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SUMMARY

Two methods of obtaining the necessary optimum combination of
design parameters for a lightly loaded, single rotation shrouded pro-
peller are described for the case in which the ultimate wake vortex
pattern moves as a rigid body and is composed of helical vortex fila-
ments of equal geometric pitch. One methed emplcys the electrical poten-~
tial tank techniques while the other uses a digital computer to numeri-
cally integrate the Biot-Savart relation. The use of both methods to
determine the optimum blade bcund vortex distributior for a two-bladed
shrouded propeller whose ultimate wake helical vortex filaments have a
geometric pitch of 1.356 and the assumed geometric configuratiorn was
investigated. In addition, the distribution for a four-bladed shrouded
propeller, having the same wake geometric pitch, was determined by the
potential tank method. An outline of the use of the data so obtained in
designing an optimum propeller is presented.

The theoretical analysis of a heavily loaded skrcuded or free

propeller having an infinite number-of bladesis gives—in-an appendix.




INTRCDUCTION

It was established in Refererce 1 by A. Betz that the optimum free
propeller (i.e. an isolated propeller having the highest possible kinetic
or induced efficiency) is characterized by an ultimate wake vortex system-
whose motion through the fluid medium is as if the wake vortex sheets
formed a rigid screwlike structure of uniform pitch. It is possible to
determine the necessary radial distribution of the wake vortex sheet
strength for such a system and this has been done, initially for the
lightly loaded two and four-bladed propeller by S. Goldstein in Reference
2, and later for propellers having various numbers of blades and for the
range of wake helix angles of interest by T. Theodorsen in Reference 3.

In considering the comparable ultimate wake vortex system fcr the
optimum, lightly loaded, shrouded propeller, the same arguments and con-
siderations hold as to the pitch and movement of the vortex sheet that is
shed from the blade trailing edge; that is, the pitch of the vortex sheet
must be constant and the sheet must appear to move as a rigid structure.
However, there is an additional boundary condition which requires that
the flow at the trailing edge of the shroud be targent to the shroud mean
camber surface at this point or in other words, the Kutta condition for
the shroud trailing edge must be satisfied. For this to occur, a sheet
of vorticity must be shed from the shroud trailing edge. If 1t is
assumed that the shroud is "long enough'" for the wake to have reached its
ultimate configuration at the shroud trailing edge, then this boundary
vortex sheet consists of helical vorteas filaments wrapped on a right cir-
cular cylinder. Thus, for the lightly loaded case, the vortex filaments
in the outer boundary sheet and in the inner helical sheet have the same
geometric pitch and satisfy the necessary conditions imposed. The geome~
try of this ultimate wake vortex system is discussed in greater detail in
Appendix I.

Once the geometry of the wake vortex system has been thus defined,
the deferminatﬁon of the vortex strengths becomes a relatively straight-

forward process. Two such methcds will be discussed in this report. The
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first is modeled after the potential tank techniques developed by T.
Theodorsen in Reference 3. The second is a numerical evaluation of the
Biot-Savart integral by means of a digital computer.

The potential tank approach is based on the well-known analogue
between the velocity potential of a perfect fluid flow and the electrical
potential of a uniformly conducting medium. For the case under considera-
tion, the differential velocity-potential-eguation for the flow field
associated with the vortex sheets is identical, after a change in
variable, with the differential electrical-potential-equation for the
field in the potential tank that is associated with sheets of insulating
material of the same geometry as the vortex sheets. An exposition of the
potential tank techniques in presented in Reference 4. The determination
of the necessary propeller parameters thus can be determined from the
measurement of the corresponding electrical potential in the conducting
medium with the transformed boundary conditions.

The approach using the classical vortex theory is also well-
established. 1In this instance, the vortex sheets are approximated by a
number of finite strength vortex filaments. The Biot-Savart integral is
then numerically integrated for the velocity components induced by each
filament at each calculating point with the strength of the filament
being initially unspecified. The vortex filament strengths are then
determined by a simultaneous solution of the resulting equations using
the necessary restraints and boundary conditions.

A discussion of each of these approaches follows.
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NOTATION

element of area under curve of shroud bound vortex distribution

versus distance along shroud

number of blades

blade chord

blade airfoil sectional profile drag coefficient

shroud drag coefficient based on wake Cross-sectional ares
blade airfcil sectional 1ift coefficient

bower coefficient based on wake cross-sectional area, c, +e
increment to power coefficient due to profile drag

total power coefficient, Cp + c

p
a
thrust coefficient based on wake cross-sectional area, i g
Eeww F
increment to thrust coefficient due to profile drag
net thrust coefficient, c¢ - ¢
s S4
induced energy loss coefficient based on wake Cross-sectional
E
area,
2evE Fi.

induced energy loss per &nit time in the wake
ultimate wake Cross-sectional ares

geometric pitch of ultimate wake helix
shroud bound vortex broportionality constant

bl O
2T (Voo + W)w

circulation function for single rotation,

. . . H
axial distance between Successive vortex sheets, 5
1lift per unit span, PVF

number of vortex filaments used in approximating wake vortex

system




Poo
AQ

local static pressure

static pressure in disturbed fluid with respect to fixed

co-ordinates
static pressure in free stream

increment in torque due to addition or removal of vortex

element Al

blade radial station or radial location of calculating point
radius of vortex filament

propeller radius

ultimate wake radius

element of length of vortex filament

element of area of control surface

element of area of vortex sheet surface

time

thrust

element of thrust due to addition or removal of vortex element Al
unit sink strength

non-dimensional blade station or location of calculating

., I
R’ R

o
non-dimensional radius of vortex filament

point,

axial location of vortex filament

angle defined in the Biot-Savart relation

unit strength of assumed wake boundary vortex sheet
blade bound vortex distribution or function of r
wake boundary vortex sheet strength

strength of nEE shroud bound vortex ring

element of bound vorticity added or removed
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axial loss factor

efficiency net thrust to power input ratio

ideal efficiency

control surface co-ordinate

strength of vortex filament

mass coefficient or total induced velocity loss factor

tangent of helix angle of outermost radial vortex filament in

the ultimate wake, tan.@o

density of incompressible fluid medium

distance from vortex element ds® +to calculating point

be

blade solidity, m

pitch angle of vortex sheet
pitch angle of vortex filament

pitch angle of outermost radial vortex filament in the ultimate

wake

total velocity potential

induced velocity potential

azimuth location of blade bound vortex or calculating point
azimuth location of vortex element ds'

stream function associated with shroud bound vortex system
non-dimensional stream function associated with vortex ring

stream function at shroud trailing edge due to a shroud

bound vortex ring
total volume of flow or total stream function

total stream function or total volume flow required through

shroud trailing disk area

stream function associated with the free stream velocity




ﬂ? stream function associated with the assumed uniform cylindrical

wake vortex sheet

*
ﬂ?w non-dimensional stream function associated with the uniform sink

strength distribution

Co-ordinate Systems

X, ¥y, z Cartesian co-ordinate system fixed in space

', y', zé Cartesian co-ordinate system fixed in vortex pattern.
X, ¥, 2 and x%, y%, zé are considered to be coincident

for the analysis

1o #’, z Cylindrical co-ordinate system corresponding to x&, y&, zﬁ

space
r,§,% helical co-ordinate system (Figure 11)
Velocities

Uy,u?,u? induced velocity components parallel to x, y, z axes respec-

tively

. . . ] th
a4, 44, 484, increments in induced velocity associated with m— vortex

filament

ug“g,“g induced velocity components parallel to helical co-ordinates

r,&,5%

U% induced velocity at and parallel to the wake axis
Ego e o/ Veo
u?’ tangential induced velocity component
v total induced velocity
v, time average axial component of velocity in ultimate wake
\ total velocity
. Vi induced velocity
Voo free stream velocity or propeller-shroud velocity along fiight
path




v induced axial inflow velocity at propeller plane

W parameter describing the apparent axial motion of the wake
vortex system

w w/v \

wg parameter describing the apparent axial motion of the wake
boundary vortex system

L1 angular velocity of the blades

Subscripts

m denotes particular vortex filament

R denotes guantity at wake boundary

R; denotes qﬁantity just inside wake boundary

Ro+ denotes quantity just outside of wake boundary

je) denotes quantity at propeller blade axis or plane




POTENTTAL TANK METHOD

Apparatus

The geometry of the models was determined from the analysis given
in Apperdix I. Thus, the wake vortex system was considered to be com-
posed of an inner helical sheet of vortex filaments of constant geometric
pitch and an outer sheet of helical vortex filaments of constant pitch
wrapped on a right circular cylinder, the pitch of the outer filaments
being equal to that of the outermost fiiame=nt cof the inner helical sheet.
The electrical potential analogue of this system was cbtained by coun-
structing a physical model of the vortex pattérn from an insulating
material. Then the analogue of the outer cylindriéai sheet is simply awn
insulated right circular cyiinder and the analogue of the irnrer sheet is
a helical sheet of constant geometric pitch formed from an insuiating
material. In this particular case, the model also becomes the potential
tank by the addition of conducting end plares mounted at right angles to
the axis of the cylinder.

A commercially available acrylic tube, six inches in diameter an
avbout 53 inches long with a one-eighth irch wall was used for the outer
cylinder. The inner helical sheet was formed from C.02-inch thick cellu-~
lose acetate sheet which is alsc avallable commercially. A descripticn
of the method of forming the plastic helices fcllows.

Several different combinations of lLeating baths, dies, materials,
sheet thicknesses, and forming methods were investigated or tried witk
varying degrees of success. During the early attenpts, the plastic
material was completely immersed in a guenching-type oil bath which was
heated electirically and maintained at a congtaxt temperature by thermo-
stat controls. Several simple fcrming dies were tried. The first one
was a simple slot cut in one-eighth inch thick aluminum sheet. This die
was mounted at the surface of the heated oil and the plastic sheet of the
proper width was pulled through the die with & Ttwisting moticon. The

results of this operation were so poor that this method was immediately




discontinued. The next apparatus consisted of two oné-eighth inch dia-
meter steel rollers mounted above the oil bath, one set being displaced
spirally from the other set to yield the desired helix angle. Very gocd
results were obtained at the edges of the helix, but the center of the
helix was excessively wrinkled when the sheet was pulled through the
rollers with a tﬁisting motion. Scme time was spent in experimenting
with oil bath temperature, air blast cooling, and pre-loading the rollers,
but these wrinkles could not be eliminated. For the next step, a die was
constructed having a spiral slot of the proper pitch and width. Wher the
sheet was pulled through this die, a satisfactory helix was obtained for
about one-guarter to one-half turn, but the plastic sheet would then
buckle and- the remainder of the sheet was unusable. Additional supports
were provided by rollers and the plastic was cooled by the vapor from
liquid carbon dioxide. Different sheet thickpresses and materials were
tried as follows: in cellulose acetate, 0.02", 0.03", 0.0k"', 0.06"; in
cellulose acetate butyrate, 0.015"; and in cast acrylic, one-sixteenth
inch sheet which was the thinest available locally. Of these, the 0.02"
thick cellulose acetate yielded the best resulits so that further efforts
were restricted to this material axnd thickress.

Additional experimentation showed that better results were obtairned
if the plastic sheet was not scaked in the heated oil bath for an appreci-
able length of time. Conseguently, the drum of hot oil was replaced by a
shallow pan of heated oil through which the plastic sheet was pulled just
prior to its entering the die. During this experimeuntal phase, a silicone
release agent was added to the guenchirg oil in a ore part release agent
to about sixteen parts of oil by volume, which seemed to aid the Fforming
operation. It was subsequently discovered that the roller supports, the
cooling, and the forced twisting motion which was mechanically imparted
to the sheet were unnecessary. A photcegrapn ot the forming apparatas in
its final configuration is presented as Figure 1.

The drawing mechanism consisted of a fully swiveling clamp mourted
on a carriage which ran on and was positiored by a set of vertical tracks.
The motive power was provided by a hand operaiéd winch not shown in the

photograrh .

i
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The die is shown in Figure 2. It was constructed of wood arnd each
half was mounted on a wooden base plate. The one and one-half ianch thick
base_blates when clamped together alsc acted as guides to the plastic
sheet. A one and three-eighths inch diameter wocded roller was mounted
cn the underside of one base plate to act nct ocnly as a gulde but to
insure that the plastic sheet was completely immersed in the oil. The
dimensions of the die did not appear to be critical. In this case, the
die was constructed from a piece of Honduras mahogany ore and one-eighth
inches thick and had a geometric pitch of about three-fifths the desired
geometric pitch.

The forming operation as described below resulted in about one
usable helix for every three tries. The oil bath wag maintained at 315°F
+ 2°F. A sheet of clear cellulose acetate 5.75 inches by eight feet long
by 0.02 inches thick was clamped to the swivel on the carriage. The
carriage was lowered to the die surface and a2 fold of the piastic sheet
was immersed in the hot oil. When the sheet had become soft, the carriage
was raised and the die was clamped shut about the softened portion. The
carriage was then steadily raised at about twc to three inches per minute
thereby drawing the plastic sheet through the die. It was found that,
when conditions were right, an almost perfect heiix was obtained. The
helix used in the construction of the two-bladed model is shown in Figare
EF

The construction of the two-bladed model was relatively simple.
The helical sheet was inserted into the six-inch diameter acrylic tube
and a bead of glue was laid along the contact lines. This mcdel is shown
in Figure k4.

The construction of the four-bladed model proved to be much more
difficult. Two helices of the same geometric pitch were chosen and one
of these was cut along its centerline. These two half helices were
cemented one to a side of the second helix along its centerline thereby
forming two helical sheets which intersected at right angles. This part
of the construction was successfully completed. However, when the
helices were inserted into the 53-inch long acrylic tube, it was found
that slight inaccuracies in Jjoining the two sheets resulted in unaccept-

able deformations in the helices when inserted in the tube. For this




Figure 2. Die Used in Helix Forming Operation.
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Figure 3. Cellulose Acetate Helix Used in Construction of
Two-Bladed Wake Model.
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reason and in view of the results that had been obtained on the two-
bladed model, it was decided to simplify the design of this model and to
construct only one of the spiral flutes. In the construction, a spiral
gquarter section was cut from'the acrylic tube. One of the helical sheets
was cut along its axils, glued together again along this same axis but so
as to form a right angle, and then the resulting form was cemented to the
inside of the remaining three-quarter section of the tube thus forming
one of the spiral flutes of the four-bladed propeller wake model. This Ve
resulted in a much more accurate model than could have beer obtained in
the original construction as all of the glue lines were readily accesible
for gluing and clamping in place. The potential tank model of the four-
bladed propeller wake is shown in Figure 5.

For a reason to be given later, a two-foot section of tube was added
to either end of the wake models when the measurements were made. The
electrodes were placed at the ends of these additiors. A sketch of the
resulting potential tank apparatus is given in Figure 6.

The probe with which the measurements were taken was constructed
of O0.1l-inch glass tubing with a 0.010-inch diameter platinum wire con-
ductor. Details of the probe are shown in Figures 7 & 8. The potential
readings were obtained in decibels from a standing wave indicator.

The power supply was a U0O-cycle aircraft generator driven by a
synchronous motor through a timing-belt drive. A schematic wiring dia-

gram of the electrical system is given in Figure 9.

Experimental Procedures

After the model construction was completed, the models were checked
for leaks by running a small amount of mineral spirits along the glue
lines. When the leaks so determined had been stopped, one end of the two-
bladed model was sealed, the model was filled with tap water, and the
resistance between the two sides was determined by rurning a wire probe
simultaneously down each side of a glue line. At all points, the mea-
sufement was of the order of,lO7 ohms, so it was assumed that the elec-
trical leakage would be negligible. Since there was orly one flute in
the four-bladed model this latter test was not uecessary.

The measurements were first made on the two-bladed wake model.

The two end tubes containing the electrodes were connected to the wake

16
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Figure 6. Details of electrical potential model of the ultimate wake
of an optimum, lightly-loaded, two-bladed shrouded propeller.
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- Figure 7. Details of probe.
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Figure 8.

Probe Mounted on Traverse Mechanism.
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model and the resulting configuration was very slowly filled with tap
water which had been standing in closed containers for a period of about
24 hours to allow as much of the dissolved air as possible to escape.
When the model was completely filled, it was placed in a horizontal posi-
tion. The }OO—cycle power supply was then started and a 135-volt poten-
tial was applied across the model. The prcbe was introduced into the
fluid at the model midpoint through a hole in the model wall and was so
pésitioned that the exposed platinum wire was on the surface of the heli-
cal plastic sheet at the axis of the model. The capacitive and resistive
bridges were adjusted until the meter on the standing wave indicator
indicated a minimum voltage reading. A vertical traverse was made across
the helical sheet and the voltage readings at the sheet surface were
recorded. The voltage variation along the axis of the model at
the sheet surface was also determined and recorded. The probe was then
placed at the model axis on the other side of the sheet and the traverses
were repeated. In order to investigate the effects of the ends, the
model was rotated one-sixteenth turn and the measurements were recorded
for this position, which was closer to one end. This procedure was
repeated several times at each traverse station.

Essentially the same techniques were used for the four-bladed wake

model, except that the traverses could only be made across a radius.

Experimental Results

The non-dimensional results, along with the theoretical distribu-
tion for an infinite number of blades, are presented in Figure 10 and
correspond to the K(x) function of Thesrdorsen in Reference 3. This is
the non-dimensional blade bound vortex distribution as defined by the
following relation:

b I'(v) .
21 (Vo tw) W (1)

K (X)
where b the number of blades
o radial co-ordinate
R blade radius
V

(r) +the blade bound vortex strength at radius r

21
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Figure 10. Variation of nondimensional optimum blade bound vortex

strength distribution function with nondimensional blade
radial station for two shrouded propellers as determined
from potential measurements and a comparison with a
theoretical distribution for a shrouded propeller having
an infinite number blades. Plotted points are representa-
tive and not inclusive.
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0. the angular velocity of the blades

Veo free stream velocity

w parameter describing the apparent axial motion of the wake
vortex system

x non-dimensional radial station, r/R

This K(x) distribution was obtained from the potential models by
dividing the potential drop across the sheet by the potential drop
between successive sheets.

It is estimated that experimental error is about + 2 per cent of
the maximum readings. The maximum difference between readings taken at
the same radial station, but at different axial stations, was about + 5
per cent of the maximum readings and is a measure of the geometric accu-
racy of the model. The curves presented in Figure 10 represent the
average values of several radial surveys taken at several different
axlal stations. Plotted points are representative only and not inclusive.

The wvalues of the mass coefficient or total induced velocity loss

parameter M for the three cases was determined from the definition

I
H = E/K(X)ch/\’ -

For the two-bladed propeller, W = 0.141; for the four-bladed propeller,

N = 0.165; and for the infinite number of blades, M = 0,200. These
correspond to the free propeller values of 0.059, 0.096, and 0.200, respec-
tively.
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DIGITAL COMPUTER METHOD

Theoretical Analysis

The methods of classical vortex theory are well-establisghed so
that only those changes which pertain to this particular problem will be
presented. In this case, a vortex system of known geometry and mction
(i.e. right circular helical sheet of infinite length which appears to
moeve as a solid body) is given, and the problem is to find the distribu-~
tion of vorticity which will satisfy these given boundary conditions.
The Biot-Savart equation supplies the necessary reletion between the
geometry, the motion, and the vortex sheet strength. It may be written

as follows:

&V = p 4 boﬂ-'ﬂl OQA-' (2)

A Y E
where dVi increment in velocity that is associated with a vortex
sheet element of length ds' and width dr at a point
X strength of vortex filament
ﬁ angle between normal to element ds' and displacement

vector, P from ds' to the point; measured in the plane

determined by ds' and P

ds’ length of elemental vortex filament
P distance from element dg' to the point under considera~
tion

The integral relations for the velocity compounents in Cartesian
co-ordinates are given in Refererce 5, page 211, and are repeated below
for the vortex sheet system which has been replaced by M finite

strength vortex filaments.
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where X,%N,t Cartesian co-ordinates defining the point P. The
z-axis and the axis of the vortex system coincide with
the positive z-direction in the direction of advance
of the vortex system
X,,} ?M, e Cartesian co-ordinates defining the position of the
vortex sheet element ds® of the mEE filament
Aux’A“Q“)A“tM velocity components parallel to the x-, y-, and z-

axes respectively associated with the mE vortex

filament.

e = {(X-X;)I + ('\9-'\9',“)‘ + (2— 2,'”)‘}-2— (Lf)

The components are more conveniently expressed in polar co-ordinates so

that the following co-ordinate transformation is made. See Figure 11.
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where 4%“ helix pitch angle ir »adians

Substituting into Equations 3 yield
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The boundary conditions are more conveniently expressed in terms of +he

velocity components along the vortex sheet and perpendicular to the

sheet. Thus,

We = uywzyd + LLaxua\ﬁb
ug = (Mpm'\;f— ux/u'—«\"#f)wv.? t Uy 2ing
Up = Uzcomg -»(u“am%— uxm%«‘!/’)wcp
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where u the radial velocity compconent

the component parallel to the vortex sheet and ncrmal to the

radial component

u, the component normal tc the vortex sheet and the radial com-

ponent:

P the helix pitch angle of the sheet at the point wheie the

velocity components are to be calculated

The boundary conditions require that the radial velccity of each
vortex filament making up the vortex system be zero; the normal component
be proportional to the cosine of the helix pitch angle; and the tangen-
tial component be unspecified cr immaterial. An additional requirement
is that the line integral of the velocity taken about a path enclosing
the wake be zero.

As far as is known, a solution of Eguations 6 in terms of the ele-
mentary functions has not beern found so that the solution becomes
necessarily a numerical one. Thus, the vortex sheet is arbitrarily
divided into a finite number of finite vortex filamerts. The boundary
conditions on the motion of the sheet must then be applied %o points
other than those corresponding to filament points for under such a
circumstance Equation 7 may beccme zero and the integraads of Equations
6 become infinite. The calculating points for this analysis are chosen
on the sheet and midway between the filaments for this reason. The

equations to be numerically integrated are then as follows:
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where W is the parameter describing the apparent axial motion of the
wake vortex system.
The equations may be non-dimensionalized by dividing through by W. The

two equations of interest are then:

¢ ¢ a¥
= Hﬂ..;ow//{x t‘"‘i’ 4"“("' ‘0+X[ B V’t%qo]w“(‘}’ ")’)} ? = 0 (rea)
M - )
Mz,, nnﬁ:v»//{("'z‘tﬁzﬁ (x Lno Xx)m(v ¥)
_ _i(_' ._2-_ ~ i:_ ) . ) wzg ab‘#f’ _
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where X;ﬂ= R,
X = r
T
t«%: x/t""‘(PI: Xt_\,\?
P:‘=:~‘R0{X"+X’77- zxx’on(-;l«iy) ['2‘ ﬁ—w}«f&“cpa]} (i1)

P, the pitch angle of the vortex filaments forming the
wake boundary

R, wake radius
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Computing Procedures

For the particular problem under consideration, it was convenient
to divide the vortex system into two parts and to further sub-divide each
part into an equal number of finite strength filaments. The helical vor-
tex sheet was thus divided into ten equally spaced filaments, starting at
the x! = 0.05 station and ending at the X = 0.95 station for z' = 0.C.
A portion of the boundary sheet was also divided into ten equally spaced
filaments. Since the boundary sheet distribution will be periodic in the
axial co-ordinate, the portion that was considered extended from the mid-
point between adjacent helical sheets and on the wake boundary to the
next midpoint in the negative axial direction. The inner helical vortex

sheet spacing is given by

H Re o ¢,
L = .__b___ - ﬁr__b_L ('2>

or non-dimensionally

L _ artng, |
R. qu (13)

where I the axial spacing between successive inner helical vortex
sheets
H +the geometric pitch of the vortex filaments

b the number of blades in the propeller

Thus the wake boundary filaments were chosen toc lie at z' =

+ 015 H + 0.25H 4+ 0.354 + o0.45H

- b y - b 5 - 5 5 b for x' = 1.0.

The calculating points were chosen midway between the filaments as

1 0.1 H 0.2H
follows: X = ©O.1, 0.2, 0'3/ Tty l'03 2=0 gnd =2 =1 T’tb_J

3 Jr
b Y~ "p VT T s =lolo For the two-bladed wake, 7 =0, .
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= 3T
For the four-bladed propeller wake, “#-‘ O, qE b} Ty Z .

For given x, z, and ﬂ# , Tthe integrals of Equations 10 may be
numerically evaluated for the given vortex filament geometry thereby
yielding for this case of twenty filaments, forty equations with the
filament strengths being the twenty unknowns. The resulting equations to

be solved simultaneously are
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where the "A"s are the evaluation of the integral in Equation 1Ca and
the "B'"s are the evaluations of the integral in Equation 10b. These
forty equations were reduced to twenty normal equations by a least
squares method. These twenty eaquations may be reduced to nineteen by

applying the necessary condition that

zgo(—x'——M = 0 (15)

~az ) 4T Ry W
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Thus the vortex filament strengths were found by solving the resulting
nineteen simultaneous equaticns. (The twentieth value was found by sub-

stituting the nineteen values back into Equation 15.)

Computer Results

As a check on the analysis, the case for the two-bladed free pro-
peller wake for tan.?o = 0.5 was computed and compared with the results
of Reference 2. The comparison is presented in Table I and Figure 12
where it will be seen that the maximum difference in computed non-
dinensional optimum blade bound vortex distribution is about 5 per cent.
The source of this différence was not investigated because it was felt
that for the present purposes, the agreement was satisfactory.

The first results for the non-dimensional optimum blade bound vor-
tex distribution for a two-bladed shrouded propeller as determined by a
numerical analysis is given in Table IT. It will be noted that, although
the computed distribution has the same general shape as that determined
by measurement in the potential tank, the magnitudes are apvarently in
error by a factor of approximately 2 1/2. The probable reason for the

discrepancy is discussed in the next section.
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TABLE I

Comparison of Computed Non-dimensional Optimum

Blade Bound Vortex Distribution for a Two-Bladed Free Propeller -

TAN <Po = 0.5
Station Goldstein, Ref. 2
0.0 0.0
.1 .092
.2 175
.3 .23
b .295
.5 »329
.6 341
o7 -331
.8 -295
.9 .220
1.0 0.0
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Computer

0.0
.0905
.1725
.2405
-2915
3235
3350

.3250 .

.2875
.2090
0.0
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Figure 12. Comparison of two methods of computing the variation in

nondimensional optimum blade bound vortex distribution
with blade station for free propellers.
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TABLE IT

Computed Non-dimensional Blade Bound Vortex
Distribution for a Two-Bladed Single-Rotation Shrouded Propeller

Tan @, = 1.356

X Computed Measured
.05 .0269 .012
.15 L0776 .036

k .25 .1337 .061
.35 .1862 .087
45 .2375 2111
.55 .2872 .132
.65 3350 .148
L75 .3798 164
.85 4196 LTk
.95 4503 .180
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DISCUSSION

Methods of Obtaining Design Parameters

Both the potential tank approach and the digital computer approach
have advantages and disadvantages. The primary advantage of the poten-
tial tank method is that after the model construction has been completed
and the electrical apparatus has been assembled, the measurement of the
desired quantities may be accomplished with relative ease. The accuracy
of the results is directly associated with the accuracy of the model con-
struction, but the effects of small geometric inaccuracies on the
measured quantities may be made small by making the surveys at a number
of stations and taking the arithmetic average of the station data. The
greatest disadvantage of this method lies in the model construction.
Using the techniques previously discussed, a usable helical surface
having a geometric pitch less than the 1.356 used in the experiments
could not be obtained although considerable time was spent trying to do
so. The cementing of the helix into the tube vas also a time- consumlng
process. It is believed that addltlggél dpvelopment of the forming tech-
niques will be required if this approach is to be used tc obtain the
necessary design parameters.

The digital computer approach is almost at the opposite extreme.
The mathematical model of the wake vortex system may be easily formulated
and its geometry may be made as "exact'" as is required. However, it is
necessary to replace the continuous distribution of vorticity in the wake
with an approximate system composed of a finite number of finite strength
vortex filaments. The integration itself, being rumerical, introduces
some error. It appears from the results presented, that these approxima-
tions may have introduced errors which were magnified out of all propor-
tion in the particular method used to obtain the simultaneous solution of
the equations for the strengths of these vortex filaments. The distribu-
tion of bound vortex strength so obtained seems to be dependent upon which

filament is eliminated in satisfying the requirement of Equation 15. The
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usual tests were applied to the determinants obtained from the array of
simultaneous equations and it was shown that this determinant was "well-
behaved" .

It has been previously mentioned that the shape of the computed
distribution agreed qualitatively with the measured distribution, but
that the magnitude was greater by a factor of about 2 1/2. Considerable
time was spent in trying to determine the origin of this apparent factor
but no conclusion could be reached within the allowable time and finan-
cial limitations. This difference was totally unexpected since the pro-
gram as written for the computer had yielded results which compared
closely with published results for lightly-loaded free propellers, as is
shown in Table I and Figure 12.

The question arose as to which of the two distributions was most
likely to be correct. On comparison with the theoretical distribution
for an infinite number of blades, as shown in Figure 10, it was reasoned
that the calculated results were in error because these latter computed
values exceeded the theoreticai values for the infinite number of blades
by an appreciable factor. The computed mass coefficient or total velocity
loss factor M. also exceeded that of the infinite number of blades. The
measured distribution and computed mass coefficients for the two- and
four-bladed propellers, however, indicated the same qualitative comparison
with the infinite number of blades as for the free propeller cases of
Reference 3; that is, the finite number of blades cases yielded lower
mass coefficients than that of the infinite bladed propeller. For this
reason, it is believed that the measured cdistributions are representative
of the bound vortex distribution of shrouded, lightly-loaded, single-
rotation propellers having a finite number of blades.

In spite of the inconclusiveness of the computer results, it is
believed that this approach would be the most efficient means of determin-
ing the necessary design parameters. The first step in a continuation of
this approach would be to obtain an independent check on the coefficients
appearing in the érray of simultaneous equations. This has noé been done
because of the time and financial limitations. A second or concurrent

step would be to increase the number of filaments considered and to compare
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the resulting vortex distribupion with that of the original computation.

A third possibility would involve a slightly different mathematical model
in which the desired distribution is expressed as a Fourier Series and
instead of solving simultaneously for the ordinates of the distribution
curve, the Fourier coefficients would be determined. This latter approach
has proved to be advantageous in the calculation of three-dimensional

spanwise wing loadings and may offer the same advantages in this case.

Methods of Presenting Design Pafameters

In order to cover the range of advance ratios and number of
blades which are likely to be of interest, it i1s suggested that any
continuation cof this investigation should determine the optimum bound
vortex distribution for shrouded p;opellers having from two to five
blades both single- and dual-rotation. and for a range of wake helix
pitch angle ¢, from about 10° to about 70°. These results could be
presented in the form of tables and charts in which K{(x) is plotted
versus blade non-dimensional radius x for various wake advance ratios

A=teweg,. In addition, it would be necessary to determine from these
distributions, the mass coefficient 3 ; +the axial loss coefficient € ;
and their ratio, f% . These parameters could also be presented in the
form of tables and charts as plotted versus advance ratio A for various
numbers of blades. With these charts available and for correctly
designed shrouds, the design of the optimum propeller becomes a straight-

forward process as indicated in Appendix IV.
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CONCLUSIONS AND RECOMMENDATIONS

The potential tank approach will yield by direct measurement the
parameters necessary for designing optimum shrouded propellers, but it has
an inherent disadvantage in that the construction of sufficiently accu-
rate models is difficult and time consuming and further development of the
construction and forming techniques would probably be required for models

having a lower pitch than about 50°.

The results obtained from the first digital computer attempt to
determine the bound vortex distribution were unsatisfactory. Due to limi-
tations on time and funds, it was not possible to resolve the discrepancies.
However, 1t is believed that the digital computer approach would in the
long run be more efficient. Thus, it is recommended that the digital

computer approach be used in any extension of the present work.
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APPENDIX T
VORTEX SYSTEM

The argument as to the geometry and motion of the wake vortex pattern
of an optimum shrouded single-rotation propeller is essentﬁally the same
as that presented by Betz in reference 1 and Theodorsen iﬂ reference 3.
Following these approaches, consider a non-optimum shrouded propeller
which is producing the required thrust at the expenditure of the necessary
amount of power. At a distance behind this first shrouded propeller system
such that the shroud interference veloéities are negligible, arrange a
second shroud-propeller having the same number of blades and rotational
speed as the first propeller and so phased with the first propeller that
each blade intercepts one of the sheets of discontinuity that is shed
from the former propeller's blade trailing edges. The diameter of the
shroud of this second system is set equal to the wake diameter so that
it intercepts the sheet of discontinuity that is shed from the first
shroud's trailing edge. Assume that the second propeller is mounted on
an extension of the shaft of the first propeller and assume further that
neither the second propeller nor the shroud contribute to the motion of
the wake nor disturb the flow in any way. Similarly place a third
shrouded propeller, et cetera, until a large number of shrouded proﬁellers
are arranged in tandem, all mounted on the shaft of the first propeller,
all having the required phase relation, and none contributing to the

motion of the wake nor to the thrust or power required.

In general, certain of the blade elements of the first propeller
will be operating at relatively high efficiencies while other elements
will be operating at relatively low efficiencies. This will be evident
in the wake, as will be seen later, by the pitch of the wake spiral;
the efficiency being higher where the pitch is lower and vice versa.
Suppose now that on the second shrouded propeller, a positive increment
of thrust is added to a blade element operating in a region where the
pitch of the helical vortex sheet is low and an equal increment of

negative thrust is added on the third propeller to an element operating




in a region where the pitch is high. The thrust of the complete system
remains unchanged but the third propeller adds more power to the shaft
by acting as a windmill than the second propeller requires to produce the
thrust increment so that a net reduction of the power required by the
system is realized. (Of course skin friction is neglected and it is
assumed that the thrust increments are very small so that the power re-
covery factor is lOO%,) The efficiency of these added increments may

be obtained by considering figure T-1:

Figure I-1. Velocity diagram in the ultimate wake.

Using the Kutta-Joukowski theorem, the increment in thrust is

AT = PAI"(.QV‘—-LL_‘},)

where AT the increment in thrust
@ fluid density
Af" the increment in bound vortex strength
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0 the propeller rotational velocity

r the radius at which the increment in thrust

is added

“-’Lr the component of the induced velocity V/{ in

the plane of rotation

The increment in torque is

AQ CAr (Voo + ug)r

where
4Q the increment in torque
74 the velocity along the flight path
ui the axial component of the induced velocity

This gives for the efficiency, 7

: N= "a8¢ ~ eor(lmrupar
- o )/ 2vr - Uy )t
- Voo +wW / Vw"' u’. *?
. Ve
2» + W
_ |
R (z-1)
where — W
YR Ve
and w the parameter describing the apparent axial motion of the

wake vortex spiral
The elemental efficiency is thus simply a function of the ratio of the

apparent axial velocity of the helical vortex sheet element to the free

stream velocity. The aforementioned process of adding an increment of
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thrust on a blade element of one propeller and removing the same amount
on the following propeller with a net reduction in power required is
continued until no further reduction is realized. At this point the
efficiency of the added element of thrust will be the same regardless
of the radius at which it is added. From equation I-1 +this occurs
when the parameter W is the same at each blade station for the last
propeller in the array. The wake behind this last propeller represents
the wake for the optimum case. The problem now becomes the determina-
tion of the single propeller-shroud combination which will yield the

same wake configuration as the array.

The preceeding analysis shows that the optimum condition is ob-
tained when the ultimate wake vortex pattern appears to move as a
rigid body and the pitch of the inner helical wake spiral is constant
along the radius. Unfortunately no other information is obtained about
the geometry unless some additional assumptions are made about the
disturbance velocities associated with the shroud. For this analysis,
it will be assumed that the system is lightly loaded so that shroud
disturbance velocities are such that the wake has reached its ultimate
configuration at the shroud trailing edge and that the geometric pitch
of the helical wake spiral is constant. In addition, each vortex fila-
ment of the inner helical sheet will intercept the same radial coordinate
lines. Therefore the wake geometry and motion are completely specified

and will appear as described below.

Consider a two-bladed, single-rotation shrouded propeller and the
induced flow field that is associated with the vortex sheet that is
shed from the blade trailing edges. Without the shroud, the induced
flow field would be approximately as sketched in figure I-2 for the

vieinity of the shroud trailing edge.
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Figure I-2. Cross-section of wake vortex system of a two-
bladed single-rotation propeller in the vicinity
of the shroud trailing edge. Shroud is removed
from the flow for illustrative purposes.
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It may be seen from the figure that such a tralling blade vortex
system has associated with it, regions having large radial induced
velocity components and that with respect to a reference system fixed
in the shroud position, this.flow is periodic. In order for the shroud
mean camber surface to correspond to a streamline, it is necessary that
a distribution of vorticity be placed along theishroud mean camber
surface in such a manner as to cancel out all velocity components normal
to this surface, ©Since the radial velocities that are associated with
the vortex sheet change with time when measured with respect to the
shroud, then that part of the shroud bound vortex distribution which
cancels out these radial components must also be periodic in nature
and a function of the number of blades in the propeller. This part of
the shroud bound vortex system may be considered to rotate with the
propeller but for present purposes does not contribute to the waxe
boundary vortex system. The non-rotating components of the shroud
bound vortex system are considered to be circular rings bound to the

shroud mean camber surface as shown in figure I-3,

The wake boundary vortex system is comprised of the continuations
of the vortex filaments that are shed from' the blade trailing edge-
which in turn represent the changes in the blade bound vofgéx strength
with radial position along the blade. Thus the blade bound vortex at
the blade tip is considered to be continued into the shroud contour
where it is spread out on the shroud mean camber surface as depicted
in figure I-3. While within the contour, it. is assumed that all of the
necessary adjustments in phase relationship with the blade trailing
vortex system occur so that the motion of the wake boundary vortex
system is along the tangent to the shroud mean camber surface at the

trailing edge. .

I-6




Continuation of blade tip —=
bound vortex into shroud

contour with subsequent shedding
at shroud trailing edge

Figure I-3.
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showing non-rotating components of shroud
bound vortex distribution and the continuation
of the blade tip bound vortex into the shroud
contour with its subsequent spreading out and
shedding at the shroud trailing edge as the
wake boundary vortex system.
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To simplify.the illustration, it will be assumed that the shroud is
so designed (i.e. long enough) that the wake has achieved its ultimate
configuration at the plane of the shroud trailing edge. Thus in order
that no further distortion of the wake take place, there must be shed
from the shroud trailing edge a cylindrical sheet of vorticity of the
proper distribution and phase relationship with respect to the blade
sheet so as to fulfill this condition, (i.e. velocity vector must be
tangent to shroud mean camber surface at the trailing edgé.) The motion
of these vortex systems for the lightly-loaded case must be the same as
that of a nut on a screw where the shroud trailing sheet corresponds
to the thread on the nut and the blade trailing sheet corresponds to
the thread on the screw. It is tc be noted that such a system will
always maintain the proper phase relationships while having different
rotational velocities (all the necessary adjustments in configuration
having taken place within the shroud). There is, of course, then no
further change in the distribution of vorticity with respect to the
helical coordinates defined by the vortex filament. It is believed
that a cross-section of the optimum shrouded-propeller wake vortex
system will be somewhat as indicated schematically in figure I-4 for
the two-bladed case. It is this configuration that is considered in

the analyses of this report.
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APPENDIX IT
CALCULATION OF THRUST AND POWER

Using the momentum theorem and considering the control volume shown
in figure II-1,
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Figure II-1. Control volume used in determining the thrust.

the thrust is found by considering the average pressure forces acting on

the control surface and the average time rate of change of momentum of
the fluid within the control surface.
At = 27/ba

SO that

This average is taken over a time
and the integration is with respect to time At = 599/?%°+"0

//'
T pAtds =g [ee )t s fendyds,
S s 2

or

b L
T + %/[(Pm“)ﬂ)cp?aps = ﬁ&@/{l{bu? + HE)JEJS‘ (.'ZT_- l)
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since VooJ)Sl = (mew.,)dsz

where T thrust on propeller-duct system, lbs
b number of blades
Voo undisturbed, free-stream velocity, ft/sec
w apparent axial movement of wake helix with respect

to a point fixed in space, ft/sec
rotational velocity of propeller, radians/sec
undisturbed, free-stream static pressure, 1lbs/sq. in.

static pressure, 1lbs/sg. in

N ST D

coordinate along wake axis, positive in opposipe
direction to propeller thrust, ft.

control surface area, ft2

fluid density, slugs/ft3 (incompressible)

axial component of the induced velocity, ft/sec

S IR

time, sec.

Before equation II-1 may be integrated, an expression must be found
which relates the local static pressure to the local velocity. This re-
quired expression may be obtained as follows by integrating Euler's
equations of motion along a path in a frictionless, homogeneous, irrota-
tional, incompressible, unsteady flow field. Since a velocity potential_¢

exists, the X -component of Euler’s equation may be written

2/98), du u . _ ) 3F
s J . ) . . . s Qu . Im
Multiplying by &X and imposing the irrotationality condition that 33 = X )
%%g = if- 3 the following is obtained
3¢ N 9 J ]9
— dx + n 34 2L = 41 9°¢
e Xt 0 S Wy g Mrdy = L 32Uy

Multiplying the ~~- and - components of Euler's equations by abzp and )i"

respectively, imposing the condition of irrotationality, adding the three
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resulting scalar equations.and integrating gives the desired expression.

9 L p

3t e ‘*"—,I: R -F(t') = CowsSTANT (zr-2)

Considering first the region outside the wake, there can be no
J¢
i ity at Y=co that <““) =0 ; © =0
induced velocity so tha ), ; e )]Y":oo
so that

d¢
= +g+—;;/z+¥(r)= lgf +—Ué°2= ?’ (Z-3)

where /%I is the stagnation pressure in the undisturbed flow. The region

within the wake boundaries is not so simple and additional relations
must first be found.

Consider a helical coordinate system 7, § Y which is defined
in terms of the cylindrical coordinates 7, ‘)") 2 as follows sc that for

the instant under consideration, the helical vortex sheet coincides with
the ¥§=0 surface.

r = ¥ 0fyrs o

1!

13 f‘%w—z? +2a~ o = SeasiE RS & (JI—LI)

: s _M_ﬂ’_sgsw
§ =-rY¥evg +2w2g 2b () 2 (&)

5

where f is measured along the helical vortex filaments; ¥ is measured

along a helical line that is normal to the vortex filaments and @ 1is

the helix pitch angle of the &= ¢sT. coordinate lines.

Due to helical symmetry, the disturbance velocity vector is constant

along helical lines Y'= cowsw . and § = ¢o#sT. both inside and outside

of the wake. Therefore

e = 3T = £(rx)

ye
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<
I

d -
st W= KO

‘c)_? = 'Fvg (Y‘J §)

/
where 75 is the induced velocity potential.

s
e
i
a

_——Wake axis

~—Helical
vortex
sheets

Radial line—.

Ay ==

Figure II-2. Wake vortex system showing the various paths

along which the line integrals are calculated.

Consider the line integral of the velocity along the path ABCDA
within the wake as shown in figure II-2. The line BC is a helical line
along which both ¥ and §

are constant so that U~£ is constant. The
lines AB

and €D are radial lines such that the same helical lines,

T = COWSTAMT and £ = constant, intersect both lines. The line DA

coincides with the axis of the wake. Since no vorticity is enclosed by

II-4




the lines, the line integral should be zero.

[ de + [ugds + [ dr +/:§an - o
A 8 C D

i
But uY‘(TI K)AB = ur(y‘, E)DC so that [“y.olr ‘f'/u.'. 50)" = 0 and
A . . ‘A (o .
the remaining terms give

g (5. - &) *I“fo(i‘*'a) =0

assuming that uga is different from zero.

From equation Io-4

£-5, = (vhump + 2. 20) = (v cng + 2o g)

and if
~ _ 27 _ o +W
‘ﬁ-oiiA-ZB-o/THEN '}tfc- b 7-2-D:E-C- b_.f;)
FX0
then
2T I/m+ V”+W
—ug [ STenmp + b /’“‘P] + Ug —p o ©
21 Fia
Voo + W
(/( - S'Q 2 ugo
£ V7 eon @ +—%§;w g Vﬁﬂ; w2y + AN
Ue = Up orn IL-5a
§ s, 2 ( )

Consider next the line integral of the velocity along the path EFGHE
outside the wake as shown in figure II-2. The line HE is a helical
line on the outer surface of the cylindrical sheet of vorticity and is
parallelﬂi:o the vortex fileaments. The lines EF and 6H are radial
lines such that the same helical coordinate lines,” = CONST. B = CONST.
intersect both lines so that Wy (T, f)sn = U (7, g)GH . The line FG
is a helical line at ™ = ® | As no vorticity is enclosed by the line,<

the line integral is again zero.

F 6 H F
[“r‘h"' "'//“gaDS Tf'fuy.a')r- +/MSR¢°§ = o
F G

E H
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Since ugk is parallel to the vortex filaments on the surface of the

cylinder, there can be no discontinuity in this velocity component so

[V = = Y ¢ .
that Xg- HgR:_ e qDR, s where ?Ko is the
helix pitch angle of the boundary wake filaments. Again
& H
/“r ;by‘ + /’H, )7’ = o
E ()
and

ug(gG—g‘F) + Hgom ¢R°(gs_§u) =N

It
- Ve +W
Y=o 5 = zo 5 omwew Y, =-F s =2 =)
-Y
and y
VotW . 7 : wtW =
‘“‘[V"*"“‘P*‘ anpl * “g"*‘"? [R‘}’mp + @ =
5 (&) J 0 Ryl ". R, (.fl) Ry
. r Vo tW ; i
N - Usgnét-./\ ¢R°[R° w2 ¢R° + ‘ ol A, ?Ro] i
£ re @ o+ L}fﬁ’—w
Ug = Uy 2o (Z-5b)

But Ten @ = (%)’t»\ ?R so that as Y—>® ; @ —2 0 and the con-
-]

ditions on Yg at infinity are satisfied.

It has been shown in Appendix I that the optimum condition re-
quires that the vortex system move to the rear as a solid body. Equa-
tions I5 show that this condition is fulfilled and the total induced
velocity at the helical sheet and cylindrical helical sheet vortex
filaments is constant and equal to u;a . Thus at each vortex fila-

ment

4e = Ug g -

and the entire field pattern moves axially with a velocity, btg . For
[+]

other points in the flow however
Uy £ (r, %)

“g

i

-LLE /.u—aq;

[-]
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Ue = F(7,8)

There is another condition which these results must satisfy and that is
that the line integral about a path enclosing the wake must be zero for,
if this is not true, the velocity potential would be multi-valued out-
side the wake. Comnsider a helical path Y= R, 3 § = cousT. yhich lies on
the outside of the wake boundary as shown in figure II-3. The helical

PR Wake axis - =

AV\.

j\/ Radial line—
E A
Figure II-3. Paths along which line integrals must be evaluated

to show that the line integral about a path en~
closing the wake is =zero.

ABC is closed by a line CA parallel to the wake axis. The velocity
component WYy¢ along ABC  is constant and equal to Usg, 2 Pr; =
The length of the path ABC ig 2TR, M@Rb so that
A o
/ue&z t+ 27R, ugt_\q) =0
X > R

C
Next consider the path ACDE « Due to helical symmetry, the line

integral along CD is equal and opposite to the line integral along EA

and
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~edim

E

/Cu%i);_ +ju§zpe = 0

A D

But if the line DE  is allowed to approach Y= , Uy = 0 A»’D/L{% de =0,

Therefore

v-&zf = 2mRUs T g

ABCA
and the flow pattern (i.e. a system of vortex filaments having the

same geometric pitch) is not possible unless u;‘ = 0 |, If the
axial velocity is zero along the wake axis, then u_g is zero every-
where. Thus the induced velocity is everywhere normal to the YV = ¢ovsTaAvT,

€ = COMSTAMT lines and at the vortex filaments,

L4§ = W Laz.qy

where W is a parameter which, along with the free stream velocity Veo 3
determines the geometric pitch of the helical vortex system. The
vortex system will again appear to move as a solid body but actually
there will be relative motion between the fluid particles in adjacent

vortex filaments.

The induced velocity component “g will be continuous everywhere
except across the cylindrical boundary of helical vortex filaments where

the change in the value of this component is equal to the sheet strength

P(t) . Thus‘
re) = u;;— U (x-1)

where “;R_ is the component normal to the filament in the ¥ direc-
°
tion that is Jjust inside the wake boundary and “; Rt is that component

which is Jjust outside the wake boundary. In addition

U’rk'o b u.’:‘a?
2

= ww2g | (Tr-8)
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1r I'(¥) is constant, then Uy, is zero and Ug,. = 2W@R @
e .

If F(t’) is not constant, then it msy be shown that ug - has a
(Vo +W) tra g, . ‘ ] [
and is such a function that

eriod
e b (5%)
(yo+w)m¢e. +C
2b(5%) '
ag de = o (z-9)
i Q.*w)m¢Ro+ r
I

2b (i
This is most easily shown 1’55; taking the line integral just outside the

wake boundary along a line § = coustawt  yhere Ug = e and then

closing the path along a line § = CO¥SA#T for yhich “I = F(;) .

Consider now the region adjdcent to the line of contact of the inner

helical vortex sheet with the cylindrical wake boundary sheet of helical

vortex filaments as shown in figure ITI-k. = Wake

boundary
There can be no radial velocity in the filaments
region indicated by the arrows because
of the assumption that the wake
boundary is a right circular cylinder. S
Therefore in this region [(x)= cowsT. s . Wake
and the strength of the vortex sheet “~Helical sheet axis

i filaments

is zero. The requirement on YUe for
the helical sheet filaments just in- Figure II-4. Region adjacent

to intersection of inner
helical sheet with boundary
sheet.

side the cylindrical wake is

= w I-io
£, el )

The reqguirement on the helical filaments of the wake boundary is

u = werg (m-n)
SR‘, R,
Thus the strength of the boundary sheet in this region must be zero
because P is continuous and (PR__’ ?R As R~ - R, so that
[~
Uge. + Usgpe - W W @o- + Wt Pp+

3 = 5 = werg, @-12)
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and

ree) = ugk:— u‘n.* = WM?R:- Wer g, =0 (r-13)

o

Returning now to the case for which Mg is different from zero,
it will be shown that a solution may be obtained if the inner and outer
sheets have different geometric pitches. From equation II-§

L(g = L(SAM(P

(-]

The requirement that the inner helical sheets move as a rigid body gives

U = wW o
S, 4&
Taking the line integral along a path §$= 5, ;5 Y= ¥ and then closing

the path along a line § = %, ;3 Y = 7

—[u;, dr +[2vvmcp + %&;;/wﬂ[”!,w?] = bT(r)
3

For the last outboard filament in the inner helical vortex sheet

U rk- = W w2 Cfﬂ -
and ° -
u = Yo 2t~
ER; go ?K:

The helical filaments in the cylindrical sheet that are adjacent to the

aforementioned filament have a velocity in the g direction

4
ug = % (ugale_+ wieie )® (m-)

and the cylindrical sheet strength at this point is
= 2,2 *
(L) = (u ainly o+ wiaon _) I-15)
) = (Y, P (¢

for zero induced velocity outside the wake at this point.
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This last condition is rigorously applicable to the heavily loaded
shrouded propeller in which the helical filaments of the outer boundary
have a different apparent axial motion than that of the inner helical
sheet. In Appendix III, this condition will be used to obtain the
..blade bound vortex distribution for a shrouded propeller having an
infinite number of blades.

Returning to the lightly loaded case, that is, the case in which

u§°=~0 and the geometric pitch of all the helical filaments is constant,
it is now-possible to calculate the thrust.. Since the motion of each

filament is normal to itself, the velocity potential is

’ﬁl = F(;’-—w'tm?) r) (T~1¢)

{ /
so that ¢ or grad ¢ remains unchanged if the reference point moves
such that
-3 — , —
> = ‘S’,,, ( m?)t b) = Y'm
]
Therefore d¢ - dD de
3t T it

)
|
N
)
-
v

since

or for the case of the coordinates fixed in the shroud

< W)Uy e f = = (VW) Uy @-17)

For the disturbed flow field, equation I-2 becomes

P 2
3 '*“'EV — (b tWuUgmp = -);% (z-18)

At each'point on the wake boundary, the static pressures must be identical

both inside and outside.
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PR" = PR: (@T-19)

2
P ROt eUs (Lem)ng, = b, —dell +els (rmenq,  (T-20)
° RS 2 o
Outside the wake,
2
= + 4
POZR: Fﬂ [S e Kﬂ
and B
2 2
fo—pP = zeV-puUe(rw)up-tek (T-2)

Inside the wake

2
- }o+%eV-eug(m+W)m¢ = ﬂ’n— = P, t (Poza--,’ozk_:>
prieVselsmelirn)= portedl kel ~ply weng -del | +els g, (1, +w)

2 2

Po—p = 1’- e[yz_ 4_ +;£: - Z:] -e(i +w)[u$,w1q>— (L(ge._ - ugﬂr) l—m.@;] (;[1-22)

[

Equation II-1 then becomes

b e f 1/ 2 2 2
Srlitw) | | mUecre +Uge'e + £ (Yo U=V -0 )

VOLUAE I#SIDE WaKE

—(\Q +W)(ng;m?°_ u:dm%-—ung.?)} dz cDS

_baoe R
AT { ”g“"'? rUgwr'e +3(L-12)

YOLVME OuTSIOE WAKE

T =

+ Ug e (V_b-;-W)} 4228 (]1'-23)

where the integration extends over a volume equal to the product of the
control surface area normal to the wake axis at a far distance behind the
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