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RUMMAFY 

Ada^livft or "ieuming" ayatemB can automatlc-illy modify their ovm 

structures to OY^imizt  performance based on past experiences. The system 

desiwier "teaches" by shoving the system examples of l..puc slyiilo or pat- 

temp and simultaneously what he would like the output to be for each in- 

put. The cyBtem In turn organizes Itself to comply as wall as possible 

with the wishes of the designer. 

An adaptive pattern classification machine (called "Adallne", for 

adaptive linear) hac been devised to illustrate adaptive behavior and 

artificial learning. During a training phase, crude geometric patteri.3 

arp fed to the machine by setting the toggle swJt.hes in a Vx1* input array. 

Setting another toss^e switch tells the machine whether the desired output 

for the particular input pattern is +1 or -1. All input patterns are clas- 

sified into two categories. The system learns a little from each pattern 

and accordingly experiences a design change. After training, the machine 

can be used to classify the original patterns and noisy (distorted) ver- 

sionn of these patterns. 

A statistical theory has been developed which relates the competence 

of the classifier to the amount of experience had (number of patterns 

"seen" in adapting). Imperfect system adjustment results from small- 

sample-size experience. The misad.1u8traent, a dlmenslonless quantitative 

measure of the quality of adaption. Is defined as the ratio of the increase 

In probability of error of a system adapted to a small number of patterns 

to the probability of error of a "best-adapted" system (adapted to an 

arbitrarily large number of patterns). Treating the classifier as a 

roughly quantized sampled-data system, a statistical theory of adaption 

developed for adaptive sampled-data systems has been utilized to derive 

a formula fur mlsadjustment, 

The number of input lines is (n + l), and the number of patterns seen in 

adapting is N. Thic fomila leads to a basic "rule of thumb" for adaptive 

classiflerfi: The airaber of patterns required to train an adaptive classi- 

fier is equal to several times the number of bits per pattern. This 
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rule applies without regard to patterns and noise characteristics. Ex- 

perimental '-vlden^e is presented. 

The pattern zlsislfler Is actually an adaptive switching circuit 

having a set of binary inputs and a binary output. The signal on each 

Input line is either +1 or -1 according to the setting of the individual 

pattern switch. The sixteen Input signals are linearly combined and 

then quantized. The weights (which could be positive or negative) are 

deteimlned by an array oi' poleutiumeter settings. 

Iterative gradient methods are used during the training phase to 

find the potentiometer settings that minimize the number of classifica- 

tion, errors. A simple procedure has been devised which does not require 

actual measurement of gradient, and which guarantees convergence and 

permits control of rate of convergence. Adaline can usually adapt after 

seeing ten to tventy patterns and can easily dietinquish a dozen differ- 

ent basic patterns. 

As a generic form of switching functions, Adaline is not completely 

general. All-posslble-potentloneter-settlngs allows the realization of 

the "linearly separated truth functions", a subclass of all switching 

functions. Although this subclass Is restricted, it is a useful class, 

and, most Important, it is a searchable class (the best within the class 

can be found without trying all possibilities). Networks of Adelines 

overcome this restriction and are far more general, yet present adaption 

problems of no greater difficulty than those of single Adaiinee. 

At present the purely mechanical adaption process is accomplished 

by manual potentiometer-setting. A means of autoniatiqg this is being 

developed which makes use of multi-aperture ferromagnetic devices. 

Solid-state adaptive logical elements will result that should ultimately 

be suitable to be microminiaturized. Networks of such elements would be 

very effective in pattern recognition systems, information storage and 

retrieval-by-classlfication systems, and self-repairing logical and 

computing systems. 
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binary number sequence.    The predictor output IB to be a logical combln- 

fltlnn of f finite m"aber of previous Input nrquenco bits,    An wptlmum 
system Is a sequential switching circuit that predicts with a minimum 

number of errors. 
Suppose that a record of the binary sequence is printed on tape and 

cut up Into pieces (with indication of the positive direction of time 

preuerved),  say 2$ bits long.    Place all pieces whore the most receni 

event Is ONE In one pile and the remainder in another pile.    Delete the 
nust recent bit on each piece of tape.    If the statistical scheme could 

be discovered by which the pieces of tape are classified,  this would lead 

to a predicti un bdieuie.    II lb apparent that prediction Is a certalh kind 

of classification. 
Assuming statistical regularity, a reasonable way to proceed might 

be to form a truth table, and let the data from each piece of tape be an 
entry in the table.    It might b« expected that with the data of 100 pieces 

of tape, a fairly good predictor could be developed.    The truth table 
Ok 

would have only 100 entries however, out of a total of 2 . The "best" 

way to fill in the remainder of the truth table depends upon the nature 

of the sequence statistics and the error cost criteria. Filling in the 

table is a difficult and a crucial part of the problem. Even if the 

truth table were filled in, however, the designer would have the diffi- 

cult task of realizing a logical network to satisfy a truth table with 

22k entries. 

An approach to such problems is taken in this paper which does not 

require an explicit use of the truth table. The design objective is the 

minimization of the average number of errors, rather than a minimization 

of the number of logical components used. The nature of the logical 

elemtsnts is quite unconventional. The  system design procedure is adaptive, 

and is based upon an iterative search process. Performance feedback is 

used to achieve automatic system synthesis, i.e., the selection of the 

"best" system from a restricted but useful class of possibilities. Tue 

designer "trains" the system to give the correct responses by "showing" 

it examples of Inputs and respective desired outputs. The more examples 

"seen", the better is the system performance. System competence will be 

directly and quantitatively related to amount of experience. 



II.    A NEURON ELEMENT 

In Pig. 1, a combinatorial logical circuit Is ■horn uhlch !• a 

typical element In the adaptive switching circuits to be considered. 

This element bears Bome resemblance to a "neuron" model introduced by 
3 

von Neunan ,  vbenoe the name. 

Input, 
lines 

♦1,-1 

»    «Output 

at ore odjuttobie 

FIG.   1.--AN  ADJUSTABLE NEMRON. 

The binary input signals on the Individual lines have values of +1 

or -1, rather than the usual values of 1 or 0. Within the neuron, a 

linear combination of the input signals Is formed. The weights are the 

gains a., a , ..., which could have both positive and negative values. 

The output signal is +1 if this weighted sum Is greater than a certain 

threshold, and -1 otherwise. The threshold level is determined by the 

setting of a , whose input is permanently connected to a +1 source. 

Varying a0 varies a constant added to the linear combination of input 

signals. 
5 

For fixed gain settings, each of the 2 possible input comblna+'ons 

would cause either a +1 or -1 output. Thus, all possible Inputs are 

classified into two categories. The input.output relationship is deter- 

mined by choice of the gains a.,...a_. In the adaptive neuron, these 

gains are set during the "training" procedure. 

3 - 



In üereral, there tire 22 diffarent input-output rrlutlonsblps or 

truth functionß by wl.lr.i the 1'lva input variublea can be mapped into the 

oingle output variable. Only a subset of these, the linearly separated 
k   t.r.ith functions ,  can bo realized by all possible choices of the gainp 

of the neuron of Fig.   1.    Although this subset is not all-inclusive», 

It is a useful subset,   and it is "senrchable",  i.e., the "best" function 

in many practical caoes can be found iteratively without trying all 

functions within the subset. 

Application of thic neuron in adaptive pattern cladslfiers was first 

made hy Mattson. '      He has shown that complete generality in choice of 

switching function could be had by combining these neurons.    He devised 

an iterative digital computer routine for finding the best set of a's 

for the classification of noisy geometric patterns.    An Iteicilve procedure 

having similar objectives has been devised by these authors and is des- 

cribed in the next section.    The latter procedure is quite simple to 

implement,  and can he analyzed by statistical methods that have already 

been developed for the analysis of adaptive sampled data systems. 

III.    AN ADAPTIVE PATTERN CLASSIFIER 

An adaptive pattern elassiflcation machine (called "Adallne",  for 

adaptive linear) has been constructed for the purpos<! of illustrating 

adaptive behavior and artificial learning.    A photograph of this machine, 

which is about the size of a lunch pall,  is shown in Fig. 2. 

During a training phase,  crude geometric patterns are fed to the 

machine by setting the toggle switches in the hxk input switch array. 

Setting another toggle switch (the reference switch) tells the machine 

whether the desired output for the particular input pattern is +1 or -1. 

The rystem icamc a little from each pattern and accordingly experiences 

a design change.    The machine's toted experience is stored in the values 

of the weights a0...a ,-.    The machine can be trained on undlstorted 

noise-free patterns by repeating them over and over until the iterative 

search process converges, or it can be trained on a sequence of noisy 

* 
It becomes a vanishlngly small fraction of all possible switching 

functions as the number of input» gets large. 

. k - 
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patterns or. a one-pass basis such that the iterative process cc; v  .v^es 

statistically.    Combinations of these methods can be accommodated simul- 

taneously.    After *raining,  the machine can be used to classify the 
original patterns and noisy or distorted versions of these patterns. 

A block schematic of Adalin« is shown in Pig.  3-    In the actvul 
machine,  the quantizer la not built in as a device but is accomplished 
by the operator in viewing the output meter.   Different quantizers 
(2-level,  3-level,  U-levei) are realized by using the appropriate meter 

scales (sec Fig. 2).    Adailne can be used to classify pattern» into 
several categories by using multi-level quantizers and by following 
exactly the same adapting procedure. 

The following is a description of the Iterative searching routin». 

A pattern is fed to the machine, and the reference switch is set to 
correspond to the desired output.   Th» error (see Fig.  3) i« then read 
(by switching the reference switch; the error voltage appears on the 

meter, rather than the neuron output voltage).   All gains including the 
level are to be changed by the same absolute magnitude,  such that the 
error is brought to zero.    This Is accomplished by changing each gain 

•—o Output 

rtfewnct 
switch 

idttirad output) 

FIG.   3.--SCHEMATIC OF ADALINE. 



(which coald be positive or negative) in the direction which will rtlmlnlBh 

the error by an amount which reduces the error magnitude by l/lT-    The 17 

gains mny v* -"harmed in any oequence, and ^fter all chanßes are made, the 

error tor the present Input pattern is zero.    Switching the reference back, 

the meter reads exactly the desired output.    The next pattern,  cind It.e 

desired output.   Is presented and the error is read.    The same adjustment 

routine is followed and the error is brought uo zero.    If the first pat- 

tern were r«u.pplied at this point, the error would be email but not 

necessarily :'.cro.    More patterns are Inserted in like manner.    Convergence 

is indicated by small errors (before iilnpt.lcn), with small fluctuations 

about a stable root mean-square value.    The iterative routine is purely 

mechanical, and requires no thought on the part of the operator.    Electronic 

automation of this procedure will be discussed below. 

The results of a typical ojaption on six noiseless patterns is given 

in Figs,   h and 5.    The patterns were selected in a random sequence, and 

were classified into 3 categories.    Each T was to be mapped to +6o on the 

meter dial,   each G to 0,  and each F to -60.    As a measure of performance; 

after each adaptation,   all six patterns were read in (without adaptation) 
2 

and six errors were read.    The sum of their squares denoted by T*   was 

computed and plotted.    Figure 5 shows the learning curve for the case in 

which all gains were initially zero. 

IV.     STATISTICAL THEORY CF ADAPTION FOR SAMPLED-DATA SYSTEMS 

This section Is a summary of the portions of Widrow's statistical 
7 8 theory of adaption for sampled-data systems '    that Is useful In the 

analysis of adaptive switching circuits. 

Consider the general linear sampled-data system formed of a tapped 

delay line, shown in Fig. 6.    This system Is Intended to be a statistical 

predictor.    The present output sample g(m) is a linear combination of 

present and past input samples, and is intended to approximate as closely 

ac possible the next input sample f(m + 1).    The constants in this linear 

combination are k,, h-, h , etc.,  th» predictor impulse-response samples. 

or the gain» associated with    the del^y-line taps.    Their choice constitutes 

- 7 - 
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FIG.   4.--PATTERNS   FOR CLASSIFICATION   EXPERIMENT. 
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FIG.    S.--ADAPTIVE-ELEMENT PERFORMANCE  CURVE. 
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Inputo »ft»|o»q  » q»a»o ... .      j    Prediction 

X 1  |    Prediction trror 
*^ €(m) 

FIG.   6.--AN   ADJUSTABLE  SAMPLED-DATA PREDICTOR. 

the adjustable part of the predictor design.   They may be adjusted In the 
following manner.    Apply a mean square reading meter to e(ir),  the differ- 
ence between the present Input and the delayed prediction.    This aeter 
will measure mean square error In prediction.    Adjust h., h , h ,..., 
until the meter reading Is minimized. 

The problem of adjusting the h's Is not trivial, because their effects 

upon performance interact.    Suppose that the predictor has only two Im- 
pulses on Its Impulse response, h., and h .   Tne mean square error for any 
setting of h1 and h    can be readily derived: 

€(m) » f(m) - hjfda - 1) - h2f(m - 2) 

+    20^(1)11^ + 0ff(O) (1) 

The discrete autocorrelation function of the input is 0.-(j). 

The mean square error given by equations (l) is what the mean square 

meter would read if It were to average over very large sample size. The 

mean square error is a parabolic function of the predictor adjustments 

h and h , and, in general, can easily be shown to be a quadratic function 

of such adjustments, regardless of how many there are. 

The optimum n-lmpulse predictor can be derived analytically by set- 

ting the partial derivatives of c^ of equation (l) equal to zero. This 
o 

is the discrete analogue of Wiener'n optimization of continuous filters. 

- 9 



Finding the optimum system experimentally Is the came as finding a mln- 

imutn or a.  pttrabololü. in n dimensions. This could be done miinually Ly having 

a human operator read the meter and set the adjuotmert, or it coold he dene 

automatically by making use of any ore of several Iterative gradient neth- 

odB for surface-searching, as devised by numerical analysts. When either 

of thos« schemes is employed, an adaptive system rebults that conslscs 

essentially of a "worker" and a "boss". The worker in this case predicts, 

whereas the boss has the job of adjusting the worker. 

Figure 7 is n blck-diagram representation of such a basic adaptive 

unit. Tha boss continually seeks a better worker by trial and error ex- 

perimentation with the structure of the worker. Adaption is a multi- 

dimensional performance feedback process. The "error" signal in the 

feedback control sense is the gradient of mean square error «rtth respect 

to adjustment. 

Many of the commonly used gradient methods search surfaces for 

stationary points by making changes in the independent variables (starting 

with an initial guess) in proportion to measured partial derivatives to 

obtain the next guesp,, and so forth. These methods give rise to geometric 

(exponential) decays in the independent variables as tbey approach a sta- 

tionary point for second-degree or quadratic surface«. One-dimensional 

surface-searching is illustrated in Fig. 8. 

The surface being explored In Fig. 8 is given by Eq. (2). The first 

and second derivatives are given by Eq. (3) and {h). 

y = a(x - b) + c 

g = 2a(x - b) 

(2) 

(3) 

^4 = 2a 
dx 

W 

A sampled-datc feedback model of the Iterative process is shown in 
Fig. 8b.    Each time a guess in x is to be made, the derivative is measured 
physically whereas in the model it is formed as a quantity proportional 
to x (according to Eq.  3). 

10 





The numerical sequence at the point x(i) hegins with the initial 

,;uesB and proceeds as a sampled transient that relaxes geometrically 

toward the statloniry point, exactly like the sequence of ßueeses in the 

surface exploration. 

The flow-praph can be reduced, and the transfer function from any 

point to any other point can thus be found. The resulting characteristic 

equation is 

-(2ak + l)z'1 +1-0 

The iterative process is stable when 

0>k>-i (5) a 

In order to choose the "loop gain" k to get a specific transient decay 

rate, one would have to measure the second derivative (2a) at some point 

on the curve. Transients decay completely in one step when 

Derivatives are measured in the actual adaptive system by varying 

the h's bv fixed Increments and subtracting measured values of mean square 

error based on a sample size of N samples. "Noise" In the..measurements of 

the mean square error surface due to small sample size cause noisy deri- 

vative measurements. These noises enter the adaption process, as Indi- 

cated in Fig. So, and cause noisy system adjustments. The larger the 

sample size taken per derivative measurement, the less is the noise. The 

slower the adaptation, the more precise It is. The faster the adaptation, 

the more noisy (and poor) are the adjustments. 

Consider that the adaptive model has only a single adjustment. A 

plot of mean square error versus h. for this simplest system would be a 

parabola, analogous to the parabola of Fig. 8. Noise In the system 

adjustment causes loss in steady-state performance. It 1« useful to 

define a dimenslonless parameter M the "mlsadjustment", as the ratio of 

the mean Increase in mean square error to the minimum mean square error. 

It is a measure of how the system performs on the average, after adapting 

transients have died out, compared with the fixed optimum syuiem. With 

regard to the curve of Fig. 8, 

- 12 - 



M ■-. t—± {6) 
c 

Variance in < about the optimum value causes the average 01" y to be 

greater than the mlrimum value c. The Increase In y equals the variance 

in x multiplied by a,  as can be seen from Eq.  (2). 

More detailed derivations of misad.Justment formulas covering several 

different methodc of surface searching and derivative measi'rement are 

presented in Refs.  7 and 8.    The particular formulas which can be applied 

to the analysis of adaptive cwitching circuits are the following. 

When derivatives are measured by data repeating,   i.e.,  when the same 

system ir.put data is applied for both the N "forward" and th« N "backward" 

measurementF of near, square error,   the misad justment '♦■ given by 

M = 2ÖFT (7) 

T is the time constant of the iterative process of Fig. 8, and is 

emui] tc -(l/2uk). A unit time constant means that the adjustment error 

decreases .y a factor i/e per iteration cycle. Equation (7) is conserva- 

tive, and appreciably so only for small values of T, less than 1. In the 

limiting cace of one-step adaption, t = 0 and the appropriate misadjust- 

nsent formula is 

M 4 (8) 

In deriving Formulas (7) and (6), it has been assumed that the error 

samples are gaussian distributed, with zero mean, and are uncorrelated. 

It con be shown that these results are highly insensitive to this distri- 

bution density shape, and are appreciably affected by correlation only 

when it exceeds 0.8. 

It is interesting to note that the quality of adaption depends only 

on the number of samples "seen" by the system in adapting. When Eq. (7) 

applies, the (Nx) product determines the misadjuuLment. This product -is 

equal to the number of samples seen per time constant of adaptation. If 

it may be considered that Lraneients die out within two time cenctants, 

then the mis adjustment equals the reciprocal of Lhe number of samples tüat 

elapse In adapting to a stvf change In process. This statemeut is obvi- 

ously the case when Eq. (8) applies. 

- 13 - 



The expressions (7) and (8) are based on the supposition that fresh 

data la brought In for each cycle of Iceration. If the system adapts on 

a fixed body of N error samples, either by adapting with the one-step 

procedure and stopping, or by repeating the same data from Iteration cycle 

to Iteration cycle for several time constants and then stopping, the »id- 

adjustment is given by Formula (8). 

When there ere m interacting adjustments Instead of Just o.ie, Expres- 

sions (7} and (6) may be gftncrallzed by multiplication by m. Multi- 

dimensional one-step surface searching may be accomplished by Newton's 

method. Multi-step searching may be conveniently achieved by iv**ns of 

the method of steepest descent (making changes in adjustment in the 

direction of the surface gradient and in proportion to its maflcnltude) or 

by the Southwell relaxation method (cyclic adjustment for minima, one 

coordinate at a time). 

V. STATISTICAL THEORY OF ADAFTIOR FOR THE ADAPTIVE HEITON ELEMENT 

The error signal measured and used in adaption of the neuron of 

Fig. 1 is the difference between the desired output and the sum before 

quantization. This error is indicated by e In Fig. 9- The actual neuron 

error, indicated by e in Fig. 9, Is the difference between the neuron 

output and the desired output. 

The objective of adaption is the following. Olven a collection of 

input patterns and the associated desired outputs, find the best set of 

weights a., a ,.. .a to minimize the mean square of the neuron error, c . 
Ulm n 

Individual neuron errors could only have the values of +2, 0, and -2 with 

a two-level quantizer. Minimization of e is therefore equivalent to 

minimizing the average number of neuron errors. 
2 

Tb» simple adaption procedure described in this paper minimizes c 

rather than e . The measured error e has zero mean (a consequence of the 

minimization of e ) and will be assumed to be gausslan-dlstributed. By 

ualtlng use of certain geometric arguments or by using a statistical theory 
10 "2 

of amplitude quantization,  it can be shown that e is a monotonic function 
-T- "2 n "5 

of o and that minimization of € le equivalent to minimization of e 

- Ik - 
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and to minimization of the probability of neuron error.* The ratio of 

these mean eauaren hus been calculated and le plotted In Fig. 9 as a 

function of the neuron error probability (which 1B e /**)• 

Given any collection of input patterns and the associated desired 

outputs, the measured mean square error e^ must be a precisely paraboli.'; 

function of the gain settings, OQ, ...a . Let the kth pattern be Indicated 

as the vector S(k) = s (k), s (k),...3 (k). The s's have values of >i or 

-1, and represent the n input components numbered In a fixed manner. The 

kth error le 

e(k) - d(k) - a0 - a^k) - «^{k) Vn^        (y) 

For simplicity,   let the neuron have only two Input lines and G level 

control.    The square of the error is accordingly 

e
2(k) = d2(k) + a2 + 82(k)a2 + s^(k)a2 

- 2d(k)a0 - 2d(k)s1(k)a1 - 2d(k)82(k)a2 

+ 2B1(k)aoai + 2s2(k)aoa2 + 2B1(k)82(k)aia2    (10) 

The mean square error averaged over k Is 

"? = a0 + 0(8^ s1)a1 + 0(82, 82)a2 - aa0 

- 20(d, s1)a1 - 20(d, s2)a2 + 28^^ + 28^^ 

+ 20(8^ 82)a1a2 + 0(d, d) (11) 

The 0'B  are spatial correlations. 0is1,  O = s s , etc. Note that 

Adjusting the a's to minimize c Is equivalent to searching a para- 

bolic stochastic surface (having as many dimensions as there are a's) for 

a minimum. How well this surface can be searched will be limited by 

sample size, i.e., by the number of patterns seen in the searching process. 

The probability of neuron error 1« minimized by the adaption pro- 
cedure subject to the restriction VucS. T = 0. This does not preclude 
the possibility that the error probability could be even less with 
neuron adjustments that will not cause "c to be zero. 
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The method of ßearfhing that has proven moot useful la the method 

of steepeBt descent. Vector adjuetment changes are made in the direction 

uf the gradient  The change made in a0 Is proportional to the partial 

derivative of Qä  with respect to a , etc. The partial derivatives are 

determined at one point, then the changes In all adjustments aio iivie 

simultaneously. This completes one iterative cycle. The process la then 

repeated. Transients decay along each sdjimblru? coordinate in relaxation 

toward the ctationary point. They cone let of sums of geometric sequence 

components (there are ae many natural "frequencies" as the number of 

adjustments, at can be seea from gc-aeralization of the flov graph of 

Fig. 0 — see Ref. 9). If the proportionality constant k between partial 

derivative ar.d size of change is made sufficiently s^ill, transierts will 

to stable.  Just how big this constant could be for stable searching de- 

pends upon the surface characteristics (i.e., upon pattern characteristics). 

It can be shown, however, that when all second partial derivatives are 

equal (differentiation of Eq. 11 shows them all to have the value 2), the 

meUiod of steepest descent will be stable when the proportionality' con- 

stant k is less than the reciprocal of the second partial derivative. It 

can also be shown that when k is small, transients can be well represented 

as being of a single time constant. This time constant Is somewhat sensi- 

tive to the specific pattern information, but generally turns out to equal 

l/2k. 

When partial derivatives are measured by averaging over only a few 

patterns each iteration cycle, the measurements will be noisy, and tran- 

sients will be noisy exponentials. Stability arid time constant will re- 

main dependent on k and the properties of the large-sample-slze mean- 

square-error surface. 

The method of adaption that has been used requires an extremely small 

sample size per iteration cycle, namely one pattern. One-pattem-at-a-time 

adaption has the advantages that derivatives are extremely easy to measure 

and that no storage is required within the adaptive machinery except for 

the gain values (which contain the past experience of the neuron). 

The square of the error for a single pattern (the mean square error 

for a bample size of one) is given by Eq. (10). The partial derivatives 

are 
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2 
^lÜi) -  [.2d(k; + k.'a0 ♦ L'8l(K)a1 + 2s?(k)a2] 

2 
^iüi = 81(k)[.2d(k) + 2*0 + 2B1(k)ai + 28,?(k)a2] 

^Ü =  B2(k)   [.2d(k) + ?a0+ 281(k)ai 4 282(k)a2] (12) 

CompoxiBon of the Eqs.  ^12) with Eq. (9) ehows ^hat the derivativ»« are 

simply related to the measured error,  and suggetit thac the derivatives 

could be measured wiLhcut squaring and averaging and without actual 

differentiation.    The Jth par Hal derivative is given by 

2 

kli2-.28.(k)       C(k) (13) 
öaj J 

It follows that all derlvuLlves have the Bane magnitude; and have signs 

determined by the error sign and the respective input signal signs. 

Application of the method of steepest descent requires that all gain 

changes in a given iteration cycle have the same magnitude and the appro- 

priate sign.    Each gain change reduces the error magnitude by the same 

amount.    The procedure described in Sec. C for bringing c(k) to zero with 

each successive input pattern gives the constant k a value of l/2(n+l). 

From the previous diöcusslon we see that tfte time constant of the itera- 

tive process is therefore t = (n + l) patterns.    On the 'tx'i Adallne, there 

are n - 16 Input line gains plus a level control.    Therefore,  the time 

constant should be roughly 17 patterns (for verification, see the learning 

curve of Fig.  5).    The search procedure could be readily modified to speed 

up or slov down the adaption process.    For example, bringing the error 

e(k) to half its value rather than to zero with each input pattern halves 

k and doubles t. 

The statistical theory of adaption for samp^ed-data systems is based 

on search of multidimensional stochastic parabolic surfaces fur stationary 

points.    TtM mlsadjustment, a dlmensionless measure of how well a system 

will adapt,  is defined as the ratio of the mean increase in mean square 

error (due to searching the surfsc* with small-sample-size data) to the 
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minimum mean square error (a performance reference that r-ould only h« 

achieved with perfect knowledge of input process statlBticB). The mls- 

adjustment Formulas (7) and (8) apply directly to the adaptive neuron. 

The misadjuEtuient formulas give the per unit increase in measured 

mean square error as a result of adapting on a finite number of patterns. 

Since the ratio of probability of neuron error to the mean square error 

6C Is essentially constant over a wide range of error probabilities (Fig.9), 

the mlsadjustment as expressed by Formulas ',7) and (8) may be interpreted 

in terms of the ratio of the Increase in error probahllity to the minimum 

error probability. 

If adaption is accomplished by injection of a fresh pattern each 

iterutlun cycle, the memi values of the guins will con/erge, after adapting 

transient» have died out, on the best set of values xor large sample size. 

The actual gain settings will experience random excursions about these 

values, and the resulting mlsadjustment, as derived from Eq. (7) is 

M = ^4^ ilk) 

Folloving the procedure or bringing e(k) to zero each iteration cycle, 

the mlsadjustment is 

(n^ 1)      U+ 1)    = 1 (15) 
w 2i 2(n + 1)      2 K  J' 

If adaption is accomplished by taking a fixed collection of N pat- 

terns and repeating them over and over for several time constants (where 

the time constant is long, several times N), the gains will stabilize on 

the best set of values for the N patterns. In general, these gains will 

not be the best for the large collection of patterns that the N patterns 

were abstracted from. Making use of Eq. (8), the misadjustment is 

M = ^1 (16) 

An extensive series of simulation studies has been made to test the 

validity of the mlsadjustment Formulas {lk)  and (15). These tests have 

shewn that the formulas are highly accurate over a very wide range of 

pattern and noise characteristics. A description ot a typical experiment 

and its results Is given in Fig. 10. 
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Bast neuron makes 12 error« out of 100 

EXPERIMENT 
# 

PATTERNS ADAPTED 
ON 

NUMBER OF 
ERRORS 

MISAOJUSTMENT 

1 9S, 7«, 07, «0 
73,61,00.02,72,20 25 M.^2 = I08% 

2 
70,60,52,89,92 
97,30,98,87,01 19 Ms ^= 58% 

3 
69,12,84,89,94 
38,71,66,13,80 20 ^50^=670/. 

4 
07.42,89,68,69 
99,97,02,79.22 28 M=^--I33% 

FIG.    10.--EAPEIUMENTAL  ADAPTION  ON   10 NOISY   3x3 PATTERNS. 
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Noley 3x3 p-ittema were cencnted oy randomly In.le^tinp, errors In 

ter. percent of the pooltions of the four "pure" patterns, X, T, C, .T. 

These idtterus, ti'iown In Fig. 10, are ordered for convenlenc« In checking. 

They wisre fed manually to Adallne and chosen randomly by looking up their 

identification numbers ir, a rar.dom number table. The X's (numbered from 

left to right, up to down) were numbered 1 to 25» the T's were 25 to 50, the 

C' s wcrs 50 to 7 5 , and the J' s were 75 to 100. 

The best syntem was arrived at by slow precise adaption on the full 

body of 100 noisy patterns, repeating them over and over several times. 

This system was able to classify tue patternu ab desired, except for 

twelve errors out of the 100 total. The gains were then set to aero and 

ten patterns weic chosen at random. The best system fcr the ten selected 

patterns was arr'.ved at by slow adaption on these patterns, repeatlr.g 

them over and over several times. The resulting system was then tested 

on the full body of 100 patterns, and 25 classification errors out of 

100 were made. This number of errors was more than twice that made by 

the best sysccm adapted on 100 patterns. The mlsadjustment was 10& par- 

cent. This small-sample-size adaptation experiment was repeated three 

more times, and the mlsadjustments that resulted. In order, were 58 per cent, 

67 per cent and .133 P«r cent. Since N = 10 patterns and n = 9 Input lines, 

the theoretical mlsadjustment was 

M = 2-~ = 100 per cent 
N 

An average taken over the four experiments gives a measured mlsadjustment 

of 91-5 per cent. 

The adaptive classifier can adapt after seeing remarkably few pat- 

terns .    A mlsadjustment of 20 per cent should be accept ible In most 

applications.    Tc achieve this,  all one has to do is supply the adaptive 

classifier with a number of patterns equal to five times the number of 

input lines,  regardless of how noisy the patterns are and how difficult 

the "pure" patterns are to separate.    Although the mlsadjustment formulas 

have been derived for the specific classifier consisting of a single 

adaptive neuron,  It is suspected that the following "rule of thumb" will 

apply fairly well to all adaptive classifiers:    the number of patterns 

required to train an adaptive clasaifier is equal to several times the 

number of bits per pattern. 
- 21 - 







VII. ADAPTIVE MICROETilCTRONIC SYSTEMS 

The structure of the neuron described In this report and its adaption 

procedure is sufficiently simple that an effort Is under way to develop 

a physical device which is an all-electronic fully automatic Adallne. 

The objective is a self-contained device, like the one sketched In Fig. 11, 

that has a signal input line, a "desired output" Input line (actuated 

during training only), an output line, and a power supply. The device 

Itself should be suitable fur nass production, should contain few parts, 

should be reliable, and probably should consist of soil«?-state components. 

power 

Input >(    adaptive    )    > output 

desired 
output 

FIG. 11,••ELECTRONIC AUTOMATICALLY-ADATED NEURON. 

To have such an adaptive neuron. It Is necessary to be able to store 

the gain values, which could be positive or negative, in such manner that 

these values could be changed electronically. 

Present efforts have been based on the use of multl-aperture magnetic 

cores (MAD elements ). The special characteristics of these cores permit 

multilevel storage with continuous, non-destructive read out. In addition, 

the stored levels are easily changed by small controlled amounts, with the 

direction of the change being determined by logic performed by the MAD 

element. 

Figure 12 shows a block dlagran for an electronic adaptive element, 

which realizes the adaptloi. technique described previously. Hie MAD 

element array contains magnetic cores and wire only; Fig. 13 shows how 
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Arroy 
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Error 
Mognitudo 

Rood-out 
Amp. 

Error 
Sign 

iK oroneo 

Input 

Output 

Pottorn 
Input 

FIG.   13.-BLOCK OIAGHAM,   ELECTRONIC ADAPTIVE ELEMENT. 
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R«0<?-OUt (-) 

Block H 

Input 1 

Rtad-out(♦) 

Adapt Orlvt 

Blockt) 

lor"'- 2 

FIG.   13.--MAD ELEMENT— WINDINGS  rOH USE  IN  ELECTRONIC ADAPTIVE ELEMENTS. 
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each core is wired. A photograph of the flrot experimental array for a 

5x5 Adallnß Is Fhovn in Fig. I'I. This array perfomw the following 

functtone: 

1. Storage of the gal no and the d-o level (the a.'a). Thin storage 

Is passive, i.e., the information is net lout 1T the event of power ("all- 

ure. There is one MAD element for each gain and one for the d-c level. 

Th>'8 for m x n patterns mn + 1 MAD eleroents are required. 

2. Continuous computntion of the sum a J- f ^(k) for the pattern 

connected Lo the input. The sum appears as two u-c olgnuls, one appearing 

across each of the read-out wires. The signal across one of these wires 

corresponds to the sum of those terms for which the 8.(k) is negative; 

the other corresponds to the sum of the d-c lev^ and those terms for 

which the 6.(k) is positive. [Each read-out wire carries an a-c current. 

The voltage drop per core on a read-out wire is a linear function of the 

value of the gain stored In that core, provided that the aperture through 

which the wire pauses is not blocked by energizing the block winding of 

that aperture.  If blocked, the voltage drop is very small. Thus, the 

summation is accomplished by energizing the "Block (-)" winding of the 

1** core when s,(k) is negative and energizing the "Block (+)" winding 

when s.Ck) is positive.] 

3. Computation of the adaption change 6a in the gain a . Kach of 

these changes 1s proportional to the product 81(k)8gn[€(k)l. (The change 

in the stored level of the core it accomplished by applying the proper 

signal to the "Adapt Drive" wire. With the proper adapt-drive waveform, 

the direction of the change may be reversed by applying a d-c bias to one 

of the "Input" windings. Input 1 is energized when both s.U) and e(k) 

are positive; Input 2 is energized when both are negative. For eAk)  and 

€(K) of opposite Rign, no current Is applied to either Input.] All of the 

changes 6a. are of the same magnitude. To reduce the error to approximately 

zero, the Adapt Drive wire is energized a sufficient number of times. The 

d-c winding on the MAD element carries a d-c bias current. This current 

may be removed between adapt-drive signals, but must be applied during 

the adapt-drive signal. 

The peripheral circuitry supplies the necessary signals to the MAD 

element array, and converts the a-c read-out signals to a more useful d-c 
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cciiuUuUinL'; of three madiineB ooiving thn same probiem with the iime input 

data.    Let. the output of efich machine be a Eingle binary n'jmber, expres- 

sed as +1 or -l.    If theue inachlnea were perfectly reliable,  their outputu 

would always agroe.    If not,  then von Neumann proposed that the majority 

slionlri rule.    The neuron ohown in Fi,?. 1 with a    set to zero,  and the 

other Gains set Lo +1 would ,',ive a majority output.    Each marhln* hns 

equal vote.    Unequal vote (higher vote going to the more reliable machine) 

is possible by making the u's adjustable,  and causing these adjustmento 

Lo be nnde automatically to optlmi?    performance.    The adaptive \»ote taker 

is Identical to the adaptive neuron.    The vote taker can be trained by 

periodically injecting a certain input when the desired output is known. 

von Ueumunn'o majority rule vote taker will give the correct outcome 

when the majority Is correct.    The adaptive vote taker could ideally give 

the correct outcome with only a Fingle correct machine by giving It a 

heavy vote and attenuating the votes of the unreliable machines.    This is 

in effect an adaptive routing procedure for information flow,  and allows 

systems in a binall measure to be self-healing. 

The effectiveness of the adaptive vote taker is being evaluated by 

William Pierce in a doctoral thesis research at Stanford University.    It 

has been shown that the effective multiplex factor can be greatly in- 

creased by adaption (particularly where the machines are fairly unreliable), 

and that system life expectance can also be greatly increased by adaption 

and redundancy.    This work will be described in a Stanford University 

teclmical report. 

When adaptive neuron elements become available in large quantities, 

adaptive 1oglcal  and computing systems will probably be organized quite 

differently from the way moderr  computing systems are organized.   The 

organizations of two related adaptive system types will be considered, 

that of adaptive pattern classifiers and of adaptive problem-solving 

machines. 
13 l't 

The reallzntlcn schemes utilized by Clark and Farley,  Rosenblatt, 

and Mattson   for adaptive pattern classifiers made use of digital simu- 

lation. The approach suggested by this work is that adaptive pattern 

classiflere be constructed of networks of adaptive neuron elements. 
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One or Lhe monL promioing aree»B al' raseurch In computer cystem ^heory 

la thut of probiera-Bcl/l.":: im-chlnes,   theorem-proving machlneB, und urtl- 

flcluliy "intellW;,en^" machlneB.    The eirl lest proponents of thle researca 

vere Turing ' und Shannon.4'     Their nuggestions were Bucceeefully put to 
17 16 

prentice by Newell,   Siironj   unC. Ghaw,      by Samuel,      and by other«.    Problwn- 

aolvint? hue been re>rurded uß f. multistage deHalor process whloh begins 

with an Initial status and ends with a goa]  status.    Eaoh change In status 

results froir. the ^election of a certain move from a collection of possi- 

bllltler. which are  "letfal" according to the rules of the game.    Since the 

number of chains of troves  Increases approximately exponentially with the 

length of tne chains,  exhaustively trying all chains  in search of a gon.l 

Is not practical,   even for simple problems. 

The approach token by Samuel in his checker-playing simulations to 

reduce the number of chains to be testod was two-fold.    The length of the 

chains was United to be somewhere between ten and thirty moves ahead 

(a "ply" of 10 to 30),  and since most chains would not terminate by 

reaching goals,  a system of status evaluation was developed so that the 

various chains could be numerically compared.    The second method of re- 

ducing the number of chains to be tested was to ^heck against games stored 

in the memory.    If un identical situation was encountered previously, 

certain evaluations have already been made and need not be repeated.    This 

use of stored games was called "rote learning".    A procedure for making 

une status evaluation system adaptive was called "generalized learning". 

Both of these Imrnlng methods could be used aimultanecusly. 

The rote learning portion of the over-r.ll procedure could be made to 

be much more powerful if it were possible to extract from the memory pre- 

vious situations that are similar (are not necessarily identical) to the 

ciirrent situation.    Far less experience and storage would be needed to 

reach a given level of competence of play.    Similar means that the pre- 

vious- situation is  in the same subclass with the current situation.    A 

classification scheme would be needed to establish similarities in checker 

situations.   The structure of this classifier would have to be formed 

from experience. 

An automatic problem-solving computer should have a memory system 

from which information could be extracted according to classification 
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laLlier Lhun by addretis number.    The extent of claeslflcatlon before 

s-.toring should be «light (e.g.,  la the pattern of checkers or of chess?), 

nnd a conBistent scheme for the arrangement of the pattern bits should 

be established before storing.    Final classification should be done within 

the nenory  Itself.    Each storage register should cotituln an Ado.lJ.n» or a 

network of Adaiinee. 

A requtJbt from a "central control" for a certain type of Information 

Is sent to every register In the memory simultaneously.    This hus ohe 

effnet cf petting the adjustments of all the Adalines.    Only the registers 

vhose classifiers respond properly (e.g.,  give +1 outputs) answer the 

request and transmit their Information back to tne "central control". 

Very sophisticated learning procedures would become possible if one 

has such recall-by-aoooclatlon parallel-access memory systems. The EITH- 

pliclty of Adallne =ind the progress being made in microelectronics gives 

a strong indication that euch memory systems will come into existence in 

the not too distant future. 
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