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FOREWORD 

This report was prepared by the Engineering Psychology Branch 
of the Behavioral Sciences Laboratory,  Aerospace Medical Division, 
Wright Air Development Division.   The work began as the responsibility 
of the Controls Section, under Research and Development Task Number 
7182 - 71514 with James V.   Bradley acting as Task Scientist.      It con- 
tinued under subsequent Research and Development Task 7184 - 71581 
and was finished by the author as a member of the Maintenance Design 
Section.      The manuscript was typed at the Aviation Psychology Project, 
Miami University,  under Contract Number AF 33(6l6)-5624,  under the 
technical supervision of Dr.   Clarke W.   Crannell and Dr.   S.   A.   Switzer. 

The material included is the result of a review of the literature 
begun early in 1955 with the approval of Mr.   John W.   Senders,   then 
Section Chief of the Controls Section,   and ending early in 1958.   The 
author was greatly aided in this effort by I.   R.   Savage's "Bibliography 
of Nonparametric Statistics and Related Topics",  by hundreds of 
statisticians and institutions sending reprints and by the encouragement 
of his colleagues.      He is particularly indebted to Dr.   Philburn Ratoosh 
who critically reviewed the next-to-final draft,  to Dr.   Virginia L. 
Senders and Dr.   Harry J.   Jerison whose constant interest helped the 
author to maintain momentum,   and to Mr.   John W.   Senders,   Dr.   H.  R. 
van Saun,   Dr.   John P.   Hornseth and Major Leroy Pigg who,   as Section 
Chiefs,   exercised their administrative powers in support of the 
undertaking. 
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ABSTRACT 

As a result of an extensive survey of the literature,   a large number 
of distribution-free statistical tests are examined.      Tests are grouped 
together primarily  according to general type of mathematical derivation 
or type of statistical "information" used in'conducting the test.      Each 
of the more important tests is treated under the headings:     Rationale, 
Null Hypothesis,  Assumptions,   Treatment of Ties,   Efficiency,   Appli- 
cation,  Discussion,   Tables,  and Sources.     Derivations are given 
and mathematical interrelationships among the tests are indicated. 
Strengths and weaknesses of individual tests,   and of distribution-free 
tests as a class compared to parametric tests,   are discussed. 

PUBLICATION REVIEW 

6^kJc<^&<^ 
WALTER F. GRETHER 
Technical Director 
Behavioral Sciences Laboratory 
Aerospace Medical Division 
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CHAPTER I 

INTRODUCTION 
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Figure 1.   Radically nonnormal distribution obtained in a routine 
experiment by the author.    (Histogram is based on 2520 scores; 
smooth curve is normal distribution with same mean,  variance and 
area as histogram). 

1.    History 

Although nonpar am etric statistics can be traced as far back 
as 1710,  when John Arbuthnott attempted to prove the wisdom of Divine 
Providence using the statistical Sign test,  the preponderance of such 
tests are of quite recent origin.      Van Dantzig and   Hemelrijk (7) dis- 
tinguish four stages of statistical development.      In the first or one- 
parameter stage statistical quantities were considered to be constants 
such as the ratio of the yearly number of deaths to number of living. 
In the second or two-parameter stage variability was recognized as a 
factor and it was believed that empirical distributions could be described 
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by stating the mean and variance,  the parent distribution being assumed 
to be a normal distribution.      In the third or multiparameter stage,  uni- 
versal normality was no longer an article of faith,  but it was believed 
that an empirical distribution could be described by identifying its mo- 
ments in the assumption that "statistical phenomena were governed by 
laws of general validity albeit that they showed somewhat greater com- 
plexity than just the normal law. "   The various Types of Pearsonian 
Curve were a product of this phase.    In the fourth or no-parameter phase 
efforts to identify parameters of a parent population in order to be able 
to specify its probability law were largely replaced by attempts to deter- 
mine "exact relations,  valid for restricted sample sizes. "   Savage (38) 
places the "true beginning" of nonparametric statistics in 1936,  and it is 
indeed at about this time that it began to take the form of a separate 
statistical discipline.      The rapid growth of activity in this field since 
that date can be inferred from Figure 2 which shows the proportion of 

PROPORTION OF CONTENTS OF EACH YEAR OF ANNALS OF MATHE- 

MATICAL STATISTICS WHICH IS LISTED IN SAVAGE'S "BIBLIOGRAPHY 

OF NONPARAMETRIC STATISTICS AND RELATED TOPICS". 

1930 31  32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 1952 

YEAR OF PUBLICATION 

Figure 2.      Twenty year growth of activity in the area of nonpara- 
metric statistics (as broadly defined by Savage). 



articles in each volume of the Annals of Mathematical Statistics which 
are listed in Savage's "Bibliography of Nonparametric Statistics and 
Related Topics". 

2.    Definitions 

The terms "nonparam.etric" and "distribution-free" are neither 
semantically satisfactory nor synonymous.      This matter has been dis- 
cussed at length by Kendall and Sundrum (28) who have attempted defini- 
tions of the terms which reflect the theoretical limitations of the tests 
to which they are commonly applied.      Popular usage,   however,   has 
equated the terms and they will be used interchangeably throughout 
this report.      Grossly speaking,   a nonparametric test is one which 
makes no hypothesis about the value of a parameter in a statistical 
density function,   while a distribution-free test is one which makes no 
assumptions about the precise form of the sampled population.      Fre- 
quently the assumption is made that it is continuously distributed and 
sometimes more elaborate    assumptions are made such as the assump- 
tion that the sampled populations have identical shapes or distributions 
symmetrical about the same point.      However,  the assumptions are 
never so elaborate as to imply a population whose distribution is com- 
pletely specified.      The term distribution-free is somewhat deceptive, 
however.      The reason that no elaborate assumptions are made about the 
distribution of population magnitudes is very simple:   the magnitudes 
are not used as such in the test.      Instead,  the ranks,   ordinal position, 
frequency or some such attribute of the original observations  provide 
the "information" used by the test statistic.      And of course the "popu- 
lation"  distribution of the attribute used must be known exactly for the 
conditions stated in the null hypothesis,  just as must the population dis- 
tribution of magnitudes in classical statistical tests.     An important dis- 
tinction should be made,   however.      While both parametric and nonpara- 
metric tests require that the form of a distribution be fully known,  that 
knowledge,   in the parametric case,   is generally not forthcoming and the 
required distribution of magnitudes must therefore be "assumed" or 
inferred on the basis of approximate or incomplete information.      In 
the nonparametric case,  on the other hand,  the distribution of the 
attribute is usually known precisely from a priori considerations and 
need not,   therefore,  be "assumed. "     The difference,  then,   is not one 
of requirement but rather of what is required and of certainty that the 
requirement will be met. 

Because they do not use magnitudes as such,   distribution-free 
tests do not test for parameters computed from them in the same sense 



that classical tests test for equal means,   say,   or identical variances. 
Instead,  the analogous distribution-free tests might test for equal medians 
or identical interquartile ranges,   i.e. ,   values which can be computed 
from nonmagnitudinal attributes such as frequency,  or position in rank 
order.      Of course,   a distribution-free test may be indirectly a test 
for parameters based on magnitudes; for example,   if symmetrical pop- 
ulations can be assumed,   then a distribution-free test for equal medians 
becomes,   in addition,   a test for equal means. 

Although distribution-free tests generally are not based directly 
upon the magnitudes of the original observations,   results by Stuart (46, 
47)   suggest that inferences from some such tests may be extended to 
the original magnitudes with a high degree of approximation.      Stuart 
found very high correlations between observations,   from either the 
normal or theuniform distribution,   and their ranks.      The correlations 
were respectively . 94 and . 96 for samples of 25 observations,   and in- 
creased with increasing sample size toward limits of .98 and 1.00. 
The existence of these correlations is dependent merely upon the exis- 
tence of a variance. 

3.    Distribution-Free vs Classical Tests 

Both distribution-free and classical tests have points of super- 
iority,   and which type of test should be used depends upon a number of 
specific conditions as well as upon the sophistication of the user.    The 
comparison,   however,   is generally quite favorable to distribution-free 
tests.      Some advantages and disadvantages of distribution-free rela- 
tive to parametric tests are outlined in the paragraphs to follow. 

a.   Simplicity of Derivation.    Most distribution-free tests can 
be derived using simple combinatorial formulae,  while the derivation 
of classical tests requires a level of mathematics far above the highest 
level attained by the typical research worker.      However,   the logic 
and appropriateness of a testTs application,  the assumptions it makes, 
and its sensitivity to assumption violation all hinge upon its derivation. 
If the research worker understands the derivation,   he can deduce or 
infer much of this necessary information for almost any application he 
may contemplate,   thus operating with a maximum of comprehension and 
flexibility.      If he does not understand it,   he is reduced to the uncom- 
prehending "cookbook" procedures of performing tests by following 
a paradigm while obeying certain highly overgeneralized rules of thumb. 



In the opinion of the writer this simplicity of derivation is by far the 
most important advantage of distribution-free statistics since,  for 
research workers ignorant of higher mathematics,   it replaces a 
mystery-cloaked ritual with a truly scientific procedure. 

b. Ease of Application.    The mathematical operations re- 
quired in computing the test statistic are generally much less involved 
for distribution-free than for parametric statistics.      Frequently all 
that is required is counting,   or adding,   subtracting and ranking.    This 
simplicity of application is obviously an economic advantage,  permitting 
lower-paid,   mathematically naive personnel to be employed to reduce 
data and perform computations. 

c. Speed of Application.    When samples are of small or 
moderate size,   distribution-free methods are generally faster than 
parametric techniques.      This saving   in computation time may be 
used to obtain more data,   thus frequently cancelling any advantage 
the parametric test may have in terms of statistical efficiency.    When 
samples are large   ( say N^  30)   distribution-free tests involving 
simple counting are generally faster,  while those involving ranking 
may prove considerably more time consuming,   than standard classical 
tests.      And if a large number of similar tests are to be performed 
using an electronic computer,   rather than a desk calculator,   para- 
metric tests are probably faster at all sample sizes. 

d. Statistical Efficiency^.    As indicated in the preceding para- 
graphs,   when judged by the practical criterion of the total amount of 
human effort required to conduct an experiment and analyze its results, 
distribution-free tests are frequently,   if not generally,   more efficient 
than their parametric counterparts.      When judged by the mathematical 
criterion of statistical efficiency,   distribution-free tests are often 
superior or equal to their most efficient parametric counterparts when 
both tests are applied under "nonparametric" conditions,   i. e. ,   condi- 
tions meeting all assumptions of the distribution-free test,  but failing 
to meet some of the assumptions of the parametric test.      When both 
tests are applied under "parametric" conditions,  i.e.,   conditions 
meeting all assumptions of the parametric test,   and therefore of both 
tests,   distribution-free   tests are very slightly less efficient (i.e., 
have relative efficiencies a shade less than 1.00)  at extremely small 
sample sizes,   becoming increasingly less efficient as sample size 
increases.      When sample size becomes infinite,   distribution-free 
tests generally have their lowest efficiencies relative to the most 



efficient,   comparable parametric test.      This efficiency value may be 
as high as .955 or as low as zero,   depending on the test. 

e.    Scope of Application.    Because they are based on fewer 
and less elaborate assumptions than classical tests,  distribution-free 
tests can be legitimately applied to a much larger class of populations, 

f. Susceptibility to Violation of Assumptions.    Obviously the 
more elaborate the assumptions the fewer the number of situations which 
meet them,   and,   in this sense,  parametric assumptions are the more 
susceptible to violation.      For example,  the parametric assumption of 
normality requires that,   in addition to being continuously and symmetri- 
cally distributed (as might be assumed by nonparametric tests),  the 
population must also be bell-shaped,   since these are all features of 
a Gaussian distribution. 

g. Detectability of Violations of Assumptions.    When the non- 
parametric assumption of continuous distributions is violated,   both the 
fact and the degree of the violation are readily apparent from the exist- 
ence of tied scores in the obtained data.      No such obvious indication 
advises the experimenter that a parametric assumption has been vio- 
lated.      Of course he may apply tests for normality or homogeneity to 
the obtained data,   but such tests are rather unsatisfactory.      They 
are unlikely to detect any but the most extreme violations when samples 
are small,   and they are almost certain to detect even the most trivial- 
ly slight violations when samples are very large. 

h.    Effect of Assumption Violations. *   Although much has been 
written about the robustness of classical tests and their insensitivity to 
violation of assumptions,  this claim actually rests upon a multitude of 
qualifications which rarely accompany it.      The writer has obtained 
completely natural and uncontrived experimental data which,  by vio- 
lating a single parametric assumption,   rendered a standard parametric 

This topic is discussed at length in two WADC Technical Reports 
shortly to go to press:   Bradley,   J.   V.,   Studies in research method- 
ology.   I; Compatability of psychological measurements with para- 
metric assumptions. ,   and Bradley,   J.   V. ,   Studies in research method- 
ology II: Consequences of violating parametric assumptions - fact and 
fallacy. 



test completely powerless,   at reasonable sample sizes and standard 
significance levels,   to reject any of a wide range of false hypotheses. 
The fact is that any violation of assumptions can be expected to alter 
the distribution of the test statistic and change the value at which the 
test statistic becomes significant.      Whether or not this effect is 
negligible depends not only upon the degree to which the assumption 
is violated but also upon extrinsic factors such as sample size and 
significance level.      This is true of both parametric and distribution- 
free tests. 

In the nonparametric case,   the effects of violation of the con- 
tinuity assumption can be mitigated by applying certain methods of 
dealing with tied scores;    in the parametric case,  the effect of non- 
normality can be reduced by use of transformations,  but at considerably 
greater expenditure of time. 

i.    Type of Measurements Required.    Measurements on an 
interval or ratio scale are generally required by classical tests.    How- 
ever,   distribution-free tests have greater versatility.      They generally 
require measurements on at least an ordinal,   or sometimes a nominal, 
scale but can be used with measurements from any higher order scale. 
They are,   of course,   the only truly appropriate tests when original 
scores exist in the natural form of ranks or small frequencies. 

j.    Logical Validity of Rejection Region.    The distribution of 
a classical test statistic is usually continuous,   increasing or decreasing 
smoothly,  without fluctuation,   except for a possible change of direction 
at a single mode.      Unfortunately the point probability of a nonparametric 
test statistic does not necessarily always increase as the test statistic 
approaches its most probable value.      It may level off or even dip before 
resuming its climb.      This characteristic,  when it exists,  may be decided- 
ly embarrassing when the rejection region for a distribution-free test 
is selected,   on an intuitive  basis.      Should the rejection region be chosen 
as the cumulative probability for those values of the test statistic,  which 
are least likely,   or those which are most  distant from the expected 
value of the test statistic? 

k.     Types of Statistics Testable.    Statistics defined in terms 
of arithmetical operations upon observation magnitudes can be tested 
by classical techniques,   while those defined by order relationships (rank) 
or category-frequencies can be tested by distribution-free methods. 



Means and variances are examples of the former,   medians and exceed- 
ances of the latter.      The two approaches are different,  but neither is 
superior;   both types of statistic have their advantages. 

1.    Testability of Higher Order Interactions.    Higher order 
interactions can be tested with ease by classical methods.      However, 
there are few distribution-free tests for higher interactions and they 
are awkward and limited in application. 

m.    Choice of Significance Level.    The distribution of the 
test statistic,  when the null hypothesis is true,   is usually  continuous 
for classical tests and discrete for distribution-free tests.      This means 
that,  for any designated significance level cc ,   a value of the classical 
statistic can be found whose cumulative probability  is exactly cc   while, 
for the distribution-free test,   such a value of the test statistic usually 
does not exist.      Thus when using a classical test the research worker 
may choose any significance level he wishes,  while,  when using a dis- 
tribution-free test,  he must either accept one of the discrete cumulative 
probabilities of the test statistic as his significance level,   or he must 
apply the test inexactly,  using as significance level a cumulative prob- 
ability which the test statistic cannot actually assume and rejecting 
whenever it is found to have a smaller cumulative probability.      The 
latter choice is often forced upon him   by inexact tables of probabilities 
which list values of the test statistic which are "significant" at the 
standard significance levels,   .05,   .01 and .001. 

n.    Influence of Sample Size.    The size of the sample upon 
which they are to be used is an extremely important    factor in deter- 
mining the relative merits of distribution-free and classical tests. 
When samples are small (say N 5 10)  distribution-free tests are easier, 
quicker and only slightly less efficient even if all assumptions of the 
parametric test have been met.      At these sample sizes,     violations 
of parametric assumptions generally have their most devastating effect, 
yet are most unlikely to be detected.      Therefore,  unless the experiment- 
er has a priori knowledge that all parametric assumptions have been 
met,   the wiser choice would generally appear to be a distribution-free 
test.      When samples are large (say N > 30);    some distribution-free 
tests still compare favorably with their parametric counterparts.    Others, 
however,  will have become more laborious and time consuming,   and,   in 
contrast to parametric tests whose assumptions are met,  their calcu- 
lated or tabled probabilities may be only approximate.      Finally,   their 
efficiency relative to a parametric test whose assumptions are all true 
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may have dropped to an appreciably low level. On the other hand, 
appreciable violations of parametric assumptions will have become 
more readily detectable and, in many cases, their effect may have 
become negligible due to the effect described by the central limit 
theorem. At large sample sizes, therefore, either type of test may 
be superior; however, circumstances are much more favorable to 
parametric tests than is the case when samples are small. 

4.    Organization of Material 

Certain topics appear to be of critical importance to the under- 
standing and application of distribution-free tests.      These topics will be 
discussed in a general way in the following paragraphs and the same topics 
will form the paragraph headings under which each of the more important 
distribution-free tests will be examined. 

a. Rationale.    The best insurance against misapplication is a 
thorough understanding of the derivation and the mathematical logic 
upon which a test is based.      The hypothesis which can be tested,   the 
assumptions which must be made,   the seriousness of various degrees 
of assumption-violation,   the best method of dealing with such violations, 
the efficiency of the test,  the situations to which it is applicable and the 
exactitude of the tables or of the probabilities obtained by formula all 
depend upon the test's derivation and can either be directly determined 
or partially inferred from a knowledge of it.      Furthermore,   many tests 
are legitimately applicable in situations for which they were not originally 
designed;   however,  the experimenter will not be able to recognize these 
situations unless he understands the derivation.      Because of their impor- 
tance,  therefore,   derivations have been given at some length.      An effort 
has been made to use the simplest mathematics possible and to present 
derivations which will give the greatest insight into the logic of applica- 
tion and the advantages and limitations of the test.      For this reason, 
many of the derivations are mathematically inefficient   and are not in 
the form in which they are found in the literature. 

b. Null Hypothesis. The literature on a test frequently does 
not contain an explicit and precise statement of the tested hypothesis. 
Instead the hypothesis may be implicit in some mathematical manipu- 
lations, it may be vaguely hinted at, or it may be stated explicitly but 
inaccurately, generally in the direction of overstatement. A major 
reason for these difficulties appears to be the lack of concise verbal 



terms to express what the test is actually doing.      In order to avoid 
misleading the reader,   an attempt has been made to express the tested 
hypothesis explicitly and precisely,  with resort to expression in mathe- 
matical terms when necessary. 

c.    Assumptions.   Assumptions also are frequently unstated, 
and occasionally misstated,   in the literature,   in which case they must 
be inferred from the derivation.      In common with parametric tests, 
the assumptions of random sampling and independent observations are 
usually required.      These assumptions   however refer,   at least in a 
sense,  not to characteristics of the sampled population but rather to 
the method of sampling.      Unlike "population" assumptions,   their valid- 
ity can generally be assured by adhering rigidly to certain prescribed 
sampling and experimental procedures. 

Aside from the above   one of the commonest nonparametric 
assumptions is that the sampled populations are continuously distrib- 
uted.      Such a population has an infinite number of abscissae and thus 
contains an infinite number of different score magnitudes,   each of which 
has zero a priori probability of being drawn.      Theoretically,  therefore, 
a sample from a continuously distributed population will contain no scores 
of zero and no tied scores since zero is a predesignated score and since 
the first-drawn member of a tied group can be considered to predesignate 
the remainder.      Zero scores are embarrassing in tests using the alge- 
braic sign of scores,   and tied scores are undesirable in tests which rank 
scores and whose derivation requires that each rank occur only once. 
The assumption of continuity,  however,  is an unrealistic one.     Even if 
the sampled population is continuous,  measurements made upon its 
members must be discretely distributed since no measuring instrument is 
capable of infinite precision.      Suppose any population of actual measure- 
ments to be transformed into measurements on a scale running from 
zero to one and that precision is possible out to the N-th decimal place. 
Then the population of measurements is a discrete population whose 
interval width is the difference between successive digits at the N-th 
decimal place.      The assumption of continuous distributions,  therefore, 
can never be exactly fulfilled in practice.      It can be approximated by 
taking fine measurements from distributions representing a very large 
number of distinguishable values.      Fortunately,  the degree to which 
the continuity assumption is violated can be largely inferred from the 
proportion of tied scores in the data.      Therefore,   although unrealistic, 
this assumption has the advantage that its violations are highly detectable. 
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Another assumption frequently encountered is that the sampled 
populations have identical,  but unspecified,   shapes.      This assumption 
is found in tests which fail to reject when the sampled populations are 
identical but which may reject for a variety of reasons.      By assuming 
identical shapes,   rejection may be attributed to nonidentity of location. 
It is to be noted that this assumption may be dispensed with if the test 
be regarded merely as a test for identical populations against the broad 
alternative of nonidentical populations. 

d.    Treatment of Zero or Tied Scores.    As mentioned earlier 
some tests require that all scores have an algebraic sign,   i. e. ,  that 
there are no scores of zero magnitude;   others require that no scores 
have the same magnitude,   i. e. ,  that there are no ties for any given rank. 
Zero and tied scores do sometimes occur,  however,   and several methods 
of dealing with them have been suggested: 

(1) Randomize.   Randomly assign a plus or a minus to 
each zero score (say,   on the basis of a coin toss);    or randomly assign 
to scores of the same magnitude the ranks they would have if not tied, 
i.e. ,   if differing very slightly.      This method appeals to mathematicians, 
because only under this method does the test statistic have exactly the 
same distribution,  when the null hypothesis is true,  that it would have 
if the continuity assumption were not violated.      It makes little sense 
experimentally,   however,   since it permits an additional and,   in a 
sense,  unnecessary,   element of pure chance to help determine whether 
or not a false hypothesis will be rejected. 

(2) Minimize the Probability of Rejection.    Assign all 
zero scores that algebraic sign which is least conducive to rejection 
of the null hypothesis;   or assign ranks to tied scores in the way least 
conducive to rejection of the null hypothesis.    This is the conservative 
approach and it alone insures,   in advance of sampling,   that the tested 
hypothesis will not be falsely rejected due to violation of the assump- 
tion of continuity. 

(3) Obtain the Average Value of the Test Statistic.   Assign 
half the zeros a plus,   half a minus sign;   or assign each score in the tied 
group the average of the ranks the members of the group would have if 
not tied.      The latter is known as the midrank method.      It results in a 
distribution of ranks having the same mean but somewhat smaller 
variance than the discrete rectangular distribution of integers  1 to N. 
For some tests a "correction for ties" has been devised for use with 
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the midrank method.      When applied to asymptotic formulae for the 
test statistic the correction compensates for the reduction in variance 
due to the use of midranks.      It thus tends to reestablish the validity 
of the test in the large-sample case.      The logic of the implicit assump- 
tions upon which this correction is based has been challenged.   (VII-36) 
However,  the correction is probably an improvement in any case, 
although perhaps not fully restoring the test to exactitude. 

(4) Obtain the Average Probability.    Break ties in all 
possible ways,   calculate the test statistic and obtain its probability for 
each way,   and average these probabilities.      This improves on the above 
method by obtaining the average probability of the test statistic,   rather 
than the probability for the average value of the test statistic,   averaging 
over all possible ways in which tied measurements could have been 
caused by truly differing scores.      It is time consuming,   however,   and 
has the disadvantage,   in common with the preceding method,   that the 
average of all possibilities may differ greatly from that one possibility 
which represents the true state of affairs. 

(5) Drop Zeros.    Discard zero scores and reduce N 
accordingly.      The power of certain tests has been found to be greater 
under this method than under methods (1) or (3).      However,   it seems 
likely that this is an artifact attributable to an unrecognized and spurious 
increase in the probability of rejection in all cases,   i. e. ,   when the 
tested hypothesis is true as well as when it is false.      Zero difference 
scores lend support to the hypothesis of "no difference. "     Discarding 
them  eliminates data favoring the null hypothesis and permits contrary 
data to assume greater weight,   thus  spuriously increasing the probability 
of rejection. 

A final method is to calculate the test statistic twice, 
once giving all ambiguous data (zero or tied scores) the possible true 
values which are most conducive to rejection,   once giving them the 
values least conducive to rejection.      It has been said with some justi- 
fication,   that if in both cases the test statistic falls within,   or in both 
cases outside of,   the rejection region   there is no problem;   if it does 
not,   there is no solution. 

e.    Efficiency.     Certain mathematical properties of a test 
are important in evaluating its usefulness.      The power   of a test is 
the probability of its rejecting a specified false hypothesis.      (It is 
equal to  l-(3    where p is the probability of committing a Type II 
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error - failing to reject a false null hypothesis. )     Power,   then,   depends 
upon at least four variables:    (a) the amount by which the hypothesis is in 
error,   i.e. ,   the size of the discrepancy, 6,     between the hypothesized 
and true condition,    (b) the size,   cc,   of the significance level chosen, 
(c) the location of the rejection region,   e.g. ,  whether the test is one- 
tailed or two-tailed,   (d) the size,   N,   of the sample used in the test. 
A power function is a curve in which all but one of these variables are 
held constant and power is plotted as ordinate against that one variable, 
usually 5,  as abscissa.      A test of a given true hypothesis is most 
powerful against a specified alternative hypothesis if no other test of 
the same hypothesis has greater power against the same alternative. 
If it is most powerful with respect to each member of a class of alter- 
native hypotheses,  the test is called uniformly most powerful against 
that class of alternatives. 

A test is unbiassed,   for a given alternative,   if the probability 
of rejecting the null hypothesis is greater when the alternative hypothesis 
is true than when the  null hypothesis is true. 

A test is consistent for a given alternative to the null hypothe- 
sis if,   when that alternative hypothesis is true,   the probability of re- 
jecting the false null hypothesis,   i. e. ,   the power of the test,   approaches 
1 as the sample size,   N,   on which the test is based,   approaches infinity. 
The test is consistent with respect to a class of alternatives if it is 
consistent for each of the alternatives of which the class is composed. 

Efficiency is a relative term comparing the sensitivity of a 
test with that of some other test,  usually the most powerful alternative 
available.       Let A and B be statistical tests of the same null hypothesis 
against the same set of alternative hypotheses,   and let the tests use 
the same significance level and the same number of tails.      Then the 
efficiency of test A relative to test B can be interpreted as the ratio 
b/a,   where a is the number of observations required by test A to equal, 
by some criterion,  the power of test B based on b observations.    There 
are actually a number of definitions of efficiency,   differing mainly in 
the criterion by which the two powers are equated. 

Asymptotic efficiency is usually defined in terms of the limiting 
value of the ratio b/a as b approaches infinity and is therefore relevant 
only when the test is to be applied to very large samples.   It    has  the 
advantage of being very nearly independent of the exact size of the 
samples so long as they are very large.      The more common definitions 
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of asymptotic efficiency appear to be equivalent.      Asymptotic relative, 
efficiency,   abbreviated A.   R.   E. ,   and sometimes called Pittman effi- 
ciency,   is defined roughly as follows.      Let A and B be two consistent 
tests based uponaand b observations respectively,   each test statistic 
being asymptotically normally distributed.      Let both A and B test a 
null hypothesis HQ against an alternative hypothesis H    at a signifi- 
cance level cc.    The asymptotic relative efficiency of A with respect 
to B is the limiting value of the ratio b/a as a is allowed to vary in 
such a way as to give A the same power as B while,   simultaneously, 
b approaches infinity and H    approaches H  .    The purpose of the 
"approach" of Ha to HQ is to prevent the ratio b/a from assuming a 
limiting value of 1 which it otherwise would do since at extremely large 
sample sizes the power of a consistent test against a fixed alternative 
is virtually 1.    The method of obtaining asymptotic relative efficiency 
has been shown to be equivalent (Stuart V-50) to that of obtaining 
asymptotic local efficiency.    Let A and B be one-tailed tests based on 
a and b observations respectively and testing the same null hypothesis 
against the same set of alternative hypotheses at the same significance 
level.      Let b approach infinity and vary a so that the power functions 
of the two tests have equal slopes at the point H   . Then the limiting 
ratio b/a is the asymptotic local efficiency of test A relative to test B. 
Somewhat similar methods involve taking the asymptotic ratio of first 
derivatives,   i. e.   slopes,   of the power functions at the point H   .    In the 
case of equal-tailed,   two-tailed tests this is zero and the asymptotic 
ratio of second derivatives is used.    Estimate efficiency is obtained by 
establishing a mathematical equivalence between relative efficiency of 
two tests and the relative efficiency of two estimators of a population 
parameter.      The latter requires that both estimates be consistent and 
asymptotically normally distributed and is expressed in terms of the 
ratio of the asymptotic variances of the two estimators.      Estimate ef- 
ficiency is therefore an index of relative efficiency for the case where 
both tests are based upon large,   i.e.   "infinite",   samples.    Stuart (VI- 
26) observes that estimate efficiency is equivalent to asymptotic relative 
efficiency.      All of the asymptotic efficiencies defined above refer to 
the relative power of two tests at the point H    of their power functions. 
The efficiency values obtained therefore represent the effectiveness 
of one test relative to another when the true condition differs negligibly 
from the hypothesized condition,   i. e. ,   when the alternative hypothesis 
lies in the immediate vicinity of the null hypothesis. 

Nonasymptotic efficiencies depend upon the size sample upon 
which the test is based,   upon the location of the rejection region,  upon 
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the size oc of the significance level chosen,   and upon the alternative 
hypothesis or set of alternative hypotheses.      Balancing the disadvan- 
tage that nonasymptotic efficiencies are highly specific to experiment- 
al test conditions,   is the advantage that they are quite realistic to 
those conditions.      While asymptotic efficiencies provide a limiting 
value for a test's efficiency at infinite sample size,   this value is 
generally much lower,   when distribution-free statistics are compared 
with classical tests,  than is the efficiency value at practical sample 
sizes.      The relative efficiency of A with respect to B is simply b/a 
where a is the number of observations required by t est A to equal the 
power of test B based on b observations when both statistics test the 
sair.e null hypothesis against the same alternative at the same signi- 
ficance level   (both either one-tailed or two-tailed).    The power effi- 
ciency of test A with respect to test B   (of the same null hypothesis 
at the same significance level against the same set of alternative 
hypotheses) is obtained by holding a constant and varying b until the 
power functions of the two tests are equated in the sense that the area 
between the power functions when the ordinate for test A exceeds that 
of test B equals the area between the power functions when the reverse 
is true.      The value taken by b need not be integral.      The power effi- 
ciency of A relative to B is then b/a.      This definition of efficiency has 
the advantage that the obtained efficiency values are peculiar to an 
entire class of alternative hypotheses rather than to a specific alter- 
native hypothesis.      Its disadvantage lies in the failure of statisticians 
to agree completely upon the precise method by which to apply it. 

Some asymptotic efficiencies of some distribution-free tests 
relative to their classical  counterparts   are  given in  Table I.      All 
efficiencies given in the body of the table are for the case where both 
tests are applied under conditions satisfying all of the assumptions 
of the classical test.      Except when otherwise specified,  the tests 
were applied to normally distributed populations;   comparisons in- 
volving Student's   t  required that the two populations to which both 
tests were applied have equal variances,   etc.     When more than one 
efficiency is listed in a cell,  the asymptotic efficiency of the test de- 
pends upon the number of categories or groups to which the test is 
applied.    An asymptotic efficiency of zero requires some interpreta- 
tion.    It means that,  when both tests are based upon an equal and "in- 
finite" number of observations,  the test with zero asymptotic efficiency 
requires "infinitely*1 more observations in order to equal the power of 
the comparison test.      It does not mean that the ratio of the powers of 
the two tests is zero or infinity.      The power of any consistent test 
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TABLE I 

EFFICIENCIES OF SOME DISTRIBUTION-FREE TESTS RELATIVE TO,  AND UNDER 
CONDITIONS ASSUMED BY, A (MOST POWERFUL) CLASSICAL.COMPARISON STATISTIC* 

Test 
Asymptotic 
Efficiency Established by Footnotes 

Student's t* 1.000 
X-test 1.000 van der Waeroen 
Mann - Whitne y .955 Pitman, Mood, Dwass, 

van der Waerden C,  U, 1 
Sign .637 Cochran,  Jeeves & Rich- 

ards,  Dixon,   Walsh C 
Westenberg Median .637 Mood 
No.  Runs (Location) 0 Pitman,  Mood C 

Analysis of Variance* 1.000 
Kruskal-Wallis H .955 Andrews C,  2 
Friedman .637-.912 Friedman 
k-Sample Median .637 Andrews C,   3 

F - Ratio* 1.000 
Mood's Dispersion .87 Mood,  Dwass 
No.  Runs (Dispersion) 0 Pitman,  Mood C 

Maximum Likelihood* 1.000 
S.  for Dispersion .74. Cox & Stuart 

S, for Dispersion .71 Cox & Stuart 

Correlation Coeff. * 1.000 
Kendall1 T .912 Mo ran 
Spearman's p .912 Hotelling &t Pabst 
Blomqviat's Median Test .405 Blomqvist 

Regression Coeff. b* 1.000 
Mann's T .985 Stuart -  C,  U 
Daniels .985 Stuart 
Cox & Stuart's S, .860 Stuart 

Cox b Stuart's S, . 827 Stuart 

Cox It Stuart's S 

Median test for Trend 

.782 Stuart 

.782 Stuart 
Rank Serial Rh 0 Stuart C 

Records test d 0 Stuart c 
Difference sign 0 Stuart c 
Turning Point 0 Stuart 

C - test has been shown to be consistent under certain conditions. 
U - test has been shown to be unbiased under certain conditions. 
1 - Asymptotic efficiency is 1. 000 when populations have uniform distributions (Pitman). 
2 - Asymptotic efficiency is 1. 000 when populations have uniform distributions (Andrews). 
3 - Asymptotic efficiency is . 333 when populations have uniform distributions (Andrews). 

16 



TABLE  II 

POWER COMPARISONS OF SOME STATISTICAL TESTS APPLIED TO THE SAME DATA 

Teats in Order of Decreas- Null Sig. Author mud Type 
ing Power (within a block) Hypothesis Assumptions Sample Sizes Level of Comparison 

Student's t-teat Normal 3,3; 1,«; 2,«s; 5,«; 3,7 
X   teat Equal Distributions 3,7; 5,6 van der Waerden 
Mann -Whitney Means Equal 3,3;  3,7; 5,6;   1,«; Z,m . 05 
Max.Absolute Deviation Variances 3,7; 5,6; 5,«s Mathematical 
Number of Runs 3,7; 5,6; 5,« 

Equal Uniform van der Waerden 
X test Means Distributions 4,6 . 05 
Mann   Whitney Equal Mathematical 
Student's t  test Variances 

Mann-Whitney Equal Normal Dixon 
Max.   Absolute Deviation Means Distributions 5,5 .025 
Westenberg Median Equal 

Variances 
Mathematical 

Mann-Whitney Normal Epatein 
Tsao's Max.   Abs.   Dev. Equal Distributions 
Epstein's Exceedances Means Equal 10,   10 . 05 Empirical 
Number of Runs Variances 

Lehmann's Most Powerful Identical Continuous 
Mann-Whitney (1 -tailed) Populations Distributions 
Westenberg Median " against y's 4,4; 6,6 . 10 Lehmann 
Mann- Whitney (2-tailed) Distributed 
Westenberg Median " as Maxi- Mathematical 
Max.   Absolute Deviation mum x's 
Number of Runs 

Regression Coefficient b Normal 
Mann's T-teat Distributions 
Daniels Randomness loiter It Stuart 
Foster fc Stuart's D against 100 . 05 
Foster l> Stuart's d Linear k Empirical 
Rank Serial Correlation Trend . 01 
Difference Sign 
Turning Point 

Number of Runs Randomness . 05 Bateman 
Longest Run vs.  Markoff 

Chain Mathematical 
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approaches 1 as sample size approaches infinity.     Therefore when a 
consistent test has an asymptotic efficiency of zero both its power and 
the power of the comparison test are very close to 1 and are approach- 
ing 1 as sample size approaches infinity.      The power of the comparison 
test,   however,   is approaching  1 faster.      That is,   at any "infinite",   i.e. 
extremely large,   sample size the power of the comparison statistic is 
very slightly greater than that of the test whose efficiency is sought, 
but "infinitely",   i. e.   very many,   more   observations are required by 
the test with zero asymptotic efficiency to close this infinitesimal 
power gap.      Finally,  tests with zero asymptotic efficiency with respect 
to the same comparison test do not necessarily have equal asymptotic 
efficiency with respect to one another.      For example,    each of the four 
tests in Table I having zero asymptotic efficiency with regard to the 
regression coefficient has zero asymptotic efficiency with respect to 
all of the seven to ten tests listed above it. 

A number of investigators have compared the relative powers 
of distribution-free tests with respect to each other without actually cal- 
culating small-sample   efficiencies.      They have simply been compared 
under identical conditions of application and then ranked in order of power. 
Sometimes a most powerful classical statistic was included.      The results 
(see Table II)   of these comparisons are naturally highly peculiar to the 
conditions under which the comparison occurred. 

Certain statisticians   (17,   31,   49,   50)  have addressed them- 
selves to the problem of determining "most powerful" distribution-free 
tests.      Although successful,  the gain in power is usually slight and is 
generally obtained at the expense of simplicity.      Furthermore,   the pro- 
perty of greatest power is contingent upon the type of distribution assumed 
to exist when the null hypothesis is false.      Lehmann (31) has obtained 
the most powerful rank test for the hypothesis that two populations have 
identical distributions against the alternative that the second population 
is distributed as  the k largest observations in the first population. 
Terry (49) has described the rank test which is asymptotically most 
powerful,   at the point HQ,    for testing the hypothesis of identical dis- 
tributions against the alternative that the two populations are normally 
distributed with the same variance   but with different means.      His test 
procedure requires that the Ni + Nn   observations be ranked in order 
of magnitude irrespective of sample.      He then substitutes for each rank 
the average magnitude corresponding to that rank in the average sample 
of size Nj + N£ from a normal distribution with zero mean and unit 
variance.      This is accomplished by means of tables   (XX and XXI) 
supplied by Fisher and Yates  (13).      Thus scores from a population 
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of unknown form are,   in a sense,  transformed so as to represent scores 
from; a normal distribution.      Exact tables of probabilities are available 
for  Terry's test for Nj + N? 5 10,   an asymptotically normally distri- 
buted test statistic being used for large samples.     A somewhat similar 
test,  the X-test,  has been proposed by van der Waerden (50,   51).   The 
power of the X-test can equal that of Student's t-test when applied to 
normally distributed populations (50)   and can exceed the power of 
the t-test when both are applied to uniformly distributed populations 
(52).      Both Terry's and van der Waerden's tests are analogous to, 
and appear to be slightly more powerful than,   the Mann-Whitney test. 
Both have the dubious advantage of giving greater "weight" to extreme 
observations than does the Mann-Whitney test (7).      Neither,   however, 
can compare with the latter in simplicity or ease of application.    Fur- 
thermore the quality of high power against "parametric",   i. e.  normal, 
alternatives,   while useful is not an overriding consideration in select- 
ing a nonparametric test.      It is a useful property in those cases where 
populations are normal and variances homogeneous but the experimenter 
does not have certain knowledge of this fact,   i. e. ,   when a distribution- 
free test is necessitated by the experimenter's ignorance rather than 
the population's nonnormality. 

f. Application.    The applicability of most tests is directly 
deducible from the derivation as is the method of application.      Further- 
more,  many,   if not all,   distribution-free tests are applicable in situa- 
tions other than those for which they were originally designed,   and it 
would be quite impossible to anticipate all such situations and to out- 
line the test's method of application in each of them.      Therefore,   only 
the briefest example will be given of the application of each distribution- 
free test,   and the "Application" section will often be used to illustrate 
or expand upon points made in presenting the test's derivation. 

g. Discussion.   Tests which upon superficial examination 
appear to be quite distinct may actually be identical or similar in 
function,   i. e. ,   may ultimately perform the same or nearly the same 
mathematical operation.      In other cases,   although different,  they may 
be mathematically interrelated to a high degree.      Not infrequently the 
author of a test overstates,  understates or misstates the test's capabil- 
ities.      Such matters are taken up in each test's "Discussion" section. 

h.   Tables.   For most distribution-free tests probabilities are 
based upon simple combinatorial formulae.      The point probability of a 
given value of the test statistic is generally a fraction whose numerator 
is the number of different ways (combinations) in which that value of the 
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test statistic can be obtained and whose denominator is the sum of 
the number of different ways in which all possible values of the test 
statistic can be obtained.      Such tests are usually exact for small 
samples whose N is small enough to permit enumeration of the com- 
binations constituting the numerator of the (cumulated) probability 
fraction.      (The denominator is usually easy to obtain. )     The time 
and labor involved in these computations increases drastically with 
increasing N,   however,   so that exact tables frequently do not extend 
beyond an N of very moderate size.      For larger N's    approximate 
probabilities may generally be obtained fairly easily from asymptotic 
formulae,   and at this point the tables,   if they continue,  become inexact. 
The approximation is usually very good for large values of N.      There 
is sometimes a gap,  however,  between the largest N for which exact 
probabilities have been tabled and the smallest N at which the asymptotic 
approximation is good. 

The existence of adequate tables is an important criterion for 
the acceptability of a distribution-free test.      There is practically no 
limit to the number of distribution-free tests which can be devised on 
a sound mathematical basis.      However,   a test for which no tables 
have been computed is of very limited value unless exact cumulated 
probabilities can be easily computed by formula,   or unless the   asymp- 
totic approximation is good at small sample sizes,   neither of which 
is likely to be the case. 

i.    Sources.    The survey of literature upon which this report 
is based was confined almost entirely to publications written in English. 
However, not all of the relevant English publications were reviewed and 
only a fraction ot those reviewed are reported.      The number of relevant 
articles is immense and increases exponentially as one broadens one's 
definition of what is nonparametric.      An attempt was made only to cover 
tests,   of broad applicability,   whose probabilities can be calculated ex- 
actly when samples are small, and which,  when sampling from a con- 
tinuously distributed population,   do not specify the exact form of that 
distribution.      This criterion,  for example,   eliminated tests of card 
matching,  which apparently find application only in experiments on 
extra-sensory perception,   approximate tests or parametric tests used 
in violation of their assumptions,   and tests requiring such nonclassical 
but specific distributions as a Poisson or an exponential.      Despite efforts 
at thoroughness,  however,   it is virtually certain that relevant tests meeting 
all these criteria have escaped the writer's attention;   in some cases such 
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tests were detected,   but were unobtainable.      No   claim is made for 
complete coverage;   however,   it is felt that a core of better known 
and more important tests has been covered fairly adequately. 

In the following chapters tests have been grouped together 
largely on the basis of a common type of mathematical derivation, 
sometimes according to the type of sample information used,   and 
occasionally according to the type of function which the test serves. 
Only the simplest,  most extensively tabled,   and most promising tests 
have been treated at length.      Sources are referenced in the treatment 
of each test and are listed at the end of each chapter.    (Occasionally 
reference will be made to a source listed in the bibliography of a 
different chapter,   in which case the Arabic reference number will 
be preceded by a Roman numeral indicating the number of the chapter 
in which the referenced source is listed. )     Because the number of 
sources relevant to a given test or to a general topic may be quite 
large,  those sources regarded as most critical have been indicated 
by printing their authors' names in capital letters.      Primary sources 
(or,   in some cases,  the nearest thing to a primary source) for a 
unique distribution-free test have been indicated by an asterisk. 
Sources containing tables of probabilities for a distribution-free 
test have been indicated by placing a capital T in the left margin. 
If the source contains tables for more than one such test,  two T's 
are used;   and,   if a table is an extensive one,  the T is underlined. 
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CHAPTER n 

TESTS BASED ON THE BINOMIAL DISTRIBUTION 

A number of distribution-free test statistics are binomially 
distributed.      They are among the simplest,   safest,  most nearly 
exact and most extensively tabled nonparametric tests.      Their 
statistical efficiency is not the highest,  but is generally not so low 
as to nullify their other advantages.      The sample information used 
by most of them is simply the direction of the difference between 
two scores,   i. e. ,  the algebraic sign of the difference.      Binomial 
tests are extremely versatile,  finding application in testing for loca- 
tion,   trend   (in either location or dispersion), randomness of predict- 
ed order,   and in the setting of confidence limits for quantiles. 
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1.    Introduction 

Suppose that all of the possible outcomes of an event may 
be dichotomized into two mutually exclusive categories,   arbitrarily 
labeled "success"  and "failure",   these two outcomes having proba- 
bilities p and q= 1 -p respectively.      Then if the event is permitted 
to occur n times,  the probability that r   of the n outcomes will be 

successes is P  (r) =(£) p  q  "     which is the general expression for a 

term in the expansion of the binomial (p+q)   . 

Proof:    The probability that r successes and n - r failures 

will occur in a specified order is p  q       .     For example,  letting sub- 
scripts indicate order of appearance,  the probability for the order in 
which all successes occur first,  followed by all failures,   is the 

product  (px) (p2)  ...   (pr) (qr+1) (qr+2)  •••   ^n) = Pr<in~r-    However, 

since we seek only the probability of a given frequency of successes, 

the probability p  q of a given frequency of successes occurring 
in a specified pattern must be multiplied by the number of patterns 
which r successes and (n-r) failures can assume.      If the n units 
(p*s and q*s) were all distinguishable,  the number of unique patterns 
would be nj ,  the number of permutations of n things.      They are not 
all distinguishable however.     In each distinguishable pattern,  the r 
successes can be permuted with one another in r! ways without 
changing the pattern.     And for each such permutation of successes, 
the n-r failures can be permuted in (n-r)!   ways without changing the 
appearance of the pattern.      The number of permutations,  n! ,  then 
must be the number of distinguishable patterns times r! (n-r)! ,  the 
number of ways each distinguishable pattern can be permuted without 
altering its appearance.      The number of distinguishable patterns is 

_i 
therefore —y-,—'—rs—   >  which is,  of course,  the number of combina- 

r! (n-r)t 

tions of n things taken r at a time,  frequently expressed by the symbol 

(r)#  The probability of exactly r successes in n trials is therefore 
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-n-   .r_n-r (r) P  q       »   and the cvimulative probability,   i. e. ,  the probability of 

Si < •' r or fewer successes in n trials is .2     ( .) p   q 

iiii _r  n-r The binomial term (  ) p  q expresses the probability for 

r successes out of n trials only if the following conditions,   implicit 
in its derivation,  are met: 

(a) Outcomes must be capable of being dichotomized (Since 
only two outcome probabilities,  p and q,  are used in the derivation.) 

(b) The two outcome categories must be mutually exclusive 
(since qs 1  -p). 

(c) The outcome of the n events must be completely inde- 
pendent.      (Since the same value, p,  is used to express the probability 
of success on each of the n trials,  the probability of success on a sin- 
gle trial must not change from one trial to another and,  therefore, 
must not be influenced by the outcome of any other trial.) 

(d) "Events" must be randomly selected.      (The formula 

(r) prqn"r   gives the probability that by chance r successes will 
occur in n trials if the chance probability of success in a single trial 
is p.     If events are not randomly selected,  then outcomes are sus- 
ceptible to nonchance influences. )     There must therefore be no bias 
or system in the selection of which n trials,  out of an infinite popula- 
tion of potential trials,  to test.     Specifically,   among other things 
this means that none of the valid data may be systematically excluded 
from the test. 

The above qualifications will appear in modified form as 
assumptions for all tests whose test statistic is binomially distri- 
buted.     Such tests are outstanding among distribution-free tests for 
two reasons:     First they are extremely simple,  both in derivation 
and in application.     Second   exact probabilities for both the point 
(20,   28) and cumulative (34,   25,   28) binomial have been extensively 
tabled.      Thus,  while for most distribution-free tests   large n's re- 
quire probabilities  to be calculated approximately from asymptotic 
formulae,  in the case of binomial tests exact probabilities are readily 
attainable for many large samples. 
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The mean and variance    of a binomially distributed variate 
are np and npq respectively (for proof see Hoel [ 1-21]  pp.   65-67) , 
and when n is large and p is close to . 50 the binomial is closely ap- 
proximated by the normal distribution.      The critical ratio for r, 

the number of successes,   is therefore      1*     •   — , the 1/2 
vnpq 

being a correction for continuity.      The normal approximation should 
not be used except for those cases not covered by the extensive binomial 
tables which are now available.      The approximation is reasonably good 
so long as the product np is greater than 5.      Even when this criterion 
is met,   however,   the approximation is likely to be poor at the extreme 
tails of the distribution,  especially when n is small (say less than 100). 
The inaccuracy of the normal approximation can be expected to increase 
therefore with decreasing n,  with increasing departures of p from . 50 
in either direction,  and with decreasing,  i. e.  more and more extreme, 
significance levels. 

2.    The Sign Test for the Median Difference 

a. Rationale.    Suppose that n pairs of measurements have been 
taken,  one member of each pair having been taken under condition A, 
the other under condition B,   and that a B measurement is as likely to 
exceed as to be exceeded by its paired A   measurement.      Then,  if 
zero differences are impossible,  the differences A.-B.   can be either 
positive or negative and the outcome "positive" is binomially distributed 
with probability p = 1/2.      For example,   John Arbuthnott (1) found that 
every year from 1629 to 1710 the number of males born in the city of 
London exceeded the number of females.      If male and female babies 
are equally likely,  the chance probability of the reported results is 

•2°   (?)   (l/2)n = (1/2)     f     (Arbuthnott obtained this result and inter- 

preted the excess of male births as a manifestation of Divine Providence, 
which he believed to be allowing precisely for the greater mortality rate 
among males "who must seek their Food with danger",   so as to leave a 
perfect equality of sexes at the age of mating. ) 

b.  Null Hypothesis.   For every A.-B. difference, P  (A.>B.) = 

P  (A.<B.)=l/2.   Sufficient conditions for its validity are that both the A 
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population and the B population are continuously distributed and the 
population of A - B differences has a median of zero. 

c. Assumptions.    Since binomial tests require that outcomes 
must be of two types only,  there must be no zero differences,  i. e. , 
the members of no pair shall be "tied. "    Frequently this requirement 
is expressed by the more restrictive assumption that the population 
of differences is continuously distributed.      Since the outcomes of 
binomial events must be independent,  the sign of the difference for 
one pair must have no influence upon the sign of the difference for 
any other pair.      This means   among other things,  that a given A 
measurement shall be paired once and only once with a measurement 
from the B population.      Finally,  the sample of measurements must 
have been randomly selected from the parent population of differences. 

d. Treatment of Ties.      The null hypothesis is that 

P  (A  >B ) = P  (A  <B.) = 1/2. Therefore    P  (A. = B.) must equal 
rx   i       i rx   i       1/        ' r    1        1 

zero.      Zero differences constitute a third category of outcomes. 
Since the Sign test is based upon the binomial distribution which re- 
quires that outcomes fall into two mutually exclusive classes,  zero 
differences are decidedly embarrassing.      They can occur for two 
reasons:   because a noninfinitesimal proportion of the parent popu- 
lation of differences is zero,  or because,   although this is not the case, 
zero differences are obtained due to the inability of the measuring in- 
strument to achieve infinite precision.     In the former case,  the Sign 
test simply is not appropriate.    For the latter case,  various methods 
have been recommended for disposing of zero differences.    They can 
be dropped and n reduced accordingly (14,  1-8,   27).    Half may be treat- 
ed as plusses,   half as minuses (8,   27).    They may be replaced by signs 
"drawn" randomly from an infinite population half of whose members are 
plusses,  half of which are minuses (27).    Or all zeros may be treated 
as if they had the algebraic sign least conducive to rejection of the null 
hypothesis. 

The Sign test has greatest power when zero differences are 
dealt with according to the first alternative.      However,  the greater 
power resulting from use of this method is not necessarily an argu- 
ment for its adoption.      A zero,  being in a sense "halfway between" 
a plus and a minus suggests that plusses and minuses are equally 
likely.    By ignoring,   i. e.   discarding,   data which lend support to the 
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null hypothesis,   one naturally increases the probability of rejecting 
that hypothesis and consequently enhances the power of the test.    The 
probability of rejecting a true null hypothesis has also increased, 
however,   and the apparent gain in power is attributable to a subtle 
increase in the "true",   as contrasted with the nominal,   significance 
level.      For example,   consider  1000 differences of which 960 are 
zero,   13 plus and 27 minus.      If half of the zeros are regarded as 
plus and half as minus and the two-tailed Sign test is applied to the 
493 plusses and 507 minuses,   the cumulative probability is .681. 
If the zero differences are discarded and the test is applied to the 
13 plusses and 27 minuses,  the cumulative probability falls within 
the . 05 level of significance.      Assuming that half the zeros actually 
represent plus scores,  half minus scores,   the "true" cumulative 
probability is .681 in both cases.      However,   in the latter case the 
experimenter believes his significance level to be . 05 when actually 
the true significance level corresponding to this alleged figure would 
be some figure greater than .681.      Thus discarding the zeros biases 
the test toward rejection. 

The "randomization" method preserves exactly the mathemat- 
ical conditions upon which the validity of the Sign test depends.    How- 
ever,   it makes little sense experimentally.      Normally one interprets 
small chance probabilities as implying the presence of a nonchance 
effect.      But if it is known that pure chance determined a substantial 
portion of one's results,  then small chance probabilities may imply 
unlikely chance effects as strongly as (or more strongly than) non- 
chance effects.      In such cases the null hypothesis may remain as 
reasonable as any alternative hypothesis.      Ambiguities may also 
arise in marginal situations.      Suppose for example that an experi- 
menter using the . 05 level of significance obtains significant results 
after "randomizing" zeros,  but discovers that his results would have 
a "chance" probability of . 15 had he regarded half the zeros as plusses, 
half as minuses.      The reverse situation would be equally distressing. 

The first three methods of dealing with zero differences are 
based upon an implicit assumption that zero differences represent true 
differences which,   if measured with infinite accuracy,  would be found 
to be positive half of the time,  negative half of the time.      However, 
if zero differences are due to imprecisiond measurement,  as it is 
assumed,   such a 50-50 split is by no means assured.      The "measuring 
instrument" might be such that all differences   between -.0015 and 
+ . 0040 were measured as zero.      One would then expect the preponder- 
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ance of recorded zeros to represent true plusses. 

None of the methods of dealing with zero differences,   there- 
fore,  is entirely satisfactory.      Giving all zeros the sign least condu- 
cive to rejection is the safest method while,   in the long run,  the average 
probability error is minimized by treating half the zeros as plusses, 
half as minuses.    If only a small proportion of the differences are zero, 
say less than 5%,   one would expect the "error" introduced by zero 
differences   generally to be of small practical consequence.      However, 
when zeros constitute a substantial proportion of the data,   considerable 
caution should be used in applying the Sign test. 

e.  Efficiency.    A normal distribution is symmetrical with median 
equal to mean.      Therefore,   if applied to a normally distributed popula- 
tion of differences,  the Sign test for the median difference is equally a 
test for the mean difference and can legitimately be compared with 
Student's t-test.      Under the conditions stated,    the one-tailed Sign 
test has,   relative to Students t,   an asymptotic efficiency of 2/x   or 
. 637.      This same figure is obtained whether the asymptotic efficiency 
be an estimate efficiency (4,   44) A.  R.  E.   (15),   or an efficiency of 
certain other types (7,   15,   16).      It refers,   of course,  to the case 
where the discrepancy 6 between the true difference and hypothesized 
difference is zero,   i. e. ,   very slight.      If samples are of infinite size, 
the efficiency of the Sign test is independent of the size a  of the signi- 
ficance level,  but decreases from . 637 to a limiting value of . 500 
as 6   increases from zero to infinity (15). 

The small sample efficiency of the Sign test depends strongly 
upon the precise definition of efficiency chosen (2).    It decreases with 
increasing values of n,  a    and 6 (7).      Small sample efficiencies as 
high as . 96 have been found (43). 

Power functions for the Sign test have been published by Dixon 
(7) and by Walsh (42).      Stewart (36) has prepared tables giving the 
sample size at which a false null hypothesis (p = . 50) will have a given 
probability of rejection,   i. e. , test will have agiven power,   at the . 05 
level of significance,  for various "true" values of p.      The test is con- 
sistent provided only that p# q,   i. e. ,   in the present case provided only 
that the   null    hypothesis is false (14). 

f.    Application.    Subtract each B score from its matched,   i. e. 
paired,   A score.      If a small proportion of the differences are zero, 
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"assign" half of them a positive sign,  half a negative sign;   if there 
are an odd number of zero differences,  discard one zero difference, 
reduce n by one,  and proceed as above.      Let r be the number of 
plusses and n-r be the number of minuses after the zeros have been 
"assigned. "     Then the cumulative probability of obtaining r or fewer 

plusses by chance if the null hypothesis is true is /s* (^   l/2n. 

If a two-tailed test is required,  one rejects the null hypothesis if this 
cumulative probability equals or is less than a/2 or equals or exceeds 
l-a/2.      If a one-tailed test is required and the alternative hypothesis 
is that the median difference is less than zero,  the null hypothesis is 

rejected if    S? (n)     l/2n<a. For the opposite alternative,   reject 

if the summation equals or exceeds 1-a . 

g.    Tables.    Probabilities can be most accurately obtained 
from tables of the cumulative binomial (34,   25,   28,   46)   entered with 
p=.50.    Other tables (4,  8,   26,  1-8,  1-23,  1-43,  1-59) have been 
designed specifically for the Sign test. 

h.    Discussion.    Mathematically the Sign test simply tests 
the hypothesis that the parameter,  p,  of a binomial population has the 
value .50.      In equivalent experimental terms it tests the null hypothe- 
sis that the population of A-B differences has a median of zero.      The 
inference is frequently made that if the median difference is zero,  then 
the A population and the B population are equally "good" in a quantitative 
sense.      Such an inference cannot legitimately be made without introduc- 
ing an additional assumption:   that the A-B differences are symmetri- 
cally distributed about zero.      Without this assumption one can legiti- 
mately infer that half of the units comprising the A population are superior 
to the units with which they happen to be matched in the B population 
and that half of the B units are superior to their paired mates from the 
A population,  but not that these two "superiorities" represent equivalent 
difference magnitudes.      It is to be noted that the assumption of symmetry 
requires that the mean difference be zero. 

By adding M to each B score before subtraction from its paired 
A score,   one can test the null hypothesis that the median difference is 
M.      If the assumption of symmetry can justifiably be made,  one can 
test the hypothesis that the mean difference is M,  or,  in other words, 
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that the A population is on the average M units "better" than the B 
population.      By multiplying each B score by 1 + 1 OOp before subtraction, 
one can,  under the assumption of symmetry,  test the hypothesis that 
the A population is on the average p percent "better" than the B popu- 
lation.    (See 8 or 26) 

The preceding discussion has assumed that every A score has 
the same parent population and likewise for every B score.      Actually 
the formula holds good even if every A or B score comes from a differ- 
ent population so long as each population corresponding to a given A-B 
difference has zero median.      The null hypothesis tested is that all of 
the populations from which the A-B differences were "drawn" have zero 
median.      This    type of application should be approached with caution, 
however.      Suppose,   for example,  that half of the pairs represent popu- 
lations in which A*s are truly superior to B*s while the reverse is true 
for the other half.      Although the null hypothesis is entirely false,  the 
probability of its rejection is no greater than if it were true.      Again, 
suppose that for a tenth of the pairs A's are truly superior to B's while 
for the remainder there is no real difference.      The power of the test 
would be much greater if that tenth of the data were tested separately. 
Applications of the type described,   therefore,  may greatly reduce the 
power of the test,   and even when the null hypothesis is rejected,   it is 
not at all clear what alternative hypothesis is indicated.      Finally,   in 
this type of application,  the modifications described in the preceding 
paragraph become meaningless and should not be used. 

It has been stated that the Sign test is particularly appropriate 
when the members of each pair were subjected to similar treatment, 
but when treatments differed from one pair to another.       This,  of 
course,   represents a special case of the application discussed above. 
Here it is implied that a number of variables may have a real effect 
upon the absolute values of the A's,  the B's or even the A-B differ- 
ences,  but that only one variable,  the one in which the experimenter 
is interested,  can have a real effect upon the direction of the A-B 
differences,  i. e. ,  the signs of the differences.      This is not necessar- 
ily an unrealistic assumption.      For example,  the A's and B's might 
be positions of seismograph needles during,   and an hour previous to, 
an hypothesized tremor.      The seismographs being located in widely 
different parts of the world,  the A-B differences would be expected to 
vary in size with distance from the source of tremor.      Furthermore, 
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the numerical size of the difference might be reported in metric units 
by some and in British units of measurement by others.      These con- 
siderations would preclude the use of a t-test,  but not the Sign test 
since the variable mentioned would affect the size but not the direction 
of the differences. 

It is extremely important,  however,  that no variable causing 
differences between pairs shall interact with the variable in which the 
experimenter is interested,   i. e. ,   shall differentially affect the sign of 
the difference between members of a pair.      Suppose,  for example,  that 
A and B are two strains of wheat and that some of the AB pairs were 
grown in a northeastern county,  the rest in a southwestern county.    If 
the former location has a moist climate,  the latter a dry one,   it may 
well be that A is superior to B in one location and inferior in the other. 
Subjecting pairs to different treatments,  therefore,  may introduce subtle 
and spurious interactions between "tested" and "nontested" effects with 
the result that the power of the test is reduced and the true alternative 
hypothesis may differ greatly from the alleged one. 

i.    Sources.    1,   2,  4,  7,   8,   10,   12,   13,   14,   15,   16,   26,   27,   3 0, 
36,  42,  43,  44,  45,   1-2,  1-3,  1-8,   1-11,  1-21,  1-23,  1-28,  1-35,  1-43, 
1-54,  1-59. 

3.    The Sign Test for the Median 

a. Rationale.    Suppose that n observations,  X^'s,   are taken 
from a continuously distributed population whose median is M.      Then 
half of the observations,  on the average,   should fall above M,  half 
below,   i. e. ,  the number of observations falling above M is binomially 
distributed with p= . 50.      Thus,  the number of observations above an 
hypothesized median M can be used to test the validity of the hypothesis. 
But the number of observations above M is the same as the number of 
positive differences if M is subtracted from each observation.      The 
Sign test for the median,  therefore,   is equivalent to the Sign test for 
the median difference in which the X^s constitute the A population and 
the B population consists of the single value M. 

b. Null Hypothesis.    For every X.,   P  (X. >M)=P   (X.<M)=l/2. 

Sufficient conditions for its validity are that the X's are drawn indepen- 
dently and are continuously distributed with a common population median 
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M.      It is in fact only necessary to assume that the X's are continuous- 
ly distributed in the neighborhood of M. 

c. Assumptions,     (i)    Pr(x. = M) = 0,   i.e.,   none  of the 

observations must fall on the hypothesized median. 

(2) Whether a given X^ falls above or below 
M is independent of the position of any other X-   with respect to M.     This 
implies among other things that either the population is an infinite one, 
which will be the case if it is continuously distributed,   or sampling is 
with replacement. 

(3) The X^'s   must have been randomly 
selected from their respective populations. 

d. Treatment of Observations Falling on the Hypothesized 
Median.    See 2.    Treatment is analogous. 

e. Efficiency.    See 2.    Efficiencies quoted under 2 apply with 
equal validity to the test for the median. 

f. -Application.    Count the number,   r,   of X's which are 
smaller than M.      If a small proportion of the X's equal M,    count 
half of them as smaller than M.     If there are an odd number of such 
tied X's,   discard one of them and reduce  n by 1.    For a two-tailed 
test at the level a, reject the null hypothesis if 

.2n ( .) 1/2    <   a/2 or > 1 - a/2. If the alternative hypothesis for a 

one-tailed test is that the population median exceeds M,   reject the 

null hypothesis if     .2* (^ l/2n <   a. For the opposite 

one-tailed alternative hypothesis,   reject if the summation   > 1 -   a. 

g. Tables.    See 2 and the paragraph below. 

h.    Discussion.    If the X's are arranged in order of increasing 
magnitude with subscripts indicating rank in that order (1= smallest, 
n = largest)i   then if  r   observations are below M,   M exceeds the value 
Xr»  i.e., M>Xr.   Therefore,   rejecting the null hypothesis because   r 
observations have fallen below the median is     equivalent to rejecting 
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it because the median exceeds X ..     Walsh (43) has prepared tables 
of probabilities for the Sign test for the median which call for this 
approach. 

If the X's all come from the same continuously distributed 
population whose mean equals its median (which will be the case if 
the population is    symmetrically   distributed),    the Sign test for the 
median is equivalent to   a    test for the mean.      In other words    at 
the cost of introducing two new assumptions,   homogeneous popula- 
tions and symmetrical distribution,   the Sign test for the median be- 
comes a Sign test for the mean.      By adding (or subtracting) a con- 
stant C to every X before applying the test,  the hypothesis can be 
tested that the population mean has "slipped" a distance C below (or 
above) a value it is known to have had at some earlier period. 

i.    Sources.    See 2. 

4.    Cox and Stuart1 s S? Sign Test for Trend in Location 

a. Rationale.    Suppose that 2n measurements have been record- 
ed or are available in an order of sequence and it is desired to test whe- 
ther the sequence may contain a monotonic,   i. e. ,  nonreversing,  trend. 
If there is no trend of any kind,   i. e. ,   if sequential position has no effect 
upon measurement magnitudes,   these magnitudes will be randomly dis- 
tributed in sequence.      If measurements are divided into independent pairs 
and if in each pair the measurement later in sequence is subtracted from 
the earlier measurement,  the sign of each difference will be as likely 
to be plus as to be minus.      If zero differences are impossible,   the num- 
ber of differences of one sign will be binomially distributed.      On the 
other hand,   if a unidirectional trend exists differences of one sign will 
tend to predominate. 

b. Null Hypothesis.     Let subscripts represent the position of 
a given measurement in the sequence of 2n measurements.      The null 
hypothesis,   then,   is that for every 

X. with i < n   the Pr (X. > X.+n) = Pr (X. < X.+n>= l/2. 

Sufficient conditions for its validity are that the X's are continuously 
distributed and are randomly related to sequence,   i.e. ,   contain no 
trend. 
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c. Assumptions.      (1) P   (X.=X      ) = 0     for every   i < n, 
* ' r      1       l+ri —~ 

i. e. ,  the members of no pair are tied. 

(2) Whether a given X. falls above or below 
X. ,     is independent of the outcome for any other pair. 

l+n r 

(3) The X's are randomly selected. 

d. Treatment of Ties.    The authors recommend counting 
half the zero differences as plusses,  half as minuses.    Also see 2.. 

e. Efficiency     Applied to populations known to be normally 
distributed,   the S^ test for trend in location has asymptotic relative 
efficiency . 78 with respect to the best parametric test,  based on the 
regression coefficient (37).      Under the same conditions,  it has 
A.  R.  E.   .79 compared to Spearman's or Kendall's rank correlation 
tests used as tests of randomness (5).      For other comparisons,   see 
Table I. 

f. Application.    If the total number of measurements is not 
an even number,   drop the middle measurement to make it so.      Let 
2n stand for the number of measurements remaining.      From each X. 
in the first half of the sequence,    subtract the corresponding measure- 
ment X.,      in the second half.      If a small proportion of the differences 
are zero,  assign half of them a plus,  half a minus.      If an odd zero 
remains,   discard it and reduce n by 1.      Let r be the number of posi- 
tive differences.      Then for a two-tailed test at significance level a 

reject the null hypothesis if J£Q (  ) 1/2 either   equals   or   is   less 

than a/2 or equals or exceeds l-a/2.    For a one-tailed test at the level a 

reject the null hypothesis if X5Q ^ *'^    —   a        if alternative  hypo- 

thesis is an upward trend   (or >l-aif alternative hypothesis is a down- 
ward trend). 

g. Tables.    See 2 . 

h.    Sources.    (5,   11) 
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5.    Cox and Stuart's   S, Sign Test for Trend in Location 

a. Rationale.    See 4,    substituting "3n" for "2n". 

b. Null Hypothesis.    Let subscripts represent the position of 
a given measurement in the sequence of 3n measurements.      The  null 
hypothesis,  then,   is that for every 

X. with i < n the P    (X. > X.^0  ) = P    (X. < X..,  ) = 1/2. i — r x   l        i+2n' r *   l        i+2n'        ' 

Sufficient conditions for its validity are that the X's are continuously 
distributed and are randomly related to sequence,   i. e. ,   contain no trend. 

c. Assumptions.    See 4,    substituting   "X-,?" *or "^i+n"' 

d. Treatment of Ties.    See 4, 

e. Efficiency.    Applied to populations known to be normally 
distributed,  the S, test for trend in location has A.  R.  E.    . 83 with 
respect to the best parametric test,  based on the regression coeffi- 
cient (37).      Under the same conditions,   it has A.  R.  E.    .84 compared 
to Spearman's or Kendall's rank correlation tests used as tests of 
randomness (5).      For other comparisons see Table I. 

f. Application.    If the total number of measurements   is not 
divisible by 3,   "add" one or two "dummy" measurements in the middle 
of the sequence to make it so.      Let 3n stand for the number of meas- 
urements as modified.      From each X. in the first third of the sequence, 
subtract the corresponding measurement X^+2n  in tne last third.    The 
data in the middle third will not be used.      If a small proportion of the 
differences are zero,   assign half of them a plus,  half a minus.      If an 
odd zero remains,   discard it and reduce n by 1. Let r be the number 
of positive differences.      Then for a two-tailed test at significance 

level a,  reject the null hypothesis if      ?Q ,n«   i/o11    «ither equals or 

is less than a/2 or equals or exceeds l-a/2.       For a one-tailed test 

at level a,  reject the null hypothesis if      S^ (n )   l/2n < a     if alterna- J x=0   x — 

tive hypothesis is an upward trend (or > 1-a  if alternative hypothesis is 
a downward trend). 
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g.    Tables.    See 2. 

h.    Discussion.    The S-,   test uses only 2/3 of the raw data 
employed by the S2 test;   however,  the members of each pair of meas- 
urements whose difference is taken are 1/3 farther apart.      The net 
result is an increase in efficiency.      If a real trend exists,  then the 
farther removed two measurements are in sequence,  the greater the 
expected difference in magnitudes and the more likely that the sign of 
the difference will betray the direction of the trend.      The S^  test, 
however,  has one advantage.      Since it uses all of the data,   statistical 
inference can be extended to the entire parent population.      Strictly 
speaking,  inferences based on the S, test cannot legitimately   be 
extended to the middle third of the sampled sequence,   since a temporary 
trend occupying only this portion could not be detected. 

i.    Sources.    5,   11,   37. 

6.      Cox and Stuart's   S-,   Sign Test for Trend in Dispersion 

a. Rationale.    Suppose that 3kn measurements have been re- 
corded in order of sequence and it is desired to test whether the disper- 
sion of the measurements about a linear regression line changes mono- 
tonically with position of measurements in the sequence.      If the  true 
dispersion remains constant,  then the ranges of consecutive sets of k 
measurements should vary on a chance basis only.      And if the range 
of a subsequent set is subtracted from that of an earlier set,  the dif- 
ference is as likely to be positive as to be negative.      If zero differences 
are impossible,   the number of differences of one sign will be binomially 
distributed.      On the other hand,   if dispersion changes monotonically 
with position in sequence,   differences of one sign will tend to predom- 
inate. 

b. Null Hypothesis.    Let w^  represent the range of the i th 
consecutive set of k measurements.      The null hypothesis,   then,    is 

that for every w. with      i< n the P    (w. > w. ._   ) = P    (w. < w. ,_   )= l/2. 1     1 — r      1 i+2n r      1 i+2n 

Sufficient conditions for its validity are that the X's are continuously 
distributed with constant dispersion about a linear regression line. 

c. Assumptions.     (1)    P    (w. = w.   _   ) = 0      for every ij£ n» 
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i.e. ,  the members of no pair   are tied.      If the X's are continuously 
distributed,  the w's will be also   and the assumption will be satisfied. 

(2) Whether a given w- falls above or below 
w. , y     is unaffected by the outcome for any other   such pair. 

(3) The X's are randomly selected. 

d. Treatment of Ties.    See 4. 

e. Efficiency.    Applied to populations known to be normally 
distributed,  the S.,  test for dispersion has A.R.E.  of .71 compared to 
the maximum likelihood test (5). 

f .    Application.    The selection of the integer k is arbitrary and 
will not affect the validity of the test;   however,  it can be expected to 
affect the test's power.     Letting N stand for the total number of meas- 
urements, the following rule is suggested by the authors: 

take k = 2 if N < 48,    take k  = 3 if 48 < N < 64,    take k = 4 if 64 < N < 90, 

take k = 5 if N > 90.      Let n be the integral part of N/3k and drop N-3kn 

measurements from the middle of the sequence.      Divide the 3kn remain- 
ing measurements into 3n consecutive sets of k measurements each. 
Find the range of measurements within each of the 3n sets.      Finally, 
using these ranges as scores or measurements,  proceed exactly as in 
the S_ test for trend in location. 

g.    Tables.    See 2. 

h.    Discussion.    This test can be made a test for trend in 
variance,   (or standard deviation) simply by substituting this term for 
"range" and applying the test as outlined above. 

The authors do not suggest the use of the S2 test to test for dis- 
persion,   although it obviously could be legitimately used for that purpose. 

i.    Sources.    5,   11. 

7.      Noether's Sequential Test for Linear Trend 

Cox and Stuart's tests for trend in location give specific values 
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to a constant,  C,  in a more general test discussed by Noether (23,   24). 
The latter author,  in effect,  sets the null hypothesis that 

P    (X. > X.   „) - P (X. < X. .„) = 1/2     and examines the optimum value 
r      1        l+C r     1 l+C 

of C for a sequential probability ratio test of that hypothesis. 

8.     Noether's Binomial Test for Cyclical Trend 

a. Rationale.    Suppose that 3n measurements have been re- 
corded or are available in order of sequence and it is desired to know 
whether the sequence may contain a fluctuating or cyclical trend.    If 
the measurements are continuously distributed and there is no trend 
of any kind,  no two measurements will be equal,   and the measurements 
will be randomly related to sequence.      Any three consecutive meas- 
urements will be equally likely to have any of the six sequences repre- 
sented by the six possible permutations of three things.      However,   of 
these six sequences only two are monotonic,   i. e. ,   ascend or descend 
without reversals,  while the remaining four change direction in the 
middle.      For example,   if the three measurements are ranked,  the 
ranks will be found to have one of the six sequences:    12 3,    3  2   1, 
132,23 1,     213,     312,    the underlined sequences being mono- 
tonic.      The probability of monotonicity for such a set of three meas- 
urements   is therefore 1/3 if the sequence is random and the meas- 
urements are continuously distributed.     And if the 3n measurements 
are divided into n independent sets of 3 consecutive measurements 
each,   the number of monotonic sets will be binomially distributed 
with p = 1/3.     On the other hand,  if a cyclical or fluctuating trend of 
any but the shortest possible "wave length" exists,  one would expect 
more than 1/3 of the sets to be monotonic. 

b. Null Hypothesis.    For every 

i <n,   the Pr (X3. > X3i.1 >X3._2) + Pr (X3i <X3._1 < X^) = l/3. 

Sufficient conditions for its validity are that the X's are continuously 
distributed and the size of the X's is unrelated to their position in 
sequence. 

c. Assumptions.   (1) Pr (X3i = X3i+1) = 0 and Pr (X3i+1 = X3i+2) = 0 
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for every i < n,i. e. ,   adjacent scores   in no set are tied. 

(2) Whether or not any given set is mono- 
tonic is independent of the monotonicity or nonmonotonicity of any other 
set.      Among other things, this means that no X is used in more than 
one set. 

(3) The X's are randomly drawn. 

d. Treatment of Ties.    Ties are a practical problem only 
when the tied scores are members of the same set.      If the first and 
third scores are tied and the second is not,  the set is clearly non- 
monotonic and there is no ambiguity.      If adjacent members of a set 
are tied,  the set is as likely as not to be monotonic;   therefore,  half 
of such sets should be counted as monotonic,   half as nonmonotonic 
(the odd set,  when it exists,  being discarded and  n  reduced by 1). 
If all three members of a set are tied,  the chance probability of 
monotonicity is obviously 1/3,   and one third of such sets should be 
counted as monotonic (one or two sets being discarded and  n  reduced 
accordingly if the number of such sets is not divisible by 3). 

e. Efficiency.    Noether states that he does not believe the 
test to be highly efficient. 

f. Application.    If the total number of measurements is not 
divisible by 3,  drop one or two measurements from the middle of the 
sequence to make it so.      Let 3n stand for the number of measure- 
ments remaining.      Divide these 3n measurements into  n  independent, 
i.e.  nonoverlapping,   sets of 3 consecutive measurements.      Count 
the number of monotonic sets,  treating tied members of a set as out- 
lined above.      Call this number   r   and call the total number of sets 
used n.      Then for a one-tailed test at significance level a reject the 

null hypothesis if      ?n    (n)  (l/3)X (2/3)n*x < a. This tests HQ 

against the one-sided alternative that once a direction is taken it 
tends to persevere for a longer than chance period.      A two-sided 
test would include the alternative that direction fluctuates more rapid- 
ly than would be expected by chance.      However,   such a contingency 
seems unlikely to be of great practical interest,   since such a fluctua- 
tion in this case would very nearly amount to alternation of direction, 
i. e. ,   change with every measurement. 
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g.    Tables.    34,   25,   28. 

h.    Discussion.    This test is also presented by its author as 
a sequential probability ratio test. 

Lehmann (17,   38) has briefly proposed a test of the hypothesis 
that two populations are identical,   which is analogous to Noether's test. 
If 2n scores have been drawn from an X population,   and 2n from a Y 
population,  and if X's are paired at random with one another and then 
with a pair of likewise paired Y's,  there will result n independent 
quadruples consisting of two X's and two Y's.      If the null hypothesis 
is true,   and the X's and Y's are continuously distributed,  the chance 
probability that in a given quadruple both X's will either be greater 
than or less than both Y's is  1/3.      The number of quadruples for which 
this is the case will therefore be binomially distributed with p = l/3 and 
can be used to test the hypothesis of identical populations.    Tne test is 
consistent if the sampled populations are continuous,   ties are random- 
ized and the alternative hypothesis is that   p ± 1/3. 

i.    Sources,    24. 

9.      Mosteller's Test of Predicted Order 

a. Rationale.    Suppose that n individuals each are to be tested 
under k conditions and the experimenter has reason to believe that he 
can predict the order of excellence of performance under the k conditions, 
If "performance" is continuously distributed so that no two conditions 
will result in the same score,   then for any one individual there are 
k!  orders in which the k conditions could be arranged.      If performance 
is independent of the conditions under which it is tested,  then each of 
the k!   orders is equally likely with probability 1/k! .    If performance 
is truly unrelated   to differences among tested conditions,  then the num- 
ber of individuals whose order of performance has been correctly pre- 
dicted is binomially distributed with    p = l/kj . On the other hand, 
if performance is related to conditions and  if the experimenter has 
correctly predicted the relationship,   the predicted order will tend to 
exceed its chance expectation. 

b. Null Hypothesis.    Pr (Order Predicted by Experimenter) 
x 1/k! .      Sufficient conditions for its validity are that measurements 
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are continuously distributed and unrelated .to the specific experimental 
conditions under which they occur. 

c. Assumptions.     (1) None of the performance scores for a 
single individual can be tied. 

(2) The order of performance excellence 
for any given individual is unaffected by that of any other individual. 

(3) Individuals and individual's scores 
are randomly selected. 

d. Treatment of Ties. Ties are no practical problem unless 
one of the possible ways of "breaking" the ties results in the predicted 
order.     In those cases,  for every group of t tied scores,  there will 
be t! ways of breaking the ties,   and if there is more than one such group 
for a single individual,  the number of ways of breaking the ties will be 
the product of these factorials.    Therefore, for each individual whose 
order of performance contains ties and could be the predicted order 
if the ties are broken properly,  find the number of ways in which ties 
could be broken.      Sum these over all such individuals,   and call the 
total "D".      Let N stand for the number of such individuals.      Then 
N/D is the proportion of these individuals whose order should be re- 
garded as the predicted one,  and (N/D) N or N   /D individuals should 
be counted as having the predicted order.      Simpler techniques,  which 
err in the direction of conservatism,   are to regard the N individuals 
as not having the predicted order,   or to discard the N individuals and 
reduce n by N. 

e. Efficiency.    Apparently unknown. 

f. Application.    Treating ties by one of the techniques outlined 
above,  count the number of individuals whose performance under the k 
conditions conforms exactly to the predicted pattern,  i. e. , whose per- 
formance excellence under each condition has the rank predicted for 
performance under that condition.      Let this number be r and the total 
number of   individuals tested be n.      Since a smaller than chance num- 
ber of individuals having the predicted order is unlikely to be of interest 
to the experimenter,   only a one-tailed test of the opposite situation will 
be outlined.      For a one-tailed test at the level a,  reject the null hypo- 
thesis in favor of the alternative that the predicted order has a greater 
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than "chance" probability if 2^ (*) (l/k:)r (1 - l/k!)n~r < a. 

g.    Tables.    34,   25,   28. 

h.    Discussion.    It is very important to remember that this 
test tests only that if the k conditions affect performance differen- 
tially the experimenter has done a better than chance job of predict- 
ing the pattern.      Suppose that of 15 conditions  10 affect performance 
in the same way and are therefore equivalent,  while the remaining 5 
conditions affect performance differentially.      If the experimenter cor- 
rectly assigns one of the ranks from 1 to 15 to each of the five differ- 
entiating conditions,   the predicted rank order will occur more fre- 
quently than 1/15!   of the time and the null hypothesis will tend to be 
rejected more than a, of the time.      However,   the predicted rank 
order will not be correct for the 10 equivalent conditions since it 
will imply that they differ,  which they do not.      Suppose again that 
five conditions arranged in order of "excellence" are A B C D E 
and that the experimenter has predicted the order A B C E D.      If 
the conditions differ greatly relative to performance variability,  the 
experimenter's predicted order may be expected to occur less than 
1/5'.   of the time;   while,   if performance variability is large relative 
to the true differences among conditions,   the experimenter's predicted 
order may be expected to occur more than 1/5'.   of the time and the null 
hypothesis will tend to be rejected more than a of the time.      The temp- 
tation to accept the predicted order as the correct one,  when the null 
hypothesis is rejected,   should therefore be resisted. 

i.    Sources.    34    (Introduction,  pp.  xxxvi-xxxvii). 

10.      Confidence Limits for Quantiles 

a.    Rationale.    Assume that a random sample of n independent 
observations has been taken from an unknown but continuously distributed 
population,   and that it is desired to establish confidence limits     for the 
magnitude of a population quantile,   Q.      This quantile may be a percen- 
tile,   quartile,   median,   or,   more generally,   that population magnitude 
below which some specified proportion p of the population lies. 

Let the n sample observations be arranged in order of increas- 
ing magnitude with subscripts indicating rank position in that order,   i. e. , 
from smallest to largest the observations are  X,,   X?,   X_,   ....,   X   , 
 »   Xg,   .....   Xn_2>   xn_j>   xn.      Also,   let e be an infinite sim ally 
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small positive magnitude.      If Q lies at or below Xr +   e   then r or 
fewer sample observations have fallen below the population quantile 

Q,  the chance probability for which is       2~ ( .) p   (1 - p)       ,    where 

p is the proportion of units in the population whose magnitude is less 
than Q.      Likewise,   if Q lies at or above Xfl - e   then n - s +1 or fewer 
sample observations exceed Q,  or equivalently,   s - 1 or more obser- 
vations are smaller than Q.      The chance probability for this is 

_,n      ,n.    i .,        \B-~i 
iis-i 

(i)p (1 -P>     • 

With qualifications which will be outlined under "Assumptions", 
these two probabilities may be regarded as the probabilities that Q lies 
below Xr + e  and that Q lies above Xg -  e respectively.     If  s   is larger 
than r,  the events referred to by these two probabilities are mutually 
exclusive (since e  is an infinitesimal).      Therefore the probability 
that Q is neither below Xr + e nor above Xg - e is 

1-Jo(i'p   (1"p)        "iis-l(i)p   (1"p)        orfIr+l(i)p   (1'p) 

and this is equivalently the probability that Q lies between Xr + e 
and Xs - e        Since e is an infinitesimal,   it is also the probability that 

X    < Q <X  . r s 
b.    Assumptions.     Random sampling and independent obser- 

vations are assumed for reasons given in (1).      The assumption of 
continuous distribution   is required in order to rule out tied observa- 
tions.      Actually,  ties become a practical problem only when they 
occur at the critical end points of the confidence region,   i. e. ,  when 
Xr is tied with Xr+^ or Xg with Xg_j.      Such ties render the end points 
of the confidence   region indistinct and impose an additional (see next 
assumption) element of inexactitude upon the calculated confidence 
level.      If Xr and X^^   are tied,  for example,  then Xr   + e cannot be 
greater than Xr and equal to or less than X   , ,   as required by the deri- 
vation.      The tied observations Xr and Xr + j represent a third category 
of outcomes,   e. g. ,  on  rather than above or below the median,  thus 
rendering the binomial an inappropriate mathematical model.      The 
assumption of a continuous distribution is also required because it 
implies an infinite population.      If the population is infinite,  the prob- 
ability of an observation smaller than Q is  p for every observation; 
if the population is finite,  the probability for every observation after 
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the first depends upon the outcomes of the previous drawings. The 
final assumption is incompatible with the immediately previous one. 
It is that there is zero probability that the population quantile Q lies 
between Xr  and  X   ,j   or between   Xg_j   and  X The probability 

thatX    <Q<X      was derived to be    • S^T2 (n) p1 (1 - p)n_1; r s i=r+l   x v ^   x        r' 

however,   this is precisely the same probability which would have been 

obtained for the event  X     ,  <Q <X     ,. But this implies that 

P   (X    <Q<X   ,,) = 0    and that   P    (X     ,<Q<X) = 0    which offends r *   r r+1 r       s-1 s 

common sense.      Phrased differently,  the derivation given under 
"Rationale" took e to be an infinitessimal,  but would have led to the 
same results if e  had been any positive value   such that 

Xr + e <Xr+l and Xs-1 <Xs "   e*    Again,   this obviously implies the 
untenable assumption that Q cannot occupy the region between Xr and 
Xr+1   or between Xg_j   and Xg.      The reason for the discrepancy is 
simply that "r observations below Q"  and "r+1 observations below Q" 
are two "adjacent" eventualities in a discrete distribution of "number 
of sample observations below the population quantile Q".      Since this 
is a discrete distribution of frequencies,  there is no event "in between" 
the two named.      However,   "population quantile is Xr" and "population 
quantile is Xr+^"  are nonadjacent eventualities in a continuous distri- 
bution of magnitudes assignable to the population quantile.      An error 
has therefore been introduced by using a discrete distribution,   i. e. 
the binomial,    to express probabilities for a continuously distributed 
variable.      In terms of confidence limits,   the error is no larger than 
the difference between the confidence limits   X   <Q<X    and X   ., <Q<X     ,. r s r+1—    —    s-1 

c.    Treatment of Ties.    If either Xf   and Xr+1   or  X     j   and 
X8   are tied,   it is suggested that the confidence region be changed 
(i. e.   shifted,   expanded or contracted)   so as to have untied endpoints. 
The conservative,   i. e.   safest,   approach would be to reduce r or enlarge 
s to the extent necessary to include within the confidence region all ob- 
servations which had been tied with the endpoints.      The confidence 
level will,  of course,   have to be recalculated for the new confidence 
region determined by the reassigned values of r and s. 
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d. Application.   Let Q be the unknown magnitude of the popula- 
tion score below which a specified proportion p of the population scores 
lie.      Draw n sample observations from this population and rank these 
observations from smallest (1) to largest (n).      Ties should be dealt with 

as outlined in the preceding paragraph.      Take   .2     .   ( .) p   (1-p) 

to be the confidence level for the hypothesis that Q lies in one of the 
following confidence regions.     If the most conservative probability 
statement is desired,  take X    < Q < X     as the confidence region. r s ° 
However,  if greatest accuracy is desired in the sense of minimizing 

Xr+Xr+1 Xs-1+Xs the error,  take the confidence region to be     <    Q <  . 
2 —        - 2 

The former will usually be the more conscionable procedure.      The 
values p,   r,  and s must,   of course,  be selected prior to sampling. 

e. Tables.      34,  25,  28,     See also 19, 1-8 p.  360. 

f. Discussion.      The a priori probability that the magnitude 

of the r      ranked observation will be less than Q is not the exact 
tVi "~~~~~~" 

probability that the magnitude obtained for the r      ranked observation 
will be less than Q.      Even in the obtained sample,  X      could be assigned 

r     -ju 
any magnitude between X     , and X     .,  and still be the r     observation 

in order of magnitude.    The range of magnitudes "represented" by X   , 

X     .+X X  +X   .. r — 1      r                r      r T 1 then,  might be considered to be    to    ,   i.e. , the 
2 2 

point halfway between X    and the next lower magnitude to the halfway 

point to the next higher magnitude.      Then if the rank of r represents 

X  +X r   n     i n-i 
magnitudes as high as  ,   the summation   S„(.)p   (1-p) 

X +X   .. 
would give the probability that Q lies below         rather than 

below X   .      Obviously, then,  the probability that Q is less than or equal 
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to X    is no greater than   ^Q (. ) p   (1-p)   " .      Therefore,  we can be con- 

fident at least at the level   Xs ~    (n) p1(l-p)n"1 that X    < Q < X  .     By   i=r+l *i' r x    F' r s } 

introducing an inequality then -we can make a definitive probability 
statement which takes account of the error discussed under the last 

"assumption".  It is that   Pr (Xr < Q < Xg) >  JS*"*   (") p1 (l-p)n_1.  Also, 

if instead of the most conservative probability statement, we wish to make 

X +X   ,.                    X    ,+x 
the most nearly accurate one, we can take     < Q <      

as the most probably "true" confidence interval corresponding to the 

confidence level    £   .,   (. ) p   (1-p) 
i=r + l    1* c 

If Q is taken to be the population median, the confidence level 

,s-2 ,n% becomes simply    X   , ,   (. )   l/2   . e '     i=r+l xi'     ' 

It is important to note that the "error" implicit in this method 
appears only when setting confidence limits for the unknown magnitude 
of a specified quantile,  Q.      If the magnitude of Q is hypothesized to be 
a single specified value,  Q1,  then an exact test of the hypothesis 
Q = Q'  can be made by rejecting if Q' lies outside of the confidence 
limits X    < Q  < X  . 

r s 

The methods just discussed establish confidence limits for 
the unknown magnitude or score below which a fixed proportion of the 
population lies.      Binomial methods have also been suggested (3,   6,   31) 
by which to obtain confidence limits for an unknown population propor- 
tion on the basis of the proportion of an obtained sample corresponding 
to a specified category.      These methods,  however,  appear to be cumber- 
some,  inexact,   or both. 

g.    Sources.    19,  32,  40.      (See also 3,  6,   9,  21,  22,   31,   33, 
and 1-8 pp.   320-323,   360.) 

51 



BIBLIOGRAPHY 

1. Arbuthnott,   John,    An Argument for Divine Providence taken 
from the constant Regularity observ'd in the Births of both 
Sexes.     Philosophical Transactions of the Royal Society 
of London,    1710,   27,   186-190. 

2. BLYTH,  C.  R. ,    On efficiencies of the sign test.    Technical 
Report on U.   S.  Army Ordinance Contract No.  DA-11-022- 
ORD-881,   Project No.   TB 2-0001 (460). 

3. Clopper,   C.   J.   and Pearson, E .   S. ,    The use of confidence 
or fiducial limits illustrated in the case of the binomial. 
Biometrika,   1934,   26,   404-413. 

T      4.      Cochran,   W.   G. ,    The efficiencies of the binomial series 
tests of significance of a mean and of a correlation coefficient. 
Journal of the Royal   Statistical Society,   1937,   100,   69-73. 

*       5.      COX,  D.  R.  and STUART,  A.,    Some quick sign tests for 
trend in location and in dispersion.      Biometrika,   1955, 
42,   80-95. 

6. Crow,  E.   L. ,    Confidence intervals for a proportion. 
Biometrika,   1956,  43,   423-435. 

7. Dixon,   W.   J. ,    Power functions of the sign test and power 
efficiency for normal alternatives.    Annals of Mathematical 
Statistics,   1953,   24,  467-473. 

*T       8.     DIXON,  W.  J.  and MOOD,  A.  M. ,    The statistical sign test. 
Journal of the American Statistical Association,   1946,   41, 
557-566. 

9.      Eisenhart,   C. ,  Deming,   Lola and Martin,  Celia,    The prob- 
ability points of the distribution of the median in random 
samples from any continuous population.    Annals of Mathe- 
matical Statistics,   1948,   19,  598-599. 

52 



10. Fisher,  R.  A. ,    Statistical methods for research workers, 
(8th Ed.),    London:   Oliver and Boyd,   119-120,   1941. 

11. Foster,  F.  G.   and Stuart,  A.,    Distribution-free tests in 
time-series based on the breaking of records.    Journal 
of the Royal Statistical Society,   1954,   16,   1-22.      See 
comments by D.   R.   Cox on page 16. 

12. Fraser,   D.   A.   S. , Non- parametric theory;    scale and loca- 
tion parameters.    Canadian Journal of Mathematics,   1954, 
6,  46-68. 

13. Hemelrijk,   J. ,    A   family of parameterfree tests for sym- 
metry with respect to a given point.    I and II.    Proceed- 
ings Koninklijke Nederlandse Akademie van Wetenschappen, 
(A), 19*0, S3, 945-955 and 1186-1198.  

14. Hemelrijk,   J. ,    A theorem on the sign test when ties are 
present.    Proceedings Koninklijke Nederlandse Akademie 
van Wetenschappen,   (ATi   1952,   55,   322-326. 

15. Hodges,   J.   L.   and Lehmann,   E.   L. ,     The efficiency of 
some nonparametric competitors of the t-test.    Annals, 
of Mathematical Statistics,     1956,   27,   324-335. 

16. Jeeves,   T.   A.   and Richards,   R. ,    A note on the power of 
the sign test,    (abstract)   Annals of Mathematical Statistics, 
1950, 21,   618. 

17. Lehmann,   E.   L. ,    Consistency and unbiasedness of certain 
nonparametric tests.      Annals of Mathematical Statistics, 
1951, 22,   165-179. 

18. Mosteller,   F.   and Tukey,   J.   W. ,    The uses and usefulness 
of binomial probability paper.      Journal of the American 
Statistical Association,   1949,   44,   174-212. 

19. Nair,   K.   R. ,    Table of confidence interval for the median 
in samples from any continuous population.    SankhyS, 
1940,  4,   551-558. 

53 



T 20.       National Bureau of Standards,    Tables of the binomial prob- 
ability distribution.    Department of Commerce,  National 
Bureau of Standards,  Applied Mathematics Series    6,   1949 
(Issued 1950). 

21. Noether,   G.   E. ,    On a connection between confidence and 
tolerance intervals.    Annals of Mathematical Statistics, 
1951,   22,  603-604. 

22. Noether,   G.   E. ,    On confidence limits for quantises. 
Annals of Mathematical Statistics,   1948,   19,   416-419. 

23. Noether,   G.   E. ,    Sequential tests of randomness.    Report 
No.  OSR-TN-54-65,  Mathematics division,  Boston Univer- 
sity,  under contract No. AF 18(600)-778,  December 1953. 

* 24.       Noether,   G.   E. ,    Two sequential tests against trend. 
Journal of the American Statistical Association,   1956, 
51,  440-450. 

T_ 25.      Ordinance Corps. ,    Tables of the cumulative binomial 
probabilities,    PB111389,   September 1952. 

T 26.       Princeton University Statistical Research Group,    The 
statistical sign test.      (O.   S.  R.   D. ,   1945,   Publ.   Bd. 
No.  23726),  Washington,  D.  C. :   US Department of 
Commerce,   1946,   22 pp.    (This is essentially the same 
as 8) 

27.       Putter,   J. ,    The treatment of ties in some nonparametric 
tests.    Annals of Mathematical Statistics,   1955,   26, 
368-386. 

T_ 28.      Romig,   H.   G. ,    50 -  100 binomial tables,    New York: 
Wiley,   1947. 

T^ 29.      Royal Society Mathematical Tables,    Vol.  HI,   Table of 
binomial coefficients,     (Ed.  by J.   C.   P.   Miller)    Cam- 
bridge:   Cambridge University Press,   1954. 

30.      Ruist,   E. ,    Comparison of tests for non-parametric hypo- 
theses.    Arkiv for Matematik,    1954,   3,   133-163. 

54 



31.       Sandelius,   M. ,    A confidence interval for the smallest pro- 
portion of a binomial population.    Journal of the Royal 
Statistical Society,     (B),   1952,   14,   115-116. 

*T 32.       Savur,   S.  R. ,    The use of the median in tests of significance. 
Proceedings of the Indian Academy of Science,    (A),   1937, 
5,  564-576. 

33. Scheffe, H. and Tukey, J. W. , Non-parametric estimation. 
I. Validation of order statistics. Annals of Mathematical 
Statistics,   1945,   16,   187-192. 

*T       34.      STAFF  OF  THE COMPUTATION LABORATORY,    Tables of 
the cumulative binomial probability distribution,    Cambridge, 
Mass.:   Harvard University Press,   1955. 

35. Statistical Research Group,   Columbia University,  Sequential 
analysis of statistical data:   Applications,   New York: 
Columbia University Press,   1945. 

36. Stewart,   W.   M. ,    A note on the power of the sign test. 
Annals of Mathematical Statistics,   1941,   12,   236-239. 

37. Stuart,  A. ,     The efficiencies of tests of randomness against 
normal regression.    Journal of the American Statistical 
Association,   1956,   51,   285-287. 

38. Sundrum,  R.  M. ,    On Lehmann's two-sample test.    Annals 
of Mathematical Statistics,   1954,   25,   139-145. 

* 39.       Thompson,   W.  R. ,    On confidence ranges for the median and 
other expectation distributions for populations of unknown 
distribution form.    Annals of Mathematical Statistics,   1936, 
7,   122-128. 

40. Wald,   A. ,    Sequential method of sampling for deciding be- 
tween two courses of action.    Journal of the American 
Statistical Association,   1945,   40,   277-306. 

41. Wald,   A.,    Sequential tests of statistical hypotheses. 
Annals of Mathematical Statistics,   1945,   16,   117-186. 

55 



42. Walsh, J. E. , On the power function of the sign test for 
slippage of means. Annals of Mathematical Statistics, 
1946,  17,   358-362. 

T        43.      Walsh,   J.   E. ,    Some bounded significance level properties 
of the equal-tail sign test.    Annals of Mathematical Sta- 
tistic^,   1951,  22,  408-417. 

44. Walsh,  J.  E. ,    Some comments on the efficiency of signifi- 
cance tests.    Human Biology,   1949,   21,  205-217. 

45. Weinberg,   G.  H.   and Tripp,  C.  A. ,    A simplification of   the 
sign test.      Psychological Bulletin,   1957,  54,  79-80. 

T       46.     van Wijngarden,  A. ,    Table of the cumulative symmetric 
binomial distribution.    Proceedings Koninklijke Neder- 
landse Akademie van Wetenschappen,   (A),     1950,   53, 
857-868. 

See also:   Chapter I   References   2,   3,   8,   11,   21,   23,   28,   35,   37, 
43,   54,   59. 

56 



CHAPTER III 

THE MULTINOMIAL DISTRIBUTION 

The multinomial distribution is important in a study of distribution- 
free tests because it plays a role in the derivation of a number of exact 
tests.      It is also the exact distribution appropriate to,  but too compli- 
cated for,   the type of test situation in which the chi square statistic 
is commonly used.      Chi square is in fact derived from the multino- 
mial by means of a series of approximations,   tantamount to assump- 
tions,  which render chi square inexact when sample size is not in- 
finite,   and which necessitate considerable skill in applying it properly. 
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1.     Derivation and Assumptions 

a. Derivation. Let an event have k possible outcomes, designated 
by subscripts 1, 2, . .. , k, and let these outcomes be mutually exclusive 
and independent and have probabilities p. ,  p~,   . . . ,  p      such that 

•5jP,= !•     I* t^ie event is allowed to occur n times, the probability 

that the respective    frequencies of occurrence of the various outcomes 
will be exactly n., n_,   . . . ,  n,   is 

n. 
i _      _ -i    p. l 

 '-  p.t p,2 ...  pfk,   or n!   Jtt. [    .      Proof:    The probability 
_   i  •>   i —   i      •       *• * l—i     n.. n,.  n~i   . . .  nn . i 12 k 

that the outcomes will occur exactly n.,  n_,   . . . ,  n    times respectively 

and in a completely specified order (for example,  the order in which 

the first n.  outcomes are those whose probability is p   , the next n?, 

those whose probability is p_,   etc.) is p.! p_2 . . .  p k .      To obtain 

the probability for these frequencies, but in any   order,  the preceding 
product must be multiplied by the number of distinguishable orders. 
The n outcomes can be permuted in nl ways.      But in any one of these 
permutations,  there are n1 outcomes of the first category which are 

the same and which can be permuted among themselves in n.J  ways 

without changing the appearance of the order.     And for each of these 
n.J   permutations,  the outcomes of the second category can be permuted 

with one another in n^\ ways without changing the appearance of the ori- 
ginal order,  etc.    There are thus n. I n_I   . ..  n, I ways in which each 

distinguishable order pattern can be permuted without creating   a pattern 
distinguishable from it.     Since nj  is the number of distinguishable pat- 
terns times n.] n_l   . . .  n, 1 ,  the number of distinguishable patterns of 

order is    '-      and the probability that in n trials the k cate- 
ii, •   n_ c,   • • •   n., • 12 k 

gories of outcomes will occur n. ,  n_,   . . .  n    times respectively is 

ni n.     n2 n pxl p£  ...  pkk 
i0l   ...  n, I T "2- 

b.      Assumptions.     Since,  in the derivation   ,  the same value,  p. 
was taken as the probability for  outcome i in each of its n. occurrences, 

I 
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p- must not vary from event to event.      The outcome of a given event 
must therefore be independent of the outcomes of any of the n-1 other 
events.      Not only must the probabilities of the various possible out- 
comes of an immediate event be independent of the actual,   observed, 
outcomes of the previous events,   they must also be mutually exclusive. 
This assumption is necessitated by the fact that the probability of a 
given set of n outcomes was obtained in the derivation by      taking the 
product of the n individual outcome probabilities;   to obtain compound 
probability in this fashion,   the individual probabilities must be mutually 
exclusive.    (See Mood I,   30-36).      Another    assumption is that 

k n1 

.2.    n. = n. Unless this is the case,    : r- :—    does not 
i=l      i nx\  a!   ...  nk! 

give the number of distinguishable orders of obtained outcomes as re- 
quired in the derivation,   and,   in fact becomes meaningless.      Since 
k mutually exclusive outcomes   are   recognized   as   possible, 

k k 
.2,  p.      must equal 1.      Otherwise a real probability,    1 -.2     p., 
1=1^1 ^ r 7i=li 

would exist for outcomes in an additional category or categories not 
considered.      (Furthermore,   the occurrence of such unc-ategorized 

outcomes would mean that  n  would be greater than .£.  n..)        Finally, 

since p   ,  p   ,   etc.   are chance probabilities,   sampling must be random, 

i.e. ,   the n events or trials must be selected on a chance basis from 
the infinite number of potential events available.      Specifically this means, 
among other things,  that no bias shall have operated to exclude valid but 
"unfavorable" data from the test. 

Use of the multinomial distribution in statistical tests requires 
that the probabilities for all of the possible outcomes be known exactly 

n. 
k   Pii 

and be included in the formula n!.II    ,—.   It is important,   however,  to 
1=1    n.J r ' 

I 

recognize that the experimenter is free to define both the sample space 
in which he is interested and the categories which divide that sample 
space into k mutually exclusive parts.      The experimenter must,   in 
fact,   be careful to do this in such a way as to define precisely that situa- 
tion in which he is interested.      If he fails he will obtain an exact prob- 
ability for a situation in which he is not interested,   and this probability 
will differ,  perhaps considerably,   from the exact probability for   the 
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situation in which his interest lies.      For example,   in coin tossing, 
in addition to "heads" and "tails",   the outcome category "on the rim" 
has finite probability which usually cannot be specified.      Therefore, 
although heads and tails have equal probabilities,   these probabilities 
are unknown since their sum is notl.      By defining his sample space 
as that including only those outcome categories in which the coin lands 
flat,  the experimenter enables himself to specify as . 50 the probability 
of heads and the probability of tails.      The experimenter is no better 
off,   however,  unless his interest is confined to the sample space con- 
sisting only of heads and tails,   i. e. ,   is confined to the frequency of 
heads relative to tails rather than tosses.      Again,   the experimenter 
may be interested in broader categories than those into which his data 
are fitted.      In such cases he should use the categories in which he is 
interested rather than those in which the data are available.      For ex- 
ample,   in tossing two coins simultaneously the possible outcomes will 
be defined to be two heads (Pr = 1/4),    a head and a tail (Prz 1/2),   and 
two tails (P   = 1/4).      Suppose that the two coins have been simultan- 
eously tossed n times and that the frequencies of the respective out- 
comes named above are n^,  n? and n,.      If the experimenter is inter- 
ested in the point probability of the obtained frequencies for the outcomes 

stated,  the proper formula is    , ^ .—    (l/4)ni   n3  (l/2)nz.    On r    r n,J  n_;  n,i       *  /   * \ i   i 

the other hand,   if he is interested in the probability of the obtained 
frequencies for the recategorized outcomes,   "coins have same side 
up" (P = l/2) and "coins have different sides up" (P = 1/2),  the ob- 

tained frequencies are n,+n, and n_ respectively and the probability 

is 1—J^l— r (l/2)ni+n3  (l/2)n2.      The probabilities for the same (n.+n-)]  n_;   * '   ' w   # r 

data under the two different categorizations of outcome are not the 
same: 

ni •   «•**»«        •   «- «-' 
(l/4)ni+n3  (l/2)n*   ?    ,„  c n;  -   ,      (l/2)ni+n3(l/2)n* 

1  n2J  n3i      l*'*l ^/^       I    (n14n3)J  n^ 

Ar^ d/4)ni+n3  ui„   (1/Zfl nr  n3. 

kn- d/2) n,.  n~« 
nx+n3 

=   (n1+n3)i 

=    (n1+n3)J 
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(n.+n_)J , 
1     3'       ?   2

ni +n3 

»nx +n3 

n,: n~. 

N N 
Substituting N for n +n_, the questioned equality becomes (n )  ? 2 

which is obviously absurd since (    ) varies with the particular values 
nl 

of n    and n_,  while 2     does not,  varying only with their sum.    The 

reason for the discrepancy between the two probabilities is that one 
states merely that n.+n, tosses result in either two heads or two tails 

without specifying precisely how many of these shall be two heads; the 
other probability does specify this further and much more restrictive 
information.    The latter probability is,  therefore,  much smaller than 
the former. 

The multinomial distribution is seldom used directly as the 
basis of a statistical test.      This is partly attributable to the fact that 
the exact probabilities for the various outcome categories,   although re- 
quired by the test,  are seldom known;   and it is partly because, unless 
n is quite small,  computation of cumulative probabilities,  i.e.,   signi- 
ficance levels,   is likely to be extremely time conauming.     Nor is this 
distribution extensively tabled except for the special case where k=2, 
i. e. ,  except far the case of the binomial distribution.      The reason for 
the lack of extensive tables is obvious:   the number,   2k - 1,  of required 
parameters is prohibitively large. 

2.    The Chi Square Approximation to the Multinomial 

Because chi-square occupies a prominent position in most 
elementary statistical texts it will be assumed that the details of its 
application are familiar to the reader.      Because it is one of the most 
misunderstood and misused of statistical tests,   its theory and the hazards 
of its misapplication will be discussed in detail. 

The chi-square distribution is derived from the multinomial, 
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three approximations being required in the derivation and therefore 
qualifying the use of chi-square. The first approximation consists 
in replacing the factorials in the multinomial 

nj Tii     n2 n 

n, o   n „ o   ceo   Yi   • 1       Z k 
Pi     Po     ••• Pik by their Stirling approximations, 

The second approximation "is similar    in character to the familiar 

one by which an expression   of the form (1+x/m)       is replaced by e 
when m is large" (27).      The final approximation consists in replacing 
by an integral the discrete summation representing the cumulative 
distribution function. 

Each of these three approximations presupposes infinite, 
i.e.  very large,  n's and becomes increasingly poor with diminishing 
sample size.     Each is strictly valid only for samples of infinite size. 

The first two approximations together are equivalent to sub- 
stituting for the multinomial distribution its multivariate normal 
approximation.      At this point the assumption is necessitated that,  for 
each category,  the observed frequencies are normally distributed 
about the expected frequency as a mean.      For a single multinomial 
category,   outcomes are binomially distributed;    therefore replacing 
the multinomial distribution by its multivariate normal approximation 
is equivalent to substituting the univariate normal distribution for the 
true binomial distribution of outcomes within each multinomial cate- 
gory.      In fact,  the working formula by which data are referred to the 
chi square tables can,  for the case of one degree of freedom, be easily 
derived by making this substitution.      Consider a binomial variate 
with the probability p for a single event.      The point probability that 

n' r n—r 
it will occur r times in n trials is —1-7—-—r.   p    (1-p)        ,   or,  if the r: (n-r)i   r r 

normal approximation is used,  the corresponding cumulative prob- 

ability is that of the "normal'1 deviate   x = — »   nP being the 
\J np(l-p) 

mean and \l np(l-p) the standard deviation of the binomial distribution. 
If both sides of the equation are squared and numerator and denomin- 
ator  of the   right   side  are  multiplied by n,    it becomes 

Y    = —L.—2i^_ * Now substitute f       for r and f       for np,   giving A np(n-np) 01 ex 
r     b        b 
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If now f       is substituted for n-f and f for n- 
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e2 ei 02 01 

(f     -f     )2 (f     - f     )2 

O!     ei' o2      e2 

X    =     7       +    7     which is the formula used to cal- 
ei ez 

2 
culate   x    with one degree of freedom from data in which   f      and f 

01 ei 

are the observed and expected frequencies of occurrence and f  and 
02 

f      are the corresponding frequencies of nonoccurrence.      (It is easily 
^2 

seen from the foregoing that chi   is normally distributed when chi 
square is based on a single degree of freedom.) 

The assumption that observed frequencies are normally 
distributed    about their expected frequency is,   of course,   incapable 
of being met exactly unless n  is infinite at which point the binomial 
distribution and its asymptotic normal "approximation" are identical. 
The normality assumption is therefore equivalent to the "assumption" 
that  n  is infinite,   or,   since the expected frequency,  f    ,    equals np., 
that all expected frequencies are infinite. i 

In more practical terms, 
the "assumption" of normal distribution of observed frequencies will 
be negligibly violated if the following conditions exist:    (a)  n is so 
large that for every p. 4- .50,  the true,   i.e.  binomial,  distribution 
of observed frequencies within each category has no more than neg- 
ligible asymmetry;   this must be the case if the binomial is to be 
well approximated by the "fitted" normal distribution which is sym- 
metrical,    (b)  n is so large that for each category the area of the 
"fitted" normal curve covering impossible  "observed" frequencies, 
i.e. ,  those frequencies which are less than zero or greater than n, 
is negligible relative to the size a  of the significance level being 
used for the chi square test,    (c)  n is so large that if for each cate- 
gory the points corresponding to observed frequencies in the binomial 
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distribution of observed frequencies were connected by line segments, 
the result would have the appearance of a smoothly continuous curve. 
The smaller the smallest p-is,  the larger   n must be to produce the 
effects named;    and the smaller the significance level chosen for the 
chi square test,   the greater the relative importance of asymmetry, 
the alleged probability of impossible frequencies,   and discontinuity, 
and therefore the larger  n  must be to make these effects negligible. 
The term "negligible" has not been,   and will not be defined.      Any 
subjective definition will suffice if consistently applied,   since,   in the 
above discussion,   that degree of cause which is defined as negligible 
will have an effect whose degree is of about the same order of negli- 
gibility. 

Much acrimonious controversy has raged over the question of 
how small an expected frequency can be safely used in a chi-square 
test.      The reason for the animosity is not hard to find.      Since for any 
expected frequency short of infinity,   chi square is an approximation 
rather than an exact test,   the question of how small   an expected fre- 
quency can be tolerated resolves itself into a pure matter of opinion 
as to how close an approximation is "good".      And most writers have 
not quantified the degree of approximation which they find tolerable 
other than by specifying a minimum acceptable expected frequency. 
The most popular rule of thumb appears to be that "no expected fre- 
quency should be less than 5",    possibly because the normal approxi- 
mation to the binomial is regarded as good if np exceeds 5.      However, 
such rules overlook the fact that the effect of an assumption violation 
is usually a function of several factors only one of which,   i. e expected 
frequency,   is mentioned in the rule.      For example,   there is every rea- 
son to believe a priori that   (a) the variance and degree of symmetry of 
the sampling distribution of observed frequencies,     (b) the "height" of 
the significance level chosen,   and (c) the number of categories,  will be 
important factors in determining whether or not the use of an expected 
frequency as low as 5 will have an appreciable effect upon the closeness 
of approximation of the chi square significance level to the "true" multi- 
nomial significance level.      The smaller the variance of the true sampling 
distribution of observed frequencies the smaller will be the area of the 
normal distribution,   assumed for them,   which occupies the region cor- 
responding to negative,   and therefore impossible,   frequencies.      And 
the more nearly symmetrical the sampling distribution of observed fre- 
quencies (i.e.,   the closer p  is to .50 for a given n),   the better it will 
be approximated by the normal distribution it is "assumed" to have. 
Curve  "fits" are usually poorest at their tails,   therefore the distortion 
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of the chi-square approximation should be greater the higher the sig- 
nificance level.      Finally,   since chi-square is the sum of squared 
deviations divided by the respective expected frequencies,   the effect 
of a single very small expected frequency in a large number of cate- 
gories would exert a smaller relative influence upon the sum,   and 
therefore chi-square,   than would be the case if a smaller number of 
categories were being used.      Tables III and IV show the distorting 
effect of some of these factors upon chi square probabilities when the 
expected frequency is 5 and 2 respectively.      For other studies of the 
sensitivity of chi square to gross violations of its assumptions,   see 
(9,   36,   56,  59,  66). 

The prohibition against small expected frequencies has led to 
the widely accepted practice of pooling categories in order to bring the 
expected frequencies for the combined categories up to the required size. 
Such pooling,   however,   involves an arbitrary decision which must usually 
be made subsequent to the collection of data.      Such a posteriori mani- 
pulation of test parameters,   i. e.   categories,   in effect violates the 
assumption of random sampling since outcomes are being influenced by 
a factor other than chance.      This objection is not an academic one, 
since the manner in which categories are combined can dramatically 
affect the significance levels obtained for a given set of data.       Qimbel 
(29) gives an example of a goodness of fit test in which probability 
levels calculated by chi-square from the same data,  using the same ab- 
scissa interval length to define categories (and of course the same num- 
ber of categories in each case),   vary by a factor of 30 depending on the 
point chosen for the beginning of the first interval.      When dealing with 
contingency tables the expected frequencies are usually not known in 
advance of sampling,  being calculated from the marginal observed fre- 
quencies.      In such cases the experimenter may be forced to choose 
between a posteriori pooling and using too small an expected frequency, 
assumptions being violated under either alternative.      However,   in test- 
ing goodness of fit to a completely known and tabled continuous function 
the issue can be avoided because sufficient information is available to 
set,   in advance,   the minimum expected frequency which the experimenter 
is willing to tolerate.      The "X-axis" of the distribution to which fit is 
being tested is divided into k intervals so that the area under the curve 
above each interval is the same for every interval,   each such area there- 
fore equaling 1/k.      Each interval therefore is a category whose prob- 
ability is 1/k,   and if n  observations are taken,   the expected frequency 
for each category is n/k.      (See 42 and 63) 
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The last of the three approximations used in the derivation 
of the chi square density function consisted of replacing a discrete 
sum by an integral.      The result is that the tabled chi square distri- 
bution is continuous while the multinomial distribution which it ap- 
proximates is  discretely distributed as is the "working formula", 

o (f      -   f   )2 

X    = S  7  ,     by which "chi square" is calculated from 
e 

obtained data.      Substituting an integral for a discrete summation is 
conscionable only when the discrete function involves so many discrete 
values,   each differing so slightly from the adjacent values,   as to be 
well approximated by a continuous function.      When expected frequen- 
cies are small,   the number of different values which the observed fre- 
quencies can assume is quite limited,   and this discrete distribution 
is not well approximated by the continuous chi-square distribution. 
However,  when chi square is based upon a single degree of freedom, 
the approximation can generally be improved by applying Yates' cor- 
rection for continuity (66).      This consists of reducing the absolute 
value of the deviations of observed from expected frequencies by 1 /2 
prior to squaring them in the calculation of chi square.      The correc- 
tion does not compensate exactly for the discontinuity in the sampling 
distribution from which the obtained data were "drawn";   it may,   in fact, 
aggravate rather than reduce the error.      "In symmetrical and nearly 
symmetrical distributions" . . .  the correction overestimates the true. . . 
"probabilities at both tails and under-estimates them near the centre 
of the distribution.      Such discrepancies,   however,   are small compared 
with those arising in violently unsymmetrical cases. "    (66)     Generally 
Yates1 correction is an improvement.     It is commonly recommended 
for calculating chi squares based on one degree of freedom, (except 
when /fQ - f   / < 1/2,   in which case it "overcorrects").      It should not 
be used,   however,   in calculating individual chi squares,   with one de- 
gree of freedom,  which are to be added,   and their degrees of freedom 
summed,   to obtain a total chi-square.      (See Chapter IV for a superior 
method in the case of certain fourfold contingency tables. ) 

Since the multinomial distribution from which chi-square is 
derived applies only to repeated independent events the chi-square test 
is equally dependent upon the assumption that each of the occurrences 
of an event comprising a frequency of occurrence is independent of all 
other occurrences of the event.      This is one of the most frequently 
violated assumptions of chi square (40).      Also   traceable to the multi- 
nomial is the assumption that outcome categories are mutually exclu- 
sive. 
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If p. is the probability that a single event will have an outcome 
l tVi 

which places it in the i      category,  then the expected frequency,  f    , 

for that category is np.,  where n is the number of times the event  X 
1 f 

is permitted to occur.      Since p.= e./n  and since Sp.= 1,   it follows 

that Sf    = n.    Obviously if f      is the observed frequency for category i, 
i i 

then Sf    = n,   or 2f    = Sf    .    This is frequently stated as an assump- 
i i i 

tion:    the sum of the observed frequencies must equal the sum of the 
expected frequencies^   It is probably most frequently violated by fail- 
ing to give the f     the exact decimal values calculated for them,   rounding 

i 
them off instead    to whole numbers. 

Another assumption is that the introduction of information 
concerning higher moments,   such as the variance of the distribution 
in a test of fit,   does not alter the condition expressed by the equality 
2(f    -np.)=0.    This is expressed in the requirement that necessary 

i 
equations involving the above equality are linear and homogeneous in 
the variables (f    -np.).    (27) 

i 

When useful information can be introduced into the chi-square 
test,   such as the variance of a distribution whose "goodness of fit" is 
being tested,   the effect is to identify and specify the particular values 
which the chi variate may assume in one of the dimensions of the hyper- 
space which the chi distribution occupie   .      The effect of each such 
"restriction" is to reduce by one the number of dimensions in which 
chi is  "free" to vary.      The number of such free dimensions is known 
as the number of degrees of freedom.      Fisher (23) presents the 
rationale for this reduction as follows.      "The common sense of this 
correction lies in the fact that when the population with which the 
sample is compared has been artificially identified with the sample 
in certain respects,   such as marginal frequencies,   or the moments, 
we shall evidently make an exaggerated estimate of the closeness of 
agreement between sample and population,   if we regard the sample 
as an unselected sample of a population known a priori. " 

Chi square,   although deceptively simple in application,   is 
one of the most complicated statistics in its theoretical basis.      It 
has been widely misunderstood by professional statisticians as well 
as by laymen.      Nearly a quarter of a century elapsed after Pearson's 
publication of the original article on chi square before statisticians 
understood how degrees of freedom are affected by linear restrictions 
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upon the data.      And in a survey (40) of the use of chi square by psy- 
chologists publishing in a professional journal,   in nine out of fourteen 
articles the application of chi square was found to be "clearly unwar- 
ranted".      As a symptom of the confusion surrounding its use,   extended 
discussion and debate has surrounded such questions as the correct 
number of degrees of freedom (8,   20,   22,   23,   24,   39,   40,   48,   67) 
the minimum tolerable expected frequency (8,   19,   39,   40)  when and 
how to apply Yates1 correction (1,   8,   11,   40,   66),   and even whether 
or not the hypothesis of "fit" should be rejected when the fit is so good 
as to be expected rarely (2,   6,   8,   58).      (Curiously enough the affirm- 
ative in the last named controversy was taken by no less a statistician 
than R.  A.   Fisher;    it is effectively and eloquently rebutted by   Stuart 
(58)   ). 

Aside from its complexity  chi-square suffers from a number 
of practical and theoretical shortcomings.      Whether or not an hypo- 
thesis of fit will be rejected may depend as much upon the statistician 
as upon the obtained data,   since probabilities may be greatly affected, 
a posteriori,  by the manner in which the data are grouped into "intervals" 
or cells.      Since all deviations are squared in the computation of chi- 
square,   the test is completely insensitive to the directions of the devia- 
tions,   regarding a series of unidirectional deviations as no more sig- 
nificant than a set of deviations,   varying haphazardly in direction from 
the hypothesized curve but having the same absolute magnitudes.      Appli- 
cations of chi-square in which,  for a given sample size,   all expected 
frequencies can be specified in advance of sampling are relatively rare. 
However,   it is only in such cases that the chi-square test is truly para- 
meter-free.      In all other cases chi square is parametric in the sense 
that population parameters,   e. g. ,   expected frequencies in a contingency 
table or the variance of a "fitted" distribution,   must be estimated   a 
posteriori from sample data.      And in such applications the excellence 
of the test,   i.e. ,  the accuracy of its calculated probabilities,   depends 
upon the efficiency of the estimates and upon their accuracy in the 
particular case in question.      In the sense that chi-square assumes 
the sampling distribution of observed frequencies in each category to 
be normally distributed,   it is not "distribution-free".      More accurately 
phrased,   chi square falsely assumes a   multivariate normal distribu- 
tion in cases where the true distribution must necessarily be the mul- 
tinomial.      Because of its resort to such approximations,   it is an in- 
exact test. 

Because of its many shortcomings,   other tests,   such as the 
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Kolmogorov-Smirnov test of fit will,   in most cases,  be preferable. 
In some few cases   chi square may be desirable because of its addi- 
tive property or because of its ability to make allowance for the 
identification of parameters in the hypothesized population on the 
basis of data whose fit is being tested.      However,  unless such unique 
properties are required,   it will be wise to seek another test;   and, 
when its avoidance is impossible,   chi square should be used with 
great caution. 

SUMMARY 

The multinomial test assumes random sampling of events whose 
outcomes are independent and fall into mutually exclusive categories, 
the sum of whose probabilities is unity.      The test yields probabilities 
which,   for a given set of data,   vary with the system of categorization 
used.      The practical validity of the    test therefore depends upon de- 
fining and establishing categories which correspond precisely with 
the situation to which the experimenter wishes to extend statistical 
inference.      Although it is an exact test,   it may require prohibitively 
extensive computation,   especially when n  is large,   since tables are 
not available for the case of more than two categories. 

The chi square test is extensively tabled and was designed for 
those situations in •which the multinomial test would be appropriate 
if computation of probabilities were easier.      The chi square distri- 
bution was,   in fact,   derived from the multinomial distribution,  the 
derivation having entailed three asymptotically valid approximations. 

2 <fo " fe)2 

It is the asymptotic distribution for the statistic X    = S - 
f 
e 

which,   at finite sample sizes is an inexact statistic. 

Because of its relationship to the multinomial,   the chi square 
test incorporates all of the assumptions on which the multinomial is 
based.      It therefore assumes that events are randomly sampled, 
that possible outcomes,   i. e.   categories,   are mutually exclusive, 
that actual outcomes are independent,  that 2p.= 1 and 2f = 2f  . 

*i o        e 
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Further assumptions are required due to steps taken in the 
derivation of chi square.      Within each multinomial category the 
frequency of occurrence is binomially distributed with mean equal 
to np.      However,   the derivation regards this frequency as normally 
distributed.      The chi   square test therefore makes the assumption 
that within each chi square "cell" the population of "observed" fre- 
quencies is normally distributed about the expected frequency,  np, 
as a mean.      This is equivalent to assuming infinite n,   since it is 
only for that case that the binomial can be exactly fitted by a normal 
distribution,   and since f    = np,   it is equivalent to assuming infinite 
expected frequencies.      Another assumption,   traceable to the deri- 
vation is that all restrictions on the data are both linear and homo- 
geneous. 

Chi   square will not be a good approximate test unless the binomial 
distribution of observed frequencies within each category is well ap- 
proximated by a normal distribution.      The normal approximation 
worsens with increasingly remote tail positions,  with increasing 
asymmetry of the binomial and with decreasing sample size.      There- 
fore  the accuracy of the chi   square test is a function of a,   the sig- 
nificance level,  p-,  the probability that a single event will have an out- 
come in the i       category,   and n,   the tota] number of events.      The 
rule that no expected frequency,   f    = np,    should be less than 5 is 
a poor one since the accuracy of the chi   square test varies widely 
with the individual values of n and p as well as with their product 
and since the rule says nothing about a. 

The tabled chi   square distribution is a continuous one.      The 

2 <fo " fe)2 

distribution of the value,  X    = S   ' by which "chi 
f 
e 

square" is calculated from obtained data,   must,   however,   have a 
discrete distribution since observed frequencies are necessarily in- 
tegers.      This introduces an error which can usually be reduced, 
but is not entirely removed,   by applying Yates' correction for con- 
tinuity when chi   square is based upon a single degree of freedom. 
It should not be applied,   however,   if the individual chi   squares are 
to be added to obtain a total chi   square. 

If "natural" categories are combined or "pooled" in order to 
increase the size of expected frequencies or in order to shorten 
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computations,   the redefinition of categories changes the situation to 
which "fit" is being tested.      It therefore alters the null hypothesis 
in a way which is fairly obvious in the case of contingency tables, 
more subtle in the case of tests for goodness of fit (where the null 
hypothesis actually being tested is that the various categories have 
the expected frequencies assigned to them,   not that the two "curves" 
are identical).      This combining of categories may obscure a real 
effect and lead to "acceptance" when the uncombined data actually 
call for "rejection" of the hypothesis in which the experimenter ac- 
tually is interested,   or it may do the opposite.      Furthermore,   in 
tests of goodness of fit to a continuous distribution,   not only will the 
choice of interval length affect the obtained significance level,   but 
even the choice of the point at which to begin the leftmost or right- 
most abscissa interval may have a profound effect upon the signifi- 
cance level obtained.      In fact  profound effects may attend any situa- 
tion in which categories are determined on the basis of a posteriori 
expediency rather than by a "natural" discrimination between pre- 
cisely those event outcomes in which the experimenter is interested. 

Although chi   square is extremely complicated in its derivation, 
its simplicity of actual computational application has made it a 
favorite among the statistically naive.      This treacherous combina- 
tion of theoretical complexity and deceptive simplicity in practical 
application has made it a perennially misused statistic.      Even 
mathematical statisticians,   including those originating it and modi- 
fying it,   have experienced great difficulty in determining its proper 
use and even greater lack of success in explaining it to lay statis- 
ticians.      Therefore   research workers will be well advised to check 
thoroughly into the theoretical admissibility of any contemplated 
application of this statistic.      Those not possessing the requisite 
sophistication for such an undertaking are urged to shun chi square. 
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CHAPTER IV 

EXACT TREATMENT OF FREQUENCY DATA IN FOURFOLD TABLES 

A test statistic having a "binomial" derivation   (but not a binomial 
distribution)   can be used to test whether or not two samples dichoto- 
mized into A's and B's came from populations with equal A/B ratios. 
Tests of this type use only frequency data and are easy to apply.      De- 
pending upon the choice of dichotomous categories,   the method may 
be used to test for equal A/B ratios,   or may be used to test for loca- 
tion,   dispersion,   correlation,   or trend.      The method can be regarded 
as an application of Fisher's Method of Randomization (See next 
chapter)  to observation frequencies rather than their magnitudes; 
and,   in this context,   it is of historical importance in the development 
of distribution-free methods. 
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1.    Fisher's Exact Method 

a. Rationale.      Suppose that two populations,   differing perhaps 
in many ways,   nevertheless each consist entirely of units which belong 
to one or the other of two mutually exclusive categories,   A and B. 
Suppose further that a sample has been drawn from each population and 
the experimenter wishes to test the hypothesis that the proportion of 
A's in Population I is the same as that in Population II.      Letting the 
frequency data be represented by the table shown below, 

Category 

A   B     Total 

Sample I 
Sample II 

Total 

a b m 
c d n 

r s N 

if the hypothesis is true one would expect cell frequency   a   to be such 
that,  on the average,  the proportion,   a/m of A's in Sample I would equal 
the proportion,   c/n,   of A's in Sample II.      Therefore   one might reason- 
ably reject the null hypothesis of equal proportions of A's,   at the a 
level of significance,   if the obtained cell frequency  a  is among that pro- 
portion, a, of possible values of a which cause a/m to differ from c/n 
by the greatest amount. 

If the validity of the hypothesis be accepted,   it follows that the 
true proportion of A's among the A's and B's in Population I,   in Popu- 
lation II and in both populations combined,   is the same.      Let p be this 
common,   but unknown,   proportion.      If the null hypothesis is true,   then, 
the probability of the obtained cell frequencies,   within that set of events 
in which m units have been drawn from Population I and n units from 
Population II,     is the product of two  binomial probabilities,   being 

Opa(l-p)b(>C(l-p)dorOC>pr(l-p)S. The probability that 

of the N units in samples I and II combined,   r will fall in category A 
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and   s  in category B is   (   ) p    (1-p)    .      Therefore the probability of 

the obtained cell frequencies within that set of N events in which m 
and  n units are drawn from the respective populations,   I and II,   and 
r and s units fall into the respective column categories,  A and B, 

0 (>r<i-P)s 

is    •     Since the unknown proportion,  p,   cancels 
.N,     r ..      .s 
(r)P    (1-P) 

out,    the probability of exactly the obtained cell frequencies with com- 
pletely specified marginal  frequencies  m,  n,   r   and   s   as shown  is 

mi  ni   ri   si 

Ni  ai bi  ci  dj 

Since marginal frequencies are constants,  this probability 
can be   expressed  in  terms   of  a   single   cell  frequency,   becoming 

mi  ni   ri   si   .      This is the probability for exactly 
Ni   ai   (m-a)i   (r-a)i   (n-r+a)i 

the set of cell frequencies obtained,   i.e. ,  it is a point probability. 
The probability required,  however,   is the cumulative probability for 
those sets of cell frequencies which cause the greatest difference 
between the proportions a/m  and  c/n.      Therefore the probability 

m '   n *   r *   s '  - - - -      must be cumulated over those values 
Ni  ai   (m-a)I   (r-a)i   (n-r+a)i 

of a causing differences between the proportions a/m  and  c/n as 
great as or greater than that existing in the obtained table.      If 
this cumulated probability is less than,  a,   the significance level 
chosen, the null hypothesis is rejected. 

b. Null Hypothesis.   The proportion of A's in Population I 
is the same as the proportion of A's in Population II. 

c. Assumptions.    (1) Sampling is random,     (2) the N units 
are independent,  i.e.,  to what categories a unit will belong is unin- 
fluenced by the categories to which any other unit belongs (This 
assumption applies to the generation of the "table" and its marginal 
frequencies,   and therefore is not in conflict with the fact that the 
table is completely specified by its marginal frequencies and a single 
cell frequency.),    (3) the two row categories are mutually exclusive 
as are the two column categories,    (4) the "A or B" dichotomy re"pre- 
sents all possible "column" outcomes and the "I or II" dichotomy, 
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all "row" outcomes (or,   alternatively,   sampling and statistical in- 
ference   are restricted to that set of units capable of being dichoto- 
mized A or B in regard to one measured characteristic and I or II 
in regard to another).      These assumptions are directly related 
to the assumptions of the binomials used in the derivation of the 
test.      The assumption of independence is also occasioned by the 
fact that the probability for the obtained table was obtained by tak- 
ing the product of the separate probabilities for the results in eachrow, 

d. Efficiency and Power.   In a sense the test is perfectly 
"efficient" since it is an exact method which uses all of the "infor- 
mation" in the sample;   parametric tests for the same problem 
merely substitute the normal approximation for the true binomial 
distribution of frequencies within a cell and therefore use the same 
"information" but use it somewhat inaccurately.      In the practical, 
computational sense,   the test is inefficient for moderate and large 
samples if computation must be carried out without the aid of tables. 
Such tables do,   however,   exist for small and moderate size samples 
so the test may be regarded as practically inefficient only for appli- 
cation to large samples. 

e. Application.     To illustrate the application of this test, 
suppose that an experimenter has obtained the frequency data shown 
in the table below and wishes to test whether the true survival rate 
of persons afflicted by a rare disease is the same for men as for 
women. 

Survived   Died 

Men 
Women 

4 10 14 
9 1 10 

13 11 24 

The proportion of men surviving is 4/14 or .2857   while that for 
women is   9/10 or .90,     and the difference between the two obtained 
proportions is .6143.      Tables,  with the same marginal totals,   in 
which the difference between the proportions surviving is as great 
or greater than .6143 are shown below. 

11 
10 

13 
10 

12 
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The values of  a  which cause the sex difference in the proportion sur- 
viving to be as great or greater than that in the obtained table are 3, 
4,   12  and 13.      Therefore the chance probability for results as ex- 
treme as those obtained,   if there actually is no sex-fatality rate inter- 

TY]     7*i     r     s 
action is 2 • \    '—      '.. —-      with the summation being 

N! a! (m-a)!   (r-a)!   (n-r + a)! 

taken over the values a = 3,   4,   12 and 1-3 for a two  tailed test.      This 
probability is . 00226.      For the one-sided hypothesis that the survival 
rate for men is either greater than or equal to that for women,   the 
summation is taken over a — 3 and a = 4 which gives a probability of 
. 00208,   i.e. ,   which is "significant" at the . 00208 level for a one- 
tailed test.      For the opposite hypothesis that the survival rate for 
men is either less than or equal to that for women,   the summation 
would be taken over the values   a = 1 3,   12,   11,   10,   etc. ,  until the 
cumulative probability,   on the next addition,  would have exceeded 
the one-tailed significance level.      Obviously for ordinary signifi- 
cance levels,   this point would be reached before the probability for 
a =4 was required in the summation,   and since the critical region 
did not include the actually obtained value,   a = 4,   the hypothesis 
could not be rejected. 

f.    Discussion.   The propriety of Fisher's Exact Method has 
been the subject of animated controversy among distinguished statisti- 
cians (2,   5,   14,   17,   29,   30,   38,   45).    Some have objected that  a test 
which necessarily takes marginal totals as fixed is therefore a "condi- 
tional"  test and cannot properly be used as a basis for statistical in- 
ference to a larger,  unrestricted population.      The principle against 
which these objections were raised has subsequently become the basis 
of a number of distribution-free tests.    It is that if two samples of 
sizes m and  n  have been drawn from identical populations,   they may 
be regarded as a single random sample of size m+n from the common 
population.      The two original samples may therefore be regarded as 
having been obtained by randomly assigning the label,   "Sample I" to 
m of the m+n units in the "combined" sample,   the n  remaining units 
being labeled "Sample II".      The degree to which Samples I and II 
differ,   in any specified measure,   not directly related to size,   is 
therefore a matter of chance.      The chance probability of the observed 

difference can therefore    be obtained by forming all of the    ( ) 
n 

different possible "splits" of the common sample of m+n units into 
two samples of sizes m and n and by determining in what propor- 
tion of them the specified measure differs by an amount as great or 
greater than that actually obtained. 
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Applying this approach to the fourfold table,  the marginal 
totals   r   and   s   may be regarded as the "parent" sample.      There 

r+s N 
are (       )   or (    )  ways of splitting this sample into two samples of 

m  and n units.      The frequencies  a  and  c   can only be obtained 

from  r   and there are (   )  ways in which precisely these frequencies 
cL 

can be obtained for Samples I and II respectively.      For each such 
5 

way,  there are (, ) ways of obtaining the frequencies  b  and  d.    Thus 

the point probability of the obtained table,   given its marginal totals, 

(r)   (S) 
a b m-    n»     r»     S« A   .U 1     *• V    VI-.. is  =^ or  -r^f p-r-j 1   j |      ,   and the cumulative probability 

*m 
is obtained by summing the point probabilities for the appropriate 
values of  a. 

A number of different kinds of data can logically be cast into 
a fourfold table and a variety of hypotheses concerning the data are 
possible.      Furthermore,  the validity of a given hypothesis can be 
tested by a number of methods,  although perhaps varying considerably 
in efficiency and logical appeal.      These points have been made by 
critics of the method (2,   5,   19,   29).      However,  the Exact Method 
appears to be impeccable when used to test the null hypothesis that 
the unknown proportion of A's in two independent populations,   capable 
of being dichotomized into mutually exclusive categories,  A and B, 
is the same,   and when the sample sizes  m  and n  are determined in 
advance of sampling. 

Unless samples are of equal size,  the probability of a will 
not be the same as the probability of the "opposite deviation",  m-a, 
in the upper left cell.      Therefore,   although when m=n two tailed 
probabilities can be  obtained by  doubling 

^a mi  ni   ri   si v              or 
x=0 

Ni  xi   (m-x)i   (r-x)i   (n-r+x)i 

2        m.  n.   r,   st    ^      whichever is smaller,  when 
X_a      Ni  xi   (m-x)i   (r-x)i   (n-r+x)i 

samples are of unequal size the summation must be taken over those 
extreme values of a which cause the absolute difference | a/m - c/n| 
to be as great or greater than is the case in the actually obtained 
table.      Furthermore,   since   a  is an integer its probability is dis- 
cretely distributed and there is not likely to be correspondence 
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between integral values of a and the standard significance levels, 
.05,   .01,   and .001.      If the experimenter has some compelling 
reason for wishing to use these standard significance levels he 
may employ Tocher's (38) modification:    If the obtained cumulative 
probability is less than the standard significance level,  a,   results 
are considered significant at the level a.      If the obtained cumula- 
tive probability exceeds a  but would be less than a if cumulated 
for a value of a one unit more extreme, ("more extreme" values 
being understood to be those causing a larger absolute difference 
| a/m - c/nl ),    Tocher computes the ratio 

a - Pr (more extreme a's) 

Pr (observed  a  or more extreme a's) 
He then enters a table of 

random numbers running from 0 to 1 and randomly selects a number. 
If the number selected is smaller than the above ratio,   results are 
considered to have fallen within the a level of significance and the 
null hypothesis is rejected. 

g.   Tables. A number of tables (12,   13,   20,   21,   22,   23, 
24,   42)  have been prepared expressly for use    *dth Fisher's Exact 
Method.      Some have used Fisher's Exact Method to calculate prob- 
abilities when N is small,  but have resorted to chi square with Yates1 

correction when N exceeds a certain value.      In some of the tables 
it is suggested that two-tailed probabilities can be obtained by doubling 
the one-tailed probability listed in the table.      This,   of course,   is 
strictly legitimate only if the distribution of the test statistic is sym- 
metrical which,  in fact,   is the case only when the two samples are 
of equal size. 

When N is small or when the significance level is extreme, 
probabilities may be obtained by a method described by Mosteller 

r .m.     a ..      .m-air.nx   c..      xn-c-, 
L(a ) p   (i-p)      mc)P U-P)     ] 

(11-34).      The point probability of  a  is  =r= ^  
[()prd-p)N"r] 

Each of the bracketed expressions is a binomial probability,   and 
since the terms involving p cancel out,    p may be arbitrarily assigned 
any constant value and the bracketed probabilities can then be ob- 
tained from tables of the point binomial.       Thus the point  probabilities 
of the most extreme values of  a  can be calculated and then   cumulated. 

h.    Sources.    2,   5,   9,   12,   13,   14,   15,   17,   18,   20,   21,   22,23, 
24,   29,   38,   42,   44,  45,   46,   47.      See also: 1,   3,   6,   16,   19,   28,   30, 
31,   32,   33,   34,   36,   39,   48. 
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2.      Westenberg's Median Test 

a.    Rationale.   Let two samples of measurements be taken, 
one from Population I,  the other from Population II and let M be the 
median measurement of the pooled samples.      If  a  and  c   are the 
respective numbers of measurements in Samples I and II which ex- 
ceed M and if b   and  d  are the corresponding numbers of measure- 
ments which are less than M,   the data can be arranged in a fourfold 
table as follows   and Fisher's Exact Method can be used to determine 
the probability that the proportion of measurements in Population I 
which exceed M is the same as the proportion of measurements 
greater than M in Population II. 

Sample I 

Sample II 

Above M     Below M 

a b m 

c d n 

N/2 N/2 N 

If the pooled sample median M be regarded as an estimate   of the 
pooled population median,   the test can be used to test the hypothesis 
that Populations I and II have identical medians.      Otherwise   it simply 
tests whether the value   M   splits Populations I and II into the same, 
but unknown,  proportions. 

b. Null Hypothesis.    The proportion of measurements which 
lie above the median of Samples I and II combined  is the same for 
Population I as for Population II. 

A sufficient,  but not a necessary,   condition for the validity 
of the null hypothesis is that Populations I and II be identical.    There- 
fore rejection of the null hypothesis is equivalent to rejection of the 
hypothesis of identical populations,  but failure to reject the null hy- 
pothesis is not  equivalent to failure to reject the hypothesis of iden- 
tical populations. 

c. Assumptions.   As does Fisher's Exact Method,  the test 
assumes random sampling,   dichotomized and mutually exclusive 
categories for both rows and columns,  and assumes that,  in the pro- 
cess of sampling,   each measurement value is independent    of the 
value of every other measure (even though measurements are not 
independent in their a posteriori categorization).      The median test 
assumes further that both populations are continuously distributed 
so that no measurements will be tied with M. 
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d. Treatment of Ties.    Tied scores are a problem only when 
tied with M.      If such ties constitute only  a small proportion of N, 
half of the scores in each sample which are tied with M may be cate- 
gorized as "above M",   half as "below M".      If,   in a given sample 
there are an odd number of such ties,   the odd tie may be discarded 
and the sample size reduced by one,   or the odd tie may be categorized 
in whichever way will be least conducive to rejection of the null hypo- 
thesis.      For a more conservative test,   all scores tied with M may 
be categorized in the manner least conducive to rejection. 

e. Efficiency.     The asymptotic efficiency of the median test 
for location relative to Student's t-test,  when both tests are applied 
to normal populations with equal variances,   was found by Mood (V- 
37)  to be 2/w or .637.      Mood qualified his findings as resting upon 
certain unproved assumptions.      Dixon (XI-13) found the power effic- 
iency of the test,  when sample sizes are very small,   to be inferior 
to that of the Wilcoxon test and to that of the Maximum Absolute Dev- 
iation test when all three tests were applied to test the difference in 
means of two samples drawn from normal populations with equal 
variances.      Lehmann (1-31) examined the relative power of six non- 
parametric tests when based on two small samples of equal size from 
two quite different continuous distributions.     Ranked in order of de- 
creasing power the tests were:    Lehmann's "Most Powerful" test for 
the specific situation tested (one-tailed test),    the Mann-Whitney test 
(one-tailed),   Westenberg's Median test (one-tailed),   the Mann-Whitney 
test (two-tailed),   Westenberg's Median test (two-tailed),   and finally 
the Wald-Wolfowitz Total Number of Runs test.      Roughly,  the median 
test was about 75% as powerful as the Mann-Whitney   test.      Apparently 
on the basis of these and his own results,   Van der Waerden (1-52) 
concludes that the median test generally is less powerful than his X 
test. 

f. Application.    Fix sample size in advance and draw a sample 
from each of the two populations.      Find the median,   M,   of the two 
samples when pooled,   then determine the number of scores,   a,   in 
Sample I which are above,   and the number,   b,  which are below M, 
counting  half of the scores tied with M as "above",   half as "below", 
and discarding any odd tie.      Find the corresponding numbers,   c, 
and,   d,   for Sample II,   then construct the frequency table shown in 
"Rationale" with m= a+b,   n • c+d and N- m+n.      Under   this proce- 
dure,   the frequency data entered in the fourfold table does not include 
the median score M,   and the cell and marginal frequencies do not re- 
present any discarded odd ties.      From this point on,   application is the 
same as for Fisher's Exact Method. 
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g.    Discussion.    The hypothesis actually tested is that equal 
proportions of Populations I and II lie above,   and equal proportions 
lie below,  the pooled sample median.      If   the pooled sample median, 
M,  were the same value as the median of the pooled populations,  the 
test would test whether or not Populations I and II had identical medi- 
ans.      However,  this is almost certain not to be the case.      When N 
is small the pooled sample median and the pooled population median 
may differ quite appreciably; for large values of N,   however,  the 
difference can be expected to be relatively small.      Phrased differ- 
ently,   the median test tests whether or not the value,   M,   represents 
the same,  but unknown,   quantile in the two populations.      If the null 
hypothesis is true and N is large this unknown quantile will be a pro- 
portion very close to . 5 and the score M will be very nearly the com- 
mon median of the two populations.      The median test can,   in this case, 
be regarded in an approximate sense as a test for identical population 
medians.      However,   when N is small,   the validity of the null hypothesis 
does not insure that the unknown   quantile represented by M will be in 
the neighborhood of , 5,   and the test can only be considered as testing 
whether the distributions of the two populations,  when cumulated up 
to the point M,   contain equal areas.      If the two populations are iden- 
tical this will be the case,   so the small-sample median test can be 
used to test the hypothesis of identical population    distributions. 
(See "Null Hypothesis'1). 

If N is an odd number, the pooled sample median has the same 
value as one of the obtained scores. Since this score is neither above 
nor below M, it represents a third "binomial" outcome and violates one 
of the assumptions on which the test is based. (If N is large the conse- 
quence of this violation will be slight. ) If N is even, this problem does 
not arise.    However,   in this case,   M does not have a specific value,  but 

rather can be defined only as lying somewhere between the   —th and the 

— +1       ranked scores.     Thus the null hypothesis,   that equal proportions 
c* 
of the two populations lie above M,   becomes equally vague.    Summarizing, 
then,  the median test is an approximate test for identical but unknown 
quantiles.    As sample size increases,   it becomes more nearly exact and 
the unknown quantile approaches . 50 so that it tends to become a test for 
equal population medians. 

h.    Tables.    All tables for Fisher's Exact Method are appro- 
priate. (See 1.   Fisher's Exact Method,   g).     Tables especially designed 
for median test have been published by Westenberg (40,   41,   43). 
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i.    Sources.    26,   40,   41,   43. 

3.    The Median Test for Linear Trend 

Cox and Stuart (11) have pointed out that if Sample I is taken 
to be the first half,   and Sample II the second half,   of a series of ob- 
servations taken sequentially,   the median test can be used to test for 
linear trend.      If  as time passes the population distribution,   without 
changing in shape,   simply "slides" upward or slides downward uni- 
directionally on the "x-axis",   then the proportion of values above M 
in Population I will not be the same as the corresponding proportion 
in Population II.      (Here Population I is the temporally changing pop- 
ulation considered as existing from the beginning of sampling until 
half of the observations have been taken,   Population II being similarly 
defined for the remaining interval. )     And this statement will be 
equally valid whatever quantile M represents when the null hypothesis 
is true.      Therefore,   if it can be legitimately assumed  that the sam- 
pled population may change in the location but not in the shape of its 
distribution,   the test will be sensitive to "slippage" of any location 
parameter,   and the question of how closely M represents the common 
population median will not be a problem. 

Generally,   however,   a change in location is accompanied by 
a change in dispersion,   and therefore by a change in the form of the 
population distribution.      Therefore,   in the generality of cases the 
additional assumption will not be legitimate.      In such cases if the 
null hypothesis is false,   the true,   i.e.,   "alternative",   hypothesis is 
that M is a different quantile in Population II than in Population I, 
i.e.,  the cumulative distributions of Populations I and II have different 
ordinates at the abscissa point M.      If the additional assumption can- 
not be made,   then,  the test,   in effect,   tests for shift in an unknown 
quantile which may be near to or far from the population median. 

The asmyptotic relative efficiency of the median test for 
trend,   relative to "the best (parametric) test against normal re- 
gression,  based on the sample regression coefficient,   b, "  is .78 
(11,   35).      This is the same as the A.  R.  E.  of Cox and Stuart's 
S^   sign test for trend. 

90 



4.    Westenberg's Test for Interquartile Range 

Westenberg (43) has proposed a modification of his own 
median test in which,   instead of dividing each sample into observa- 
tions above and observations below   the median of the pooled sample, 
the samples are divided into observations within and observations out- 
side of the interquartile range,   Qj to Q,,   of the pooled sample. 

Within 

Ql  "Q3 

Outside 
Q1'Q3 

Sample I a b m 
Sample II c d n 

Total N/2 N/2 N 

Since the expected proportion of observations above a median is the 
same as the expected proportion of observations within an interquartile 
range,  the two tests have identical mathematical bases.      The perform- 
ance of the interquartile range test is therefore analogous to that of the 
median test.      The null hypothesis is that identical proportions of Popu- 
lations I and II lie within the interquartile range of the pooled samples. 
The test therefore does not test whether the two populations have equal 
interquartile ranges;   it tests whether they have equal areas included 
between the values Qj and Q„   which were obtained from the samples. 
(See "Discussion" of the median test. )     The efficiency of the test 
apparently is    unknown.      Treatment of ties is analogous to that of 
the median test;    all ties may be categorized conservatively;   or in 
each sample,   half of the observations tied with either Q,  or Q    be 
counted as "within",   half as "outside" and any odd tied observation 
discarded. 

5.      A "Median" Test for Correlation 

a.  Rationale.   Consider a sample of units or individuals 
upon each of which an x  measurement and a   y  measurement have 
been made.      Let its scattergram be divided into four quadrants by 
a horizontal line through the sample's   y median and a vertical line 
through its x median.      Then if the x  and   y  attributes are uncorrel- 
ated,   one would expect each of the four quadrants to contain about the 
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same number of units;   while,   if a correlation exists,   a preponderance 
of units should be located in one of the two pairs of diagonal quadrants. 

If the  x  and y  attributes are uncorrelated,    dividing the ori- 
ginal sample into two equal sized samples on the basis of some char- 
acteristic of x will divide the y's into two "y-samples" which differ 
on the basis of chance alone.      They are therefore two samples from 
the same population of y's,    and in each sample the proportion of y's 
having any specified y  characteristic should also differ on the basis 
of chance alone.      On the other hand  if x  and   y  are correlated in 
respect to the criteria used to subdivide the sample,   the two y- 
samples will,   in a sense,  be from different populations which contain 
different proportions of y's with the relevant ,   specified character- 
istic. 

This treatment of correlation reduces therefore to Fisher's 
Exact Method with categories as shown below: 

A: B: 
Above Below 
Sample Sample 

y median y median   Total 

Sample I:   y's whose paired x is above sample x median 
Sample II: y's whose paired x is below sample x median 

Total 

a b m 
c d n 

r s N 

The categorizations and designation of table frequencies can be simpli- 
fied to the following, "units" being the item tabled, a unit's x measure 
being referred to in the rows,   its   y measure in the columns. 

Total 

Above        Below 
y median y median     Total 

Above  x median 

Below x median _ 

a 
N  a 
2 

N/2 

2 
a N/2 

N/2 N/2 N 
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The point probability for the tabled frequencies,   if the null hypothesis 
of no correlation is true,   is therefore 

[(N/2)]]4 

Ni  (aJ)Z[£ -a)J]2 

b. Null Hypothesis.   In the parent population,  those units 
whose  x  value exceeds the sample x-median have the same propor- 
tion of y's above the sample y-median as have those units whose x 
value is less than the sample x-median.      A sufficient condition for 
its validity is that the x and y attributes are uncorrelated. 

c. Assumptions.   Same as for Westenberg's median test; 
see 2. 

d. Treatment of Ties.   Tied scores are a problem only when 
tied with one or both of the sample medians.      For a conservative test 
all such ties may be categorized in the manner least conducive to re- 
jection of the null hypothesis.      Alternatively,  to minimize tie error, 
half of the scattergram units lying on the line separating two    qua- 
drants may be counted as belonging to each quadrant.      If there are 
an odd number of such units,   the odd unit should be held for discard- 
ing.      Units lying on the intersection of the two median lines should 
be discarded.      Before discarding,   a certain number of "units" may 
be salvaged.      For example,   if one unit has its  x  value tied with 
the x median and another unit has its   y value tied with the y median, 
two new "units" may be formed from the old ones,  one of which has 
nontied x  and   y values,  the other having both x  and   y values tied 
with their medians.      Only the latter new unit need be discarded, 
the former being "returned" to the sample.      The value N should 
refer to the number of units remaining in the sample after all dis- 
carding has been completed.      When ties are treated in this manner, 
marginal frequencies need not all equal N/2 so the formula 

m!  n!  r!  s! from Fisher's Exact Method should be used to cal- 
N!  a! b! c! d! 

culate probabilities. 

e.    Efficiency.    Applied to populations known to have normally 
distributed x's and normally distributed y's,   the test has an asymptotic 
local efficiency of (2/it)    or   .41 relative to the correlation coefficient 
p .      Under the same circumstances its asymptotic efficiency relative 
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to Kendall's rank order correlation coefficient,    T,   is 4/9.    (4) 

f. Application.   Find the sample x and   y medians,   construct 
the fourfold table shown in "Rationale" treating ties as outlined under 
(d),  and apply Fisher's Exact Method. 

g. Discussion.  If no correlation exists,   then,   on the average, 
half of the sample units should fall in the "North-West" and "South- 
East" quadrants and half in the opposite diagonal pair.      It might be 
supposed,  therefore,   that the number of units,   r,   in one of the pairs 
of diagonal quadrants would be binomially distributed with p = . 50 

when the null hypothesis is true,   so that (   )   (. 50)      would be the 

point probability of the obtained results.      Such a supposition would be 
in error.      The binomial test would require that the categorization of 
each unit to one of the diagonal pairs of quadrants be independent  of 
the categorization of every other unit.      However,   it is in the nature 
of the construction of the table that equal numbers of units must "fall" 
in diagonally opposite quadrants.      Thus,   for each unit falling in a 
given quadrant,   another unit must fall in the diagonally opposite quad- 
rant and therefore must  receive the same  binomial categorization 
given the first unit.      For example,   if N = 4,   there are three possible 

tables:   £. L ,    and — .      There are 6 permutations of the 
0        1 I   1 0 

N units which will give the first table,   24 which will yield the second, 
and 6 which result in the third.      Thus the respective probabilities of the 
three tables are 6/36,   24/36 and 6/36 or 1/6,   4/6 and 1/6.      These are 

also the probabilities obtained by using the formula    ?—W~^ 7~ 
N! (a!)   [(-£- - a)l ] 

If the binomial test is applied to the three tables,   the respective probabil- 
ities are calculated to be 1/16,   6/16,   and 1/16.   Not only are these "prob- 
abilities" different, but their sum is 1/2 rather than 1, clearly indicating 
that the test is fundamentally in error.      The sum of the "probabilities" 
is 1/2 rather than 1 because the number of units in a pair of diagonally 
opposite quadrants can only be an even number,   while a truly binomial 
variate can assume any integral value between zero and N.      Nor would 
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it be correct to confine the binomial test to,   say,  the upper two    quad- 
rants,   calculating the probability that,   of the N/2 units in the upper 
two quadrants   a  of them would fall   in   the  left    quadrant.      In the 
upper half of the tables just discussed,   the number of permutations 
of the N/2 units which will give the three results shown are 1,   2, 
and 1.      The probabilities for the upper halves of the three tables, 
considered separately and as if independent of the lower halves, 
are therefore 1/4,   2/4,   and 1/4,   which are also those obtained by 
using the binomial formula.      Thus the table,  taken as a whole,   has 
a different probability than its upper half alone.      Clearly,  then the 
dependence between units   in diagonally  opposite   quadrants     is 
a partial  dependence which can neither be ignored,  by applying a bi- 
nomial test to the number of units in a diagonal pair of quadrants,  nor 
be treated as a complete dependence by confining the binomial test to 
the upper half of the table.      The error shown to exist in the binomial 
approach is not confined to very small sample sizes.     For example, 

the table 
8 

£    has the "probabilities",    1/12,870,    1/65,536,   and 
0 

1/256 respectively when tested by Fisher's Exact Method, by the 
binomial test applied to the entire table, and by the binomial test 
applied only to the upper half of the table. 

If the sample is divided into quadrants by its x and y means, 
rather than medians, the "binomial" approach is still unconscionable. 
If median and mean are identical all of the objections discussed above 
apply. If they differ, the premise that half of the sample units would 
be expected to lie in a pair of diagonally opposite quadrants is false, 
and the binomial parameter, p, does not have the value, . 50, substi- 
tuted in the formula used to calculate probabilities. 

h.    Tables.    Tables for Fisher's Exact Method are appro- 
priate.    See 1. 

i.    Sources.   4,   8,   10. 

6.      Test for a Difference between Correlated Proportions 

a.    Rationale.   If each of N units   or individuals have been cate- 
gorized as belonging to one or the other of two mutually exclusive cate- 
gories I and II,    and the same   N units have been categorized according 
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to another mutually exclusive dichotomy A and B,  the experimenter 
may wish to know whether or not in the parent population the pro- 
portion of I's differs from the Proportion of A's.      Let the frequency 
data be represented by the accompanying table. 

I 
II 

a b m 
c d n 

r s N 

Letting primes indicate population values corresponding to sample 

frequencies,  the proportion of I's is m'/N'   or 

a1 + c' 

+ b' 
N' 

and the pro- 

portion of A's is r'/N1   or ——- .      These two proportions are equal 
only if b' = c'.      Therefore,      the hypothesis of equal proportions can be 
tested by examining the probability of obtaining    the sample b  and  c  by 
random sampling of b+c units from an infinite population consisting of 
equal numbers of b1' s and c'' s.      Thus the point probability for the ob- 

b+c b+c 
tained b  and  c   is given by the binomial   (  ,    )    (. 5) 

b. Null Hypothesis.   In an infinite population of units each of 
which is classed as either I or II and as either A or B,    the proportion 
of units categorized as I's has the same value as the proportion of units 
categorized as A's.      If this hypothesis is true,   it follows inevitably 
that there are exactly as many II A units as   T. B units in the population 
of I A's,   II A's,   IB's and II B's,   and this is the hypothesis actually 
tested. 

c. Assumptions.     Since the test is a binomial one,   it depends 
upon the usual binomial assumptions:   (1) sampling is random,   (2) cate- 
gorization of one unit does not influence the categorization of any other 
unit,   i. e. ,  units are independent   and are drawn from an infinite popu- 
lation of potential units,    (3) the population selected for test,   i. e. ,   the 
units categorized II A or IB,   constitutes a dichotomy,    (4) the dicho- 
tomized categories II A and I B are mutually exclusive.     In addition, 
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the unique construction of the test necessitates the following    assump- 
tions:    (5) the I and II categories are mutually exclusive as are the 
A and B categories,  thereby making the four categories I A,  II A, 
I B,  and II B mutually exclusive   (the latter is required in order that 
the "no trial" categories,  I A and II B, will contain none of the II A 
or I B attributes,  those actually tested,  thus making the   exclusion 
of I A and II B data legitimate.)     (6) every unit categorized either 
I or II is also categorized      either A or B and vice versa,  i.e. , 
the "I  II" and "A B" categorizations are applied to the same data; 
unless this is the case,  the data cannot legitimately be cast into 
a fourfold table,  but specifically the proportions of I's and A's can- 

-.1 i ki               a' + c ' 
not be represented as         and         respectively,  and a dif- 

N' N' 

ference between b1 and c' is not sufficient to demonstrate a difference 
between the two proportions. 

d. Efficiency.   No information seems to be available;    however, 
it would appear logical that the test efficiency would be high since the 
test appears to make efficient use of all the "information" available. 

e. Application.    Draw a sample of N units from the population 
in question,   and let the table shown in "Rationale" represent the fre- 
quency data categorized according to each of the dichotomies I or II 
and A or B.      Let a represent the level of significance    chosen,   and 
let  r  represent the smaller of the two frequencies,  b and c. 

For a two-tailed test of the null hypothesis that in the parent 
population the unknown proportion of I's is the same as the correlated, 

r    b+c b+c unknown proportion of A's,   reject if 2   S_ (   .    ) (. 5)        < a .      For a 

one-tailed test,   reject the hypothesis that the proportion of I's is either 
the same or   smaller  than the   proportion of A's   if 

c    b+c D+c 
2n (   •    )(«5) <a.     Or,  for the opposite one-tailed test,   reject the 

hypothesis that the proportion of I's is either the same or greater than 

the proportion of A's if    2 n   (   .   ) (. 5) < a. 

f.    Discussion.    McNemar (25),  who originated the test,  used 
the chi square approximation,   rather than the binomial,  with 

„  b+c.2   .  b+c .2 _ 
2   (b--2->   , <c-—>   .. .   .    .2   (b-c)2 

Y =  w—, + W-,  which reduces to Y = A——-— 
*•      b+c        b+c *•    b+c 

~2~        ~2~ 
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with one decree of freedom.      The binomial,   however,   is the exact test 
and should be used unless b+c is very large,   in which case either test 
may be used. 

Although this test bears a superficial similarity to the bino- 
mial test for correlation criticised in the "Discussion" section of 
(5.  A "Median" Test for Correlation),  the objections voiced there 
do not apply here.      In the present test,   categories are completely 
specified in advance of sampling,   the categorization of one unit does 
not influence the categorization of any other unit,   and the "popula- 
tion" from which the sample is considered to have been obtained is 
the parent population from which the b+c units were drawn.      In the 
binomial test for correlation,   on the other hand,   categories were 
established after sampling and were a function of the sample results, 
and the categorizations of units were not independent.      The proper 
analysis of such data requires that the test be a "conditional" test in 
which the obtained table is regarded as a sample from a population of 
tables.      Each table in a population of tables with fixed marginal fre- 
quencies is a different permutation of the units constituting the cell 
frequencies.      Therefore,   in calculating probabilities for such condi- 
tional tests   all permutations and therefore all cells must be consid- 
ered.      Since McNemar's test is not a conditional test,   no restrictions 
having been placed on marginal frequencies,  units may distribute 
themselves in the "b" and "c" cells strictly according to the binomial 
law. 

g.    Tables.    Use tables of the cumulative binomial probability 
with p * . 5,   or tables for the Sign Test.      (See Chapter II).      Tables 
especially designed for the application of this test employing the chi 
square approximation to the binomial have been published by Swine- 
ford (37). 

h.    Sources.      25,   37. 
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CHAPTER V 

TESTS BASED ON FISHER'S METHOD OF RANDOMIZATION  I 

The logical basis for most distribution-free tests is rooted in a 
method originated by R.   A.   Fisher and known as the Method of Rando- 
mization.      The basis of statistical inference is simply this.      If sev- 
eral samples have been drawn from a common population,   they may 
be regarded as one large sample whose observations have been ran- 
domly assigned to subsamples or component samples of the sizes 
actually drawn.      Each of the different possible random assignments 
was,  prior to sampling,   equally likely to be the actually obtained 
sample,   if the null hypothesis of identical populations is true,   but 
unequally likely to be if the null hypothesis is false.      By choosing a 
test statistic which is sensitive to the alternative hypothesis and cal- 
culating its value for each of the n different possible random assign- 
ments,   one obtains a set of n equally weighted values of the test 
statistic (some of which are the same) which form the distribution 
of the test statistic under the null hypothesis.      Its rejection region 
is simply the N most extreme of these values each of which is exactly 
as likely as any other value when the null hypothesis is true,   but which 
become especially probable when the alternative hypothesis is true. 
If the test statistic for the actually obtained sample falls within the 
rejection region,  the null hypothesis can be rejected at the N/n level 
of significance. 

The method,   as developed by Fisher,   has been improved by Wil- 
coxon who,  by replacing original observation magnitudes by their ranks, 
"standardized" the rejection region and permitted tabling of probabili- 
ties.      Wilcoxon's tests are among the most efficient and most impor- 
tant distribution-free tests.      The sample information used by Fisher 
was the sample mean or mean difference;    Wilcoxon used rank sums 
or sums of algebraically signed ranks.      Both constructed tests sen- 
sitive to location. 
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1.      Fisher's Method of Randomization:   Matched Pairs 

a.    Rationale.    Let n matched pairs of observations be taken, 
one member of each pair having been taken under treatment A,  the 
other under treatment B.     If each B observation is subtracted from 
its paired A observation,   there will be n difference scores henceforth 
referred to as the obtained sample.     If the A and B treatments have 
equal effects,   in all respects to which the measurements are sensitive, 
then the members of any given matched pair of observations may be 
regarded as having been drawn from the same population.      In this 
case "treatment A" and "treatment B" are merely arbitrary labels 
which are applied to two random observations from the same popu- 
lation,   and a specified one of the two observations is as likely to 
acquire the label "A" as to be labeled "B".      The difference score for 
any given pair of observations is therefore as likely to be plus as to 
be minus.      If the A and B treatments produce effects whose distri- 
butions are not identical but which are symmetrical about the same 
point,   a given difference score is also as likely to be plus as to be 
minus because for each A- - B.   difference score in the population 
there is an equally likely "mirror-image" difference score of equal 
magnitude but opposite sign.      Therefore if either   (a) the A population 
and the B population are identical,  or (b) if the A and B populations 
are symmetrical about the same point,   each difference-score,  what- 
ever its magnitude,  will be as likely to be plus as to be minus.      Since 
plus and minus are equally likely algebraic signs for each of the n 
difference magnitudes,   each of the 2    different possible arbitrary 
assignments of algebraic signs to the obtained difference magnitudes 
is equally likely for a sample containing these difference magnitudes 
(provided no difference magnitudes are zero for which an algebraic 
sign is meaningless).      That is to say,   there are two ways of assigning 
algebraic sign   to the first difference magnitude;   for each of these ways 
there are two ways of assigning sign to the second magnitude,   making 
four distinguishable combinations;   for each of these four combinations 
the third magnitude can be treated in two ways,   making eight combina- 
tions,   etc. ,     so that for n difference scores there are   2    distinguish- 
able patterns of algebraic sign which can be "superimposed" upon the 
obtained set of difference magnitudes;    and if the sampled populations 
are either identical or symmetrical about the same point  each of these 
2    sets of difference scores were exactly as likely to have been drawn 
as a sample as was the set constituting the obtained sample. 
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Imagine now that for each of the 2    sets of difference scores a 
mean difference has been calculated by summing the n difference scores 
and dividing by n.      If the A and B populations are identical or are sym- 
metrical about the same point,   each of these 2    mean differences will be 
equally probable.      The N largest of these 2    mean differences should 
therefore contain the mean difference for the obtained sample in exactly 
a proportion _    of such experiments.      On the other hand,   if the A and 
B populations are identical in form but differ in location,   or if they are 
both symmetrical but not symmetrical about the same point,   the mean 
difference for the obtained sample is more likely to lie among the ex- 

n N treme N of the 2    mean differences than the proportion —   would imply. 
2n 

And even if the two populations have nonidentical,   asymmetrical forms, 
one would generally expect large mean differences to be more likely 
than small ones if the populations have    different  means. 

b. Null Hypothesis.   Each of the 2    unique sets of difference 
scores obtainable by arbitrarily assigning algebraic signs to the ob- 
tained difference-score magnitudes is equally likely to have been 
drawn as a sample.      Either of two conditions    is   sufficient to insure 
the validity of the null hypothesis:    (a) the sampled populations are iden- 
tical,     (b) the sampled populations are both symmetrical and are sym- 
metrical about a common point.      By taking as the rejection region the 
N sets with the N greatest mean differences,   the method of randomiza- 
tion tests the null hypothesis that populations are identical or  symmet- 
rical about a common point against the alternative that the populations 
have different means.     It is merely "most sensitive" against this alter- 
native,  however,   since nonidentity of populations with equal means can 
also cause rejection.      Certain assumptions,   therefore,   are necessary 
to eliminate such alternatives when they are not desired. 

c. Assumptions.    By taking as the probability fraction the 
ratio of the number of ways certain events can occur,   it is implied 
that each way is equally probable when the null hypothesis is true and 
unequally probable when it is false.      However,   they can be unequally 
probable,  not because populations violate the null hypothesis,   but rather 
because of bias in the selection of samples or because of the influence 
of one sample unit upon another.      Therefore,   in order to eliminate 
such contingencies,   it is assumed that sampling is random and obser- 
vations are independent. 

By using 2    as the denominator of the probability fraction,   it 
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is implied that each difference-score has two possible values,   one plus 
and the other minus.      This means that there must be no zero differences, 
or the equivalent,    but  more general,   assumption of continuously distri- 
buted populations may be made. 

If the populations do not have the same form or if they are not 
symmetrical,   then the obtained difference scores are not necessarily 
as likely,   a priori,   to be minus as to be plus even though the sampled 
populations have equal means.      In order therefore to "eliminate" such 
causes of unequally likely signs and confine the cause to unequal popu- 
lation means,   it is necessary to introduce the assumption that either 
(a) the two sampled populations have identical forms,   differing,   if at 
all,   only in location,    or    (b) each sampled population has a symmetrical 
distribution,   the two distribution forms not necessarily being the same. 

d. Treatment of Ties.   If the number of zero differences,   t, 
is small relative to the total number of difference scores,   discard them 
and reduce n by t in all subsequent calculations,   so that the denominator 
of the probability fraction is 2       .It should be borne in mind that dis- 
carding the zero differences artificially increases the power of the test. 

e. Efficiency.   No figures appear to be available;   however, 
there is reason to believe efficiency should be high.      See Wilcoxon test. 

f. Application.    As an example,   suppose that each of seven 
individuals have been subjected to each of two treatments,  A and B,   and 
that there are no sequential or interaction effects between treatments. 
The data are presented in the following table. 

SCORES S    MEAN 

Treatment A 23 16 11 12 9 5 1 77 11 
Treatment B 8 5 2 7 6 4 3 35 5 

Difference:   A-B 15 11 9 5 3 1 -2 42 6 

There are 2     or 128 different ways of distributing plus and minus 
signs among the seven difference scores.      Three of these ways result 
in a positive mean difference,   and six result in an absolute mean dif- 
ference,   as great or greater than that actually obtained.    They are as 
follows: 
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Difference Scores S   Mean 

15 11 9 5 3 1 2 46 6.57 
15 11 9 5 3 -1 2 44 6.29 
15 11 9 5 3 1 -2 42 6.00 

-15 -11 -9 -5 -3 -1 -2 -46 -6.57 
-15 -11 -9 -5 -3 + 1 -2 -44 -6.29 
-15 -11 -9 -5 -3 -1 + 2 -42 -6.00 

As indicated,   only a small number of the 2    mean differences 
need actually be calculated,   specifically those equal to or more ex- 
treme than that actually obtained or those constituting the rejection 
region,  whichever is less.      Therefore,   assuming populations iden- 
tical in form,  the hypothesis that treatments have equal effects can 
be rejected at the 6/128 or   . 047 level of significance in favor of the 
alternative hypothesis that the mean effects of the two treatments 
differ.      Or,  under a one-tailed test the hypothesis that treatment A 
has the same effect or less mean effect than treatment B can be re- 
jected at the 3/128 or   . 023 level of significance in favor of the hypo- 
thesis that treatment A has more mean effect than treatment B.      If 
it can be assumed that populations are either   identical in form or 
symmetrical ,   the term "effect" must be replaced by "mean effect" 
in the expression of the null hypothesis. 

g.    Discussion.   The magnitudes of the n difference scores 
are,  with rare exceptions,  unequally likely.      However,   if the sampled 
populations are identical or symmetrical about a common point,   each 
of the 2    differently "signed" sets   of difference scores is   equally likely 
because each set contains the same magnitudes and each magnitude is 
as likely to be positive as to be negative.      If the null hypothesis is 
false,   one of the two algebraic signs will be more probable than the 
other.      The more probable sign    would be expected either to occur 
more frequently than its opposite,   or to be associated more frequently 
with the larger than with the smaller magnitudes,   or both.      The like- 
lihood that a difference score had the more probable algebraic sign 
would be expected to increase with the absolute magnitude of the differ- 
ence score.      By taking as the rejection region those sets of difference- 
scores (equally probable when the null hypothesis is true) which yield 
the most extreme mean differences,   one is quite properly permitting 
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the larger magnitudes to influence rejection more than the smaller ones. 
Thus each algebraic sign may be considered to be "weighted" by the dif- 
ference-score magnitude to which it is attached.      This weighting is 
arbitrary,   i.e. ,   randomly determined,  when the null hypothesis is 
true and the distribution of the test statistic is such that each weight 
is applied as frequently to positive as.to negative signs.      It is only 
when the null hypothesis is false that the weighting takes on a dis- 
criminating function,   making the test especially sensitive to differ- 
ences in location. 

The sample space for the test statistic consists of the 2 
sets of difference scores obtainable by varying the signs attached 
to the same set of n difference-score magnitudes.    The test is there- 

N fore a conditional test in the sense that the probability fraction   —^ 

gives the chance probability of drawing the obtained sample,   or a 
more extreme one,  from that artificially limited sample space rather 
than from the larger parent population of difference scores from which 
it was actually drawn.      The importance of this fact has been frequent- 
ly overemphasized.      When the null hypothesis is true every difference 
score in the sampled population is as likely to be plus as to be minus, 
not just those in the restricted sample space.      Therefore the probability 
of commiting a Type I error is unaffected by restricting the sample 

N space,  being exactly —^ whatever the particular set of difference 

scores sampled.      When the null hypothesis is false the relative prob- 
ability of possession of the two algebraic signs may differ greatly 
from one population difference-score magnitude to another and not 
necessarily in any direct relationship to the absolute size of the mag- 
nitude.      Since chance determines which of these population difference- 
scores will be drawn for the sample,   chance plays a large role in 
determining whether or not a false hypothesis will be rejected.      How- 
ever,   this is equally true of nonconditional tests.      It is more or less 
assumed,  for both conditional and nonconditional tests,   that the sample 
is fairly representative of the population.      To the extent that this is 
untrue both types of test are likely to err;   to the extent that it is true 
the restriction of the sample space of Fisher's conditional test statistic 
is not a serious shortcoming of the test. 

In connection with criticisms of the conditional nature of 
Fisher's test it has sometimes been fallaciously implied that the test 
statistic has the same distribution under an alternative hypothesis as it 
has under the null hypothesis.    When the null hypothesis is false,   just as 
many of the 2    possible values of the test statistic lie in the rejection region 
as when the null hypothesis is true.    However,  when the null hypothesis 
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is true each of these 2    values   is    equally probable,  whereas when it 
is false,   those values occupying the rejection region are more probable 
than the ones occupying the acceptance region,   thus biassing the test 
(properly so) in favor of rejection.      Student's t test operates in much 
the same way.      The set of possible values of t is the same whether 
the null hypothesis is true or false;    it is only their probabilities which 
differ.      When the null hypothesis is true  the possible values of t con- 
stituting the rejection region have a cumulative probability of a, whereas 
when it is false they have a cumulative probability greater than  a.    It 
is incorrect,   therefore,   to imply,   as has been done,   that under the method 
of randomization the test statistic has the same distribution under alter- 
native hypotheses as under the null hypothesis.      This is no more true 
of the method of randomization than of Student's t.      Although Fisher's 
and Student's tests operate in somewhat similar ways,   however, 
Fisher's test cannot be regarded as giving the "true" probability 
which Student's test "approximates".      This has sometimes been implied, 
the difference in the two probabilities being attributed to violations of 
the assumptions of Student's test or to other artifacts.      The argument, 
however,   is fallacious.      The two tests cannot be expected to yield 
equal probabilities when applied to the same sample because    (a) the 
test statistics do not have the same distribution,    (b) the tests do not 
use the same rejection region. 

Although many of the criticisms of the method of randomization 
have been overstated, it does have a number of shortcomings which 
will be outlined in the following paragraphs. 

Two types of information are used in    the test:    algebraic sign 
and magnitude.   When   the null hypothesis is true magnitudes are ran- 
domly associated with equally likely algebraic signs.      When it is 
false magnitudes become nonrandomly associated with unequally prob- 
able algebraic signs in a complex way:   for some magnitudes one al- 
gebraic sign becomes more probable than the other,   and for other mag- 
nitudes the reverse is probably the case.      Presumably the larger the 
magnitude the more likely it usually is to have the algebraic sign indi- 
cating the true direction of difference;   however,  there is no justification 
for assuming that this relationship is linear or even monotonic.      Since 
each sample consists of a different set of magnitudes and since the mag- 
nitudes are,   in effect,  weights,   each sample from the same population 
is subjected to a different weight function.      Since the weight function 
varies from sample to sample and since the relationship of weight to 
the probability of a given algebraic sign is unknown,  probability levels 
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for samples from the same population are not strictly comparable. 
Another way of stating this is that probability levels are not strictly 
comparable because no two samples use the same rejection region. 

Another,   related,   disadvantage of Fisher's method is that 
the test is quite sensitive to isolated extreme difference scores.    Sup- 
pose,   for example,  that the obtained set of difference-scores were 
+ 1,  + 2,  +3,   +4,   +5,  +6,  +7,  +8,  +9,  +50.        There are 210 = 1024 
possible ways of assigning signs to these magnitudes and the mean dif- 
ference for the obtained sample can be equaled or exceeded in only 
one of them,   so the obtained sample has a one-tailed probability of 
1 /1024 or less than . 001.      However if the algebraic sign of the 50 
is changed to minus,   the obtained mean difference becomes -.5 which 
can be exceeded by any of the 512 assignments in which the 50 is plus. 
The one-tailed probability therefore drops from less than .001 to 
slightly more than . 50 simply by changing the sign of one of ten dif- 
ference scores.      This is in no way improper since,   if the null hypo- 
thesis is false,   one would expect the difference in probability between 
a +50 and a -50 to be much greater than the difference in probability 
between a+1 and a-1.      However   it shows that the test gives great 
weight to isolated extreme differences which frequently one wishes to 
deemphasize because of the likelihood that they are spurious or repre- 
sent atypical performance (or response). 

A final disadvantage is that Fisher's method of randomization 
requires that of the 2    possible "ways" of calculating a mean difference 
(using the same set of n difference magnitudes but varying their alge- 
braic signs) the experimenter must actually enumerate either the num- 
ber of ways constituting the rejection region or the number of ways 
which result in a mean difference equaling or exceeding the one obtained, 
whichever is less.      If n is large,   or if n is of moderate size and a is 
large,   the computations are likely to be so lengthy as to make the test 
impractical.       Since the exact forms of the sampled populations are 
unknown the sample difference scores are of unpredictable magnitude 
and it is impossible to construct probability tables in advance of 
sampling. 

h.    Tables.   None.      Probabilities must be calculated for each 
specific case. 

i.    Sources.   4,   7,   17,   26,   27,   34,   38,   39,   40,   48,   75. 
See also    16,   28,   41,   42,   43,   67,   68 under 4,   Fisher's Method of Ran- 
domization: Unmatched Data. 
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2.    The Wilcoxon Test:   Matched Pairs 

a. Rationale.    Wilcoxon has modified Fisher's method by 
replacing the obtained difference-scores with the ranks of their abso- 
lute magnitudes,   each rank being given the algebraic sign of the dif- 
ference-score which it replaces.      The test statistic is the algebraic 
sum of the signed ranks rather than the average signed rank;    since 
the former is always n times the latter,   the two   have equivalent dis- 
bributions.      Wilcoxon's modification has several advantages over the 
original test.      First,  the test is not a    conditional one since the sample 
space for the test statistic is the same for every sample.      Thus every 
sample is made comparable with every other sample of the same size 
in the sense that the set of numbers by which the signs of the differences 
are weighted is always the same:   the sign of the largest difference 
magnitude always being given a weight of n,  the next largest,  n-1, 
etc.     Second,  the test is less sensitive to extreme difference-score 
magnitudes since the most extreme magnitude will receive a rank only 
one greater than the next-to-extreme magnitude,   etc.      Finally,  by 
using ranks,  the probabilities can be tabled,   since for any given n, 
instead of n random and unpredictable magnitudes,  the magnitudes 
consist always of the integers 1 to n. 

If each obtained difference-score magnitude is as likely to 
be plus as to be minus,   then so is its rank.      The rationale for the 
Wilcoxon test therefore parallels that for Fisher's method of random- 
ization.      See 1,    Fisher•'s Method of Randomization: Matched Pairs. 

b. Null Hypothesis.   Each of the 2n unique sets of signed 
ranks,   obtainable by arbitrarily assigning algebraic signs to the ranks 
of the difference-score magnitudes from the obtained sample,   is 
equally likely to have resulted from the random sampling process. 
Either of two conditions are sufficient to insure the validity of the 
null hypothesis:    (a) the sampled populations are identical,    (b) the 
sampled populations are both symmetrical and are symmetrical about 
a common point.      For populations which are identical or symmetrical 
about a common point,  medians,   as well as means,   are equal.     And 
if the two populations are symmetrical,  but symmetrical about differ- 
ent points,   or if they have identical forms,  but different locations, 
then medians,   as well as means,   differ.      Thus,   if all assumptions are 
met,   the Wilcoxon test is both a test for equality of medians and a test 
for equality of means. 
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c. Assumptions.   See 1,  Fisher's Method of Randomization: 
Matched Fairs, substituting "mean and median" for "mean". 

d. Treatment of Ties.     If there are an even number,  x,   of 
zero difference scores,   consider them to "occupy" the x lowest ranks, 
give each of them the midrank,   and assign half of them a plus sign,  half 
a minus sign in the obtained sample.      Thus,   if there are x zero differ- 

vx 
= 1   1 

ences,   each receives the rank-i——    and half of these identical ranks 
x 

are given a plus,  half a minus.    If there   are an odd number of zero 
differences,  the odd one may be discarded and n  reduced by one.    Or, 

.2*+1   i 
all x+1 zero differences may be given the midrank —^T  a^cl — +1 

of these may be given the algebraic sign least conducive to rejection 
of the null hypothesis,  the remainder receiving the opposite sign. 

If nonzero differences are tied in absolute magnitude,   the 
members of each tied group should be given the midrank of the group, 
i. e. ,  the average rank the members of the group   would have if not 
tied but differing infinitesimally in magnitude.      The midrank of each 
tied member is then given the algebraic sign of that member.     An 
error,  which is usually small,   is introduced by the occurrence of 
ties and their treatment in this manner.      For example,   consider the 
following set of signed ranks:    1,   2,   3,   -4,   5,   6,   7.      An equal or 
smaller negative rank sum can be obtained in   six way3 and the signi- 
ficance level for the corresponding one-tailed test is 6/2     or   . 047. 
However,   if the first two ranks are tied,   the set becomes 1  1/2, 
1 1/2,   3,   -4,   5,   6,  7    and there are only five ways of obtaining an 
equal or smaller rank sum (because 3 and 11/2 sum to 4 1/2 while 
3 and 1 sum to 4,  the value not to be exceeded).      The significance 
level is therefore 5/2     or   . 039. 

The above treatment minimizes error in the long run.      To 
insure that zero or tied differences do not spuriously cause rejection 
in a specific case,   arbitrarily assign the tied-for ranks to each set 
of tied difference scores (including zero),  then give each of the resulting 
ranks that algebraic sign which is least conducive to rejection of the 
null hypothesis. 

It has sometimes been recommended that all zero differences 
be discarded and n be reduced accordingly.      The reason usually given 
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is that power is greatest if zero differences are treated this way. 
However,  the "increase" in power is quite deceptive since the increase 
in the probability of rejecting a false null hypothesis is paralleled by an 
increase in the probability of rejecting a true one.      The latter increase 
raises the actual value of a   while its nominal value remains the same. 
The increase in power is therefore a spurious one which cannot be re- 
garded as an advantage.      See "Treatment of Ties" of the Sign test. 

e. Efficiency.   Asymptotic relative efficiency,   compared with 
Student's t-test when both tests are applied to populations meeting all 
of the assumptions of the t-test,   is 3/v or .955.      The corresponding 
efficiency for finite samples increases with decreasing sample size, 
becoming as high as . 995 in certain cases.    See 3,   Test for Location of 
the Median. 

f. Application.    Let the following table represent data collected 
in the application of treatments to pairs of rats from a common popula- 
tion,   the pairing having been done on the basis of weight.      The null hy- 
pothesis is that for each weight category the two treatments have effects 
which are either identically distributed or are symmetrically distributed 
about the same median.      The alternative hypothesis is that in one or 
more weight categories the two treatment effects do not have common 
medians and means. 

Treatment A 42 37 63 27 46 49 54 39 46 101 

Treatment B 42 37 59 34 38 40 43 25 32 33 

A-B Difference 0 0 4 -7 8 9 11 14 14 68 

Magnitude ranks 1  1/2 1 1/2 3 4 5 6 7 8 1/2 8 1/2 10 

Signed ranks 11/21-11/2        31 -4       5        6 i     7      8 1/2      8 1/2     10 

The sum of the negatively signed ranks is  -5  1/2.      A negative sum 
that small or smaller can be obtained in the following ways: 
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1 1/2 1 1/2 3 4 ;  -5 | 6 7 8 1/2 8 1/2 10 
1 1/2 1 1/2 3 -4 ;  5 16 7 8 1/2 8 1/2 10 
1 1/2 -1 1/2 3 -4    5 j  6 7 8 1/2 8 1/2 10 

•1 1/2 1 1/2 3 -4 ;  5   6 7 8 1/2 8 1/2 10 
1 1/2 1 1/2 -3 4 !   5 '  6 7 8 1/2 8 1/2 10 
1 1/2 -1 1/2 -3 4   5   6 7 8 1/2 8 1/2 10 

•1 1/2 1 1/2 -3 4   5   6 7 8 1/2 8 1/2 10 
1 1/2 -1 1/2 3 4 1  5   6 7 8 1/2 8 1/2 10 

-1 1/2 -1 1/2 3 4 ,   5(6 7 8 1/2 8 1/2 10 
-1 1/2 1 1/2 3 4 :  5 |  6 7 8 1/2 8 1/2 10 
1 1/2 1 1/2 3 4 '   5   6 7 8 1/2 8 1/2 10 

Thus 11 of the 1024 possible assignments of algebraic sign to the ranks 
shown above lead to a negative sum as small or smaller than that de- 
rived from the obtained sample.      The significance level for a one- 
tailed test of the hypothesis that treatment A produces the same or 
less "location" effect than treatment B is therefore 11/1024 or slightly- 
greater than .01.      For a two-tailed test,   there would be 22 assign- 
ments giving a sum with absolute value as small as that obtained,   and 
the significance level would be 22/1024 or approximately .02.      In 
practice,   significance levels would have been obtained from one of the 
many tables available and the above enumerations would have been un- 
necessary.      One need only find the sum of the positively signed ranks 
and the sum of the negatively signed ranks for the obtained sample. 
The smaller of these two sums in absolute magnitude is referred to 
prepared tables. 

g.    Discussion.   In analogy with the treatment of Fisher's 
test,  when the Wilcoxon test is used as a test for location it has been 
assumed that the two sampled populations have either the same form 
or forms each of which is symmetrical.      This means that "treatment", 
if it produces any    effect at all,   merely causes a translation or slippage 
of one distribution relative to the other along the x-axis.      Such uncom- 
plicated treatment effects are,   in fact,   seldom encountered since fac- 
tors affecting the location of a distribution tend also to affect its dis- 
persion and form,      It is reasonable enough to consider that the popula- 
tions have either identical or symmetrical forms if the null hypothesis 
is true because a true null hypothesis implies that one of these condi- 
tions exists (and implies further that they have identical location para- 
meters).      A false null hypothesis does not imply it.      Since the assump- 
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tion is an unrealistic one, it is of interest to examine the likelihood 
that its failure to be met will cause false acceptance of the alterna- 
tive hypothesis that the populations differ in location. 

If the assumption is dropped,   then,  when the null hypothesis is 
false,   the true situation may be described by one of a number of alter- 
native hypotheses:   (a) the two populations differ in all location para- 
meters and have symmetrical or identical forms,    (b) the two popula- 
tions differ in all location parameters and do not have symmetrical 
or identical forms,    (c) the two populations differ in certain location 
parameters but not others and do not have symmetrical or identical 
forms,    (d) the two populations have identical location parameters and 
do not have symmetrical or identical forms.      If either (a) or (b) is 
true  the experimenter does not err in accepting the alternative hypo- 
thesis that the two populations differ in location.      If (d) were true it 
would mean that two populations in each of which mean and median 
differed (because the populations are not symmetrical) had equal means 
and equal medians but different,   asymmetrical forms.      This requires 
the unlikely coincidence that two curves with different contours either 
cross or touch at each of two specified points.      The probability for 
(d) is therefore obviously very small.      For (c) however   it is required 
only that different curves,   at least one of which is asymmetrical,   cross 
or touch at one of certain specified points.      Thus the two populations 
may have equal means but unequal medians or the reverse.      Case (c), 
therefore,   is not at all improbable,   and it raises the question,    "To 
which location parameter is the test most sensitive?" 

Fisher's test took the mean difference as its test statistic and, 
in effect,   took extreme mean differences as its rejection region.      The 
mean difference is the same as the difference between sample means. 
There is therefore a direct relationship between the test statistic and 
the difference between populations means.      Fisher's test,   therefore, 
would be expected to be most sensitive to differences between means. 

The situation is not nearly so clear cut in the case of the Wil- 
coxon test.      Here the test statistic is neither the difference between 
means nor the difference between medians,  nor does its rejection re- 
gion consist of such measures.      In Fisher's test the average differ- 
ence score is also the difference between sample means,  but in Wil- 
coxon's test the average signed rank,  which is,   in effect,   the test 
statistic,   does not correspond to any statistic indicating difference in 
a standard location parameter. 
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To pursue the question further,   if no assumptions other than 
continuity,   randomness and independence were made,   Fisher's test 
would still appear to be a reasonable test for differences in means. 
The Sign test,  which ignores difference-score magnitudes and uses 
only their direction,   i. e. ,   algebraic sign,   is obviously the appropriate 
analogous test for difference in population medians.      But Fisher's 
test,   the Wilcoxon test and the Sign test all use the signs of difference 
scores,   differing primarily in the weight which the signs are given 
prior to summing.      For the Sign test the weight is always 1,   for 
the Wilcoxon test it is the rank of the difference-score's absolute 
magnitude,   and for Fisher's test it is the absolute magnitude itself. 
The Wilcoxon test therefore is intermediate between a test sensitive 
only to differences in medians and a test sensitive primarily to dif- 
ferences in means.      Under the limited assumptions listed above, 
therefore,  the Wilcoxon test should be considered sensitive to both 
differences in medians and differences in means.      Without the 
assumption of symmetrical or identical forms,  therefore,   it would 
be futile to attempt to specify which location parameters differ when 
the null hypothesis is rejected. 

Both Fisher's and Wilcoxon's test test the null hypothesis 
that for every matched pair the observations come from identical 
populations or populations symmetrically distributed about a common 
point.      It is not   assumed that the members of every matched pair 
are sampled from the same two populations.      There may,   in fact, 
be as many pairs of populations as there are difference scores.    How- 
ever,   if each pair of units be regarded as equally "important",   i. e. , 
to be given equal, a priori weight in determining whether    to reject 
or not,   another assumption is required.      Under the conditions stated, 
in order to obtain optimal power it must be assumed that each differ- 
ence score is as likely to have been obtained from one matched pair 
of   units as from another.      This,   in turn,   means that whatever the 
variation among the various A-populations or among the n different 
B-populations,   the   n  difference scores came from identical differ- 
ence-score populations. 

This assumption is analogous to that of homoscedasticity. 
Without the assumption,   if for every matched pair the A and B popula- 
tions are identical,  the pairs whose AB populations have greatest 
variance are the pairs most likely    to have difference scores of large 
magnitude.      These particular pairs will therefore exert   greater in- 
fluence upon the outcome of the test than will those whose AB populations 
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have relatively small variance.      When the null hypothesis is false, 
large difference-score magnitudes resulting from real treatment 
effects may tend to be cancelled out by large difference-score mag- 
nitudes resulting from large population variances and having,   by 
chance,   the opposite sign.      The power of the test is therefore affected 
adversely when the assumption is not met. 

It has sometimes been claimed that so long as the members 
of each pair were obtained under matched conditions,   the basis for 
matching may vary from pair to pair.      It is clear that such a procedure 
is quite likely to result in unequal population variances for the various 
A populations as well as for the B populations and thus,   probably,   for 
the population of AB differences.      Therefore the power of the test is 
likely to be altered in such a way that the matching criteria will in- 
fluence the outcome of the test and the influence of certain of the cri- 
teria will be greater than that of others.      Furthermore,   a certain 
ambiguity arises when the null hypothesis is rejected because it is 
not clear what alternative hypothesis is to be embraced.      A sample 
of variously matched scores can only be regarded as representing 
a multivariate,   or at least "multiconditional" population.      Therefore, 
it is this population to which statistical inference must be extended, 
and conclusions must lack a certain specificity. 

To summarize,   it is true that the mathematical basis of the 
Wilcoxon test does not require the assumption that all paired scores 
were matched on the basis of the same criterion.      However,   unless 
such a procedure is followed,   the test is likely to be biassed in the 
sense that certain pairs will yield difference-scores with greater var- 
iance,   and therefore be given greater influence over the tests   outcome, 
than others,   and it is unlikely that the experimenter will know which 
pairs are so favored.      This unknown and unequal influence makes inter- 
pretation of the test extremely unclear whether the null hypothesis is 
rejected or not.      And if the null hypothesis is rejected it is not clear 
what alternative hypothesis to accept because the cause of rejection 
is uncertain. 

h.    Tables.    Tables can be found in 53,   70,   72,   73,   and in some 
of the sources listed in the introduction.      For cases not covered by 
existing tables,   exact probabilities may be calculated by the method 
of complete enumeration,   or approximate probabilities may be obtained 
from normal tables by treating the rank sum as a normal deviate.     Let 
T be the rank sum for ranks of one sign.      Then,   if the null hypothesis 
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is true,   T comes from a population of rank sums    whose mean is 
n(n+l)      and whose variance is    n   ln+1J    .      As n approaches infinity, 

4 12 

the distribution of T approaches the normal distribution.      Therefore 
the approximate probability level for T can be obtained by referring the 

T       n   (n+1) 

critical ratio   to normal probability tables.      The approx- 

^—n— 
imation is reasonably good,  when n is large,   except at the extreme 
tails of the normal distribution.      Therefore extreme levels of signi- 
ficance,   such as the . 001,   should not be adopted when the normal ap- 
proximation is used. 

i.    Sources.    53,   70,   71,   72,   73,   74.      See also 5,   The Wilcoxon 
Test:   Unmatched Data. 

3.   Test for Location of the Median 

a.  Rationale.  Let n observations be taken from a continuous, 
symmetrically distributed population and let the population median be 
subtracted from each observation.      Then the difference-scores con- 
stitute a sample of size n from a continuously distributed population 
symmetrical about a median of zero.      Therefore   each of the n dif- 
ference-scores was as likely,   before sampling,   to be positive as to 
be negative.      And since the populations are continuous,   zero differ- 
ences are not to be expected.      Now,   rank the difference scores in 
order of absolute magnitude and give each such rank the algebraic 
sign of the difference-score whose magnitude it represents.      If the 
true population median was subtracted from each of the n   difference 
scores,   the rank sum for ranks of one algebraic sign will have the 
same distribution as that tabled for the Wilcoxon matched pairs test. 
In fact,   this test may be regarded as a Wilcoxon test in which the A- 
population is symmetrical and the B-population is a single value,   the 
median of the A-population. 

Actually the n observations need not be taken from the same 
population.      Each observation may be drawn from a different popula- 
tion so long as every sampled population is continuous and symmetrical. 
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b. Null Hypothesis.  Each of the 2    unique sets of signed ranks, 
obtainable by arbitrarily assigning algebraic signs to the ranks of the 
difference-score magnitudes,   is equally likely to have resulted from 
the random sampling process.      This will be the case if all assumptions 
are met and if all sampled populations have the same median. 

c. Assumptions.   Random and independent observations and 
no zero differences,   or preferably continuously distributed populations. 
(For reasons see 1^  Fisher's Method of Randomization: Matched Pairs.) 
In addition it is assumed that every sampled population is symmetri- 
cally distributed.      Therefore,   if all assumptions are met the null 
hypothesis can be false,   i. e. ,   plus and minus can be unequally likely 
signs for a difference score,   only because the subtracted,   hypothe- 
sized median is not the true population median. 

d. Treatment of Ties.    See 2,   The Wilcoxon Test: Matched 
Pairs. 

e. Efficiency.     Asymptotic efficiency relative to Student's 
t when both tests are applied to normally distributed populations is 
3/w or .955 (Pitman quoted in 53).      Small sample efficiency for same 
situation appears to vary between . 875 and .995 for n   < 15 (53,   64,   65, 
66). 

f. Application.   Subtract the single hypothesized median 
from each of the n obtained observations.      Apply the Wilcoxon matched- 
pairs test to the difference scores.      If the null hypothesis is rejected, 
conclude that the hypothesized median is not the true median in all of 
the populations sampled. 

Alternatively,   apply the Walsh test (see Discussion) to the 
difference scores,   drawing the same conclusion if the null hypothesis 
is rejected. 

g. Discussion.    Walsh (64,   65,   66)   has outlined a test which 
Tukey (53) has shown to be equivalent to the above application of the 
Wilcoxon test.      Walsh assumes populations each of which is continuous 
and symmetrical and tests the hypothesis that all populations have a 
common specified median.      An observation is drawn from each popu- 
lation and the n observations are then ranked in order of algebraic 
magnitude.      The null hypothesis is rejected if certain order statistics 
(depending on the tail or tails selected for the rejection region) exceed 
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or are exceeded by the hypothesized median.      The order statistics used 
are the averages of two observations of specified rank.      The efficiency 
of the test is high,  being the same as that of the Wilcoxon test,   and tables 
(64,  65,  66) are available for small values of n.      Tukey has pointed 

out that the Wilcoxon test is easier to apply when testing the hypothesis 
of a common median of specified value,  while the Walsh test is easier 
for setting confidence limits for the median.      This follows from the 
manner in which the Walsh test is applied:   the null hypothesis is re- 
jected if the hypothesized median falls above or below a difference 
score of a certain rank or the average of two difference scores whose 
ranks are specified.      The Wilcoxon test,   on the other hand,   estab- 
lishes confidence limits by a trial and error method (74).      See 53 
for exact Walsh method. 

h.      Tables.   Tables listed under 2, The  Wilcoxon Test: 
Matched Pairs,   are appropriate.      Also 64,   65,   and 66 give tables 
specifically designed for this application and particularly appropriate 
for setting confidence limits. 

i.    Sources.    53,   64,   65,   66. 

4.      Fisher's Method of Randomization:   Unmatched Data 

a.    Rationale.      If two samples,   of sizes m and n,   are random 
samples from the same population,   they may be regarded as a single 
sample of size m+n which has been drawn from the parent population 
and then divided on some random,   i. e.   chance,  basis    into two sub- 
samples of sizes m and n.      If the observations are not matched  or 
paired in any way and if no observations have the same value,   there 

are ( )   different ways such a "split" could be obtained,   and each 

of these ways is equally likely. 

Now suppose that for each "way" some statistic,   say the mean, 
is calculated for each of the two subsamples and the difference X .  - X_ 

A        B 

obtained,   the subscripts A and B being arbitrary labels to identify the 
two subsamples.      If N of these X     - X       differences equal or exceed 
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the X. - X„   difference for the actually obtained samples,   then the 
A        B 

chance probability of the actually obtained X    - XR  difference or one 

more extreme among the differences calculated for the    (       n) 

"splits" is N/(      n). 

If the two original samples were actually obtained under 
two different treatments,  then if the treatments have equal effects, 
the samples are,   in effect,   samples from the same population.     Thus 
the hypothesis of identical   treatment effects can be tested at the oc 

level of significance by rejecting the hypothesis if    N/( )   <   oc. 

b. Null Hypothesis.   Each of the ( )   different pairs of 

"samples" obtainable by dividing the total of m+n observations into 
two sets,   one containing m observations,   the other n observations, 
is equally   likely to have been obtained in the experiment.      A suf- 
ficient condition for the validity of the null hypothesis is that the 
two sampled populations are identically distributed.      This will be 
the case if treatments do not differ in their measured effects on 
individuals and if individuals are assigned randomly to treatments. 
By taking as the rejection region the N pairs of sets with the N 
greatest mean differences,   the method of randomization tests the 
null hypothesis that populations are identical and is "most sensitive" 
to the alternative hypothesis that the populations have different means. 

c. Assumptions.   Bias in the sampling process or possible 
influence   of  one   sampled   observation upon  another   may  cause 

some of the  ( ) pairs of rearranged samples to be more likely 

than others to have been the pair actually drawn.      And this may be 
the case even though all observations in both samples are drawn from 
the same population.      Therefore,   in order to confine the cause of 
unequal probability to failure of the null hypothesis,   it is necessary 
to assume that sampling is random and observations are independent. 

If any of the m+n observations have the same value there will 
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be less than ( )   distinguishable rearrangements of observations 
n 

into samples of sizes m and n.      Thus the sample space for the test 
statistic will be smaller than that represented by the denominator of 
the probability fraction.      In order to "eliminate" such an eventuality, 
it is assumed that there are no tied observations.      This assumption is 
sometimes expressed in its mattiematically equivalent form:   popula- 
tions are continuously distributed. 

If the two sampled populations do not have identical forms, 

the ( )   pairs of hypothetical samples may be,   and probably are, 

unequally probable even though the two populations have the same mean. 
For example,   if the two populations are normally distributed with the 
same mean but different variances,  the "splits" which give the more ex- 
treme observations to the "sample" from the population with the greater 
variance are more probable than are the "splits" which do the opposite. 
Furthermore,   if the two populations have both unequal means and dif- 
ferent forms,  the inequality of means may bias the probability in one 
direction and the dissimilarity of form may bias it in the opposite 
direction.      Thus the two causes of unequal probability may tend to 
balance one another.      It is extremely unlikely that this balance would 

be complete,   leaving each of the ( )   pairs of samples equally prob- 

able.      However the power of the test would be adversely affected.    In 
order,  therefore  to confine the cause of failure of the null hypothesis 
to inequality of population means,   the alternative hypothesis,   it is 
assumed that,  whatever their location,   the two sampled populations 
have identical forms. 

Since the last named assumption is a fairly unrealistic one, 
the experimenter may prefer to substitute the more reasonable assump- 
tion that if population means are equal their forms are identical.    Thus 
any dissimilarity of form must be accompanied by an inequality of means, 
and the null hypothesis can be false only when means differ.      When the 
null hypothesis is false,  then the alternative hypothesis of unequal means 
must be true.      However,  the power of the test to detect the validity of 
the alternative hypothesis may be much smaller than would be the case 
if identical forms could be legitimately assumed. 
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d.    Treatment of Ties.     If a small proportion of the observa- 
tions are tied it may be reasonable to suppose that the ties are attri- 
butable to the discreteness of the measuring instrument rather than 
lack of continuity in the distribution of the thing measured.      Therefore, 
treat each tied observation as though it were unique in determining N, 

and use( ) n unaltered,   as the denominator of the probability fraction. 

e. Efficiency.    High efficiency for this test is suggested by 
the high efficiency of the Wilcoxon test which is a modification of it. 
See 5,   The Wilcoxon Test: Unmatched Data. 

f. Application.   To modify an example given by Fisher,   sup- 
pose that the height,   in centimeters,   has been measured for 8 English- 
men and 7 Frenchmen,   and that it is desired to test the hypothesis that 
Englishmen and Frenchmen have the same average height. 

Englishmen:   188,    182,    178,    177,    176,    174,    173,    170 
Frenchmen:    172,    171,    169,    165,    164,    162,    160, 

177.25 
166.14 

X     - X 
E F 

11. 11 

15 There are ( _ )  or 6435 different ways of reassigning the height meas- 

urements so as to give eight of them to Englishmen,   seven to French- 
men.      In only four of them will the Englishmen's mean exceed the 
Frenchmen's mean by a value as great as that obtained in the actual 
samples: 

Englishmen:   188,    182,    178,    177,    176,    174,    173,    172 
Frenchmen:    171,     170,     169,     165,     164,     162,     160 

X 

177.50 
165.86 

XE " XF   = 

Englishmen: 188,   182,    178,     177,     176,     174,     173,     171 
Frenchmen:    172,   170,     169,     165,     164,     162,     160 

11.64 

177.375 
166.00 

X, Xn 11.375 
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Englishmen:   188,    182,    178,    177,    176,    174,    173,    170 j  177.25 
Frenchmen:   172,    171,    169,    165,    164,    162,    160 [  166. 14 

xP - L = ii.li 

Englishmen: 188,    182,    178,    177,    176,    174,    172,    171 
Frenchmen:   173,    170,    169,    165,    164,    162,    160 

177.25 
166.14 

E   F 
11. 11 

Thus the significance level for a one tailed test of the hypothesis that 
the average Frenchman is as tall or taller than the average Englishman 
is 4/6435 and the hypothesis could be rejected at an extreme level of 
significance.      Since the hypothesis is that Englishmen and Frenchmen 
have equal average heights,  there are,   in addition to the four ways,   in 
which so great a mean difference could be obtained in favor of the 
Englishmen,   the following four ways in which so extreme a mean dif- 
ference can be found in favor of the Frenchmen. 

Englishmen: 
Frenchmen: 

172,    171,    170,    169,    165,    164,    162,    160 
188,    182,    178,    177,    176,    174,    173 

X 

166.625 
178.286 

XE "  XF -11.661 

Englishmen:   173,    171,    170,    169,    165,    164,    162, 
Frenchmen:    188,     182,     178,     177,    176,    174,    172 

X. 

Englishmen:   173,    172,    170,    169,    165,    164,    162, 
Frenchmen:    188,     182,     178,    177,     176,    174,     171 

160 166.750 
178.143 

F = -11.393 

160 166.875 
178.000 

X, 11.125 

Englishmen:   174,    171,    170,    169,    165,    164,    162,    160 
Frenchmen:   188,    182,    178,    177,    176,    173,    172 

166.875 
178.000 

X, X, -11.125 
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Thus for a two-tailed test of the null hypothesis that there is no dif- 
ference between the average heights of Englishmen and Frenchmen, 
the significance level is 8/6435. 

It happened in the above example that the number of mean 
differences as great as the absolute value of the obtained mean dif- 
ference is the same for positive as for negative mean differences. 
This is certain to be the case only when m = n.      When the two samples 
are of unequal size,   the significance level for a two-tailed test is not 
necessarily twice that for a one-tailed test,   because symmetry no 
longer obtains. 

g.    Discussion.    Many of the points requiring discussion are 
highly analogous to those discussed under    1,   Fisher's Method of Ran- 
domization: Matched Pairs  ;   therefore,   the arguments will not be re- 
peated here. 

Obviously the Method of Randomization is not restricted to 
testing for differences between means.      The significance of a variety 
of "difference" statistics calculated from two samples can be tested 

by "calculating" the statistic for each of the   (      n) splits and taking 

as the rejection region those N splits for which the calculated statistic 
has the N most extreme values,    the significance level, a,   being 

N/( )•      The "most extreme" values are of course those most sug- 

gestive that the alternative hypothesis,   rather than the null hypothesis, 
is true.      The alternative hypothesis states,   in effect,   that the popula- 
tion statistic corresponding    to the statistic calculated from the obtained 
samples is not zero.      However,   unless the sample statistic can be 
expected to "represent" well its population counterpart,   the power of 
the test may be very small.      For example,   the method could not be 
expected to provide a powerful test for a difference in population ranges. 

Pitman (41,   42,   43)  has elaborated upon the method of testing 
for a difference between population means and has applied the Method 
of Randomization to testing the significance of a correlation coefficient 
(See next chapter) and to testing the effect of treatments in an analogy 
of analysis of variance.      The latter problem has also been investi- 
gated by Welsh (67,   68). 
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To test for treatment effects in analogy with analysis of var- 
iance,   Pitman takes m batches (letters)  of n individuals each of which 
is subjected to a different one of n treatments (numbers),  the assign- 
ment of individuals to treatments being random.      The scores of the 
individuals can be represented as follows: 

1'        o'    • • • •       n 

V   V   ••••  bn 

m   .  mu . • • •  rn 1'   "'2 " n 

If there is no treatment effect,   the n scores in each row are randomly 
placed in the n "treatment" columns.      There are n!     ways in which 
the observations in a row can be permuted and since there are m rows, 

there are (n! )      tables which can be obtained by permuting the obser- 
vations within rows.      However,   some of these tables differ only in 
the permutation of identical columns.      This can be prevented by per- 
mitting permutation of observations in all but the last row.      Therefore, 

there are (n! ) ways in which the mn observations can be assigned 
so that each column contains one observation from each batch and so 
that no two assignments are identical except for the location of col- 
umns with respect to each other.      Pitman calculates the equivalent 
of the F ratio for each such assignment and rejects the hypothesis of 
no treatment effect at the significance level a = N/(n! 'i1^-     if the F 
ratio for the actually obtained sample lies among the N most extreme 
of these. 

h.    Tables.      None.    Probabilities must be calculated for 
each specific case. 

i.    Sources.   4,   7,   16,   26,   27,   28,   34,   39,   40,   41,   42,   43, 
48,   67,   68,   75.      See also 17 and 38 under 1,   Fisher's Method of Ran- 
domization:   Matched Pairs. 
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5.      The Wilcoxon Test:   Unmatched Data 

a. Rationale.    Wilcoxon has modified Fisher's method by 
replacing the obtained scores with their ranks.      The test statistic, 
which in Fisher's method was the difference in sample means,   is, 
in Wilcoxon's test,   the rank sum for the smaller sample,   or when 
samples are of equal size,   the smaller of the two sample rank   sums. 
The Wilcoxon modification has advantages similar to those discussed 
in "Rationale" of 2,   The Wilcoxon Test: Matched Pairs;   the test is 
not a conditional one since the sample space for the test statistic is 
the same for every pair of samples,   the test is less sensitive to ex- 
treme observations,   and the probabilities can be tabled. 

b. Null Hypothesis.   Each of the ( )    pairs of "artificial" 

samples obtainable by arbitrarily assigning m observations to one 
treatment,  n to the other,   is equally likely to have been drawn as a 
pair of true samples.      If all assumptions are met,   a sufficient con- 
dition for the validity of the null hypothesis is that the two samples 
come from identical populations.      This will be the case if the two 
treatments do not differ in any measured respect. 

c. Assumptions.      It is assumed that sampling is random, 
observations are independent,  no observations are tied or populations 
are continuously distributed,  populations have identical forms (or at 
least have identical forms if population means or medians are equal). 
For reasons, see 4, Fisher's Method of Randomization: Unmatched Data. 

d. Treatment of Ties.   If ties are due only to imprecision 
of measurement,   i. e. ,   if the thing measured is continuously distri- 
buted,   then ties are a problem only when members of a tied group 
lie in both obtained samples.      When all the observations have a given 
tied value lie in one sample,   they may be arbitrarily assigned the 
ranks they would have if distinguishable.      If observations in both 
samples have the same value,   one technique is to assign tied obser- 
vations the tied-for ranks least conducive to rejection of the null hy- 
pothesis.    Another technique is randomly to assign to the members 
of the tied group the ranks they would have if distinguishable.      This 
preserves the mathematical integrity of the test,   but forceably and 
artificially introduces an element of chance which must,   in general, 
reduce the power of the test. 
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The most frequently recommended technique is to give each 
of the members of a tied group the midrank of the group,   i. e. ,   the 
average of the ranks the tied members would have if their values were 
distinguishable.      The result is that the set of ranks obtained in this 
manner and rank sums obtained by applying Fisher's method to them 
are not the same as the set of ranks and rank sums used (by applying 
Fisher Ts method to the m+n different integers from 1 to m+n) to cal- 
culate the probability tables.      The tables therefore are inaccurate in 
such cases,   giving not the true probability but rather the probability of 
the average value taken by the test statistic when ties are broken in 
all possible ways.      (If all the observations having the same value lie 
in the same sample,   all ways of breaking ties result in the same value 
for the test statistic and the tables are fully applicable if discontinuity 
is due only to imprecision of measurement. ) 

When midranks are used the rank sum may not be an integer. 
The tabled rank sums,   however,   are integers.      Therefore,   it is sug- 
gested that when the obtained rank sum is not an integer it should be 
raised or lowered one half unit so as to assume whichever integral 
value is least conducive to rejection of the null hypothesis.      This pro- 
cedure results in a slightly more conservative test. 

In many cases the effect of using midranks is very much the 
same as if tied observations were assigned consecutive ranks with 
the ranks carefully apportioned so as to "balance" the apportionment 
between the two samples.      For example,   suppose ten observations 
are tied for 21st to 30th place   in rank and two of the observations 
are in sample A,  the remainder in sample B.      In "balancing" one 
might assign the ranks 24 and 27 to the two observations in sample 
A because they separate the ranks 21 to 30 into nearly equal parts, 
or 21 and 30,   25 and 26   or any other assignment resulting in a 
"symmetrical" pattern might be picked.      The result of course is 
that in every case the average of these ranks,   for each sample,   is 
the midrank,   25 1/2.      Therefore,  when "symmetrical rank patterns" 
can be obtained without resorting to nonintegral ranks,   the use of 
midranks is equivalent to assigning to each member of a tied group 
a different one of the ranks for which the group is tied and doing so 
in such a way that each sample gets its "fair share" of rank magni- 
tude.     If the rank sum is an integer the tables give the exact prob- 
ability under the assumption that one of the possible "equitable ap- 
portionments"   is the correct one.      In the long run the average 
difference between this probability and the true probability will tend 
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to be zero;   however,   in any specific experiment a discrepancy of 
zero is quite unlikely.      Therefore,  for the particular experiment 
under test the probability of false rejection of the null hypothesis 
may be greater or less than that indicated by the tables.     Regard- 
less of whether or not "symmetry" can be obtained with integers, 
the limits of "tie-error" can easily be found.      This is accomplished 
by assigning tied observations the "tied-for" ranks least conducive 
to rejection of the null hypothesis,  performing the conservative test, 
then assigning them the ranks most conducive to rejection and perform- 
ing the radical test,  thereby obtaining bounds for the influence of ties 
on probability levels.      This procedure has been recommended by 
van der Vaart (58) who observes that if the chosen significance level 
does not lie between these bounds there is no problem and if it does, 
there is no solution.      He adds that precisely the same dilemma 
arises when ties occur in the application of Student's t-test although 
"this fact has always passed unnoticed. " 

When samples are so large that tables are inapplicable   the 
normal approximation is generally used.      The difference between the 
obtained and the expected rank sum is divided by the standard devia- 
tion of the rank sum,   and the resulting critical ratio is treated as a 
normal deviate with zero mean and unit variance and referred to nor- 
mal probability tables.      When ties are given the midrank,  the pres- 
ence of ties has no effect upon the expected rank sum,  but does 
affect the variance,   causing it to be smaller than would be the case 
if there were no ties.      There is   a formula,   however,  which takes 
account of ties in calculating variance and therefore "corrects" for 
ties when used in calculating the critical ratio.      This formula re- 
quires that the Mann-Whitney form of the Wilcoxon test be used 
(See 6,   The Mann Whitney Test). 

e.    Efficiency.    The value 3/ir or .955 has been obtained 
for the asymptotic efficiency of the Wilcoxon test relative to Student's 
t-test when both tests are applied to samples from normally distri- 
buted populations with homogeneous variances.      This value has been 
obtained by a number of authors (9,   11,   37,   50,   59,   62),   Pitman (not 
referenced) apparently having been the first,   and is true of both one- 
sided and two-sided tests under several different definitions of 
asymptotic efficiency.      Hodges and Lehmann (23) have shown that 
the asymptotic relative efficiency of the two-sample Wilcoxon test 
relative to Student's t  cannot fall below . 864 when both are used as 
tests against shift of a continuous,  but otherwise unspecified,   distri- 
bution function.      (The comparison is less favorable to the Wilcoxon 
test when shift is accompanied by "contaminations").      They conclude 
that to the extent that the concept of asymptotic relative efficiency 
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"adequately represents what happens for the sample sizes and alter- 
natives arising in practice,  this result shows that use of the Wilcox- 
on test instead of Student's t-test can never entail a serious loss of 
efficiency for testing against shift.      (On the other hand .....  the 
Wilcoxon test may be infinitely more efficient than the t-test. )" 
In fact Pitman is quoted (23,   47) as having found an A. R.  E.  of 1 
for Wilcoxon's relative to Student's test when both were applied to 
uniform distributions.      Pitman (23,   47) and Pitman and Noether (7) 
are quoted as having found the A. R.  E.  of Wilcoxon's relative to 
Student's test to be considerably greater than 1 when the two tests 
were applied to certain types of distributions.      Similar results have 
also been found for small samples.     Student's test has been found to 
have power inferior to that of the Wilcoxon test for testing samples 
of 4 and 6 observations from certain uniform distributions (63) and 
for testing samples of 5 and 5 from certain distributions differing in 
peakedness (Whitney quoted in 1). 

When both tests are applied to samples from normal popula- 
tions with homogeneous variances,   Student's test has invariably been 
found to have power as great or greater than Wilcoxon's;   however, 
the difference in efficiency has,  with one exception,   always been very 
slight (9,   23,   52,   59,   60,   62).      The exception (9) has been criticized 
(23) as attributable to a procedural artifact. 

The evidence therefore supports the conclusion that Student's 
t-test is statistically more efficient than Wilcoxon's test when the 
assumptions of the t-test have been completely met,  but that the super- 
iority of the t-test is slight,   amounting to less than 5%.      When Stu- 
dent's assumptions have not been fully met,   either test may be the 
more powerful,   depending upon a number of factors.      However,   if 
it is known that the populations have identical,   continuous forms when 
their location parameters are equal (i. e,  that if treatments have dif- 
ferent effects,   these include effects upon means and medians),   or if 
the experimenter is interested in detecting any   discrepancy between 
continuously distributed populations (i.e. ,   any type of treatment effect), 
then the Wilcoxon test is preferable.      Rejection of the null hypothesis 
can occur only    because of the existence of the effect in which the ex- 
perimenter is interested or because of chance with probability of 
exactly oc.    If Student's test were used in the same cases,   rejection 
could occur because of  (a) the effect whose detection is desired, 
(b) nonnormality,     (c) chance,   with probability other than oc (and un- 
known) unless the populations are known to be normal. 
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The Wilcoxon test is one of the most powerful distribution- 
free tests.      Tests designed by Terry and van  der Waerden,   and dis- 
cussed in the Introduction and in (7) are slightly more efficient,   in the 
statistical sense,   for certain test situations.      However,   they lack 
the Wilcoxon test's conceptual simplicity and ease of application.    In 
several investigations of the power of distribution-free tests with 
respect to each other,   the Wilcoxon test has invariably been found 
to be most powerful or among the most powerful (See Table II in 
Introduction). 

Mann and Whitney (35) showed that the Wilcoxon test is con- 
sistent "with respect to the class of alternatives f (x) > g (x) for every 
x",   i.e. ,   is consistent if the alternative to the null hypothesis of iden- 
tical   populations is that the cumulative distribution of one population 
lies entirely above,   i.e.   does not cross,   that of the other.      Van Dant- 
zig (6) and Lehmann (32) have pointed out that Mann and Whitney's 
proof actually is more general.      It proves the test consistent if,   when 
the null hypothesis is false,   the probability that a random observation 
from one population exceeds one from the other population differs from 
1/2 (for a two-tailed test or,   for a one-tailed test,   differs from 1/2 
in a specified direction) (30).      The above results require that the 
ratio m/n remain constant as n -• oo     .      Putter (44) has shown that, 
under the same conditions,   if the populations are discontinuous and 
Pr (x > y) + 1/2 Pr (x = y)   >1 /2  the test will be consistent if ties 
are randomized,   i.e.,   if ties in each group of tied observations are 
randomly assigned the tied-for ranks. 

Lehmann (32) has proved that the Wilcoxon test is unbiassed 
when it is used as a one-tailed test,   more specifically it is unbiassed 
for the class of alternatives F (x) > G (x) for every x.      Van der Vaart 
(55,   59)   has shown that the two-tailed Wilcoxon test may be,  but is 
not necessarily,   biassed.      The likelihood of such bias appears to be 
greater when samples are of unequal size and when populations are 
skewed. 

Mann and Whitney (35) showed that their mathematically 
equivalent test statistic is asymptotically normally distributed under 
the null hypothesis if m and n approach infinity in any arbitrary man- 
ner.      Lehmann (32) has found that it is also asymptotically normally 
distributed when the populations differ provided that the ratio m/n 
remains constant as m and n approach infinity.      Stoker  (49) states 
that Lehmann's proof also applies when populations are discontinuous. 
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Asymptotic    normality has also been proven by   Haldane and Smith (20). 

f.    Application.   Suppose that gain in weight has been measured 
under two different diets with the following results for six individuals 
subjected to Diet A and seven persons given Diet B. 

Diet A Diet B 

Weight Gain Rank Weight Gain Rank 

-14 
-12 
-12 
-10 
- 2 

2 

1 
2 
2 
4 
6 
7 

1/2 
1/2 

-3 5 
5 8 
7 9 
8 10 

9 11 
15 12 
24 13 

Sum     23 Sum 68 

6+7 
There are (   ,   )   or 1716 ways of redistributing the scores 

into samples of sizes   6 and 7.      Of these,  there are only four ways 
in which Diet A could obtain a rank sum equal to or smaller than the 
obtained rank sum of 23.      They are as follows (only the ranks being 
shown): 

1, 2 1/2,   2 1/2, 4, 5,   6 
1, 2 1/2,   2 1/2, 4, 5,   7 
1, 2 1/2,   2 1/2, 4, 5,   8 
1, 2 1/2,   2 1/2, 4, 6,   7 

2=21 
2 = 22 
2 = 23 
2 = 23 

The significance level for a one-tailed test of the hypothesis that Diet A 
causes the same or more weight gain than Diet B, therefore, is 4/1716 
or about .0023. 

Since the samples are of unequal size,   a two-tailed test raises 
the question of which rank sums to consider as extreme in the opposite 
direction.      Obviously they cannot be those totaling to 68 or more for 
Diet A,  because that number was obtained for Diet B as the sum of 
seven ranks,  while for Diet A only six ranks can be summed.      The 
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solution proposed by White (69) is to rerank the observations,   this 
time ranking the largest  observation 1,   the next largest,   2,   etc. ; 
then the number of ways of redistributing scores which cause Diet A 
to have a rank sum of 23 or smaller "are those whose rank sums are as 
extreme or more extreme in the "opposite direction. "     There are, 
in fact,   four such ways and the probability level for a two-tailed test 
is therefore    8/1716.      However,   the reranking need not actually be 
performed because the test statistic is  symmetrically distributed 
and the probability level for a two-tailed test is simply twice that 
for a one-tailed test. 

In practice,   of course,  probabilities would generally not 
be obtained by applying the method of randomization,   but would be 
obtained from tables.      In that case,   only the rank sums need be ob- 
tained.      The use of tables varies considerably,   however,   from one 
table to another,   and the particulars of application will not be des- 
cribed here. 

g.    Discussion.   Various forms of the Wilcoxon test have 
been published by a variety of authors.      Wilcoxon developed the test 
for the case where samples are of equal size,   i. e. ,    m  = n.      White 
(69) extended the test,   and tabled it,   to the case of unequal sample 
sizes.      This was also done by van der Reyden (45) at about the same 
time,   but apparently without knowledge of the work of either Wilcoxon 
or White.      A test,   conducted differently,   but mathematically equi- 
valent to the Wilcoxon test,   was developed independently by Festinger 
(15) and published very soon after Wilcoxon's original article.      Fest- 
inger took as his test statistic the absolute difference between the 
average rank for the smaller sample and the average rank for the com- 
bined sample of m+n ranks.      Since the latter is a constant (equal to 
111 ) for fixed values of m and n,   and since the average rank for 

2        ' 

the smaller sample is simply its rank sum divided by its size,   Fest- 
inger's test is mathematically equivalent to White's extension of the 
Wilcoxon test.    Because of the additional computation required to 
obtain the test statistic,d ,   Festinger's test is more time consuming than 
the Wilcoxon test.      A Wilcoxon-like test was developed by Haldane and 
Smith (20,   see also 3 and 24) for a specific application.      Finally,   a 
modified form of the Wilcoxon test developed by Mann and Whitney (35) 
has become the most widely used form of the test.      It is discussed 
in the next section.      Because of the mathematical relationships exist- 
ing between the Wilcoxon,   White,   van  der Reyden,   Festinger and 
Mann-Whitney tests,  they have common mathematical properties of 
efficiency,   consistency,   asymptotic normality,   etc. 
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The Wilcoxon test actually tests whether or not two popula- 
tions are identical.      The test becomes a test for equal means (or 
substitute "medians")  if it can be legitimately assumed either   (a) 
that whatever their locations the populations have identical forms, 
or (b) that if their means (or substitute "medians")   are equal the 
populations have identical forms,   i.e. ,   the populations are identical. 
The latter assumption is generally far more realistic than the former; 
however,   the test may have les s power if only the latter assumption 
can be made.    See "Assumptions" under Section 4,   Fisher's Method 
of Randomization:   Unmatched Data. 

Wilcoxon (71,   72,   73,   74) has extended    his test to permit 
a single test of data collected under several,   different,  non-tested 
experimental conditions.     Under each of k non-tested conditions, 
n observations are taken under treatment A and n observations under 
treatment B.      Then,   except for *"he last step of determining signifi- 
cance levels,   the ordinary Wilcoxon test is performed for each non- 
tested condition independently.      This results in a rank sum,   based 
on n ranks,   for treatment A,   and one for treatment B,  under each of 
the k non-tested conditions.      The sum of the k rank sums is then ob- 
tained for each treatment and the smaller of these is referred to a 
brief,   specially prepared table of probabilities.      The test is legiti- 
mate ( as a test for simple treatment effects) provided that when the 
k non-tested conditions have different effects upon observations,   any 
given condition has the same effect upon observations taken under one 
treatment as it has upon observations taken under the other.      That is 
to say,   there must be no interaction between treatments and non- 
tested conditions.      If this implicit assumption is not met,   the power 
of the test may be adversely affected and when the null hypothesis 
(that each of the k B-populations has the    same form and location as 
its A-population counterpart) is false,  the true alternative hypothesis 
will be unable to be specified in other than very general terms. 

h.    Tables.    Tables can be found in 45,   69,   70,   72,   73    for 
the Wilcoxon or rank sum form of the test,    in 15 for  Festinger's 
difference-in-average-rank form,   and in 1,   35,   46 (and see also 18 
and 36) for the Mann-Whitney form of the test.      Tables for Wilcoxon's 
application of his test to data collected under a variety of non-tested 
conditions are in 71,   72 and 73.    Tables can also be found,   reproduced, 
in some of the sources listed in the Introduction. 

Several of these tables have been found to contain errors. 
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Auble's tables have been criticized by Fix and Hodges (18),  Festinger's 
tables by Kruskal and Wallis (30), van der Reyden's tables by Kruskal 
and Wallis (31),  and White's Tables by Fix and Hodges (18) and Kruskal 
and Wallis(31). 

For cases not covered by existing tables,  probabilities may 
be obtained by the method of randomization,   or the rank sum may be 
treated as a normal deviate and approximate probabilities may be ob- 
tained by referring a critical ratio to normal tables.      Let T be the 
rank sum for the sample with m observations.      Then,   if the null hy- 
pothesis   is   true,    T comes from a population of rank sums whose 

~.             .m+n+1.,, 2 . mean T is  m   ( * ) and whose variance    cr       is 

m n ( ) .     As m and n increase,  the distribution of T ap- 
12 

proaches the normal distribution.      Therefore,  the approximate 
probability level for T can be obtained by referring the critical ratio 

_      _, m + n + 1 . 
T - m ( ^ ) 

—,.. to normal probability tables.      The approximation 
^m n ( m \l + f 

is reasonably good,  when m and n are large,   except at the extreme 
tails of the normal distribution.    Therefore extreme levels of signifi- 
cance,   such as the .001,   should not be adopted when the normal ap- 
proximation is used. 

If T is the rank sum for the sample with m observations when 
the smallest rank is assigned to the smallest observation,   and T' is 
the rank sum for the same sample when the smallest rank is assigned 
to the largest observation,  then T' = m(m + n +1) - T.      This is easily 
seen:     If r is the rank of one of the m observations in the first case 
and r' is the corresponding rank in the second case,  then r' = m + n - 
(r -  1) = m + n + 1  - r.      And since T' = 2• r«,   then T' = 2• (m + n 4 
1) - r = m (m + n + 1) - 2• r = m (m + n + 1) - T.      This formula 
saves the labor of reranking when tables,   such as White's,   require 
the smaller of the two T values. 

i.    Sources:    1,   2,   3,   5,   6,   7,   8,   9,   10,   11,   12,   13,   14,   15, 
18,   19,  20,  21,   22,   23,  24,  25,  29,   30,   31,   32,   33,   35,   36,   37,  44, 
45, 46, 47,  49,  50,  51,  52,  54,  55,  56,  57,  58,  59,  60,  61,  62,  63, 
69,  70,  71,  72,  73,  74. 
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6.    The Mann Whitney Test 

a. Rationale.   Let a sample of n observations,  designated 
as Xs,  and a sample of m observations,  identified as Ys, be taken 
from the same continuously distributed population.      Now arrange 
the m + n observations in order of increasing size irrespective of 
sample.      Then replace each ordered observation with an X or a Y 
depending on the sample from which it originally came.      The result 
will be a pattern of n X's and m Y's intermixed. 

If these m + n units were all different,  there would be (m + n)J 
distinguishable patterns.     However,  for each actually distinguishable 
pattern there are n!    permutations of Xs with each other which do not 
change the pattern,  and for each of these permutations there are mi 
permutations of Y's with each other which do not change the pattern. 

ml- r ^1- (m   +  n)« /m   + n%      J-     ,.- •     r.    Li e Therefore,   there are i p-    or ( )   distinguishable patterns of m; n] m   ' 6 r 

n Xs and m Ys.     If the two samples are drawn from the same popula- 
tion each of these patterns is   equally likely.      However,   if they come 
from different populations,  the patterns should be unequally likely,  and 
if the populations differ in location only,  one would anticipate patterns 
in which Xs tended to cluster at one end,   Ys at the other. 

The test statistic,   U,   therefore is the number of times a 
Y precedes an X.      Thus,  U is the number of Ys preceding the small- 
est X,  plus the number of Ys preceding the next smallest X (and there- 
fore including all of the Ys counted in the first case),  etc. ,  until the 
number of Ys preceding each X are counted and summed for all Xs. 
The probability of U,  when the null hypothesis is true,   is simply the 

proportion of the ( )    possible patterns which result in Us as 

extreme or more extreme than that obtained. 

m + n 
b. Null Hypothesis.   Each of the ( )  patterns of     Xs and 

Ys,   representing their observations arranged in order of increasing 
algebraic magnitude,  is equally likely.     A sufficient condition   for the 
validity of the null hypothesis is that the two samples were drawn ran- 
domly and independently from identical continuously distributed 
populations. 

c. Assumptions:   See 5,   The Wilcoxon Teat:   Unmatched Data. 

d. Treatment of Ties.     If Xs are tied with Ys,  and m and 
n are small enough for the tables to apply,  it is suggested that the 
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Wilcoxon form of the test be used and that ties be treated as outlined 
in 5,   The Wilcoxon Test:   Unmatched Data, 

If m and n are large enough to justify using the normal ap- 
proximation to the distribution of U,   a correction for ties can be 
applied in calculating the critical ratio.      See "Tables". 

e. Efficiency.    See 5,   The Wilcoxon Test: Unmatched Data. 
Efficiency,  power,  consistency and bias are same as for  the Wilcoxon 
test for unmatched data. 

f. Application.    Let the observations from the example   of 
application of the Wilcoxon test be arranged in order of increasing 
magnitude,  with the letter in parentheses indicating the sample from 
which an observation came.    The result is -14(A),   -12(A),   -12(A), 
-10(A),   -3(B),   -2(A),   2(A),   5(B),   7(B),   8(B),   9(B),   15(B),   24(B).   The 
number of times a B precedes an A is 2.    A value of U as small or 
smaller than this could be obtained from the following arrangements: 

AAAAAABBBBBBB  U = 0 

AAAAABABBBBBB  U = 1 

AAAAABBABBBBB  U=2 

AAAABAABBBBBB  U = 2 

Since there are (   ,   ) or 1716 possible arrangements,   the significance 

level for a one-tailed test of the hypothesis that the A's either equal 
or exceed the B's is 4/1716.      For a two-tailed test,   the mirror images 
of the four patterns shown above must be considered as causing large 
U's which are correspondingly "as extreme".      These are the patterns 
in which a B follows an A zero,   1,   2,   and 2 times,   or,   to return to the 
definition of U,   the ways in which a B precedes an A  42,   41,   40 and 40 
times.      Since there are eight values of U as extreme as that obtained, 
the values being 0,   1,   2,   2,   40,  40,   41,   42,  the significance level for 
a two-tailed test is 8/1716. 

g. Discussion.   Let there be n xs and m ys arranged in 
order of increasing magnitude.    Let x. be the i*    x in order of in- 
creasing magnitude and the rLn measurement,   i. e. ,  the rLn among the 
xs and ys combined, in order of increasing magnitude, and let u^ be 
the number of ys preceding x..    Finally let T be the Wilcoxon rank sum 
of the x ranks and let U be the Mann-Whitney statistic,    the number 
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of times a y precedes an x.    Then r is the Wilcoxon rank of x. and 

r = i + u..    And T= 2r = .S? (i+u.) = n(^i^)   + -2? u. = n (^^)  + U. 1 i=l 1 v   2    '       i=l    i v   2   ' 

The sum of all ranks is simply the number of ranks times 

the average rank,   or (m + n)( » );   therefore,   T',  the rank sum 

of the y ranks is (m + n) (m+^+1) _ To       So T' =   (m + n) (m + n +1) 

- n (^4-i)   - U which reduces to T' = mn + m ^+l^    - U. 

Thus the Mann-Whitney test statistic U, for any given values 
of m and n,  differs from the Wilcoxon test statistic,   T,   only by a 
constant.      Otherwise stated,   the two statistics are mathematically 
equivalent.      The formulas relating T to U may be useful in saving 
labor when tables are in terms of U,   since it is generally easier to 
obtain T than U (which involves an excessive amount of counting). The 
Mann-Whitney statistic is also related to Kendall's   S for rank corre- 
lation. 

Many of the points discussed in connection with Fisher's 
Method of Randomization and the Wilcoxon test are also relevant to 
the Mann-Whitney statistic.      They will not be recapitulated;    there- 
fore,   see the "Discussion" section of the foregoing tests named. 

h.    Tables.    1,   35,  46 (See also 18 and 36).      Tables can also 
be found,   reproduced,  in some of the sources listed in the Introduction. 

The number of ys which either precede or follow a given 
x is m, the size of the y sample; and since there are n xs, the 
number of ys either preceding or following an x is nm.      Therefore 
if U is the number of times a y precedes an x,  then mn - U is the 
number of times a y follows an x.      This,  however,  is also the 
number of times an x precedes a y.      Therefore,  the count need 
be made only once even though most tables list only the smaller of 
the two values U and U' = mn - U. 

When m and n are large and are too large for the exact 
tables to apply,   approximate probabilities may be obtained by re- 
ferring a critical ratio to normal tables.      If there are no ties,  the 
test statistic U comes from a population of U's whose mean is U = 
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,    ..                  .            .      mn (m + n+l) ,„.        , ,,        ., 
and whose variance is  J-r-* — .        Ties do not affect the 

mean, but they decrease the variance (22).      Let t.   be the number 
th 

of tied observations in the i      group of tied observations,  and let 
there be k groups.      Then when there are ties the variance becomes 

_ s.k. (t.3-t.) 2      mn  r       ,     , , 1=1     i       i        i _.    ,   vi •* 
^u    = TT [ m + n+1 "   (m+n)Mn-l>     ]  " Probabilities may 

therefore be obtained by referring the critical ratio       to 

normal tables. 

i.   Sources.     See 5,    The Wilcoxon Test:   Unmatched Data 
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CHAPTER VI 

TESTS BASED ON THE METHOD OF RANDOMIZATION II 

Fisher's method can be applied to almost any type of statistic 
or sample information.      In the present chapter it is extended to 
testing for correlation,  the most significant such application being 
that in which the method is used to obtain exact tables for Spearman's 
rank difference correlation coefficient. 

148 



1.    Pitman's Correlation Test 

a. Rationale.    Suppose that an x observation and a y observa- 
tion have been made on each of n units or individuals and that Pearson's 
product moment correlation coefficient,   r,   has been calculated from 
the data in the usual way.      Now suppose that the correlation coefficient 
is calculated for every possible set of paired xs and ys,  using the same 
data but permitting any given x observation to be paired with any of the 
n y observations,   not just the one recorded for the same unit.      There 
are n ways of assigning a y to x, ,   n-1 ways of assigning a y to x? after 

making the first assignment,   etc. ,   so that there are in all n!  ways of 
re-pairing the xs and ys.      Let N be the number of these ways which 
result in a correlation coefficient as large or larger than that obtained 
for the data as recorded.      If there is no correlation between x and y 
in the sampled population,  then each of the n!   correlation coefficients 
is equally likely and the a priori probability of obtaining a correlation 
coefficient as great or greater than that actually obtained is N/n! 

b. Null Hypothesis.   Each of the n!   sets of pairs of xs and 
ys is equally likely to have been recorded.      This will be the case if 
all assumptions are true and if there is no correlation between x 
and y. 

c. Assumptions.    Sampling is random,   pairs of observations 
are independent and the sampled populations are continuously distributed 
so that there are no tied observations. 

d. Treatment of Ties.   If any xs or ys are tied there will be 
less than n!  distinguishable sets of pairs.      However,   if ties are due 
to imprecision of measurement,   the tied observations may be treated 
as if distinguishable,  by regarding one tied observation as "green", 
another as "yellow",   a third as "red",   etc. ,   in permuting data,   so 
that n!   remains the proper denominator for the probability fraction. 
To minimize error,   half of the sets of pairs which,   because of ties, 
yield exactly the same r as the actually recorded data may be counted 
as among the N "as extreme or more extreme" sets.      For a conser- 
vative test,   N should include all of them. 

e. Efficiency.      No information available. 
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follows 
f.    Application.   Let the obtained data be represented as 

Sum       Mean 

x        1 2        5        8        14 30 6 

y        2        1 7      10 15 35 

xy 2      35      80      210 Vxy = 329 

£(x - x)(y - y) 
The expression for r is      -—  

>/I<x - ^z> - 9Y 
whose numerator is 

\ xy - x ^ y - y ) x+ J xy  or Vxy - nxy - nyic + n xy or simply 

Jxy - nxy  and whose denominator remains constant for every set 

of re-paired xs and ys.      The N "most extreme" rs therefore will be 
those which have the N "most extreme" numerators.      The numerator 
for the observed data is 329 - 210 or 119.      This value can be exceeded 
in only one way:   by switching the two leftmost   ys.      Therefore for a 
one-tailed test of the null hypothesis that there is either zero or nega- 
tive correlation, oc = 2/5!   = 2/120.      For a two-tailed test N must 
include those sets of pairs for which the numerator of r is  -119 or 
less,   i.e.,   those sets for which  /"xy<   210 - 119 = 91.      In this 
particular case there are no such sets,   so the significance level 
for a two-tailed test is still oc = 2/120. 

g.    Discussion.     In common with other tests based on Fisher's 
Method of Randomization and using original continuously distributed, 
measurements,   this test is a conditional one.      Strictly speaking   stat- 
istical inference can be extended only to a "population" consisting of 
the xs and ys actually recorded,  not to the larger population from 
which they were drawn.      To the extent that the obtained sample is 
representative or typical of the larger population,   it would be legi- 
timate to extend inference to the larger population.      However,   such 
representativeness is not tested by the test and remains an unproven 
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assumption for which there is generally little or no evidence.      Like- 
wise,  because the rejection region varies with the sample,   it is im- 
possible to construct generally useful tables of probabilities for the 
test. 

h.    Tables.      There are no   tables;   probabilities must be 
calculated for each individual case. 

i.    Sources.    23,    See also 1. 

2.    The Rank Difference Correlation Coefficient 

a.    Rationale.     If an x measurement and a y measurement 
have been taken on each of n units or individuals,  the Pearson product 
moment correlation coefficient is 

£(x - x) (y - y) 
r = .- I,,    .      However,   if the measurements are con- 

Jf£(x - x)Z J(y - y)Z 

tinuously distributed so that there are no   ties,   and if each measure- 
ment is   replaced   by its rank among measurements of the same type, 

6£d 2 

the formula for Pearson's r reduces to r -  1  -    where d 
3 n   - n 

is the difference between ranks of measurements taken on the same 
unit (13).      The latter formula is the expression for Spearman's rank 
difference correlation coefficient,   p.      Therefore if original measure- 
ments are replaced by their ranks,   Pitman's test,   applying Fisher's 
Method of Randomization to the product moment correlation coefficient, 
and the application of Fisher's Method of Randomization to Spearman's 
rank difference correlation coefficient are mathematically equivalent. 
By using ranks,  however,  instead of original measurements,  the test 
is no longer conditional upon the particular measurements recorded, 
the sample space and the rejection region for the test statistic are 
the same from one test to another for the same sample size n,   and 
significance levels may profitably be tabled. 

Therefore,   let each x measurement be replaced by its rank 
among the xs,   and each y measurement by its rank among the ys. 
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There are n! ways of obtaining a sample of n pairs of ranks,   each 
pair containing an x rank and a y rank.      If there is no correlation 
between x and y,   each of these n!   samples was equally likely,   on an 
a priori basis,   to have been the obtained sample.      Therefore,   if N 
of these nl   samples yield a rank difference correlation coefficient 
as extreme or more extreme than that calculated for the actually ob- 
tained sample,   the probability   for that of the obtained sample is 
N/n! 

b. Null Hypothesis.   Each of the n!   sets of pairs of xs and 
ys is equally  likely to have been recorded.      This will be the case if 
all assumptions are true and if there is no correlation between x 
and y. 

c. Assumptions.    Sampling is random,  pairs of observations 
are independent,   and the sampled populations are either continuously 
distributed or are natural rank populations consisting of the unrepeated 
integers from  1 to n so that there are no tied ranks. 

d.    Treatment of Ties.      When the same value is recorded 
for more than one x observation or for more than one y observation, 
the problem of ties is raised.      It has generally been recommended 
that such ties be given the midrank for the tied group in which they 
appear.      However,   Thornton (31) has pointed out when n "is very 
small one or more pairs of tie rankings will change very greatly the 

frequencies with which various values of  ) d    and  p can be obtained", 

and has questioned "whether tie rankings tend to increase the probability 
of positive coefficients and to decrease the probability of negative coef- 
ficients. "      A perfect  positive   correlation,   +1,    is obtained when 

I d2 = 0. For an n of 3,   this can occur in the following ways if ties 

are assigned the midrank. 

x | 1 2 3 1 1/2 1 1/2 3 2 2 2 1 2 1/2 2 1/2 
y| 1 2 3 1 1/2 1 1/2 3 2 2 2 1 2 1/2 2 1/2 

A perfect negative correlation,   -1,   is obtained when   Yd' n n 

152 



For an n of 3,  the required sum of squared differences,   8,   can occur 
only for the case of no ties: 

x        1 2        3 

d      -2        0        2 

d2     4        0        4 

If any two of the three xs or of the three ys are tied,   the corresponding 
2 2 « d   s  will sum to less than 4 and the total sum of d   s will be less than 8. 

Such considerations suggest   that the most reasonable treat- 
ment of ties is to distribute the tied-f or ranks among the tied observa- 
tions in each group in that way which is least conducive to rejection 
of the null hypothesis.      The limits of "tie error" can be obtained by 
calculating probabilities under both the above method and the method 
by which tied-for ranks are assigned to tied observations in the way 
most conducive to rejection. 

e. Efficiency.   Spearman's rank difference correlation 
coefficient has an asymptotic estimate efficiency of 9/ 7T   or .912 as 
an estimator of Fearson's product moment correlation coefficient 
when the latter is zero and when both coefficients are obtained from 
large samples from a bivariate normal population (13).      Under the 
conditions outlined above,   therefore,   the rank difference test for 
correlation has an asymptotic relative efficiency of .912 relative 
to the parametric test for correlation (27,   26). 

The test has been shown by Hoeffding (10,   11) to be asymp- 
totically biassed for certain alternatives. 

f. Application.    Using the same data used in the example 
of application of Pitman's correlation test we have: 
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x 1       2       5       8       14 

y 2        1        7 10        15 

x   rank 1        2        3       4-5 

y  rank 2        13       4           5 

d -1+10        0           0 

d2 110        0           0            £d2 = 2 

,2 6 £d^ 6x2 
The value of p for the obtained sample is p    = 1 = 1 

r,3    „ 125-5 n    - n 

= . 90 which can be exceeded in only one way — by switching the y 
ranks   1   and   2 so as to obtain a perfect positive correlation.      It 
can be equalled,   however,  by any one of the following four ways,   the 
x ranks being listed only once since   re-pairing can be accomplished 
by manipulating only the ys: 

y 2        13 4 5 

y 13       2 4 5 

y 12       4 3 5 

y 12        3 5 4 

Therefore for a one-tailed test of the hypothesis that correlation is 

4 + 1 5 either zero or negative,oc= N/nl   = -Vj—  =    ••     .      For a two-tailed 
* • 120 

test,   N must include all sets of re-paired ranks which yield a p of 
-.90 or a larger negative magnitude.      They are listed as follows: 
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12       3       4 5    ') £dZ ' 4< 

5       4       3       2 1      | P = -  1 

y 4 5 3 2 1 

y 5 3 4 2 1 > Yd2 = 38 

y 5 4 2 3 1 I P = -.90 

y 5 4 3 1 2 ) 

It is clear therefore that the test statistic is symmetrically distributed 
so that the significance level for a two-tailed test is just twice that for 
a one-tailed test,   i.e.,  oc = N/nl   = 10/120.      In actual application,  of 
course,  the significance levels would be obtained  directly from tables 
rather than by enumerating the number of ways which constitute the 
numerator of the probability fraction. 

g.    Discussion.    It has been forcefully pointed out (22 and 
editorial note accompanying 30) in the past that correlation between 
sets of ranked variate values is not the same thing as correlation 
between sets of original variate measurements.      Recent results by 
Stuart,   however,   indicate that when samples are of moderate or large 
size,   conclusions as to correlation among original measurements may 
reasonably be drawn from tests of correlation which use only the ranks, 
Stuart (27,   see also 15 pp.   124-125) found that when sample size in- 
creased from 25 to infinity the correlation between original measure- 
ments and their ranks increased from .94 to .98,  for samples from 
normally distributed populations,   and from .96 to 1.00 for samples 
from uniformly distributed populations with finite range. 

There are,   at present,   two outstanding rank tests for corre- 
lation,   the present test and Kendall's rank order test of correlation. 
The two tests are not mathematically equivalent:   "it is possible to 
have populations in which T = 0 and p  =   1/2  or - 1/2" (4).    However, 
when applied to samples from bivariate normal populations in which 
x and y are uncorrelated,   Spearman's p and Kendall's  T are highly 
correlated.      For such cases,  the product moment correlation coef- 
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ficient for correlation between p   and  T is . 980 when n = 5,   . 990 when 
n = 20,   and 1. 00 when n = oo   (15 p.   80,   6,   5). 

When applied to very large samples from a bivariate normal 
population in which the population product moment correlation between 
x and y is   r (the product moment correlation between Spearman's  p 
and Kendall's T is  1 when  r = 0,    .9996 when r - . 2,    .9981 when 
r = . 4    and . 9843 when r = ,8,   "though it tends to zero as   r approaches 
unity" (15,  p.   131). 

The rank difference correlation test has the advantage that it 
can be performed very quickly.      Also,  because rank differences are 
squared,   the test is particularly desirable when one wishes to weight 
large discrepancies between ranked xs and ys more heavily than small 
ones.      In most other respects,   however,   the test appears to be in- 
ferior to Kendall's rank order correlation test (15,   16,   18). 

Both the distribution  of p  and that of T approach the normal 
distribution as n increases (13,   10,   5).      However,   the distribution 
of p is inadequately approximated by the normal distribution when 
samples are of a size just too large for the exact tables,   which ex- 
tend from n = 2 to n = 10,   to be applicable.      The "fit" between the 
distribution of p and its normal approximation is poor at the most 
important region,   the tails,  when n is small,   e.g.  when n - 11. 
Furthermore,   at these small sample sizes the distribution of p  is 
very jagged ordinatewise,  presenting a sawtoothed appearance (15,   16). 
By contrast,   the distribution of Kendall's  T approaches the normal 
form much more rapidly so that the normal approximation is reasonably 
good at those sample sizes at which it must be used to obtain prob- 
abilities.      At these sample sizes the distribution of T is such that 
the curve descends monotonically on either side of its mode,   the en- 
tire curve including its tails    giving the appearance of a very nearly 
normal distribution (15). 

A modification of the rank difference correlation test has been 
considered by Daniels (4) as a test for trend.      It has an asymptotic 
relative efficiency of (3/7r) or .98,   relative to the regression coef- 
ficient test,  b,   as a test of randomness against normal regression al- 
ternatives.      When applied in these circumstances,   it is equal in   ef- 
ficiency to Mann's T test,   and generally superior to other distribution- 
free tests of  randomness (29,   26).    See Table I of the Introduction. 
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h.    Tables.   Exact probabilities have been tabled for 2 <n < 7 
by Olds (20),   for 2 < n < 8 by Kendall,   Kendall and Smith (16),   for 
n = 9 and n - 10 by David,   Kendall and Stuart (6),   and for 4 5 n 5 1° 
by Kendall (15).      Approximate probabilities have been tabled for 
8 < n < 30 by Olds (20,   21) using a Type II curve for 8 <n < 10 and 
using the normal approximation for 11  = n < 30.     All of these tables 

are entered with  Yd     rather than p.       Thornton (31) has "translated" 

Z2 
d     into probabilities for p.   Olds' 

tables have been criticized as containing distortions when sample 
sizes are in the region of n = 11 (31). 

If there is no correlation between ranked xs and ys,   then as 
n increases the sampling distribution of p approaches a normal distri- 

bution whose mean is zero and whose variance is      .      Likewise, 
n - 1 

the sampling distribution of   J"d    approaches a normal distribution 

whose mean is and whose variance is ( -f ) 
6 6 

Id 
n - 

2        n3 - n 

Therefore,  for large samples,   "     or may be 
sin n    - n 

6v/n -  1 

treated as normal deviates with zero mean and unit variance,   and prob- 
abilities may be obtained by referring these critical ratios to normal 
tables.      Various corrections to these formulae are available which 
"correct" for the effect of ties (12,   15,   30,   36) or for discontinuity 
(See 15,  pp.   34-35,   38-41,   59-60).      However,   because of the biassing 
effect produced by ties,   the most reasonable procedure would appear 
to be the most conservative one.      Following this philosophy tied 
observations would be assigned the tied-for ranks least conducive to 
rejection of the null hypothesis.      Probabilities would then be obtained 
using formulae "uncorrected" for ties.      When there are no ties,   the 

Z2 
d     is 2,   so the appropriate 
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correction for continuity consists of subtracting or adding 1 to the 
numerator of the critical ratio.      If the numerator is positive,   it 
should be decreased by 1,   if negative,   increased by 1. 

i.    Sources.    2-18,   20-22,   25-31,   35,   36. 

3.      Test for Serial Correlation 

Wald and Wolfowitz (32) have considered the Method of 
Randomization as a means of testing the significance of the serial 
correlation coefficient, 

< I    *i>: 
V
    X   X 1=1 

u    X. Xi+h 

j^    _     i= 1  There are n!   permututations 

( Vn x )z 
n v  L i' 

2 i=l I *? 
i = l n 

of the order in which the Xs were actually recorded,   and for   all 
n n 

X-   (and   /,     X. ) will be the same.       Therefore,   the 
i=l i=l 

n 
V 

statistic used is simply R,   -   £,      X. X       ,   the subscript i indicating 
i=l 

the i     X in order of appearance and h indicating the "lag" or indi- 
cating the period of a suspected cyclical fluctuation.      When i+h  > 
n,   X. ,, is used instead of X.,, .       The value of R,   is calculated, l+h-n i+h n 

in effect,   for each of the n|   possible permutations of order (which are 
equally probable if the null hypothesis,   that the Xs are independent 
observations from the same population,   and therefore appear in ran- 
dom order,   is true).   The N "values which constitute the critical reginn 
will depend in each particular problem on the possible alternatives to 
randomness, " and so will the value of h.    The significance level is 
N/n! ,   and the null hypothesis is rejected if the actually obtained 
value of R,   is among the N values of R,   which constitute the critical 
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region.      It is assumed that the Xs come from a continuously distrib- 
uted population. 

The value R<   is asymptotically normally distributed (under 
mild qualifications)   and,   if h is prime to n,    the distribution of 

n n 
R,   =    ,   X. X.,,    is the same as the distribution of Rj  - )_,   X^ X^+^. 

i=l i=l 
Therefore,  by taking h and n so that h   is prime to n,   the significance 
of R,   can be tested,   for large samples,  by referring the critical ratio 

Rl  " Rl 

'*i 

to normal tables.      Unfortunately,   considerable calculation 

is required to obtain the mean and variance of R, . 

The authors have suggested that the test might be improved 
if the Xs were replaced by their ranks.      Noether (19) finds that both 
tests,   i. e. ,   the one already outlined and the one in which Xs are re- 
placed by their ranks,   are consistent against certain alternatives of 
cyclical trend where h is the length of cycle.      He finds that either test 
may have the greater asymptotic relative efficiency with respect to the 
other,   depending upon the distribution of the population of Xs.      The 
asymptotic relative efficiency of the R,   test relative to Mann's T test 
was found by Noether to be zero under certain stated conditions.    It 
also has A.R.E.  of zero relative to the best parametric test based on 
the regression coefficient (29,   26). 
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CHAPTER VII 

TESTS BASED UPON INVERSIONS 

Correlation can be tested by arranging units in increasing order 
of one variable and testing the resulting order of the other variable 
for randomness.      If there are n units and there is no correlation, 
the resulting sequence of observations on the second variable is 
equally likely to be any of the nl  possible permutations of the obser- 
vations.      However,   if the two variables are linearly correlated,   the 
observations on the second variable should tend to form an increasing 
or decreasing sequence,   and the number of inversions in this sequence 
should tend to be extreme.      By using the number of inversions as test 
statistic and applying essentially Fisher's Method of Randomization, 
an    exact test for correlation can be formed and its probabilities 
tabled.      By taking "time" as the first variable,   the test can be made 
a test for trend. 
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1.      The Distribution of Inversions 

Let the integers from 1 to n be arranged in some order,   such 
as the following:    3   5    14   2   6.      When a given number is followed 
by a smaller number   an inversion exists.      In the sequence of integers 
just presented,    there are six inversions:    3 is followed by two smaller 
numbers 1 and 2;    5 is followed by three smaller numbers 1,   4 and 2; 
and 4 is followed by the smaller number 2. 

If the order in which the n integers are to be arranged is 
determined by a random process,   then each of the nl  permutations 
of the n integers is equally probable.      And the a priori probability 
of obtaining a random sequence with exactly I inversions is simply 
the number of permutations containing exactly I inversions divided by 
n! ,    the number of permutations possible. 

Besides I,   two additional measures directly related to inver- 
sions will be encountered.      For a single permutation the maximum 
number of inversions is simply the number of pairs of integers which 

are compared,   (2) or •% (n~l)«      Therefore the number of times an 

integer is followed by a larger integer in the sequence is the compli- 

ment of I and is equal to — (n-1) - I.       This measure will be designated 

as T.      The other measure is S which is equal to T - I.      The following 
table gives the distributions of I,   T and S for n * 4. 

The distribution of I has mean — (n-1) and variance—-—-——— -' 
4l 72 

and as n approaches infinity it approaches the normal distribution (8, 
40,   54).      Therefore,    for large n the critical ratio 

 4      may be treated as a normal deviate. 

.y~n(n-l)l )(2n+5) 
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TABLE V 

DISTRIBUTION OF INVERSIONS FOR n = 4 

Permutation I T S Permutation I T s 

12     3     4 0 6 : 6    ! 3     12     4 2 4 2 
12     4     3 1 5: 4 3     14     2 3   i 3 0 
13     2     4 1 5 4 3     2     14 3 3 0 
13     4     2 2 4 2 3     2     4     1 4 2 -2 
14    2     3; 2 4 2 3     4     12 4  ! 2 -2 
14     3     2 3 3 0 1 3     4     2     1 5 1 -4 
2     13     4 1 5 4 4     12     3 3 3 0 
2     14     3 2 4 | 2 4     13     2 4 ! 2 -2 
2     3     1     4     ; 2 4 2 4     2     13 4   I 2 -2 
2     3     4     1; 3 3 ° 4     2     3     1 5 1 -4 
2     4     13 3 3 o 4     3     12 5 1 -4 
2     4     3     1     i 4 2    ; -2 4     3     2     1 6  i 0 -6 

0 
1 
2 
3 
4 
5 
6 

T s F requency 

6 6 1 
5 4 3 

4 2 5 
3 0 b 

2 -2 5 
1 -4   : 3 
0 -6   ; 1 

Probability 

1/24 
3/24 
5/24 
6/24 
5/24 
3/24 
1/24 

Cumulative 
Probability 

1/24 
4/24 
9/24 

15/24 
20/24 
23/24 
24/24 

24 
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2.      Kendall's Rank Order Correlation Test 

a.    Rationale.    Suppose that an x measurement and a y 
measurement have been taken on each of n units and that tied xs and 
tied ys are both impossible.      If the units are arranged from left 
to right in order of increasing x scores,   the sequence of ys will 
be random if x and y are uncorrelated.      However,   if x and y are 
linearly correlated,   the sequence of ys will tend to increase or de- 
crease systematically,   and the number of inversions among the ys 
will tend to be small or large respectively,      Therefore the number 
of inversions among the ys can be used to test the null hypothesis 
that x and y are randomly associated against the alternative that 
they are linearly correlated. 

Let the xs be ranked from 1 to n and the ys also,   and let the 
units be arranged in increasing order of x rank.      Then if T is the 
number of times a y rank is followed by a larger y rank and I is the 
number of times a y rank is followed by a smaller y rank,  Kendall's 

test statistic is   S = T - I.      Since T = j (n-1) - I,    S = y(n-1) - 2 1 

or = 2 T - y(n-l),    so S,  I and T are mathematically equivalent test 

statistics (when there are no tied scores). 

The xs need not actually be arranged in order of increasing 
magnitude in order to calculate S.      It is obvious from the foregoing 

that S is simply the number of the (_) pairs of units in which the x and 

y scores of one member deviate in the same direction from their 
respective x and y counterparts in the other member minus the number 
of pairs in which they deviate in opposite directions.      Therefore,  let 
the units be arranged in any arbitrary order and let subscripts indi- 
cate position in this order,  unit j being any unit to the right of unit i. 
Let a.,  be a dummy score which is +1 if x.  is greater than x. and -1 

if x. is less than x..      Similarly b.. is +1 if y. > y.   and -1 if y. < y.. 
J i 1J J 1 J 1 

Finally,  let c. = a., b..   so c.   is +1 if (x. - x.) (y. - y.) is positive, 
" ij      IJ   IJ        IJ i     y wi   'y 

i.e., if either x. < x. and y. < y. or x. > x. and y. > y., and is -1 if 
i        J 7i        J i        J i        J 

the product is negative.      Then S is the sum of the c.s taken over 

all values of j>i and all values of i from 1 to n. 
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b. Null Hypothesis.    Each of the n!   possible permutations 
of rank order of the ys was equally likely,   before sampling,   to be 
found when the units are arranged in order of increasing rank on 
the x measurement.      A sufficient condition for the validity of the 
null hypothesis is that x and y are uncorrelated and all assump- 
tions are true. 

c. Assumptions.    The units have been drawn independently 
and at random from a population in •which each variable,   x and y, 
is either continuously distributed or exists naturally in the form 
of untied ranks. 

d. Treatment of Ties.   If ties are due to imprecision of 
measurement,  the safest rule is probably to distribute the tied-for 
ranks to the tied measurements in the way least conducive to rejec- 
tion of the null hypothesis.      The limits of tie-error can be obtained 
by comparing the probability obtained in this manner with that ob- 
tained by taking the opposite course.      This rule may be safely fol- 
lowed regardless of whether exact or normal tables are used and 
without recourse to extensive corrections in formulae or to modi- 
fications of procedure.      An alternative method is to give observa- 
tions in each group of tied values the average of the ranks the mem- 
bers of the group would have if distinguishable.      The midrank method, 
however,   requires considerable qualification as will be shown in the 
paragraphs to follow. 

When ties are assigned the midrank and probabilities are 
obtained from tables constructed upon the assumption that ties are 
impossible,  the obtained probabilities are distorted;   however,  the 
statistic S is a far safer one than T or I.      Consider first the case 
where ties are due to imprecision of measurement.      If the ys are 
arranged in order of increasing x-rank and the last three of four 
y-ranks are tied,   the y-ranks are 1   3   3   3,   so T = 3,   I - 0 and 
S = 3.      The true ranking of the ys could be any of the following 
permutations: 
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Permutation T I        S 

12 3 4 6 0        6 

12 4 3 5 14 

13 2 4 5 14 

13 4 2 4 2        2 

14 2 3 4 2        2 

14 3 2 3 3        0 

The average T is 4 1/2 but the value of T obtained by the midrank 
method lies at one end of the range of possible true values.   The situa- 
tion for I is analogous.      However,  the average S is precisely the 
value obtained by using the midrank.      (The average S,   however,   is 
an odd number,  whereas for n - 4 when there are no ties    S assumes 
only even values.      The probability tables therefore will have no 
entry for S • 3 and another source of inexactitude will have arisen. ) 

Consider now the case where ties represent intrinsic 
equality rather than imprecision of measurement.      In this event, 
the proper tables are those based   upon the frequency distribution 
of S given that certain ties exist,   such as the tables prepared by 
Sillitto (43).      The appropriate tables,   therefore,  would be derived 
by obtaining the frequency distributions of S when each ranking con- 
tains specified numbers of ties of specified extents,   obtaining each 
such distribution by letting the y rankings assume every distinguish- 
able permutation while the x ranking is held constant.      The conven- 
tional tables,   derived from untied rankings,   are not appropriate 
and,   if used in lieu of,   or in the absence of,   the proper tables,   may 
lead to gross errors in probabilities.      The amount of error attend- 
ant upon this procedure,   however,   is not the same for T,   I and S. 
These three statistics are mathematically equivalent when ties are 
impossible,   but not otherwise.      When ties exist the maximum 
value T and I can assume is reduced,  but the minimum value is 
the same as if ties were impossible.      Since S is the difference be- 
tween T and I,   and since T is inversely related to I,   S can assume 
neither the same maximum nor the same minimum as it could if 
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ties were absent.      The result is that the   distributions of S when 
there are ties tend to maintain symmetry about the same point as 
that about which the distribution of S is symmetrical when ties are 
impossible.      And since it is the extreme "tabled" values which be- 
come impossible when there are ties,  the true probability of the 
central Ss tends to gain at the expense of the extremes.      Therefore 
the error of referring S to tables based on the assumption of no ties 
is likely to be a decrease in the probability of rejection,   and the error 
will tend to be a "conservative" one.      Furthermore the error tends 
to be no greater for a one-tailed than for a two-tailed test.      The dis- 
tributions of T and I when there are ties tend to occupy a region 
closer to their minimal values than is the case when there are no 
ties.      This distribution may be quite skewed,   and even if it is sym- 
metrical,  the point of symmetry is closer to the minimal value than 
is the case when there are no   ties.      The result is that the true prob- 
ability of the smallest values of T or I tend to be much greater than 
that obtained from tables based on no ties,   thus spuriously increasing 
the probability of rejection when the rejection region consists of the 
smallest values.      The situation is improved by using a two-tailed 
test,  but the error may still be great in the direction of spurious 
rejection.      The obvious conclusion is that,  while there is no choice 
between T,   I and S when ties are impossible,   S is a much safer test 
statistic,   although by no means free from error,  when ties are present 
either because of imprecision of measurement or because of intrinsic 
equality. 

If ties result from intrinsic equality between scores,   the 
tie is not an artifact of measurement,  but represents a fundamental 
discrepancy between the mathematical model and the situation it is 
intended to simulate.      For such cases it is reasonable to alter the 
mathematical model.      Sillito    (43) has followed essentially this pro- 
cedure by obtaining the exact distribution of S when there are   p? 

groups of two tied scores and po   groups of three tied scores in one 
of the two rankings,  the other ranking being tieless.      He has tabled 
the probability of S for all possible values of p?   and p,  (and for all 
combinations thereof),  from zero to the maximum number,  for 
3 <n < 10.       These probabilities are conditional probabilities:    they 
state the probability of S given that one ranking is tieless and the other 
contains P2   groups of two tied ranks and P3   groups of   three tied ranks. 
When there are ties and they are assigned the midrank,the mean of S 
remains zero,  but its variance is altered.      The formula for the var- 
iance of S when there are ties in one or both rankings has been obtained 
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TABLE VI 

Conditional Frequency Distributions of T,  I and S When n=4 and There 
Are no Ties,   One Tied Pair in One Ranking,   Two Tied Pairs in 

One Ranking,   and One Tie of Three Ranks   in One Ranking 

Frequency Distributions of T,   I and S if: 

Value of 
Statistic 

Ties are 
Impossible 

T,   I or S 

Two Ranks        Two Sets of 
are Tied Two  Ranks 

are Tied 

Three Ranks 
are Tied 

|   0 6 -6 1 I 3 !i 1  i —r 
J 2 I 

1 -5 !! 3 
1 1 5 -4 3 i 6 3 i ! i    ; 2|         ! 
j -3 !; I 

1 6 
i 
j 2 

2 4 -2 5 !! 
ji 9 ' 6 | 2 : l I    ! 2 1       ! 

-1 [j 9  ! ! 
1 !   2 

3 3 0 i 6 II 9 9 •i l l 2 i 2 j 2 
i !! { 9   ! j 2 

4 2 2 5 j! 6 i 9 •i l \ 2 1 I 
2 ; 

3   ; 6 2 
5 1 4 3 3 ' 6 1 1 2 

5 3 ' 
1   6 <  0 6 ! 1 i- 3 , 1 t 2 
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TABLE VII 

Cumulative Probability Distributions for T,   I and S When n = 4 and 
There Are no Ties,   One Tied Pair in One Ranking,   Two Tied Pairs 

in One Ranking,   and One Tie of Three Ranks in One Ranking 

Value of 
Statistic 

"Tabled" 
Distribution: 

Ties are 
Impossible 

True Distribution if 

Two Ranks 
are Tied 

Two Sets of 
Two Ranks 
are Tied 

Three Ranks 
are Tied 

T      I      S T,   I or S 

0      6-6       1 .04 .08 
• 

I   -17 ' ! j    .25 
i 1 

I             -5      |: .08 i l 
; 

1       5     -4 . 17 .25 . 08 . 33 .17 .50 ' i 

"3       1 
.25 1 1 .25 

2      4-2 .38 .50 .25 !   .67 .17 . 33 .75 
-1 .50 ! .50 

3      3       0 .63 .75 .50 ! -83 .33 .67 |1.00 .25 

1 j .75 | .75 
4      2       2 .83        1 .92 .75 ll.OO .67 . 83 II .50 

3 .92 I || 1.00 
5      1       4 .96        * 1.00 .92 .83 1. 00 •; .75 

5 1.00 |l 
6      0      6 1.00   1.00   1 

i              t 
1. 00 1 

3±3 3±3 ±6 . 08 . 08 .08 . 17 . 17 .25 .25 | 
±5 . 17 

3±2 3±2 ±4 . 33 . 33 . 33 ! . 33 .33 . 33 .50 .50 

±3 .5C .50 
3±1 3±1  ±2 .75 .75 .75 .83|    .83 .67 .75 .75 

+'   1 1 1.0C ! 1.00 
3      3       0 1. 00 1. 00 i.oo| 1. 00|l.00 1. 00 1. 00 1.00 
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TABLE VIII 

Conditional Frequency Distributions of T,   I and S When n • 4 and There 
Are no Ties in Either Ranking and When n = 4 and There Are Three Tied 
Ranks in One Ranking and Either Two Tied Ranks,   Two Sets of Two Tied 

Ranks,   or Three Tied  Ranks in the Other Ranking 

Frequency Distribution of T,   I and S if 

/                          One Ranking Contains Three Tied Ranks \ 
 The Other:  

/ \ 
Value of Ties are Two Sets of Three 
Statistic        Impossible      Two Tied Ranks      Two Tied Ranks      Tied Ranks 

T,   I or S 

0 6 -6 1 24 
6 i   8 

-5 i 
t 

I 
1 5 -4 3   ! 18 | !  6 

-3 12   1 1 
i 2 

2 4 -2 5     1 
18 12 6 6 1 

-1 1 6 
* 

6 
3 3 0 6 12 12 12   ! 2 2 

1 1 
i 6   ! 6 

4 2 2 5     i 18 12    i 6 6 
3 i 

\ 12 il 2 
5 1 4 3 18 I !i 6 

5 1 j 1! 
!! 

6 0 6 1     I 24 1 
i 6 1 8 
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TABLE IX 

Cumulative Probability Distributions for T,   I and S    When n = 4  and 
There Are No Ties in Either Ranking and when n = 4 and There Are 
Three Tied Ranks in One Ranking and Either Two Tied Ranks,   Two 
Sets of Two Tied Ranks,   or Three Tied Ranks in the Other Ranking 

Value of 
Statistic 

"Tabled" 
Distribution: 

Ties are 
Impossible 

True Distribution if One Ranking Contains 
Three Tied Ranks and the Other Ranking Contains: 

Two Tied 
Ranks 

Two Sets of 
Two Tied Ranks 

Three Tied 
Ranks 

T,   I or S I 

0      6-6 .04 .33 .50 ~T   1 .50;        ? 
-5 j                             i          i .     : 

1       5    -4 . 17 .58 i 

\ .88          j 
-3 1                                                    , 

i 
i                                 : .17 1 ' .13 

2      4-2 .38 .83 .33 1.00 .50 
-1 

1                       ! 
i         ,,,...,..... 

.42 : .50 
3       3      0 .63        | 1.00   .17 .58 

, 
1.00   . 13 

1 1 .67 . . 88 
4       2       2 . 83 .42 . 83 1 50.1. 00 

3 1. 00 
\i 

1.00 
5       1       4 .96 .67 .50 

5 il                         i 
6      0      6 1. 00 1. 00 1. 00 1. 00 

3±3 3±3 ±6  i .08 .33   .33 .50   . 50 .50   .50 

±5 1 

3±2 3±2 ±4  j . 33 .58   .58 i .88   .88 
±3  1 .33 .25 

3±1  3+1  ±2 ; .75 .83   .83 .67 . 1. 00 1. 00 1. 00 
±1   I .83 1.00 

3      3      0 1. 00 1. 00 1. 00 1. 00 i 1. 00 1. 00 

174 



(23,   27,   43,   56.      See also 52 for variance of T).      Therefore when 
samples are large and ties are given the midrank,  the significance 
of S can be obtained by referring the critical ratio,  based upon the 
"corrected" variance,   to normal tables.      Again,   however,  the 
probability obtained is conditional upon the existence,   in the popu- 
lation,   (either the population of original scores or the correspond- 
ing population of measurements) of ties in precisely the number 
and extent implied by the corrected variance formula,   e. g. ,   in 
the same proportionate number and extent as exists in the obtained 
samples.      Two further disadvantages are that the corrected var- 
iance formula is a long one and,  when a critical ratio based upon 
it is referred to normal tables,  the correction for continuity de- 
pends upon which of several tie situations exists and may not be 
precisely determinable. 

When one takes a ranking containing ties,   resolves the 
ties in all possible ways and calculates S for each way,   the average 
of these Ss is the same as the S obtained by the midrank method. 
However,   if,   following Muhsam (36),   one takes an untied ranking 
or pair of rankings,   introduces all possible ties,   calculates S 
for each case,   and obtains the average S   it is extremely unlikely 
to be the same as the S for the untied rankings,   and the distribu- 
tion of S's is likely to be quite skewed.      In the former case one is 
dealing with a single conditional distribution since the number, 
extent and location of the tied groups is specified and fixed.      In 
this case,   if the null hypothesis is true,   each of the untied rankings 
which might have been the true ranking is equally likely to have been 
obtained as an untied ranking and therefore should be equally likely 
to be the true "parent" of the tied ranking.      In the latter case,   how- 
ever,  the situation is quite different.      One is dealing with a multi- 
plicity of conditional   distributions,   e.g.   in   a ranking of four objects, 
the   distribution of S conditional upon the existence of one tie of two 
rankings,  the remaining two rankings being untied,   or the distribu- 
tion of S conditional upon the existence of one tie of four rankings, 
etc.      To calculate S for all distinguishable rankings under all pos- 
sible tying situations and then take the average S by summing   the 
individual Ss and dividing by their total number is implicitly to 
assume that each such component S is equally probable.      This in 
turn introduces the assumption that each tying condition's relative 
probability is in proportion to the number of distinguishable rankings 
which can be obtained from it.      It can easily be shown that this 

4' assumption is false.      In the example just given,   there are  —"dis- 
Z • 
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tinguishable permutations of four ranks of which a specified two are 
tied,  and these two can be any one of three pairs.     So the total num- 
ber   of distinguishable permutations of four ranks,  two of which are 

4J tied is   3 (», )  or 36.     However,  all four ranks can be tied in only 

one way,   so the ratio of the number of distinguishable rankings 
when there is one tie of two ranks to the number when there is one 
tie of four ranks is 36,  i. e. , the ratio is a constant for the case 
under consideration.      Now let p be the unknown probability that a 
rank is tied with the "truly" next higher rank and let q = 1 - p  be 
the probability that it is not.     A single tie of two ranks can be ob- 
tained in the following ways and with the following probabilities: 
rank 1 is tied with rank 2 but rank 2 is not tied with rank 3 and rank 

2 
3 is not tied with rank 4 (Pr = p q ),    rank 1 is not tied with rank 2, 

2 
rank 2 is tied with rank 3,  but rank 3 is not tied with rank 4 (Pr=p q ); 
r ank 1 is not tied with rank 2,   rank 2 is not tied with rank 3, but rank 

2 
3 is tied with rank 4   (Pr = p q ).      The probability of a single tie of 

2 
two ranks is therefore 3pq  .     All four ranks can be tied in one way: 
if rank 2 is tied with rank 1 and rank 3 with rank 2 and rank 4 with 

3 
rank 3 (Pr = p  ).     The ratio of the probability for a tie of two to 

3Q that of a tie of four is      M , i.e. ,  is a variable which depends upon 

the unknown probability,  p,  that a rank will be tied with the "truly" 
next higher rank.      Thus the distribution of S when all possible ties 
have been introduced in the rankings lacks meaning because the various 
rankings,   so obtained,   are not all equally probable when the null hypo- 
thesis is true. 

e.     Efficiency.     When applied to samples of infinite size 
from bivariate normal populations in which x and y are uncorre- 
lated,   Kendall's tau is perfectly correlated with Spearman's  rho 
(5,   9,   23).      Therefore the asymptotic estimate efficiency of 9/7r 
or . 912 for rho as an estimator of Pearson's product moment cor- 
relation coefficient,   when both coefficients are obtained from large 
samples from  a bivariate normal population,   applies equally to 
tau (47).      Under the conditions stated,  therefore,   Kendall's rank 
order test for correlation has an asymptotic relative efficiency of 
. 912 relative to the parametric test for correlation (17,   32). 

The test has been shown to be consistent under conditions 
stated by Mann (29) and Terpstra (52).      Conditions for its un- 
biassedness have been given by   Mann (29). 
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f.    Application.   Designating units by letters,  let the follow- 
ing data represent the variate values of x and y on each unit: 

UNIT 

Measures 
177 

84 

41 

4 

39 

7 

150 

53 

E 

99 

16 

Replacing variate values by their ranks,  the data become: 

UNIT        A B C D E 

Measures 
x-rank     5 

y-rank     5 

2 

1 

1 

2 

4 

4 

3 

3 

One method of calculating S does not require putting one ranking 
in the "natural" order,   1,   2,   3,   etc.      If there are ties in both rank- 
ings and if ties are given the midrank this method should be used. 

For each of the (_)   possible pairs of units,   a +1 is scored if the 

x and y of one unit deviate in the same direction from their respec- 
tive counterparts of the other unit,   i. e. ,   if they are both higher or 
both lower than their counterparts in the other unit,   otherwise,   if 
the deviations are in opposite directions,   a - 1 is scored.      The sum 

of the (_)   plus or minus Is is S.      (If ties are given the midrank,  the 

pairs for which the x ranks,   the y ranks,   or both,   are tied are given 
a zero score. )     For example,   for the comparison involving units C 
and E the x rank of unit E is greater than the x rank of   unit C and 
the y rank of unit E is also greater than the y rank of unit C.      There-, 
fore a score of +1 is recorded for this comparison.      When unit C is 
compared with unit B the x rank of B is the greater of the two x ranks 
while its y rank is the lesser of the two,   so a -1 is recorded.      Of the 
ten possible comparisons of pairs of units,  nine result in a score of 
+ 1 and one in a score of -1.      So the algebraic sum S = +8. 
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If none of the x ranks are tied,     the units may be arranged 
in order of increasing x rank thus simplifying the calculation of S 
for now for any pair of units a score of +1 results if the y rank of 
the unit "higher" in the series is greater than the y rank of the lower 
unit,   and a score of -1 results in the opposite case.      Rearranging 
the units so that the x ranks form an increasing sequence,   the data 
appear as follows: 

UNIT        C B 

x-rank 1 2 3 4 5 
Measures 

y-rank 2 1 3 4 5 

And the calculation of S is shown in the following table: 

Number of larger Number of smaller 
y rank                                   y ranks following y ranks following 

2 3 1 

1                                                          3 0 

3 2 0 

4 1 0 

Sum 9 1 

S = 9 - 1 = +8 

The five y ranks can be permuted in 5!   or 120 ways of which the 
following permutations   result  in  an  S  as   great or greater than +8: 
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S = +10 

S = +   8 

S = +   8 

S = +   8 

S = +   8 

Therefore for a one-tailed test of the null hypothesis that the  x and y 
ranks have either zero or negative correlation,   the significance level 
is cc = 5/120. For a two-tailed test of the hypothesis of zero rank corre- 
lation   , the permutations yielding an S of - 8 or less must also be 
considered.      They are: 

S = -10 

S = -   8 

S = -   8 

S = -   8 

S = -   8 

So cc = 10/120 for the two-tailed test. 

In actual application,   the significance levels would be obtained 
from tables.      Furthermore   it is clear that the value of S can be ob- 
tained directly from the variate values of x and y without first convert- 
ing these values into ranks.      Conversion into ranks has two advantages 
however.      It makes the counting process simpler and therefore reduces 
the likelihood of computational error.      And it serves as a reminder 
that it is rank correlation which is being tested,   not correlation among 
variate values.      (The test could be used for the latter purpose,   but 
only as a conditional test,   i.e. ,   its conclusions would be restricted 
to the set of observations obtained in the sample and could not be ex- 
tended to the sampled population. ) 
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g.      Discussion,    Kendall's rank order correlation test is 
one of the most important distribution-free tests.     It is equalled in 
efficiency and excelled in speed of computation by Hotelling and 
Pabst's rank difference correlation test based on Spearman's rho. 
However,  in most other respects it is the better test (23,  28,   34). 
(For a comparison of the two tests see Chapter VI.)     As in the 
case of the test based on rho,  a coefficient of correlation can be 
calculated from the data used in Kendall's test.      The maximum 
value S can attain is   simply the number  of  comparisons  of pairs, 

(_)  or •-• (n-1).     Kendall therefore defines        to be his 
7(n-l) 

coefficient of rank correlation, which he calls tau.      Its value 
ranges from -1 for perfect negative correlation to +1 for perfect 
positive correlation.      Tau is related to rho,  not directly,  but by 

certain mathematical inequalities, e.g.,    -1 <  3 T -Z pi 1, 
"When the sample is permuted in all possible- ways",  Daniels (5) 

finds the correlation between T and p to be —~ZZZZZZZZZT * 
si 2n (2n+5) 

Kendall's statistic has many interesting properties.     Moran 
(33) has shown that S is directly related to the "least number of inter- 
changes of neighbors required to restore the permutation to the 
normal order",    i. e. ,  the order 1,   2,   3, n-1,  n.      If i is the 

least number    of such interchanges required,  then i=— •%•  . 

A number of statistical tests may be regarded as the form which would 
be assumed by Kendall's test if it were modified to take account of 
ties representing intrinsic equality.      For example,  the Mann-Whitney 
test statistic U is the number of times an A-sample observation pre- 
cedes a B-sample observation when the observations from both sam- 
ples are arranged in order of increasing magnitude irrespective of 
sample.      U therefore may be regarded as Twith increasing rank 
order of magnitude for the combined sample as the x ranking and 
with the y ranking consisting of a set of    tied" A's intermixed with 
a set of "tied" B's.      In this case,  the "ties" would be due to in- 
trinsic equality,  i.e.,  the "tied ranks" would define a category 
(sample A or sample B)   and "rank" would have no quantitative mean- 
ing for the ys. 

The conditional probability of T given that one ranking 
contained two sets of ties, one of extent a, the other, b = n - a, 
would therefore be identical to the probability of a U of the same 
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value,  U =T, when sample A contained a observations and sample B 
contained b observations,  no observations being tied.      It should be 
emphasized, however, that this conditional probability of T is obtain- 
able from the U tables but not from the tables for T or S which are 
derived under the assumption of no tied ranks. That is to say,   the 
proper tables for S,  when there are ties,   are those calculated from 
the conditional distribution of S given that so many groups of so many 
tied observations are present in the data.      The situation is analogous 
when probabilities are obtained from the normal approximation.    In 
that case the standard deviation used as the denominator of the criti- 
cal ratio must be the square root of the conditional variance of S 
given that certain ties have occurred.      The formulae for the "correct- 
ed" variance of S may become quite formidable as for instance in the 
case that there are ties in both rankings.      Therefore,   the relationship 
between Kendall's S "when there are ties" and other tests is a some- 
what contrived one which is interesting but not particularly useful in 
most cases.      Generally it will be more efficient and less confusing 
to employ tests expressly designed for data classified into groups or 
categories rather than to seek out the proper modification of the in- 
versions test.      This is especially true when samples are small since 
the exact conditional distribution of S apparently has been tabled only 
for the case where there are "ties" in one ranking and only then for 
n < 10 (43). 

Several tests have been developed which do not belong to the 
category discussed above.      Whitfield (55) has outlined a test for intra- 
class correlation of ranked data and tabled its exact probabilities. 
Ranks from 1 to n are assigned to the members of n/2 pairs of obser- 
vations.      The pairs are then arranged in order of the lowest rank in 
each pair,   i. e,   the lowest rank among the remaining observations 
not yet ordered.      Kendall's S is then calculated in the usual manner 
except that no observation    is compared with its paired member (but 
is compared with all n-2 other observations).      S max  is therefore 

2- (n-2) and,   since S min is zero, the average S is "- (n-2).      Defining his 

test statistic as S    = S- i±K   '   ' ,    Whitfield tables its probabilities for 
P 4 

6 < n < 20.      He finds its variance to be      so that large sample 
1 8 

probabilities can be obtained by referring the critical ratio to normal 
tables. Moran (31) has outlined a curvilinear ranking test in which 
the integer 1 is moved to the nearest end of the range of ranks,   then 
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the integer 2 to the nearest end of the range of ranks 2 to n,   etc. , 
until all integers have been so treated.      The test statistic is the 
lease number of interchanges of integers required to effect this. 
Exact tables have been prepared for 2 5 n 5 14.      Daniels and Ken- 
dall (6) have developed a large sample test for the significance of 
the difference between two correlations when the correlations in 
the parent populations are not zero.      They have also attacked the 
problem of establishing confidence   limits   for a rank correlation 
when a nonzero correlation exists in the parent population.    Kendall 
(21) has established a partial correlation coefficient based on ranks, 
but has been unable to test its significance. 

h.     Tables.      Probabilities for S have been tabled for n 5 10 
by Kendall (23,   24) and for n < 40 by Kaarsemaker and van Wijngaarden 
(19).      (Because of the linear relation between S and T,   the probability 
of the T corresponding to S is also the probability of S;   therefore,   T 
tables can also be used to test for rank correlation when there are no 
ties.    See 3,   Inversions as a Test for Linear Trend. ) 

If there are no ties and if all rank permutations are equally 
probable,   i. e. ,   if x and y are uncorrelated,   the distribution of S rapidly 
approaches the normal distribution    as n increases (5,   20,   23,   35,   44). 
Asymptotic normality of S in the null case has also been found when ties 
are present in one ranking (52) and,   under certain conditions,   when both 
rankings contain ties   (7). When x and y are correlated,   the dis- 
tribution of S is asymptotically normal under certain stated conditions 
(16,   23). 

When there are no ties,   the distribution of S has mean zero 
and variance n(n-1 )(2n+5)/l 8.      Therefore when n is too large for the 
exact probability tables to be applicable,   approximate probabilities can 

s 
be obtained by referring the critical ratio   —————————      to normal 

yn(n-l)(2n+57 
18 

tables.      The approximation can be improved by correcting for con- 
tinuity.      S is discretely distributed,   successive values of S being two 
units apart;    therefore,   a tail    area of the S distribution whose least 
extreme value is S would be represented,   on a continuous curve,  by 
an S one unit less extreme.      The correction for continuity therefore 
consists of decreasing the value of S by one unit if S is positive   or in- 
creasing it by one unit if it is negative,  before calculating the critical 
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ratio.      If ties are present,   different continuity corrections are re- 
quired depending upon the situation.      Some of these corrections have 
been given by Kendall (23). 

The conditional variance of S given that certain ties exist and 
are assigned the midrank has been given by Kendall and others (23,   27, 
43).      If only one ranking contains ties,    the variance of S is 

n(n-l)(2n+5) -   £t (t-l)(2t+5) 

 where t is the number of ranks in a tied 
13 

group,   i.e. ,   the number of observations tied for a given value,  the sum- 
mation being taken over all such groups (the value of t perhaps varying 
from group to group).      If both rankings contain ties,   the variance of S is 

n(n-l)(2n+5) -   ^t (t-l)(2t+5) -Y ji(|i-l) (2,x+5) 

18 

|yt(t-l)(t-2)}[£n(u-l)(H--2)} {Zt(t_1)}  (Z^^"1} where t is 

9n (n-1) (n-2) 2n (n-1) 

defined as above but refers only to the ties in one ranking and u is analo- 
gous to t but refers to ties in the other ranking.      The mean S remains 
zero when there are ties in one or both rankings.      When critical ratios 
are referred to normal tables,   the proper correction for continuity de- 
pends upon the tying situation.      The correction for certain cases has 
been given by Kendall (23). 

j.    Sources.    1-7,   9-11,   14-28,   31-36,   39,   42-44,   46-48, 
50,   55-57. 

3.      Inversions as a Test for Linear Trend 

a.    Rationale.   Suppose that,   in Kendall's test for correlation, 
the x variable were the time at which a unit "appeared",   or was gener- 
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ated,   and the y variable were some quantitative measure on the unit 
itself.      Kendall's test would then test whether or not the size of the 
y measurement is randomly related t.o the order in which the units 
were generated,   and it would be particularly likely to reject the hy- 
pothesis of randomness if there were a linear trend in the generat- 
ing process. 

The test can be applied by following Kendall's procedure, 
in which case the test statistic is S and Kendall's tables are the 
appropriate ones to use,   or by following a slightly different,   but 
equivalent,  procedure outlined by Mann.      The observations,   i. e. 
y measurements,   are arranged in temporal order of appearance,   and 
the number of times a subsequent measurement exceeds a given y is 
counted for each y and the sum obtained for all ys.      This sum is 
called T.      It is simply the complement of the number of inversions 
and is related to I and to S in the following manner T = — (n- 1) -I = S+I. 

b. Null Hypothesis.    Each of the n!   possible permutations 
of order for the size-rank of the ys was equally likely,   before sampling, 
to result by arranging the ys in the temporal order in which they were 
generated.      A sufficient condition for the validity of the null hypothesis 
is that the size of the y observations is uncorrelated with the temporal 
order in which they are generated and all assumptions are true. 

c. Assumptions.     The observations have been taken indepen- 
dently and at random from a population in which the ys are continuously 
distributed,   or exist  naturally in the form of untied ranks,   and in which 
ys are generated one at a time. 

d. Treatment of Ties. See 2, Kendall's Rank Order Correla- 
tion Test. If ties are given the midrank, S, rather than T or I, should 
be used as the test statistic. 

e. Efficiency.    When used as tests of randomness against 
normal regression alternatives,   Mann's T test has asymptotic relative 
efficiency of (3/7r)       ' or .93 relative to the parametric test based 
upon the regression coefficient,  b (49,   See also 45).      It is therefore 
equal or superior to most other distribution-free tests for trend.    See 
Table I in Introduction and (45,   49,   13,   37,   38). 

The test is consistent and unbiassed (29,   14) under general 
conditions stated by Mann (29). 
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f. Application.   If x is time in the example given under Appli- 
cation for Kendall's test,   the time-ordered y values are 7,   4,   16,   53, 
84 for which T = 9   and   S = 8.      Significance levels may therefore be 
obtained either by using Mann's probability tables for T or Kendall's 
for S. 

g. Discussion.    See 2,   Kendall's Rank Order Correlation 
Test. 

Elfving and Whitlock (12) have proposed a test for trend which 
is equivalent to T pooled over several sets of observations.      The test 
statistic is equivalent to the sum of r Ts,     where r is the number of 
sets of observations.      Its mean and variance are the respective sums 
of the means and variances for the individual sets.      Thus,   in   effect, 
the test is carried out bv referring to normal tables a critical ratio 

[T ^7— J  anc* whose denominator is the square 

3 2   r 

root of /        ,  n referring to the number of observations in 
^r 72 

a set. 
n.     Tables.   Mann (29) has tabled the exact T probabilities 

for 3 5n<   10T      By using S instead of T,   Kendall's tables (23,24),   or 
the exact tables of   Kaarsemaker and van Wijngaarden (19) can be used, 
the latter yielding exact probabilities for n's up to 40. 

The  distribution  of  T has   mean — (n-1)   and  variance 
4 

_—1_£2— and approaches a normal distribution as n approaches 

infinity (29,   40,   54).      Therefore when n is too large for the exact 
tables to apply,   approximate probabilities for T may be obtained by 

T -f (n-1) 
referring the critical ratio            to normal tables.    (To 

I 2n    + 3n    - 5n 
72 

correct for continuity,  positive numerators should be decreased, 
and negative numerators increased,   by 1/2).      However,   if ties   exist 
and are given the midrank,   neither the T tables nor the normal approx- 
imation to T should be used.      Instead,   the test should be carried out 
using Kendall's S as the test statistic. 
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j.    Sources.   4,   8,   12,   13,   14,   19,   23,   24,   29,   30,   37,   38, 
40,   41,  43,   45,  49,   52,   53,   54. 

4.    Mann's K-Test 

a.    Rationale.    Mann (29) finds that "If P (X. > X) increases 

rapidly with j-i,   then another test is more powerful than the T-test. " 
This test,   the K-test,   consists of arranging the observations in their 
order of appearance,   X   ,   X, ,   X„,   . . . ,   X     ,   and finding "the small- rr o        1        2 n-1 ° 

est value of K for which the following set of inequalities is fulfilled: 

Xo > XK , Xo > XK+1'   ' ' • '   Xo > Xn-1 

Xl > XK+1'""   Xl > Xn-1 

X     __    .   > X       " n-K -1 n-1 

The probability that for n untied observations K will be some specified 
integer K is simply the number of permutations in which K = K divided 
by n! ,   the number of possible permutations of the n observations. 

b. Null Hypothesis.   See 3,   Inversions as a Test for Linear 
Trend. 

c. Assumptions.   See 3. 

d. Treatment of Ties.     Make no compromise in interpreting 
the inequality sign (see above) when determining K.      The probabilities 
thus obtained will err in the conservative direction,   i. e. ,   rejection 
will be less likely than if there were no ties. 

e. Efficiency.   Mann states that when Pr (X.  >X.) increases 
 — i J 

rapidly with j-i,   the K-test is more powerful than the T-test.      He 
notes "that the K-test is most powerful with respect to a fairly wide 
class of alternatives". 
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f. Application.   In the example given for the T-test,  the time- 
ordered observations are 7,   4,   16,   53,   84.      There is obviously no 
downward trend,  which the K-test is designed to detect.      However,  the 
presence of an upward trend may be tested by reversing the signs of 
the inequalities given under Rationale,   and proceeding in the manner 
outlined for downward trend.      The 7 is exceeded by all observations 
from the 16 on,  the 4 is exceeded by each of the two observations 
followine; the 16,   and the 16 is exceeded by the 84.      Therefore K is 
the subscript which goes with 16,  which is the third observation in 
order,   therefore having the subscript 2,   since subscripts start with 
zero.      So K = 2 which for n = 5 has a tabled probability of . 0667. 

g. Discussion.   This test has two outstanding disadvantages. 
First,   it is easy to make errors in determining K.      The determination 
of K involves examining several possibilities in order to pick the 
smallest  K satisfying a rather involved set of inequalities.      And the 
subscript notation is a confusing one since K is one unit less than the 
positional rank of the observation to which it refers.      Furthermore, 
for certain order permutations there is no value of K which satisfies 
the inequalities.      (Zero cannot be used to designate K in this situation 
because zero refers to the first observation in order of appearance,.) 
Second,   the K-test apparently is restricted  to one-tailed tests of hypo- 
theses.      K is not symmetrically distributed,   so the two-tailed probability 
cannot be obtained by doubling the one-tailed probability.       And the value 

of K,  for a test of downward trend,  though different from the value it 
takes in testing for upward trend,  presumably is not entirely indepen- 
dent of it.      So,  if the presumption is correct,  two-tail probabilities 
cannot be obtained by combining probabilities from two opposite one- 
tailed tests.      The following table serves to illustrate these points. 

h.    Tables.   Mann (29) has tabled the probability that K < K 
for 3 < n < 9.     Actually these tables will suffice for almost any prac- 
tical application regardless of the value of n.    For n = 10 and K = 5, 
the first five observations are compared with the last five (i. e. ,  the 
following comparisons are made:   XQ with X5,   X6,  X?,  Xg,  Xg;   Xj 

with X6,  X?,   Xg,  X9;   X2 with X?,   Xg,   X?;   X3 with Xg,   X?;   and 

X4 with X  ).      Since under the null hypothesis the observations are 

randomly arranged in order,  for n > 10 the test may be arbitrarily 
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applied to only the ten observations consisting of   the first five and 
the last five in the series.      When n -  10,     the probability that K < 5 
is . 0098.      In this case,   this is also the probability that K < n - 5. 
When n  is greater than 10 and 4 <K <n - 5,   if the set of inequalities 
holds for K,   it will also hold for a "K" of n - 5 when the set of obser- 
vations is reduced in size to incude only the first five and last five 
observations.      The probability of the latter will be greater than that 
of the former,     but the increase will be from some value smaller than 
.0 098 to . 0098,   thus still being beyond the . 01 level of significance. 
Therefore,   for practical purposes only the first five and last fiv e 
observations are necessary to conduct a reasonable test of significance, 

i.    Sources.    29 
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TABLE X 

TABULATION OF THE DISTRIBUTION OF K WHEN n 

Size-Rank Permutation K = 1 K = 2        K = 3        K = Nothing 

2 3 4 

2 4 3 

3 2 4 

3 4 2 

4 2 3 
4 3 2 

2 1 3 4 
2 1 4 3 
2 3 1 4 
2 3 4 1 
2 4 1 3 
2 4 3 1 
3 1 2 4 

3 1 4 2 
3 2 1 4 

3 2 4 1 
3 4 1 2 
3 4 2 1 
4 1 2 3 
4 1 3 2 
4 2 1 3 
4 2 3 1 
4 3 1 2 
4 3 2 1 

Point Probability 

Cumulative Probability 

x 
x 
x 
x 
X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

042 

042 

X 

X 

167 

209 

292 500 

.500       1.000 
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CHAPTER VHI 

RUNS OF CONSTANT PROBABILITY EVENTS 

In a series of two kinds of events,   a and b,   although the 
proportionate number of a's and b's will necessarily depend upon 
the ratio of their individual constant probabilities of occurrence, 
the pattern in which the obtained a's and b's arrange themselves 
will not and will be random unless a's and b's are sequentially 
dependent.      In that case   like events may tend to cluster,   and this 
may be indicated by an unusually small number of runs,   or clusters 
of like objects,   in the pattern,   or by runs of unexpected length.     Thus 
the total number of runs,  the length of the longest run,   and various 
other run statistics can be used as the sample information with which 
to test for randomness of pattern of arrangement against the alterna- 
tive of sequential dependency.      By judicious definition of the two 
types of event,   this test can be employed to test whether two sampled 
populations are identical,  whether a trend exists in a sequentially 
sampled population,  whether learning is taking place,   etc.      Run 
tests are often rather weak and inefficient,   depending upon the type 
of application contemplated.      However,  their power may be greatly 
increased by introducing certain modifications (such as Ramachan- 
dran and Ranganathan's) or by combining the run test with an inde- 
pendent test (as in David's Chi-square Smooth test of goodness of 
fit). 
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1.      Basic Formulae 

A run is an unbroken sequence of similar events or like 
objects.      For example in the series aababbbaa there are 
five runs:    one run of a's of length 1,  two runs of a's of length 2, 
one run of b's of length 1 and one run of b's of length 3.      The 
following notation will be used in the derivation of run formulae 
when there are two kinds of objects.      Let r..  be the number of runs 

of objects of type i whose length is j and let r. be the number of runs 

of objects of type i irrespective of length,  i.e.  of all lengths.      Let 
n.   be the number of objects of type i and let n be the number of ob- 

jects of both types.     The two types of objects will be designated 1 and 
2 respectively.     The only things which can interrupt or terminate a 
run of like objects are a run of the other type objects or else termi- 
nation of the entire series.      Therefore r, ,  the number of runs of 

l's can either be one greater than,  equal to,  or one less than r»,  the 

number of runs of 2's.    When r.= r_+ 1   the series can begin (and end) 

in only one    way - with a run of l's.      Likewise when r_= r.+ 1 the 

series must begin and end with runs of 2's.    However,  when r..= r_ 

the series can either begin with a run of l's and end with a run of 
2's,   or begin with a run of 2's and end with a run of l's.    Therefore 
it will be convenient to introduce the notation F(r1, r_)= 1 if r,^r_ 

= 2 if r1=r2. 

The r1  runs of l's of various lengths can be permuted in 

r.J ways.    But a permutation which merely exchanges the positions 

of runs of l's of the same length does not change the appearance of 
the series.      The r.. runs of l's of length j can be permuted in r..J 

ways without changing the appearance of the series.      Therefore, 
the number of distinguishable permutations of the r.  runs of l's is 

r    ' 
1 For each of these distinguishable permu- 

11       12 In. , 
x. r A« 

tations of runs of l's,  there are       distin- 
TZV  r22:   •*•  r2n2

: 

guishable  permutations  of the   runs  of 2's.       And since,    if 
r. = r_   the   series   can begin in two ways,    the  total number  of 
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distinguishable permutations given that there are r     runs of l's 
and r_ runs of 2's of specified lengths is 

F(rl'   r?)*      Finally, 
riT   r12!   ••'   rln  ! r21l   r22!   ••'   r2nJ 

1 c 

n1 

since there are    '-       dintinguishable permutations of n     l's 
nl!  n2! 1 

and n_, 2's,   the probability that there will be exactly r       runs of 
2 11 

l's of length 1,   r      of length 2,  etc. ,   as well as exactly r       runs 
12 21 

of 2's of length 1,   r       of length 2,   etc. ,   given that there are 

n    l's and n    2's in the series is 

Pr (r..) = 

rl! *J F(rr   r2) 
rir   r12l   •••   rln  l       r2i:   r22J   '••  r2n  -nl/n^n^ 

Suppose that we are interested in the breakdown of runs 
of l's according to length,   but that we are not interested in the cor 
responding breakdown of runs of 2's.      Considering only the  l's, 

r   ! 
1 

there are distinguishable permutations of 

W     12'   •"     In   ' 
1 

the r.   runs of l's.      Now imagine the n    2's arranged in a line. 

There are n   -1  spaces between 2's,   and the r    runs of 2's can be 
^ 2 

obtained by selecting r   -1 of these n   -1  spaces and "widening" 
1 L n   -1 

them for occupation by runs of l's.      This can be done in   (   2   ,) 
r2 

ways.      If r     = r   -1,   then any given permutation of runs of l's can 
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be fitted into a specified r_-l spaces between 2's in only one way, 
since the series must start and end with a run of 2's.      If r   = r   +1, 

in addition to the r-,-l spaces between 2*s   the runs of l's also 

occupy the space to the left of the leftmost 2 and to the right of the 
rightmost 2.,      The series starts and ends with runs of l's,   and 
the r2~l spaces between 2-runs are occupied by the second to the 
r^-lst 1-run.      Again,   this can be accomplished in only one way. 
However,   if r^«r   ,   the first 1-run can be placed either to the left 

of the leftmost 2-run,   or between the first and second 2-runs. 
Therefore the probability of exactly r       runs of l's of length 1, 

r   _ of length 2,   etc. ,   and r_ runs of 2's of any lengths given that 

there are n.   l's and n_ 2's is 

**i*n>'J—  - r,r    -    , <Xl>  r<rv*z) 
rir   12* ••• rini'    

L nrnz! 

Suppose now that we are interested in neither the lengths 
nor the total number of runs of 2's.      The r    runs of l's can be in- 

serted into any r^ of the n_+l spaces before,   between,   and after 

the 2's,   i. e. ,   into any of the n_-l  spaces between 2's as well as the 

space to the left of the leftmost 2 and the space to the right of the 

rightmost 2.       This can be done in (n2+1)  ways.      Therefore,   (the 
rl 

rest of the derivation being analogous to that given earlier) the 
probability of exactly r       runs of l's of length 1,    r       of length 

2,   etc. ,   given that there are n    l's and n    2's is 

Pr (r     )=    i  
*J ri_i 

rll'     12*   *•• 

Since the number of runs of 2's is unspecified,   it may be r   -1, 

rl   °r   ri + 1  and the terrn F(ri>   r?) is not required in the formula. 

The preceding formulae give probabilities for the entire 
run pattern in the sense that the exact number of runs of each pos- 
sible length is specified,   at least for runs of one type.      In order to 
obtain the more general probability for only certain specified r    , 

i.i 
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one fixes these r.. as constants and sums the formula over all other 

values for which the relationships, 

n. 
1 

/ i r.. = n.   and     /.     r.. = r.,   are satisfied.      For example   if 
j=l       «        1 j       «   •    1 

n. = 7 and n    * 9  the probability of exactly one run of Is of length 

4 would be 

„    .       _ n       y rl!    ,10.   /    161 Pr (r14 = 1) =   2, ; ; ;——  (r ) / ——     = 

_4i_      ,10 31 10 21 10 
ITTT ( 4? + li ll li   ( 3* +~TTTT  ( 2} 

161 
TTTT 

since a run of length 4 could be accompanied by three runs of length 
1,   one of length 1 and one of length 2,   or by one of length 3 while 
still fulfilling the condition that n   =7   and since the number of runs 
of 1 s in these three cases is 4,   3,   and 2 respectively. 

Now suppose that we are interested in number of runs, 
only,   and not in their lengths.      Imagine the n     Is    arranged in a 
line.      There are n. -1 spaces between Is and the Is can be sep- 
arated into r    runs by selecting and "widening"  r   -1 of these 
spaces,  then filling them with runs of 2s.      The r   -1 spaces can  be 

n     - 1 
selected in (   l"   )  ways.      For each of these ways the r    runs of 

2s (which will eventually be interlaced with the Is) can,   by anal- 

•n    - 1 
ogous reasoning,  be selected in (   2   ,)   ways.      Any given set of 

r2" 
r,   runs of 1 s and r_ runs of 2s   can be fitted together in one    way 

if Tj = r    ± 1   and in two ways if r    - r   .      The number of distinguish- 
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able permutations of r.   runs of Is and r? runs of 2s is therefore 

(nl~,)(   2~i)F(r1,   r   ).      The number of distinguishable permu- xr . - 1     r_- 1 i       2 

tations of n.   Is and n    2s without restriction as to numbers of runs 1 2 

is      SJ .      Therefore the probability of exactly r    runs of Is nr n2i 

and r_ runs of 2s   given that there are n    Is and n    2s is 
2 12 

^(rrr2) = (nl-_\)(n2:\)   F(rrr2) 
nr nz' 

If we are interested only in the number of runs of 1 s and 
are indifferent to whether r    equals r   -1,   r,  or r  +1,  we still 

C, 1 1 1 

select the r    runs of Is by selecting r   -1 of the n   -1  spaces be- 

tween Is for widening.      However,  now the spaces before and after 
the 2s as well as the spaces between 2s are available for occupation 
by Is because the number of runs of 2s is not fixed.      Therefore 
there are n +1 spaces available for occupation by the r    runs,   and 

^ 1 
•n    4-1 

they can be chosen in (   2     )     ways.      The rest of the derivation 
rl 

is analogous to that described earlier.      Therefore,   the probability 
that there will be exactly r     runs of Is given that there are n     Is and 

n? 2s is 

_     .     .        .n. -1.  ,n_ + lx      / nj 
Pr (rx) =   (rl_1) (   2r   ) 

* 1     / n.] n2! 

All of the run formulae heretofore listed take n    and n    as 

given.      They give probabilities conditional upon the existence of ex- 
actly n.   Is and n    2s in the obtained sample.      If one is interested 

1 2 
in the arrangement of 1 s and 2s but not in the probability of obtain- 
ing a 1 or a 2,   the foregoing formulae are generally the appropriate 
ones.      However if "1" and "2" are mutually exclusive outcomes of 
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a binomial event, with probabilities p and q respectively of occur- 
rence on a single trial, the experimenter may be interested in the 
compound probability that there will ben.   Is and n    2s and that 

their arrangement will contain a specified configuration of runs. 
This compound probability is obtained by taking the product  of the 

n     nl n2 binomial probability,   (   ) p    q     ,     and whichever one of the prob- 
nl 

ability formulae listed earlier gives the appropriate conditional 
probability for the specified configuration of runs. 

The various formulae given above could be used as the 
bases for a variety of statistical tests of the hypothesis   that Is 
and 2s are arranged randomly.      The particular formula used 
would depend upon the conditions taken as given and upon the alter- 
native hypothesis against which one wished the test to be most sensi- 
tive.      However,   although a multiplicity of such tests are possible, 
calculations of probabilities generally become quite involved at any 
but the smallest sample sizes.      Therefore,  in the following sections 
only    those tests will be described for which probabilities have been 
tabled. 

2.    The Wald-Wolfowitz Total Number of Runs Test 

a.    Rationale.     Suppose that two samples have been drawn 
(randomly and independently),   each from a continuously distributed 
population,   and that one wishes to test whether or not the parent 
populations are identical.      Let the sizes of the two samples be m 
and n and let their observations be designated as xs and ys respec- 
tively.      Now arrange the m+n observations in increasing order of 
magnitude irrespective of the sample to which an observation ori- 
ginally belonged.      Finally,   label each such observation x or y 
depending upon the sample from which it came.      If the two samples 
came from identical populations,  then the pattern of arrangement 
of xs and ys is a random one since x and y are arbitrary labels at- 
tached to observations drawn randomly and independently from the 
"same" population.      However,   if the samples are from different 
populations,  one would expect observations from the same sample 
to tend to cluster;    so the total number of runs should tend to be 
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less than the number expected on a purely chance basis. 

Let U stand for the total number of runs of both xs and 
ys.      Since the number of runs of xs can be one less than,   equal 
to,  or one greater than the number of runs of ys,   U can be an even 
number in only one way,  but can be an odd number in two ways. 
Substituting into the formula 

p* <*!• »2> • Cj:!> C|:l> *<»i. r
2>/<n\- 

if r, = r2 = r,   Pr (r   , r  ) = 2(^J) f^) / (""") , 
,n-lv ,m-lv    //m+n4 

m 

if r1= r andr2 = r + 1,    Pr (i-j, r2) = (*"}) (•"1)   / ("£") , 

and if r,  = r +  1 and r_ = r,   Pr (r., r_) = (n"   ) (m~,) / (m  n) 1 2 x   1'    2 r r-1 /       m  ' 

Therefore,  the probability that the total number of runs will be 

some even number,   2r,   is Pr (U = 2r) = 2(   ".) (     ",) / (       n) xr-1       r-1   /    m 

and the probability that it will be some odd number,   2r+l is 

Pr (U = 2r+l) =   -±-i Z-L- 
.m+n. 

m 

b.    Null Hypothesis.     Given that there are m xs and n ys, 

each of the  /m+n\distinguishable arrangements of xs and ys was x m 

equally likely to have been the arrangement actually obtained.     A 
sufficient condition for the validity of the null hypothesis is that the 
x observations and y observations were drawn from identical popu- 
lations and that all assumptions are true. 
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c. Assumptions.     For each sample the observations 
were drawn randomly and independently from a continuously 
distributed population. 

d. Treatment of Ties.     Ties are a problem only when 
observations from both samples are tied for the same position, 
or rank,   in order of increasing magnitude.      In many,  but not 
all,   such cases the resolution of ties can affect the total number 
of runs.      A tie for which the total number of runs varies de- 
pending on how the tie is broken will be a called a "critical" tie. 
For a conservative test  critical ties should be resolved in the 
manner least conducive to rejection of the null hypothesis.    How- 
ever,   if one wishes to minimize the average error in probabilities, 
the following method of dealing with critical ties may be pursued. 
For tied groups consisting of a single x and a single y,   randomly 
select one-half of the groups and resolve ties so that the x pre- 
cedes the y with which it is tied;   for the remaining half,   resolve 
ties so that the y precedes the x;   if an odd group remains,   resolve 
the ties by flipping a coin.      For tied groups consisting of a single 
x and two ys,   resolve ties so that for a randomly selected 1/3 of 
these groups the order is xyy,  for another randomly selected 1/3 
it is yxy,   and for the remaining 1/3 it is yyx,   any remaining groups 
being resolved by randomly selecting one of the orders xyy,   xyx, 
yyx,   a different randomly-selected order being   used for each such 
group.      To generalize:   if there are k groups in which s xs and t 
ys are tied with one another,   resolve ties by successively selecting 

s+1 
(       )    of the k groups and replacing each of them with a different, 

s+1 randomly assigned one of the (       )   distinguishable orderings of 
s 

s+1 
s xs and t ys;   if k is not divisible by (       )     resolve ties in the s 

remaining groups by randomly assigning each of them a different 

s+1 
one of the (       ) possible orderings. s 

e. Efficiency.    When applied to symmetrical populations 
known to be equal in all respects except for location,   a test for 
identical populations is equivalent to a test for equal means.      When 
both tests are applied to samples from normally distributed popu- 
lations with equal variances,   the Wald-Wolfowitz form of the run 
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test has relative to Student's t-test an asymptotic relative efficiency 
of zero (33   see also qualifications stated in 30,   33) and a small sample 
efficiency which,  when each sample contains five or less observa- 
tions,   generally exceeds . 96 and may be as high as . 995 (13).    It 
also has an A.R.E.  of zero relative to the F ratio when applied 
to normal populations as a test for dispersion (33).      The test com- 
pares poorly with other distribution-free tests (see Table I in Intro- 
duction).      It had the least power of the tests investigated by van 
der Waerden (47),   Epstein (14),   and Lehmann (30),   the former two 
authors     sampling from normal populations with homogeneous var- 
iances,  the latter sampling from a continuously distributed popu- 
lation.      It was found by one or more of these authors to be inferior 
in power to the following tests:   Student's t, van der Waerden's X-test, 
Lehmann's most powerful test,   Mann-Whitney test,   Westenberg's 
Median test,   Epstein's exceedances test,   Smirnov's maximum devia- 
tion test.      The Wald-Wolfowitz test is consistent if the ratio m/n 
of sample sizes remains constant as sample sizes m and n approach 
infinity and if certain other very mild   conditions are met (48,   29). 
If the ratio m/n does not remain constant,  but approaches zero 
or infinity,  the test is inconsistent.      That is to say,   if one sample 
is of much greater size than the other,   observations from the 
sample of smaller size are almost certain to be separated from each 
other by observations from the larger sample;   thus,   the number of 
runs will tend to be a maximum regardless of whether the null hypo- 
thesis is true or false (29). 

The power function for Steven's form of the run test has 
been obtained against the alternative of a Markov chain by David 
(10). 

f.    Application.   Suppose that a sample of observations 
has been taken on randomly selected and assigned subjects under 
each of two treatments and that it is desired to test whether the 
two treatments differ in any measured respect.      The data are 
shown below. 

Treatment x 5 14 23 61 114 125 131 

Treatment y 47 55 64 66 71 

If the data are arranged in order of increasing magnitude with the 
sample from which each observation came listed below it,  we have: 
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5      14      23      47      55      61       64      66      71       114      125       131 

xxxyyxyyy x x x 

There are three runs of xs and two of ys,   so U = 5.      Entering the 
probability tables for runs with m = 7,  n = 5,   and taking the small- 
est numbers of runs as the rejection region,  we find that the largest 
value of U significant at the one-tailed . 05 level of significance is 3. 
Since U =   5 in the above data,  the hypothesis of identical populations, 
and therefore equal treatment effects,   cannot be rejected at the 
significance level chosen.      Since a casual inspection of the data 
strongly suggests that the populations have unequal variances,   the 
above example serves to illustrate the weakness of the test. 

g.    Discussion.    The total number of runs can be used as 
a test statistic in ways other than that described for the W aid-Wolf - 
owitz form of the test.      Actually the total number of runs is an 
appropriate test whenever one is interested in the randomness of 
arrangement of mutually exclusive events,  fixed in number,   and 
constituting a dichotomy.      It can be used as a test for trend by 
labeling observations above and below the median as x and y respec- 
tively;    if there is a linear trend,  the number of runs should be 
smaller than that expected by chance.      It can be used (19,   7) to 
test the randomness of wet and dry days in order of appearance; 
or to test whether occupied seats at a lunch counter tend to occur 
in isolation,  bordered by vacant seats(15).      In such cases the null 

hypothesis is simply that given m xs and n ys each of the    ( ) 

distinguishable arrangements is equally probable.      The assumptions 
are that there are only two mutually exclusive and unconfusable cate- 
gories and that sampling is random and independent.      The efficiencies 
found for the Wald-Wolfowitz test relative to Students t are,   of course , 
not applicable here.      The formulae for Pr(U),   given under Rationale, 
apply in all of the above cases.      One additional case in which it does 
not apply is that in which the mis and n 2s are arranged around a 
circle rather than in a straight line.      Stevens (42) has derived the 
probability for the total number of runs in    this case. 

h.     Tables.   Probabilities for U have been tabled by Swed 
and Eisenhart (44) for m < n < 20,   and for certain other cases.    Major 
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portions of their tables are republished in (1-8, 1-23, 1-43, ); 
smaller portions can be found in (22, 23, 50). David (9) has 
provided tables appropriate when m+n < 14 and 2 < U < 14. 

The mean and variance of U are        + 1 and 
m+n 

respectively and U is asymptotically normally 
(m+n)2 (m+n-1) 

distributed if the ratio of sample sizes remains constant while 
sample sizes approach infinity (48).      Therefore,  when samples 
are too large for the tables to apply,   approximate probabilities can 
be obtained by treating U as a normal deviate and referring the 

jj       2mn        , 

critical ratio     . —-      to normal tables.    (To correct 
/ 2mn (Zmn-m-n) 

V    (m+n)2 (m+n-1) 

for continuity,   reduce the absolute value of the numerator by 1 /£) 
Generally the test will be one-tailed with "too few" runs constituting 
the critical region,   in which case,   of course,   a one-tailed probability 
must be read from the normal tables for the critical ratio. 

i.    Sources.   9,   10,   13,   14,   15,   22,   23,   29,   30,   33,   34, 
35,   42,   44,   47,  48,  49,   50,   51,   52. 

3.      Length of the Longest Run 

a.  Rationale.     Just as the total number of runs is an index 
of a possible tendency for like objects to cluster,   so is the length of 
the longest run.     Using the notation of Section 1,  the probability 
that the longest run of Is will be of length S can be obtained by taking 
n,  and n? as fixed and summing the formula 
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Pr (rj.) 

over all values of r. and over all sets of r. 

1 
which satisfy y      jr.. = n.,     I" rl' = rl '    anc* rl<? - * anc* suc^ 

j=l j 

that r.  exceeds neither n..   - S +1  nor n_ + 1.       The probability 

that the longest run of either Is or 2s will be of length S can be 

obtained by an analogous attack upon the formula 

r   i r   i 

Pr(r    )= L         H     F<rrr2>/<n> 
rir      12'   "°      IS' 21*      22*   •"      2S* 1 

with the proviso that r1      and r_    cannot both be zero at the same 

time.      The above method is involved and considerably more con- 
venient formulae have been derived for such probabilities (1,   34, 
38,  49);   however,  their derivation is not as   simple as those which 
have been presented here. 

b.    Null Hypothesis.     Given that a sample contains n..   Is 

nl+n2 
and n? 2s,   each of the ( )   distinguishable arrangements   of 

Is and 2s was equally likely to have been obtained prior to sampling. 

c. Assumptions.   Sampling is random,    observations are 
independent,   and all observations can be unmistakably classified 
into one of two mutually exclusive and unconfusable categories. 

d. Treatment of Ties.   Ties are a problem only when 
their resolution may change the length of the longest run.      Such 
ties should be resolved in the manner least conducive to rejection 
of the null hypothesis or else dealt with in a manner analogous to 
that outlined for critical ties in Section 2,   The Wald-Wolfowitz 
Total Number of Runs Test. 
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e. Efficiency.   Power functions were obtained by Bateman 
(1) for the length of longest run and for the total number of runs as 
tests of randomness against the alternative of a simple Markov chain, 
i. e. ,  that each event is dependent upon the preceding event but no 
other.      For this case the length of longest run test was found to be 
less powerful than the total number of runs test. 

f. Application.   In the following series aabbaaaabb 
bbbbbabaaa,   the longest run contains 7 like objects.    Refer- 
ring to tables of probabilities with n.  * 10, n. • 10 and longest 
run=7, the probability that at least one run of length 7 or more will 
occur either among the a's or among the b's is found to be .032.  The 
probability that at least one run of 7 or more b's will occur is .017. 

g. Discussion.    See 2,   The Wald-Wolfowitz Total Number of 
Runs Test. 

h. Tables. Bateman (1) has provided probability tables 
for "at least one greatest run, of either kind of element, of given 
length" for values of n    + n    5 20.      These are point probabilities, 

i. e. ,   are for one or more runs exactly S in length.      Mosteller (38) 
has tabled the probability of at least one run of length S or greater 
among elements of one type,   either type or each type for n   =n   • 5, 
10,   15,   20  or   25.    Portions of Mosteller's tables have been repub- 
lished by (50,   1-15). 

i.    Sources.      1, 34,   38,   49,   50. 

4.    Length of Longest Run as a Test for Randomness against 
Trend Alternatives 

Suppose that  a series of observations have been taken upon 
a continuously distributed variable and that they have been arranged 
in the order in which they were drawn,   no two observations having 
been drawn simultaneously.      If each observation is now labeled A 
or B depending upon whether it is above or below the median for the 
entire series,   the presence or absence of trend can be tested by 
using as the test statistic one of the following:   the length of the 
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longest run on one side,   either side or both sides of the median. 
If there are an odd number of observations one of them will be the 
median and it should be discarded.      This test has been proposed 
by Mosteller (38) who has published appropriate tables for the cases 
where n    = n    = 5,   10,   15,   20  or   25.    See also (50,   1-15). 

1 2 

5.    Length of Longest Run in Binomial Trials 

a. Rationale.    Rationale of 3,   Length of Longest Run, 
discussed the method of obtaining the formula for the probability 
that the longest run of Is will be of exactly length S.      This prob- 
ability was obtained by taking n     and  n     as fixed constants,   and 
is contingent upon their having the values assigned them.      Let Pr 
(S j n,)   stand for such a probability,   and let n * n    + n     be fixed. 
Now suppose that the occurrence of a 1 or a 2 is a bindmial event 
with probability p or q respectively for a single trial.      If,  for every 

possible value of n   ,   Pr (Sin   ) is multiplied by (    )p   1 q  2      and the 

products are summed,  the sum is simply the a priori probability 
that in n    binomial trials the longest run of consecutive Is will be 
of exactly length S.      More convenient methods and formulae are used 
in actual tabulation of probabilities (21,   34,   46,   49). 

b. Null Hypothesis.    The probability that in n trials there 

n      nl    n2 will be exactly n    Is is  (    ) p      q        and for any obtained value of n 

nl +n2 ni 

each of the ( )     distinguishable arrangements of Is and 2s is 
nl 

equally probable. 

c. Assumptions.      Sampling is random;   observations are 
independent; 1 and 2 are mutually exclusive outcomes of a binomial 
event with constant probabilities p   and q = 1  -p    for a single trial. 

d. Treatment of Ties.     Break ties in the manner least 
conducive to rejection of the null hypothesis. 
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e. Efficiency.    No information available. 

f. Application. An experimenter wishes to test whether 
or not a monkey" can learn to associate a red light with food. The 
monkey's food is always hidden in one of five boxes and the "re- 
ward" box is always illuminated by a red light. The probability 
of "success" on a single trial is therefore 1/5 if the null hypo- 
thesis of no learning  is true.      Consulting Grant's tables (20) 
the experimenter finds that when   p = 1/5   a run of 4 or more suc- 
cesses in 40 trials is significant at the . 05 level.      Therefore he 
decides to run not more than 40 trials and to reject the null hypo- 
thesis whenever the number of consecutive successes reaches 4. 
The monkey's successes and failures to go first to the red-illumin- 
ated box are:   FFFSFFFFFSSFSSSS,    so only 16 of the 
maximum of 40 trials had to be run.      The significance level,  how- 
ever,   is not reduced but remains . 05 since it had originally been 
intended to run as many as 40 trials if necessary. 

g. Discussion.    The question arises as to which type of 
test is appropriate,  that which treats n     and n     as given or that 

which treats   p as given.      Mosteller's test for trend takes n    = 

n~ = ^ and indeed this must be the case since n continuously dis- 

tributed observations are being classified as above or below their 
own median.      In this case it would be very improper to treat 
"above the median" as a binomial event with probability 1/2 since 
in n trials of such an event,  n     should be able to assume any value 

from zero to n,  which is obviously impossible if n     is the number 

of the n observations above the median of the same n observations. 
Similarly if one were interested in the randomness of a seating 
arrangement,   one would take the observed number of occupied and 
unoccupied seats as given since it is only the pattern of occupancy, 
not the probability of occupancy,   in which one is interested. 

On the other hand   suppose that one knows that he is dealing 
with a binomial event (which is free to occur any number of times 
from zero to n in n trials) and that one can state,   a priori,  the exact 
value of the constant parameter p.     Then by using the "binomial" 
approach outlined under Rationale  one need only conduct that number 
of trials between S and some predetermined value,  n,  necessary to 
produce the criterion of S consecutive successes.      Research effic- 
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iency has therefore been gained.      Furthermore,  when used as a 
test for learning,   as outlined by Grant (20,   21)  and as conducted 
under "Application",  the "binomial" approach has particularly 
desirable features,   i.e. ,  the test is particularly sensitive to the 
alternative hypothesis.      When learning begins p (which is con- 
stant only if the null hypothesis of no learning is true) increases. 
This causes n1 to tend to assume a value greater than chance 
would have given it.      And naturally with a greater number of 
successes there are more ways of obtaining a run of S consecu- 
tive successes and the probability of a run of length S increases 
simply because of the "inflated" value of n   .      Learning,   however, 
also increases the probability that successful trials will be tem- 
porally adjacent.      Therefore,  learning makes rejection particu- 
larly likely by increasing both the probability of temporal associa- 
tion among the number of successes occurring and by tending to 
increase the number of    successes beyond what would be expected 
if the null hypothesis were true. 

h.    Tables.     Grant (20,   21) has tabled the probability of 
a run of at least S successes in n trials for the following values of 
p:     1/2,   1/3,   1/4,   1/5.      See also (18). 

46,   49. 
i.    Sources.      4,   5,   7,   8,   15,18,   19,   20,   21,   34,   39, 

6.      The Sum of Squared Run Lengths 

The Wald-Woffowitz total number of runs test is one of 
the least powerful distribution-free tests for goodness of fit,  i. e, 
that two samples were drawn from identical populations.      Pre- 
sumably this is partly because the total number of runs does not 
directly take account of the lengths of runs which are the more 
explicit indices of the tendency of like objects to cluster.      The 
length of the longest run,   by taking account of only the longest run, 
ignores the "information" contained in the lengths of the less-than- 
longest runs.      And in the case investigated by Bateman (1) this 
statistic was found to be less powerful than the total number of runs, 
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Ramachandran and Ranganathan (40) have proposed a test 
which overcomes the objections voiced above.      Their test statistic, 
N,   is the sum   of the   squares   of lengths   of  runs,   i.e.,    N = 

f i    r     +y   i    r    . Thus all runs are taken account of,   but 

J J       J J 

each run is permitted to influence the test statistic in proportion 
to the square of its length.      Its authors recommend the test for 
the same situation dealt with by Wald and Wolfowitz,   i. e,   obser- 
vations are arranged in increasing order of magnitude and runs of 
Sample 1 observations and of Sample 2 observations are noted,   the 
test being used to decide whether the two samples belong to identical , 
continuously distributed,   populations.      The authors,   considering 
only the case where n    • n   ,  have tabled values of N required for 

various levels of significance.      The tabled values of N are exact 
for the cases 3 5n,   5 5   and approximate for 6 5 n   5 15,   in the 

-    1 - rr ~     1 ~ 
latter case having been obtained by reading points from a Type VI 
curve fitted to the true distribution of N. 

7.      Dixon's Test 

A test analogous to that of Ramachandran and Ranganathan 
was proposed earlier by Dixon (12).      Two samples of sizes m and n, 
with n < m,   are drawn from continuously distributed populations and 
arranged in order of increasing magnitude irrespective of sample. 
There are n + 1 spaces between,  before and after the n observations 
into which the m observations may be distributed.      If the two sam- 
ples are from the same population,   one would expect the proportion 
of the m observations actually falling into a specified space to be 

1 m. 
Therefore Dixon subtracts the observed,   proportion  

n+1 r     r m 

where m.   is the number of such observations actually falling in 
.tVi 1 

the i      space,  from the expected proportion      ,   and squares 
n+1 

the difference.      This is done for each value of i from 1 to n+1. 
The sum of these n+1  squared differences is taken as the test 
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2 2 statistic    and called c   .      Probability tables are provided for c 
for cases in which neither m nor n is greater than 10.      For larger 
values of m or n approximate probabilities can be obtained by a 
procedure which relates c    to the chi square distribution.      For 
details see (12). 

The quantity m.    is of course the length of the run of ob- 

servations from the sample of size m which occupies the i**1 inter- 
val "between" observations from the other sample of size n.      How- 
ever,   since the i^n interval may be unoccupied,   m. may be zero. 

m. 
Therefore the quantity squared by Dixon,   i. e. ,       -    is not 

n+1 m 

directly comparable to the quantity squared by Ramachandran and 
Ranganathan,   i. e. ,   the length of an actually obtained run which 
therefore cannot be zero.      Another way of putting it is that while 

the value       is the expected proportion of m-sample observa- 
n+1 

tions falling in the itn interval,   it is not the average length of 
obtained,  m-sample,   runs. 

Still another test somewhat similar to the two discussed 
above,   as well as to the Mann Whitney test has been outlined by 
Mathen.    See (32). 

8.     David's Chi Square "Smooth" Test of Goodness of Fit 

One of the classic criticisms of the chi square test of 
goodness of fit is that,   since deviations from expected values are 
squared before being divided by the expected value and summed, 
the test does not take account of the directions of deviations.      For 
example,   consider the following table in which the columns,  from 
left to right,   represent the corresponding,   successive,   abscissa 
intervals. 
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f     15  14  13  12  11   9   8   7   6   5 
o 

f     10  10  10  10  10  10  10  10  10  10 e 

frt-f    5   4   3   2   1-1-2-3-4-5 ° e 

If the only restraint is that  Yf    =   ^f   ,   then there are 9 degrees 
2 of freedom and the obtained value of 11 for X    has a probability of 

about . 30.      Although there is a strong indication that the left por- 
tion of the true curve lies above,   and the right portion lies below, 
the hypothesized curve,   chi square ignores this information and, 
dealing only with the magnitudes of the deviations,   falls short of 
significance. 

David (9) has proposed a test which takes account of both 
the magnitude and the direction of the deviations.      The test is 
generally applicable (for reasons and for exceptions see 9,   11,   17, 
41) only when    there is a single linear restraint upon chi square, 
i. e. ,  when the sum of the expected   frequencies has been made to 
equal that of the observed,   so that the number of degrees of freedom 
is one less than the number of deviations.      The data are arranged 
in a table,   similar to the one shown,  with each column in the same 
relative position as the abscissa interval from which its data were 
taken.      The chi square test is conducted in the usual way and its 
cumulative probability,   P (X   ),   is obtained. Then    the total number 
of runs of plus    and of minus deviations is counted among the devia- 
tions as they are arranged in the table.      This number is referred to 
a probability table,   supplied by David,   which  gives 

U o 
Pr (U < U   ) =   A        Pr(u| n,n0),     i.e. ,  which gives the probability 

=     °        U=2 l   Z 

of the obtained number of runs cumulated from 2 to the obtained 
number and conditional upon the existence of n,  plusses and n? 

minusses.      (Since   Tf    has been made to equal V f   , V f     -V *•   = 0, 

i.e. ,  the sum of the deviations must equal zero,   and there must 
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be at least one positive and one negative deviation.      Therefore, 
since one run is impossible,   the cumulation starts with two.    How- 
ever this qualification is automatically imposed whenever both n, 
and ni   are different from zero,   so any set of total-number-of 
runs tables is appropriate if entered with the obtained values of 
n\ and n?,     neither of which can,   in this application,   equal zero. ) 

The chi square test and the toal number of runs test are 
independent.      Therefore a single significance level can be obtained 
for the two tests by calculating their joint probability.      This is 
somewhat complicated by the fact that chi square is a continuously 
distributed variable while the distribution    of the total number of 
runs is discrete.      However,   David (9) has simplified matters by 
tabling this joint probability.      Thus one obtains the product of  P(X   ), 
the cumulative probability of the obtained X   ,   and P(U),   the prob- 
ability of the total number of runs cumulated from U = 2 to the ob- 
tained value.      David's tables give the values of this product which 
are significant at the . 05    and . 01 levels of significance for values 
of n^ + n     514.      It is particularly important that expected cell fre- 

quencies should be large enough for the binomial sampling distribu- 

tion of "observed" frequencies to be well approximated by a normal 
distribution.    This is the case because "an assumption implicit in 
the test would appear to be that for each X^ cell there is an equal 
chance of obtaining a positive or a negative deviation".    Furthermore, 
the independence of the chi square and run tests relates to the the- 
oretical,  continuously distributed chi square   distribution,  not to 
chi square as calculated from the sample.      The discrepancy be- 
tween the two "chi squares" is neglibible when expected cell fre- 
quencies are large,  and effective independence can be expected to 
obtain;   however,  there is no certainty that the chi square and run 
tests continue to be independent when expected frequencies are small. 

9.      Extensions of Run Theory 

Runs discussed so far have involved only two kinds of ele- 
ments arranged in a linear sequence.      However various probability 
formulae have also been derived for runs of like elements when 
there are more than two kinds of elements (34,   43,   49) and for runs 
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where adjacency among elements can occur along two or more 
dimensions (3,   16,   24,   25,   26,   27,   31,   36,   37,   45).      Such multi- 
ple-category and polydimensional runs are generally analysed on 
the basis of large sample theory,  using critical ratios,   rather than 
exact probabilities,   since the exact distribution of such runs rapidly 
becomes difficult to tabulate as sample size increases. 
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CHAPTER IX 

RUNS UP AND DOWN 

A type of run test for trend can be obtained by defining 
a run as an unbroken sequence of increasing or decreasing ob- 
servations.      In this case the two kinds of events,   "greater than 
the preceding observation" and "smaller than the preceding ob- 
servation, " are neither fixed in number nor of constant probability 
(since their probabilities depend on how "extreme" was the pre- 
ceding observation).      Thus the formulae developed in the pre- 
ceding chapter are inappropriate.      By investigating the proba- 
bility for a given pattern of observation magnitudes,   rather than 
a given pattern of dichotomized "events, " the necessary formulae 
are obtained.      Run tests of this type have used the total number 
of runs,  the length of the longest run,   or chi-square applied to 
frequencies of runs of various lengths,   as the test statistic. 
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1.      Introduction 

Suppose that n observations have been taken on a contin- 
uously distributed variable and arranged in the order in which 
recorded.      A continuously ascending sequence of observations 
will be defined as a run "up"  and a monotonically decreasing 
sequence will be called a run "down'1.      Now suppose that each 
observation is subtracted from the succeeding observation. 
There will be n-1 algebraic signs to replace the n original 
observations.      A run "up" will now be more definitively in- 
dicated by a sequence of + signs,   and a run "down" will be un- 
ambiguously identified by a run of - signs.      The farther an 
observation is from the median of the series,  the less likely it 
will be that the succeeding observation will depart from the median 
still farther.      Therefore "plus" and "minus" are not constant 
probability events and probability formulae for runs up and down 
must be derived in the light of that fact. 

Consider the probability that the i**1 observation ob- 
tained initiates a run up of exactly S+l observations so that the 
difference sign obtained by subtracting the i*" from the i+lst 
observation is the first + in a sequence of exactly S plusses.    A 
run up of S+l observations must begin with the first observation 
in the entire series when n = S+land it must either begin with the 
first or end with the last observation when n»S+2.      In order to 
examine the general case where the run can initiate,  terminate 
or lie enclosed within the series,   assume that n ^ S+3.    Consider 
first the probability that the series begins with a run up of exactly 
S+l ascending observations.      Let the first S+2 observations be 
replaced by their ranks,  from  1 to S+2,   in order of increasing 
magnitude.      If the series is random,   i.e. ,   contains no true trend, 
each of the (S+2)I   permutations of these S+2 observations is 
equally probable.      But in order for the series to begin with a 
run up of exactly S+l ascending observations,  the S+2 ranks must 
be arranged so that:    (a) the rank S+2,   i. e. ,   the highest among 
the S+2 observations,   occupies the S+lst position,   (b) any one of 
the remaining S+l  ranks occupies the S+2nd position,   (c) the re- 
maining S ranks are arranged in order of increasing size.      Of 
these three requirements,   (a) can be fulfilled in only one way, 
(b) can be accomplished in S+l ways and (c) can then take place 

223 



in only one way.      So the probability that the series begins with a run 

S+l of increasing observations of exactly length S+l is IA  »u   .  This 

is also the analogously derived probability that the series ends with 
a run up of exactly S+l ascending observations, i. e. , that a run up 
of S+l observations begins with the n-S*n observation. 

Now consider the probability that a run up of S+l ascend- 
ing observations begins at some specified position,   i,  where 
2<i<n-S- 1,   i. e. ,   excluding the cases where the run begins 
or ends the series.      Let the i-lst to the i+S+lst observations 
be ranked from 1 to S+3  in order of increasing magnitude.      If 
the series is random,   each of the (S+3)"i  permutations of order 
for these S+3 ranks is equally likely.      But only in the following 
ways can the S+3 ranks be arranged so that the first is higher then 
the second,   the second to the S+2nd form an ascending sequence, 
and the S+3rd is lower than the S+2nd:    (a) Rank 1 occupies the 2nd 
position,   rank S+3 occupies the next to last position,   any one of the 
remaining S+l ranks is placed in the first position,   any one of the 
remaining S ranks is placed in the last position,   and the remaining 
S-l  ranks are arranged in increasing order   of magnitude from 3rd 
to second from last position.      (b) Rank 1 occupies the second position, 
rank S+2   occupies the next to last position,   rank S+3 occupies the 
first position,   any one of the remaining S ranks is placed in the last 
position,   and the remaining S-l ranks are arranged in increasing 
order of magnitude from 3rd to second from last position.      (c) 
Rank 2 occupies the second position,   rank S+3 occupies the next 
to last position,   rank 1 occupies the last position,   any one of the 
remaining S ranks is placed in the first position,   and the remaining 
S-l ranks are arranged in increasing order of magnitude from 3rd 
to second from last position,    (d) Rank 2 occupies the second posi- 
tion,   rank S+2 occupies the next to last position,   rank S+3 occupies 
the first position,   rank 1 occupies the last position,   and the remain- 
ing S-l ranks are arranged in order of increasing magnitude from 
3rd to second from last position.      There is only one way in which 
a specified rank can be assigned to a specified position and only one 
way in which S-l ranks can be arranged in order of increasing mag- 
nitude in S-l positions.      Therefore,  the number of ways in which 
(a),   (b),   (c),   and (d) can be accomplished is (S+1)S,  S,  S,   and 1 
respectively.      The probability that a run up of exactly S+l ascend- 
ing observations begins at a predesignated position,  i,  when 
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S +3S+1 
2<i<n-s-l,   is therefore   —._   „  -  . 

=    = (S+3)! 

We have seen that when n > S + 3,   the probability that a 
run of exactly S+l ascending observations begins with the i*" obser- 

S+l v        •       i i- e S2+3S+1 . vation is   ——     when l = 1 or when I = n-S and is   —————    when 
(S+2)! (S+3)i 

i is any one of the n-S-2 values between 2 and n-S-1.      These are 
probabilities that the i*" observation initiates a run up of specified 
length,   i. e. ,   each probability is conditional upon the i-lst obser- 
vation,   if there is one,  not being a continuation of the run.    Other- 
wise viewed,   each probability is conditional upon the i"1 observa- 
tion not being a continuation of any run up which began at some 
point earlier in the series.      Therefore,   since the probabilities 
do not refer to overlapping events,  they can be summed over all 
possible values of i to obtain the expected number of runs of the 
specified type.      Thus,  when n > S+3  the expected number of runs 
of ascending observations of length exactly S+l or of plus differ - 

..       .. ..    c.     2(S+1) (n-S-2) (S2+3S+1)        ... ence signs of length exactly S is     x + J      x —  which 
(S+Z). (!b+3). 

.      n(S2+3S+l) - (S3+3S2-S-4) 
reduces to —* •  '—  .      Following analogous 

(O+J;. 

derivations,   it is    clear that when n = S+2 the expected number of runs 

2(S+1) 
UD      of exactly S+l observations is —~ r^-   and when n = S+l it is H ' (S+2)] 

(It should be noted that these derivations are based upon 
(S+l)! 

the n observations being in a random order,  not upon each difference 
sign of a given type being equally likely,which is not the case. ) 

The expected number of runs up of ascending observations 
of length S+l or longer   is derived in a manner analogous to that 
already presented,   dropping the restriction that the S+lst obser- 
vation composing the run be followed by a lower observation.    Thus 
assuming   n > S+2,   one requires only that when i » 1 the S+l obser- 
vations beginning with the i'*1 are arranged in order of increasing 
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magnitude and that when 2 < i < n - S,   in addition to the above re- 
quirement  the i-lst observation is higher than the i    .      The ex- 
pected number of runs of ascending observations of length S+l or 

.    .,        ,               1               (n-S-1) (S+l)               n(S+l)-(S2+S-l) 
greater xs therefore -J—J,   + (s+^\ or  ^  

when n > S+2  or when n - S+l.      And if 1 is substituted 

for S in the above formulas,   the result is the expected number of 
runs of ascending observations of length S+l  = 2 or greater,   or the 
number of runs of plusses of length 1 or greater.      This expected 

number is      n~      when n > S+2  and 1/2 when n = S+l. 
6 

A run up and a run down commencing with the i*" observa- 
tion are mutually exclusive events.      Therefore  to obtain the ex- 
pected number of runs up or   down,   the expected number of runs 
up should be doubled.      Variances for runs of either plusses or 
minuses of length S,   or of length S or greater,  have been given 
by Levene and Wolfowitz (7).      The formulae for the general case, 
i.e. ,  with S a variable,   are lengthy.      However,   they are greatly 

2 
shortened when S is given a specific value.    For S = 1,  cr     = 

305 n-347                            ..         2    _   51, 106 n-73, 859      _      . > . 
—720^   '   "* f°r S " 2>tF 453,600 •   For S > 1, 

S ^ 2,   and S ^ 3,  the respective variances are: 16 n-29 
90 

57 n-43 21,496 n-51, 269 and 
720        ' 453,600 

Consider the n observations ranked from 1 to n in order 
of increasing magnitude.      There are n]  permutations of these ranks, 
and the expected number of runs of a specified type is simply the 
total number of such runs   which can be found in these nl  permu- 
tations divided by the number of permutations, n!.      On the other 
hand,   the probability of at least one run of the type specified is 
the total number of permutations in which such a run can be found 
divided by the number of permutations,  nj .      Therefore the prob- 
ability and expected number do not coincide when it is possible for 
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more than one run of the specified type to be found in a single 

n     1 
permutation,      However,  when S >    ".     the formulae already pre- 

sented for the expected number of runs of a given variety also give 
the exact probability of occurrence for such runs.      This appears 
to be the only situation,  when dealing with runs up or down,   in 
which an exact probability can be calculated without resort to a 
recursion formula. 

2.      Length of Longest Run Up or Down 

Using a recursion formula Olmstead (9)  has calculated 
and tabled exact probabilities for runs of like difference signs of 
length S or greater when 2 < n < 14.      For n > 14 Olmstead has 
tabled approximate probabilities calculated from asymptotic 
formulae (9,   13). 

3.      Total Number of Runs Up and Down 

The total number of runs is simply the number of runs 
of plusses or minusses of length 1 or greater,   and this was shown 

?n     1 
in Section 1,   Introduction,   to have an expected value of —   and 

3 

a variance of   ——    when n is greater than 2.      The total num- 

ber of runs,   r,   is asymptotically normally distributed (6,   12),   so 
for large values of n the significance of the total number of runs 
can be tested by treating r as a normal deviate and referring the 

V 
r - 2 n-1 

3 

lit n -29 
critical ratio ——    to normal tables.      By reducing the 

90 
absolute value of the numerator by 1/2,   the critical ratio can be 
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corrected for continuity. 

If the total number of runs is r,  then the series has re- 
versed direction r-1 times,   and a test based on the number of 
"turning points" is equivalent to one based on the total number of 

2 n-4 runs.      The expected number of turning points,   T,   is   —-—    and 

its variance is the same as that for the total number of runs.   There- 
fore the significance of the number of turning points can be tested by 
forming the critical ratio analogous to that given above,   referring it 
to normal tables.      When all tests concerned are applied to samples 
from normally distributed populations the turning point test has an 
asymptotic relative efficiency of zero with respect to the regression 
coefficient test and also with respect to each of eight distribution- 
free tests of randomness with which it was compared (10,   11). 
See Table I of Introduction. 

4.      Chi Square Applied to Run Frequencies 

The expected number of runs of plusses or minusses of 
exactly length S was derived in Section 1,   Introduction,   and found 

,       4 (S+l) 2 (n-S-2) (S2+3S+1) . .. .    , .   .   , to be —•—rr«-   +    —• r  — »   and the expected total 
(S+2). (S+3). 

number of runs of plusses or minusses of all lengths was found to 

y n    1 
be —   ,    the former result requiring that n > S+3 and the latter 

being contingent upon n > S+2.      However,   if one regards the first 
and last runs as "incompleted" and counts only those runs which 

are preceded and followed by at least one run,  the term     • g 

in the first formula must be dropped since it represents the first 
and last runs,   and the expected total number of runs must be re- 
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duced by 2.     Thus the revised formulae become 2 (n-S-2)(S2+3S+l) 
(s+3); 

7  n    7 and ,    respectively.      Substituting 1 and then 2 for S in the 
3 

first revised formula,  the expected number of runs of plusses   or 

minusses of lengths 1 and 2 are found to be   ——-—-     and —^——- 

respectively.      Subtracting these two values from the expected total 

number of runs one obtains   —7—  ,    the expected number of runs 

of plusses or minusses of length greater than 2. 

Wallis and Moore (12, 8) have suggested a chi square test 
of significance applied in the usual way to the observed frequencies 
of "interior" runs of like signs of lengths 1,   2 and over 2,  with the 

j-                        J r                  •       w   •         5 (n-3)          11  (n-4) , corresponding expected frequencies being        v   ±L ,      —y~      and 

n  -21 
60 

There are 2 degrees of freedom one degree having been 

expended by obtaining n from the sample.      The test,   however,   is an 
approximate one if the significance of the calculated chi    square is 
obtained from the usual chi square tables.      This is the case because 
the run lengths are not entirely independent of one another although 
the chi square test assumes that they are.      Various empirically 
obtained "corrections" are offered by the authors for use when n 
exceeds 12.      However, for 6 <n 5 12 they have provided a table 
of exact probabilities for the values of chi square as calculated 
from the sample.      These were obtained by means of a recursion 
formula and give,   in effect,   that proportion of the nj  permutations 
which yield a value of chi square as great or greater than the one 
tabled. 

The test can be used as a test of randomness against either 
trend or correlation alternatives.      In the latter application,   if an x 
measurement and a y measurement have been taken on each of n 
objects,   the objects are arranged in order of increasing magnitude 
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of one continuously distributed variable and the run test is applied 
to measurements on the other variable.      The authors point out, 
however,  that "the conclusion occasionally depends upon which 
variate is chosen for arranging in order and which for counting the 
phase durations". 
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CHAPTER X 

TESTS BASED ON EXTREME VALUES 

The number of observations in a second sample which exceed 
(or which are exceeded by and therefore included within) observa- 
tions of certain size rank in the first sample can be predicted if 
the samples are drawn from a common population,   or can be used 
to test the hypothesis of a common population if the "second sample" 
has already been drawn.      In either case,   the probability is simply 
the proportion of all possible arbitrary reassignments of observa- 
tions to samples in which the specified number of exceedances is 
found to occur.      If certain assumptions can be made,   the tests for 
identical populations become tests for location,   dispersion or ex- 
treme reaction.      An analogous but different mathematical approach 
permits the setting of tolerance limits. 
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1.    Exceedances:   Prediction 

a.    Rationale.    Suppose that a sample of n observations 
has been taken from a continuously distributed,  but otherwise un- 
known,  population and it is desired to know the probability that 
N or more observations in some future sample of size m will ex- 

ceed the r"1 observation,   in order of increasing magnitude,   in the 
already obtained sample.      For convenience,   let the first sample 
be designated X's,  the second sample,   Y's.      Since the two samples 
are defined to be from the same population,   the X's can be considered 
as a random sample of n observations "drawn" from the n+m obser- 
vations comprising the two samples.      Consider the sample of Y's 
to have been drawn and the n+m observations in the two samples   to 
have been arranged in order of increasing magnitude,   irrespective 
of sample,   and labeled Z's with subscripts   indicating   rank: 

Zl'   Z2'   ""   Zr-l+m-N*    Zr+m-N'   "•»   Zn+m-l>   Zm+n'      C°n" 

sider now the probability of drawing an "X sample" of n  observations 
from these Z's so as to leave a remaining "Y sample" of m observa- 
tions,   N of which exceed the r*" X in order of magnitude (and m-N 
of which are smaller than X   ).      In order to obtain such a sample: 
(a) we must draw Zr+rn_JSJ    which becomes Xr,     (b) we must draw 
any r-1 of the Z's smaller than Z   ,       -^    of which there are 
r+m-N-1,   and (c) we must draw any n-r of the Z's greater than 
Zr+m-N  °^ wn^cn     there are m+n-(r+m-N)  or n-r+N.      There is 

r+m -N- 1 only one way of doing (a),  but there are ( ) ways of accom- 
r-1 

plishing (b) and ( ) ways of fulfilling requirement (c).      There- 
n-r 

r ., ,r+m-N-l x ,n-r+N x t c i.i_ *• fore there are ( ) ( ) ways of performing the entire 
r-1 n-r 

operation.      Since there are   ( ) ways of drawing the X sample, 
n 

without these    restrictions as to position,   the probability of drawing 
an X sample which will leave N of the remaining observations greater 

r-l+m-N     n-r+N 
r-1 n-r 

than X     is    •     ,    and this is the probability that in a r ,n+m r 7 

n 

future sample of m observations from the same population,   exactly 
N observations will exceed Xr.    The probability of at least N ex- 
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• r-l+m-i.  ,n-r+i. 
Zm     ( i     ) ( ) x      r-1     ' x n-r ' ceedances is      P    (Exceedances > N) 
i=N (n+m) *   n   ' 

b. Assumptions.    Random sampling and no tied observa- 
tions.      The latter assumption is* met,   in theory,   if the population 
is continuously distributed and measurements are precise. 

c. Treatment of Ties.    Tied observations,   if their pro- 
pottion is small,  become a practical problem only if X    is tied 
with other observations.      Since Y observations are hypothetical, 
none will be tied with X  .      If X    is tied with other X's,   calculate 
the exceedance probability as many times as there are X's tied 
with X   ,   each time letting r be a different one of the ranks the 
members of the tied group would have if not tied.      For a conser- 
vative estimate,     use the smallest or largest of these,  whichever 
results in the greater conservatism,   as the probability of N ex- 
ceedances.      If it is desired to minimize the error,  use the average 
of the separately calculated probabilities. 

d. Application.   Obtain a sample of n observations from 
the population in question and rank them from smallest,   1,   to 
largest,  n.      Letting subscripts indicate rank,  the ordered ob- 
servations will be:   X,,   X_,   ...,X,...,X     .,   X   .      Treating 

A        c r n- In ° 

ties as outlined above,  the probability that of m future observations 
at least N of them will be larger than X   ,  the magnitude of the ob- 
tained observation whose rank is r,   is given by the last formula 
in "Rationale". 

e. Discussion.    The formula given for the probability of 
at least N exceedances over X  ,   of course,   also gives the prob- 
ability that m-N or fewer future observations will be less than X   . 
The formula applies to exceedances over the r*11 smallest obser- 
vation or,   since the r^h rank from the bottom is the n-r+ltn rank 
from the top,   to the n-r+l**1 largest observation. 

The point probability for exceedances can be evaluated by 
use of binomial tables.      Let the exceedance  probability formula, 
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,r-l+m-N»  ,n-r+N. 
( i      ) ( ) n    m 
          * be multiplied by -±-—2 or,    equivalently,by 

( J ) pn qm 

r-l    m-N    n-r    N 
p      q       P      q   p 

n    m 
p  q 

The formula thus becomes 

r   .r-l+m-N.     r-l    m-N-,   r   ,n-r+N.    n-r    N, 
p[(     r_x    ) P      q       ] [ (  n_r ) P      q ] 

r   .n+m.    n    m~i 
I ( n  ) P  q  1 

Each of the expressions in brackets is a binomial probability and 
can be read directly from binomial tables.      The values p and q=l-p 
can be selected arbitrarily by the experimenter,   so long as all 
p's are taken to be the same exactly tabled value.      For convenience 
take p=q=l/2.      Then P   (Exceedances > N) = 

s m (i/zx^tr1) d/2)r"1+m_i (n:lf) ( l/2)n"r+i 
i=N  - ;        = 

(n+m) (l/2)n+m 

.  i .    m  Point Bin. Pr. (. 50, r-l+m-i, r-l) Point Bin. Pr. (. 50, n-r+i,n-r) 

i=N Point Bin. Pr.   (.50,n+m,  n) 

f.    Tables.   Wilks (37) has published a short table of prob- 
abilities for exceedances over the smallest value of an obtained sample, 
i.e.   r = 1.      Epstein (4) has tabled exceedance probabilities for the 
case where the future sample is to be equal in size to the obtained 
sample,  i.e.  m = n.     Rosenbaum (21) has tabled probabilities for 
exceedances over the largest value of an obtained sample,  i.e.   r = n. 
Gumbel and von Schelling (10) have graphed the probability of one 
or two exceedances over the largest or near-to-the-largest X value. 
Tables and graphs are also to be found in (11) and (13).     Also see 
"Discussion" section for techniques of using binomial tables to 
obtain exceedance probabilities. 
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g.    Sources.    (4,   10,   11,   13,   21  ,   36,   37) 

2.      Exceedances:   Tests of Hypotheses 

In the preceding section the probability was determined for 
at least N exceedances in a second,   future,   sample from the same 
population.      If the second sample has actually been obtained,   this 
same probability,   derived in the same    way,   is the a priori prob- 
ability for the obtained results under the null hypothesis that the 
two samples come from identical populations. 

Exceedances therefore can be used to test the null hypothesis 
that two samples come from the same population under the assumption 
that the population is continuously distributed.      In order to be able 
properly to use exceedance    probability tables to  test   this hypothesis, 
X     must be designated in advance of sampling,   i. e.  both the rank,   r, 
and the sample,  whether X or Y,   determining the "reference point" 
for exceedances must be selected in advance. 

Rosenbaum (21),   Epstein (4),   and Mathisen (13) have all 
suggested such tests.      Rosenbaum uses exceedances over the 
largest X observation as his test statistic and has provided tables 
for it.      Epstein uses exceedances over X   ,  with r allowed to r 
assume any preassigned value,   but with the restriction that the 
two samples be of equal size.      Tables are provided.      Mathisen 
takes for X    the median of an X sample containing an odd number 
of observations and provides a small table of probabilities for the 
number of observations in a second sample which will be    lower 
than the median of the first.      All three tests are,   in effect,  based 
on the premise that if the two samples are from identical populations 
the expected proportion of each sample above some arbitrarily desig- 
nated value,   X   ,   should be the same.      However,  while identical 
populations insure that the proportion of each population above X 
is the same,   the reverse is not true.      The two populations can 
assume widely differing forms and,   so long as their cumulative 
distribution functions are equal at the point X    the null hypothesis 
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will not be rejected more than a of the time. The above tests are 
therefore not consistent except for such classes of alternatives as 
slippage,   i.e. ,  f(y) = f(x+c) with c a constant (2). 

If other X observations are tied with X   ,   they should be 
treated as outlined in the preceding section.      Y observations tied 
with X     can be "assigned" positions.      For a conservative test, 
count all Y observations tied with X    as falling on whichever side 
of Xr which will be least conducive to rejection of the null hypothesis. 
To minimize error,  half may be assigned above,  half below X  ,   an 
odd tied observation being treated "conservatively". 

For  a test  at  significance  level a,    reject if 

.r-l+m-L  .n-r+L 
.2??*       r-1    ' '   n-r'     <    n    for a one-tailed test against the alter- 
i=N  x     — ,n+m. 

n 
native hypothesis of excessive exceedances,   i.e. ,   that the propor- 
tion of values in the Y population which are greater than Xr exceeds 
the proportion of the X population which is greater than X  .      For 
a two-tailed test in which the alternative hypothesis is "either too 
many or too few exceedances",    reject the null hypothesis if either 
the above summation or the summation taken from i = 0 to  i = N is 

less than — . 
2 

This type of significance test is particularly useful when 
experimentation is costly in terms of time or material.      All m 
of the Y observations need not necessarily be taken,   since the 
null hypothesis can be rejected whenever the number of exceedances 
among the Y's reaches a certain value (determined by n,   m,   r and 
a ).      The test is especially appropriate for life testing since the 
experiment need last only long enough to identify X     and for the 
number of exceedances to reach the rejection criterion (3). 

238 



3.      Includances:   Prediction 

a.    Rationale.    Let the first sample from a continuously 
distributed but otherwise unknown population be arranged in order 
of ascending magnitude as follows:   X   ,   X   ,   . . . ,   X   ,   ....   X   ,   . . . , 

12 r s 
X     ,,   X    (r and s being ranks which can be assigned any integral 

value from 1 to n so long as s   is greater than r).      The following 
derivation will obtain the probability that N observations,   in a 
future sample of m observations,   designated as Y's,  will lie 
within the range of magnitudes whose endpoints are X     and X   . 

Consider the second sample to have been drawn and let the n+m 
observations be arranged in order of increasing magnitude,   irre- 
spective of sample,   and labeled Z's with subscripts indicating 

rank:    Zy   Z^   • • • > Z
r+L» • • • > Z

s+L+N> • • • zn+m.     The a priori 

probability that exactly L of the Y observations are smaller than 
Xr,   N are between X    and X   ,   and m-L-N  above Xg   is the prob- 

ability of drawing the X sample so as to consist of r-1 of the Z's 
below Z   lT,Z   |T,   s-l-r  of the Z's between Z   , T    and Z   , T ,»T, r+L.,       r+L r+L. s + L+JN' 
Zs + L+N'   anc^ n_s °^ t^ie Z's a^ove z   +L+N*      This probability is 

.r-l+L.   .1.    s-l-r+N.  -1.  .n+m-s-L-N. 
(   r-1   M1M s -1-r   ' U1 (       n-s '       . 

.n+m. 
n 

This probability contains the restriction that exactly L of the 
m-N Y's outside of the X     to  X    range shall fall below X   . In order to 

remove this undesired restriction,  the probability must be summed 
over all of the values from 0 to m-N which L can assume without 
changing N.      The probability that exactly N of the Y's will fall be- 
tween X     and X    is therefore 

.r- 1+L. .s- 1-r+N    .n+m-s-L-N. 

Sm"N    — s~1~r n~s    • and the probability that N 
L=0 n+m 

*   n 

or   more  Y's will fall between X     and X    is 
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/T-l+Lu  .s-l-r+L  .n-s+m-L- 
_m     y.m-i       *   r-1   '•*•   s-l-r ' '        n-s 

i=N     L=0 ,n+m. 
<   n   > 

b. Assumptions.    See 1,  Exceedances:  Prediction 

c. Treatment of Ties.   See 1.      Observations tied with 
Xg should be treated separately but in the same way as observations 

tied with X  . r 

d. Application.    Last formula in "Rationale" gives required 
probability. 

e. Discussion.    The probability that N or more Y's will 
fall between Xr   and X    is,   of course,   also the probability that m-N 

or less of the Y's will fall outside the interval bounded by X    and X   . 3     r s 

This probability can be expressed in terms of several binomial 
probabilities.      It becomes 

2r,r-l+L.%   r-1   L, r .s-l-r+i.   s-l-r  i-, r .n-s+m-L-i.   n-s   m-L-i-, 
m m-i P [( r-i )p    ; ][( s-i-r >P      qH(    n.8     )P    q \ 

i=NC=0 [(n^n)pnqm] 

each of the bracketed expressions being obtainable from tables of the 
point binomial.      The parameters p and q are chosen arbitrarily.    For 
p = q = l/2,  the double summation becomes 

i=N E=0 r .n+m.  #, /oin+mT 
,m ^m- 

[(
n;m)(i/2)n+m] 

r .n-s+m-L-i... /-.n-s+m-L-i-. 

*     —-   •   

1 
Even with the help of binomial tables this probability is not quickly 
evaluated.    By careful choice of the parameters n,  m,   r,   s,  N,   L, 
the formula can be considerably simplified.    Without such simplifi- 
cation the method will prove practical only when n and m are quite 
small or when tables of probabilities for N are available. 
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f.    Tables.      Wilks (37) has published a small table for the 
case where r = l,   s«n.      Rosenbaum (20) has produced an extensive 
table for the same case,  but in terms of the probability for m-N 
Y values outside of the interval X.   to  X   .      Moses (14) has also 
published a small table for certain cases where s=n-r+l.    Binomial 
tables can also assist in evaluating probabilities.    See (e). 

g.    Sources.    (14,   20,   36,   37) 

4.      Includances:   Tests of Hypotheses 

If the second sample has actually been obtained,   the prob- 
ability derived in the preceding section can be used to test the null 
hypothesis that the two samples are from the same continuously 
distributed population.      The values n,   m,   r,   s and a rnust,   of 
course be selected in advance of sampling,  which must be random. 
Rosenbaum (20) proposes includances as a test of equal dispersions 
for two populations known to have the same median.      He has pro- 
vided extensive probability tables for the number of Y's which fall 
outside    of the interval whose endpoints are X    and X   .      If medians 

are not known to be equal,   his test becomes a test for identical 
populations.      Moses (14) uses includances to test the null hypothesis 
that an experimental and a control group belong to the same popula- 
tion against the alternative hypothesis that the treatment to which 
the experimental group    is subjected tends to increase the scores of 
some individuals and reduce those of others ("defensive responses"). 
Moses takes as his test statistic the number of X's equal to or in- 
cluded between X     and X        , ,   plus the number of Y's included be- r n-r+1   r 

tween these endpoints.      Since the number of X's in this interval 
is predetermined,   the probability for the obtained statistic is the 
same as the probability for the number of Y includances.      A small 
table of probabilities is given. 

X scores tied with X     and X scores tied with X    should be 
r s 

dealt with separetely but in the same way as outlined under  1.   Ex- 
ceedances: Prediction,   for observations tied with X   .      Y scores r 
tied with X    and Y scores tied with X    should,   for a conservative 

r s 
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test,  all be counted as falling within or outside the X    to X    interval, 
r s 

whichever is least conducive to rejection of the null hypothesis.    If it 
is desired to minimize the error,   half of Y's tied with X    should be r 
counted as falling inside the interval,   half outside,   and likewise for 
Y's tied with X   ,  odd tied Y's being dealt with conservatively, 

s 

For a one-tailed test of the null hypothesis of identical popu- 
lations against the alternative of excessive includances,   reject at the 
level a if 

.r-l+L. .s-l-r+i. .n-s+m-L-i. 
^,m    ~m-i    '   r-1    "'  s-l-r   ''       n-s ' 

^N    £=°        nT•" ~ ° * •n+m. 
n    ' 

If the alternative is too few includances, reject at the level a if the 
double summation equals or exceeds 1 - a. For a two-tailed test, 
reject at the level o if the double summation <    j- or > 1-y*       The 

above formula is valid for the desired probability only   if previous 
to sampling it is specified which sample is to be the X sample and 
which the Y sample.      The values of r,   s,  n,  m,   and a must also 
be decided upon before the samples are obtained. 

If r and s are taken to be 1 and n respectively so that the 
interval is that included between the smallest and largest X obser- 
vations,   the probability is greatly simplified.      The first and last 
combinatorial expressions in the numerator become 1.      Summing 
from   L=0  to   L=m-i,   therefore,   amounts simply to multiplying 

.s-l-r+i. .n-2+i. 
's-l-r ' n-2 
 r °r —I        by m-i+1.      The probability that N of m 

'   n   ' '   n   ' 

Y observations will fall within the endpoints of a sample of n X 
observations from the same continuously distributed population 
thus becomes 

(m-i+1) (  n_2 ) mj  n(n-l)     „m    (n-2+i)I   (m-i+1) 
i?N     jn+mT  °r      (n+m)I        i^N H 

*   n  ' 
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5.      A Univariate Tolerance Limit 

a. Rationale. While confidence limits specify a region 
within which a population parameter is inferred to lie, tolerance 
limits enclose a region within which a specified proportion of the 
entire population is inferred to exist. 

Let a sample of n observations be taken from a continuously 
distributed population,  f(x),   and arranged in order of increasing mag- 
nitude with subscripts indicating rank in that order.      The proportion 
of the unknown parent population which is smaller than X   ,  the r"1 

TXr smallest sample observation,   is \       f(x)   dx or   F(x ),the      small 
Jn r 

case x indicating the same value as X,   but located in the population 
rather than the sample.      F (x   )  is therefore the probability,   P,   of 

a sample observation being less than x   .      The a priori probability 

that in a random sample of size n,   r-1 observations will fall below 
x   ,   one observation at x   ,   and n-r observations above x     is given by. 

the multinomial law for partitions: « 1,   '    ; -   [ F(x  )] 
(r-1)! 1: (n-r)J r 

[ 1-F(x  )]n"r [f(x  )dx  ] .      Substituting P for F(x  ),   this becomes 

n! ^r-1   •     _.n-r 
(r-1)!   (n-r)I 

P*"1 (1-P) dP. 

This states the probability that the r"1 ordered sample 
observation occupies the area of the population distribution curve 
(i. e density function) whose ordinate is f(x„)    and whose base is dx   , r r 
Equivalently,   it is the probability that exactly a proportion P = F(x   ) 
of the parent population lies below xr.      By integrating from P=\ 
to P=l   we obtain the probability that a proportion \ or more of the 
parent population lies below the rtn smallest sample observation. 
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\             n' r -1 n-r 
Thus   \    -, =-^-, ry P       (1-P)        dP gives the desired probability. 

This can be evaluated by means of tables of the incomplete beta 
function since 

= r(rr)Vn(n1-U.Cpr-1'1-P'n'rdP'Ix'---^'- 
The probability sought is therefore 1-1    (r, n-'r+l),   or if tables of the 

A. 

incomplete beta function are not available, binomial tables can be 

used since  L   (r, n-r+1) =   .2      (.)   X   (1-X.) X i=r    v r v       ' 

By obvious symmetry the probability that a proportion X of the popu- 
lation lies below the r"1 smallest sample observation is also the prob- 
ability that a proportion X of the population lies above the rtn largest 
sample observation,   i. e. ,   the n-r+1"1 ordered observation. 

b. Assumptions.    Random sampling from a continuously 
distributed population.     The latter assumption was implicitly intro- 
duced in the derivation when the probability of an observation above 
xr was taken as one minus the probability of an observation below 
xr.      This leaves the probability for an observation equal to xr to 
be zero which is the case only if f(x) is continuous in the region of 

c. Treatment of Ties.    Ties are    problem    only if they 
involve the r*n ordered sample value.      In this case,   if the propor- 
tion of tied observations is small,   one of the following treatments 
may be employed.      Take a new r,   r'  which refers to the middle 
ordered observation in the tied group to which the old x    belonged, 
and calculate X using r1 and xr,instead of r and xr.      Alternatively, 
calculate X for each of the ordered observations tied with xr and 
either use the average X ,   or the most "conservative" X . 
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d.    Application.   Decide upon the values to be used for r and 
n prior to sampling.      Then take a sample of n observations from 
the population in question,  arrange them in order of increasing 
magnitude and select x    the r"1 ordered sample value.      If it is 

desired that the tolerance level is to be    1-a that a proportion \ 
or more of the parent population lies below x  ,   solve 

i -, r^-7 n-  Pr_1 (1-P)n'r dP >  1-a for  X.     This can be ac- ^   (r-1): (n-r)J - 

complished simply by referring to tables of the incomplete beta 
function or to tables of the cumulative binomial (See Rationale). 
Actually, if any three of the values n, r, X., a. are preselected, 
the fourth can be found by solving the above formula. 

e.      Discussion.    There is an element of inaccuracy in 
this method of obtaining tolerance limits.      The derivation is based 
on the formula 

<,-»•»  (n-r)i    [ ^X"1  I »-«S)]M £<*r> d*r 

in which the "event",   one observation in the region dxr,   is (a) 
given a probability of occurrence,  f(x   ) dx   ,  which must be zero 
since the probabilities,   F(xr) and 1-F(xr),  for the other two multi- 
nomial categories together equal 1,     (b) is regarded as having oc- 
curred once in n trials.      The occurrence   in a finite number of 
trials of a predesignated  event with zero probability is,   of course, 
implausible.      The ambiguity,   and inexactitude,   result from the 
mixture,   in the same formula,   of terms implying a discrete dis- 
tribution,   i. e.  the multinomial,  with terms relating only to a con- 
tinuous distribution,   i. e. ,  f(x   ) dx  .      The net result is inaccuracy 
in the order of dxr,   or,   in more practical terms,   the distance be- 
tween successive ordered observations,   namely x    and x_+i.      The 
error therefore should be between zero and xr+i_x   •      Since a sample 
of n observations randomly divides its population distribution into 
n+1 intervals each of which,   on the average,   contains a   proportion 

—-   of the population,  the error in X would not be expected to eac- 
n+1 
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ceed    .      See the section on confidence limits for quantiles 
n+1 

for a similar discussion. 

f. Tables.   The required probabilities can be obtained 
from tables of the incomplete beta function (17,   26),  by special 
use of tables of the cumulative binomial (25) or,  for the case where 
r = l,    directly from a small table prepared by Wilks (37). 

g. Sources.    (11,   15,   17,   23,   24,   25,   26,   36,   37) 

6.      Univariate Tolerance Limits 

Let a sample of n observations,   capital X's,  be drawn 
from a continuously distributed but otherwise unknown population 
f(x)  and arranged in order of increasing magnitude X   ,   X   ,   . . . , 

X   , . . . ,   X   ,   . . . ,   X X   .      These n ordered observations 
r s n-1        n 

divide the unknown population from which they came into n+1 in- 
tervals: -oo to x   ,  x    to x   ,   . . . ,  x     ,  to x   ,   . . . ,  x     . to x   .... , 

11 2 r-1 r s-1 s 
x     , tox        ,  x to  x   ,  x     to  +oo, small case x's denoting the 

n-2 n-1       n-1 n      n 
same magnitudes as the large case X's,  but magnitudes located 
in the parent population,   not the obtained sample. 

The probability of drawing an observation smaller than 
some value x^  is simply F(x^),   the cumulated probability for values 
of x less than x-.      This F(x^) is known to have a uniform distribu- 
tion from 0 to 1,   so that its probability is the same for every x^, 
i. e. ,   is independent of i,     (See Mood (I pp.   107-108) for proof). 
And since the probability for F(x-) is independent of i,   the prob- 
ability for F(x.) - F(x.   ,)  is independent of i.      However,   this is 
the proportion of the parent population within the interval x^_^ 
to x-.      Therefore the proportion of the parent population to be en- 
closed between successive ordered sample observations is inde- 
pendent of the rank of the observations. 

Stated slightly differently,   each of the n+1 intervals has 
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exactly the same probability of enclosing any given proportion  of 
the  parent population.      In the last section the probability that a 
proportion \ or more of the parent population lies below X     was 
found.      Since there are r intervals below X   ,   the derived prob- 
ability is also the probability that a proportion \ or more of the 
population lies in any preselected r intervals between successive 
ordered sample values.      It is therefore the probability that \ 
or more of th^ population lies between X.   and X. ,    ,   if the values 
i and r are selected prior to sampling. 

For assumptions,   application,   etc. ,   see the preceding 
section.      Tied observations are a problem if they include either 
X. or X. ,   .      If there is one such group of ties,   they should be 
dealt with as indicated in the preceding section.      If X^ and X. , 
are both members of tied groups,   each group should be treated 
separately,  but in a fashion analogous to that outlined previously. 
For sources,   see (1,   15,   17,   22,   23,   24,   25,   26,   35,   36,   37). 

7.     Multivariate Tolerance Limits 

Ingenious methods of setting tolerance limits for multi- 
variate distributions have been discussed by Wald (34),   and others 
(5-9,   32,   33).      For the bivariate case Wald selects four integers 
a,  b,   c,   d  before sampling n    observations from a continuously 
distributed bivariate population.     After obtaining the sample,   he 
discards the a observations with the smallest,       and the b obser- 
vations with the largesti x values; then,   of the remaining n-a-b 
observations,  he discards the c observations with the smallest, 
and the d observations with the largest,   y values.      The tolerance 
region is the rectangle bounded by the a*n smallest and the b"1 

largest X and by the ctn smallest and the d**1 largest of the n-a-b 
Y's between the X boundaries.      Tukey (32,   33) has generalized 
the method of "cuts" by which the tolerance region is obtained and 
has extended the applicability of the method to discontinuously dis- 
tributed populations.      Fraser (5,   6,   7) has further developed the 
method so that instead of a predetermined method of making cuts, 
each cut can be made in a manner determined by the outcome of 
previous cuts.      For details of application,   see the referenced 
articles. 
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CHAPTER XI 

TESTS BASED ON THE MAXIMUM DEVIATION BETWEEN 
TWO CUMULATIVE DISTRIBUTIONS 

If the cumulative distribution for an obtained sample and 
either    (a) the cumulative distribution of the population from which 
it was drawn,      or (b) the cumulative distribution for a second 
sample from the same population,   are plotted on the same graph, 
the maximum deviation between the two cumulatives will be inde- 
pendent of the form of the sampled population.      Its probability 
fraction can be obtained,   however;   therefore the maximum devia- 
tion can be made the test statistic for distribution-free tests of 
goodness of fit or tests of whether two samples were drawn from 
identical populations.      By confining the test to the lower portion 
of a sample cumulative,   the test can be made especially efficient 
for life testing.      Tables of probabilities for the maximum devia- 
tion can be used to set confidence bands for the cumulative distri- 
bution of the sampled population. 
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1.      Maximum Deviation Tests for Goodness of Fit to an 
Hypothesized Population 

a.    Rationale.    Let F(x) be the true population cumulative 
distribution of x and let F(x) be plotted as ordinate against x as 
abscissa.      Now suppose that a sample of n observations is drawn 
from the x population and that the sample cumulative distribution 
Sn(x) has been plotted on the same graph with F(x).      Thus Sn(x) 
is a step function which rises in steps of 1/n or multiples thereof. 
Let d be the maximum ordinatewise deviation between the smooth 
curve F(x) and the step function Sn(x).      It has been proven (23,   43) 
that the probability of d taking any specified value is   independent of 
the form of F(x) so long as F(x) is continuously distributed.      This 
can be seen as follows.      The probability that an observation drawn 
from the x population will be below some value x- is simply F(x^), 
the value of the cumulative distribution at the point x-.      The prob- 
ability that exactly r observations in a sample of n observations 

will lie below x. is   (   )[F(x.)]r   [ 1 - F(x.)] n_r.     And if this occurs, 

a proportion,  r/n,  of the sample has fallen below x.,   and this is 
the ordinate of the sample cumulative step function,   Sn(x),   at the 

abscissa Xj.      Therefore (n) [F(x.)]r [ 1 - F(x.)]n_rgives the prob- 

ability that the difference in ordinates between the population cum- 
ulative distribution and the sample cumulative step function will 
be F(X|) - r/n  at the abscissa point x^.      Let F(x-) - r/n = c. 

Then F(x^) - £. + c and the a priori probability that F(xi)-Sn(x.) = c 

is (  )    I  + c]      t 1 cl        •      The latter expression depends r n n 

only upon c,   n and r of which the former is a constant specified 
in the probability statement and the latter two are parameters of 
the sample,  not of the population.      Therefore the probability that 
Ffrj) - Sn(x.) = c is independent of F(x),   i.e. ,   is independent of 
the form of the distribution of the parent population.      This is ob- 
viously true for any value of c,  and since x. was chosen arbitrarily 
it is also true for any value of x.      Thus the probability that the 
maximum absolute deviation equals or exceeds d,   i. e. , 
Pr (max | Sn(x) - F(x) I >d),   is independent of the form of F(x) 
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so long as F(x) is continuously distributed. 

Therefore,   if the probability of d can be derived by 
assuming that x has a uniform distribution,   the result can be 
generalized to any continuous distribution.      Following this ap- 
proach,  let x have a uniform distribution with range from 0 to 1. 
Then F(x) • x,   and F(x) is a line of constant slope rising from 
an ordinate of zero to an ordinate of 1.      Now divide the popula- 
tioan range of xs into n equal abscissa intervals.      Since F(x) is 
a line of constant slope,   each of the n equal abscissa intervals 
contains the same proportion,   1/n,   of the population.      Let n   , 

n7,   ...  n     be the obtained number of sample values falling in 

the first,   second . . .  n*n interval.      The expected proportion of 
sample values falling in any given interval is,  of course,   1/n. 
Therefore the a priori probability of the obtained results is given 

( . n..     ,  n_ . n 
by the multinomial and is —   (—)       (—)     . . . {—) 

n   I n   ' . ..n   1 I      c. n 

or    2J     (-)n. This is the 
n, I n_J   ...  n n 
12 n 

probability of a specified pattern of interval-occupancy,  n. , n   , 

. ..  n  .      Corresponding to each pattern of interval-occupancy 
is a pattern or set of ordinate differences at interval end points: 
At the end of the first interval the ordinate of F(x) is 1 /n and that 
of Sn(x) is n   /n;   at the end of the second interval the ordinate of 

F(x) is 2/n and that of Sn(x) is —tZ. ,   etc.      The probability 

of the pattern of interval-occupancy is therefore    equally the prob- 
ability of the set of n-1 ordinate differences.      Therefore by ex- 
amining all possible patterns of interval-occupancy,   selecting 
those for which the corresponding set of ordinate differences con- 
tains an ordinate difference of d or greater,    and summing the prob- 

I 1      -n 
abilities,   • ^ —     ( — )   ,   associated with these critical 

n,J  n   '   . ..  nni n 

d's,  one obtains the probability that at one of the abscissa points, 
1/n,   2/n,   ...   i/n,   ...  n/n,  the ordinate difference between F(x) 
and Sn(x) will equal or exceed d.      See Figure 3. 
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However,   a maximum absolute deviation of d or greater can 
occur within an interval without also occurring at its beginning or end. 
F(x) rises an ordinate distance of 1/n from the beginning to the end of 

an interval.      Therefore,   if S   (x) is greater than F(x) + d but less 
n n 

tnan F(x) + d,   at the upper endpoint of an interval,   S   (x) may exceed 

F(x) + d within the interval.      Whether it does so or not depends upon 
the abscissa at which S  (x) rises to its greatest ordinate within the 

n 
interval.      (The greatest ordinate is 1/n greater than the next-to- 
greatest ordinate.)     In order for S  (x) to exceed F(x) + d,   it must 

n 
assume its maximum ordinate before F(x) + d exceeds that ordinate. 
Let a horizontal line be drawn across the width of the interval at 
the highest ordinate taken by S  (x) within the interval,   and let K be 

that part of the horizontal line which lies outside of the confidence 
band,   F(x) + d.      In order for S  (x) to exceed F(x) + d,   its maximum or- 

n 
dinate must overlap with K,   and for this to happen  all n. must have 

abscissae beneath K.      If p   is the proportion of the interval width rep- 
i 

resented by K,   then the probability that a randomly selected one of 
the n.   will lie below K is p.,   and the probability that all n. units will lie 

below K is p *ni\      This is the probability that when F(x) + d - - <S  (x) < 
i n        n 

F(x) + d at the upper endpoint of the i      interval,   S  (x)>  F(x) + d  within 
i 

the interval.    See Figure 4.    Similarly,   ifF(x)-d<cS  (x)< F(x) - d + — at 

the lower endpoint of the i• interval,   let a horizontal line be drawn across 
the width of the interval at the lowest within-interval ordinate of S   (x), 

let L be that part of the line lying below F(x) - d,   and let p'. be the pro- 

portion of the interval width represented by L.      The probability that 

Sn(x) <; F(x) -d within the interval is p.     i    and since K and L cannot 

have any abscissae in common,  p^    i'   and p.    i    are mutually exclu- 

sive probabilities and can be added.      Let Q. be the sum of these two 

probabilities.      Now consider those so far uncounted patterns of interval 
occupancy at all of whose endpoints   | F(x) - S  (x) j< d and at some of 

whose endpoints   |   F(x) - S  (x) J > d .      The probability of each such 
n 
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I 1    „ 

pattern is    (—)     as before.      The probability that, n n.I  n_i   ...  n  : 1       Z n 

given such a pattern of interval-occupancy,       F(x) - S  (x) I   > d within 

an interval depends not only upon the values of the Q.,   but upon the 

number of nonzero Q..      If there is only one nonzero Q.,  then the 

probability   j   F(x) - S   (x)  I   > d will be that Q. times —    (A) 
n — I - _   . in 

nj    ,1,11 

...  nj n.]n_i   ...   n 

If there are two nonzero Q.,  Q,   and  Q_   say,  then 

l.n 
Pr ( | F(x) - Sn(x)     |  > d) = (Ql + Q2 - QlQ2)   —-Jh    £) 

1       Z n 

since we are interested only in whether or not S   (x)   exceeds the con- 
n 

fidence bands,  not in how often it does so within a given pattern of 
interval-occupancy.      The probabilities are then summed over all 
critical patterns,  i.e. ,  those in which the maximum absolute devia- 
tion at the endpoints of one of the n intervals lies between d - l/n 
and d.      This sum plus the previously obtained probability that d 
will be equalled or exceeded at an endpoint is the probability that 
max  j S  (x) - F(x)  I  >    d  at any mutual abscissa value. 

Probabilities obtained in this manner are appropriate for 
a two-sided test.      Probabilities for a one-sided test can be derived 
in analogous fashion by substituting "maximum deviation in a single 
predesignated direction",    d, for "maximum absolute deviation",  d, 
in the above.      Thus instead of Pr (max   |  Sn(x) - F(x)  I  > d)  one 

obtains either Pr (max (Sn(x) - F(x)) > d')   or Pr (max (F(x) - 

Sn(x)) > d'). 

b.    Null Hypothesis.   The parent population from which the 
sample was drawn is identical to,  i.e. ,  is completely and exactly 
defined by,  the hypothesized population whose cumulative distribu- 
tion is F(x). 

c.    Assumptions.   Sampling is random,   observations are 
independent,  and the sampled population is continuously distributed. 
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d. Treatment of Ties.   Although ties cause the test to become 
imprecise,  they require no special modification of procedure.      So 
long as the proportion of tied observations is small,  the tabled prob- 
abilities will probably be very close approximations to the true ones. 

When n is so large that tables whose probabilities are de- 
rived from asymptotic formulae must be used,  ties cause the prob- 
ability error to be in the conservative direction.      If the true prob- 
ability that max | Sn(x) - F(x) )   > d is cc,  the tabled probability will 

be no smaller than oc so rejection will occur less frequently than 
would be the case if there were no ties.     And if the true probability 
that max j   Sn(x) - F(x) |   < d is 1 - cc,  the tabled probability will be 
no greater than 1 - cc   and confidence limits obtained from the tables 
at the nominal 1 - cc level of confidence will have a true confidence 
level equalling or exceeding that level (12,   22). 

e. Efficiency.    Van der Waerden (42) compared the power of 
the unidirectional maximum deviation test (at a significance level of 
.01)  with that of the one-sided most powerful parametric test when 
both the sampled and the hypothesized populations were normally 
distributed with variance of 1,   differing only in location.      The uni- 
directional maximum deviation test was less powerful than the class- 
ical test with the power discrepancy increasing as sample size in- 
creased from 2 to 3 to 5.      At n = 5 its efficiency had dropped to about 
.65.      Massey (34) compared the smallest maximum absolute deviations 
detectable with probability .50 by the d test and by the chi-square 
test for ccs of .05 and .01 and ns ranging from 200 to 2000.      The 
d test was found to be superior to chi square in all of the 46 cases 
examined. 

Massey (30,   31) has found the maximum absolute deviation 
test to be consistent provided that the sampled population is contin- 
uously distributed,  but biassed for finite n.      He has also obtained 
a lower bound for its power.      Birnbaum (5) has found bounds for 
the power of the one-sided,  i.e. ,  maximum unidirectional deviation, 
test. 

f. Application.   Plot the cumulative distribution of the hypo- 
thesized population and the cumulative distribution,  i.e.   step func- 
tion,   of the  sample on the same graph as shown in Figure 3   .     Find 
the maximum ordinatewise deviation,  d,  between the two cumulative 
distributions.      Enter the probability tables with d and n to determine 
the significance of the result. 

g. Discussion.    Much of the literature on maximum absolute 
deviation methods relates  to the setting of confidence bands for an 
hypothesized population.      Thus if Pr (max '[   Sn(x) - F(x) j > d) = oc, 
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there will be a confidence level of 1  - oc that Sn(x) will stay entirely 
within the band between two curves whose ordinates are F(x) + d and 
F(x) - d.      Or if Pr (max jSn(x) - F(x)\ £ d') = cc there is a prob- 
ability of 1  - oc that Sn(x) will never reach or exceed F(x) + d'.    It 
is to be noted that d' at the level cc is not   identical to d at the level 
2 cc    although when n < 100 and oc < .05 they are approximately 
equal (35). 

The derivation given under ""Rationale" was chosen for 
its conceptual simplicity.      The method outlined is not the most ef- 
ficient means of obtaining probabilities.      Probabilities for the max- 
imum absolute deviation have generally been obtained by means of 
recursion formulae.      However,   probabilities for the maximum 
unidirectional deviation can be obtained by use of a single exact 
formula derived by Birnbaum and Tingey (7). 

The relative merits of chi square and the maximum abso- 
lute deviation test have been discussed by a number of authors. (4, 
20,   34).      The d test is superior to chi square in the following ways. 
The d test requires only the assumption of a continuously distri- 
buted population (other than the usual assumptions of randomness 
and independence) while chi-square requires,   among others,  the 
assumption that observed frequencies are normally distributed 
about their expected frequencies;   thus the d test is distribution- 
free for all sample sizes while chi-square becomes distribtuion- 
free only when an infinite-sized sample permits the normality 
assumption to be fulfilled.      The exact distribution of d is known 
and tabled for small sample sizes,  while the exact distribution of 
chi-square is known and tabled only for infinite sized samples.    The 
d' test can be used to test for deviations in a given direction,   i. e. , 
can be used as a one-sided test,  while chi-square cannot.      The d 
test uses ungrouped data,   every observation representing a point 
at which the "goodness of fit" is examined;   chi-square loses this 
information by requiring that data be grouped into cells.    Further- 
more   by using ungrouped data the d test avoids the hazards and 
pitfalls associated with choice of interval size and selection of 
starting point in chi-square tests of fit and no correction for con- 
tinuity is required by the d test.     The d test can be applied to data 
which become available sequentially from smallest to largest,   com- 
putations being continued only up to the point at which rejection 
occurs;    it thus has an "efficiency" aspect not present in chi-square. 
Confidence bands can be easily established on the basis of the dis- 
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tribution of d,  while chi-square has no such analogous property. 
More is known about the power of the d test than of chi square,   and 
the information presently available suggests that in general it is 
the more powerful test.      Chi square,   on the other hand,   is superior 
to d in the following ways.      Chi square does not require that the hy- 
pothesized population be completely known in advance of sampling. 
Certain population parameters can be estimated from the sample 
and the resulting degree of "artificial" fit between obtained sample 
and hypothesized population can be taken account of and prevented 
from biassing the probability of significance by making the appro- 
priate reduction in degrees of freedom.      No such adjustment is 
possible with the d test,  which requires that the hypothesized pop- 
ulation be completely known and specified a priori.      Chi square 
can be partitioned and added,   very useful properties which the d 
statistic does not possess.      Finally,  chi square can be applied to 
discrete populations.      The d test,  however,   is not incapable of such 
applications.      When the assumption of continuity is not met,  the 
probability of d is expressed by an inequality rather than an equation. 
The result is that the true probability that d > h (or that d' > h') is no 
greater than the tabled probability.      Therefore in tests of significance 
the true probability of rejection may be smaller,  but not greater, 
than the nominal probability,    oc.    And in setting confidence limits, 
the true probability of inclusion within the limits may be greater,  but 
not smaller,   than the nominal probability of inclusion,   1  - cc .   In 
both cases the probability error is a "conservative" one.      See (12, 
20,   22). 

h.    Tables.    Critical values of d at standard significance 
levels have been tabled by Miller (35) for all values of n from 1 to 
100,   approximate formulae having been used.      A smaller table has 
been published by Massey (34).      Probabilities that d will be less 
than c/n have been tabled by Birnbaum (4) for all values of n from 
1 to 100,   and Massey (29) has published a less extensive table.     The 
limiting distribution of d or its equivalent has been given by a num- 
ber of authors.      Massey gives the values of d required for signi- 
ficance at standard significance levels when n is infinite (34) and 
the probability,   at n = «,   that d   < X/\Tn for various values of X 
(29).      The latter probability has been tabled,   in terms of \ rather 
than d,  by Kolmogorov (22,   23).      The limiting distribution of X 
has been tabled by Smirnov (39). 

Critical values of the maximum unidirectional deviation 
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between sample step function, and population cumulative distribution 
have been tabled by Miller (35) for all values of n from 1 to 100, 
standard significance levels being used.      His probabilities are 
based on asymptotic formulae when n exceeds Z0.      A smaller table 
of such values has been published by Birnbaum and Tingey(7). 

i.    Sources.   3-12,   14-15,   17,   19-23,   26,   29-31,   34-37, 
39,   42-44. 

2.    Related Tests of Fit 

A statistic somewhat similar to that outlined in 1,   Max- 
imum Deviation Tests for Goodness of Fit to an Hypothesized Popu- 
lation,  has been considered by a number of writers.       It is 

2 f00 2 noo     = n \        (Sn(x) - F(x) )    dF(x)   which can be equivalently ex- 

2 1     ,   Vn
r 2i-l „,    n2 2 

pressed as   nu>    = .-    +    /     L -jj—   " * vx^J J   •      The statistic ruo 

i=l 

is distribution free,   and requires only the assumptions of random 
and independent sampling from a continuously distributed population. 
Its probabilities have been tabled for samples of size 1,   2 and 3 
(28) and of size n = infinity (1,   28). 

Anderson and Darling (1,   2) have proposed a modification 
of the above statistic which involves the application of a weight 
function to (Sn(x) - F(x))   .      They have also proposed (1) to modify 
the maximum absolute deviation test,   described in 1,   Maximum 
Deviation Tests for Goodness of Fit to an Hypothesized Popula- 
tion,  by applying a weight function to  | Sn(x) - F(x)| .      These and 
related tests are   discussed in (1,   2,   3,   11,   28,   38). 
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3.      Truncated Maximum Deviation Tests for Identical 
Populations. 

a.    Rationale.     Suppose that two samples,   one of n obser- 
vations labeled xs and the other of m observations labeled ys,  have 
been drawn from continuously   distributed populations and that the 
experimenter wishes to test whether or not the sampled populations 
are identical.      Let Sn(x) and Sm(y) be the cumulative step functions 
of the x and y samples respectively,   and let them be plotted on the 
same graph.      Finally let d    be the maximum difference in ordinates 
between the two step functions at any abscissa value less than or 
equal to the r"1 x observation in order of ascending size.      The prob- 
ability that dr equals or exceeds some predesignated value,  h,  has 
been tabled and can be used to test the hypothesis of identical popula- 
tions. 

Let    the x observations be arranged in order of increasing 
size, x  .  x  ,   .. . ,  x.,   . .. , x  ,   . .. , x    and let the number of y 

1       2 x r n 

observations smaller than x    be designated m   ,  the number of y 

observations between x    and x     be m   ,   etc. ,   so that m. is the num- 

ber of sample ys between x.       and x.,   and let the number of y ob- 

servations greater than x    be represented by M.      The a priori 

probability for any set of such frequencies,   m   ,   m   ,   .. .  m   ,   M, is 
12 r 

.M+n-r. /.m+n. This can be proved as follows:   If the two samples 
(     M     )n  m  '• 

are from the same population,   the sample designations x and y are 
arbitrary.      The set m   ,   m   ,   ...,  m   ,   M may then be regarded as 

having been obtained by drawing labels,  without replacement,  from 
a population  consisting of n x labels and m y labels and applying 
them,   in the order drawn,   to the m + n observations arranged in 
order of increasing size.      The first m    labels must be ys,  the next 

must be an x,  then m^ ys in succession followed by another x,   etc. 

The probability of drawing the required label on any given draw is, 
of course,   the remaining number of labels of the required type 
divided by the remaining number of labels of both types.      Thus 
the denominator of the probability fraction is m + n on the first 
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draw,  m + n - 1 on the second,   and 1 on the last,   and the product of 
these denominators is simply (m+n)I   .      The numerators will be 

|(m)(m-l)(m-2) . . .   (m-m  +1))   In]   j(m-m  )(m-m   - 1) . . . 

(m-m.-m_ + l) I | (n-1)) ...   etc.,   or,   more concisely 

mi (m-m1)i (m-m1-m2)i 
—/    v I     n   —7 srr    (n_l)    —7 rr-    (n-2) ... (m-m,): (m-m,-m2)J (m-m.-m   -m  )J      v        ' 

(m  +M)J 
(n-r + l)(n-r+M)J ,  which,   after making the obvious cancel- Mi 

i   J.-                J                   ml         n> /        . -K ,\. ,n-r+M.       ,      , lations,   reduces to   —          (n-r+M)j   or w      ) m    ni . 
MI     (n-r)| v    M      ' 

Dividing this numerator by the denominator (m+n)I ,   the resulting 

.n-r+M 
M probability fraction is .This is the probability that if ob- 

m 

servations from a sample of n xs and m ys are arranged in order of 
increasing size  m    ys will be less than x   ,   m    ys will lie between 

1 12 
x.  and x„,   etc. ,   m    ys will lie below x    and M ys will lie above x  . 

1 2 r r r 
Obviously it is also the probability that m    ys will lie below x   , 

m,   + m    ys will lie below x     etc. ,   etc. ,   and m    + m    + . . .  + m 
1 2 2 12 r 

ys will lie below x   .      And therefore it is the probability that at 
r 

the abscissae x   ,  x   ,  x   ,   ...,  x     the ordinates of the step function 
12       3 r 

m        m m    + m      + m 
Sm(y) will be m   /m,  -JLZ  , — ^   '   - * " 

1 m * m 

m    +m    +m    + . . .   + m 
12          3                       r  .      At the same abscissae,   the ordinates 

m 

of Sn(x)  jump    a distance   1 /n,   remaining constant at abscissae 
values in between.      So the above probability is also the probability 
that at abscissae infinitesimally smaller than x. ,  x_,   . . . ,  x   ,   the ' 1       2 r 
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difference in ordinates between the two step functions will be 

o ml 1 m, + m2 

n m n m 

„   , m1+m,+ ... +m r-l l L r ^   and ,   ...   , 
n m 

that at abscissae infinitesimally larger than x   ,  x   ,   . . . ,  x     ,   the 

m, in   + m 
differences in ordinates will be   — n        m       n m 

• m, +m2+ . . .   m     i 
——  _ — "        The maximum absolute deviation, d   , 

n m r 

must be an ordinate difference in one of these two sets since,   in the 
interval between x- and x. , ,,   the ordinate of Sn(x) remains constant 

while the ordinate of Sm(y) has its lowest value at x. and its highest 

value at x.   . .      Thus the pattern of xs and ys,  when arranged in 

order of increasing size,   determines the maximum ordinatewise 
difference between the x and y sample step functions,   and the prob- 
ability     that d     equals or exceeds h is simply the sum of the prob- 
abilities of the arrangements of xs and ys in which d    > h.      Other- 

r — 

wise stated,   if d    > h in K of the ( )   distinguishable arrange- r = v   m   ' 

ments of xs and ys,   then the a priori probability that d   _> h is 

K (    . _      )/( ).     If m and n are both    very small,   K can be v    M       '     m J 

determined by forming all patterns of xs and ys and counting the 
patterns for which d   > h.      For larger values of m and n,   recursion 
formulae are used to determine K. 

The ordinate of Sn(x) reaches a height of r/n when an ab- 
scissa of x    is reached.      Therefore,   if h is selected to be a value 
greater than r/n,   then at any abscissa up to and including x   ,   the 
ordinate of Sn(x) cannot exceed that of Sm(y)  by a difference of h or 
more,   although the reverse may occur.      Thus when h>  r/n,   the 
test is one-sided in the sense that the null hypothesis can be re- 
jected only because of an excess of ys over xs in the region below x  . 

265 



Even when h < r/n,   the number of xs below xr is limited while the 
number of ys in this region is not;   therefore,   other things being 
equal,   a large d    is more likely to be the result of an excess of 
ys over xs in this region than of the reverse.      The result is that 
the test is more likely to reject when there are too many ys below 
xr  than when there are too few,  the bias increasing as r decreases. 

This situation can be remedied and the test made unbiassed- 
ly two-sided by taking the maximum ordinatewise deviation below the 
r"1 x or the r*n y,   in ascending order,  whichever is the larger. 
This,   however,   requires some modifications in derivations and 
formulae.      Let d'    be the maximum absolute deviation below xr 

or yr,  whichever is larger.      If xr > y   ,   then at least r ys lie below 
xr,   or,   otherwise stated,   M can be no greater than m-r.      Thus 
the probability that d'    > h and that x     > y     is obtained by taking as 
K that number of arrangements in which d     >h counted only from 
those arrangements in which x   >   y    or,   equivalently,   in which 
M < m-r.      Identifying the modified K as K', 

Pr (d<    = h, x    > y ) = K' (n\r/M) / (m+n).       Likewise, \r '     r      ' r *    M '   x  m   ' ' 

Pr(d'    = h,  y   >x ) = K"(mV:+N) /(m+n)  with K" and N defined analo- xr J r       r N '       m 

gously to K' and M.    Since x   >y    and y   >x    are mutually exclusive 

events,  the probability that d1    >h, when d'    is the maximum ordinate- 

wise deviation occurring below whichever of the two values x   andy    is the 

larger,  is simply the sum of the separate probabilities for these mutually 

exclusive events.      Thus Pr (d1   >h) = 
K,<nM+M)+K"(mN+N) 

r = ,m+n. 
m 

Some of these probabilities have also been tabled. 

b.      Null Hypothesis.      Each of the ( )   distinguishable 

arrangements of xs and ys is equally likely to be the pattern ob- 
tained when the sample observations are arranged in order of in- 
creasing size.      The null hypothesis will be true if the two samples 
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come from the same population.      It will be false,   but will be 
rejected at the same level, oc, as if it were true,   if the two sam- 
ples have been drawn from populations which are identical at values 
less than or equal to the critical value,   x    or y   ,   and nonidentical at 
values above it. 

c. Assumptions.    Observations are drawn randomly and 
independently from continuously distributed populations. 

d. Treatment of Ties.     A relatively small number of ties 
are a practical problem only if an x and a y observation are tied 
for the abscissa value at which the maximum ordinatewise deviation, 
dr, occurs. In this case, for a conservative test, the x and y 
should be slightly separated so as to give their ordinates the lesser 
deviation, and the maximum deviation, d , should be redetermined 
by examination of the entire graph. Or, to minimize error, break 
such ties in all possible ways, find d for each such way and obtain 
its probability,   then use the average of these probabilities. 

e. Efficiency. Epstein (18) empirically tested the relative 
efficiencies of the Wilcoxon test for unpaired observations,   the 
"fully two-sided" version of the present test (in which d'    is chosen 
from below max x   ,   y  ),   Epstein's version of the exceedances test, 
and the Wald-Wolfowitz total number of runs test.      The tests were 
applied to two hundred pairs of samples of ten observations from 
each of two populations differing in means but having normal dis- 
tributions    and equal variances.      The order in which the tests are 
listed above is the order of their efficiency,  from best to worst, 
in detecting the difference between the population means. 

f. Application.   Forty type x and forty type y light bulbs 
are placed on life test.      It is decided in advance to reject the hy- 
pothesis of identical life-expectancy populations if,  by the time 
the fifth bulb of each type has blown,   an ordinatewise deviation of 
probability < . 05 has occurred.      Therefore    m=n=40,   r = 5,   d* 
is the maximum ordinatewise deviation below x    or y   ,   whichever 

5 5 
is larger,   and oc = . 05.      The bulbs blow in the following order 
Xl,  x2,  x3,   yr   x4,  x5,   x6,  x?,   Y^   xg>   x^   Yy   x10,   Xu>   x12# 

The test is halted when x. _ blows because 12-3 - 9   and Tsao's 
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tables (40) show that for m = n = 40   and   r = 5   a d'c'S  8/40  has prob- 

ability .96,   so a d1     >9/40  is significant at less than the . 05 level. 

g.    Discussion.     In respect to its derivation the present 
test is closely related to tests based upon exceedances. 

h.    Tables.    Tsao (40),   who   originated the test,   has tabled 
the probability that d   < c/m for certain equal sized samples between 
m = n = 3  and  m= n = 40 with r never exceeding 1 0.      He has also pre 
pared (40) a similar table for the probability that d'r<  c/m. 

i.    Sources.    (18,   40). 

4.      Maximum Deviation Tests for Identical Populations 

a.    Rationale.   Suppose that r is set equal to n in the preceding 
test.      The test statistic becomes d   ,   the maximum difference in or- n 
dinates between Sn(x) and Sm(y) at any abscissa value below x   .      But 

at the abscissa x   ,  the ordinate of Sn(x) is  1.      The deviation between 
n 

the two step functions cannot be greater at abscissae above x     than it 

is at x   .      So the criterion d     is equivalent to using as test statistic d, n n ° 
the maximum ordinatewise deviation between Sn(x) and Sm(y) at any 
common abscissa.      In the preceding section the probability that,   at 
some abscissa value less than x  ,  max | Sn(x) - Sm(y) [   > h was found 

to be K (Mtn"r) /  (m+n)    where K was the number of distinguishable 
Mm 

arrangements of xs and ys resulting in a d    > h.      Substituting n for r, 

the probability becomes K ( ~   ) / ( )  which reduces to K/( ) . 

This was to be expected since ( )   is the number of arrangements 

of n xs and m ys in which m, ys are below x   ,  m    ys are between x. 

and x_,   . . . ,  m    ys are between x     , and x   ,   and M ys are above x   . 
2 r r-1 r ' r 
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When r < n,  there are a number of ways in which M ys can be located 
above x  ,   each distinguishable pattern of arrangement of M ys and 

n - r xs   constituting a different way.      When r = n,  there is only one 
way in which the M ys can be located above x  .      The distribution of 

the ys among the xs is completely specified,   so the specification can 

be met by only one of the ( )  distinguishable patterns of arrange- 

ment of xs and ys.      The maximum absolute deviation test,  d,  is 
therefore a special case of the truncated maximum absolute deviation 
test,  d   ,   described in the preceding section.      The test can,   of course, 

be made one-sided by substituting d',  the maximum unidirectional 

deviation,  for d and K',   the number of the ( )    arrangements,   in 

which the maximum unidirectional deviation equals or exceeds a 

specified value,  h',  for K.      Thus,   Pr (max |Sn(x) - Sm(y)}    > h') = 

K'/( )    for a one-sided test;    and for a two-sided test ' v  m 
Pr (max |Sn(x) - Sm(y)|   > h) = K/(•). 

b.      Null Hypothesis.      Each of the ( )   distinguishable ar- 

rangements of xs and ys is equally likely to be the pattern obtained 
when the sample xs and ys are arranged in order of increasing size. 
This will be the case if the two samples are drawn from the same 
population. 

c    Assumptions.    See 3,   Truncated Maximum Deviation 
Tests for Identical Populations. 

d. Treatment of Ties.      See 3.      When m and n are both so 
large that tables whose probabilities are derived from asymptotic 
formulae must be used,  ties cause the probability error to be in the 
conservative direction.      The tabled probability will be no smaller 
than the true probability,   so rejection will occur less frequently than 
would be the case if there were no ties (12,   22). 

e. Efficiency.      Applied to samples of size 5 and infinity 
from normal populations with equal variances but different means, 
the maximum absolute deviation test has an efficiency of . 65 rela- 
tive to Student's t-test,  for both one-sided and two-sided tests.    In 
the same situation,  but with samples of sizes 5 and 6 the test is more 
efficient than the total number of runs test,  but less efficient than the 

269 



Mann-Whitney test or the X-test (41).      Applied to equal-sized 
samples of size    3,   4,   or 5 from normal populations with equal 
variances and different means,   the maximum absolute deviation 
test was more efficient than Westenberg's median test and less 
efficient than the Mann-Whitney test (13).      It is more efficient 
than the total number of runs test and less efficient than the Mann- 
Whitney test when applied to large samples against the nonpara- 
metric alternatives investigated by Lehmann (25).      (See Intro- 
duction). 

The test has been proved consistent by Massey (30) 
provided only that the sampled populations are continuously dis- 
tributed.      See also (24).      However,   the test is biassed for finite 
n (24,   30,   31). 

f. Application. Let the sample data be represented by 
the following table, observations being listed in increasing order 
of size. 
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Corresponding Corresponding       Difference 
x-observation  ordinate of Sn(x)   y-observation      ordinate of Sm(y)   in ordinates 

•512 

•509 

•487 

-409 

1/16 

2/16 

3/16 

4/16 

341 5/16 

312 6/16 

275 7/16 

202 8/16 

111 9/16 

-58 10/16 

-14 11/16 

9 12/16 

21 13/16 

75 14/16 

156 15/16 

201 16/16 

-422 

-415 

-398 

-360 

1/4 

2/4 

3/4 

4/4 

1/16 

2/16 

3/16 

1/16 

5/16 

4/16 

8/16 

12/16 

11/16 

10/16 

9/16 

8/16 

7/16 

6/16 

5/16 

4/16 

3/16 

2/16 

1/16 

0/16 

The maximum ordinatewise deviation is 12/l6 which for samples of 

sizes 4 and 16 is found,  by using Massey's tables (32) to have a prob- 

ability of .034 of being equalled or exceeded.      Therefore the hypothe 

sis of a common population would be rejected if a significance level 

of . 05 were used. 
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g.    Discussion.    Drion (16) has derived exact probabilities, 
without resort to recursion formulae,  by use of random walk methods. 
His formulae,  however,   require samples to be of equal size.      He finds 

2[(   2n)- (2n
?  ) + (2n,  ) - (2n

4  ) + ...] ,    , ...^    ^,        , .      /         ,           L vn-c        vn-2c        vn-3c'      'n-4c 
the probability that d > c/n to be  ———  

2n 
n 

"the series being continued as long as n - kc   > 0".      The sample sizes 

are,  of course,  n and m = n.      The probability that the maximum uni- 

directional deviation,   Sn(x) - Sn(y),   exceeds c/n is found to be 

Drion has also used random walk to investigate the prob- 
ability that,   disregarding the endpoints whose ordinates are zero 
and one,   two sample step functions will not intersect,   i. e. ,   that 
either one of the sample step functions will lie entirely above the 
other.      If the two samples are of equal size and come from the same 
population this probability is ,.      If the samples come from the 

Zn-1 
same population but are of different sizes,  n and m,   and if n and m 

are coprime,   the probability is 
n+m 

h.     Tables.      Massey has tabled the probability that d will 
not exceed specified values for equal sized samples with 1 5. m  = 
n < 40 (33),   for equal or unequal sized samples with m < 10 and 
n < 10,   and for samples of selected larger sizes (32).      A small 
table for use with equal-sized samples has been published by Drion 

(16).      The limiting cumulative distribution of d\J      has been 
v m+n 

tabled by Smirnov (39),   thereby permitting the approximate prob- 
ability of a given d to be obtained when m and n are both very large. 
Goodman (20) has published a table of probabilities for the maximum 
unidirectional  deviation between ordinates of step functions of equal- 
sized samples for sample sizes ranging from 1 to 50. 

i.    Sources.    8-16,   19-22,   24-25,   30-33,   36,   39,   41, 
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5.      A Large Sample Test Using Grouped Data 

Marshall (27) has proposed an approximate test,   for use 
when m and n are large,   which involves grouping the data into class 
intervals.      The range of the variables is divided into j + 1 intervals 
by the selection of j arbitrary points,   and the unidirectional differ- 
ence in step function ordinates is measured at each of these points. 
These differences are then summed.      The sum,   S,   is normally 
distributed in the limit with mean zero and variance 

1      1      Tj Yj"1Vj 
(—+-)()     P.Q.+2) )        P.Q. ). The values of P.,  however, v m     n      /_,      I   I       [_i      l_j I   k' i 

i= 1 i=1      k=i-1 

must be obtained from their maximum likelihood estimates, 

P. — ?—!—     where Sn(i) and Sm(i) are the ordinates 1 m+n 

of the two step functions at the abscissa point i which is one of the 
j arbitrarily chosen points dividing the data into intervals.      The test 
is conducted by referring the critical ratio to normal tables.      Its 
asymptotic power efficiency is .64 for j =  1,   .91 for j  = 5,   and .94 
for j =  10 when used to test for a difference in means between two 
normally distributed populations with equal variances. 
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CHAPTER XII 

MULTI-SAMPLE TESTS 

Distribution-free tests to detect a differential effect among 
three or more treatments are often simply generalizations of an 
analogous distribution-free test for the two-treatment case.      In 
the following chapter,  the rank tests for unmatched and matched 
data are generalizations of the Wilcoxon and sign tests respectively, 
while the median test generalizes the two sample test of the same 
name.      Most of the remaining tests are at least analogous to,   if 
not direct generalizations from,   a two-sample distribution-free 
test.      However,   in no case is the parallelism complete.      The test 
statistic may be based on essentially the same sample information, 
but may take a different form;   or its exact probabilities may have 
been tabled only for the tiniest of sample sizes,   asymptotic,   approx- 
imate formulae being employed to calculate probabilities in all other 
cases.      For these and other reasons,   the multi-sample tests appear 
to have more in common with each other than with the two-sample 
test which they "generalize. "     They are therefore presented to- 
gether in a single chapter. 
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1.     Rank Tests for Unmatched Data 

a.    Rationale.      Suppose that observations have been taken 
under a variety of conditions,  that the observations are continuously- 
distributed but unmatched,   and that it is desired to test whether or 
not the observations recorded under the various conditions all belong 
to the same population.      Rank the observations from 1 to N,  where 
N is total number of observations recorded under all conditions. 
Now construct a table with C columns,   representing conditions,   and 
with a number of rows equal to the greatest number of observations 
recorded under a single condition.      Enter each rank under the ap- 
propriate column paying no attention to the row into which it happens 
to fall.      Let n.   represent the number of entries,  i.e. ,  the number 

of occupied cells,   in the i      column,   and let R.   represent the sum 

of the ranks in the i      column.      The average rank entry in the entire 
table is (N+l)/2,  and,  if the null hypothesis is true,   it is also the 
"population" average for the n.     rank entries in the i• column. 

The expected column sum for the i      column is therefore n. (N+l)/2. 

Let S represent the sum of the squared deviations of the column sums 

n. (N+l)     i2 
from their expected values,  then S •7. R.  -  -1 

l 

For a given table,  N cells are occupied.      There are N ! 
ways in which the ranks from 1 to N could have been assigned to 
these N cells by chance,  and if chance is the only determining 
factor each of these ways is equally likely.      Therefore,  to deter- 
mine the probability of an S as great or greater than that obtained, 
one need only find the number of the Nl   tables which yield such an 
S and divide by Ni      This method however involves excessive com- 
putation.      The n. observations in the ith column can be permuted 

in n.J  ways without changing R. and therefore without affecting the 

value of S.      For each such permutation,  the within-column entries 
of every other column can be likewise permuted,   so  there are 

C II      (n.l) ways of permuting   within-column  entries  without     affecting 
i=l       * 

the value of S.      Therefore,    one may save   labor  by confining  his 
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N' attention to the  -     tables which can be formed by permuting 
nc(n.:) 
i=l     l 

entries from one column to another.      If there are the same number 
of entries in every column,   permutations which merely interchange 
entire columns of entries do not change S,   and since there are C! 
such column permutations possible for each "table" (i.e. ,  for   any 
given permutation) further labor can be saved by taking as one's 

N' population of tables only the —-      tables whose permutations 
anc(n i) 

i=i 

exclude permutations of entire columns and permutations of entries 
within columns.       In either case the cumulative probability of a given 
value of S is simply the proportion of the restricted population of 
"tables" which yield an S equal to or greater than the given value. 
Exact probabilities have been calculated for S and for a statistic, 

12       VC            ni<N+1>     2 
H,   which equals T^7T^TT\ /      [ R- ? -^     an(^ w^ich is equivalent 

i=l n. 
1 

to S,   since the n^ are parameters for the exact tables of both S 
and H. 

The calculations required for the exact method become 
unwieldy and impractical at very modest sample sizes,   at which 
point approximations must be relied upon.      Owing to the effect 
described in the Central Limit Theorem,   a column mean or sum 
tends to become normally distributed as the number of observations, 
n^,   upon which it is based increases (assuming C fixed) or,   perhaps 
to a somewhat lesser degree,   as the number,   C,   of different values 
an observation can assume increases (assuming n- fixed).      There- 
fore,   roughly speaking,   the tendency to normality generally in- 
creases with increasing N.      If the null hypothesis is true,   each 
column mean comes from a population of "column means" whose 

TVT, i ivT2   ,      N-n. N+1 ,     ,                  .            .      N   -1             1 mean is         and whose variance is   -=--      -=—T— 
., 12n.       N-l 
2 1   . 
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(The variance of a distribution of means is — („  . ),     where cr is 

the population variance,  which in the case of sampling without re- 

N2-l 
placement from the population of integers from 1 to N is   —y*— » 

and where N and n are the respective sizes of the population and of 
the sample. )     Therefore,   if the null hypothesis is true and if N is 
large enough for the i"1 column mean to have an essentially normal 

Ri        N+l 
~  ~ ~~2~ 

distribution,  is a standardized normal deviate with 

/ 
T^T2   i     N-n. 
N   -1   / i_. 

zero mean and unit variance.      The sum of C squared standardized 
normal deviates has a chi square distribution with C degrees of free- 
dom if the deviates are independent.      In the present case,   of course, 
they are not independent:   if C-l of the R^ are known,   the remaining 
one can be obtained by subtraction from N.      However,   by making 
mathematical allowance for the correlation,   the above approach can, 
with a slight modification,   be used to obtain a test statistic, 

A    N+l .2 
N-1 Y

C S  ~~*~ 
H= —TT-   /       T which is distributed approximately as chi N    £. NZ-1 

1=1 TZrT 
1 

square with C-l degrees of freedom.      An equivalent formula,   which 

12      \~^^  R is more efficient for computation,   is     H -  -3 (N+l) + —-r-   • i 
N(N+1)    _. 

i=l    ni 

b. Null Hypothesis. The a priori probability that a given 
rank will belong to an observation in the ith column is n-/N. This 
will be the case if all N observations are members of the same popu- 
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lation,   i.e.,   if conditions have not affected observations differentially, 
and if all assumptions are met. 

c.    Assumptions.   Observations have been drawn randomly 
and independently from continuously distributed populations (which 
would be identical if conditions had equal effects. )     If the approx- 
imate test is used it must be further assumed that no n. is very 

small,   i. e. ,  that in every column there are enough observations so 
that,   in accordance with the Central Limit Theorem,  the mean of the 
n- ranks will be essentially normally distributed about the grand mean 

r N+l of       . 

d.    Treatment of Ties.     When all the observations forming 
a tied group lie in one column of the table,   ties may be resolved arbi- 
trarily.      In all other cases a conservative test calls for ties to be re- 
solved in the manner least conducive to rejection of the null hypothesis; 
however,   probability error will be minimized in the long run if,   instead, 
such ties are assigned the midrank of the tied-for ranks.      If the latter 
method is employed and if the large sample  (i.e.   approximate) version 
of the test is used,   the mathematical effect of ties can be compensated 
for by calculating H from the following formula: 

^C   R2 

3<N+1»+ wfm I IT 7=1        i 3 

     where T = t -tand t is the number 

l —3  
N   -N 

of observations tied for the same rank. 

e.    Efficiency.      When both tests are applied to populations 
having normal distributions differing only in location (and therefore 
having equal variances) the H test has,   relative to the F test of 
analysis of variance,  an asymptotic relative efficiency of   2/V or .955. 
Undjr the same circumstances,  it is more efficient than the Brown- 
Mrod median test which has an A.R.E.  of 2/3  relative to the H test. 
If,  in the above,   "uniform distribution" is substituted for "normal 
distribution",   the A.R.E.   of the H test relative to the F test be- 
comes  1.00 and that of the median to the H test becomes l/3.    The 
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A. R. E.  of the H test relative to the F test can exceed 1. 00 for 
certain types of distribution (2).      However,   if the distributions 
have identical shapes,   it cannot fall far below 1. 00.      The finding 
of Hodges and Lehmann concerning the efficiency of the Wilcoxon 
test relative to the t test,   applies also to the efficiency of the H 
test relative to the F test:   If samples are from continuous distri- 
butions,   differing only in location,  the A.R.E.  of the H test relative 
to the F test can never fall below . 864. 

The H test is consistent against translation alternatives 
(2).      More generally,   it is consistent if for some one of the C pop- 
ulations the probability that a randomly selected observation from 
that population exceeds a randomly selected observation from among 
all C populations is some value other than 1/2 (19,   20).      For example, 
the test is not consistent if the C populations are symmetrical with 
equal means but unequal variances,   i. e. ,   rejection of the hypothesis 
of identical populations cannot be assured by taking infinite sized 
samples. 

f.    Application.    Suppose that speed of reading is to be 
tested under three degrees of illumination.      Nine subjects are se- 
lected at random from a common population,   and three subjects 
are randomly assigned to each condition of illumination.      Due to 
some misadventure one subject fails to complete the experiment. 
Let the data be as shown below,   the first table giving the raw scores 
and the second one showing their ranks. 

Condition 
ABC 

1 4 6 

31 37 44 2 5 7 

35 51 3 8 

12 V°       K-2 

Calculating H = -3 (N+l) +       /N+1\       Z_,        ——   •    we obtain 

i=l i 

Condition 
A B C 

22 36 39 
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H = -3 (8+1) +    0/0
12^    [ V + \~ + H~ ] = 6- 25>  which is found> 8(8+1) 3 ^- J 

by consulting Kruskal and Wallis' tables, to have a probability 
of .011. This probability could easily have been obtained with- 
out the use of tables: There are 8 ranks and 8! ways in which 
they could have been assigned to the 8 cells of the above table. 
However permutations among the 3 cell entries in column A, or 
the 2 in column B, or the 3 in column C are of no interest nor 
are permutations of the entire set of entries under column A with 

8' those under column C.      Therefore,   only — —-—     or 280 

tables need concern us.      Of these 280 tables,   only 3 yield values 

of \ —I—     as great or greater than the value actually obtained. 
Z_. n. 

I 

They are as follows: 

Condition Condition Condition 

ABC ABC ABC 

3          16 14        6 17         4 

427 257 285 

5                     8 3                    8 3                    6 

The probability of a table as extreme or more extreme than that 
obtained is therefore 3/280 or .011. 

g.    Discussion.      Wilcoxon's two-sample test for unmatched 
data assigned ranks to observations,   irrespective of the sample to 
which they belonged,  then applied Fisher's method of randomiza- 
tion to the rank sums of the samples.      White extended the test to 
samples of unequal size.      The present test is a generalization of 
the Wileoxon-White test to the multi-sample case,   the procedure 
differing mainly in that the sum of the squared deviations of rank 
sums from their expected values,   (or the equivalent) has,   in effect, 
replaced the rank sum as the test statistic.      The Wilcoxon form of 
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the test,   requiring equal-sized samples,  has been generalized 
by Rijkoort (29) whose test statistic is the value S,   defined under 
"Rationale".      Kruskal and Wallis (19,   20) have generalized the 
White form of the test which permits samples of unequal size; 
their test statistic is H. 

The Mann-Whitney form of the "Wilcoxon test" applies 
to unequal as well as equal-sized samples and does not use rank 
sums as the test statistic.      Instead it employs the statistic,   U, 
which is the number of times a Y-sample observation precedes 
an X-sample   observation when observations from the two samples 
are arranged in a single sequence in order of increasing size. 
The Mann-Whitney test is a special case of the form of Kendall's 
rank correlation test (tabled by Sillito) which takes exact account 
of ties in one ranking.      Certain multisample generalizations of 
the Mann-Whitney test are mathematically equivalent to this form 
of Kendall's test.      Observations may be regarded as having two 
characteristics:   their value and the sample to which they belong. 
All observations are ranked as to value,   and this is the untied 
ranking.      If ranked according to the other characteristic,  the 
result is a ranking containing ties,   all of the observations in a 
given sample being tied for that sample's rank.      The rank corre- 
lation test then tests whether or not the tied and untied rankings 
are correlated,   i.e.,  whether or not value    ranks are system- 
atically related to sample-category ranks (roughly,   it tests whether 
or not observation values are systematically related to their sample 
categories). 

In generalizations of the Wilcoxon and White forms of the 
"Wilcoxon" test,   the alternative to the null hypothesis is simply 
that samples differ.      Specifically the alternative hypothesis is 
that the average rank of observations in one or more unspecified 
columns differs in a real nonchance way from the average rank 
for the entire table.      In generalizations of the Mann-Whitney 
(and,   therefore,   "modified Kendall") form of the test,   however, 
the alternative hypothesis is much more specific.      It states 
that observation-value ranks are correlated with their sample 
ranks and therefore specifies the order of arrangement of the 
samples.      Thus,   speaking roughly,   it states that observations 
of intermediate size tend to lie in those samples "assigned" inter- 
mediate ranks (and therefore represented by the middle columns) 
and that either small observations tend to lie in samples with low 
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rank (the left hand columns) and large observations in samples 
with high rank,   or the reverse if "negative" correlation is sus- 
pected.      The multisample generalizations of the Wilcoxon- 
White and Mann-Whitney forms are therefore quite different 
in their applications.      The probability tables for the two forms 
are constructed for different rejection regions,   the rejection 
region for the Mann-Whitney form being taken so as to maximize 
the probability of      rejection when a specific alternative hypo- 
thesis is true.      Furthermore the test statistic for generalizations 
of the Mann-Whitney test is based upon inversions rather than 
rank sums and can assume a greater number of  gradations of 
value than can generalizations of the Wilcoxon or White tests. 

Multisample generalizations of the Mann-Whitney test 
have been proposed,   and their exact small sample probabilities 
tabled,   by Terpstra (43) and by   Whitney (52).      Multisample tests 
equivalent to Kendall's rank   correlation S,   with exact allowance 
for ties in one ranking,   have been developed by Krishna-Iyer 
(18),   Terpstra (45) and Jonckheere (12),   exact small sample 
probabilities having been tabled by the last two authors.    These 
tests,   in effect,   require that "columns" be arranged in an order 
implied by the alternative hypothesis; they then test whether or 
not this order bears a "chance" relationship to the rank order of 
the observations in the table so constructed. 

h.    Tables.   Exact probabilities for H have been tabled 
(20,   21,   1-43) for the case of three samples,  none of which con- 
tains more than five observations,   i. e. ,   C=3;n. ,   n   ,   n,  < 5. 

(Samples not necessarily of equal size).      Exact probabilities for 
S have been tabled (29,   21)  for the cases in which the number of 
samples is 3,   4 or 5,   each sample containing an equal number 
of observations (2,   3,   4 or 5 in the first case,   2 or 3 in the second, 
and 2 observations in the third case in which there are 5 samples). 

Various approximations exist for cases not covered by 
the exact tables.      As indicated under Rationale,   H is distributed 
approximately  as ^     with C-1 degrees of  freedom,     and   so   is 

12.1 C- 1) S  i L- j- .     The chi square approximation is the easiest 
(N+1)(N    - £n.   ) 
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to use, but it is not the best. Closer approximations are dis- 
cussed in (19, 20, 29). A nomogram for obtaining probability 
levels for the H or S tests is given in (30). 

i.    Sources.    2,   12,   18,   19,   20,   21,   29,   30,   43,   44,   45, 
50,   52,  1-43. 

2.    Rank Tests for Matched Data 

a.    Rationale.    Suppose that each of m subjects has per- 
formed under each of n conditions and that one desires to test 
whether or not the various conditions have equal influence upon 
performance.      Let an m x n table be constructed with n columns, 
representing conditions,   and m rows,   representing subjects. 
Rank each subject's performance under the n conditions,   assign- 
ing a rank of 1 to the smallest score,   2 to the next smallest,   etc, , 
and n to the largest.      Then record each rank in the appropriate 
cell of the m x n table.      The cell entries in each row of the 
table constitute one permutation of the sequence of integers from 
1 to n.      There are n]  possible permutations for a given row. 
For each such permutation,   there are nl  ways of permuting a 
second specified row,   etc.      Since there are m rows,   there are 

(nl )      different "tables" which can be obtained by permuting 
cell entries within rows. 

Now sum the cell entries in each column.      The average 

cell entry in a row is     -    ,   so the average column sum is m(   -   ). 

From each column sum subtract m (   -   )   to obtain the deviation of 

the column sum from the value expected if conditions have equal 
effects upon performance.      Square each deviation and sum the 
squared deviations.      Call this sum S. 

For each of the (n! )       possible tables there will be a 
corresponding value of S (some tables,   of course,   yielding the 
same S).      Therefore the exact probability for an S equal to or 

greater than that obtained is simply the number of the (n! ) 
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different possible tables which yield such values of S,   divided 

by (n! )m.      (Some of the (n! )      possible tables differ only in 
that entire columns are interchanged.      Since there are n col- 
umns,   there are n{   variations of any given table which can be 
effected simply by transposing columns.      All of these n!   var- 
iations,   of course,   yield the same S.      Therefore computations 
can be considerably lessened by counting critical values of S 
only from the (n1. )m_i   tables   none of which can be obtained by 
transposing columns of another table in the set.      If an S as great 
or greater than that actually obtained could have been obtained 

from N of the (nl )      "unrestricted" tables and from N'   of the 

(ni)"1"1   "restricted" ones,   then N/(n! )m and   N'/fn!)•"1   are 
equal,   and both give the exact probability sought. ) 

When m and n are small exact probabilities can be 
calculated in the manner indicated above.      Such exact prob- 
abilities have been tabled for S  and for a statistic, x  r,   which 

12S equals ——      and is therefore equivalent to S when exact 
mn(n+l) 

tables are used. 

Owing to the effect described in the Central Limit 
Theorem,   the distribution of column means approaches a normal 
distribution as the number of rows increases,   thus making pos- 
sible an approximate test when m and n exceed the values given 
for them in the exact tables.      The mean and variance of a single 

ii r» 1 

table entry are         and    —    respectively.      The mean of the 
L. I   d 

entries is also the mean of the column means.      The variance of 
a mean of m observations is  1/m times the variance of the individ' 
ual observations upon which the mean is based.      Therefore the 

n2-l variance of a column mean is    — .      If R   is the mean of the 
12m J 

R  .21! 
ranks in the j      column,   then        ** is,   for large values of 

i L n 
1_ 

rn 
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m,    approximately" a standardized normal deviate with zero mean 
and unit variance.      The sum of the squares of n independent 
standardized normal deviates is  distributed as chi square with 
n degrees of freedom.      However,  the n column means are not 
independent;   knowing n-1 of them,  the remaining mean can be 

obtained by subtracting their sum from   —- —   .      If one mean 

is "ignored",   however,  the remaining n-1 means may be regarded 
as practically independent.      Therefore,  n-1 of the column means 
could be selected at random and used to calculate n-1 standardized 
normal deviates the sum of whose squared values would be distri- 
buted as chi square with n-1 degrees of freedom.      This approach, 
however,   is objectionable because the "information" contained in 
the arbitrarily discarded mean is ignored.      The solution    favored 
by Friedman (11) is to find the sum of the squares of all n standard- 
ized normal deviates,   divide by n to obtain the average squared 
standardized normal deviate   ,   then multiply this by n-1 to obtain 
a simulated sum of n-1 squared standardized normal deviates which, 
nevertheless,   takes all n of the deviates into account.      The result- 

(R.-Hii)2 

ing value,     Y     »   ^s distributed approximately 
n   *-> 1 2 

n-1 
12m 

as chi square with n-1 degrees of freedom.      For computational 
purposes,    it  is   easier to use the equivalent formula 

X    =   -3m(n+l) + • .— ;      R.   with n-1 degrees of freedom, 
i(n+l)     ^      j r mn 

where R. is the sum  of the ranks in the j"1 column and X    sym- 
J   J r     ' 

2 
bolizes a modified X    which has approximately the chi square 
distribution. 

b.    Null Hypothesis.    For each row,   each of the n! 
permutations of the ranks 1 to n was equally likely to be the 
sequence of cell entries recorded.      This will be the case if 
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conditions have equal influence upon scores (so that variations in a 
subject's performance are random) and if all assumptions are true. 
Note:   the null hypothesis does not  imply that the observations 
in different rows come from the same population. 

c.    Assumptions.   Observations upon a subject are randomly 
selected (usually it is also assumed that subjects are randomly se- 
lected),   rows are independent,   i. e. ,   one subject's performances 
are uninfluenced by the performance of any other subject,   and 
within a single row there are no tied ranks (thus,   if "performance" 
is not intrinsically in rank form,   it is assumed to be continuously 
distributed).      If the approximate test is used,   it must be further 
assumed that m,  the number of rows,   is large enough so that,   in 
accordance with the Central Limit Theorem,  the mean of the  m 
ranks in a column will be essentially normally distributed about 

the grand mean of     . 

d. Treatment of Ties.    The conservative method of dealing 
with within-row ties is to distribute the tied-for ranks to tied cells 
in such a way as to minimize S.      In order to minimize error in the 
long run,   give each of the within-row ties the average of the tied- 
for ranks. 

e. Efficiency.    When n = 2,   the present test is equivalent 
to the sign test which has an asymptotic efficiency of . 637 relative 
to Student's t test.      Therefore,  when n-2 and m is infinite,  the 
present test has an efficiency of .637  relative to Student's t (11). 
This is presumably the lowest efficiency value assumed by the test 
since the efficiency of the sign test increases with decreasing 
sample size and since when n-2 the ranks in effect designate only 
"smaller" versus "larger",  while, with increasing n,  finer and 
finer gradations of discrimination are possible.       Thus,   with in- 
creasing n, ranks simulate more and more closely the gradations 
of measurement characteristic of continuously distributed original 
scores and efficiency should approach that of tests based on such 
scores.      At the other extreme,  when m-2,  the test is equivalent 
to the rank difference correlation test shown by Hotelling and Pabst 
to have an asymptotic efficiency of . 912 relative to the parametric 
test for correlation.       This then is the efficiency of the present test 
when m«2 and n is infinite (11).      It seems reasonable to conclude, 

291 



therefore,   that the present test when applied to normally distributed 
original scores has,   relative to parametric tests,   an efficiency no 
smaller than . 637   and generally  considerably higher.      (If either 
n = 2 and m is very small,   or   if m and n are both quite large,   one 
would expect an efficiency close to 1.00). 

f.    Application.   Each of three subjects performs   a well 
learned task three times,   each time under the influence of a dif- 
ferent drug.      Performance is timed and the experimenter wishes 
to test the hypothesis that no subject's performance times were in- 
fluenced more by one drug than by another. 

TIME SCORES TIME-SCORE RANKS 

Drug Drug 

Subject       I 

A 4.76 

82. 11 

II 

1.30 

B      ;14.51     10.27 

82.09 

III 

7.91 

35. 84 1 

82. 14 I 

>ject I II III 

A 2 1 3 

B 2 1 3 

C 2 1 3 
-> 

SUM 9 

The original scores are shown above,   a second table substituting 
ranks for scores.      For the latter table,   the average column 

sum is m (—— )  or   6,   so the deviations of the column sums from 

their mean value are 0,   -3,   and 3.      Squared these become 0,   9, 
and 9 and their sum S is  18.      Consulting Kendall's exact tables it 
is found that an S of 18 has a chance probability of . 028 of being 
equalled or exceeded.      (The test is one-tailed since S can only 
be positive and since very small values of S only indicate unlikely 
degrees of "agreement" with the null hypothesis. ) 

The same result could have been calculated without resort 
to tables. There are 3! ways of assigning the integers 1, 2, and 3 
to the three cells in row B and for each of these permutations,   there 
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are 3i  ways   of permuting   the   ranks   in   row   C.        Thus  there 
are 31  x 3\   = 36 tables which can be constructed without altering 
the rankings in row A.      For each of these   tables there is a set of 
column sums and a corresponding value of S.      The actually ob- 
tained set of column sums,   however,   differ maximally and can be 
obtained in only one way if A's ranking is held constant (any permu- 
tation of B's or C's ranks bring the sums closer together and re- 
duce S).      Therefore the obtained table yields the maximum value 
of S which can be obtained in only one of 36 tables,   and the prob- 
ability of an S equal to or greater than that obtained is 1/36 or . 028. 
The hypothesis of equal drug effects can therefore be rejected at 
beyond the . 05 level of significance. 

g.    Discussion.   Pitman (27) extended Fisher's Method of 
Randomization for matched observations from the two treatment 
case to the case of multiple treatments.      The present test,  when 
used as an exact test,    differs from that proposed by Pitman only 
in that ranks have been substituted for original observations and 
the test statistic is S rather than the F ratio.      The further exten- 
sion of the test from its present requirement of one observation 
per cell to the case where any cell can be empty or contain any 
positive number of observations has been discussed by Benard 
and van Elteren (3). 

The present test is exact only when probabilities are ob- 
tained by the Method of Randomization.      When they are obtained 

from the Z or X    distribution,   (see "Tables")  they are approx- 
imate.      For values of m and n slightly larger than those for which 
exact probabilities of S have been tabled,  the approximate probabil- 
ities obtained by using the Z tables are reasonably close to the true 
values at the . 05 or . 01 levels of significance;   however,  the . 001 
level of significance should be avoided.      The tails of the distribu- 
tion of S are very irregular when m and n are in this region. 

It is to be noted that the test does not assume homogeneity 
of rows.      The "subjects" may belong to different populations and 
their absolute performance scores under a given condition may differ 
tremendously.      Furthermore,  the variability of performance under 
the various conditions may differ vastly from one subject to another. 
The test is not designed to detect such effects.      It essays merely 
to detect any systematic tendency for performance under one condition 
to be superior to that under another condition.      It will fail if such 
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a tendency exists in some rows but is balanced by an opposite ten- 
dency in other rows.      Therefore,   while homogeneity of rows is not 
assumed by the test,   it will generally be desirable to select sub- 
jects from the same population.      If this is not done,   and if such 
subjects are not selected randomly so as to be "representative" of 
their populations,    the results of the test will,   in a sense,  be pe- 
culiar to the group actually tested. 

The preceding test can be used to test for interactions (53). 
The method can be best explained in terms of an example.      Suppose 
that four subjects have performed under each of three conditions,   I, 
II and III,   of one variable and have done so under each of two condi- 
tions,   A   and B,   of another variable.      (The significance of each var- 
iable alone can be tested,  by collapsing data over the other variable 
and performing the test as described earlier. )     It is desired to test 
whether the two variables interact.      Let the data be as shown below: 

COLUMN 
BLOCK ROW 

(Subject) 
I II III 

1 15.4 26.9 27. 8 

2 14.6 25.9 28.7 
A 

3 8.3 14.2 12.0 

4 5.9 19.9 20. 3 

1 9.2 15. 1 18.7 

2 5.1 10.2 15.4 
B 

3 4.9 8.2 6.1 

4 11.5 12.5 29.1 

Now subtract each score in block B from the corresponding score 
in block A and form the table shown below: 
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"A" Observations Minus "B" Observations 

COLUMN 

ROW I II in 

1 6.2 11. 8 9.1 

2 9.5 15.7 13.3 

3 3.4 6.0 5.9 

4 -5.6 7.4 -8. 8 

The preceding test is then applied to this table in the usual manner 
as shown below,   ranks being substituted for difference-scores. 

COLUMN 

ROW 1 II III 

1 1 3 2 

2 1 3 2 

3 1 3 2 

4 2 3 1 

The column sums are 5,   12,   and 7,   and since the average sum is 
8,   the squared deviations from the mean sum are 9,   16,   and 1 
yielding an S of 26 which is significant at the . 042 level 

If there had been three blocks,   A,   B and C,  two tables 
would have been constructed,   one for the A-B differences and one 

A + B for the differences,    - C,   or the ultimately equivalent dif- 
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7 12S 
ferences,   (A + B) - 2C.      The statistic Xc    = ; —-   is then cal- 

r      mn(n+l) 

culated for each table after substituting ranks for difference-scores. 

2 
The sum of these two X    's  is distributed approximately as chi- 

square with 2(n-l) degrees of freedom.      With four blocks,   A,   B, 
C and D,  three tables would be constructed,   one each for the differ- 
ences A-B,   A + B-2C,   and A+B+C-3D.      Ranks would be substituted 

2 
for difference scores and X     would be calculated for each table. r 

2 
Since each X      is approximately distributed as chi-square with 

n-1 degrees of freedom,  by the additive property of chi-square 
their sum is distributed as chi-square with 3(n-l) degrees   of 
freedom. 

The hypothesis tested is that,   except for chance fluctuations, 
each score in the i      row of one block differs by a constant amount 
from the corresponding score in the i*n row of another specified 
block.      If this is not the case then the influence of columns upon 
entries of the i*n row depends upon blocks and a column-block in- 
teraction exists. 

Since, in each row, ranks are substituted for original 
observations, the method is particularly suitable when original 
data are in intrinsic rank form,   each row containing the ranks from 
1 to n.    This is,   in fact,  the case when each of m judges ranks each 
of n things,   tied ranks being disallowed.       The present test will test 
the judges' accuracy.      Their reliability,   i. e. ,   agreement with one 
another rather than with the "true" ranking,   however,   is also of 
some interest and can be tested by means of distribution-free tests 

originated by Kendall (see "Miscellaneous Distribution-Free 
Tests") and others (6). 

h.     Tables.    The exact probability that S will equal or ex- 
ceed a given value has been tabled (14,   15,   16) for the cases: n = 3, 
2 < m < 10; n = 4,    2 < m < 6; and n = 5, m=3. Analogous exact prob- 

2 
abilities for X      have been tabled (11,   1-43) for the cases: n-3, 
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2<m<9;n=4,   2 <m < 4; (in the actual notation used P is sub- 
stituted for n above and n for m above). 

For cases not covered by the above tables,   close approx- 
imate probabilities can be obtained by entering Fisher's Z tables 

(given in 14) with degrees of freedom V   - n-1 and V_ - (m-l)V 
1 in £• l 

and with Z * — log       '—-—'— or,   somewhat more accurately, 
2    •    e 2    3 

m   (n   -n)-12S 

•.,        ry j     r .. ., „ 1       . 12(S-1  )(m-l) with Z corrected for continuity,    Z • — log       • —  
2 e        2    3 

ni  (n -n)-12(S-3) 

Using the above formula, with correction for continuity, tables 
have been prepared which give values of S significant at the . 05 
and . 01 levels for the cases 3 < n < 7,  m = 3, 4,   5,   6,   8,   10,   15 

? 1 ?S 
or 20 (10,14,   1-43).      Using the identity X*   = ,  •        these r       mn(n+l) 

2 
tables can be "translated" into analogous tables for X   .      This,in 

effect,   has been done (10),   the tables being expanded to cover the 
additional cases m = 100  and m • infinity.      A nomogram based upon 
still another approximation is available in (30). 

2 If the statistic X      is used instead of S,   close approximate 

2 
probabilities can be obtained by substituting mn(n+l)X r/l2 for S in 
one of the formulae,   given above,   for Z,   and then consulting the Z 
tables.      A less close approximation to exact probabilities can be 
somewhat more readily obtained by entering the chi-square tables 

2 12S with n-1 degrees of freedom and with X    =  ,   or,   corrected 
mn(n+l) 

(             +•     -+    Y2         12m(n-l)(S-l) for continuity X     •    ^ —   . 

m2(n3-n)+24 

2 
When Z or X    tables are used to obtain probabilities,   cor- 

rections for ties may be made.      These are given by Kendall (14). 
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The simplest procedure appears to be to correct X      for ties and 

2 
then find the S corresponding to this value of X    .      Corrected for 

ties,   X 

mn(n+l) Ej 
" n-1 

where   T =  — Y (t3-t),   t being the 
12 L-' 

12 

number of observations in a particular row which are tied for the 
same rank,   the summation of (t   -t)  occurring over all tied-for 
ranks in that particular row and the summation of T occurring 
over all rows. 

i.    Sources.   3,   6,   9,   10,   11,   13,   14,   15,   16,   27,   30,   32, 
34,   35,  40,   41,  42,   51,   53,   54. 

3.    Median Tests 

a    Rationale.   Suppose that (continuously distributed) ob- 
servations have been taken under C experimental conditions and that 
it is desired to test whether or not the conditions have equal effects. 
Let n be the total number of observations and a be the number of 
those observations which lie above the grand median,   M,   and let 
n. be the number of observations taken under the i*n experimental 

condition and a.- be the number of those n. observations which lie 
1 l 

above the grand median for all observations. 

1            - •   • 

al 
1 

a             i        
2 

a                 i         a 
c-1                       c 

a 

Vai n   -a                  
2     2 

n       -a 
c-1     c-1 

n   -a 
c     c 

n-a 

nl n2 
n 

c-1 
n c n 
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Suppose that the conditions do have equal effects so that all 
n observations are from a common,   continuously distributed,   popu- 
lation.      If P is the proportion of the population lying above the grand 
median of the n observations,  the a priori probability that a. of the n. 

observations taken under the i       condition will exceed M is 

n. n.-a. 
(    ) T3  i   (1-P) »    a-nd the a priori probability that under successive 

i 

conditions the number of observations above the median will be 

n.        a. n.-a. 
a   ,   a   ,   ...,   a     is the product   II     (    )   P      (1-P) .      However, 

1=1    i 

the value,   M,  used to dichotomize the data into the frequency cate- 
gories   a. and n.-a.,   is a sample,  not a population,  median,  i.e., 

it was determined a posteriori.      Therefore,   the probability we seek 
is the conditional probability of cell entries a.   ,  a   ,   ...,  a   ,  given 

that their marginal total is a,   and this is obtained by dividing the a 

n.        a. n.-a. 
priori probability   II     (    )   P      (1-P) by the a priori probability 

i=l     i 

of the marginal totals,  which is    (  )   P    (1-P)       .      In the resulting 
St 

fraction the terms containing P cancel out leaving 

n. 
nc 0 
•i — 1 
—     as the point probability for the obtained table.      The signi- 

(n) va' 

ficance level for a given table is obtained by cumulating the   point 
probabilities for all tables as extreme or more so.     However,  with 
increasing values of n.   or  C   calculations are likely to become pro- 

hibitively laborious.      Fortunately,  when n > 20 and all n. > 5   a 

fairly good approximate test can be performed by calculating 

which is   distributed very nearly as chi- n (n-1) yc 
a (n- a) t- 

n.a     _ 
(a. -     ) 

l         n 
n. 

l 

299 



square with C-l degrees of freedom. 

b. Null Hypothesis.    The probability that an observation 
will be above the grand sample median,   M,   is independent of the 
experimental condition under which the observation was taken. 
This will be the case if conditions have   equal effects and if all 
assumptions are met. 

c. Assumptions.   Sampling is random,   observations are 
independent,   and there are no tied observations,    i. e. ,   the sampled 
populations are continuously distributed.      If the large sample ap- 
proximation is used,   then all of the assumptions of chi-square are 
also introduced. 

d. Treatment of Ties.    Tied observations are no problem 
unless they are tied with the median.      In this case,' if the proportion 
of such ties is small,   the following procedure is recommended. 
Either (a) resolve all ties in the manner least conducive to rejection 
of the null hypothesis,   or   (b) under each condition separately count 
half of the observations tied with the grand median as above it,  half 
as below it,   and treat an odd tie as outlined in (a) above. 

e. Efficiency.   When both tests are applied to populations 
having normal distributions,   differing only in location (and therefore 
having equal variances) the median test has,   relative to the F test 
of analysis of variance an asymptotic relative efficiency of 2/TT or 
.637.      Under the same circumstances it has an A.R.E.  of 2/3 
relative to Kruskal and Wallis' H test.      If,   in the above,   "uniform 
distribution" is substituted for  "normal distribution",   the median 
test has A.R.E.  of 1/3 relative to the F test and also relative to 
the H test.      For other types of distribution,   the A.R.E.  of the median 
test   relative to either the F or H tests can be less than,   equal to, 
or greater than,   1,   depending upon the particular distribution to 
which applied (2). 

The median test is consistent against translation alter- 
natives (2). 

f. Application.   Suppose that 16 rats have been randomly 
selected from a common population and randomly divided into three 
groups.      Each group is administered a different drug after which 
the time to run a maze is measured for each rat.      The null hypothesis 
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is that the three drugs have equal effects upon maze running ability. 
Let the data be as shown below. 

Maze  Running   Times   Under 

Drug A        Drug B        Drug C 

267 269 215 

271 283 231 

285 288 233 

299 302 252 

304 306 255 

264 

The grand sample median lies between 269 and 271,   therefore,   in 
terms of frequencies of observations above and below the median 
the above table becomes: 

A B C Totals 

Above Median      4 

Not 
Above Median      1 

16 

The first row of tables as extreme or more so,   and their point 
probabilities are given below: 
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3 

4 

1 

B 

0 

6 

Point Probability = 
n. 

(a' 
1 

10/12870 

10/12870 

25/12870 

25/12870 

10/12870 

10/12870 

The cumulative probability is 90/12870  or   .007.      Recalculating 
the probability using the chi-square approximation,   we have 

n.a 

__2       n(n-l)  YC (ai"  ~5~ *' X    "    a(n-a) L n. 
i=l 

(0 - (-£) 8)2 

= 9. 

16x15 
8x8 

(4-(^)8)2 (4-(^) 8)2 

Entering the chi-square tables with C-l = 2    degrees of freedom,   a 
chi-square of 9. 00 is found to have a probability just slightly larger 
than the . 01 level of significance.      Both methods give a probability 
in the neighborhood of .01,   but it is clear that the approximation is 
not impressively close to the true value. 

g.    Discussion.    Mood (24) and Brown and Mood (5) have 
outlined median tests for cases analogous to those encountered in 
a two way analysis of variance.      Exact tests are theoretically pos- 
sible,   for these cases,   but actually impractical because of the 
laborious computations involved.      The user is therefore practically 
forced to ignore the exact probability formulae given by Mood,   rely- 
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ing instead upon test statistics which have approximately the chi- 
square distribution. The tests are described by the authors re- 
ferenced above and will only be briefly outlined here. 

Test for main effects in a two-factor experiment with 
one observation per cell: To test for column effects find the median 
for each row and count the number of observations in each column 
which exceed their respective row medians.      Let a. be the number 

1 

of such observations in the i*" column,   let there be r rows and c 

columns,   and let a = c/2  if c is even or c-1 if c is odd (note change 

in definitions of a. and a).      Then each row contains a observations 
exceeding the row median,   and the table 

al a2 
a 
c-1 

a 
c 

ra 

r-aj r-a2 r-a 
c-1 

r-a 
c 

r(c-a) 

r r   r r cr 

contains ra such observations.      If columns have equal effects,  the 
expected number of observations,   in each column,   which exceed 
their respective row medians is ra/c   and the value 

c(c-l) YC,        rav2 1*3.   <L 
—-, . /    (a. )      is asymptotically distributed as chi-square with 
ra{c — a) / / •*     i     c 

c-1  degrees of freedom.      Since the expected frequency,   ra/c   is 
simply the number of above-row-median observations in the entire 
table divided by the number of columns,   its use implies that there 
are no interaction effects and therefore introduces this assumption 
(unless one or both factors have randomly chosen levels).      An addi- 
tional assumption is that all observations have distributions which 
are identical except for location.      Every observation within a row 
must,  before sampling,  have had equal probability,  under the null 
hypothesis,   of exceeding the row median.      This means that an equal 
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proportion of each observation's population distribution must lie 
above the row median.      Since the row median is not fixed,  but is 
a variable,   sample value,   the above requirement is certain to be 
fulfilled only if every observation within the same row has a dis- 
tribution of the same shape.      In testing for row effects,   a similar 
argument requires that observations within the same column have 
distributions of the same form.      In testing for both row and column 
effects,  therefore,   since a row observation is also a column obser- 
vation,   all observations must be distributed identically except for 
location.      Naturally the assumptions listed under (c) must also be 
made. 

Tests for various effects in a two-factor experiment with 
h observations per cell: Again it is assumed that observations have 
distributions which are identical except for location.      A test anal- 
ogous to the "analysis of variance" test for main effects against 
interaction can be made by performing the test outlined in the pre- 
ceding paragraph using cell medians as "observations".      Another 
useful test is the joint test for main effects and interaction.   It tests 
the "hypothesis that a factor has no effect    whatever,   either in 
main effects or in interaction effects".      Let a., be the number of 

IJ 
observations,   in the cell formed by the i      row and the j      column, 
which exceed the median of the ch observations in the   i       row; 

ch-1 and let a = ch/2,   if ch is even,   or        if ch is odd.      Then if, 

as hypothesized there are no interaction or column effects,   the 
expected number of observations in a single row exceeding a row 
median is a,   and the expected number of observations in a single 
cell exceeding the corresponding row  median  is   a/c.        Thus 

—\  )      (a.. )     is distributed approximately as chi-square 
a (ch-a   P-      XJ     c 

with r(c-l) degrees of freedom.      Analogous to the test of main 
effects against deviations the following test can be performed if 
interactions can be assumed to be zero.      Let a   be the number 

i 
of the rh observations in the i ^ column which exceed their row 

medians,   and let a = — ,   if ch is even,    or   —    if ch is odd. 

304 



r 3. 
Then there are rh observations in a column,   and,  —    of them would 

c 

be expected to   exceed  their   respective   row medians.        Thus 

^-^—-——r~y (a   -  —)     is di stributed approximately as chi-square 
ra(ch-a) fJ      i        c 

1 

with c-1 degrees of freedom.      Testing for interaction requires 
that column and row effects be removed by subtraction of column 
medians from observations followed by subtraction of row medians 
the process being continued until both columns and rows have zero 
medians.      Let a., be the number of observations in the ij      cell 

which exceed its median plus half the number of such observations 
which equal its median.      Let a.     and a      be a., summed over col- 

umns and rows respectively and let a be the sum over both.    Then 

a2h£ 

a . a    •       -, 
(a.. -     i:   "J     )2 

1J           a 
a.    a   . (h-a.   a   .) 

is approximately distributed as chi- 

square with (c-l)(r-l) degrees of freedom.      The test for inter- 
actions is  "very nearly but not completely distribution-free". 

A different approach to median-test analogues of analysis 
of variance has been taken by Wilson (56),  the technique being based 
upon the fact that a "total" chi-square can be subdivided into    com- 
ponent chi-squares with component degrees of freedom (in a sense,  the 
reverse of the additive property of chi-square).      In a table with r 
rows and c columns,   let n be the total number of observations,  n.. 

«. 1J 
be the number of observations in the cell formed by the itft row and 
the rh column,     f..   and , f.. be the number of this cell's observations a ij b ij 

which are respectively above and below the grand median for the 
entire table,   and n     and  n,   the total number of observations above a b 
and below the grand median.      Finally let a dot,   in place of a sub- 
script,   indicate summation over all values of that subscript.      Form- 

2 
ulae for the total chi-square,   X      ,   the row and column chi-squares, 

2 2 ^ X  j^   and X   _   are as follows: 
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I 
J 

( f.. - a IJ 

n.. n 
ij    a 

n Vy 
n.. n. 

U   b 

n 
L2 -i 

n.. n 
u a 
n 

n.. nn 

n 

with re- 1 

degrees of freedom,  the expected frequencies having been derived 
from  "the null hypothesis that the main effects and interaction effects 
produce no change in the distribution    of scores", 

X 
R -J, a i. 

n.   n       0 1.    a   .2 
n 

n.   n 
i.    a 
n 

<b£i. 

ni. ny 
n 

ni.\ 
n 

with r-1 degrees 

of freedom,    X 

J 

<af.J 

n   . n 
«J    a 
n 

n   . n 
•J    a 
n 

+ isii n 
n   . n, 

n 

.2 ^ 

with c-1 degrees of freedom,   expected frequencies,  in both cases, 
having been obtained from   "the null hypothesis that the distributions 
of scores are identical for all levels of the row or column conditions". 

2 
Finally an interaction chi-square,  X T,   is obtained by subtraction, 

X' 
R 

- X „   with (rc-1) - (r-1) - (c-1) = (r-l)(c-l) de- 

grees of freedom.      Computational formulae for extension of the tech- 
nique to the three-factor case have been published by Alluisi (1). 

It has been pointed out that the test compares poorly with the 
analysis of variance in cases where the assumptions of the latter test 
have been met (23,   39).      Sheffield (33) has objected that an entirely 
equivalent test can be performed using analysis of variance techniques. 
Frequencies of "above" or "below median" are treated as scores and 
their within-cell variance is known to be that of a binomially distri- 
buted variate and can therefore be specified a priori.      With this 
information the analysis of variance is conducted upon frequencies. 
"The implications of these F tests are exactly the same as those of 

2 2 "Wilson's X    analysis.      In fact,   since X    divided by its df is distri- 
buted the same as F for infinite df in the smaller variance,  the present 

2 
F values can be transformed into Wilson's X    values by   multiplying 
F by df ..."     Sheffield comments further that,  whichever approach is 
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used, severe restrictions are imposed by confining tests to those 
which can be performed using the single (within-cell) error term 
which is determinable a priori and therefore distribution-free. 

h.    Tables.      There appear to be no tables for the exact 
methods,   so in these cases probabilities must be computed. 
Ordinary chi-square tables are used with fhe approximate methods. 

i.    Sources.    1,  4,   5,   22,   23,   24,   28,   33,   39,   56. 

4.    Contingency Tables 

Several ingenious distribution-free tests have been devised 
to examine the significance of effects in an r x c table whose cell 
entries consist of frequencies rather than "scores"   (4,   7,   8,   14,   17, 
31,   36,   38,   55). 

Suppose that columns are    "treatments" whose outcomes 
are categorized only according to the dichotomy,   "success" and 
"failure",  and suppose that rows are "subjects" so that data within 
a row are matched,   each subject receiving all treatments.      If a 
success is obtained on the i**1 subject for the j**1 treatment,   a 1 is 
recorded in the ij cell;   if the treatment is a failure,   a zero is ent- 
ered in the cell.      Let |x.   be the marginal total,   i. e. ,   the number 

of successes,  for the i*h row,   T-    be the marginal total for the j**1 

column,   and T be the mean column sum.      If the number of rows 
is large,   column totals will tend to have normal distributions, 
and if treatments have equal effects,   these distributions will have 
equal  variances   and   a  common mean.        As a consequence,  the 

c(c-l)7(T. - T)2 

LJ    J 
statistic   Q   =             will be distributed ap- 

proximately as chi-square with c-1 degrees of freedom.      This 
test has been proposed by Cochran (7) as a statistical solution for 
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the case where matching invalidates the usual chi-square test 
for contingency   tables.      This test and certain median tests are 
special cases of more general tests of dichotomized data out- 
lined by Blomqvist (4). 

Suppose that row categories represent gradations or 
subcategories of a single variable,  the level of the gradation or 
subcategory increasing or decreasing monotonically in progressing 
from the first to the last row,   and suppose that a similar condition 
exists for columns.      A test for association in the contingency table 
may be regarded then as a test for correlation between the column 
variable and the row variable.      If the  1st column is regarded as 
having a rank of 1,   the 2nd as having a rank of 2,   etc. ,   and like- 
wise for rows,  then the frequency in the i*"    row may be considered 
the number of units tied for a rank of i on the row variable,   and sim- 
ilarly the number of units tied in the j"1 column would be the number 
tied for a rank of j on the column variable.      Finally,   the frequency 
in the i j      cell would be the number of units tied for a rank of i on 
the row    variable which are also tied for a rank of j on the column 
variable.      Thus the situation is analogous to that in which corre- 
lation is to be measured between ranked variates when both rank- 
ings contain ties.      Stuart (38) proposes to calculate Kendall's 
rank correlation statistic,   S,   in this case by multiplying each cell 
frequency (a) positively by the sum of the frequencies in all cells 
lying below it and to the right,   (b) negatively by the sum of the 
frequencies in all cells lying below it and to the left,   (frequencies 
for cells in the same row,   the same column,   or above,   are ig- 
nored):  the sum of (a) plus (b),  taken over all cells,  is S.     If the 
number of rows equals the number of columns,   the significance of 
S can then be tested by techniques taking account of ties in the 
application of Kendall's test for rank correlation.      Otherwise the 
test can be performed using asymptotic formulae given by Stuart. 

5.     Tests for a Divergent Population 

a.    Rationale.   Suppose that an experimenter has a sample 
from each of k continuously distributed populations with identical 
forms and wishes to test the hypothesis that all populations have 
the same location against the alternative hypothesis that one popu- 
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lation has a larger location parameter than the rest.      The sample 
containing the largest observation is determined,   and in it the ex- 
perimenter counts the number,   r,   of observations which exceed 
all observations in all other samples.      If n^ is the size of the i*" 

sample and N is the total number of observations in all samples, 
then there are n.(n.-l) . . .   (n.-r+l)   or n.! /(n.-r)!   ways in which 

the r largest observations could have been placed in the i*     sample 
and N(N-l) . . .   (N-r+1)   or   NJ /(N-r)J  ways in which they could have 
been located without restriction.      The probability that the r largest 
observations   will   all be   in  a preselected   sample   is  therefore 

n.! /(n.-r)! 
1 1    ,   and the probability that they will all be in some 

N! /(N-r)! k 

T     ni/(n-r)i 
>_i       l l 

one of the k samples is Pr(r) =  ;  . Since in 
N:/(N-r)i 

the derivation it was not required that the (r+l)st largest observa- 
tion be located in a different sample,   the above probability is the 
probability that r or more of the largest observations will be located 
in a single sample. 

b. Null Hypothesis.    The probability that any given one of 
the r largest observations will be located in a certain sample depends 
only upon r and the relative size of the sample.      This will be the 
case if all k sampled populations have the same location parameter and 
if all assumptions are met. 

c. Assumptions.    Populations are continuously and,   exc ept 
for location,   identically distributed.      Sampling is random and ob- 
servations are independent. 

d. Treatment of Ties.    If the proportion of tied observa- 
tions is small,  ties are a practical problem only if the smallest one 
of the r largest observations is tied -with an observation in a differ- 
ent sample.      In this case the simplest solution is to reduce the value 
of r to the point at which this situation no longer exists.       The corres- 
ponding probability will be larger than the true probability for the 
unreduced r,   and the test will therefore be conservative. 
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e. Efficiency.    The power of the test has been examined 
by Mosteller (25) with r = 3 for three samples of three observations 
each from normally distributed and from uniformly distributed 
populations. 

f. Application.   In the following table,   the four largest 
observations are all in sample C.      Substituting r - 4,   k =   3,   n 

1 
n? = 5,  n=5   into the 

Sample 

ABC 

25 27 41 

31 35 59 

44 39 64 

51 48 70 

52 57 72 

t , ,-        o IA\        5! /(5-4)i + 5! / (5-4)! + 5! /(5-4)i formula given earlier,   Pr(4) =    i - - — -—   = 
15! /(15-4)! 

1/91   or   .011.      This same value could have been obtained by con- 
sulting Mosteller's (25) exact tables.      The hypothesis of identical 
populations is therefore rejected.      Assuming identical distribution 
forms,   different distribution locations are indicated,   and the most 
reasonable presumption is that the median of population C lies above 
those of populations A and B. 

g.    Discussion.    Obviously a test which uses as test sta- 
tistic only the largest observations must be extremely sensitive to 
both the shape and location of the upper tail of the distribution of 
the sampled populations.      This should be borne in mind when con- 
ducting the test.      If the assumptions are not fully met,   the test may 
be merely detecting differences in contour-of-upper-tail between 
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distributions with identical locations. 

A number of authors (17,   37,46,   47,   48,   49)  have exam- 
ined tests for divergent populations.      Tukey  (48,   49)  has tabled 
the probability for the largest column total,   i. e.   rank sum,  when 
the ranks from  1 to N are randomly distributed among k columns. 
Both the size and presence of an entry are randomly distributed, 
i. e. ,   a given column may contain any number of ranks from 0 to 
N.      Tsao (46)  has published tables which can be used to obtain 
the probability for the rank sum of a predesignated column when 
ranks from  1 to c are substituted for observations matched across 
rows in a table with c columns and r rows. 

h.     Tables.    Exact tables have been published by Mosteller 
(25)  for the case of equal sized samples    (n1 = n_ = n_ = 3,   5,   7,   10, 

15,   20,   25,  oo)   with 2 < k < 6   and   2 < r < 5   or 6.      Approximate 

probability tables,   appropriate when samples are of unequal size, 
have been published by Mosteller and Tukey (26).      Approximate 
probability formulae are also given by Mosteller.      A simple asymp- 

r - 1 
totic approximation is Pr (r) ^ l/k 

i.    Sources.      17,   25,  26,  46,  47,  48,   49. 
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CHAPTER XIII 

MISCELLANEOUS TESTS 

The following chapter presents tests which do not appear to 
be readily categorizable within the topics covered by the previous 
chapters.      They include tests for:   transitivity of preference for 
a single judge,   agreement among several judges,  trend in location, 
trend in dispersion,   goodness of fit,   and peripheral association. 
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1.    Paired Comparisons: "Consistency" of a Single Judge 
(Transitivity of Preference) 

a.    Rationale.    Suppose that a judge is presented with each 

of the (    )  pairs of objects which can be made with n objects and is 

required to express a preference for one of the members of each 
pair over its paired mate.      If his preferences are transitive and 
are based upon subjectively real differences,   then for any three 
objects,   say A,   B and C,   if A is preferred over B and B is pre- 
ferred over C  the judge must necessarily prefer A over C.      Ex- 
pressed differently,   if the three objects are made the vertices of 
a triangle and if an arrow is placed between each pair of objects, 
pointing away from the preferred member of the pair,   then if 
preferences are real and transitive the arrows will not all point 
in the same circular,   i. e.   clockwise,   direction as is the case in 

A 
the "inconsistent" triangle,    or "circular triad", / *\ 

B_>C 

A test for transitivity,   then,   can be based upon whether or not the 
obtained number of circular triads is smaller than would be ex- 
pected by chance.      Let the n objects be placed at the vertices of 
an n sided polygon with arrows drawn between 
each pair of objects,   indicating the direction 

of preference.      There are (    ) pairs of ob- 

jects and,   therefore,   (    ) arrows.      Each 

0 arrow can have one of two directions.      Therefore there are 2*2 

different patterns of arrow-directions which can be formed by 
changing directions of arrows in the polygon.      The number of 

triads in the polygon is a constant,   (    );   however,  the number 

of circular triads depends upon the direction of the arrows.    For 

(n) each of the 2 v2'     different patterns of arrow-directions there will 
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be some number of circular triads.      Therefore the probability 
for that number or a smaller number of circular triads is simply 
the number of patterns of arrow-directions in which that number 
or a smaller number of circular triads occurs,   divided by 

b. Null Hypothesis.    Each of the 2V2'     patterns of arrow- 
directions was equally likely to have been the one obtained.      This 
will be the case if the judge actually has no real preferences in 

any of the (    )   choice situations and expresses preferences purely 

on a chance basis. 

c. Assumptions.    A preference is expressed for one of 
the members of each pair of objects,   i. e. ,   there are no tied choices, 
It is assumed that "trials" are randomly selected;  this is necessary 
to insure that the sample of the judge's behavior is representative 
of his behavior in general.      Random selection of judges is not 
assumed since inference is confined to the judge tested.      Inde- 
pendence of choices is not assumed since a test for transitivity, 
in a sense,   tests independence rather than assuming it. 

d. Treatment of Ties.    Ties should be obviated by using 
a forced choice technique.      If they appear anyhow,   the simplest 
procedure is probably to discard those objects for which the great- 
est number of ties exist and to continue the process until no ties 
exist among the remaining objects.      The test may then be con- 
ducted upon the remaining number of objects. 

e. Efficiency.    No information available. 

f. Application.   Six vintages of a certain type wine are 
to be tested as to taste.      The vintages are presented to a judge 
in pairs and he indicates the better tasting member of each pair. 
This is done for all 15 possible pairings with the following results, 
the arrow pointing away from the preferred member of each pair: 

A —» B,   A -* C,   A —* D,  A —*• E,   A —> F,   B —* C,   B —* D, 

B —*• E,   B —* F,   C —» D,   C —* E,   C —»• F,   D-^E,   D *— F, 

E —> F.      Obviously the only intransitivity is D<s F,   and   only 
triads having DF as a side can be circular.      The following polygon 
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therefore shows only these triads.      Only one of these triads,   DEF, 
is circular. j^ 

Consulting Kendall's (30,   31,   32)  tables it is found that,   when 
n = 6,   the probability of two or more circular triads is . 949. 
Therefore the probability of one or less circular triads is 
1  - . 949  or   .051.      The . 05 level of significance is not quite 

attained,    therefore,   and the hypothesis that preferences are either 
intransitive or determined by "chance" cannot be rejected in favor 
of the alternative hypothesis of "greater-than-chance"   transitivity 
of preferences. 

g.    Discussion.    Kendall apparently takes large values 
of d,  the number of curcular triads,   as his rejection region.    Thus 
the test rejects the hypothesis of either chance or transitive prefer- 
ences      in favor of the alternative hypothesis that the judge's 
preferences are intransitive at a frequency so large that it would 
seldom occur by chance.      However,   one would expect this appli- 
cation to be somewhat less frequent than the one described. 

h.     Tables.    The exact probability for d or more circular 
triads has been tabled (30,   31,   32) for cases in which 2 < n < 7. 
When n is larger than 7,  the probability of d or more circular 
triads is 1 minus the probability, read from chi-square tables,   of 

v2 ,     2(
3

} - 8d + 4                n(n-l)(n-2) n(n-l)(n-2) 
-*• + ~     with 

n-4 (n-4)2 (n-4)2 

degrees of freedom. 

The probability of d-1 or fewer circular triads is  1 minus 
the probability,   for d or more circular triads.      It is therefore ob- 
tained by taking the complement of the probability given in the exact 
tables,   or by taking the probability of chi-square as defined above, 
rather than its complement. 

321 



Counting the number of circular triads may prove difficult 
when n is not small.      Kendall (30) has shown that a simpler method 
may be used to gain this information.      An n x n table is constructed 
with each of the n objects being represented by one column and one 
row.      If the i**1 object is preferred over the j"1 object,   a   1   is en- 
tered in the cell of the i**1  row and the j"1  column;   if the reverse 
is the case,   a zero is entered.      All cells,   except those whose row 
and column represent the same object,   are filled in.      If the row 
totals are a, ,   a   ,   ....   a   ,   then the number of circular triads,   d, 

,      ,        n(n-l)(n-2) 1 V /       i\ is given by d = —i P -    -   y /     a- (a.-l). 

i=l 

i.    Sources.    30,   31,   32,   40. 

2.    Paired Comparisons:    Agreement among m   Judges 

a.    Rationale.   Suppose that each of m judges has expressed 

a preference for one of the members of a pair in each of the (    ) 

possible pairings of n objects and that it is desired to test whether 
or not the judges tend to agree among themselves.      Let C.. be the 

number of judges choosing object i over object j.      Then the number 
of judges preferring j to   i  is m-C...      The C.. judges preferring i to 

C- • j can be paired with one another in   (   ij )  ways and each way    repre- 

sents an agreement between two judges that the i"1 object is preferable 

to the j"1.      Likewise there are ( *j )  pairs of judges preferring j to 

i   and there are that many "agreements"  that j is preferable to i.   The 

number of agreements as to the relative excellence of objects i and j, 
irrespective of which object is the one preferred,    is   therefore, 
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( -ij ) + (     ,  *J ).      And the sum,   \ <c2«i • <<"-> taken 

over all  (   )  pairs of values of i  and  j   (corresponding to pairings 

of objects with an object other than itself)  is the total number of 

agreements among the m judges in all of the   (   ) pairings of objects. 

This sum,   represented by the symbol \ , is the test statistic. 

Now consider   a     table,   such as that shown below,   with m 

columns,   corresponding to the m judges,   and   (   ) pairs of rows, 

each pair of rows corresponding to a pairing of objects and each 
row in a pair corresponding to preference for one of the two ob- 
jects over its paired mate.      In each cell of the table enter a    1 
if the row object was preferred over the other object in the row 
pair by the column judge,   otherwise enter a zero.      There are two 
ways a judge can assign his preference to one of the members of a 
pair of objects,    i. e. ,    a   1   can be entered for either the first- 
listed or a second-listed object in a pair of rows.      For each of 
these two ways,   there are two ways in •which a second judge can 
assign his preference to one of the members of that pair,   etc. , 

so since there are m judges there are 2      ways in which their 
preferences   can be   assigned to the members of a single pair 

of objects.      And since there are   (   ) pairs of objects,   there are 

m (2> mC) (2    ) or   2      2     ways in which m judges can assign their pre- 
ferences among the members of n objects   judged in pairs.      Thus 

m(n) there are 2      2    different tables,   i.e. ,   tables with different pat- 
terns of cell entries,  which can be formed by permuting Is   and 
Os within their column and pair of rows.      And if each judge assigns 

m(n) all his preferences randomly each of these   2    *2    tables is equally 

likely.      To each such table there corresponds a value of \ and,   if 

preference assignments are random,   the probability of this or a 
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JUDGES REQUIRED COMPUTATIONS 

,C. m-C-- C-- ,       m-C-- 
(,'J)     (     2 *J)     (2"J)+(     z^) 

l   j   l  !   l 

1      o 

1        1        0        1 0       1 

0   110       1 

1 

i 1 
0 1 1 0 o 1 i     i 

Object 4 1 0 ' o 1 1 3 3 
Pairings 1 

| 

1 

'•• ! 

2 1 1 1 1 1 10 10 
1 
t 

3 o 1 o ! 0 0 0 o 
! 

2 

i 
1 • 1 i 

0 1. 1 0 0 0 

i 

: 
i 

o 

4 
1 1 1 

i 

i ! o 1 1 6 6 

3 

! 

1 
0 

i 
o i 0 0 0 

: 
0 0 

t 

4 1 
i 

1 i 
• 1 1 1 11 i 10 10                  i 

E- 40 

larger value of\   is simply the number of the 2      2'   tables giving 

rise to this or a larger value of \    divided by   2      2 m(?) 
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m(n) 
b. Null Hypothesis.    Each of the 2     v2;tables is equally 

likely to have been the table actually obtained.      This will be the 
case if each judge assigns his preferences randomly among the 
members of each pair of objects in which case agreements be- 
tween judges will be accidental and the obtained number of such 
agreements will be determined by chance.    See "Discussion". 

c. Assumptions.   There are no tied choices,   i.e.,   in every 
choice situation one of the objects in a pair must be preferred over 
its mate.      "Trials" are randomly selected;   this assumption is 
necessary to insure that the sample of the judge's behavior is repre- 
sentative of his behavior in general.      Random selection of judges 
is not assumed since inference is confined to the judges tested. 
Independence of choices is not assumed,   rather it is tested. 

d. Treatment of Ties.    Ties should be obviated by using a 
forced choice technique.      If they appear anyhow,   the simplest pro- 
cedure is probably to confine the test to those judges or to those 
objects for which no tied choices appear,   making the necessary 
reductions in m and/or n. 

e. Efficiency.    No information available. 

f. Application.    Suppose that each of four judges compares 
three brands of chocolate ice cream in pairs and expresses a pre- 
ference in each case.      It is desired to test whether or not the 
judges tend to agree among themselves.      Let the data be shown 
below: 

Pairs 

of 

Brands 

A 
B 

A 
C 

B 
C 

0 
1 

JUDGES 
II      III 

1 
0 

/ ROW\ 
ROW       (TOTAL) 

IV      TOTAL 
fy)orrfH) 

0 

1 

1 1 1 1 1 4        | 6 
0 0 0 0 0 0 

i   0 0 0 0 
! 

0    ! 
0 

1 1 1 1 1 4 
1 1  

6 

1 
0 

2 
2 
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The value of   . is 14.      Entering   Kendall's   (30,   31)  tables with 

m =   4,   n = 3 and )   "14,  we find that this value of \   has a prob- 

ability of . 043 of being equalled or exceeded.      Therefore the null 
hypothesis of random assignment of preferences is rejected in favor 
of the alternative hypothesis that there is a nonchance degree of 
agreement among judges. 

The probability obtained from tables could have been com- 

m(n) 12 
puted.      There are 2      2'   or 2       possible patterns of preferences 

for the table shown.      Greatest agreement would occur if in each 
pair of rows the Is were all in one row,   the zeros in the other. 
There are two ways in which the Is can all be in one row of a pair 

3 
of rows,   and since there are three pairs of rows there are 2    =8 

ways in which the greatest agreement can occur,   leading to a y  of 

18.      The next greatest amount of agreement occurs when in two 
pairs of rows   the Is are all in a single row of the pair and in the 
third pair of rows three Is are in one row,   the remaining 1 in the 
other row.      There are 2    ways in which for both of two given pairs 
of rows all the 1 s in a pair can be in one row.      In the remaining 
pair of rows either row can be selected to contain the single 1, 
and the 1  can occur in any of its four cells,   making eight ways 
of obtaining four 1 s in one row and one 1  in the other row of a 
given pair.      Finally,   the pair of rows one of which contains three 
Is,   the other a single 1,   could occur for any one of the three pairs 
of objects.      Therefore there are (2   ) (8) (3) = 96 ways in which the 

next greatest  ,-   ,   15,   could be obtained.      The next greatest amount 

of agreement is for the obtained case, where in two pairs of rows 
the Is are all in one row of the pair, and in the remaining pair of 
rows each row contains two Is. This case differs from the pre- 
ceding  one only in the number of ways of assigning 1 s in the re- 

4 
maining pair of rows:   there are (   ) - 6 ways of placing two 1 s in 
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two of the four cells of a row.      So for the last case there are 

(2   )(6) (3) = 72 ways of obtaining a ^ of 14.      The probability for 

ay of 14 or greater is therefore    ——    - .043. 

2 

A somewhat simpler tabulational procedure than that 
given above is to form an n x n table with rows and columns both 
representing objects.      The cell entry,   r..,   in the i"1 row and jth 

column is the number of judges who prefer i when it is compared 

with j.      The value of >    is found by summing   (   ij )   over all n(n-l) 

cells in the table corresponding to preferences for the row object 
over a different column object. For the data just given the table 
would be: 

B 

A 

B 

C 

X 

and £ would be   (*) + (°) + (°) + (^ + <2> + <2> 6 + 0+0 + 1+ 6+1 

=  14   as before. 

g.    Discussion.    Strictly speaking,   the null hypothesis is 
that all preferences are assigned randomly since the use of an 

,n. 
unweighted   2       2' as the denominator   of a probability fraction im- 

plies that this is so,   i. e. ,   since the tables for 5~ are based upon 

its chance distribution.      Preferences,   of course,   can be assigned 
quite systematically without there being any substantial measure 
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of agreement in the group of judges as a whole.      For example half 
the judges may always prefer the "alphabetically higher" object of 
a pair and half may always prefer the "alphabetically lower".    In 
cases such as this one,  where there are systematic but opposing 
biasses among judges,   the null hypothesis as stated is false,   but 

Ywill not assume an extreme value calling for its rejection. 

The null hypothesis is   likely to be rejected if there are systematic 
but unopposing,   biasses,  but this condition amounts to "agreement" 
among judges.      Therefore,   since rejection of the null hypothesis can 
only be caused by chance (to the degree implied by the significance 
level used)  or by agreement among judges,   it can be regarded,   as 
a practical matter,   as stating simply that there is no nonchance 
degree of agreement among judges. 

It is to be noted that agreement among judges does not 
imply transitivity of preference.      For example in paired compar- 
isons of three objects,  there might be complete agreement in that 
all judges prefer A to B,   B to C   and   C to A,  which set of prefer- 
ences forms a circular,   or "inconsistent" triad..     Nor does trans- 
itivity for each judge imply agreement among judges.      When either 
agreement or transitivity  is lacking,   it would not be legitimate to 
rank the n objects from best to worst on the basis of preferences 
expressed in paired comparisons. 

A test for agreement among judges is useful when the 
thing being measured is of a strictly subjective nature,   such as 
the relative deliciousness of a variety of flavors.      The paired com- 
parison technique is useful when the n things being compared 
differ along so many dimensions or in such a complex way that 
they cannot properly be ranked from best to worst.      The tech- 
nique is also useful when judgments are strongly affected by such 
sequential factors as the immediately preceding trial,   the number 
of preceding trials and the interval between trials.      This type of 
situation arises,   for example,   in taste testing where the sensitivity 
of the taste buds depends upon the nature,  number and duration of 
the preceding stimuli and upon the interval between the present 
and the preceding stimulus.      In order to compare properly two 
taste stimuli,   they must not be separated by intervening stimuli. 
The method of paired comparisons,   therefore,   is generally used. 
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The test described,   originating with Kendall and Smith 
(32),    appears to be the simplest and easiest to apply.      However, 
exact tests for paired comparisons    have also been devised and 
tabled by Bradley and his colleagues (1,   5,   6,   7,   8,   9,   58).     A 
test somewhat analogous to that of Kendall and Smith has been 
outlined and tabled by Cartwright (10).      However   it is not con- 
nected with the method of paired comparisons.      Instead it tests 
multijudge reliability when each of m    judges assigns each of n 
objects to one of K categories. 

h.    Tables.   Exact probabilities have been tabled (30,   31, 

32)  for \   for the cases  m = 3,   2 < n < 8;   m = 4,   2 < n < 6;   m = 5, 

2 < n < 5 and m=6, 2 <n < 4.    When morn exceed these values, 

approximate probabilities for V" may be obtained by referring 

2 4 
X 

m-2 
[n,,m m-3 r- . ,   ,n»  m(m-l) 

-<2><z' -J5S3J +£ ' Wlth(2,7-TT degrees 
(m-2)' 

of freedom,   to the probability tables for chi-square.      A correction 

for continuity may be made by subtracting 1 from £] • 

i.    Sources.      4,   23,   30,   31,   32,   40,    (See also 1,   5,   6, 
7,   8,   9,   19,   27,   58.) 

3.      The Difference-Sign    Test for Trend 

a.    Rationale.      Suppose that N observations have been 
made in sequence upon a continuously distributed variable and it is 
desired to test whether or not the variable's   fluctuations contain a 
temporal trend.      Let each observation    (except the first) be sub- 
tracted from the observation immediately preceding it,   and record 
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only whether the difference is positive or negative.      The number of 
algebraic signs of one kind recorded for the N-l  subtractions is the 
test statistic.      If there is a trend,   signs of one kind should predom- 
inate.      Suppose that the N observations were ranked in order of 
size from 1 to N.      If there were no trend,   then each of the NI per- 
mutations of the integers from 1 to N would be equally likely to be 
the obtained sequence of ranked observations.      Therefore,   in the 
absence of trend,   the probability of obtaining m or more minus 
difference-signs is simply the number of the Ni  permutations of 
integers from 1 to N which yield m or more minus differences,  when 
each integer is subtracted from the one preceding it,   divided by Nl 

b. Null Hypothesis.      Each of the NI  permutations of the 
N observations is equally likely to have been the sequence obtained. 
If a monotonic trend exists,   this will not be the case. 

c. Assumptions.      The sampled population is continuously 
distributed,   i. e. ,   there are no tied observations.      Sampling is ran- 
dom in the sense that the moment at which an observation is taken 
is selected without knowledge as to the magnitude the observation 
will have at that moment. 

d. Treatment of Ties.      A small number of tied observa- 
tions are a practical problem only when they are adjacent in sequence, 
In this case,   for a conservative test,   give all zero differences the 
sign least conducive to rejection of the null hypothesis.      To mini- 
mize tie error in the long run,   arbitrarily give half the zero differ- 
ences a plus sign,   half a minus sign. 

e. Efficiency.      Against normal regression alternatives, 
the difference-sign test has an asymptotic relative efficiency of 
zero with respect to the regression coefficient test,   as well as 
with respect to a half-dozen distribution-free tests (55).      See 
Table I in the Introduction.      It is superior in efficiency to the 
turning points test.     An A.R.E.   of zero does not,  of course, 
mean that the test is useless.    (See Introduction. ) 

The test has been found to be consistent,   and its power 
has been investigated,   in the case of normal regression alterna- 
tives    (20,   56). 
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f. Application.      Seven observations are taken in sequence 
and are as follows:   95,   88,   86,   81,   84,   77,  72.      Starting with the 
second observation and subtracting each observation from the pre- 
ceding one   we have the following sequence of difference-signs: 
+ ,   +,  +,   -,  +,  + .      Entering Moore and Wallis' tables with N • 7 
and m - 1,  we obtain . 048 as the probability of 1 or fewer differ- 
ences of like sign.      Therefore,   the null hypothesis of no trend can 
be rejected at the two  tailed . 048 level,   or if the null hypothesis 
was that there is either no trend or an upward trend  it could be 
rejected at the one-tailed . 024 level of significance. 

g. Discussion.      Moore and Wallis (39)  and Stuart (56) 
have also considered tests for correlation between two series of ob- 
servations.      Stuart aligns the two sequences of difference-signs,   one 
below the other,   and takes as his test statistic the number of columns 
containing like difference signs.      Moore and Wallis tabulate the fre- 
quency    of     occurrence of each of the four possible combinations 
of sign among the two entries in a column and analyze by means of 
a fourfold table.      Unfortunately these tests appear to be strictly 
legitimate only if neither series contains a real trend,   in which 
case the true correlation would be zero.      (See   39   page 161. ) For 
large samples they may be useful as approximate tests. 

h.    Tables.      Exact two-tailed probabilities for the number 
of difference-signs of one sign have been tabled by Moore and Wallis 
(39) for all values of N between 2 and 11. 

For larger values of N,   the number,   m,   of minus differ- 
ence-signs is approximately normally distributed with mean (N-l)/2 

and variance (N+1)/12.      Therefore approximate probabilities 
may be obtained by entering the normal tables with 

N-l m- —— 

Z =     _     .       A correction for continuity can be intro- 
N+l V- 12 

duced by reducing the absolute value of the numerator by   — .    The 

probability obtained will be one-tailed unless the tables give two- 
tailed probabilities. 

i.    Sources.    20,   36,   39,   54,   55,   56. 
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4.    Records Tests for Trend in Location or Dispersion 

a. Rationale.   Let the rtn  observation in a sequence of n 
observations be called an upper record if it is larger,   and a lower 
record if it is smaller,   than all of the r-1 preceding observations. 
(By definition the first observation is not a record value. )     If there 
is no trend in the sampled variable,   then each of the n!   permutations 
of the n observations was equally likely to have been the sequence ob- 
tained,   and any statistic based upon records should have a chance value. 
On the other hand,   if there is a monotonic upward (downward) trend in 
location,   then each observation has a greater-than-chance likelihood 
of being an upper (lower) record and a smaller-than-chance likelihood 
of being a lower (upper) record,   and the difference,   d,   defined as the 
number of upper records minus the number of lower records should tend 
to assume extreme positive (negative) values.      Likewise if there is a 
monotonic trend toward increasing (decreasing) dispersion,   then each 
observation has a greater (smaller) than chance likelihood of being a 
record of either type,   and the sum,    s, defined as the number of upper 
records plus the number of lower records,   should tend to assume an 
extremely large (small) value.      The probability for a given value of d, 
or of  s,    is simply the proportion of the n'   permutations of the integers 
from   1   to  n which yield that value of the statistic. 

b. Null Hypothesis. Each of the n! possible permutations 
of the n untied observations was equally likely to have been the se- 
quence obtained in the sample. 

c. Assumptions.     The sampled population is continuously 
distributed,   i.e. ,   there are no tied observations.      Sampling is ran- 
dom and independent. 

d. Treatment of Ties.        The authors recommend that ties 
be broken randomly,   i. e. ,   that one should "rank the tied observations 
according to a random permutation of their serial order. "     However, 
for a conservative test resolve ties in the manner least conducive to 
rejection of the null hypothesis. 

e. Efficiency.      As a test for randomness against normal 
regression alternatives,  the d test has an asymptotic relative effic- 
iency of zero with respect to the best parametric test based on the 
regression coefficient and with respect to some half-dozen distri- 
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bution-free tests.      It is more efficient than either the difference- 
sign test or the turning points test,  both of which have zero A.R.E. 
with respect to the d test,   (55).      See Table I in Introduction. 

The power of both the d test and the D test (see Discussion) , 
at the . 05 level,   against the alternative that the sampled variable is 
normally distributed with constant variance but with a positive linear 
trend in the mean has been tabulated by Foster and Stuart (20) for 
various sample sizes and degrees of trend.      These power functions 
were obtained empirically by means of a large sampling experiment. 

The d test is consistent against the alternative that the form 
of the sampled population's distribution remains constant while a 
location parameter increases by equal increments along the sequence. 
The s test is consistent against an analogous alternative involving 
trend in dispersion only (20).      The authors believe these consistency 
properties to apply also to the round-trip tests (see Discussion). 

f. Application.      A rat makes the following sequence of time 
scores in running a very difficult maze,   460,   457,   459,   455,   453, 
451,   and it is desired to test whether or not the rat is learning.   There 
are four lower and no upper records.      Entering Foster and Stuart's 
(20) tables   the probability that d - -3 or a larger value is found to 
be . 985,   so the probability that d - -4 or less is .015 and the hypo- 
thesis of no learning is rejected. 

Had the rats' scores been 455,   457,   456,   453,   450,   465,   447, 
463,   475,444,   449  there would have been three upper and four lower 
records.    The hypothesis that the rat's variability was increasing with 
time (possibly indicating the testing and rejection of false hypotheses 
by the rat) can be tested by entering Foster and Stuart's tables with 
n = 11 and s = 7.      The probability that s does not exceed 6 is found 
to be . 964,   so the probability of an s of 7 or greater is .036 and the 
hypothesis of constant variability is rejected in favor of the hypothesis 
that it is increasing. 

g. Discussion.      The statistics d and s are asymptotically 
independent.      Therefore when n is quite large a general test of the 
null hypothesis of randomness against alternatives of nonrandomness 
can be made by combining probabilities for d and for s,   using the 
conventional methods for combining independent probabilities. 
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The number of upper records,   when proceeding from the 
first to the last observation is not necessarily the number of upper 
nor necessarily the number of lower,   records when proceeding in 
the opposite direction,   and,   in fact,   is unlikely to be so.      There- 
fore additional "information" is contained in the "round-trip" 
statistic  D • d - d1 where d' is analogous to  d but counted by 
proceeding from the last observation to first.      No exact small 
sample tables for D are available;   however,  when n is large,   D 
is approximately normally distr ibuted with mean of zero,   so 

—   may be treated as a normal deviate and probabilities obtained 

from normal tables.      Unfortunately crnis not easy to obtain;   how- 

ever,   a few approximate values have been tabled:   Table 4 of (20) 
gives empirical values of cr_ corresponding to n's of 10,   25,   50,   75, 

100,   and 125 based upon a large sampling experiment.      The D test 
was found to be considerably more powerful than the d test on the 
basis of a sampling experiment conducted by its authors. 

h.     Tables.    Tables have been published (20) which give 
the exact probability that d does not exceed given values when 
3 < n <6.      Other tables (20) give the exact probability that s does 
not exceed given values for 3 <n < 15. 

When these tables do not apply,   approximate tests may 

d — d        s — s be performed by taking    or      as normal deviates and 
d s 

obtaining approximate probaoilities by referring them to normal 
tables.      The value of d   is zero.      The values of s,   and the stand- 
ard errors, <r        and o" ,     are given in Table 3 of (20)  for values of 

n from 10 to 100 in steps of 5. 

i.    Sources.      11,   20,   55. 
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5.    The S    Sign Test for Trend 

Rationale.      A number of tests for trend use as the 
test statistic the number of difference-signs of one type resulting 
from a series of subtractions of subsequent from earlier obser- 
vations.      However,   these tests are not equally efficient.      If a 
real monotonic trend exists,   then the farther apart two observa- 
tions are in the sequence the greater their difference in size is 
likely to be and the greater is the likelihood that the sign of their 
difference will correspond to the direction of the trend.      There- 
fore,   Cox and Stuart subtract the N*n observation from the first, 
the (N-l)st from the 2nd,   the (N-2)nd from the 3rd,   etc. ,   and 
weight each difference-sign by the distance between the obser- 
vations giving rise to it.      Thus if  h..   is defined to be 1 when 
the i**1 observation is greater than the  j^n,   i. e. ,   if their differ- 
ence-sign is plus,   and to be zero when the reverse is the case, 
then Cox and Stuart's   test statistic is 

N 
/TVT -J1,   -L.    1 \   U 

N - k + 1. 
si= Y1 (N -2k+i)hk, 

k=l 

This statistic is asymptotically normally distributed with mean 

2 2 
N   /8  and variance N (N    - 1 )/24,   thus providing a large-sample, 
approximate test of significance.      N must always be made an 
even number.      When there is an odd number of observations, 
the middle observation is dropped. 

b. Null Hypothesis.      Each of the N!  permutations of the 
N observations was equally likely to have been the sequence obtained. 

c. Assumptions.      The sampled population is continuously 
distributed,   i.e.,   there are no tied observations.      Sampling is ran- 
dom and independent. 

d. Treatment of Ties. A small number of ties does not 
create a practical problem unless a k*-" observation is tied with an 
N - k + 1st observation. In this event, resolve ties in the manner 
least conducive to rejection of the null hypothesis, for a conserva- 
tive test;   or,  to minimize error in the long run,   give h a value of 
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—  ,   i.e.,   halfway between a zero,   indicating a minus,   and a 1, 

indicating a plus. 

e. Efficiency.      As a test for randomness against normal 
regression alternatives,  the S    sign test for trend in location has 

asymptotic relative efficiency of . 86 relative to the best para- 
metric test based on the regression coefficient and has an A.R.E. 
of .87 relative to Kendall's rank correlation test,   i.e.   Mann's 
T test.      It is more efficient than a number of other distribution- 
free tests for trend (12,   55).      See Table I in Introduction. 

f. Application.      Let    the observations be 50,   51,   52, 
34,   54,   56,   55,   51,   20,  47,  42,   43,  44,  41,   28,   35,   39,   36,   30, 
31,   29,   23,   25,   18,   21.      There are 25 observations,   so the mid- 
dle observation,   44,   is dropped,   leaving  N = 24.      The differences 
are   (50-21),   (51-18),   (52-25),   (34-23),   (54-29),   (56-31),   (55-30), 
(51-36),   (20-39),   (47-35),   (42-28), (43-41),    and the corresponding 
values of h are 1,   1,   1,   1,   1,   1,   1,   1,   0,   1,   1,   1.      The corres- 
ponding weights of h,   followed in parentheses by the value of h are 
23(1),   21(1),   19(1),   17(1),   15(1),   13(1),   11(1),   9(1),  7(0),   5(1), 
3(1),   1(1).      Thus 

vN/2 
S1 =  ^ (N-2k+l)hk>  N_k+1 = 137(1) + 7(0)= 137. 

k=l 

If the null hypothesis is true,  this value has a mean of approximately 

? 2 
INT/8 - 24   /8 = 72  and   a  variance   of 

N(N2-l)/24 = 24(242-l)/24 = 575  and    1^LlI2    . 2#71   is approx_ 
1/575 

imately a normal deviate.      Entering the normal tables with this 
value we find that the obtained value of S.   is significant at the two- 

tailed . 01 level (or at the one-tailed .005 level).      In view of the 
small value of N used,   these probabilities should be regarded as 
very approximate. 
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g.    Discussion.      In addition to its use as a test for trend 
in location,   the outlined technique,   slightly modified,   can also be 
used to test for trend in dispersion.      (In which case it has A.R.E. 
of .74,  under "parametric" conditions,   relative to the maximum 
likelihood test. )     The sequence of N observations is divided into 
r blocks,   each block containing the same number,   k,   of conse- 
cutive observations,   the N-rk "extra" observations being randomly 
selected and discarded.      The range,  w,   is determined for each 
block.      The sequence of ranges of consecutive blocks is then treated 
as a sequence of r "observations" and tested for trend in location by 
means of the S     sign test   already outlined.     A monotonic trend in 

"location" of ranges is equivalent    to a monotonic trend in the dis- 
persion of the observations upon which the ranges are based. 

h.     Tables.      There appear to be no tables of exact prob- 
abilities,   so the test should not be used when N is small.      As N 

S        «! 
i " IT approaches infinity,   the distribution of         approaches 

N(N2-1) V^ 24 

the normal distribution whose mean is zero and whose variance 
is unity.      Therefore tables of the normal distribution can be used 
to obtain approximate probabilities when N is moderately large. 

i.    Sources.      12,   55. 

6.      David's Combinatorial Tests of Fit 

a.    Rationale.      Suppose that an experimenter has a sample 
of N observations and that he wishes to test whether or not the sample 
came from an hypothesized population whose distribution he can 
specify completely.      Since the population distribution,  under the 
null hypothesis,   is known,   it can be divided into N nonoverlapping 
vertical strips,   each of which contains the same area,   1/N. 
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To these N vertical strips there will be N corresponding ranges of 
abscissa values,   each range having equal probability,   1/N,   of "con- 
taining" an observation drawn randomly from the population.      Now 
let N observations be drawn and let Z be the number of ranges 
containing zero observations,   i. e.  no observations.      If the sample 
was drawn from the hypothesized population,   then Z will have a 
"chance" value;   if the sample was actually drawn from some   other 
population,   then Z will tend to assume large values with greater- 
than-chance probability.      The probability of a given value of Z, 
when the null hypothesis is true,   is simply the number of ways 
N balls can be dropped into N boxes or compartments so as to 
leave an unspecified Z compartments empty,   divided by the num- 
ber of ways N balls can be dropped into N boxes without restric- 
tion.      These probabilities have been tabled by David (16). 

The above test is a test of fit against general alternatives. 
However,   if the experimenter suspects certain alternatives to be 
more likely than others,   he may    wish to specify the general loca- 
tion of the "empty compartments",   i.e.,   ranges containing no sample 
observation.      For example,   if the true population is believed to have 
the same form as the hypothesized population but a larger median, 
then one would expect more empty compartments below the median 
of the hypothesized population than above it.      Likewise,   if the true 
and hypothesized populations are symmetrical and have equal means 
but different variances,   the variance of the true population being the 
larger,   then one would expect more empty compartments in the mid- 
dle than at the extremes of the hypothesized distribution.      David 
(16),   therefore,   has proposed a second test in which the hypothesized 
distribution is divided into 2N nonoverlapping vertical strips of equal 
area,   of which N are selected to be the "test" compartments.      A 
sample of N observations is then drawn and the number,   Z,   of empty 
compartments among the predesignated N test compartments is 
counted.    Probabilities for Z in this second test have also been 
tabled by its author. 

b.    Null Hypothesis.      Each of the N sample observations 
was equally likely to have been drawn from each of the N (or in the 
case of the second test,   2N)   ranges of abscissa values correspond- 
ing to equal areas of the hypothesized distribution.      This will be 
the case if the hypothesized distribution is the distribution sampled 
and if all assumptions are met. 
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c. Assumptions.      Sampling is random and independent 
and there is zero probability that an observation will be tied for in- 
clusion in adjacent abscissa ranges,  i. e. ,  that it will fall at the 
common endpoint of two abscissa ranges. 

d. Treatment of Ties.      If the hypothesized distribution 
is discontinuous and an endpoint of an abscissa range happens to 
coincide with one of the discrete population values,  the test had best 
be avoided.      Ties due to this cause could,   of course,   be broken and 
assigned among the two adjacent ranges in the same proportion as 
would be required to break the relative frequency of the discrete 
value in order to maintain equal areas in the hypothesized distri- 
bution. 

If the hypothesized distribution is continuous,  ties may 
be broken by assigning them in the manner least conducive to re- 
jection of the null hypothesis,   by assigning half of each group of 
ties to each of the two ranges tied for,   or by breaking them random- 
ly.      See Introduction. 

e. Efficiency.      Formulae by which to obtain power func- 
tions are given (16) for both tests by their author,   and certain power 
comparisons are made.      The power of the first test and the power 
of chi-square to reject the hypothesis that the population is normally 
distributed with zero mean and unit standard deviation was obtained 
(using N • 30 and oc = . 05) when the distribution and mean are as 
hypothesized but the standard deviation is 4/3.      The ratio of the 
power of the zeros test to that of chi-square was . 968. 

f. Application.    It is hypothesized that a certain popula- 
tion is normally distributed with a mean of 500 and a standard devia- 
tion of 10.      In order to test this hypothesis,   a sample of six obser- 
vations is drawn from the population in question,   their values being: 
457,   462,   489,   515,   538,   564.      From  normal tables we find that 

— of the area of a normal curve is between ± . 4307o- of the mean and 

2 
— of the area,   between ± . 9674cr  of the mean.       Therefore since it 

is symmetrical,  the normal curve is divided into six equal and non- 
overlapping areas by the points  \i - . 9674cr,    H  - . 4307<j-»  V- , 
[i + . 4307cr , and n + . 9674o".      Substituting 500 for M- and 10 for °"> 
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these points become: 490. 326,   495.693,   500.000,   504.307,   and 
509.674,   and the six ranges or "compartments"  are - °° to 490.326, 
490. 326 to 495.693,   495. 693 to 500. 000,   500. 000 to 504. 307, 
504.307 to 509.674,   and 509.674 to + °°.      The six sample observa- 
tions all fall into two of the six ranges leaving four compartments 
empty.      Entering David's tables with N - 6 and Z - 4,   the prob- 
ability of four or more empty compartments is found to be . 0200 
and the null hypothesis is therefore rejected at better than the . 05 
level of significance. 

This probability could have been computed.      The four 

empty compartments could have been selected in (   ) or 15 ways. 
The six observations can occupy the remaining two boxes in the 
following ways,    the denominator of the multinomial expression 
in each case indicating the split of the six observations   between 

^   *, • 6! 6! 6! 6!      , the two compartments:   -^   +   -—    +   -^    +   -—   + 

6 + 15 + 20+15 + 6-62.      Finally,  there are NN = 66 

5! I1 

46, 656 ways in which six observations can be assigned to six com- 
partments without restriction as to how many are to be empty.   The 

probability of exactly four empty compartments is therefore •• 
46, 6 56 

or   . 0199.      By similar reasoning,   the probability of exactly five 

( 5> 6!- 6 
empty compartments is   —-—;—-— s-rj—;—r-  =   • 0001.      So the prob- 

46,656 46,656 

ability of four or more empty compartments is  . 0199 +  . 0001   = 
. 0200.      The general formula for exactly Z empty compartments 
when there are N observations and N compartments is 

N 

where the summation is taken over 

all values of t   ,   t   ,   . . . ,   t such that none of the N-Z t's is zero 
1      2 N-Z 
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and such that the sum of the t's is N. 

In the example given the alternative hypothesis was a 
general one.      Had the experimenter suspected that the true and hy- 
pothesized populations would differ mainly in variance,   if they 
differed at all,   David's second test would be more appropriate. 
In this case,  the hypothesized distribution would have been divided 
into 12 equal areas and the central six might have been chosen as 
test compartments if the experimenter suspected that the true dis- 
tribution had a greater-than-hypothesized variance.      None of the 
six sample observations fell into any of these six compartments, 
so Z would have been 6.      Entering David's tables for her second 
test with Z = 6   and   2N "12,   a somewhat lower probability of 
. 0156 is found,   as would be expected for a test making use of 
additional "information".      The second test,   of course,   can be 
significant for either small or large values of Z or for both,   de- 
pending upon the alternative hypothesis and whether or not it is 
two tailed. 

g.    Discussion.      It is to be noted that the hypothesized 
distribution must be completely known prior to sampling.      None 
of its parameters should be estimated from the sample.      If this 
stricture is observed,   then each of the N sample observations was 
equally likely to have been drawn from each of the N abscissa 
ranges,   as required by the null hypothesis,   and all N observations 
could have been drawn from any specified set of ranges or com- 
partments.      However,   suppose that the distribution median is to 
be estimated from the sample median.       Then the sample obser- 

N-l vations cannot possibly all have been drawn from the       left- 
2 

N-l most or from the       rightmost compartments of the distribution 

whose median is the same as their own.      It is clear,   therefore, 
that the mathematical model upon which the test is based requires 
that the hypothesized population distribution be completely known 
in advance of sampling.      To facilitate division into equal areas, 
it is also desirable that the distribution be extensively tabled. 

h.     Tables.    Exact point probabilities for Z as well as 
probabilities cumulated to approximately the . 05 level of signifi- 
cance,   have been tabled (16)  for 3 < N < 20 for the firsttest    in 
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which Z is the number of unoccupied abscissa ranges    each of which 

had probability —   of containing any given one of the N sample obser- 

vations.      For values of N greater than 20,   Z is approximately norm- 
ally distributed with mean and variance given in (16),    and its prob- 
abilities may be obtained by referring the critical ratio to normal 
tables;   however,   the calculations are laborious.      For values of 
N > 30,  the author suggests that the hypothesized distribution be 
divided into six or more equal areas,   such that N divided by the 
number of areas yields an expected frequency of five or more for 
all compartments,   and that the usual chi-square test of fit be applied. 

Exact point probabilities for Z,   and probabilities cumulated 
to approximately the . 05 level of significance,  have been tabled (16) 
for  1  < N < 10 for the second test in which the hypothesized distri- 
bution is divided into 2N equal areas,   N of which are selected as 
"test compartments",   and in which Z is the number of these test 
compartments which are unoccupied by any of the N observations in 
the sample.      Again,  when N exceeds  10   Z is approximately normally 
distributed with mean and variance given by David,   so probabilities 
can be obtained by forming the critical ratio and referring it to 
normal tables. 

i.    Sources.     16. 

7.     The Quadrant Sum (or "Corner")   Test for Peripheral 
Association 

a.    Rationale.    Suppose that an X measurement and a Y 
measurement have been taken on each of 2n objects and that it is 
desired to test whether or not X and Y are correlated.      Let the 
2n points be plotted as a scattergram and let a vertical line be 
drawn through the sample X-median and a horizontal line through 
the sample Y-median.      Now find the rightmost point in the scatter- 
gram and,   proceeding toward the middle of the scattergram,   count 
the number of points passed before the Y median must be crossed to 
pick up the next point.      This is the largest value for the number of 
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rightmost X-values,   all of.which lie on one side of the Y-median. 
Call this number R      if the points are all above the Y median and 

A 

R      if they  are all below it.      Next find the leftmost point and 

proceed analogously,   calling the L leftmost points on    one side 
of the Y median L      if they are all above the median and L     if 

A y B 

they are all below it.      Now find the uppermost point and proceed 
downward   counting the number of points until the X median must 
be crossed to obtain the next point.      Let this number of points be 
A      if they are all on the right side of the X-median  and A     if they 

R L 

are all on the left.      Finally,   find the lowest point and proceed up- 
ward and analogously,   calling the number of points B      if they are 

R 

all to the right,    and B      if they are all to the left,   of the X median. 

If the X and Y variables are correlated,   the scattergram points 
should tend to lie in one pair of the diagonal quadrants formed 
by the lines through the X and Y medians.      R    ,   A    ,   L      and 

A       R       B 

BT    all refer to points in the upper right or lower left quadrants 

and are therefore given  a positive sign.      Likewise,   L    ,   A    , 
A       L 

R      and B      refer to points in the upper left or lower right qua- 
B R 

drants and therefore are given a minus sign.      The four numbers 
actually recorded,   each preceded by the proper algebraic sign, 
therefore yield an algebraic sum which can be used as the test 
statistic.      Consider the X values to have been ranked from 1 
to 2n and the Y values likewise to have been ranked from   1 to 
2n and recorded below the X ranks.      There are (2n)!   ways in 
which the Y ranks can be permuted,   and each way represents 
a different set of pairings or assignments of Y values to X values. 
The probability of a given quadrant sum or one more extreme is 
therefore the number of these (2n)|  possible sets of assignments 
of Y values to X values which yield the given,   or more extreme, 
quadrant sum, divided by (2n)J , the number of possible assignments. 

343 



b. Null Hypothesis.    Each of the (2n)!  possible sets of 2n 
pairs of X and Y values,  which can be made with the obtained values 
of X and Y,  was equally likely to have been the set obtained as a 
sample. 

c. Assumptions.      Sampling is random and independent 
and the sampled population is continuously distributed,   i. e. ,   there 
are no tied values. 

d. Treatment of Ties.    Tied observations create a prac- 
tical problem when they occur at the "crossover point",   i. e. ,   when 
the manner in which the tie is broken affects the number of extreme- 
most points.      When this occurs,   the authors suggest dividing the 
number of points in the tied group which are on the same side of the 
median as the more extreme points,  by one plus the   number of 
points in the tied group which are on the opposite side of the median, 
and counting the result as the number of "extrememost" points in 
the tied group.      They regard this procedure as a conservative one. 
A more conservative technique would be to resolve all ties (includ- 
ing extreme observations lying on the X or Y median)  in whatever 
manner is least conducive to rejection of the null hypothesis. 

e. Efficiency.    No information available. 

f. Application.    Consider the following data,   in which the 
points are arranged  in order of increasing X-value:    (15,   71),   (21, 
68),  (23,  75),   (28,  63),   (30,   57),   (33,  59),   (44,  65),   (46,  66),   (49, 
52),   (55,   48).      The X median lies between 30 and 33,   and the Y 
median between 63 and 65.      The rightmost point,   i. e. ,   the largest 
X  value is 55 and proceeding inward two points   (55,   48) and (49,   52) 
are counted before a point is reached whose Y value is on the other 
side of the Y median.      Thus R    =2 and R.   • 0.      Likewise   L.   is 

B A A 

found to be 3   (so L      is zero),   since the three points (15,   71), 
B 

(21,   68)  and   (23,   75)  with lowest X values all have Y values above 
the Y median while the Y value paired with the fourth largest X value 
is below the Y median.      The point with largest Y value is (23,   75) 
and the points (15,   71)   and (21,   68)  have diminishingly extreme Y 
values and X values on the same side of the X median,  while the fourth 
largest Y value,   66,  is paired with an X of 46 which is on the   oppo- 
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site side of the X median from the preceding points.      Therefore 
A      is three and A-.   is zero.      The points in order of increasing 

Y value are (55,   48),    (49,   52),   (30,   57)...   of which the first 
two have X values to the right of the X median,   the third having 
an X value to the left of the median.      Therefore B     = 2  and 

R 

B      - 0.      Giving these values the algebraic signs corresponding 
JLI 

to the associated quadrant,  the quadrant sum is   + (R.  + A     + 
A R 

L     + B   ) - (L     + AT   + RD + B„) = +(0 + 0+0 + 0) -(3 + 3 + 
B L A L B R 

2 + 2) = -10.      Entering Olmstead and Tukey's tables (48),  with 
2n •  10  we find the probability of a  quadrant sum equal to or 
more extreme than 10 in absolute value to be . 0642.      A null 
hypothesis of no association could not be rejected at the two- 
tailed . 05 level.      However  if the null hypothesis were that there 
is either no association or a positive correlation,   it could be re- 
jected at the one-tailed . 05 level in favor of the alternative hy- 
pothesis of negative correlation. 

g.    Discussion.      The quadrant sum or "corner" test for 
association obviously is especially sensitive to correlation between 
values at their extremes,   at least at the extremes of one of the two 
variables.      It tends,  however,   to ignore correlation within the 
central portion of the scattergram.      Therefore,   while providing an 
excellent test for "peripheral"   association,   it is,   as its authors 
point out,   of "unknown usefulness"    "when uniform attention to 
the whole scatter diagram is desired. " 

The test can be extended to test for association between 
more than two variables,   and its authors have provided a small 
table of probabilities for the "octant sum",   the test statistic in 
the case of three variables. 

The four nonzero numbers which make up the quadrant 
sum are not independent since a single point can be counted twice, 
i. e. ,     an extreme-right point above the Y median may also be an 
extreme-high point to the right of the X median and be counted in 
both R      and   A    .      This lack of independence could be avoided by 

•A R 
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counting R   .  R   ,   L      and L     first,  then discarding these points &     A'      B       A B 

before counting A    ,   A   ,   B     and B     (or ignoring them in the count - 
R       L       R L 

ing process).      If this were done the "quadrant sum"   so obtained 
would have a slightly different distribution than the quadrant sum 
defined by Olmstead and Tukey.      However, its probabilities could 
now be obtained by the methods outlined in the chapter on exceed- 
ances.      The n points above the Y median may be regarded as the 
first sample,   the n points below it as the second.      Let X.   and X 

be the most extreme leftward and rightward points   above the Y 
median which are not counted in L     or R   .      Then exceedance 

A A 

formulae can be used to determine the a priori probability that in 
the second sample,   i. e.  below the median,   exactly L     points will 

B 

have X values smaller than X. and exactly R     will have X values 
1 '     B 

exceeding X   .      The L     + L_ + R     + R     points can then be dis- 
r A B A B 

carded and an analogous procedure can be applied to the two 
"samples" consisting of the h points to the left of the X median 
and the 2n-L     -L     -R     -R     -h points to the right of it. 

A B A B * & 

Since the X and Y values are independent under the null hypothesis, 
the two probabilities can be combined to obtain an overall probability 
for a quadrant   sum whose components are exactly R.j  R   ,  L   ,  L   , 

A    ,  A   ,  B     and B    ,   the appropriate algebraic signs,   of course, 
•tv       L       R JLi 

being added to obtain the quadrant sum.      Tabulation or calculation 
of probabilities in this manner would be quite tedious,   largely be- 
cause the same quadrant sum can be obtained in a variety of ways, 
depending on the values of the eight components.      The method has 
been outlined primarily to show the nearness of relationship of 
the quadrant sum test to exceedances theory. 

h.    Tables.      Exact two-tailed probabilities for a quadrant 
sum equal to or greater than k have been tabled (48) for the cases 
2n - 2,   4,   6,   8,   10  and 14 with asymptotic probabilities for 2n — 
infinity.      These tables should suffice in most cases since the prob- 
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abilities at 2n = 14 are very close to those for 2n * infinity,   except- 
ing those probabilities smaller than .01.      In fact the probability 
of a given quadrant sum is so insensitive to sample size that the 
authors have presented a table of approximate probabilities for 
the quadrant sum which does not use n as a parameter;   it is mere- 
ly stipulated that the table is inapplicable if the absolute value of 
the quadrant sum equals or exceeds 2(2n) - 6. 

i.    Sources.    48. 

8.    Additional Tests 

Mood (38)  has proposed a rank test for dispersion which 
has asymptotic relative efficiency of .76 relative to the F test when 
both tests are two-tailed and . 87 when they are both one-tailed. 
If there are m X-observations and n Y-observations from contin- 
uous distributions,  the observations are ranked from 1 to m+n 
irrespective of sample.      The test statistic,   W,   is the sum of the 
squared deviations of Y ranks from the average rank of all obser- 

vations,  i..e. ,  W =   y     (r.  -   m+y1   )2, where r. is the rank of 

the ith Y observation.      Since W can assume large values due to 

differences in either location or dispersion,   it must be assumed 
that the X and Y populations have identical location parameters. 
The probability of W under the null hypothesis is simply the pro- 

portion of the    ( ) ways of obtaining m X-ranks and n Y-ranks 
m 

from m+n ranks,  which give a calculated value of W equal to or 
greater than that obtained.      Unfortunately these probabilities do 
not appear to have been tabled;   however,  under the null hypothesis, 
W has a mean of n (m+n+l)(m+n- 1)/ 12  and a variance of mn(m+n+l) 
(m+n+2)(m+n-2)/l 80  and is asymptotically normally distributed. 

Another rank test for dispersion has been proposed by 
Lehmann (33) and developed further by Sundrum (57).      Let m 
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X-observations and n Y-observations be drawn from continuous 
distributions and ranked from 1 to m+n.      Then form each of the 

(     ) possible pairs of X-ranks and each of the (   )  possible pairs 

of Y-ranks.      Finally,   form each of the   (    )(   )  quadruples of possible 

pairs of X-ranks paired with possible pairs of Y ranks,   and count 
the number of quadruples,   Q,   in which both X-ranks are either 
greater or smaller than both Y-ranks.      This number can be ob- 
tained from a formula given by Lehmann.      The probability that 
the number of such quadruples will be Q or greater,   if the null hy- 
pothesis of identical populations is true,   is  simply the proportion 

of the    ( )  divisions of m+n ranks into m and n ranks which yield m ' 

that value of Q or a larger one. The test is consistent, (if the 
sampled populations are continuous and if ties are randomized) 
but not unbiassed.       Sundrum   defines   a   statistic 

L = Q 

<T><2> 
and has tabled some of its probabilities, 

A second "quadruple" test for dispersion suggested by 
Lehmann (33,  page 169)   appears not to be entirely distribution- 
free (38,  page 521). 

A test for dispersion,   somewhat similar to Rosenbaum's 
(see Exceedances),    has been published by Kamat (28).      Two 
samples are drawn from populations assumed to be continuously 
distributed and to have the same location parameters.      The n 
X-observations and m Y-observations,   defined so that m > n, 
are ranked from 1 to m+n,   in order of magnitude,   irrespective 
of sample.      The test statistic is then   D « R    - R      + m 

n, m n        m 

where R„ and R       are the ranees of the ranks of the X and Y n m s 

observations respectively.      By applying the Method of Random- 

ization to the    ( ) ways of assigning n ranks to Xs and m to Ys, 
n 
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exact probabilities can be obtained for D .      Probabilities have 
n, m 

been tabled for values of m+n < 20,   and a method is outlined by 
which to obtain approximate probabilities when m+n > 20. 

If a sample of size K is drawn from a population consist- 
ing of the ranks from 1 to N, the sample mean, r, will be approx- 

imately normally distributed with mean   ——-    and variance  <r-   = 
2 r 

N—Z-L    (1 - —)  if K is large.      Therefore,   Locks (34) refers the 
12K N 6 

N+ 1 
r —2~~ critical ratio,      to normal tables to test whether or 

cr- r 
not a random sample has been drawn from the hypothesized popula- 

12KY (r-?)2 

tion.    He also uses the statistic chi-square= ^->     .  
(K-l) (IST-l) 

with K-l degrees of freedom to test whether sample variance and 
population variance are comparable. 

If the hypothesized distribution is completely known and 
tabled and is continuous,   then goodness of fit can be tested by 
methods using the probability integral   transformation (15,   17,   44, 
49,   50,   51).      If a sample of N observations is drawn from the 
hypothesized population,   each sample observation's a priori prob- 
ability may be obtained from tables of cumulative probabilities for 
the hypothesized distribution.      Each observation may therefore 
be regarded as an independent test of significance and the overall 
probability for the N tests may be obtained by the usual methods 
of combining probabilities of independent    tests of significance. 
If random sampling is assumed the hypothesis that the observa- 
tions were drawn from a completely specified distribution may 
be tested.      Conversely if it is assumed,   i.e.   known,   that the 
observations   came from a specified distribution,  the randomness 
of sampling may be tested.      In either case,   no population para- 
meters should be estimated from the sample;   they must be spec- 
ified in advance of sampling.      Extensive tables exist for a test 
statistic, P      , based on this method. 

\i 
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An interesting and very simple method of linear curve 
fitting has been described by Nair and his colleagues (45,   46). 
One calculates the X mean and Y mean for the smallest 1/3 of 
the observations and finds the point for which they are abscissa 
and ordinate;   he then does likewise for the largest 1/3 of the ob- 
servations and draws a straight line through these two points. 

Further distribution-free tests and methods are merely 
listed in the bibliography. Some are exact and provide tables of 
probabilities, but lack simplicity either conceptually or in appli- 
cation. Others are approximations for which there corresponds 
no exact small-sample probability formula. 
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CHAPTER XIV 

TCHEBYCHEFF INEQUALITIES 

In 1853 Bienayme discovered,   and in 1867 Tchebycheff redis- 
covered,   a mathematical inequality variously called the Bienayme- 
Tchebycheff    inequality,   or,   more frequently,   simply Tchebycheff F 

inequality.      Following the essentials of a derivation presented by 
Hoel (10),   let f(x)  be a continuous distribution function with finite 

2     f+°° 2 
variance and mean u.    Then by definition cr   =  \       (x-u)   f(x)dx. This 

-co 

integral can be divided into three components whose sum it equals. 
Thus 

2 
pu-kcr ? /^u+kcr 2 •» + « _ 

= \ (x-u)    f (x) dx +   \ (x-u)    f (x) dx + \ (x-u)    f (X) dx 
J _oo ^ u-k<r ^ u+ko- 

The second integral must be positive if k is positive; 
therefore,    if k > 0,  dropping the second integral must either dim- 
inish the value oT the right-hand side of the equation or else leave 
it unaffected.      Thus 

->>-$ 
(x-u)    f(x)dx+    \ (x-u)    f(x)dx. 

-» ^ u+ktr 

For the first integral,   of all the values of x between -co   and u-ktr, 

2 
that which will make (x-u)     smallest is that which is closest to u, 
namely u-kcr.      Similarly,   for the  second integral that possible 

2 
value of x which minimizes (x-u)     is u+kcr.      The inequality must 
hold therefore if these values are substituted for x in the coefficient 
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(x-u)  .       Therefore 

u-kcr 

>-S 
+ oo 

o-2 >   ^ (u-ko-u)2 f(x)dx +   f (u+ktr-u)" f(x)dx 
oo " u+kcr 

• u-kcr + C0 
2   2 

>\ kcr    f(x)dx +   \ k**<r**f(x) dx 
J -oo ^ u+kcr 

^i2   2 
> k   o" 

f /%u-ktr p+oo 
\ f(x) dx +   \ f(x) dx 

L^-oo J liAlrw u+k<r 

The first integral will be recognized as the probability that x will 
be smaller than u-kor,   and the second integral,  the probability that 
x will exceed u+kcr.      The inequality can therefore be written 

2 ^ u2    2 
a    > k    cr P    (x < u-kcr) + P    (x > u+kcr) t 

2    2 
>k    o-       I" P    (x-u < -kcr) + P    (x-u > kcr) 

> k 
2    2 

P     ( |x-u|>ktr) 

or finally,   P     ( | x-u |   > kcr) <   l/k    . 

This is  Tchebycheff's inequality,  which simply states that 
the probability is equal to or less than 1/k^  that a randomly drawn 
sample observation will lie farther than k population standard devia- 
tions from the population mean.      It can be applied to an entire sam- 
ple of n observations by substituting the sample mean for x and the 
true standard error of the mean for cr.       The statement then becomes: 

the probability does not exceed l/k    that the mean of a random sample 
will lie farther than k standard errors of the mean from the popula- 
tion mean. 

The inequality uses both the mean and variance of the popula- 
tion.      If either is known,   it can be substituted into the inequality 
along with an hypothesized value for the other parameter and the 
observed value x.      The inequality can then be used to test the hy- 
pothesis which determined the value substituted for the unknown 
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2 
parameter.      The significance level, cc,  must equal l/k   ,    so 

k = • and the hypothesis is rejected at the cc level of significance 
\l oc 

if J—"ul    >     r .1.  .      Again,  x  and <r-   can be substituted for x and 
cr N/oc 6 x 

o" to make the test applicable to samples of more than one obser- 
vation.      Obviously,  the inequality can also be used for prediction 
and for the setting of tolerance limits. 

Tchebycheff's inequality suffers from a number of deficiencies. 
First it is distribution-free only in the limited sense that it does not 
completely specify the shape or contour of the distribution to which 
it is to apply.      It does,   however,   require a knowledge of the popu- 
lation variance,   (or true standard error of the mean),  which is 
seldom available in the absence of knowledge of the distribution's 
form.      Second,   it is,  by nature,   inexact;  the only explicit prob- 
ability statement    that can be made concerns the upper bound for 
a probability rather than the probability itself.      Finally,   it is a 
weak test in that,  when applied to small samples,   it is generally 
unlikely to reject a false null hypothesis unless the hypothesis is 
spectacularly in error;    small discrepancies between null hypo- 
thesis and true condition are usually detected only when extremely 
large samples are taken.      This last shortcoming could have been 
predicted on the basis of the derivation.      The  central term 

p u+kcr , 
\ (x-u)   f(x) dx,      was completely discarded and the values 
^u-ko- 

of x which would minimize the two remaining integrals were sub- 
stituted into them.      The net   result  is   that the  term o-      on the 
left of the inequality sign is,   in all probability,   much greater than 
the sum of the terms constituting the right hand side of the inequal- 
ity.      The weakness of the test could also be predicted on the basis 
of the fact that an otherwise unknown distribution is poorly des- 
cribed by a mere knowledge of its variance or mean or any other 
single parameter. 

Despite these weaknesses,  the inequality has as much strength 
as can be obtained under the assumed conditions.      That is to say, 
the discrepancy between the values on opposite sides of the inequality 
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sign cannot be reduced without the imposition of further restric- 
tions^).      Many "stronger" Tchebycheff-like inequalities have been 
developed at the cost of introducing more and more elaborate as- 
sumptions about the population distribution (such as requiring that 
the distribution be unimodal or symmetrical or that it increase 
monotonically in progressing from its tails to its mode,   etc. ). 
This means,   of course,   that the proper use of such inequalities is 
restricted to populations about whose distributions more and more 
is known.      It seems to be in the nature of inequalities,  therefore, 
that strength and freedom from assumptions are inversely related. 

Despite its weakness as a statistical test,   Tchebycheff's in- 
equality has played an important part in the mathematical develop- 
ment of probability theory.      It has been extended to bivariate (1, 
3,   7) and multivariate (4,   7) distributions and has been mathe- 
matically "generalized" so as to include a wide variety of inequal- 
ities as special cases.      It is involved in many important statisti- 
cal derivations.      However,   it is rarely used now as a statistical 
test.      Pearson (18) sums up what is probably still the prevailing 
attitude toward Tchebycheff inequalities as statistical tests:    "On 
the whole we must express disappointment at the results of Tche- 
bycheff's process.      We had found Tchebycheff's own limit based 
on the second moment of small practical value,   although it is to 
be found occupying a prominent position in many continental works 
on probability.      By extending it to higher moments and product- 
moments we have reached results which are great improvements 
on the original Tchebycheff limit,    but the method still lacks the 
degree of approximation (except for probabilities over . 99,   say) 
which would make the results of real value in practical statistics. " 
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CHAPTER XV 

EXTREME VALUE DISTRIBUTIONS 

The distribution of the largest,   or smallest,   value in a sample 
of n observations has been investigated by Fisher and Tippett (4), 
Gumbel (5-9>   15) and others (2,   13,   14).      These investigations 
have met with qualified success:   the distribution of an extreme 
sample value has been obtained for samples of infinite size from 
certain types or classes of population.      Gumbel has investigated 
and tabled (9,   15) extreme values and near-extreme values for 
large samples from populations whose distribution is of the expo- 
nential type,   "which covers,   among others,   the exponential,   the 
normal,   and the chi-square distribution. "     Extreme value distri- 
butions find important application in predicting the "return period" 
for floods and other meteorological phenomena,   and in strength of 
materials investigations since it is the weakest of n "fibers",  the 
worst of n flaws,   or the heaviest of n loads which determine when 
and where fracture    will begin. 

If a very large sample is taken,  the correlation between the 
largest and smallest sample values becomes negligible (5) and the 
sample extremes may be regarded as effectively independent. 
Under these circumstances the distribution of the sample range 
can be obtained from the joint distribution of the two extremes. 
The distribution of the range,   obtained in this way,  necessarily 
incorporates all assumptions made in obtaining the distributions 
for the extremes.      Gumbel (6)  has tabled probabilities for ranges 
and range-like statistics for samples from an "unlimited symmetri- 
cal initial distribution of the exponential type. " 

It is clear that the extreme value statistics discussed above 
and range statistics derived from them are completely valid only 
for infinitely large samples.      Furthermore they are distribution- 
free only in the very limited sense that the form of the underlying 
population need not be known fully but rather need be known only 
to the degree necessary positively to categorize it as belonging to 
a certain specified class of populations.     Such restrictions place 
these statistics outside the scope of this report and no attempt will 
be made to describe them in detail. 
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CHAPTER XVI 

OBTAINING AN OVERALL PROBABILITY FOR SEVERAL 
INDEPENDENT TESTS 

It is sometimes desirable to obtain an overall probability 
for a number of separate and independent tests of the same null 
hypothesis.      It may be that conducting an additional single test 
upon the aggregate data is justifiable theoretically but not prac- 
tically because it would require excessive labor or delay.      Or it 
may be that the data cannot properly be combined.      For example, 
one test may have been a t-test for matched pairs,   another a t-test 
without matching,   a third,   the sign test,   etc. 

What is desired is the probability of acquiring by chance a 
set of test outcomes as extreme as,   or more extreme than,   those 
actually obtained.       This overall probability is not the product   of 
the probabilities of the individual tests.      To illustrate,   if each of 
five tests yields results at the . 50 level,   the product  of the five 
probabilities is  .03125,   although it is clear that in combination the 
five tests are even less suggestive of a false null hypothesis than 
they are individually.      Probabilities can range from zero to one. 
Each time a probability is added to a set of probabilities,   the pro- 
duct of the probabilities must diminish (or remain the same if the 
added probability is  1). 

The not uncommon,  but fallacious,  belief that the overall 
probability for a set of test outcomes is expressed by the product 
of the individual probabilities is apparently due to misinterpreta- 
tion of compound probability.      If events A,   B,   C,   yield the com- 
pletely independent outcomes a,  b,   c,  whose individual chance 
probabilities are p   ,   p   ,   p   ,   then the product p   p   p     gives the 

a       b       c a   b   c 

a priori probability that outcome   a will result for event A,   out- 
come  b will result for event B,   and outcome   c  will result for 
event C.      Such a procedure is invalid for the combination of 
test probabilities for two reasons.      First,  we are not interested 
in the probability that test A will yield probability p   ,   test B will 

a 

yield probability p   ,    and test C will yield probability p   .    Rather 
b c 

we are interested in the probability that the probabilities p   ,   p   , 
a      b 
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p     will be obtained,   each probability applying to some unspecified 

one of the three tests.      Second,   test probabilities are cumulative 
probabilities and therefore do not express the probability of a 
single,   obtained,   outcome,  but rather the probability of the ob- 
tained outcome plus the probabilities of all of a defined class of 
less "expected",   and unobtained,   outcomes.      Since all of the out- 
comes referred to by the smallest test probability are also,   in a 
sense,   referred to by a portion of each of the other test probabilities, 
the requirement of independence has not been met.      Multiplying 
test probabilities therefore not only does not give us the probability 
we seek;   it is not even a valid procedure for obtaining a probability 
which we do not seek. 

There are several methods of obtaining overall probabilities. 
Each requires that the component tests be independent and test the 
same null hypothesis.      The requirement of independence means 
that if the null hypothesis is true there is no common underlying 
factor in any of the data upon which the individual tests are based 
which would tend to produce similar test outcomes.      Specifically 
this means that unless the tests are statistically independent 
(which is usually not the case) they must have been conducted upon 
separate and nonoverlapping sets of data yielded by separate and 
nonoverlapping groups of subjects (unless the null hypothesis is 
confined to the population of tested subjects).      The reason for the 
requirement that the individual tests must test the same null hypo- 
thesis is obvious. 

The rationale of the binomial,  or Wilkinson,  method is as 
follows.      If,  before collecting data,   it is decided to use the same 
significance level,    cc,  for each of N independent    tests,  then each 
test must have one of two outcomes:    significance or insignificance. 
Significance is therefore binomially distributed,  with probability oc 
on a single trial.      The probability that n or more of N independent 
tests will yield probabilities falling within the significance level oc 

rN       r N-r (   ) cc    (1-oc)        .     This probability can be obtained 

r=n 

from tables of cumulative binomial probabilities or from tables 
(19) or graphs (17) designed expressly for this purpose.     A less 
desirable solution is   afforded by the normal approximation to the 
binomial.      This is justified   only in those rare cases for which 
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the binomial tables are-not sufficiently extensive.      The normal tables 

are entered with the critical ratio      '   ,  a one-tailed test 
N/Noc (1-CC) 

being conducted,  with small probabilities corresponding to values 
of n greater than Noc.      The approximation cannot be expected to be 
good if N is small (say less than 20)   or if Noc is less than 5. 

The binomial method presupposes that the size of the rejection 
region,  i.e.  the significance level,  for each test was selected   prior 
to collection of data,  and that the same level oc was selected for each 
test.      The selection of cc prior to collection of data insures an absence 
of a posteriori bias in obtaining an overall significance level.      The 
binomial method also requires that each of the N tests be capable of 
of an outcome whose cumulative probability ig exactly oc.      That is to 
say,  the test statistic need not be continuously distributed,  but,  if not, 
it must have   a discrete value corresponding to exactly the oc level 
of significance not simply falling within the level oc.       Otherwise the 
binomial method would be inaccurate in the direction of conservatism: 
it would fail to announce significance as frequently as it occurred. 

If the experimenter knows that nonchance values of the test 
statistic can only fall on one tail of its distribution,   or if he is only 
interested in nonchance results falling on a specified tail,  he will 
use the one-tailed cc level of significance for all N tests and the bino- 
mial method will be highly appropriate for their combination.      How- 
ever,   if so far as the experimenter knows,  nonchance results can 
fall on either one of the two tails,   and if he is interested in both event- 
ualities,  the binomial method becomes ambiguous in interpretation. 

Ordinarily one uses a two-tailed test when one is unable to pre- 
dict the direction of nonchance results.      When a single test is con- 
ducted this is a reasonable and uncomplicated procedure.      However, 
even though the experimenter may be unable to specify on which 
"side" of a false null hypothesis the true condition will lie,    it can- 
not lie on both sides,   and the result would therefore be highly am- 
biguous if probabilities for two-tailed tests were  "combined" by 
the binomial method.      If he uses the two-tailed oc for each of his 
N tests,  the binomial method still tells him precisely the probability 
that n of his tests will yield probabilities within the two-tailed oc 
region by chance.      However,  the usual supposition that if the chance 
probability is small the tested effects must be due to some nonchance 
factor may become,  in this case,   a non sequitur.      For example, 
the chance probability that of 28 tests,   4 or more will yield results 
significant at the two-tailed .05 level is .049,   and an experimenter 
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using the . 05 level for his overall significance level would reject 
the null hypothesis.      However,    what is the "true" hypothesis if two 

of the four significant tests fell in the   -*- oc   region and the other two 

fell on the opposite tail in the 1 - y cc region?     The experimenter 

obviously cannot properly select a one-tailed significance region 
in advance of all data collection if he does not know in what direction 
to expect departures from the hypothesized condition.      On the other 
hand,   if he selects a one-tailed region on the basis of examination 
of the data,  he is guilty of introducing an a posteriori bias,   and the 
alleged overall probability for his results will not be the true prob- 
ability.      If he insists upon combining two-tailed tests,  he will be 
able to make a precise probability statement about a chance event, 
which probability has little bearing on the nonchance event in which 
he is really interested. 

The Chi-Square,   or Fisher,  method  gives the probability of 
obtaining a certain product for the one-tailed cumulative probabilities 
of several tests.      While the overall probability of a series of tests is 
not expressed by the product of their separate probabilities,  that 
product has,  itself,   a probability of occurrence which can be regarded 
as the overall probability for the series of tests. 

Expanding a treatment and derivation given more concisely by 
Wallis (18),   let N be the number of tests whose probabilities,  p.,  p~ 

. . . ,  p   ,   are to be combined.      Let each test be capable of yielding 

any cumulative probability between 0 and 1,   each value being equally 
likely,  i.e. ,   assume each test statistic to be continuously distributed. 
Then the sample space for the product p. p_  ....  p     = k is a square 

when N = 2,   a cube when N = 3,   and an equal sided,   N-dimensional 
solid when N > 3.     When N = 2, the probability that the product  p    p_ 

does not exceed some value k  is that area in a square of unit edge 
which lies on the convex side of the equilateral hyperbola p. p_ = k 

(See Figure 5).      It is therefore one minus the area enclosed by the 

is yVPl: hyperbola.      The enclosed area is    \     (1-p,) dp2«     Substituting 

k 
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k/p?   for p   ,    this becomes    \     (dp_ -k 
dp 

)  or 1 - k + k Ink,   and 

the desired probability is 1 minus this or k(l-lnk).      When N = 3, 
the desired probability is the volume of a unit cube minus that por- 

tion whose cross section is  1 - p   p     +p . p ? In p. p.,   (see above) 

and whose perpendicular dimension extends from p~ = k to p, = 1. 

The volume to be subtracted is   \      (1-p, 

substituting  k/p, forp p., 

p2 + pl p2 ln Pl p2* dp3  or' 

rl     dpi k 
) dp, =     1 - k + k ln k +   \     k    =   ln   — 3 X P^ P* 

by parts,  becomes 
kl 

the remaining integral,  integrated 
-2 

k In       ln p_ p, ^3 I' Un 
P3) ( 

-k p. 

kp. 
T-)dp3 

= k i 
1   dp, 
      ln p    = k 

k    p3 3 k 

(lnp3)' 

~~Z  
•k (ln k) The subtracted 

k(ln k) volume,  then,   is    1-k + klnk-  ——•—-— .      And the desired prob- 

ability is   k 
ri-!nk+   <y2j. The general term for the prob- 

ability of the product N independent tests   is,   then 

——     which can be written as  y t 
r=0 

N-l 

r  ; 
r=0 

Ink .r 
e (-Ink) 
 rT  

which is the sum of the first N terms of the Poisson distribution 
whose mean is -Ink.      However,   it is known that the probability 
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2 
for a value of x     based on 2N degrees of freedom is given by the sum 

2 
of the first N terms of the Poisson whose mean is x /2.      Therefore 

YN_1  elnk(-lnk)r 

the probability     >  ? '-—     of the product k is also the 

r=0 

2 
probability of that value of x    based on 2N degrees of freedom for which 

2 . 
X /2 = -Ink.      Stated differently, when based on 2N degrees of freedom 

2 
X   = -2 Ink has the probability we seek. 

Therefore to obtain the overall probability for N tests whose 

2 
separate probabilities yield the produce k,  enter the x     tables with 

2 
2N degrees of freedom and find the probability for the value of x 
equal to -2 Ink.     This is the probability of the product k. 

An alternative and equivalent method does not require the 
evaluation of logarithms.     As mentioned earlier,    the probability for 

2 
for a value of x     with 2N  degrees of freedom is  the   sum 

yN"1      e-!2<*V 
/_,  j .      For two degrees of freedom,   N= 1 and the 
r=° " 2 2 

-X .X 2 
probability becomes simply   e T   .      Solving p = e 7    for x   »    we 

2 
have X     _ -£•    =  lnp   or   x    = -2 lnp.      That is to say,   the value of any 

2 
X     based on two degrees   of freedom is minus twice the natural log- 
arithm of its own probability.      Phrased differently,   one can obtain 
minus twice the natural logarithm of any probability by entering 
the chi-square tables with that probability and with two degrees of 
freedom and reading off the corresponding value of chi square. 
Suppose this is done for each of the N probabilities for which the 
overall probability is sought.     Then for each probability p.,    we 

2 
obtain a \-   for 2 d.f.  = -2 lnp..      Because of the additive property 
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2 2 of x  » these values of x    based on two degrees of freedom can be 
2 

summed to give a total value of x    based on the sum of the separate 
degrees of freedom. 

2 
Y.   for 2 d. f.  = -2 In p. 
*i l 

)     (xf for 2 d.f.) = /      -2 1np.= -2^>       lnp. 

2 
total x   based on 2N d.f. = -2(lnpj+   lnp^ .. lnpN) 

= -2 ln(p.p_ ... PN)= -2 lnk« 

2 
Therefore,  the total x     based on 2N degrees of freedom has precisely 

2 
the probability we seek,   and this total x     has been obtained without 

2 
resort to any tables of logarithms.      Extensive tables of x    for two 
degrees of freedom (8) have been provided for use with this method. 
Graphs (1,  2) exist which give the probability of the product of two 
probabilities.      In using the chi square method,  Yates' correction 
should never be applied as it is completely inappropriate.      Also, 
each of the individual probabilities to be combined must be contin- 
uously distributed,   i. e. ,  the "population" probability must be capable 
of assuming any value between zero and one.      This,   in turn,  means 
that the test statistic must be continuously distributed,  which   elim- 
inates many distribution-free tests.      If the test statistic is capable 
of assuming a large number of different values,  however,  the tech- 
nique may be used as an approximate method.      Another require- 
ment of the chi-square method is that the probabilities to be com- 
bined must be exact cumulative probabilities,  not simply "signi- 
ficance levels" within which the cumulative probability has fallen. 
Thus the experimenter must have available tables of exact   cumu- 
lative probabilities for each of the test statistics whose probabilities 
are to be combined;   tables giving the values of the test statistic 
at the conventional significance levels such as .10,   .05,   .01, .001 
will not suffice unless linear interpolation is performed and unless 
it yields very nearly exact values.      A further requirement    is that 
the cumulative probabilities used for the individual tests must all 
be one-tailed probabilities,  with those probabilities near zero all 
implying the same type of departure from the hypothesized condition 
and with those probabilities near one all implying the opposite type 
of departure.      If the experimenter wishes to conduct a two-tailed 
overall test at the significance level oc,  he simply rejects the null 
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hypothesis if the product k is either so small that its probability is 

less than -=-cc or so large that its probability is greater than 1 --=-oc. 

Thus the chi-square method is free of the ambiguity surrounding the 
binomial method when a two-tailed overall test is required. 

Wallis (18) has outlined the method of obtaining the probability 
of a product of individual probabilities when some of them are dis- 
cretely distributed. 

There are other methods of obtaining overall probabilities. 
A technique somewhat similar to that described as the binomial 
method is attributed  (3,  p.   562) to   Tippett.      A technique (5,   6,   12, 
13,   14,   15,   16)  which is essentially the chi-square method was 
discovered subsequently but independently by Karl Pearson.      Birn- 
baum (3) states that "no single method of combining independent tests 
of significance is optimal in general,   and hence ...  the kinds of tests 
to be combined should be considered in selecting a method of com- 
bination. "     Various methods are examined by him in (3),   the two 
methods described above,   i.e. ,  the binomial method and the chi-square 
method apparently being most effective in the generality of applications. 
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SUMMARY 

Two methods have been described for obtaining an overall 
probability for the outcomes of a set of statistical tests,  using 
as "data"  the obtained cumulative probabilities for each of the 
individual outcomes.      Both methods require that the component 
tests be independent and test the same null hypothesis. 

The binomial method gives the probability that of N tests,  n 
or more will yield cumulative probabilities falling within a pre- 
designated significance level oc.     The individual test statistics 
neednot be continuously distributed;   however,   each must have 
a value corresponding to a cumulative probability of exactly oc. 
The binomial method is highly appropriate when the individual 
tests to be combined are one-tailed,   and a one-tailed overall 
test of the null hypothesis is required.      If oc is taken as a two- 
tailed significance level,   the binomial method remains mathe- 
matically valid,   giving the chance probability of the obtained 
results.      However,   small chance probabilities can no longer be 
taken as presumptive evidence that the null hypothesis is false, 
since they do not necessarily imply the existence of a more like- 
ly alternative.      If nearly equal proportions of the n significant 

tests fall on opposite tails — oc and 1  - — oc,  then rejection of the 

null hypothesis is unjustified since no alternative hypothesis accounts 
for the results any better than does the null hypothesis. 

While the overall probability of a series of tests is not ex- 
pressed by the product of their separate probabilities,   that product 
has,   itself,   a probability of occurrence which can be regarded as 
the overall probability for the series of tests.       The chi-square 
method gives the cumulative probability for the product of the one- 
tailed cumulative probabilities of N tests.      It requires:    (a) that 
the individual test statistics be continuously distributed,   i. e. , 
that every cumulative probability from zero to one be equally 
likely,    (b) that one-tailed cumulative probabilities be used for 
the individual tests,   and that   a cumulative probability on a given 
side of . 50 imply the same direction of deviation from H    for every 

test,    (c) that for each test the exact cumulative probability be 
used,  not simply the "significance level" within which that cumu- 
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lative probability fell.      The overall test of significance may be 
made two-tailed at the cc level of significance by rejecting the 
null hypothesis if the one-tailed cumulative probability of the 

product falls either between zero and -oc or between 1  - — cc and 1. 

For specific cases,  the following table may be helpful in de- 
ciding which of the two methods is appropriate. 

Restrictive Conditions Method 

Binomial Chi-Square 

Continuously distributed test statistics required? 

Exact cumulative probabilities required? 

Two-tailed tests are ambiguous? 

No* 

No* 

Yes 

Yes 

Yes 

No 

See text for qualifications. 
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