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SUMMARY
:

Adapiive or "leurning" systems can automatically modify their own
structures to ortimize performance based on past experiences. The system
desizner "teaches" by showing the system examples of l.puv signals or pat-
terns and simultaneously what he would like the output to be for each in-
put. The cystem in turn orgunlzes itself to comply as well as possible
with the wishes of the designer.

An adaptive pattern classification machine (called "Adaline", for
adaptive &qear) has been deviced to {llustrate adaptive behaviur and
artificial learning. During a training phase, crudec geometric patterus
are fed to the machine by setting the toggle swi%.hes in a Uxi4 input array.
Setting another togzle switch tells the machine whether the desired output
for the particular input pattern ie +1 or -1. All input patterns are clas-
sified into two categories. The system learns a little from each pattern
and accordingly experiences a design change. After training, the machine
can be used to classify the original patterns and noisy (distorted) ver-
sions of thece patterns.

A statistical theory has been developed which relates the competence
of the classifier to the amount of experience had (number of patterns
"seen" in adapting). Imperfect system adjustment results from small-
sample-size experience. The misadjustment, a dimensionlese quantitative
measure of the quality of adaption, is defined as the ratio of the increase
in probability of error of a system adapted to a smsll number of patterns
*o the probability of error of a "best-adapted" system (adapted to an
arbitrarily large number of patterns). Treating the classifier as a
roughly quantized sampled-dnta system, a statistical theory of aaaption
developed for adaptive sampled-data systems hus been utilized to derive
a formula for misadjustment,

n+1
N

M=

The number of input lines is (n + 1), and the number of patterns seen in
adapting is N. Thic formula leads to a basic "rule of thumb" for adaptive
classifiers: The number of patterns required to train an adaptive classi-
fier is equal to several times the number of bits per pattern. This
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rule applies without regard to patterns and noise characteristics. Ex.
perimental ~vidente is presented.

The pattern zlsssifier is actually an adaptive switching circuit
having a set of binary inputs and a binary output. The signal on each
input line is either +l1 or -1 according to the setiing of the individunl
pattern switch, The sixteen input signale are linearly combined and
then quantized. The weights (which could be positive or negative) are
determined by an array ol polentiovmeter settings.

Iterative gradient methods are used during the training phase to
find the potentiometer settings that minimize the number of classifica-
tion errors. A simple procedure has been devised which does not require
actual measurement of gradient, and which guarantees convergence and
permits control of rate of convergence. Adaline can usua.ly sdapt after
seeing ten to twventy patterns and ran easily distinquish a dozen differ-
ent basic patterns.

As a generic form of switching functions, Adaline is not completely
weneral., All-possible-potentiometer-settings allows the realization of
the "linearly separated truth functions", a subclass of all switching
functions. Although this subclass is restricted, it is a useful cless,
and, most important, it is a searchable class {the best within the class
can be found without trying all possibilities). Networks of Adalines
overcome this restriction and are far more general, yet present adaption
problems of no greater difficulty than those of single Adalines.

At present the purely mechanicul adaption procesc is accomplished
by manual potentiometer-setting. A means of automating this is being
developed which makes use of multi-aperture ferromagnetic devices.
Solid-state adaptive logical elements will result that should ultimately
be suiteble to be microminiaturized. Networks of such elements would be
very effective in pattern recognition systems, information storage and
retrieval-by-classification systems, and self-repairing logical and
computing systems.
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I. INTRODUCTION

The modern science of switching theory began with work by Shannonl
in 1936. The field has developed rapidly since then, and at present a
wealth of literature exists2 concerning the analysis and synthesis of
logical networks which might range from simple interlock systems to
teclephons switching systems to large-ccale digital computing systems.

A key idea in switching theory is that the performance requirements
ol any logical cystem can be completely specified by a boolean iunction
expressing output conditions in terms of input conditions, and that the
algebraic symbole in the boelean function are readily identifiable with
simple storage and "and” — "or" elements. The prcblem of simplification
of retworks f'or most economic realization is reduced to a probiem of
algebraic simplification of boolean functions, a task whica is more
easily accemplished by human designers than reduction-by-inspection of
logical networks themselves. .

An example illustrating the use of switching theory is that of the
design of an interlock system for the control of traffic in & railroad
switch yard. The first step is the preparation of a "truth table", an
exhaustive listing of all input possibilities (the positions of all in-
coming and outgoing trains), and what the desired system output should
be (what the desired control signals should be) for each input situation.
The next step is the construction of the boclean function, and the
following steps are algebraic reduction and design of the logical contrcl
system.

Tae design of a traffic control system is an example wherein the
truth table must be followed precisely and reliably. Errors would be
destructive.

The design of the arithmetic element of a digital computer is another
example wherein the truth table must be followed precisely. There are
other situations in which some errors are inevitable, however, and here
errors are usually costly but not catastrophic. These situations cail
for statistically optimum switching circuits. A common performance
objective is the mirimization of tne aversge number of errors. An ex-

ample is thal ol prediction of the next bit in a correlated stochastic
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binary numher sequence. The predictor output is to be a logical combin-
ation of A finite number of previoue irput nequence hits, An optluum
system {8 a sequential switching circuit that predicts with a minimum
number ot errors.

Suppose that a record of the binary sequence is printed on tape and
cut up !nto pleces (with indication of the positive direction of timec
preserved), say 25 bits long. Place all pieces where the most recen:
event 18 ONE in one pile and the remainder in another pile. Delcte the
most recent bit on each plece of tape. If the statistical scheme could
be discovered by which the pieces of tape are classified, this would lead
to a prediciion schewe. Il Is appurent that prediction is a certain aind
of classification.

Assuming statistical regularity, a reasonable way to pr.ceed might
be to form a truth table, and let the data from each piece of tape be an
entry in the table. It might be expected that with the data of 100 pieces
of tape, a fairly good predictor could be developed. The truth table
would have only 10C entries however, out of a total of 221'. The "best"
way to fill in the remainder of the truth table Qepends upon the nature
of the sequence statistics and the error cost criteria. Filling in the
table is a difficult and a crucial part of the problem. Even if the
truth table were filled in, however, the designer would have the diffi-
cult task of realizing a logicul network to satisfy a truth table with
224 entries.

An approaca to such problems is taken in this paper which does not
require an explicit use of the truth table. The design objective is the
minimization of the average numbcr of errors, rather than a minimization
of the number of logical components used. The nature of the logical
elements is quite unconventional. The system design procedure is edaptive,
and is based upon an iterative search process. Performance feedback is

used to achieve automatic system synthesis, i.e., the selection of the
"best" system from & restricted but useful class of possibilitics. Tue
designer "trains" the system to give the correct responses by "showing"
i1t examples of inpute and respective desired outputs. The more examples
"seen", the better is the system performance. System competence will be
directly and quantitatively related to amount of experience.

-2 -




II. A NEURON ELEMENT

In Fig. 1, a combinatorial logical circuit is showu vhich is &
typicul element in the adaptive switching circuits to be considered.
This element b=ars some resemblance to a "neuron” model introduced by

von Neuman3 , whence the name.

+|
7~ *h=l
Qo
Quantizer
input + E'-
lines 3 —* o =clstpt
~ a's are odjustable

FIG. 1.-- AN ADJUSTABLE NEYRON.

The binary input signals on the individual lines have values of +1
or -1, rather than the usual values of 1 or O. Within the neuron, a
linear combination of the input signals is formed. The weights are the
gains 815 By couy which could have both positive and negative values.
The output signal 1s +1 if this weighted sum is greater than a certein
threshold, and -1 otherwise. The threshold level is determined by the

setting of a., vhose input is permanently connected to a +1 source.

o’
Varying a, varies a constant added to the linear combination of input

signals.

For fixed gain settings, each of the 25 possidble input combinat:ons
would cause either a +1 or -1 output. Thus, all possible inputs are
classified into two categories. The input-.output relationship is deter-
mined by choice of the gains ao, .o .55. In the adaptive neuron, these

gains are set during Lhe "training" procedure.
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1n pecernl, there are 22) different input-output relutionships or
truth functlons by wi.ici the ['ive lnpul vuarlables can be mapped into the
ningle oulput variagbie. Only a subset of these, the linearly separated
trath runctionsh, can be realized by ell possible choices of the gaine
of the ncuron of Fig. 1. Although this subset is not all-inclusive*,

{t Is u useful subset, and it is "seanrchable", 1.e., the "best" fuaction
!n many practical caces can be found iteratively without trying all
functions within the subset.

Application of thi:z neurcn in adaptive pattern classifiers was first
made by Ma‘..tson.s’ o He has shown that complete generality in choice of
switching function could be had by combining these neurons. He devised
an iterative digital computer routine for finding the best set of a's
for the classification of noisy geometric patterns. An iteiwiive procedure
having similar objectives har been devised by these authors and is des-

eribed in the next section. The latter procedure is quite simple to
implement, and can be znolyzed by statistical methods that have already
been developed for tne analysis of adaptive sampled data systems.

III. AN ADAPTIVE PATTERN CLASSIFIER

An adaptive pattern vlassification machine (called "Adaline", for
adaptive linear) has been constructed for the purpose of illustrating
adaptive behavior and artiticial learning. A photograph of this machine,
which is about the size of a lunch pail, is shown in Fig. 2.

During & training phase, crude geometric patterns are fed to the
machine by setting the toggle switches in the Lxk input switch array.
Setting another toggle switch {the reference switch) tells the machine
whether the desired output for the particular input pattern is +1 or -1.
The cystem lcarnc o little from each pattern and accordingly experiences
a decign change. The machine's total experience is stored in the values
of the welghts Bye. 8 6e The machine can be trained on undistorted
noise-free patterns by repeating them over and over until the iterative
search process converges, or it can be trained on a sequence of noisy

*
It becomes a vanishingly smal) fraction of all possible switching
functions as the number of inputs gets large.
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patterns on a one-pass basis such that the iterative process cc: . :.zes
statistically. Combinations of these methods cai be accommodated simul-
taneously. After *raining, the machine can be used io classify the
original patterns and noisy or distorted veraions of these patterns.

A block schiematic of Adaline is shown in Fig. 3. In the actiul
"machine, the quantizer is nc% bullt in as a device but is accomplished
by the operator in viewing the output meter. Different quantizers
(2-1evel, 3-level, L.level) are realized by using the appropriate meter
scales (see Flg. 2). Adaline can be used to classify patterns into
several categories by using multi-level quantizers and by following
exactly the same adapting procedure.

The following is a description of the iterative searching routire.
A pattern is fed to the machine, and the reference switch is set to
correspond to the decired output. The error (see Fig. 3) is then read
{by cwitching the reference switch; the error voltage appears on the
meter, rather than the neuron output voltage). All gains including the
level are to be changed by the same absolute magnitude, such that the
error is brought to zero. This is accomplished by changing each gain

—»—o0 Output

quantizer
roferﬁg‘co
o
(desired output)

FIG. 3.--SCHEMATIC OF ADALINE.




(which could be positive or negative) in the dirertion which will diminish
the error by n amount which reduces the error magnitude by 1/17. The 17
gains may e ~harged in any ccquence, and after ull changes are made, the
error o the present input pattern is zero. Switching the reference back,
the meter reads exactly the desired output. The next pattern, und i‘e
desired output, 15 presented and the error is read. The same adjustment
routine is followed and Lhe error is brought wo zero. If the first pat-
terin were reupplied ut this point, the error would be gmall but not
necessarily uero. More patterns ure inserted in like manneir. Convergence
is indicated by small errors (before ndaption), with emall flucituations
about a stable root mean-square value. The iterative routine is purely
mechanical, and requires no thought on the part cf the operator. Electronic
automation of this prcccdure will be discussed below.

The results of a typical zaaptlon on six noiseless patterns is given
in Figs.  and 5. The patterns were selected in a random sequence, and
were clasnified into 3 categories. Each T was to be mapped to +60 on the
meter dial, each G to 0, and each F to -60. As a measure of performance,
after each adaptation, all six patterns were read in (without adaptation)
and six errors were read. The sum of their squares denoted by ?‘.2 was
computed and plotted. Figure 5 shows the learning curve for the case in
which all gains were initially zero.

IV. STATISTICAL THEORY OF ADAPTION FOR SAMPLED-DATA SYSTEMS

This section is a summary of the portions of Widrow's statistical
theory of adaption for sampled-data systems7’ : that is useful in the
analysis of adaptive switching circuits.

Consider the general linear sampled-data system former of a tapped
deley line, shown in Fig. 6. This system is intended to be a statistical
predictor. The present output sample g(m) is a linear comhinati.on of
present and past input samples, and is intended to approximate as closely
as possible ‘he next input sample f(m + 1). The constants in this linear
combination are hl, h2, h3, etc., the predictor impulse-response samples;
or the caine sssociated witn the deluy-line taups. Their cholce constitotes

S M
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FIG. 4.--PATTERNS FOR CLASSIFICATION EXPERIMENT.
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Predictr

Predictian

;:rodicﬂon error
“€(m)

F1G. 6.--AN ADJUSTABLE SANPLED-DATA PREDICTOR.

the adjustable part of the predictor design. They may be adjusted in the
following manner. Apply a mean square reading meter to e(r), the differ-
ence between the present input and the delayed prediction. This zeter
will measure mean square error in prediction. Adjust hl’ h2, h3, coey
until the meter reading is minimized.

The problem of adjusting the h's is not trivial, because their effects
upon performance interact. Suppouse that the predictor has only two im-
pulses on its impulse response, h1 and h2. Tne mean square error for any

setting of hl and h2 can be readily derived:

e(m) = £(m) - hlf(m -1) - hef(m -2)

E(m) = gy (2 + B ()2 - 2 (1n, - 2 (2)m,
¢ 21, + Byg(0) ()

The discrete autocorrelation function of the input is ¢“(J).

The mean square error given by equations (1) is what the mean square
meter would read if it were to average over very large sample size. The
mean square error is a parabolic function of the predictor adjustments
ho and hl, and, in general, can easily be shown to be a quadratic function
of such adjustments, regardless of how many there are.

The optimum n-impulse predictor can be derived analytically by set-
ting the partial derivatives of ;5 of equation (1) equnl to zero. This
is the discrete analogue nf Wiener's optimization9 of continuous filters.
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Finding the optimun system experimentally is the pame as finding & min-
imum of & puraboloic. in n dimensions. This could be done munually Ly huving
a human coperator read the meter and sct the adjustmert, or it could he dcne
automatically by making use of any one of several iterative grodient meth-
ods for surface-searching, as devised by numerical analysts. When either
of these schemes is employed, an adaptive system results that consiscs
essentially of a "worker" and a "boss". The worker in this case predicts,
whereas the boss has the Job of adjusting the worker.

Figure | Is n blc~k-diogrem representution of such a btasic adaptive
unit. The boss continually seeks a better worker by trial and error ex-
perimentation with the structure of the worker. Adaption is a multi-
dimensional performance feedback process. The "error" signal in the
feedback control sense is the gradient of mean square erro- «ith respect
to ad justment.

Many of the commonly used gradient methods search surfaces for
stationary points by making changes in the independent variables (starting
with an initial guess) in proportion to measured partial derivatives to
obtain the next guess, and so forth. These methods give rise to geometrlic
(exponential) decays in the independent variables as they approach a sta-
tionary point for second-degree or quadratic surfaces. One-dimensional
surface-searching is illustrated in Fig. 8.

The surface being explored in Fig. 8 is given by Eq. (2). The first
and second derlvatives are given by Eq. (3) and (4).

y=a(x-b)2+c (2)
& = 2a(x - b) (3)
2

2Y.2 Y
= a (4)

A sampled-date feedback model of the iterative process is shown in
Fig. 8b. Each time a guess in x is to be made, the derivative is measured
physically whereas in the model it is formed as a quantity proportional
to x (according to Eq. 3).

- 10 -
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The numerical sequence at the point x(i) begins with the initial
Juess and proceeds as o sampled traniient that relaxes geometrically
toward the stationary point, exactly like the sequence of guesses in the
surface exploration.

The flow-graph can be reduced, and the transfer function from any
point to any other point can thus be found. The resulting characteristic

equation is

-(2ak + 1)z'l +1=0

The iterative process is stable when
0> k> - % (5)

In order to choose the "loop gain" k to get a specific transient decay
ratc, one would have to measure the second derivative (2a) at some point

on the curve. Transients decay completely in one step when

Derivatives are measured in the actual adaptive system by varying
the h's by [ixed increments and subtracting meusured values of mean square
error based on a sample size of N samples. "Noise" in the measurements of
the mean square error surface due to small sample size cause nolsy deri-
vative measurements. These noises enter the sdaption process, as indi-
cated in Fig. 8o, and cause noisy system adjustments. The larger the
sample size taken per derivative measurement, the less is the noise. The
slower the adaptation, the more precise it is. The facter the adaptation,
the more noisy (and poor) are the adjustments.

Consider that the adaptive model has only a single adjustment. A
prlot of mean square errcr versus h1 for this simplest system would be a
parabola, analogous to the parahola of Fig. . Noise in the system
ad justment causes loss in steady-state performance. It is useful to
define a dimensionless parameter M the "misadjustment", as the ratio of
the mean increase in mean square error to the minimum mean square error.
It is a measure of how the system performs on the average, after adapting
transients have died out, compared with the fixed optimum system. With
regard to the curve of Fig. 8,

-12 -




Mo (6)

C

Variance in « about the optimum value causes the average of y to be
greater than the mirinum value c. The increase in ¥ equals the variance
in x multiplied by a, as can bLe seen from Eq. (2).

More detailed derivations of misadjustment foramulas covering several
different methods of surface searching and derivative measurement are
precented in Refe. 7 and 8. The particular {ormulas which can be applied
to the analysis of adaptive ewitching circuits are the following.

When derivatives are measured by data repeating, i.e., when the same
system irput data is applied for both the N "forward" and the N "backwurd"
measurements of mean cquare error, the misadjustment '~ given by

i
M=2N1 (7)

T Is the time constant of the iterative process of Fig. 8, and is
enun) tc -(1/2ak). A unit time constant means that the adjustment error
decreases y o factor L/e per iteraticu cycle. Equation (7) is conserva-
tive, and appreciably so only for small values of T, less than 1. In the
limiting case of one-step adaption, T = O and the appropriate misad just-

ment formula is

M= (8)

= —

In deriving Formulas (7) and (8), it has been assumed that the error
samples are gaussian distributed, with zero mear, and are uncorrelated.
It can be shown that these results are highly insensitive to this distri-
bution density shape, and are appreciably affected by correlation only
when it exceeds 0.8.

It is interesting to note that the quality of adaption depends only
on the number of samples "seen" by the system in adapting. When Eq. (7)
applies, the (Nt) product determines the misadjuslment. This product is
equal to the number of samples seen per time constant of adaptation. If
it may be cuusidered that Lransients die out within two time ccnctants,
then the misad Justment equals the reciprocal of Lhe uumber of samples that
elapse in adapting to a st<r chenge in process. This statement is obvi-

ously the case when Eq. (8) applies.
- 13 -



The expressions (7) and (8) are based on the suppositicn that fresh
data 1s brought in for each cycle of iteration. If the system adapts on
a fixed body of N eorror samples, either by adapting with the one-step
procedure and stopping, or by repeating the same data from iteration cycle
to iteration cycle for several time constants and then stopping, the mis-
adjustrent is given by Formula (8).

When there ere m interacting adjustments instead of Just cae, Expres-
sions (7) and (8) may be gencrallzed by multiplication by m. Multi-
dimensional one-step surface searching may be accomplished by Newton's
method. Multi-step searching may be conveniently achieved by means of
the method of steepest descent (making changes in adjustment in the
direction of the surface gradienl and in proportion to its mamitude) or
by the Southwell relaxation method (cyclic adjustment for minima, one
coordinate at a time).

V. STATISTICAL THEORY OF ADAPTION FOR THE ADAPTIVE NEV'RON ELEMENT

The error signal measured and used in adaption of the neuron of
Fig. 1 is the difference between the desired output and the sum before
quantization. This error is indicated by ¢ in Fig. 9. The actual neuron
arror, indicated by € in Fig. 9, is the difference between the neuron
output and the desired output.

The objective of adaption is the following. Given a collection of
input patterns and the associated desired cutputs, find the best set of
weights 8 al, . ..am %0 minimize the mean square of the neuron error, €.
Individual neuron errors could only have the valves of +2, 0, and -2 with
a two-level quantizer. Minimization of € is therefore equivalent to
minimizing the average number of neuron errors.

The simple adaptior procedure described in this paper minimizes ?
rather than €’ _ghe measured error ¢ has zero mean (a consequence of the
minimization of ¢“) and will be assumed to be gaussian-distributed. By
uaking use of certain geometric arguments or by using a statistical theory
of ;u.n_xplitude qua.ntiution,m it can be shown that_ei is a monotonic function
of ea, and that minimization of ? ie equivalent to minimization of :3

- 14 -
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n and to minimization of the probability of neuron error.* The ratio of
there mean squuares his been calculuted and is plotted in Fig. 9 as a
functlon of the neuron error probability (which is :i/’#)

Given any collection of input patterns and the associated desired

’ outputs, the measured mean square error T.’E must be a precisely paraboli:

’ function of the galn settings, ay ...an. Let the kth pattern be indicated

as the vector S(k) = sl(k), sa(k),...sn(k). The s's have values of +1 or
’ -1, and represent the n input components numhbered (n a fixed manner. The

| kth error is
-, (k) - a(k) - &y - 85 (k) - us (k) - ... - ansn(k) (9)

For simplicity, let the neuron have only two input lines and c level
control. The square of the error is accordingly

2 2 2 2 2 2 2
€ (k) = d7(k) + By * sl(k)al + s‘?(k)a2

: = 2d(k)ao = 2d(k)sl(k)al = Ed(k)ae(k)az
| + 2::1-(k)3.oza,l + 252(1-.)3032 + 2sl(k)32(k)ala2 (10)

The mean square error averaged over k is

! 2% ag + ﬂ(al, sl)ai + ﬂ(sg, se)a: - an

- 2¢(a, sl)al - 2¢(a, sa)a.2 + Eslaoal + 2'250'12

+ 2¢(sl, 82)8.18.2 + #(a, ) (11)

The @'s are spatial correlations. ﬁ(sl, 82) = 8,8,, etc. Note that
5, 8,) =88, =1,

Moy 8,) =88, =

Adjusting the a's to minimize ¢

bolic stochastic surface (having as mony dimensions as there are a's) for

2 minimm. How well this surface can be searched will be limited by

is equivalent to searching a para-

*
The probability of neuron error is minimized by the aduption pro-
cedure subject to the restriction tiat T = 0. This does not preclude
. the possibility that the error probability could be even less with
neuron adjustments that will not cause T to be zcro.

- 16 -
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The method of searching that has proven most useful is the method
of steepert descent., Vector adjuetment. changes are made in the direction
of the grmlicni The change made in a4 is proportional to the partisl
derivative of ¢ with respect to any etc. The partial derivatives are
determined at one point, ther the changes in all adjustments ~.c vide
slmultaneously. This completes one iterative cycle. The process is then
repeated. Transients decay along each od jnating coordinate in relaxation
toward the ctationary point. They concliet of sums of geometric sequence
comporentc (there are as many natural "frequencies" as the number of
adjustuents, as can be seen from geaeralization of the flow graph of
Fig. O -—- see Ref. 9). If the proportionality constant k between partial
derivative ard size of change is made sufficliently smill, transients will
tc stable. Just how big this constant could be for stabie searching de-
pends upon the surface characteristics (i.e., upon pattern characteristics).
It can be shown, however, that when all second partial derivetives are
equal (differentiation of Eq. 11 shows them all to have the value 2), the
melhod of steepest descent will be stable when the proportionalit, con-
stant k is less than the reciprocal of the second partial derivative. It
car. alsc be shown that wher. k Is small, transients can be well represented
as being of a single time constant. This time constant is somewhat sensi-
tive to the specific pattern information, but generally turns out to equal
1/2k.

When partial derivatives are measured by averaging over only a few
patterns each lteration cycle, the measurements will be noisy, and tran-
slents will be nolsy exponentials. Stability aad time constant will re-
mein dependent on k and the properties of the large-sample-size mean-
square-errcr surface.

The method of adaption that has been used requires an extremely small
sample slize per iteration cycle, nsmely one pattern. One-pattern-at-a-time
edaption has the advantages that derivatives are extremely easy to measure
and that no storage is required within the adaptive machinery except for
the gain values (which contain the past experience of the neuron).

The square of the error for a single pattern (the mean square error
for u sample size of vne) is glven by Eq. (10). The purtial derivatives

are

2 I =




de° k) et
—&S—— - [-2d(k, + wa, ¢+ '..'sl(k)a1 + 2s?(k)u.2]
o C

(k) . 5 (x)[-20(K) + 28 + 28, (K)o, + 28,(K)s,]

1
3¢ (k ,, ,
_D—S&Q-l = 6,(k) [-2a(K) + Pagr 28 (K)a + 28,(K)a,] (12)

Comparison of the Bqs. (12) with Eq. {9) shows *hat the derivatives are
simply related to the measured error, and suggest thai thc derivatives
could be measured withcut squaring and averaging and without actual
differentiation. The Jjth puariial derivative is given by

2
a—;-a%l - - 28,(0)  e®) (13)
It follows that all derivuailves have the same magnitude, and have signs
determined by the error sign and the respective input signal signs.
Application of the method of steepest d=scent requires that all gain
changes in a given iteration cycle have the same magnitude and the appro-
priate sign. Each gain change reduces the error magnitude by the same
amount. The procedure described in Sec. C for bringing e(k) to zero with
each successive input pattern gives the constant k a value of 1/2(n+l1).
From the previous discussion we see that the time constant of the itera-
tive process is therefore T = (n + 1) patterns. On the ixh Adaline, there
are n = 16 input line gains plus a level control. Therefore, the time
constant should be roughly 17 patterns (for verification, see the learning
curve of Fig. 5). The search procedure could be readily modified to speed
up or slow down the asdaption process. For example, bringing lhe error
€(k) to half its value rather than to zero with each input pattern halves
k and doubles T.

The statistical theory of adapiion for samp.ed-data systems is based
on search of multidimensional stochastic parabolic surfaces for stationary
points. The mised justment, a dimensionless measure of how well a system
will adapt, is defined as the ratio of the mean increase in mean square
error (due to searching the surfuc- with small-sample-size data) to the

-18 -



minimum mean square error (a performance reference that rould only be
achieved with perfect knowledge of input process statistics). The mis-
ad Justment Formulas (7) and (8) apply directly to the adaptive neuron.

The misad justuwent formulas give the per unit increase in measured
mean square error as & result of adapting on a finite number of ratterns.
Since the ratio of probabillty of neuron error to the mesn square error
:5 15 essentially constent over a wide range of error probabilities (Fig.9),
the misad justment as expresced by Formulas (7) and (8) msy be interpreted
in terms of the ratic of the increase in error probability to the minimum
error probability.

If adaption is accomplished by injection of a fresh pattern each
lterution cycle, the meun values of the gulns will converge, after adapting
transients have died out, on the best set of values 1or large sample size.
The actual gain settings will experience random excursions about these
values, and the resulting misadjustment, as derived from Eq. (7) is

M=S“—§,—1) (1)

Following the procedure ol bringing e(k) to zero each iteration cycle,
the misad justment is

1 1 1
M= Q;-t ) - é{ln++ lL) =3 (15)

If adaption is accomplished by taking a fixed collection of N pat-
terns and repeating them over and over for several time constants (where
the time constant is long, several times N), the gains will stabilize on
the best set of values for the N patterns. In general, these gains will
not be the best for ihe large collection of patterns that the N patterns
were sbstracted from. Making use of Eq. (8), the misadjustment is

M=Sn+ 12 (16)

N

An extensive series of simulation studies has been made to test the
validity of the misadjustment Formulas (14) and (15). These tests have
shcwn that the formulas are highly accurate over a very wide range of
pattern and noise characteristics. A description ot a typical experiment
and its resultes is given i: Fig. 10.
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Nolsy 3x7 patterns were generated oy randomly injecting errors in
ten percent of the positions of the fcur "pure" patterns, X, T, €, JT.
These patterus, town in iig. 10, are ordered for conveniencé in checking.
They were fed manually to Adaline and chosen randomly by looking up their
identi ication numbers ir. & rendom number table. The X's (numbired Srom
left to righi, up to down) vere numbered 1 to 25, the T's were 25 to 50, the
C's were 50 to 75, and the J's were 75 to 1GO.

The best system was arrived at by slow precise adaption on the full
body of 100 noisy patterns, repeating them over and over several times.
lhis system was sble to classify tue patierns us desired, except for
twelve errors oul of the 100 total. The gains were then set to zero and
ten patierns wer« chosen at random. The best system for the ten selected
patterns was arrived at by slow adaption on these patterns, repeating
them over and over several times. The resulting system was then tested
ou the full body of 100 patterns, and 25 classification errors out of
100 were made. This number of errors was more than twice that made by
the best system adapted on 100 patterns. The misadjustment was 108 per-
cent. This small-sample-size adaptation experiment was repeated three
more times, and the misad justments that resulted, in order, were 58 per cent,
67 per cent and .33 per cent. Since N = 10 patterns and n = 9 input lines,
the theoretical misadjustment was

n+1l

M= N

= 100 per cent

An avernyge Laken over the four experiments gives a measured misadjustment
of 91.5 per cent.

The adaptive classifier can adapt after seeing remarkably few pat-
terns. A misadjustment of 20 per cent should be accepti ible in most
applications. Tc¢ achieve this, all one has to do is supply the adaptive
classifier with a number of patterns equal to five times the number of
input lines, regardless of how noisy the patterns sre and how difficult
the "pure” patterns ere to separate. Although the misadjustment for.:las
have been derived fPr the specific classifier consisting of a aingle
adaptive neuron, it is suspected that the following "rule of thumb" will
apply fairly well to all adaptive classifiers: the number of patterns

required to train an adaptive classifier is equal to several times the

nunber of bits per pattern.
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cutput. The read-cut oscillator nrovides the a-¢ current to operate the
read-out wiies. Ihe reud-oul amplifier converts the a-c output signals

te 2 d-c outpul signal. The summer (2), computes the error e(k). The
error sign cir:uit computes sgn e¢(k). The error magnitude circuit provides
a slgnal vhich blocks the "and" gate when the magnitude of the error falls
below a preset level, thus preventing the operation of the adapt-drive
circuit. Therefore, when the "Adapt" signal is applied, the adapt-drive
circuit is repeatedly energized until the error falls bclow the preset
level. The del=~y cirenit ccntrols the amount of time between energizations
of the adapt-drive circuit. This time must be long enough to =llow the
error to reach its new value after each energization.

When networks of neurons are used, it is possible that a single set
of driving circuits could be emrloved to actuate all of the adaptive
neurons. Al present, this is not practiczl for large networks because of
the power levels required. The MAD elements shown in Fig. 14 are quite
larze, and might ultimately be able to be made much smaller, perhaps in
the form of thin films. It should ultimately be possible to mass produce
large networks of adaptive microelectronic logical elements. Power levels
should be low, space and weight requirements and cost should be low.

These neurons should be thought of and treated as new kinds of circuit

elements, adaptive logical components.

VIII. /XAPPLICATIONS FOR ADAPIIVE TOGICAL CIRCUIT ELEMENTS.

Tne field of application of digital systems may be classified into
two broad categories, fixed systems and adaptive systems. The structure
of the fixed system is completely determined by the designer, while the
adaptive system is decigned to have both fixed and adjustable portions.
The latter system has the ability to automatically modify its ad justable
parts by trial and error experience in order to optimize performance
(this is performance feedback). Fixed systems are by far the most common
at present. Adaptive systems have received intensive study during the
past several years, and some practical applications are being made in
automatic control and in the recognition (classification) of pattern

information.
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Both sets of patterns were fed to two Adalines simultaneously and perfect
adaption was vossible. The adaption procedure was the following: 1if the
desired output for a given input pattern applied to both machines was -1,
then both machines were adapted in the usual manner to ensure this; if
the desired output was +1, the machine with the smallest measured error

: was assigned to adapt Lo give a +1 output while the other machiie re-
mained unchanged. If either or both machines gave outputs of +1, the
pablern was clussifled as +1. I bLoth wachines gave -1 oulputs, Uhe pat-
tern wvas classified as -1.

This procedure assigns specific "responsibility" tc the neuron that
cen most easily assume it. If, ot the beginning of adaption, & given
neuror. taxes responsibility for producing a +1 with a certain input pattern,
it will invariably take this responsibility each time the pattern is applied
during training. Notice that it is not necessary for a teacher to assign
responsitility. The combination does this automatically and requires only
input patterns and the associated desired outputs, like the single neuron.

More complicated problems can be well solved by combinations of many
neurons. Their inputs are connected in parallel while their outputs are
connected to an OR element. The only new requirement is that of the job
assigner, which is simple to implement. Such combinations greatly in-
crease the generality of the classification scheme, and the ease of
adaption is comparable to that of a single neuron. A theory of adaption
for these combirations has yet to be completed. Preliminary considera-
tions indicate that the misad justment formulas will apply without appre-
ciable change when combinations of neurcons adapt on noisy nonlinearly
separable patterns.

Various classification problems could be solved s imultaneously by
multiplexing neurons or combinations of neurons. One neuron mighi be
trained to decide whether the man in a given picture does or does not
have a green tie, while another neuron or combination could be trained to
decide whether or not the man has a checkered shirt. Each neuron or
combination has its own output line, and each is fed the appropriate
desired oulput signal during training. The input signals are common to
all neurons. In this manner, it is possible to form adaptive classifiers
that can separate with grect accuracy large quantities of complicated
vatterns into many output categories. All that is needed is large quantities

of adaptive neurons. 5
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VII. ADAPTTVE MICROELECTRONIC SYSTEMS

The structure of the neuron described in this report and i1te adaption
procedure is sufficiently simple that an effort is under way Lo develop
b a physical device which is an all-electronic fully automztic Adaline.
The objective 1s 1 self-contained device, like the one sketched in Fig. 11,
that has a signal input line, a "desired output" input line (actuated
during training only), an output line, and a power supply. The device
itself should be suitable fur mass production, should contain few parts, .
should bc rcliable, ard probably should congist of solid-state components.

power

solid-state
adaptive
neuron

input output

desired
output

FIG. 11.--ELECTRONIC AUTOMATICALLY-ADATED NEURON.

To have such an adaptive neuron, it is necessary to be able to store
the gain values, which could be positive or negative, in such manner that
these values could be changed electronically.

Present efforts have been based on the use of multi-aperture magnetic
cores (MAD elementan). The special characteristics of these cores permit
multilevel storage with continuocus, non-destructive read out. In addition,
the stored levels are easily changed by small controlled amounts, with the
direction of the change being determined by logic performed by the MAD
element.

Pigure 12 shows a block diagran for an electronic adaptive element,
which realizes the adaption. technique described previously. The MAD
element array conlulns magnetic cores and wire only; Fig. 13 shows how

-2h .
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E Sign
Pattern
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F1G. 12.--BLOCK D1AGRAM, ELECTRONIC ADAPTIVE ELEMENT.




Read-out (=) Read-out (+)

Adapt Drive

Block (+)

inpai 2

FIG. 13.--MAD ELEMENT — VWINDINGS FOR USE IN ELECTRONIC ADAPTIVE ELEMENTS.
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each core 18 wired. A photograph of the first experimental array for a
5x% Adaline 18 rhown in Fig. 4. This array performs the foliowing
functions:

1. Storage ot the gains and the d-c level (the ai's). Thin storage
is passive, {.e., the information ie nct loat {1 the event of power fail.
ure. There is nne MAD element for each gnin and one for the d-c level.
Thrs for m x n patterns mn + 1 MAD elements are required.

2. Continnous computation of the sum 8y * i’-ﬂfi(k) for the pattern
connected to the input. The sum appears as two u-c signuls, one appearing
across each of the read-out wires. The signal across cne of there wires
corresponds to the sum of those terms for which the si(k) is negative;
the other corresponds to the sum of the d-c level and those terms for
which the sl(k) 18 positive, [Each read-out wire carries an a-c current.
The voltage drop per core on a read-out wire ls a linear function of the
value of the gain stored in that core, provided that the aperture through
which the wire passes 18 not blocked by energizing the block winding of
that aperture. If blocked, the voltage drop is very small. Thus, the
sumuation is accomplished by energizing the "Block (—)" winding of the
1*h core when si(k) is negative and energizing the "Block (+)" winding
wheu si(k) 1s positive. ]

3. Computation of the adaption change 551 in the gain 8. Each of
these changes is proportional to the product si(k)asﬂl €(k)). [The change
in the stored level of the core ie accomplished by applying the proper
signal to the "Adapt Drive" wire. With the proper adapt-drive waveform,
the direction of the change may be reversed by applying a d-c bias to one
of the "Input" windings. Input 1 is energized when both '1(k) and e(k)
are positive; Input 2 is energized when both are negative. For ai(k) and
¢(k) of opposite sign, no current is applied to either input.] All ot tke
changes 6a1 are of the same magnitude. To reduce the error to approximately
zero, the Adapt Irive wire is snergized a sufficient number of times. The
d-c winding on the MAD element carries a d-c bias current. This current
may be removed between adapt-drive signals, but must be applied during
the adapt-Arive signal.

The peripheral circuitry supplies the necessary signals to the MAD
element array, and converte the a.c rcad-out signals to a more useful 4a-c
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output. The read-cut oscillator provides the a-c current to operate the
read-out wiies. Iihe reud-oul amplifier converts the a-c output gimnals

to 2 d-c output signal. The summer (Z), computes the error e(k). The
error sign cir:uit computes sgn e(k). The error magnitude circuit provides
a signal vhich blocks the "and" gate when the magnitude of the error falls
below a preset level, thus preventing the operation of the adapt-drive
circuit. Therefore, when the "Adapt" signal is applied, the adapt-drive
circuit is repeatedly energized until the error falls below the preset
level. The del=2y circnit controls the amount of time between energizations
of the adapt-drive circuit. This time must be long enough tu zllow the
error to reazch its new value after each energization.

When networks of neurons are used, it is possible that a single set
of driving circuits could be emrloyed to actuate all of the adaptive
neurons. Al present, this is not practicsl for large networks because of
the power levels required. The MAD elements shown in Fig. 14 are quite
larze, and might ultimately be able to be made much smaller, perhaps in
the form of thin films. It should ultimately be possible to mass produce
large networks of adaptive microelectronic logical elements. Power levels
should be low, space and wecight requirements and cost should be low.

These neurons should be thought of and treated as new kinds of circuit

elements, adaptive logical components.

.

VIII. APPLICATIONS FOR ADAPLIVE TLOGICAL CIRCUIT ELEMENTS.

Tne field of application of digital systems may be classified into
two broad categories, fixed systems and adaptive systems. The structure
of the fixed system is completely determined by the designer, while the
adaptive system is designed to have both fixed and ad justable portions.
The latter system has the ability to automatically modify its adjustable
parts by trial and error experience in order to optimize performance
(this is performance feedback). Fixed systems are by far the most common
at present. Adaptive systems have received intensive study during the
past several years, and some practical applications are being made in
automatic control and in the recognition (classification) of pattern

information.
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Both fixed ard adaptive systiems may be realized by programming gen-
eral purpoce digital computers. These computers on the other hand are
reelized of conventional logical components (flip-flops, gates, etc. ),
but may be realized of networks of adaptive neurcns. All details of
organization, design, and construction of computers must be completely
planned in Liae preseni day scheme of things. If a computer were buill
of adaptive neurons, details of structure could be imparted by the de-
signer by training (showing it ecxamples of what he would like it to do)
rather than oy direct designing. This design concept becomes more signi-
ficant. as size and complexity of digital systems incresse. The demands
of modern technology are such that lerger and more complex digital systems
are continually being contemplated, and in step with this, progress in
microelectronics makes such systems physically and economically possible.

The problem of reliability is gieatly aggravated by increase in size
and complexity. Significant steps in improving the reliability of digital
systens have been made, notably with the introduction of the magpetic-core
memory, and the use of high-speed switching transistors as activé logical
elements. Although the reliability of individual components has constantly
increased, the requirement in numbers of components has increased in many
cases far more rapidly. It is not expected that mass-produced micromin-
iature comporents will ever be perfectly reliable, yet they will be usable
in large systems. The problem is to devise new systems techniques to
achieve reliable cver-all operation where systems consist of large numbers
of interacting imperfect components.

Errors caused by computer component failure are, in general, more
deleterious to a fixed system. In the event of a failure, the adaptive
system will adjust whatever remainc adjustable to do ihe "best" job with
the intact parts. As long as the adaption mechanism is reliable, system
relisbility is inherently increased. .

Shannon and Moore12 and von Neumann~ havz proposed schemes for making

reliable fixed digital systems from uanreliable components by using redun-
dancy. Another method, using adaptive logic, is hereby proposed for
improving system reliatility.

The reliability of a system whose purpose is non-adaptive may be in-

creased by combining adaption aud redundancy. Consider a multiplex
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consisting of three machines solving the same problem with the iame input
dnta. Let the output of erch machine lLe a single binary number, expres-
sed ns +1 or -L. If these machines were perfectly reliable, thelr outputs
would always ugree. If not, then von Neumann propcsed that the majority
shonld rile. Tne neuron chown ln Flz. 1 #ith a, set to zerc, and the
other cuins sel Lo +1 would ive a majority output. Ecch machine hng
equal vote. Unequal vote (higher vote goinzg to the more reliahble machine)
1s possible by making the u's adjustable, and causing these adjustments
Lo be made automaticaily to optimiz - performance. The adaptive vwote taker
is identical to the adaptive neuron. The vote taker can be trained by
periodically injectiug a certain input when the desired output iz known.
von Neumunn'c majority rule vote taker will give the correct outcome
vhen the majority ic correct. The adaptive vote taker could ideully give
the correct outcome with only ua fingle correct machine by giving it a
heavy ~ote and attenuating the votes of the unreliable machines. This is
in effect an adaptive routing procedure for Information flow, and allows
eystems in a small measure to be self-healing.

The effectiveness of the adantive vote taker is being evaluated by
William Plerce in a doctoral thesis research at Stanford University. It
has bteen shown that the effective multiplex factor can be greatly in-
creased by adaption (particularliy where the machines are fairly unreliable),
und that system life expectance can also be greatly increased by adaption
and redundancy. This work will be described in a Stanford University
technical report.

When adaptive neuron elements become available in large quantities,
adaptive Yogical end computing systems will probably be organized quite
differently from the way moderr computing systems are organized. The
orzganizations of two related adaptive sysrtem types will be considered,
that of adaptive pattern classifiers and of adaptive problem-.solving

machines. |
h

The realéznticn schemes utilized by Clark and Farley, 13 Ronenblatt,l

and Mattsons’ " for adaptive pattern classifiers made use of digital simu-

lation. The approach suggested by this work is that adaptive pattern

classifiere be constructed of networks of adaptive neuron elements.




Cne of Lhe mostl promlslng ureus ol reseurch lu computer system theory
Is that of problem-scl/ir» m.chines, theorem-proving machines, und urti-
ficlully "intelllzen%" rachines. The earilest proponents of thie researcn

vere Turlngl’ und Shm.uon.m Their suggestions were successfully put to
prociice by Newell, Simon, una Shaw, 17 by Samuel, 1 and by others. Problem-
solvinz hus been rejurded uas r. multistage decislor process which begins
with an Inltial ctatus and ends with a goal status. Each change in stlatus
results frow the relection of o certain move from a collection of possi-
bilities which are "legul" according to the rules ol the game. Since the
number of chains of noves increases approximately exponentislly with the
length of the chains, exnuustively trying all chains in search of a gonl

is not practical, even for slmple problems.

The approach ilaker by Samuel in his checker-playing simuiations to
reduce the number of chalns to be tesit~d was two-fold. The length of the
chairs was limited to be sumewhere between ten and thirty moves ahead
{a "pl,s" of 10 to 30), and since most chains would not termirate by
reaching gouls, a system of status evaluation wae developed so that the
various chains could be numerically compared. The second method of re-
ducing the number of chains to be tested was to rheck against games stored
in the memory. If un identical situation was encountered previousiy,
certain evaluations have alrsady been made ard need not be repeated. This
use of stored games was culled "rote iearning". A procedure for making
vne status eveluation system aduptive was called "generalized learning".
Both of these learning methods could be used simultanecusly.

The rote learning portion of the over-ell procedure could be made to
Ve much more powerful if {t were possible to extract from the memory pre-
vious situations that are similar (are not necessarily identicel) to the
current, situation. Far less experience and storage would be needed to
react, & given level of competence of play. Similar means that the pre-
vious citvation is in the same subclass with the current situation. A
classification scheme would be needed to establish similarities in checker
sitnations. The structure of this classifier would have to be formed
from experience.

Ar sutomatic problem-solving computer should have a memory system
from which information could be =rtracted ::cording to classification
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tuller than vy address number. The extent of claesification before
storing sheculd be slight (e.g., is the pattern of checkers or of chess?),
and a consistent scheme for ihe arrargement of the pattern bits should

be established before storing. Final classification should be done within
the menory itself. Eoch storage register should contuln an Adsline or a
network ot Adalines.

A requesl from a "central control" for a certain type of information
1= rent to every register in the memory simultanecusly. This hus . Le
effoct of retting the adjustments of all the Adalines. On)y the regisiers
whose claseifiers respord properly (e.g., give +1 outputs) answer the
request and transinit their information back to tne "central coutrol".

Very sophisticated learning procedures would beccme possible if one
hus such recall-by-association parallel-access memory systems. The sim.
plicity of Adalire snd the prosress being made in microelectronics gives
a strong indication that esuch memory systems will come into existence in

the not too dlstanl future.
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