helix of constant lead. 
Three blade tip angles were studied, namely, 9~, and 12'. The solidity was kept 
constant at 2.0 (or each of these investigations. Additional tests were made with the 

impeller by varying the solidity from 1.0 to 3.25 and by changing the tip clearance 
over a wide range.

Complete performance data (cavlUting and ncncavitating) was obtained for each 
of the foregoing arrangements. As will be seen, the Dow through such a simple 
geometrical device is extremely complicated and not subject to exact analysis 
(although this may not be necessary lor design). In the following sections the non- 
cavitating and cavitating performance of these Isducers will be presented, together 
with some simple correlations based on two-dimensional free streamline theory. It 
will be shown that while we are not able to predict well tiie occurrence of breakdown 
the correlations tound do o-fer "rules of thumb" for design that will serve until better 
information becomes available.

EXPERIMENTAL PROGRAM 

The Test Rotors

The combination of flow coefficients and head coefficients required for inducer 
applications lies far outside conventional pump ur fan practice. Accordingly, .. was 
desired to cover a reasonably wide range of geometric variables in the test program. 
To simplify construction not only of the rotor but the rotor housing, the blade shapes 
(as noted before) were rigid, helical surfaces with tip blade angles of 6°, 9°, and 12“. 
The tip diameter was 2 inches and the hub diameter was 1 inch. The solidly lor the 
8“ and 12'' rotors wa£ maintained at 2.5 whereas it was systematically varied in the
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Fi^;.   I  - The 6   , 9     .ind  \l    experunental   mdutera. 
The tip diameter is I inches. 
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DCVELOPtO   BL.APE 

Fi(ü.   3    -   Uefinition   skeU h   of 
impeller geometry 

9 series from unity to 3.25. The tip clearance 
was also systematically varied in the 9 series 
for a given solidity (2.ü) over a wide range. 

Figure 2 is a photograph of several of the 
rotors tested. The various configurations tested 
arc tabulated in Table 1. and Fig. 3 may be 
consulted for the definitions of the vawous 
geometrical terms. 

All impellers were machined from 20 ST 
aluminum stock and anodized for corrosion and 
damage protection. The blade thickness was 
about 0.045 inch at the tip for most of the 
impellers. The leadine edges in all cases were 
sharpened so that the resulting shape was a 
wedge with about a ten-degree included angle. 

Test Facility 

At the start of this program no suitable test facility was available. The design 
of the arrangement shown in Fig. 4 was determined by the available funds and the 
desire for a simple, reliable, and compact system. The hydraulic circuit consists of 
a 60-galloii storage tank on which are mounted the cylindrical Lucite working section 
(Fig. 4) and the drive motor and associated controls. Considerations of the available 
motors and power supply dictated that the diameter of the working section lie 2 inches. 
For maximum visual observation of the flow, the impellers were mounted on a 1-inch 
shaft that is supported by a water-lubricated bearing upstream and a grease- 
lubricated ball bearing in the downstream diffusor. A mechanical face-seal | .events 
water from getting into the bearing or prevents air from leaking into the ''ircuit 
when operating at low pressures. A three-legged spider (with struts of 9-percent 
thickness) supports the upstream bearing. The support is 1-1/2 diameters upstream 
of the impeller so that no appreciable wake effects should remain in the flow. 

The discharge from the diffusor then passes through a turbine-type flowmeter 
and an auxiliary circulating pump. The hydraulic circuit is compl .»ed by discharge 
hack into th? 60-gallon reservoir. The ambient pressure in the circuit is changed by 
applying vacuum or pressure to a separate container about 1 gallon in volume that is 
in turn connected to the storage tank. This tank is mounted approximately 1 foot 
above the working section, and purge lines from all high point.c in the circuit lend to 
it so that undissaolved air obtained either by deacration of the wuter or during the 
noi mal course of operation at low pressure can be removed. 
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Table 1 

Constants uf Impellers Tested 
Nominal Tip Diameter = 2.0 in.; Hub Diameter = 1.00Ü in. 

Impeller 
No. 

Blade Tip 
Angle 
(deg) 

^ 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

12.05 

12.05 

9.1 

9.1 

9.1 

9.1 

9.1 

91 

9.1 

9.1 

9.1 

6.1 

Solidity 

2.5 

2.5 

2.5 

2.5 

2.5 

2.5 

2.5 

3.25 

2.0 

1.5 

1.0 

2.5 

No.  of 
Blades 

Radial 
Tip Clearance 

(in.) 

0.002 

0.005 

0.0015 

0.004 

0.008 

0.020 

0.0055* 

0.0055 

0.00S5 

0.0055 

0.0055 

0.0045 

Tip Clearance 
Ratio (gap/blade 

heignt) 

0.004 

0.010 

0.003 

0.008 

0.016 

0.040 

0.011 

0.011 

0.011 

0.011 

0.011 

0.009 

"l his impeller appears to have systematic manulai turin^differeiu es betwet n 
it and the preceditii; ones of the  same blade anfile. 

The greatest compromise in the design of the test system was the impeller drive 
motor. With the small diameter (2 inches) of the rctr- it is necessary to operate at 
high rotative speeds to obtain the low cavitation numbers sought. (Since hydraulic 
horsepower varies as the cube of the speed, and fifth power of the diameter, a small 
rotor operating at high speed is demanded if the power required is not to be excessive 
for a (dven tip speed.) The minimum useful rotative speed fu; cavitation studies was 
thought to be about 9000 rpm. A survey of the electric motor market quickly showed 
that no induction motor suitable for the laboiatory variable frequency supply was 
readily available, and as a compromise choice a 1/2-hp universal motor was obtained 
that could operate at rotative speeds from 6000 to 12,000 rpm. The motor pow^r 
output was calibrated at several speeds, and electrical input power measurements 
were subsequently used to establish the pump efficiency. This procedure was not 
completely satisfactory since the motor caliuiation depended upon the oj ^rating 
temperature as well as load. 

Instrumentation 

All pressures were measured with i.scrvury manometers.   The flow rate was 
fc-jnd from the rotaliv«. speed of a i-aUbrutcd turblne-lype (luwmeier.   Although the 
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Ki|[. -I - Vi«w of lost facilitv (howinti the Lurila 
workinit •Citior and the dr.va motor. I h« d4*< hare* 
piping and manometera ar* not viaiblr.

motor apeed was maiMially varied and controlled, it was measured b> comparinK it 
with the output o( a known apeed source. The comparison speed was capable o( beina 
varied in discrete umts of 12 rpm. In practice, the armalute current wa- varied 
until tr.ere was no differeiae between the moio; speed and that at the source The 
details ol this sy stem ran be found In Ref. 8.

T'le impeller toui head was measured -.ith a small imparl probe 0.05 Inrh in 
diameter a, u slation I .5 iia ties downstream from the impeller. Surveys near the 
ub or (ase were made with a boundary layer probe 0.02 inch in height. Flow aneles 

and sialic prcssu.es were also measured in the midstream ponmn of the amulus. 
Howevc.. uwim; to t.ie relatively larice sise of these instruments and the high curva* 
ture of t le flow in the passaxe. accurate measurements of these quantities could not 
be obtained neai ttie walls.
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Procedure 

The limitation to the relatively low Up speeds of the present tests (about 90 
ft/sec) required the Inlet static pressures to the impeller be on the order of 5 feet 
absolute. The first step therefore In the tests was to deaerate the water to levels 
such that the fluid was not supersaturated with air at these inlet pressures. For all 
except the very lowest inlet pressures this wan achieved by limiting the air content 
to 3 ppm (i.e., moles of air per mole oi water). A Van Slylu blood gas analyzer was 
used to measure the air content. Needless to say, much time was expended in obtain- 
ing and maintaining the air-tightness of the system to get such relatively low values 
of dissolved air. Even so, an air content of say 1/2 ppm would have been preferable. 

In these experiments the performance of the machine is separated into cavitating 
and noncavitating performance. The Utter tests were made to get a general idea of 
the flow within the impeller and to see how the performance of such machines com- 
pared with that of more conventional designs. For this purpose, total head, flow rate, 
and input power measurements were made. Extraneous torques such as seal friction 
were measured by the electric power input to the motor and computations of the 
efficiency could then be made. 

The cavitation tests were made by maintaining constant flow rate and speed and 
decreasing the system ambient pressure. The ambient pressure was lowered until 
the impeller could not maintain the given flow rate (termed cavitation breakdown) or 
the system minimum inlet pressure was reached. Operation near the breakdown 
point was quite unstable, since the power requirement of the impeller varied widely 
and constant speed could not be obtained with a universal motor. For this reason 
data at breakdown itsell is of limited extent and most of the deductions made were 
based on information obtained near this point 

The quantity of principal interest in the cavitating tests was the toui-pressure 
rise. It was measured at the downstream station in the middle of the annulus (at a 
radius ratio of 0.75). Although the total head at this position corresponds to a rough 
average of the total head over the annulus, the head so measured must be smaller 
than the properly weighted total head. The u suits thus obtained are conservative. 

Both cavitating and noncavitating performance data were taken for each of the 
impeller combinations listed in Table 1. Studies on somewhat modified impeller 
forms were also made but will not be reported here. In fact, because of the large 
amount of experimental data gathered, only those salient features of impeller per- 
formance both cavitating and noncavitating will be mentioned. 

RESULTS 

To facilitate the presentation, the noncavitating features of the flow through the 
inducers will be discussed first. As a further aid in visualizing the flow, the results 
of a tuft study made on a 12° inducer (No. 1, Table I) will be given. 

Tuft Photographs (Noncavitating) 

Figure 5 shows a sequence of three photographs of a 12"-impeller operating 
various flow-rate coefficients. As seen in this picture, three rows of three tufts each 
are fastened to the case and in addition three tufts are mounted on the hub imme- 
diately upstream and downstream of the rotor. At the highest flow rate shown 
(. = 0.10, occurring at about the maximum efficiency), the uoetream tufts show little 
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0. 10 f = 0.08 - n . On

Fiji. S - .Sequence of tuft photographs on a \i unpelltr at various ilou' rates. 
The rotation is from left to right and fio« approaches the rotor from below.

or no disturbance and the hub tults are in accordance with a smooth relative How 
there. At the intermediate now rate ( = 0.08). however, the row of tufts nearest the 
impeller on the ease show a strong influence from the impeller whereas the hub ti.fts 
aie still relaUvely unaffected. At . = 0.06 back flows on the case upstream of the 
impeller and on the hub immediately downstream of the trailing edge are quite 
noticeable.

Thus at the lowest flow rate shown any resemblance to straight a.xial flow is 
gone. The general circulation pattern in the meridian plane appears to be that of the 
strong ring voitices discussed by Spannhake (9). Additional visual tutt studies were 
made on a 9 impeller to confirm this point. From these it appears that at flow 
coefficients for which the strong upstream flow disturbance is observed the suction 
surface of the blade near tiie leading edge is not separated. However, tufts on the 
pres.surc surface at the outside diameter indicate that a strong lip clearance flow at 
the leading edge may l>e the agent of the di.sturbance. The tip clearance in these 
obse.'-vations was 1 percent of-the Made height, but more observations with variable 
tip clearance are necessary before this question can he settled.

The course of the flow tniough the rest of the impeller is fairly complicated at 
these flow rates. Strong radial inflow on the pressure side of tike blade just down
stream of Ute leading edge was observed on the inner half of the blade height and 
secondary flows were observed on the hub. About halfway Uirough the impeller, '.he 
flow on the hub appears to separate. The back flow at the trailing c .ge on the hub 
shown in Fig. 5 flows into this region. A compensating radial outflow is observed on 
tlie pressure side of the blade near the trailing edge.

Although the flow patterns just described {. = 0.08 on the 12 ' inducer and 0.075 
on the 9 impeller) arc not yet fully undersUxxl, it seems certain that the upstream
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disturbance is not a result of blade stall 
and centrifugal pumping action. It may 
be therefore that the resemblance 
between the present flow and that 
described by Spannhake is purely coin- 
cidental. 

Overall Performance (Noncavitating) 

Pump performance is usually 
expressed in terms of a ditnensionless 
iiead coefficient . and flow coefficient . 
(see Notation). The noncavitating per- 
formance of impellers 2, 3, and 12 is 
given in Fig. 6. (Recall that the total 
head was measured at the midpassage 
position.) The efficiency even under 
noncavitating condixions is rather low 
(about 75 percent), by ordinary standards. 
Tne excessive passage length, poor flow 
conditions at the leading edge, and tip 
clearance leakage all contribute to this 
low figurt. 

Several elementary esttmatss of ihe 
pressure rise curve were m-tde, none of 
which were wholly successiul. One of 
these is shown in Fig. 6 for the 9 ' impel- 
ler, '.t was obtained by assuming that the 
root-me aii-square radius was typical for 
the machine, by assuming that there is 
perfect guidance of the flow by the 
blades, by accounting for blockage due 
to vane thickness, and by subtracting off 
a "friction" loss based on an equivalent 
number of passage diameters and the 
relative velocity. At the best efficiency 
point this estimate is 22percent high It 
would be surprising if such a simple 
procedure were to work well, since it is 
known that a helical surface cannot 
impart a constant total head to all radii 
and since it is apparent that strong real 
fluid and tip clearance effects occur. 
Figure 7 shovs a flow survey taken 1.5 
diameters downstream of impeller 7 at 
a flow coefficient of . = 0.093 (near the 
best efficiency point). The local flow 
coefficient and total head coefficient vary 
appreciably but smoothly across the 
channel.   The velocity profile and output 

Fig. 
head 
a e1, 
lers 

OZSr 

010 
FLOW   COEFFICIENT 

6 - Noncavitating effuier.cy and 
toeffiriert vs flow toefficient lor 
9'', and It1' helical inducer (impol- 
12,   J.   and   2) and   solidity   of 2.5 

0»  
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00- 
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Fiji. 7 - Measurnd axial velocity profile 
. ,, measured head coeiflcient , n.eas- 
iirid input head coefficient '.theoret- 
icnl axial velocity, and theoretical he*.C 
 .'.'i'icnt    distr-biitioiis    .vro..'-   the 
iiiitiitlus of a 9 helical imluci r at a 
tuean flow tocffi.ient of  , ■ 0.('9< 
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total head coeffirieni were computed on the basis ot the simple radial emuliiwium 
theory of Ref. 10 and are also shown on Fig. 7. (In these calculations, a constant 
12-percent blockage of the annulus due to vaxte thickness was assumed.) The observed 
axial velocity profile follows the theoretical trend adequately but there is a great 
departure of the observed v' curve fiom the radial equilibrium value. We are not 
able to explain fully the reasons for the wide discrepancy except to remark that tip 
clearance leakage and the three-dimensional flows that undoubtedly take place violate 
the assumptions of perfect guidance and lossless relative flow used in the radial 
equilibrium computations. These effects are so pronounced at a flow coefficient only 
7 percent lower (i.e., , ■ 0.087) that the axial velocity profile is nearly linear and is 
zero at the hub. At lower flow coefficients reverse flow is measured at the hub 
verifyinK the type of flow pattern shown In Fie. 5. For these conditions the simple 
radial equilibrium theory fails. 

The flow-rate coefficient computed from the downstream velocity survey agreed 
satisfactorily with the measured value for a flow coefficient of 0.003 and higher. As 
a check on the electrical measurement of power input to the impeller, the torque was 
computed from the angular momentum measurements of Fig. 7. The agreement 
between these two methods was excellent (within 5 percent). In common with 
other investigations (11), an Increase in tip clearance is found to decrease the 
maximum efficiency of the impellers, to reduce the head coefficient, and to Increase 
the torque required. Over the range of tip clearances shown in Table 1, the maximum 
efficiency is reduced by 25 percentage points, and the head is reduced by 20 percent 
Somewhat surprising is the finding that the head coefficient is nearly a linear function 
of the solidity at a given flow rate. For example (see Fig. 17), when the solidity 1B 
increased from unity to 3.25 »he head coefficient at a flow coefficient of . ■ 0.093 
increases from 0.083 to 0.12 or an increase of about 45 percent. A detailed expla- 
nation of this phenomenon must await further experiment since according o two- 
dimensional unseparated cascade flow theory, substantially all of the guiding effect 
of a flat plate blade row is achieved when the solidity is about unity. 

Performance During Cavitation 

It is convenient when making cavitation tests to maintain the flow geometry and 
hence the flow coefficient constant and observe the change in head as a function of a 
cavitation parameter. In the pump ami turbine literature the customary cavitation 
index is the "suction specific speed," a quantity closely related to the more familiar 
cavitation number, which may be converted into the suction specific speed (Si by 
means of the formula in the Notation section. The total-head output of impellers 2, 
3. 12 as a function of cavitation number was determined as discussed above and is 
shown in Fig. 8. A common teatu.e of all of these curves is that the head is essen- 
tially unaffected until ti e cavitation number is 0.1 or less. Even then, the head drops 
off only slowly (except for tae low flow rates) until a cavitation number is reached at 
which a further decrease causes t. e ve;v . apid decrease in performance known as 
cavitation breakdown, As mentioned previously, limitations of the circuit prevented 
obtaining breakdown fo- all conditions. Howevei, some definite breakdown points 
are snown in Fig. 8 and even for t ose flow i ates w/en no sharp decrease occurs, at 
the minimum value of k shown, b.eakdown is imminent. 

T.esc diagrams s.-.ow that extremely low cavitation numbers can be achieved (in 
the order of 0.03) for all impellers, so that suction specific speeus in the iani;e 
25.000 to 30.000 can be readil. ac levftd (although at the risk of cavitation damage). 
However, these plots do not reveal the inteieslint; and complicated flow patterns that 
develop as cavitation takes placo To illustrate these points, a number nfpliuto^raphs 
of the  12   impeller will be used,   The  fiist series (Fitr. 9) shows the impeller 
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Fig. H - Cavitalion performam e of a sci-ics ol helical 
induiorr. ol ^,S solidilyand 0.5 hub ratio;(a) 12°induier 
(impt-llir ii. [\it 9 inuin cr (impellpr 3), (c) 6" inducer 
(inipclh r 1 Z) 
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• iperalint! at a flow locfficient in t.ie (!“<’<• efflcleni-y ;ange ( -0.12) as tue inlet 
presisure or cavitation numbci is lowered. A patch of cavitation is seen at tue blade 
tip In Fig. 9 that grows as t.ie pres^aie is lowe.ed until at t = 0.02 it is about 3 4 as 
long as the blade. T. e cavitation bubble is never clear, as it is on a sha.p-edge 
iiydtofoil in a water tunnel, but always has a frosty appear ance. Close inspection 
shows (liat tne greatest part of t.ie fuzzy cavitation patch arises from a up clearance 
ll«»w similar to tliat reported in Ref. 12. the cavitation is confined largely to the 
outer portions of the aiiiiulus. but at tae lowest cavitation numbers it does occu. l.om 
root to tip. Ihe development shown in Fig 9 satisfies one's intuitive idea of the 
giowih ol cavitation but at othei flow coefficients tne sequence is entirely different 
as lor example those in Figs. 10.11. and 12. In Fig. 10 ( ” 0.14) we see eveiy other 
blade cavitating. Ihis ariangement is staole and it does not always occur on the 
same blades. At lower flow iates. t e alternate blade cavitation appears to propagate 
from blade to blade in muc; t. e same way as propagating stall in a cascade, liw 
fre.iuency of propagation depends upon the ca-'ltation iMmber, being higii at high k’s

Fig. 9 - Development of cavitation in a IZ" helical inducer for a flow rate v .leffic lent 
r O.iz. (These- photographs are not strictly in a sequriive •in--e they were taken at 

dillerent times and rotative speeds.)
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k r 0,Om k = 0, 1 f»

Fig, 10 - Cavitation on the \ Z' indraer at a ilow coefftdent of . = 0,H, 
shoving the occurremc* of aSternatc blade cavitation

► m

k - 0. 22 k =: 0.0=i-

Fig. 11 - Cavitation on the 12' inducer at a flow coeffic ient of . = O.IO. The confused 
flctv pattc rn at the lower c avitation number is typical of nenstoadyosc i Mating cavitation.

and decreasing to zero frequency just before cavitation breakdown.'* In tide regime 
blade forces can be quite high and the various ntecltanical parts of the pump assembly 
can be easily excited to resonance. It is difficult to show the state of the flow in this 
"oscilt.cting caviUUon” condition but Fig. 11 gives some idea ol the disturbed flow 
present. At even lower flow rates the back-flow phenomena illustrated in Fig. 5 gives 
rise to a spectacular vortical flow (Fig. 12). Even this peculiar flow pattern is able 
to achieve very low cavitation numbers (shown at breakdown in the las* of this 
sequence).

vXhe c.';i:rrence of lh»*sv phenomena h.rd been pointed out to the autlior by Dr. Tore 
lura in 1955.
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Fig. - Cavitation development at a flow iroeflicieBt of . = O.OS on the It’ inducer

A diagram showing the location of these various regions is ohown in Fig, 13. 
The boundaries of these regions are not sharply definedand depend to i considerable 
extent on the detaus of the leading edge design and somewhat on the tip clearance. 
However, it is typicalot all ot ilir helical inducers studied. The outlines of the oacll- 
laliiig < avitation i egion are also .shown in Figa 8b and 8c for the other blade angles.
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Fig. 1) - The various modes of tavitating (low in a 
12 helical inducer as a function of cavitation number 
and flow coefficient 

From these diagrams we see that most applications for highly cavitating Inducer s 
will be subject to this phenomenon, and accordingly some effort was made to find 
simple modifications of the Impeller that would suppress it. Three were tried: 
(a) increasing the tip clearance, (b) changing the leading edge contour of the Impeller 
and (c) varying the lead of the impeller blades from inlet to discharge. Increasing 
tue tip clearance offered some help (In preventing oscillating cavitation) but at the 
expense of cavitating performance and overall efficiency. No extensive leading edge 
modifications were carried out, but the one tried which consisted of making the lead- 
ing edge of the blade surface a spiral rather than a radial line, depressed the occur- 
rence of oscillating cavitation to lower cavitation numbers and also improved the 
cavitation performance! In the last attempt an impeller was constructed with a blade 
angle of 6° at the inlet and 9° at the discharge and with a solidity of 2.5. The overall 
performance was similar to the 9° Impeller and the cavitation performance was 
similar to the 6° impellers (although not quite as good), but the extent and severity 
of the oscillating mode was greatly reduced. The foregoing remarks imp)y that this 
zone is to be avoided at all cost. This is believed to be the case only for mechanical 
reasons, since there is no hydraulic reason to do so. 

It has already been mentioned that increased tip clearance tends to reduce 
hydraulic performance. The same result is also found to be true when cavitation 
occurs, as Fig. 14 shows. According to the present results the smallest possible tip 
clearance gives the best cavitation performance. Even so. impressively low k's are 
still achieved with the largest clearance used, although at greatly reduced output. 
(It should be mentioned here that there is probably no particular merit in making the 
tip clearance dimeneionlesswith the blade thickness since for the ranges of Reynolds 
number used inertial forces prevail In the gap, and the rotor radium Is then a better 
chars^terlftUc length (11).) Photographs taken of cavitation with the 1' gest tip 
clearance suggest that the iitcrcaued tip clearance flow that takes place gives rise to 
large disturbances in the ujter portions of the passage that cavitate prematurely and 
tliercby lower the output head. 
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Fig, 14 - The rffcit of tip clearance on the cavitating 
pcrtormam e of n 9 inducer with a solidity of 2.5 at a 
flow coeffit icnl near the bf-sl efficiency point (. - 0.09J). 
The solid symbols indicate inception of oscillating 
c avitatior. 
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Fig. 15 - The effect of solidity on the cavitating 
performance of a 9" helical indurer at a flow coef- 
ficient of . = U.09J. The sol;d symbols denote 
inception of oscillating cavitation. 

The effect of solidity on cavitation performance is shown in Fig. IS. It is some- 
what surprising that extremely low cavitation numbers can be achieved with a solidity 
as low as unity. However, the head had dropped off by a factor of three at the mini- 
mum i< of 0.02 for ■ 1, whereas for - 3.25. the head had only decreased by 2C 
percent at the same k. 

Some velocity profile measurements were also obtained during cavitating flow 
for a 9 impeller (No. 7) to see if significant changes occurred in the distributions of 
Fig. 7. Interestingly enough it was found that cavitation improved the axial velocity 
profile. The distribution of total head across the passage remained about the same 
although, of course, lower. At flow coefficients ranging over the eificien'"; peak of 
this impeller, and at all cavitation numbers, cavitation decreased the torque of the 
impeller as founü from the velocity surveys. The efficiency, however, still decreased 
with decreaslnß k. 
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DISCUSSION 

Cavitation Breakdown 

One of the intentions of this work was to correlate the breakdown cavitation 
number with the impeller geometry. From the foregoing remarks it is seen that 
while there arc examples of dearcut cavitation breakdown, both the limitation nf the 
equipment and phenomenon itself do not always allow such a black-and-whue dis- 
tinction to be made. Nevertheless, many points at cavitation numbers below which 
operation was not practical were observed—both visually and with measurements. 
In all of the cases where breakdown had either occurred or was imminent, the length 
of the cavitation region was between 75 and 100 percent of the blade chord. In no 
case did the cavitation region extend beyond the chord before breakdown had occurred. 
The reason for this is quite clear since before breakdown the increase in the total 
head (and hence static pressure) is of the order of 10-15 p 'cent of the tip velocity 
head. This pressure is much higher than the inlet pressure and Is responsible for 
collapsing the cavity. But for this pressure rise and hence total pressure rise to 
exist, a peripheral vploclty \l»u of about 10-15 percent of the tip speed must be im- 
parted to the flow. From Fig. 16 it is seen that a whirl velocity of this magnitude 
cannot be obtained with a high solidity cascade of flat plates if the leaving relativ; 
velocity is comparable' to the velocity on a cavity boundary (I.e., greater than the 
Inlet velocity). 

Fig. 16 - Velocity triangle» in a flat plate cascade 
(a) without and (b) with extensive cavitation 

The question then arises as to whether we can make a reasonable estimate of the 
cavitation number when the cavitatlng region Is nearly as long as the chord. We will 
certainly have to exclude flow-rate coefficients less than the maximum efficiency 
point to rule out the strong three-dimensional effects seen in Fig. 12. For similar 
reasons Impellers with large tip clcaiance will have to be excluded. Even then from 
the analysis of noncavltating results (Fig. 7), the main flow through the impeller is 
not frictior.iess nor wholly two-dimensional. Even so, correlations based on theory 
would be useful to have, even if they are uitiir.-tely empirical. For this purpose it 
was assumed that the flow through the helical 'mnoller was equivalent to the flow 
through a two-dimensional cascade c! flat plates wUh a stieamline springing (.*e at 
the leading edge and forming a partial cavity of length less than the chord. Now it is 
known that the linearized free streamline theory does not provide a solution to the 
problem of the partial cavity on an isoUtec plate when the cavity length In a reason- 
able fraction of the chord (12). Consequently, the view was taken U\A as far 
as the growth of tie cavity in an Indue er of high solidity Is concerned, the most 
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significant length is the circumferential spacing between the blade« The length of 
the blades was then taken as infinite compared with the spacing and the growth of a 
partial cavity in such a cascade was carried out by exact and linearized free stream- 
line methods. 

The results of both methods agreed well except for large cavitatlon numbers 
where the limitations of the linearized theory were exceeded. Values of cavity length 
vs cavitatlon number were also calculated (by the linearized theory) for a cascade 
geometry equivalent to the mean radius of the 9° impeller at a flow coefficient of 
+■ = 0.093, and the results of this calculation are shown In Fig. 17. Also plotted In 
Fig. 17 are approximate lengths of the cavity as determined by visual measurements. 
The agreement is Hardly overwhelming but several points are worth mentioning: 
(a) the general trend of both curves is the same although a systematic difference for 
small lengths and high w's is found; (b) the minimum cavitatlon number is reached 
very ooop. after the ratio of cavity length to spacing Is 1-1/2, thereby Indicating that 
excessively high solidities are unnecessary; and finally (c) our empirical observation 
is that for pracllnally all the flow rates and impellers tested (6s, 9°, and 12s) the 
minimum cavitatlon number reached before breakdown was lets than two times the 
minimum cavitatlon iiumb«r possible in a given cascade with a given angle of attack. 
In the present example the minimum Is the asymptote of the curve shown In Fig. 17. 
The value of this asymptote can be obtained quite simply from elementary momentum 
considerations when It is recalled that there is no net force parallel to the plate and 
that the cascade Is sufficiently long so that the flow is perfectly guided (see also 
Ref. 13). The result of this calculation is that the minimum cavitatlon number 
achievable in a cascade of infinitely long flat plates is k ~ ^.- - n^ where > and ~- are 
the local angle of attack and blade angle respectively (both of these values to be 
small). This relation has a maximum of '2 4 and is zero at »    o and J      . Thefirst 

Fig. 17 - Growth of a 
partial cavity in a c is- 
cade as a function of 
cavitatlon number. The 
angle of attack and blade 
angle correspond to the 
mean radius of the 90* 
iinpeller at a flow coef- 
ficient of 4 =0.093. 

I 2 
CAVITY   LENGTH/SPACING 
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result follows from the assumed zero thickness ol ehe blades, and the latter, although 
perhaps surprising, only occurs when there is zero flow through the blade row. This 
formula also shows that smaller blade angles are better for obtaining lower cavitation 
numbers ard this conclusion is qualitatively borne out by the present experiments. 

The present calculations, although crude, account for the trends in breakdown 
occurrence, at least for sufficiently high solidities and flow rates where the flow is 
rp^dominantly two dimensional. Further work along these lines employing more 
elaborate models will be reported in the future. 

Cavitation Simililude 

In the absence of friction or body forces the cavitation number determines the 
location and extent of cavitation on a body. The only question is. What is the pressure 
in Ute cavity? In the present experiments the cavity pressure was assumed to be the 
vapor pressure of the bulk fluid, since it was not possible to measure It d.'rectly 
This assumption cannot be right since in a fluid containing dissolved air, the caviiy 
pressure can exceed the vapor pressure by the amount of the air diffused into the 
cavity. This possibility was Investigated by removing the impeller and blocking the 
annulus of the test section to a sufficient extent to create a cavity behind a small 
lamina. The pressure in the cavity was found to be 20 to 25 percent higher than the 
vapor pressure of the fluid, (the air content in the water vas the same as that in the 
luducer tests) confirming similar experiments of Parkin and Kermeen (13). We 
suspect therefore that the cavitation numbers listed in the present report are too 
high, but in lieu of direct measurement we have preferred to base them on the equi- 
librium va^r pressure of the liquid. Of course in pure liquids with no dissolved air 
(e.g., iiitu.o xyger«) the pressure maybe less than the vapor pressure of the bulk 
liuiu Uue to thermal effects in evaporating the liquid to fill the cavity. It is known, 
fo; example, that cavitation performance in liquid oxygen Is better than that in tap- 
W»*T and it la almost certainly for this reason. At present several groups are 
w a icing on this problem but no conclusive results are available yet. 

Further Remarks 

There are a number of difficult problems that remain to be solved before the 
understanding of cavitating flows in rotating machines is well in hand. They are, in 
fact, nearly too numerous to mention, for in addition to embracing the unknowns oi 
the turbomachine field, the many effects of cavitation are included. Nevertheless, 
with the aid of a few -ules of thumb and some empirical data such as that presented 
herein, an inducer can be designed for a specific application with a minimum of 
development. Thus even with our imperfect understanding of the cavitating flow 
through machines, the pumping of liquids at extremely low ambient pressures offers 
no insjp^rab'.e problems. 
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NOTATION 

c  = chord 

h ■ head (ft of water) 

k = cavitation number = (^     pMV(pV^.'2) 

N = rpm 

P - pressure 

r ■ radius 

s a spacing between blades 

s & suction specific speed • 

N;gpm 8140 ...(,. ;4)y[n ..*■-f 
where erm is the flow rate in gallons per minute 

u « tip speed (to.) 

v a absolute velocity 

w = relative velocity 

i ■ angle between blade chord xnü inlet relative velocity 

j a blprfr angle measured from plane of rotation 

r s efficiency 

. 3 ratio of tip clearance to blade height 

>-■ 3 density 

' 3 solidity 3 c » 

* s flow coefficient = average axial velocity /uo except as noted 

v 3 measured total head coefficient 3 giit »'0
2 

/ s input head coefficient = rfV,,, - vulvrouo 

. = angular speed 
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A. J.     -osta 

DISCUSSION 

T. lura (Space Technology Laboratory) 

I wish to supplement Dr. Acosta's results with some data obtained three years 
igo in the mducer test facility at Rocketdyne. 

The cavitatlon patterns observed with helical inducers were similar to those 
described by Dr. Acosta. For inducers with four blades, at a given flow coefficient, a 
reduction in cavitation number product,- wie following sequence of cavitatlon behavior: 

1. Initial cavitatlon - equal on all blades at the blade tips 

2. Alternate blade cavitatlon - stable patterns on alternate blades 

3. Oscillating or propagating cavitatlon 

4. Fully uevelopcu caviUtion - equal on all blades. 

Figure Dl, a cavitatlon performance curve of a 16.2-degree helical inducer, 
illustrates the cavitatlon regimes mentioned. Ibe alternate blade and unstable cavi- 
tatlon patterns were most pronouncedat the flow rat*» beim tb* maxiihum-efficlency 
point while stable alternate blade cavitatiou pattern wai« nut observed on Inducers 
with an odd number of blades; asymmetric unsbible patterns were in evidence between 
the initial and fully developed invitation regimes. The oscillating cavitatlon consisted 

0 30 

CATA  TAKIN  AT  4C03  *NÜ btOO flKM 
SOLID!r» < I72«T MEAN  NAMETCR 
M« BAT«= 029 

10 15 HO 25 30 35 
OAVITATW    PARAMETf H. o    NHSH/NONCAVITATING   MEAÜ 

Fif.. Dl - Cavitatlon performance of ib.Z-degree  (at tip) 
four-bladed hulical inducer 
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of the cavitatlon pattern oscillating along the blade length in a highly erratic manner. 
In one case (for a 11.2-degree helical inducer) a definite propagation pattern was 
observed. The propagation speed, based on observations of high speed movies, was 
about one-tenth of the inducer rotative speed. 

In regard to vibration accompanying inducer cavitatlon, Flg. D2 gives a qualita- 
tive picture of the vibration levels obtained with a 14.6-degree helical inducer. The 
measurements were made with a vibration pickup mounted on the test section. As 
the cavitatlon number (or net positive section head) Is lowered, the vibration increases 
steadily through the first three zones of cavitatlon. The maximum vibration level 
occurs juet prior to fully developed CAV Itatlon after which it decreases rapidly due 
to bubbles collapsing in midstream rather than against the bb.ds surfaces. 

In Fig. D3, the dimensionless breakdown NPSH (net positive suction head) in 
plotted as a function of the mean-diameter helix angle for various angles of attack. 
The breakdown NPSH is defined here as that value of NPSH at which the Inducer 
head has completely dropped to zero. These data were obtained from tests of seven 
inducers ."anging in tip solidity from 1.07 to 2.44. It «as found that the breakdown 
NPSH was rather insensitive to solidity, although the rate of head drop-off was quite 
sensitive to solidity as pointed out by Dr. Acobtv. Along with the breakdown NPSH 
data, the theoretical calculations based onBetz-Pstersohn's two-dimensional analysis 
are plotted. The theoretical breakdown curve has the snme slope as the experimental 
data, but falls considerable below the actual results. Aitncugh the trend of breakdown 
is indicated by the two-dimensional model, there certainly is a need for the more 
elaborate models mentioned by Dr. Acosta and for a three-dimensional model. 

Figure D4 shows the maximum Inducer efficiency as a function of solidity, and 
Fig. D£ shows the cavitatlon parameter corresponding to the maximum-efficiency 
pciuis plotted as a function of solidity. 

50 fiO 
NPSH   (TEET) 

Noncovitun vibrutiwt  Amptitiitfe 

Fii;. \)Z - Cavitatlon vibration data of Hft-degrcc helical ii       :ct 
(amplitudc   measuremt-nts  with vibration pickup on test seci.onk 
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tXFu^'MtNVAL UAT4  FOR  HELICAL 
IKDUCERS 

 THFOHETICAL   CALCULATIONS  FHOM 
BETZ - PETERSOHN  TWO - DIMENSIONAL 
ANALYSIS 

i. 
12 I« IS 18 20 

BLADE   ANGLE  AT MEAN  DIAMETER. 0m(DECREE) 
24 

Fig.  L)3 - Caviiation head-breakdown characteristics of helical inducers 
comparison oi theory and experimental results 

-"I 1 1 "I 1  
DATA FROM  TESTS  OF  HELICAL  INDUCERS  AT 
4«i00 rpn AT MAXIMUM-EFFICIENCY  POINT 

14 16 IB 2 0 2 2 
SOLIDITY  AT MEAN   DIAMETER 

24 26 

Fig. D4 - Effect of solidity on induccr efficiency 

In regards to cavttation similitude, tests at Rocketdyne on centrifugal pumps 
with induce« show that cavitatlon performance in liquid oxygen is better than that 
in water, and in liquid ulirogen is better than that in liquid oxygen. For a given type 
of pump, the critical NPSH (one percent head drop-off point) in water was 1.3 times 
that in liquid oxygen and 1.9 times that in liquid nitrogen. However, these values 
are dependent on inlet conditions such AS flow rate and design blade ..ngle. With the 
inducer taken out 'if the same centrifugal pump, tests between water and liquid oxygen 
no longer showed a consistent difference in cavitatlon performance. 

If one calculates the somparatlve vapor-bubble growth rate J from PlePs^t and 
Zwick's theory (for superheated liquid), it is found that water has lOtimes the growth 
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I« 16 18 2 0 2.2 2.4 
SOLIDITY   AT   MEAN DIAMETER 

26 

Fig   D5 - Effect of solidity on blad« cavitation parameter 

rate of liquid oxygen or liquid nitrogen. However, Plesiet's theory doe» not ehow 
much difference between the growth rate of liquid oxygen and liquid nitrogen. Clearly, 
some theory la needed to correlate the thermodynamlr properties of the liquid with 
the dynamic features of the pump flow in order to explain the different behavior In 
various fluids. 

A. J. Acosta 

It is clear that many organizations, such as Rncketdyne and Aerojet-General 
Corporation, have been actively working In this field tor some time to good effect. I 
regret that they have not previously found opportunity to present their results. To 
some degree perhaps, the present paper f ly assist in cringing their work out. 

1'. is gratifying that ma. j of the observations made by Dr. lura, evidently on 
larger experimental apparatus, verified in a general way our findings at the CalUor - 
nia Institute of Technology. 
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A GENERAL LINEARIZED THEORY 

FOR CAVITÄTINC HYDROFOILS 

IN NONSTEADY FLOW 

R. Timtnan 

TechniBcht*   Hogeuvhool,   fieth*r l-nnrta 

1.  INTRODUCTION 

Since the exact theory of cavitating hydrofoils is rather complicated for fluid 
bodies, a linear theory will be developed which is assumed to be applicable to the 
bodies 01 small thickness ratio, such as piopeller blades or thin hydrofoil, which pre- 
vail in most applications in naval architecture. 

In particular the case of a nonuniform motion is considered here, which is im- 
portant for vibrating motion as well as for the motion of a hydrofoil in a nonuniform 
field of flow. 

The underlying assumptions can be stated as follows: 

(a) The motion Is two-dimensional, the hydrofoils move with velocity U in the 
direction of the negative x-axis. 

(b) The fluid is considered incompressible and nunviscous as long as the pres- 
sure exceeds the vapor pressure pv. If it reaches this value, the density abruptly 
falls off to zero, thus causing a cavity, on the surface of which the pressure has the 
value PV, corresponding to vapor. 

(c) The motion of the hydrofoil causes a small disturbance. Here both the thick- 
ness ratio of the hydrofoil as well as the amplitude of its nonsteady motion are of the 
same (small) order of magnitude. 

(d) The motion of the fluid is irrotational outside the hydrofoil and its wake, 
which extends along the part of the x-axis which lies behind the hydrofoil. 

It is further assumed that the disturbance created by the hydrofoil dies out at 
infinity, except eventually in the wake. This means that the pressure, which is con- 
tinuous in the wake, must vanish at infinity. 

Based on these assumptions the mathematical problem can now be formulated. 
The hydrofoil is assumed to extend along the segment H: * « 4 Hof the x-axis. 

550 



Cavitating Hydrofc.ls in Nonsteady Flow 

Its motion is given by 

y =• h^x.t)        -i $ x i H upper side 

.y = ir(x,t). lower side 

The cavity is assumed to extend only over a part of upper side of the hydrofoil, 
extending from « ---(to x = *c. Along; this part the pressure has the constant value 
PV. On the remaining part of the hydrofoil contour the fluid wets the surface. Since 
viscosity is neglected, the boundary condition is simply that the total normal velocity 
of the fluid must be equal to the normal velocity of the hydrofoil. 

The moving hydrofoil creates a disturbance field with velocity components (u,v). 
The linearized condition then gives on the wetted part of the hydrofoil 

(1.1) 

where »(«, t) is a knownfunction of x and t. (Subscripts denote partial differentiation.) 

In order to derive the boundary condition on the cavity in terms of the velocity, 
we remark that the flow is assumed to be irrotational outside the hydrofoil and the 
wake. Thence a velocity potential * exists which is related to the pressure by 
Bernoulli's law. 

*, + | {(" * ")2 ♦ v»} + -C = i u» + — . (1.2) 

which, in the linearized theory takes the form 

P(r~P 
*, ♦ iiu  . (1.3) 

f 

The velocity potential satisfies in an incompressible fluid Laplace's equation 

M = o (1.4) 

and, since Eq. (1.3) is linear, we can introduce a pressure or acceleration notential y. 

,*—. (1.5) 

equally satisfying 

w    n. (1.6) 

Now the boundary value problem can be posed for the velocity potential + or for 
the acceleration potential t. Since the latter is regular in the complete plane outside 
the hydrofoil (the pressure is continuous in the wake), it is semewh.... easier in the 
first stage of the problem to formulate the problem for the acceleration potential. It 
is, however, to be remarked here, that for an unsteady motion the length of the cavi- 
tation bubble depends on the time. The acceleration potential v is related to the 
velocity potential * by 

,     ■:, ♦ i' tv (U) 
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From the condition for the velocity v - *, we iind on the welted part of the 
hydrofoil: 

c < x ^  ^,     y -  +'i i 

-t  < x  <   t.,     y  r  -r, 

'y       ' ty 
I' "'*.. (1.8) 

On the cavity -   ^ x < c,  y     *o, the pressure is the vapor preecurc arid hence 

v - ~- =   . (1.9) 

where ■ has a constant positive value. 

Since ., must Uc a harmonic function, there are different methods available for 
the solution of this problem, e.g., MushkellshviH's method of singular integral equa- 
tions. In this paper a function of Green Is Introduced, which can be used to find a 
solution to this boundary value problem. 

2. REGULAR SOLUTION TO THE BOUNDARY VALUE 
PROBLEM FOR THE PRESSURE POTENTIAL 

Recapitulating the boundary value problem for the pressure potential: 

v  ■   ■ -'. < x < c, y ' *n, 

f,' "(x.n     c ■ x • ■,    -■'<«< n,    y - -o, (2.1) 

and 
v, - r, 

We can solve this problem by the intmluction of ■: Green's function 

Qp (x.y; Xp.yp)- 

This function is a solution of the nonhomogeneous equation 

\ 2p   -   -(Xp.yp) (2.2) 

(where    (xp)yp) Is Dlrac's   -function tor the plane), which satisfies the Iwundary 
conditions 

ü is regular at infinity. 

r   ' x  •   4 ,       v  r   '0, 

-'   ■   x   •   ■ ,       y  =  -0. 
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Then, applying Green's theorem to the outer region of the hydrofoil, we obtain 

*P      2 - J V   fin        " .'n/ 

(2.4) 

If we assu.nethat both 0, 'G/^n, y and v'^n vanish at infinity of sufficient high order, 
the point at infinity gives no contribution Hence, once the Green's function is known, 
the solution is obtained. This expression for the pressure potential, however. In not 
unique since, at the singular points -(, H, and +e the boundary conditions are not 
specified. If we put the point r of the Green's function in one of these points, we 
obtain a solution of the homogeneous equation, which is regular outside the hydrofoil 
and does not alter the boundary conditions. Thus we may assume for the total 
solution 

> r»g Aj02 t Aj03. (2.5) 

where A,, A2, and A3 are indeterminate constants which must be determined by addi- 
tional conditions. Since the differential equation is Laplace's equation, Green's 
function can easily be found by conformal mapping (Fig. 1). At first the physical 
plane 2 - x+iy is mapped on a z ' x+iy plane. 

"Jrrr (2.6) 

Then the hydrofoil -C < » < >l passes into the x-axls, and the outer region passes 
into the lower half plane. The outer region passes into the lower half plane v < 0 and 
point 1 = "ill to z = i. On the hydrofoil we write z - r. - -i co% r, the intervaln< ('<■» 
corresponding to the upper side, and n < a < 2*7 to the lower side. If c - -(. cos >, 
this point passes into c = cot y/i. Fur * > e the boundary condition is c r 0, for x < c 
it is hQf'^n - 0.   By a second mapping 

',  T   '  *   tV ^ Y - rot - y . (2.7) 

The Z-plane is mapped into a ^-plane. Where the outer region now occupies the 
fourth quadrant, e passes into the origin and Binto the point n r - vcot 1/2 >. Green's 
function is constructed by a reflection of the pole r with respect to the axis j > 0, 
r) - 0 and T) < 0,£ - n. Since on the first axis the boundary condition iso - n, we must 
add a pole with negative sign in P - t9 - i-n^ and since on the second the condition is 
TtG/At - 0 we add here a pole with positive sign. This gives the renting complex 
potential 

C»  i H    -  .n  —~     . (2 8) 
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i 
08=jr! 0 = 0 

((ua( <(U('-K<!(<(<<<<m ö 
ifn = w(x,t) 

B 

-i A        (pn= wCx.t) ao H 

Figure  1 

cot - > 

f=5£ G - 0 

Figure  2 

G = 0 

>  
-p 

B 

Figure  3 

In the formula for the regular solution we need on.y U.3 value for Green's function 
on the hydrofoil contour 

X    ~   -i   COS   '•, Xn   -    -   -t   CO»    ('   , 
p p' 

1 1 
Z  -  rot - H, 7.    - rot — ■•  , 

2    ' 1- 2     >'' 

N'cot — - cof — , 
2 2 P 

Jco, -f - rot -1 

The contribution of the first part in the integral in Eq. (2.4) can be cvalnated 
easily by the use of the Cauchy-Riemann equations 

5  .'SS 
'y 'x 

(2.9) 
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since Gp and H,, are conjugate harmonic functions.   This gives 

±(   a . lG.e . .„ = - ^- f   ^ -N ^ iL [H(-^-H(c)J - T. (2.10) 

Hence, we obtain the resulting regular solution 

f2" 
<T + -t (Wj+Uw^   ■  G,,  • »in  '  H'-. (2.11) 

The additional singular solutions can be found from the expressions tor Gp in 
the neighborhood of the singular points c ■ = o, A ' - I, B - • - i v <-ot y/2. Near 
; - 0, wt put i r u, i.e., we let r  ■ A along the upper side of the contour. 

Then 

Q    + ,u ..  tn  = un  

= 2i4a.-L\.«LJ/i-j.\. 
W v^ 

(2.12) 

This gives an infiikite number of singular solutions of increasing order, each of 
which has a zero value on the cavity and a zero normal derivative on the wetted part 
of the hydrofoil. The higher singularities must be excluded by another physical con- 
dition, viz., the cordition that the pressure must be integrablc over the hydrofoil. 
On the segment CB we have r

p - -IT;   and 

Further, the first of the potentials is 

2 
•»I    7" • 

p 

and the integral 
(rot -  .-<!* 1 

n        " n—i—vv < 
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will exit.!, while tor the higher solutions it becomes divergent.   Therefore the singu- 
lar solution corresponding to the point c is 

-i/I .  M-    ^ (2.13) 

In order to derive the second singular solution we put v 

(_i/6_/ K_i/t+r v r   _n    2it
3 

-P ' "!, 
(_i/6.v        i/e4. LP    PJ 3     L-    PJ 

Here the integrability condition docs not giv? a unique singular solution, since 
both i,, and r,* give an integrable expression. It ii ahown by Wu, however, that only 
the first term will give a pressure field, which is higher than the vapor pressure. 
Hnnce the second singular solution is 

and the third is 

*3 
jL-1 = .[3 -»^]. 

This singular solution, corresponding to the trailing edge B will give a pressure 
which is infinite at this point. This is excluded by the Kutta condition which requires 
the pressure to bo finite at this point. Thus we sue left with the following expression 
tor ttiv pressure potential: 

'[    (V l!w_\ 3.    •  sin  f cl> 

\   p        \<l 
* Aj '  (V-P>- (2-15> 

We further reinaiK that the disturbance pressure must vanish at infinity.  Since 
in the '-plane the point at infinity corresponds to 

2'     1—r -       |    r- 

we obtain the condition 

«  + <  f      (».♦llw  )0^  sin i: <V'  <   A.   2 rn,(T,'4)JCo..  _   >   f A-  y^*-   ir »a 0.(2.1«) 
J »2 iVcos(V2) 
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Near the trailing edge B we put ' = -i .cot  1/2 y •■ ii which gives 

(-i ijcot  v'2-i --!  )(-i  »Jcot  y/2-ik*r   ) 
G    >   iH0       tn pra f p=^:  

(-i »Jrot   VZ-iS-i; K-»  Ncot   Vi-iS + 'p) 

Cn (---)  Hi 
■i i^cot  V2-';        -i »y/e<-t  V2+.' 

-i n/cof V2-7        -i i/cot  r'2+ 

(    ) +i; 
-2^. 

cot va+t*    +cot y/2+IJ 

The first singular solution 16 

'P I _   .   i " F .    _        J   

^p]        [(C*-'2-^) ♦ 2i1--T)      (C+.-2-,,2) - Ji-'r,, 

f-p ^i.. r   %+ s 

-4i  f2T, f2i')(C+fJ-T)2)  _ 4-J'; -2v(C*:2-r^) 

(C*fJ-i)J)2 ♦ 4.eJ T,J       CJ ♦  X(rf-T,») - (fi+r,2)1 

-Xv 'Ini'2*^) 

C2 + 7C(c2-n2) * (:J+r,J)2 

3.  DETERMINATION OF THE COMPLETE SOLUTION 

For the determination of the unknown functions of the time Al(t), A2(t), and >(t), 
two additional conditions are necessary. Theuo are fouiKi by first remarking that up 
to now the problem has only been solved for the acceleration potential, whereby only 
the differentiated form of the boundary condition (1.8) is used. In the original prob- 
leui, howover, not only the normal value of the acceleration, but also the veloc.ty is 
given which contains mo..' information. In tavt, once more it can be f>eeit that any 
solution, satisfying the velocity condition (1.1) satisfies also (l.B), but the singular 
solutions, which do not affect (1.8) must be added in such a way that (1.1) is satisfied. 
Another condition is that the cavitation bubble must be closed. 

In order to express these two coiiditioiis In a mathematical formulation, it is 
necessary to derive an expression for the velocity potential 4> in terr- of the accel- 
eration poteiuial f.   This can be found by solution of the differential equation 

>!>    + U *. (1.7) 
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Considering that the velocity potential must vanish at infinity upstream to the 
hydrofoil, this expression is 

'l(*.V,n      -  j       rfx'.y.t      ■^-}|x'   ^  (       V(*^}<t-f),y,t')<\f. (3.1) 

Substitution of (2.15) and (2.16) gives 

*(X.y.t)  - - j       dx'   •   j       mA-l rr.- f),\   -^-| »i" ^Gp-G„)HÖ 

* V vA-i cos o,t - —r-1 ' 

+ i    AHt ' ^F) " ] '(F ' ^) " 2 ro,(' 4)  Tos 2 '>' I' ''''' + 

After complicated calculations, which are given in the Appendix, the expression 
for the velocity on the hydrofoil takes the form given in Eq. (A 10) of the Appendix. 
Applying this result to a point of the wetted surface, we derive 

i     f" r"   /        x-x'\r (in:2)2 
o - - -u       .ix-  •        wj-'.t - _)^vf!yt(niV,3t,?v) - L_L ^tSy 

2 ^ 

I . (3.3) 

Since the first term gives the solution to the boundary value problem where the 
velocity on the wettuci part lias the i^iven value w, this first term cancels against tin 
left-hand member. Considering new the integrals with respect to %', they agair1 :an 
be simplified, remarking that the sii.gular potentials .^are all imaginary parts of 
complex functions.   Applying the Cauchy-Riemann equations, 

».■.     .',■. 
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./,,  -■ He(«/0 = 
•2  ♦  7,3 

0, = Rp r? -- '(^-3^). 

I/-. = Re( Vz) = ^—: —— ■ 4 (C+^-T;3)2 + 4^V 

We can reduce (3.3) by partial imegraticn, remarking that the wetted surface corre- 
sponds to the line f r 0 in the I plane.  Introducing 

we obtain 

o 4 £ {ac.vw, (l+C2)2 i l 
3" i   ra 

«' - f  .«x    • • • 

It should be noted that /1 = o for - - n. Therefore the only part of the Integration 
which contributes to the result is the part of the x -axis extending from -» to -4. The 
Integration along the lower part of the hydrofoil, which corresponds to the »j-axis in 
the r,-plane, gives a vanishing contribution. A point on the wetted upper surface 
between R and c is reached from the trailing edge. Taking the contour along the upper 
edge of the hydrofoil, i.e., along the real axis in the ' ' ' ^plane, we get an addi- 
tional contribution from the cavitation bubble. Hence, it is obvious that behind this 
bubble extends a line of discontinuity in v. 

The last equation for A, and A2 is furnished by the closure condition. If the con- 
lour of the hydrofoil and the cavitation bubble is represented by 

V    "   ll(X,l), 

where ', is only given on the wetted part.   The normal velocity is 

•t 'V 
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In orde: to derivu tho i:on*our of the bubble, we consider this as a partial differential 
equation 

h  - b.4  = FJ/("'•'-^ir)'''''• 

Then the closure condition is 

K-»M -i[;('',-f-£T-)'!''' 

TUe velocity v satisfies a similar partial differential equation 

where n is the normal acceleration.   This gives in a similar way 

v(«.t)-v(-..t) -^ v^x-.t -^ .1«'. 

Here v{~') is the given normal velocity, corresponding to the motion of the leading 
edge.  Substitution gives 

= — 1    v(-<,,t   ;  I I'X  * —    x I    n x  ,t —      'lx' : 
"i. \      v)     IIJL L \       l''   J-. 

-if   x.lx..(x..   -~)<>x^ 

-1  f   v(-,i  - —^\ O"  ,— I    '■'■••xj.ifx.t  - '-TrVlx '   h     - h. 
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Substitution gives the third reUtlon: 

-^ J    (t-x)   • j    (w^l'w,)   —•sin *^  ■ ,1*  +-i j    (c-x)A1(t  -£^Vl(x.t) ,lx   . 

4.  SOLUTIONS FOR SPECIAL CASES 

Owing to the time-dependence of >on t, the equations (or A,, Aj, and y are dif- 
ficult to solve.   For this reason only special caaea can be considered. 

The Steady Case 

As a check on this theory we consider the steady cast. The pressure potential is 

+ ' \  ("VCp ii-i) «in /> • Hf» + A,   i(-p - ^-) + A2  i(^-?D). 

where A, and A2 are constants.  The first condition now reads: 

^ * -t U f   w,  •  G_ sin f  •  <\i> + A. 2 cr.s(V4) Vc<'s(V2) * A,  •   ^^       . 

In the second condition all the quantities «-. vanish and we obtain 

0 r A,   •   I    V,   ■''»'♦ Aj  •   I    ^2  •   ttx'. 

The third condition gives: 

i J    (-t-x) J    w.  • ^     »in 0 H" *-? Y   (c-x) fl(x) .(x 
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For a Oat plate the form'jlas simplify considerably. The pressure potential is 

*P --"+ AI ^(T "r)+^ * (!:p"rp)• 

and the three conditions are 

  coif V4) 
cns(V2) + A.  • v - 0, 

V».o-!(V4) 

0 = A,   • j    ^1  • Hx + Aj •   f   0, • dx, 

A, f   (c-x) VjCx) dx ♦ Aa  j    (c-x) cf2(n) dx = U»|hc-h.4 - ^ v(-C)| . 

Harmonic Oscillations About a Certain Steady Motion 

We consider further the CAM that the hydrofoil performs harmonic oscillations 
about a certain steady motion. Owing to the dependence of the formula on the param- 
eter y we assume that the amplitude is so small, that the time dependence of y is also 
small. 

Y = VQ* y'i • •*''•■ 

Then we introduce a 'second linearization," expanding all quantities, containing 
y into powers of y,. This gives rise to a set of equations for the determination of the 
amplitudes A,, A3, and ?,. The pressure potential takes the form, (if « = w* e1** * «0) 

o + -t ii j   wm • cp sin e tie * i C (i' ■•♦üW;)0( .p tm e tie * 

♦ * I    wt • —^ • tin 8 tiß yl e'"« ♦ 
"8 

+   A      . ,   ^,     mirt   4   »•   »l>'f   .   „,     »A     — 'ft e 

Tie conditions for At, Aj, and y1 are derived in a similar way. This gives three 
nonhomogeneous linear equations for the three amplitudes. It would be of interest to 
study the case, where the determinant of this system vanishes. This wouid mean 
that for the corresponding steady-state, spontaneous oscillations of the cavity can 
occur. 
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4.  CONCLUSIONS 

The general theory, laid down In this paper, is based on rather crude lutiniaip- 
tions on the behavior of cavitatlng How. Considering the underlying hypothesis, the 
assumption of potential flow is not sufficient to represent details of formation and 
decay of cavities. On the other hand, it is well known that for steady-flow, results 
from potential flow agree reasonably well with experiments. The further simplifica- 
tion, introduced by the linearization, seems, in the case of a free hydrofoil, suffi- 
ciently accurate for thin hydrofoils at small incidence. In a channel, however, this 
sltuplication might be the cause of considerable error, owing to blockage effects. 
This phenomenon is analogous to the behavior of linearised theory for transonic flow 
in wind tunnels, where the nonlinear approximation is necessary. 

P s regards the special additional assumptions, intiuduced to describe the non- 
steady behavior, the condition is that in the cavitation bubble evaporation occurs 
instantly, as soon as the pressure has reacked the cavitation pressure, which is con- 
stant. However, every other hypothesis which must be based on more detailed physi- 
cal ccnatcterations will arreatly involve the calculations. As regards the introduction 
of free sources and sinks, somewhat more explanation is necessary.* 

The concept is completely analogous to the concept of free vortices in nonsteady 
airfoil theory, which already goes back to Birnbaum (1923). 

Calculation of forces, based on this assumption, yields reasonably good agree- 
ment with experiments. In linearised theory the circulation around the airfoil is 
defined by 

jv • d« = fII H«. 

where u is related to the pressure potential by 

*/ = ♦,+ U *„    or   *, » u, ♦ Ü \ix, 

which means that 

f V« 'h' = •— i" d« + II J I, rt» + U ♦ *„ dx. 

If wc suppose that  t is a regular function outside the airfoil, including ir'lnity, 
♦ v   Hx - it for any contour enclosing the airfoil, and we find that 

—  • II  ''x   ~  • 11.  .Ix - (ll,""-)1 

If in the wake the velocity u is discontinuous, we find that the time rate of the circu- 
lation around the airfoil is equal to the strength of the discontinu'*- at the trailing 
edge, which is the vorticity in the wake.  For a motion started at a definite moment 

ThiK c.\|ilanatinn was found in a discui;ii)n brtw.'i'n the author and Mr. J. A. Gvurst. 
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in the past, the wake is finite and the total circulation around a contour enclosing the 
airfoil and the wake vanishes.  A similar consideration can be apolied to the Integral 

V =   j h Hx 

if the contour is given by y = h<x)> which represents the total volume enclosed by the 
contour.  Since 

we have, for a closed contour, 

JvH.elJhrt., 

which expresses that the time rate of change »f the volume by the contour is equal 
to the contour integral of the function v. 

For incompressible flow we have simply 

f 
where + is the stream function and v - -♦ tor incompressible flow. If * is regular 
outside the hydrofoil, we have f, ~ t. and the volume enclosed by the contour is a 
constant, as was posed by Wu. 

We have seen prnvioudly that from our calculation it iuilows that a itheel of dis- 
continuity in v extends behind the cavitatlon bubble. This gives ris; to a sheet of dis- 
continuity in the f. Hence, considering a contour which lies along the bubble and the 
wetted part of the hydrofoil, there is a discontinuity at the end of the bubble. The 
strength of the discontinuity is given by the change in volume of the bubble. Since, in 
linearized theory the pressure is a continuous function outside the hydrofoil, the dis- 
continuity a* in the wake satisfies 

(At), ♦ »(A*), =- 0, 

which means thai Uiln uläcuntinuity is propagated with the velocity U. 
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Since a discontinuity in v corresponds to a source distribution, the singularities 
are denoted as 'free sources" in analogy to the free vortices considered before. The 
theory opens a possibility ot an explanation of the oscillations, which are observed 
for a steady cavity of finite extent. The entrainment process at »he end of the cwity 
daring which small volumes of the gas phase are carried downstream with the fluid, 
as the cavity volume decreases, might correspond to the creation of the free sources. 

Only quantitative calculations of the occurring frequencies and length of the 
steady state bubble would confirn whether or not even this potentially theoretical 
approach can account for this complicated phenomenon. 

NOTE ADDED IN PROOF; From discussion of the author with Messrs. Geurtt, Tulin, 
and Eisenberg (October 1959) a slightly different explanation uf the "free sources" 
concept arose. In this concept they are localized in the reentrant jet. Hence, for a 
closed contour, including the stagnation point behind the reentrant jet, the volume is 
constant. The volume enclubed by the free surface varies and is compensated by 
"free sources" on the second blade of the Ricmann surface. This theory gives con- 
sistent conditions and is worked out ly Mr. Ceurst. (To be published in Archiv for 
Rational Mechanii.s.) 

***** 

APPENDIX 

REDUCTION OF THE FORMULA FOR THE VERTICAL 
VELOCITY ON THE HYDROFOIL 

The formula tor the velocity component • Is: 

v(,.0.t, «if" d«. r w. j-tcos e.  t -^ (,..-, co. P!  t -i^j 
J.m    J^. .__j 

/.« «»* 
sin 3 do + -t f dx"   •   T ,"«H co» "•   ♦ " "TTV ?- (»'.-{ cos ö;   t  --^7-1 A? 

•f;.('-^)5('-^)--f;.('-¥)^--    <") 
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We can reduce the first two terms by partial integration 

= it j       wrf.t) — • sin d rid - II I Hx'  f   w jö.t - — j- rrrp »'" 8 d* 

and 

H>-^K-H--^)C 

frf-e-^ r—^ • <i0. 

Apparently we havp to calculate the expression 

, itn P ♦ .  = sin ,  _      + —.   . (A2) 

From the definition 

G +  ill = -in -, ±,'y ,   ■ ■ - (A3) 
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we see that 

bx * ax' — (0+iH)  + —  (G+iH) 

f 9(CiiH)      cH + ^(QliH)      *V + ^(G+iH)      Hp I 
"{      3^       '  d»  +       3^       '  di' 3?'   '   '  dz' J 

Ke 
U?-?      ^^     W     IT/ di    ^-5'    wf d«' 

(c^ + R,)*5r}' 

Since 5 = /z -c, where C = cot(V2) and z = A - i/-t + « 

we have 

Substitution gives 

dc. <u _ dz _ j^  ^ rr -1!. j-tti»)2 

di ' dZ     di ' 2',  ' d» V* + »      *    ^ 

Tf R iT^Ti IT "z- ' ~ ■—z7"/ 

1     (h     (MZS)2      4      (^t>?\ 
^-lf r, -rr). 

i- J_      Z^Z^X^Z»)^ - (Z-C)(i^)Z» 
tit ' (z-z^zz, 

j_      Z^g.-CHmV - (Z-C)(li^)7a 

^ ■ (Z-Z,)«, 

(A4) 

+f. Re 
j        +(Z+Z1)(ZjZ?-l) - C (-l+2ZZ,+Z,Z?+7»Z2*ZZf) 
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,       {Z+71)(?
JZj-l) - C (-1*2Z?1+Z1Z3+ZJ^*^J)[ _ ^ J 

Re      !/_!_ 1\      2M        M     ^/li      1»^     Ll7A     3-] 

-c-i/-L -   » \-xi^ -J-\ 

Z.        ?! \ 

We can express this into the four singular potentials 

^(l-f). 

*4  =  i(i-f)' 

and the corresponding quantities for P. 

At first we remark that 

-'' {ii-i)" 
f,-y< 

This gives: 

so   ja 
3x    c*» 

-*(f-T)^^c.2. 

;' (f "T) 
r ^+ a(V»+ c2*2. 

(A5) 

(A6) 

+ (*1
4Cv'2)(*S+2c»!<cM) * ao)>,y| 
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4-i 

1 
4? 

Further 

*y    äc    dy        T^TnJ V2    »c 
(A8) 

■ if 1 /     I >    \,   _* /    >    , »\ 

 L       / J '  ' i /   i   .     i \1 

" ä [FT, (i" T;) 
+ CH, [i+ rj' «T, u" r.)' FT, u+ rjj 

±     i      i     JL1 - 1 / J.     l\ 1 
t — 

Hence 

ac 

Substitution of these results into Eq. (Al) gives: 

v(,.0..) = I fue.t)  ■ | .in 0 M - i p,.'   • i? • •(,.. - ^ g 

(A») 

tin > 

(1*CJ)3 
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f"           "2"      /                      AS                                 IS 
U       Hx'   i     w  (f,  t  - X-—|   • — (vu-ofi) ~     ■ -^ sin ö d6 

♦  I   A,   t  -   I   • • dx'   f      A,     t • -r-   • rf« 

♦ * ♦ ♦ ♦ 

DISCUSSION 

L. Landweber 

One usually things of Green's functions In connection with existence theorems or 
numerical methods in which the Green's function is obtained as the solution of an 
integral equation. In Professor Timman's paper, however, a Green's function which 
yields the solution of a time-dependent problem in potential theory is explicitly dis- 
played. I believe that the subject of cavltating hydrofoils, which has yielded a 
remarkable succession of elegant papers., has attracted so many mathematicians as 
much for Its aesthetic appeal as for its practical frultfulness. 

I would urge the author to assume less mathematical erudition on the part at the 
reader and to Include more details of his mathematical developments. For example, 
I would have liked a demonstration that the expression for the acceleration potential 
in terms of the Green's funcliun, Eq. (G), satisfies the boundary condition on the 
acceleration potential. 

A condition not considered in the present paper is that the pressure should be a 
minimum within the cav nation bubble ■<£ < x < c, v = +0. It is known in the steady 
case, for example, that this latter condition Is necessary in order to determine a 
unique solution. This raises the question concerning the uniqueness of the solution 
in the unsteady case. 

M. Tulin (Office of Naval Research) 

First I would like to comment on the question of the leading edge Singularity 
which occurs in the linearized theory of lifting civity flow. Whtu J first did the lin- 
earized theory for zero civiUtlon number flows past lifting foiln, I compared the 

579 



Cüvi'.Äting H-'^rofoUs in Nonateady Flow 

result for t'.)*» Hat plate with the expansion (In powers of the angle of attack) of Ray- 
leigh's exact solution and I verified that the linearized then y solution, which had a 
-1/4 singularity at the leading edge, was identical with the first lerm in that expan- 
sion. That was, of course, sufficient verification that the linearized solution was cor- 
rect. Then, when I worked out the case of the finite cavity flow past the lifting i at 
plat« I noticed that It wss possible to select more than one solution to the boundary 
value problem; only one of these solutions hüd a -1/4 singularity at the leading edge 
and 1 naturally assumed that that one was the proper solution. I never thought that it 
could hf any other way-in view of the information provided by the Infinite cavity case. 
In order, however, to eiiiüve" the validity of the prenent linearized theory solution 
for finite cavities, may I suggest that some interested persons carry out an expansion 
(In powers of the angle of attack) of the Gllbarg-Serrin, re-entrant Jet, exact theory 
solution of the flat plate problem. The result would also conflim the almost certain 
conjecture that the linearized theory for finite cavities, as I first formulated it, is in 
fact a linearised version of re-entrant jet theory. 

Now may I comment on Professor Tlmman's model for the unsteady cavity llow- 
which includes some sources or sinks in the flow field trailing behind the cavity. 
First, I don't understand the physical basis for this model, I don't see how the flow 
field in the wake of the cavity can contain the postulated sources or sinks. Second, I 
don't see the mathematical necessity for the model. It Is certainly true that a cavity 
of changing volume would imply, according to Incompressible theory, that the pres- 
sures become unbounded at infinity, but it Is also true that pressure waves are propa- 
gated with finite speed, even In water, and that as a result the effects of compressi- 
bility alter these pressure waves at large distances from a source (or cavity of 
changing volume) and cause the pressures at infinity to remain unchanged, I think 
that even acoustic theory \pplled to the problem of the flow field at some distance 
from a cavity of changing volume would reveal the true nature of the pressure field 
there and would dispel the need for both Professor Tlmman's model with distributed 
sources and sinks outside the cavity, and Professor Wu's model-whlch calls for a 
cavity of unchanging volume. I believe that the solution of the unsteady cavity prob- 
lem which properly takes Into account the boundary and dynamical conditions on the 
body and cavity will produce, in general, a cavity of changing volume without sources 
and sinks distributed in the wake. 

W. G. Cornell (General Electric Company) 

I certainly hope that some of the techniques that have been shown c*» be applied 
to the problems of unsteady, separated aerodynamic flows which, so far, have been 
treated by what one may call quasi-s^ady-state methods. I refer to problems such 
as rotating stall and propagating stall In cascades. 

I would like to hear some comments about the us« at >he Kutta condition when one 
lias an unstead > flow. 

ß. P ir!;in (California Institute of Technology) 

I would appreciate it very much if Professor Wu would indicate the bearing of the 
piess *. gradient at infinity on the values of the coefficients which he quoted from 
Karm.    n work. 
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R. Timman 

Professor Landweber asked whether I did verify that a constant pressure on the 
cavitatiun bubble was actually the minimam pressure in the field. I must again con- 
fess I was a bit careless and did not verify that.. 

With respect to the Kutta condition, if the cavity extends nearly the whole of the 
upper surface, 1 hardly believe that a Kutta condition could be valid. On the other 
hand, as long ab the cavity is small I don't see why the Kutta condition should be 
dangerous. Also, there is a lot of experimental evidence In ihe use of the nonateady 
flow theory. Of course, they all gave imperfect agreement with theory; they don't 
even agree completely in the steady case. In the steady case you know the Kutta con- 
dition, yet you predict 110 percent of the actual values, so why should you expert in a 
nonsteady theory the agreement to be better? So as far UJ I can see, as long as the 
cavity does not extend too close to the trailing edge, the Kutta condition iti Just as bad 
or as good as it is In all thu hydrodynamicai theories. 

T. Wu (California Institute of Tech iclogy) 

In reply to Dr. Parkin's question, i. is true that the wake flow generated by » flat 
plate accelerating broadwise through the fluid which is otherwise at rest in an iner- 
tial frame Is a problem different from that treated by Karman. In this case you may 
take a coordinate system fixed with respect to the fluid at infinity so that at Infinity 
the velocity is zero and the pressure is equal to ra, a constant. Then the plate will 
be moving with acceleration ■. 

It the shape of the free boundary is still a constant in time, then when the condi- 
tion of constant pressure is applied on the moving boundary, you will have a different 
expression for the pressure equation. 

Next, I wish to supply a uniqueness proof with respect to the leading edge singu- 
larity, z-"* or z-i". Ute first time I looked at the 3/4 singularity I thought this 
singularity may be ruled out by the argument that the energy is not integrable at the 
leading edge. Though this statement is true, I wasn't too happy with this answer. 
Then I looked for other physical requirement» and found a satisfactory one. 1 imposed 
another condition, namely that tho pressure outside of the solid body and the cavity 
wake must not be less than the pressure in the cavity. That is, u .= M w = -1/2 GP < u 
in the flow field. Suppose the solution of w has in the neighborhood of the leading edge 
the expansion 

i* r»'1 + iB Z'V* + 0(Zl/*). 

where A, B are two real coefficients so that u = 0 on the cavity. Then, with z - r«'", 
we have near y - c 

u      A ■y-3/* lin -^ ♦ B yl/4 »in - + 0(y,/4). 

From tins result, we notice that th«s term sin(30/4) will change sign, whereas the 
term sin(^/4) will nut, as f) changes from 0 to 3*. Since the first term violates this 
physical condition on the minimum pressure, we must therefore have A - 0 . 
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My own viewpoint with respect to the existence of the flow source is as follows. 
Suppose we cake a two-dimennional cylinder, and let it pulsate with its radius K as a 
fund Inn of t in a uniform stream of velocity U, then the velocity potential is 

vCy.^.t) - "(r + 7]cos " 4 R^ loi? 

so that we have a source of strength 2"Rft which depends on the rate of change of the 
cross section or ttio radius. In the problem of unsteady cavity flows, however, it 
uecms that the physical requirement must be imposed that the pressure be finite at 
infinity. Otherwise, we would require an infinite amount of energy, and hence an 
infinite time, to create such a flow. 

Thus the question arises: why don't we let the cavity volume grow and have an 
infiniU' pressure at Infinity? At the first sight It seems to me that the affirmative is 
not the case. One flow model which avoids the flow source at infinity Is that, when 
the volume of the cavity near the body changes, there will be a wake which becomes 
thinner or fatter in the opposite sense. 

In regard to the philosophical question about the physical background of these flow 
models and their agreement with experiments, I have the following point of view: We 
realize that all the wake flow is the end product of the real fluid effect. But In order 
to solve the problem In an easy way we want to keep the potential problem as a pos- 
sible approximation by making some mathematical assumptions, which we call mathe- 
matical models. It any mathematical model gives a good approximation of the flow 
quantities near the solid body, so that we can predict very accurately the total hydro- 
dynamic forces o:< the body, then, as far as I am concerned, the model should be quite 
acceptable. However, we should not expect that the simple model is also capable to 
provide a good description of the complicated wake flow downstream. The problem 
of the wake flow In the wake Is entirely different from those considered here and I 
believe one cannot obtain a good result without considering the viscous effect, vortex 
shedding, the turbulent mixing, and so forth. 

Sever J experimental results have been available for a few special cases of cavity 
flow past a flat plate Inclined at a small angle. These results give substantial support 
to these mathematical models. With respect to the present linearised model, there 
are certain features which are different from the nonlinear cases. Here, again, the 
philosophical way to answer this question Is to examine if it gives a fairly accurate 
description of the flow near the body, so as to determine If It Is acceptable. 
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