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FOREWORD 

Contract AF 33(616)-5689,  Project 7060, (unclassified title) "Scientific and Engineering Research 

Investigations in Flight Dynamics," effective 1 May 1958 between the United States Air Force and the 

University of Chicago provides for scientific and engineering research investigations in flight dynamics. 

The contract is monitored by Wright Air Development Center, Aeronautical Research Laboratory, 

Engineering Analysis Division,  Lt.  Col.  Edwin H.  Nowak, Chief,  and Mr,   Paul W.  Nosker, Assistant 

Chief.    The work at the University is conducted under the general jurisdiction of Dr.  Warren C. Johnson, 

Vice President in Charge of Special Scientific Programs, and Dr.   Francis E.  Bothwell,  Director of the 

Laboratories for Applied Sciences.    The work under this contract is performed by the staff of the Institute 

for System Research under the supervision of Dr.  B.  E.   Howard,  Associate Director of the Institute for 

System Research. 

Study 10,  entitled "Aerodynamic Forces and Moments, " under the above contract pertains to the 

determination of aerodynamic forces and moments that will be exerted on a given airframe under various 

flight conditions.    Phase One of this study calls for regular review of the scientific and technical literature 

relating to this subject.    Phase One is being conducted by Dr.   M.   Z.  Krzywoblocki,  professor of gasdynam- 

ics and theoretical aerodynamics at the University of Illinois,  under a consulting agreement with the 

University of Chicago.    It is a continuation of similar work begun in 1951 under Contract AF 33(038)-15068, 

Supplement No.   2,  between the United States Air Force and the University of Chicago as part of the program 

of the Advisory Board on Simulation, and continued under Contract AF 33(616)-2797. 

The earlier work by Dr.  Krzywoblocki was published by the University of Chicago in two volumes 

and 12 supplements entitled: AERODYNAMIC STUDIES: The Forces Acting on an Air Vehicle--A Review 

of the Literature and a third volume entitled AERODYNAMIC STUDIES: Possible Trends in Fluid Dynamics. 

To meet the persistent demand for these earlier reports issued by the Advisory Board on Simulation, they 

are being reissued as individual parts of a WADC Technical Note under the present program in combination 

with those generated under the present contract and under Contract AF 33(616)-2797.    Thus, the present 

portion, which was first issued by the Advisory Board on Simulation as Volume III of the Aerodynamic 

Studies, becomes Part XV of WADC TN 56-360.    (Note:   In order to minimize the cost of republishing 

these earlier reports and to hasten their availability, the ABS volumes are being reproduced with the least 

possible editorial and typographical changes.    Consequently, certain differences and non-uniformities of 

style and make-up will be apparent between these earlier parts and those parts of the series generated 

under the present contract. ]   Acknowledgement is due to the Technological Press of Massachusetts Institute 

of Technology and John Wiley and Sons,  Inc. , for permission to Dr.  Krzywoblocki to present a condensa- 

tion of Chapter II,  Cybernetics, by Norbert Wiener, and to Interscience Publishers,  Inc. , for their simi- 

lar kindness regarding the use of the material appearing in the first eight pages of Quantum Theory of 

Fields, by Gregor Wentzel. 

This Technical Note is expected to be a continuing series, and as additional material which has sig- 

nificant bearing on the problems under consideration is reviewed it will be referenced in successive parts 

of WADC TN 56-360. 

A discussion of the administrative history of the Advisory Board on Simulation and the purpose of 

the Air Force in sponsoring it, together with a roster of the eminent specialists from industry, govern- 

ment,  and other universities who served on it,  is to be found in the Foreword of Part I of this Technical 
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Note and in the final report of the Advisory Board, published as WADC Technical Report 54-250, Dynamic 

System Studies.    A survey of the literature dealing with the forces acting on air vehicles is one of the lines 

of investigation initiated by the Advisory Board. 

In order to obtain the most effective aerial weapons In the shortest time at the least cost, it is 

necessary to employ dynamic systems engineering, a principal tool of which is simulation.   Since the ob- 

ject of simulation is to predict or to reproduce in the laooratory the true behavior of air vehicles in flight, 

it is necessaiy either to physically simulate or to mathematically calculate all of the forces acting on 

various parts of an air vehicle and to combine them in some manner to determine the force on the vehicle 

as a whole. 
Naturally, then, an understanding of the nature of the aerodynamic forces acting on an air vehicle 

is fundamental; to simulate the motion of the air vehicle it is necessary to be able to calculate the forces. 

Unhappily, the state of the art is such that exact mathematical expressions for the forces are not known. 

Aerodynamicists therefore rely on such tools as wind tunnels, and make une of a vast amount cf empirical 

data. 
The ultimate goal of exact expressions for those forces Involves theoretical investigations outside 

the scope of the Advisory Board' s Initial study.    Nevertheless, the planning of a simulation facility de- 

manded practical answers to the following questions: (1) What are the most general and most reliable ex- 

pressions used today for the aerodynamic forces on air vehicles?   (2) What are the fundamental hypotheses 

behind these expressions and the limitations inherent in them?   (3)   What are the boundaries of accuracy 

for calculating forces by present methods?   (4) In what areas and in what directions can significant advances 

In understanding aerodynamic forces be expected In the Immediate future?   (5) In what areas are the prob- 

lems of such a profound nature that significant advances cannot be expected In the foreseeable future? 

As an attempt to systemlze the knowledge needed to answer these five questions, these Aerodynamic 

Studies were undertaken.    In addition, it was expected the studies would prove valuable beyond the limits 

of this goal. 

Burton P. Sauer 

Technical Editor 

Institute for System Research 
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ABSTRACT 

This work 18 an annotated bibliography of the scientific literature pertaining to methods of 

calculating the aerodynamic forces acting on an air vehicle in flight.   The present segment of the 

work includes material reviewed by the author in the period July 1955 through September 1955.   The 

more Interesting papers and reports (from the viewpoint of the aerodynamlclst) are discussed briefly; 

others are listed without comment. 
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1.  SOME FUNDAMENTAL CONCEPTS OF MECHANICS AND THE QUANTUM THEORY OF FIELDS 

1. 1 Classical Mechanics 

The formulation below is based principally on Chapter VI of Joos' Theoretical Physics (Reference 64). 

Classical Newtonian mechanics is based on extrapolation of macroscopic physical occi..rrences,  and 

in its application to an assemblage of particles the results are rigorous only when the latter are macro- 

scopically defined.   Classical mechanics of a system of N particles based on Newton' s second law can be 

expressed by the following formula for the kth particle: 

mkd^kM
2 
\ <   ^ *ik. (1) 

where m    = mass of kth particle (assumed to be constant); 

■?.   = displacement vector; 

F   = external forces acting on kth particle; 

?..= internal molecular forces on kth particle. 

The usual assumption for internal forces is F ik F. ..    The total energy of the system can be derived 

from eq. (1) by integrating with respect to time its product with the velocity: 

51 ^k
mk (drk/dt)t

2 -  (d?k/dt)2
t 

rk(t)- 
I, J      --W^ 

r, (t ) k( o' 

rk(t) 

J    ILL K-dt f{t, ^ s   jk    k 
k   o' 

(2) 

This expression may be simplified for conservative forces,  i. e. , for which curl F.,   = 0.   These forces 

have the following property: 

Fjk= -gradkUjk; F^  =-grad. üjk - - Fjk. (3) 

Introducing this notion of potential, eq. (3), referred to both the external and internal forces, into eq. (2), 

one obtains the expression for the total energy for a system of N particles: 
n 

T + Ek UkM^k^ V'00"81-' (4) 

where the kinetic energy is given by: 

T-IL, mk(dVdt>t' (4a) 

and the constant may be referred to the initial conditions at t = t 
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Consider the case when all the internal molecular forces are in equilibrium: 

mk (d2 rk/dt2)  -  Fk =  0. (5) 

Now,  if a system of free particles is in equilibrium,  the total work done by all forces, including inertia, 

in a small virtual displacement is zero: 

^kt
fk-mk(d2Vdt2)]- 6^ = 0' (6) 

and labelling each coordinate separately and consecutively in reference to all N particles: 

F   (F. - m. x. ) •   6x.  =  0; x.   = d2 x./dt2. (6a) 
i-j      i i    i' i '     i i 

Introduce generalized coordinates q, and assume that each Cartesian coordinate is a function of them, 

i. e. , x   = x.  (q     .. . , qj; there are in general f ■ 3N independent degrees of freedom for a system 

of N free particles.    In the case of "i " constraints on the system, the magnitude " f" is equal to 

{3N-i ).    By simple calculation one gets with q.  =  d qVdt: 

m. x. 6x.  = ) ■£ A-  (1/2 m. x?)   - r-^- (1/2 m. x2) 
dt  3qk   v 11'       rfqk >   ' 

b\' 

and 

so that: 

F. 6x.  = -  6U   = - (U.    . 8q,  + ... + U 
ii i i, ql     1 i.qf'V' 

X_, aP-iäf ^"-i^-^älr <1/2mii') 

(7) 

(7a) 

(8) 

3U. 
T — 6qk  .  0. 

Since 6q    are independent,  the bracketed expression vanishes identically, individually for each k, and 

since U is not a function of q.   but only of q     i.e. ,11,-,= 0,  one has: 

|(T-U),   ,k-(T-U) ,=0;T=r     l/2mk^. (9) 

If non-conservative forces  F .  are considered in addition, the work done is: 

ax. _       ax, 
IiF;6xi  = (EiF;^)aq1+...+(i:iF:   ^)5qr 

Let: ax, 
r F' —^ - r'  ; ^-i    i   aqk qk 

then eq. (9) becomes: 

-£ L,   .,   - L,    ,   =  F' . ;  L = T-U, dt    '  qk qk qk 

(10) 

(10a) 

(H) 
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the function L being called the Lagrangian function.    Eqs. (U) are known as the Lagrangian equations 

of the second kind.   Let: 

= 1/2 Ij «t^qi^i  +--- +xi,qf^
2 (12) 

T = l/2(Pnh1
2  * P22V  *..•   -2^2 ^1^2 + ••■)' (12a) 

where the coefficients  P..   in this expression in q ' s can be easily determined from eqs. (12) and (12a). 
JK 

In a Cartesian coordinate system the momentum components are: 

p.  =  m. x,  = d(l/2 m   x.2)/d x   = T, , 
ill ill. 

By analogy: 

Pk=   T'qk=   (Plk^l   +   •••    +   PfkV- 

Introduction of eq.  (14) into eq. (9) gives: 

dpk/dt =  3L(qk,  qk)/3qk- 

Introduce the Hamiltonian,  defined as: 

and since 

then: 

L^k  =  T'qk  =   Pk'    T = T<V^    U'qk=0- 

dH =  Ekf^pkV  +   H-qkd V  =   I^^^k   +  Pkd\) 

I k (L' qk d\  +   L' qk dV  = I , (\ dPk " Pk d^- 

Comparison of coefficients in eq.  (18) yields: 

H'Pk "  \'    H'qk 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

These are Hamiltonian canonical equations.    The Hamiltonian L may be identified with the total energy, 

for a conservative system,  as the following analysis shows: Since T is a homogeneous quadratic function 

of q  ,   eq.  (12a),  then from here and eq.  (14) one has: 

Ik\T'äk-  2T=EkPkV -k Hk    'qk 

and since by definition L « T - U, eq. (16) becomes: 

(20) 

H (p.,  q ) =  2T - (T - U) = T  + U  =  E = Total Energy.    (21) 
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This total energy of the system is constant in Hmp since substitution of eq. (19) in the time derivative 

of H gives zero as the result: 

" = !.'"• pk   dt 
:) + H,  .  —i? ' ' qk    dt (22) 

In classical mechanics a system is described by a statement of the coordinates and velocities of 

all its particles.    Here it proves more desirable to use the momenta rather than the velocities.    If there 

are N coordinates and N momenta, we can then visualize the situation by setting up a 2N dimensional 

space, called a phase space, in which the coordinates and the momenta are plotted as variables; here a 

single point,  called a representative point, gives complete information about the system.    An assembly 

of systems corresponds to a collection of representative points and it is generally assumed that there 

are so many systems in the assembly that the distribution of representative points is practically continu- 

ous in the phase space. 

1. 2 Quantum Mechanics 

Before the advent of quantum theory,  nature' s apparent continuity had been appealed to in applying 

the scheme of classical mechanics to the formulation of a theory of the mechanics of an assemblage of 

microscopically defined particles.    But the necessity for a departure from classical mechanics is clearly 

shown by experimental results.    With the recognition that there is no logical reason why Newtonian and 

other classical principles should be valid outside the domain in which they have been experimentally 

verified has come the modern point of view that departures from these principles are indeed necessary. 

Simply, the classical mechanics fails to explain some microscopic phenomena. 

For example, the forces known in classical electrodynamics are inadequate for explaining the 

remarkable stability of atoms and molecules.    Classical statistical mechanics enables one to establish 

a general connection between the total number of degrees of freedom of an assembly of vibrating systems 

and the specific heat.    If one assumes that all the spectroscopic frequencies of an atom correspond to 

different degrees of freedom, one obtains a specific heat for any kind of matter incomparably greater 

than the observed value.    This leads to a new clash between classical mechanics and the results of 

experiments.    A similar clash is found in connection with the energy of oscillation of the electromagnetic 

field in a vacuum.    In sum,  attempts to construct a successful model of an atom on the basis of Newtonian 

mechanics have failed. 

As another illustration of the failure of the classical mechanics we may consider the behavior of 

light (Ref.  25,  p. 2).    We have,  on the one hand,  the phenomena of inteWerence and diffraction,  which 

can be explained only on the basis of the wave theory; on the other, phenomena such as photo-electric 

emission and scattering by free electrons which show that light is composed of small particles.    These 

particles, photons, have a definite energy and momentum, depending upon the frequency and velocity of 

the light, and appear to have just as real an existence as electrons, or any other particles known in 

physics.    A fraction of a photon is never observed.    Modern experiments have shown that this anomalous 

behavior is not peculiar to light,   but is quite general.    All material particles have wave properties, 

which can be exhibited under suitable conditions.    We have here a striking and general example of the 

breakdown of classical mechanics--not merely an inaccuracy in its laws of motion, but an inadequacy of 

its concepts to supply a description of atomic events (Ref.  25, p. 3). 
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The need to depart from classical ideas in order to account for the ultimate structure of matter is 

obvious.    In a classical explanation of the constitution of matter,  one assumes a large number of small 

constituent parts and postulates laws for the behavior of these parts;  from these postulates the laws of 

matter in bulk are deduced.    But this cannot complete the explanation,  since the structure and stability 

of the constituent parts are still unexplained. ♦   To go into this question,  it becomes necessary to postulate 

that each constituent part is itself made up of smaller parts,  and there is no end to this subdividing. 

So long as "big"  and " small"  are relative concepts,   it is no help to explain the big in terms of the 

small and vice versa.    It is therefore necessary to modify classical ideas in such a way as to give an 

absolute meaning to size.    To do this,  one must assume that there is a limit to the fineness of our powers 

of observation and the smallness of the accompanying disturbance--a limit which is inherent in the nature 

of things and can never be passed by improved technique or increased skill on the part of the observer 

(Ref.   25, p. 3).    If the object under observation is such that the limiting disturbance is negligible,  then 

the object is big in the absolute sense and we may apply classical mechanics to it.    If,  on the other hand, 

the limiting disturbance is not negligible,  then the object is small in the absolute sense and one requires 

a new theory to deal with it.    If a system is small,  one cannot observe it without producing a serious 

disturbance and hence cannot expect to find any causal connections in the results of his observations. 

There is thus an essential indeterminacy in the quantum theory,  of a kind that has no analogue in the 

classical theory.    The quantum theory does not enable one to calculate the general result of an observation, 

but offers only the probability of obtaining a particular result when the observation is made. 

Thus quantum mechanics starts out quite differently from classical mechanics and is more correct 

and more fundamental for statistical purposes.    It does not deal with coordinates of the particles;   it sets 

up a statistical assembly,   and tells how that assembly changes with time without the intermediate steps of 

solving for the motion of individual systems by Newton' s laws of motion. 

In order to put quantum mechanics onto a quantitative basis,   a new set of laws is required for the 

starting point of the new theoretical scheme;  of these the principle of superposition is fundamental.   This 

principle, the result of analysis and interpretation of typical microscopic phenomena such as polarization, 

corpuscular interference,  radiation,  etc. ,  asserts that any state may be regarded as the result of a 

superposition of two or more states in an infinite number of ways (inconceivable in a classical view).    The 

superposition principle implies that the states must be connected with mathematical quantities which when 

added together give further quantities of the same kind;  one may therefore describe the state of a system 

by a vector quantity in a space of (generally) infinite dimensions,  a quantity conveniently denoted by   if. 

In general,  any set of states may be dependent or independent,  depending on whether the  +' s are linearly 

dependent or independent. 

In experiment,  one determines the numerical value of a dynamic variable (called an observable); this 

is represented in the theory by a linear operator.    The axioms and rules of manipulation governing these 

two mathematical quantities are then developed into a theoretical scheme.    Particular operators are 

associated with particular modes of observation,  and the laws of nature are expressed as relations among 

these operators. 

The dynamic variables may be expressed in terms of a set of canonical coordinates and momenta; 

these quantities in theory obey the following laws in quantum mechanics: 

»Exactly the same situation exists in recent problems in fluid dynamics. 
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I.e., 

[P^ Pj] = (PiPj  " PjPi) = 0. for aU i- J; 

[qj. dj] = (qjij - ijii) = 0' foralli'J; 

[■"i' PJ] = V (qipj "  PjV =   ih [qi' Pj]' 

(«Jj Pj - Pj q,) -  lh  6^, 

(23) 

(24) 

(25) 

(25a) 

where h Is a new universal constant having the dimensions of action.    From these fundamental points, 

the differential equations describing the behavior of systems obeying the laws of quantum mechanics may 

be derived.    The assumption of superposition relationships between the states leads to a mathematical 

theory in which the equations that define a state are linear in the unknowns.    In consequence of this, 

various attempts have been made to establish analogies with systems in classical mechanics which are 

governed by linear equations and for which a superposition principle holds.    Such analogies have led to 

the name " wave mechanics"  given sometimes to quantum mechanics.   But one must remember that the 

superposition in quantum mechanics is essentially different from any occurring in the classical theory, 

as is shown by the fact that the quantum superposition principle requires indeterminacy in the results of 

observations in order to be capable of a sensible physical interpretation.    Analogies are thus liable to be 

misleading (Ref.   25,  p.   14). 

1. 3 Classical Statistical Mechanics 

The principles of statistical mechanics permit us to make reasonable predictions as to the future 

conditions of a system, which may be expected to hold on the average,  starting from an incomplete 

knowledge of its initial state.    Historically, the science of statistical mechanics was specially devised 

for the treatment of complicated systems, composed of such an enormous number of individual molecules 

that it is too difficult to try to calculate the precise behavior of the system as a function of time by the 

methods of ordinary mechanics.   Thus the general nature of the statistical mechanics procedure for the 

treatment of complicated systems consists in studying the behavior of a collection or ensemble of systems 

of structure similar to that of the system in question, distributed over a range of different precise states 

(Ref.  169,  p. 2). 

In order to investigate the behavior of such ensembles of systems it is convenient for any system of 

f degrees of freedom to construct a Euclidean space of 21 dimensions with 2f rectangular axes, one for 

each of the coordinates q,, . . ., ^ and one for each of the momenta Pj p{.    Following Gibbs, we 

call such a space a phase space (Ref.  169, p. 43).    The instantaneous state of any system in the ensemble 

can then be specified by the position of a representative point in the phase space, and the condition of the 

ensemble as a whole can be described by a set of such representative points, one for each system in the 

ensemble.    The behavior of the ensemble with the time is described bv the trajectories of points in the 

phase space. 

The fundamental property of such a phase space can be expressed by means of Llouville' s theorem 

referring to the density of distribution p of the representative points In the space. The Llouville1 s 

theorem states: dp/dt = 0, when one considers the rate of change of density In the neighborhood ol any 

selected moving phase point rather than In the neighborhood of a fixed point In the phase space.    This Is 

called the conservation of density in phase. 
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The procedure and methods are statistical in character; the results which they provide are true on 

the average for the systems in an appropriately chosen ensemble rather than necessarily precisely true 

in any individual case. 

The concept of averages introduces the necessity of providing a relationship between the time 

average (usually observable experimentally) and the ensemble average calculated by the methods of 

statistical mechanics for all the members of the corresponding representative ensemble.    The postulate 

leading to the equality of these two averages was called by Boltzmann the ergodic hypothesis. 

Recent work of a particularly applicable nature in this field is a study (Ref. 78) of the statistical 

mechanics of irreversible processes in linear assemblies and the application of results (Ref. 124) to 

three-dimensional crystals. 

1. 4 Quantum Statistical Mechanics 

In classical mechanics we regard the state of a system at any time as specified by the values of its 

coordinates and momenta, and can regard the future behavior of the system as uniquely determined by its 

initial state (Ref.  169, p.  325).    If the knowledge of the initial state is inexact, it is useful to apply the 

methods of the classical statistical mechanics. 

Quite similar situations are also encountered in quantum mechanics.    In general, the system in 

quantum mechanics is specified by a probability amplitude.    Such probability amplitudes change with time 

in the case of an Isolated system in the definite manner dictated by the Schrödinger equation, so that in 

principle it is also possible in quantum mechanics to make precise predictions as to the changes in the 

state of a system as time proceeds.    But just as in classical mechanics one may encounter situations in 

which it is not practicable to treat the precise state of a system as time proceeds.    Hence one may resort 

to the study of an ensemble of systems of the same kind as the one of interest but distributed over a range 

of possible states.    The average behavior of the systems in such an ensemble will indicate the average 

behavior of a single system of interest.    The Liouville theorem has here its analogue,  giving the de- 

pendence on time of the density matrix of an ensemble of quantum mechanical systems. 

1. 5  Matrix and Wave Mechanics 

The expression "quantum theory"  embraces all the theories in which Planck's constant h plays a 

role.    Quantum theory thus includes the Bohr-Sommerfield theory,  sometimes called classical quantum 

theory,  as well as quantum mechanics in its various forms:  wave mechanics,  matrix representation 

(matrix mechanics),  and operator representation. 

The quantum mechanics of Heisenberg (matrix method) was inaugurated by W. Heisenberg in 1925 

(Ref. 121, p. 63). The direct relations between observables are not in general expressible by ordinary 

algebra, and Heisenberg' s development led to the utilization of matrix algebra. 

Wave mechanics was originally suggested by de Broglie.    Later it was developed by Schrödinger, 

who outlined its fundamentals in 1926.    The Schrödinger method starts with the observation that the 

classical laws of point mechanics can be put into a form analogous to the laws of geometrical optics; 

i. e. , classical point mechanics represents only a first approximation of more general laws.   To retain 

the parallelism with optics, one must consider that these laws are analogous to the laws of wave optics. 
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1. 6 The Theory of Relativity 

Until recently, time was regarded as something essentially distinct from space and from the 

behavior of material bodies.    All motion Involves displacement relative to something or other; but there 

may be various ideas in regard to the entity relative to which the displacement occurs.    This kind of 

relativity has been called " Newtonian relativity. " 

Assume two different frames of reference. Cartesian coordinate systems (x, y, z), (x, y', z ), 

each in uniform translatory motion relative to the other.   Then the equations of transformation for 

Newtonian relativity are: 

x'   = x - ut,   y'   = y,   z"   = z,   t"   = t. (26) 

Einstein' s postulates of the special or restricted theory of relativity arc the following: (1) The 

laws of physical phenomena are the same when stated in terms of either of two inertial frames of refer- 

ence (and involve no reference to motion through an ether),  i. e., all frames of reference are equivalent; 

(ii) in any frame of reference, the fundamental laws of nature remain the same.    In particular, the 

velocity of light is a fundamental constant. 

An inertial frame is usually called an "unaccelerated" one.    Thus, In the special theory of 

relativity the two frames of reference are in uniform translation relative to each other.    In the mathe- 

matical formulation of this concept the Lorentz transformation finds a large application.   Thus, for the 

motion of the frame (x , y, z') In the x-direction with the velocity v, the following formulas are valid: 

x" = (x - vt)(i - vVc2)" 1/2; y' = y; z' = z; (27) 

t-. (t-xvc-a)(i-vvcar1/2. (27a) 

Preservation of the law of conservation of momentum gives the law of variation of mass: 

m'   = m(l -v2/c2)'1/2;  c = velocity of light. (28) 

Relativity puts time on a basis equivalent to the space coordinates and Invariants are found only for four 

dimensional space.    Calculation of the momentum gives for Its four components: 

-1 % 
'p  ,  P ,  P ,  'EC     ); E =  mc". 
^x*    y      z 

Similarly, for the radiation wave number vector the four components are found to be: 

^x'1-  SX'  ^ ^ 

(29) 

(30) 

where: X = wave length;  u = radiation frequency.    The general theory of relativity takes up the proble. 

of harmonizing space, time and the laws of gravitation.    Einstein concludes that, In the neighborhood of 

any given point, there should be no difference of any kind between the gravitational field due to attracting 

matter and the apparent field due to acceleration of a frame of reference.   This proposition adopted as 

a postulate is called the principle of equivalence. 
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1. 7   Quantum Theory of Fields* 

In classical physics a field Is described by one or several space-time functions «^(M) which 

satisfy certain partial differential equations, the "field equations" (Ref,   191).    One may also start with 

a variatlonal principle chosen in such a way that its Eoler differential equations are the same field 

equations.   Let L be a function of the i^ (M) antl of their first time and space derivatives: 

L = L^j, A^, ^ *2, A*2, ^2;   . . .);       *2 - a*2/at. (31) 

By integration over a volume V and a time interval from t* to t" one forms: 

t" 

/    ^      l^' dx = I. (32) 

f V 

Varying the function ^  for a fixed region of integration subject to restriction that the variations Si//^ 

vanish at the boundary of the domain of integration, i.e., at the surface of the volume V and for 1=1' 

and t = t", one obtains: *" 

ÖLdx. (33) 
"'/   dt     ^ 

f V 

One requires that the classical field be determined by the condition that the integral 1 shall be stationary 

(«I = 0) for arbitrary variations itp   which satisfy the above conditions and for an arbitrary choice of 

the integration region.    From this It follows that for all times and for all positions: 

0L = L, ,    -   V      ~-   ilJ .   A  L,   ,   -0      ((7 = 1,  2...) . (34) 

These, the field equations, are partial differential equations of the second order at most for the field 

functions \p .   One calls 

L'*-ItäT^ axk 
5 «L/«^/, (35) a 

k axk 

the "functional derivative" of /L dx with respect to ^ .   With this notation, eq. (34) reduces to the form: 

a/at L, ;   = «L/a^ , (36) 
a 

analogous to the ordinary equation of classical mechanics.    This variatlonal principle can be connected 

with Hamilton' s least action principle of classical mechanics.    By this procedure a field may be 

Interpreted as a mechanical system of infinitely many degrees of freedom. 
(s) The above analogy may be further expounded by subdividing the space into finite cells 5x      which 

we distinguish by the upper index s; the value of the field function i^   in the cell (s) is denoted by 

\p     \t).   In this way it is possible to represent the function L(31) in any cell (s) as a function of the 
" (s) generalized coordinates q, = i^      .    In order to make the transition to Hamilton' s formalism in the 

•The equations used In this section and parts of the discussion are taken from Quantum Theory 

of Fields by Gregor Wentzel (pp. 1-8), Copyright 1949 by Intersclence Publishers, New York-London. 

Used by permission. 
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framework of the classical theory, one must Introduce the momenta p., which are canonlcally conjugate 
(B) ' 

to the coordinates q. = +       ; these are: 

Pj = 6x
(8) •   3L

(8)/a4-CT
(8). (37) 

Hamilton' s function Is then obtained by 

H = E pj ^j ■ L- (38) 

This makes It possible to replace the field equations (34) by the "canonical field equations" corresponding 

to the canonical Hamilton equations of motion in classical particle mechanics: 

<L = H     ; p   = - H (39) 

The transition from classical to quantum mechanics is effected by replacing the canonical variables q,, Pi 

by Hermitlan operators which satisfy the commutation rules: 

[a, b] =   ab -  ba; (40) 

[<lj> ijj] = [Pj,  Pj] = 0;   [py qj] = ih"1 6^; (40a) 

where h denotes Planck' s constant divided by 2» and 6     is the Kronecker delta.    The mechanical 

properties of the system are determined by its Hamlitonian, which is formally taken over from the 

classical theory but is Interpreted as Hermitlan operator.    One may consider a quantized field as defined 

by its Hamlitonian H = / 5" dx or by Us Lagrangian L = _/" L dx with: 

H = H (^j,  Mv fjj  +2, ...); Wgm dL/aia; (41) 

L = Z{<vv My +J; +2' •••)- (41a) 

The ij/^ and w^ in H stand now for Hermitlan operators, with commutation rules which result from those 

of q. ■ i)/ ^ ',   p   =   6x      » *    by the transition to the continuum.   This procedure is characteristic of the 

so-called " canonical field quantization"   as it was first formulated for general fields by Heisenberg and 

Pauli.   Writing ^a(x), »  (x) instead of I|I 
(s',   «■ ^s', the following equations are postulated: 

[V*)- V {X'K " t'a(x)' V ^K = 0; (42) 
[»^(x), ^ (x)] = r^d^,   6(x,x'). (42a) 

Here 6 (x, x') stands for a function the value of which is (6x^8V   or 0, according to whether the points 

x and x* lie in the same or different cells.   Integrating for fixed x'   with respect to x,   one obtains 

/Mx, x') dx - 1.   In the limit of the continuum (cell volume 6x^8' —- 0), 6(x, x') goes over Into the 

three-dimensional Dlrac 6-functlon: 

6(x, x,)^6(x-x,)=   (O'««^«;. (43) v '      ' ' oo for x = x , 
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in such a way that 

/ 
5(x- x') dx = 1 , (43a) 

This limiting process has meaning only If 5(x, x1) appears In tht -ntegrand of a space integral.    In quantum 

mechanics, the canonical equations of motions are valid as operator equations on account of the commutation 

rules of the q. and p.: 

q. .Ih'^H,  q^ 

p. .Ih"1^, Pjl 
q. 

(44) 

(44a) 

In general, the time derivative of any function 0 of the q. and p   not depending explicitly On time may be 

expressed by: 

0 s ih"1 [H, 0]. (45) 

It must be kept in mind that the operator 0  is not simply the partial derivative of $ with respect to time 

but refers to expectation values: 

p = ih"1 [H, 0] = d0/dt. 

The same result holds for the field theory: 

J/^x) sitT1 |H, ^(x)!;    »a(x) = ih'1 [H,   ^(x)]. 

(46) 

(47) 

The evaluation of these commutators with the help of the commutation rules (42, 42a), (43, 43a) leads to 

operator equations which are formally equivalent to the field equations (34) in the same way as the canoni- 

cal equations of motion In particle mechanics (q. = H,     ;  p. = - H,     ) are equivalent to Lagrange's 

equations.   They refer to the operator equations which stem from the definitions (47) as "canonical field 

equations. " 

An attempt of a mathematical treatment of quantum field theory was done by Friedrichs (Ref.  29). 

At present the subject does not admit a systematic or rigorous presentation. 

1.8   Groups, Statistical Mechanics,  and Quantum Theory* 

The theory of groups has a special significance with respect to statistical mechanics and quantum 

theory. 

Wiener (Ref. 196) begins his description of the relation between groups and statistical mechanics by 

discussing theworksof Gibbs and Lebesque.   The key ideaof Gibbs Is this: In Newton's dynamicsone is con- 

cerned with an individual system, with given initial velocities and momenta, undergoing changes according to 

acertain system of fore es under the Newtonian laws.   If one assumes acertain initial distribution of the known 

positions and momenta, he determines in a completely Newtonian way the distribution of the momentaand po- 

sitionsfor anyfuturetime.   Someof the statements about these distributions have thecharacter of assertions 

that the future system will have certain characteristics with probability one or zero, and further that an 

event of probability one may be made up of an assemblage of Instances of probability zero.   The technique 

*Thls section is a condensation of Chapter n.  Cybernetics,  by N.  Wiener, Copyright 1948 by 

Technological Press of Massachusetts Institute of Technology and John Wiley and Sons,  Inc.    Used by 

permission. 
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of the Gibbsian statistical mechanics uses the process of the resolution of a complex contingency into an 

infinite sequence of more special contingencies--a first, a second, a third, etc. --each of which has a Known 

probability;  and the expression of the probability of this larger contingency is the sum of the probabilities 

of the more special contingencies which form an infinite series.   Thus one cannot sum probabilities in all 

conceivable cases to get a probability of the total event--for the sum of any number of zeros is zero--but 

we can sum them if there is a first, a second, a third member,  and so on, forming a sequence of contir 

cies in which every term has a definite position given by a positive integer. 

Lebesgue' s work was based on the theory of trigonometric series.    This goes back to the physics of 

waves and vibrations and to the question of the generality of the sets of motions of a linear system which 

can be synthesized out of the simple vibrations of the system.    Thus a single function is expressed as the 

sum of a series.    In these series,  the coefficients are expressed as averages of the product of the function 

to be represented,  multiplied by a given weighting function.    The whole theory depends on the properties 

of the average of a series in terms of the average of an individual term.    The average of a quantity,  which 

is one over an interval from zero to A,  and zero from A to  1,  is A,  and may be regarded as the proba- 

bility that the random point should lie in the interval from 0 to A,  if it is known to lie between 0 and 1. 

In other words, the theory needed for the average of a series is very close to the theory needed for an 

adequate discussion of probabilities compounded from an infinite sequence of cases.    Thus Lebesque,  in 

solving his own problem,  had also solved that of Gibbs. 

Assume a set of 2N coordinates, N of which are generalized coordinates and N the generalized 

momenta.    They determine a 2N-dimensional volume.    If we take any region of this space and let the 

points flow with the course of time, which changes every set of 2N coordinates into a new set depending 

on the elapsed time, the continual change of the boundary of the region does not change its 2N-dimensional 

volume.    In general, for sets not so simply defined as these regions, the  notion of volume generates a 

system of measure of Lebesque' s type.    In this system of measure,  and in the conservative dynamical 

systems which are transformed in such a way as to keep this measure constant, the energy also remains 

constant.   Sometimes the momentum and the moment of momentum of the system as a whole remain 

constant as well; these can be eliminated easily. 

Let us assume a measure on a region in a phase space for which energy, possibly total momentum, 

and total moment of momentum are determined, and let the total measure of this restricted region be 

constant, or, as one can make it by a change in scale, one.    As this measure has been obtained from a 

measure invariant in time, it is itself invariant.   This is called phase measure, and averages taken with 

respect to it are known as phase averages. 

But any quantity varying in time may have a time average.   In Gibbs'  statistical mechanics, both 

time averages and space averages occur.    Thus, the appearance of ergodic theory and of the idea in Gibbs' 

attempt to show that these two types of average were, in some sense, the same,  is obvious.    Besides the 

notions of average and of measure, which are most urgently needed to understand Gibbs' theory, in order, 

in turn, to appreciate the real significance of ergodic theory one needs a more precise analysis of the 

notion of invariant and of transformation group.    In general,  in physics, one should be able to present a 

property of the system discussed which remains the same under the flux of particular circumstances.   In 

the simplest case, the system is subject to a property which is invariant to a set of transformations. 

Thus one is led to the notions of transformations, transformation group, and invariants.    A transformation 

A of a system is some alteration in which each element goes into another.    The product or resultant of 

transformation AB is, in general, not equal to the product BA.   If AB and BA are the same,  A and B 
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are permutabie.   The Identity transformation A"    A ~ 1 Is a transformation which traiiuorms every 

element Into Itself.   In this case A"   is called the inverse of A   Of course,   A Is the Inverse of A"1.   I 

Is Its own Inverse, and the Inverse of AB Is B    A   . 

There exist certain sets of transformations In which every transformation belonging to the set has an 

inverse, likewise belonging to the set, and where the resultant of any two transformations belonging to the 

set itself belongs to the set.     These sets are known as transformation groups.   If any two transformations 

of the group are permutable, the group Is Abelian.   If any quantity attached to all the elements transformed 

by a transformation group is unchanged when each element is changed by the same transformation of the 

group,  it is called an Invariant of the group. 

The bibliography Includes references on the relation between the theory of group and quantum 

mechanics.   The most outstanding In that respect are the works of Weyl (Reis. 192,193).   Also of value 

are the supplementary works on the physical aspect, such as those of Sommerfeld (Refs.  ISO, 151), Ruark 

and Urey (Ref.  132),  Gerlach (Ref.  34),  etc.   The book of von Neumann is less known, but valuable (Ref. 

118).    The remarks below are based largely on Weyl' s books. 

The Importance of the standpoint afforded by the theory of groups for the discovery of the general 

laws of quantum theory is apparent.   The concepts arising in the theory of groups find their application In 

physics.   Thus, for example, the theory of groups finds an Immediate application to the theory of a single 

electron in a spherically symmetric electrostatic field.   A rotation of physical space, i. e. , an orthogonal 

transformation from the Cartesian coordinates (x, y, z) into (x', y', z') Induces a unitary transformation 

O(s):   +—>V  defined by: 

^•(x'^z1) = +(x,y,z), (48) 

In the system space R of the electron, the vectors of which are the wave functions ^ (x, y, z) describing 

the state of the electron. The correspondence s —► U(B) is a definite representation C, of Infinitely 

many dimensions, of the rotation group 6 This representation C can be reduced Into the Irreducible 

constituents D ,  and it is found that each D   with Integral i   occurs an Infinite number of times. 

On going over from one electron to two, the vectors of system space are the functions ^ (x , y,, z1; 

x., y„, z ) of the Cartesian coordinates of both electrons.   The unitary transformation U; ^ —► >|>' 

Induced In system space by the rotation s Is now defined by the equation: 

V{t,vf\,»'li ^ 2>y' 2'z'2^ = ^i'7!'2!'  x2,y2,z2^ ^ 

where »'i.y'i.z'i   »"d x'2'y'2'Z'2 are obtalned from ^f^v'l and x2'y2'z2 by the Salne orthoBonal 

transformation s.   In this situation the state space R    of the system consisting of two electrons Is 

R x R and the representation C    Induced In it is C x C.   This representation Is determined by the 

kinematic constitution of the system alone, and is In no way Influenced by the dynamic relationships. The 

rule lor x-multlpllcatlon for the Induced representatlpn on composition of partial systems presupposes 

only kinematlcal, not dynamical. Independence of the partial systems. 

Similarly, one can find a relation between quantum kinematics and the Abelian group of rotation. 

The kinematic structure of a physical system Is expressed by an Irreducible Abelian group of unitary ray 

rotations In system space.   The real elements of the algebra of this group are the physical quantities of 
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the system; the representation of the abstract group by rotations of system space associates with each 

such quantity a definite Hermitian form which • represents" it. 

There seems to exist a plainly discernible parallelism between the more recent developments of 

mathematics and physics.    Occidental mathematics has in past centu  las broken away from the Greek 

view and followed a course which seems to have originated in India, and which has been transmitted, 

with additions, to us by the Arabs;  in it the concept of number appears as logically prior to the concepts 

of geometry.   The result has been chat mathematics has applied this systematically developed number 

concept to all branches, irrespective of whether it is most appropriate for the particular applications in 

question.    But the present trend In mathematics Is clearly In the direction of a return to the Greek stand- 

point; one now looks upon each branch of mathematics as determining its own characteristic domain of 

quantities.    The algebraist of the present day considers the continuum of real or complex numbers as 

merely one 'field'  among many; this newer mathematics, including the modern theory of groups and 

abstract algebra.  Is clearly motivated by a spirit different from that of 'classical mathematics, '  which 

found its highest expression in the theory of functions of a complex variable.    The development of the 

classical mechanics applied to a continuum had its parallelism in the development of classical mathe- 

matics and vice versa.    The continuum of real numbers has retained Its ancient prerogative in physics 

for the expression of physical measurements,  but it can Justly be maintained that the essence of the 

Heisenberg-Schrödinger-Dirac quantum mechanics is to be found in the fact that there is associated with 

each physical system a set of quantities,  constituting a non-commutative algebra in the technical mathe- 

matical sense, the elements of which are the physical quantities themselves. 

1. 9  Dissipative Systems 

There exist various approaches to generalize the principles of classical mechanics to systems with 

a dissipation.   Rosen and Herivel,  each discussed below,  represent two such attempts. 

1.9.1 Rosen (129) 

Rosen formulates a variatlonal principle for diffusional processes such as heat and matter diffusion, 

modifying Onsager' s principle of minimum dissipation.   Milliken in 1929 attempted to obtain a variatlonal 

principle for describing the flow of a viscous Incompressible fluid and came to the conclusion that for 

three-dimensional flow, unless the vector product of the vortlcity and velocity Is zero,  such a principle 

could not be found.    Rosen states that Milliken overlooked the possibility of a restricted variatlonal 

principle similar to Onsager' s in which forces are held fixed.    Following his path of reasoning, Rosen 

derives a variatlonal principle for the flow of viscous incompressible fluids which again has some analogy 

to Onsager' s principle. 

1.9.2 Herivel (50) 

Herivel proposes a general variatlonal principle for dissipative systems; he shows that it can be 

applied,  in unchanged form, to a general dynamic system with dissipation, to the motion of perfect and 

viscous fluids, and to the flow of electricity in linear conductors.   The papers of Herivel and Rosen seem 

to Indicate the possibility of the formulation of a general variatlonal principle for dissipation processes 

applicable without change of form to widely differing systems.    Similarly,  Hamilton' s principle applies 

without change to all dynamical problems in which no dissipation occurs. 
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2.   SOME FUNDAMENTAL MODELS AND CONCEPTS OF FLUID DYNAMICS 

2.1 Continuum 

The general procedure in theoretical mechanics can be divided into the following five steps (Ref. 

155, p. 6): 

(1) A physical system is an object of investigation; one wishes to predict its behavior under 
various circumstances. 

(2) An ideal, mathematical model of the physical system is constructed mentally. 

(3) Mathematical reasoning is applied to the mathematical model; this includes a solution of 
the mathematical system in question. 

(4) The mathematical results are interpreted physically in the terms of the physical problem. 

(5) These results are compared with the results of observation. 

The best known mathematical model applied to the investigation of phenomena in fluid dynamics is 

the model of continuum.   It is, in fact, the basis of a great deal of Newtonian mechanics.   Based on the 

notion of a particle, this mathematical model of matter is actually discontinuous: a collection of a vast 

number of particles.    But since this model involves a very large number of things a statistical method 

may be used; instead of following Individual particles, we may direct our attention to their average 

behavior.   In fact, the discontinuous tody, consisting of a great number of separate particles, is 

replaced by a continuous distribution of matter. 

It seems obvious that a continuum model may present fairly enough the phenomena in solid bodies 

and incompressible media, i. e. , liquids.    But in compressible media the compressibility phenomena 

cannot be referred to the variations in the mutual locations of atoms inside a molecule (inter-atomic 

distances) or to the variations of distances between electrons and nuclei inside an atom.    The reason is 

that the variations of the density and of the volume of a fluid due to such changes are of a negligible order. 

Consequently, the significant variations of density in compressible media can be referred only to the 

variations in intermolecular distances.    This implies that the continuum model may give a reasonable 

approximation only for dense gases, that it may be questionable in the domains of rarefied gases, where 

the full statistical approach, corresponding to the full notion of " average, "  should be used. 

The mechanics of continuum is fundamentally the Newtonian mechanics.   A Newtonian continuum is 

defined as a finite or infinite closed region of Euclidean three-dimensional space, at each point of which, 

with the possible exception of isolated sets of points of dimension less than three, there exist the 

primitive characteristic functions for density, stress tensor, internal energy per unit mass, specific 

entropy, and heat flow vector,  and whose topological transformation in time into a finite number of other 

closed regions is governed by the principles of conservation of mass,  momentum, and energy.    Basically, 

one has the following independent and dependent variables in the most general three-dimensional system 

in the Newtonian continuum: four independent scalar variables: x, y, z,t;  19 dependent scalar variables; 

kinematic variables: three velocity components u, v, w, and density p; thermodynamlc variables: 

temperature T, thermodynamlc pressure p, specific entropy S, and three components of the heat flux 

vector; dynamic variables: nine components of a fluid stress dyadic. 

There are 10 scalar equations connecting these variables: conservation of mass, momentum (three 

equations of motion and three equations expressing the equality of the fluid stress dyadic to its conjugate), 

conservation of energy, and two equations of state: f(p,p, T) = 0 and T = T(S,p).   To obtain a determi- 

nate problem, nine more equations must be added.   To resolve the Indeterminacy of the general theory, 
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it is customary to restrict attention to some particular ideal body, subject to the general laws already 

stated, which is specified by some particular postulated property intended to represent the behavior of 

a class of actual bodies.   The defining property is now usually taken to be a functional relation among 

the stress dyadic and other variables, a functional relation between the heat flux and temperature,  or 

both.   Some particular cases may be distinguished: 

(1) The perfectly elastic body is defined by the condition that the stress depends only upon 
the strain from some preferred initial position and is independent of the rate of change 
of strain. 

(ii)  The perfect fluid is defined by the condition that the stress dyadic is always a pure 
pressure, and shearing stress cannot occur. 

(ill) The viscous fluid is defined by the condition that the fluid stress dyadic depends only 
upon the deformation,  without reference to any preferred initial configuration.   The 
fluid is said to be Isotropie if the constants in the linear stress-deformation relation 
are invariant under all possible rotations of Cartesian axes, or if the dissipation 
function is invariant In form under transformations of the Eulerian coordinates.    For 
more details the reader is referred to special works on the subject (Refs.  170,171,172). 

One may distinguish between kinds of fluid (171, 172): 

(I) The Stokesian fluid defined by a formulation equivalent to Stokes1   principle: the 
stress power is a function of the rate of deformation only. 

(II) The Maxwellian fluid,  which is a generalization of the Stokesian fluid: the stress 
tensor and heat flux vector are functions of viscosity, thermal conductivity, pressure, 
temperature,  rate of deformation tensor, vorticity,  etc.;  they are analytic functions 
of all the vectors and tensors listed. 

Truesdell proposes a new definition of a fluid which may extend the validity of the proposed and 

derived equations to the regime of rarefied gases (Refs.  170,171,172).    This is a rather general defi- 

nition of a fluid as a special type of continuum susceptible to the principal phenomena observed in 

rarefied gases.   His method proposes the development of the stress tensor in a power series in the 

vector and scalar variables listed in the Maxwellian fluid.   The fundamental assumption is that of the 

tensorial and dimensional invariance.   The proposed method is in one sense more general and more 

exhaustive, yet in another sense more definite, than those used previously.   But a full knowledge of the 

order of magnitude of terms,  and hence of the effects they represent, requires a knowledge not available 

at present, of the experimental values of the dimensionless higher order coefficients.   This is a serious 

disadvantage of this proposition. 

The classical theory of Isotropie viscous fluids rests upon the Newton-Cauchy-Poisson law: 

-  p^    + Xd^ 6y 2M d. (50) 

where: 

t = the stress tensor; 

p = the pressure; 

X, M = the coefficients of viscosity; 

d = the rate of deformation tensor; 

6 = Kronecker delta. 
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In a rectilinear shearing flow, according to eq. (50) the shearing stress ty , and hence also the 

resistance, is proportional to the rate of shearing d^.   Since In many physical liquids this relation 

does not appear to be substantiated by experiments, considerable engineering literature on "non- 

Newtonian" fluids, in which tX^ is represented as a polynomial or power series In d^, has accumu- 

lated.    But these one-dimensional treatments can neither reveal nor reflect the characteristic 

phenomena of non-linear continuum mechanics. 

2. 2 Kinetic (Molecular) Theory of Gases 

The kinetic theory of gases is based upon a certain model of a gas which satisfies the following 

assumptions (Ref.  104): 

(1) A gas consists of molecules which in a stable state and in a given type of gas are all 
alike.    Ths mass of the molecule is denoted by m. 

(2) The molecules are in motion, and as they are material bodies Newton' s laws of motion 
may presumably be applied. 

(3) The molecules behave as elastic spheres of diameter a.    In a perfect gas the number of 
molecules in the space considered is small enough that the mean distance between the 
molecules Is large compared to their diameter, and thus for these considerations the 
space they occupy may be disregarded. 

(4) In perfect gases no appreciable forces of attraction or repulsion are exerted by the 
molecules on each other or on the substance of the containing vessel. 

The assumptions of the stable state and similarity of the molecules are Introduced to simplify the 

initial conditions.   That the molecules are endowed with motion follows from the fact that they are 

assumed to have kinetic energies of agitation and are reflected from the walls, producing pressure. 

That they obey Newton' s law is a consequence of the assumption that they are material bodies in motion, 

and Newton' s laws are assumed applicable to all material bodies.   The assumption of perfect elasticity 

Is necessary In order to account for the reversibility of the absorption and emission of heat: if It Is 

assumed that they are not elastic, kinetic energy gained on heating would go into the deformation of the 

atoms when inelastic Impacts took place and unless this energy could be given back on cooling, heat 

would be lost In heating and cooling; If this elasticity does not hold, energy goes to atomic deformation, 

which may be radiated away as electromagnetic radiation.    The assumption of point molecules corre- 

sponds to reality only as a rough approximation.   In general, the Inter-molecular forces of attraction 

are much greater than the gravitational forces which undoubtedly act between the molecules.    For 

perfect gases all these forces are neglected for simplicity. 

From this brief presentation It seems obvious that the mathematical tool applied to the kinetic 

theory may be taken from the field of classical mechanics of conservative systems.   In the kinetic 

theory of gases viscosity Is regarded as due to a transport phenomenon.    A streamline instantaneously 

moving faster than its neighbors will lose more momentum than it gains as the molecules pass in a 

random manner from one streamline to another, and so it will be retarded in its motion.    The coef- 

ficient of viscosity is a measure of the net momentum transferred under a specified gradient of mean 

velocity, and hence is proportional to the mean velocity of the molecules.    In general, the nonunlformlty 

in the thermodynamic and/or mechanical properties of a macroscopic system gives rise to phenomena 

which depend upon the mutual Interactions of Its microscopic structures.    When the latter are identified 

as actual exchange of the composite microscopically defined particles between one region and another, 
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the resulting behavior of the system is classed among the transport phenomena. 

Present kinetic theories of transpurt phenomena usually assume that any nonuniformity in the 

system is only a small deviation from equilibrium, and that any phenomena resulting from these non- 

uniformities are due to the perturbation terms in the modified expression for the molecular distribution 

function of momentum and position.    This perturbation method was developed by Chapman and Enskog, 

with higher approximations due to Burnett.   The expressions for the transport coefficients are in terms 

of sets of Integrals depending upon the force laws assumed for molecular collisions,  since the latter 

are considered in detail for the development of the "nonuniform"  theory.    Obviously, there are various 

transport phenomena. 

The kinetic theory of matter furnishes a much more complete prediction of the behavior of gases 

than is possible with a continuum theory.   Maxwell (Refs.  112,113,114), Boltzmann, Chapman (Refs. 

19,20,21), Enskog (Refs.  28,29), Rocard (128),  Burnett (16), Cowling (21), and several others have 

developed expressions for the stress tensor in a fluid from statistical considerations.    The results are 

not in perfect agreement, and there are indeed reasons to doubt the exact validity of all the analyses of 

this sort. 

Ordinary diffusion is the transfer of mass from one region to another because of a gradient in the 

concentration; diffusion may also result from a temperature gradient (thermal diffusion or the Soret 

effect);   viscosity is the transport of momentum through \he gas because of a gradient in the velocity; 

and thermal conductivity is the transport of thermal energy resulting from the existence of a thermal 

gradient in the gas; the transfer of energy may also result from a concentration gradient (diffusion thermo 

or Dufour effect). 

There are three main advantages of a kinetic theory derivation.    First, numerical values for the 

coefficients in the stress tensor expansion may be computed.    Second, theoretically the kinetic theory 

should allow one to predict the boundary conditions in more complicated cases like slip flow,  etc. 

Although past computations (Ref.  141) have not received general acceptance, it seems that something can 

be done in that respect.    The experiments of Knudsen (Refs. 79-81),  Kundt and Warburg, and others, 

have established that. In general, the " non-slip* condition is valid only if the mean free path of the gas 

is completely negligible relative to the characteristic macroscopic dimension.    Hence, for a rarefied gas, 

the "non-slip" condition must be replaced by some relation which specifies the slip velocity of the gas 

relative to the solid wall.   The phenomenological assumption of Basel specifies that the slip velocity be 

proportional to the shearing stress at the wall.   Similarly,  the experiments of von Smoluchowski (Ref. 

149) have shown that in rarefied gas there exists a " temperature jump" between the wall temperature 

and the temperature of the gas layer immediately adjacent to the wall.  The third advantage is that It is 

possible to calculate the heat flux. 

The fundamental assumption of the kinetic theory, that all macroscopic, observable properties of 

a substance can be deduced, in principle, from a knowledge of the forces of interaction and the internal 

structure of its molecules, has been demonstrated for the equilibrium state largely by the methods of 

statistical mechanics; the results are roughly equivalent to macroscopic thermodynamics.   The study of 

nonequilibrium states is, of course, much more difficult mathematically (Refs. 38, 40,41). 

For a satisfactory description of a nonequilibrium state on any level, one must have equations 

which determine the variation in time of the variables of state once their initial values are given.   The 

most detailed description is to specify the instantaneous values of the positions and velocities of all 

molecules.    The equations governing the behavior of the system can be taken to be the Hamilton canonl- 
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cal equations in the phase space (p, q).   This description, of course, offers much more information than 

is ever available or even desired,  but its disadvantage is that it is discrete rather than continuous. The 

latter difficulty is most easily remedied by the expedient of Gibbs.    Instead of considering a single physi- 

cal system (Refs.  38,40,41), one considers an assemblage of conceptual replicas of the given system or 

a continuum of such systems and Introduces the probability W(p, q, t) 5 W(P, t) that the system is In the 

state P at the time t.   The function W satisfies the Liouville equation which serves to determine the 

probability distribution W(P, t) at the time t when its initial value W(P, 0) is given.    Gibbs' description 

Is likewise much too detailed for most purposes since it gives the simultaneous probability distribution 

of all molecules.    Another possibility is to consider the probability distribution of a single molecule, 

molecule (1), independent of the state of all the other molecules: 

Wj (Pj.t) 
/ 

W(P,t) dP 
dP. (51) 

(The notation dP/dP.  indicates integration over the phase space of all molecules except [1]).   The function 

n W. (52) 

where n = number of molecules,  is defined over the phase space of a single molecule and is the distri- 

bution function.    The expression  F(P1) dP    represents the number of molecules with coordinates within 

dP    of  P       If W is a smooth point function,  sols  F,  and F{P]) dP    represents the probable number of 

molecules in dP.   even if dPj  is small compared to the size of a molecule.    One usually considers only 

molecules with no internal degrees of freedom,  i. e. , physically monatomic molecules. 

Let us discuss briefly the assumptions that are needed to obtain a determined equation for F or W.. 

In order to assign a unique  W to every W.,  one usually assumes molecular chaos and binary collision 

(Refs. 38-41).    One statement of molecular chaos is that the simultaneous probability distribution of 

r + s molecules,   W ,  is the product ot the individual probabilities W W , if no molecule of group r 

exerts a   force on any of group  s;  i.e. ,  In the sense of probability,  the two groups are independent.  The 

binary collision assumption states that the gas is so rarefied that collisions involving three or more 

molecules simultaneously can be Ignored.    Using the two assumptions,   W Is reduced to a product of 

W ' s and W ' s;  It remains to determine W. for a pair of colliding molecules In terms of W..   Applying 

the molecular chaos assumption after the two molecules separate,   W„ for two colliding molecules Is seen 

to be the product of two W,' s having as arguments the ultimate positions and velocities that the molecules 

attain after completing the collision.    With the addition of a few other minor assumptions, the Boltzmann 

equation for  F results. 

The following assumptions are used in the derivation of the Boltzmann equation:  (1) point molecules; 

(2)  complete collisions; (3)  slowly varying distribution function; and (4) molecular chaos. 

The second assumption Is a stronger form of the binary collision assumption.   The third assumption 

states that the molecular distribution function does not vary appreciably over a distance covered by the 

average molecule In a certain period dt.    This restricts this function to be essentially constant over a 

distance comparable to the size of a molecule, but imposes no restriction on the variation In that function 

over distances comparable to the mean free path.   In particular, flows around objects of molecular size 

cannot be handled by the Boltzmann equation, but object dimensions of the order of a mean free path cause 

no difficulty.   The fourth or molecular chaos assumption cannot be given a simple physical Interpretation; 

it has been proved only for the equilibrium state. 
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The problem of solving the Boltzmann equation has been attacked In several ways.   Hubert (Refs. 

53, 54) constructed a method ot finding all solutions F of the Boltzmann equation which are of the form: 

F = f X       + f.    + f, X + f, A (53) 

where f  (1 = 0,1, ...) are also solutions, and x is an arbitrary parameter to be identified with the 

mean free path.   Since as A ~* 0, the assumptions upon which the Maxwell-Boltzmann equation is 

derived lose their validity, and as  A   -»■ oo any polynomial approximation to (53) becomes less accurate, 

the results obtained by this method can have at most a narrow range of validity and an asymptotic charac- 

ter (Refs. 171,172).   Enskog's accepted scheme (Refs.  28, 29) begins with a X series,  but while Hubert's 

method determines the successive approximations at each stage,  Enskog introduces a considerable arbi- 

trariness, to be eliminated later by a formal procedure whose mathematical and physical meaning is not 

quite clear.   The most general stresses yet derived from the kinetic theory by Enskog' s method are 

those of Burnett (Ref.  16).    A new method of integration of the Boltzmann equation proposed by Grad (Refs. 

38,40, 41) does not employ the notions of stress and heat flux, but instead yields gross equations of motion 

in terms of moments of the distribution function up to any specified order. 

In general, a criterion for the range of validity of the approximate methods of solution of the 

Boltzmann equation is provided by the comparison of some characteristic length L with the mean free 

path L .    When L becomes comparable with L , it is necessary to go to higher approximations to obtain 

adequate results.    As discussed by Herzfeld (Ref.  52), Tsien and Schamberg (Ref.  180),  Primakoff (Ref. 

125), and others,  important dynamic contributions appear only in approximations higher than the second, 

but none of these authors has been able to derive more than the third approximation, due to formidable 

difficulties. 

Bhatnagar,  Gross and Krook (Ref. 7) propose an Iteration method for solving the Boltzmann equation 

which deals with the entire range of pressures in a unified manner and which satisfies general microscopic 

boundary conditions.   Their treatment of the term involving the collision processes In gases leads to a 

simple mathematical formation of Boltzmann equation.   Grad (Refs.  40, 41), considering the integral of 

angular momentum,  concludes that the effects due to angular momentum are extremely small. 

The problem of transport phenomena in polyatomic gases was attacked by Wang-Chang and Uhlenbeck 

(Ref.  187).    Jaffe proposed finding a series solution of the MaxweU-Boltzmann equation in the form 

F = f    + f,  X'1  + f. x'2 + ..., o        1 2 ' 

appropriate to very rarefied gases; the first approximation is " free molecule flow" rather than Eulerian 

hydrodynamics.    Application of the hydrodynamic equations in the forms proposed by Burnett and Grad to 

the theory of the boundary layer was performed by v.   Krzywoblocki (Refs, 86-89).   A regime on the 

border between the slip flow and free molecule flow was treated by Epstein (Ref.  30), v.   Krzywoblocki 

(Ref. 90), and others. 
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2. 3 Continuum Versus Kinetic Theory 

Comparing his proposition with Burnett' s stress equations, Truesdell (Ref. 172, p. 143) concludes 

that an immediate comparison is not possible, not only because of the awkward form in which Burnett' s 

equations are expressed, but also because they contain the superfluous dependent variable (density) which 

must be eliminated by the equation of state, following which there appear additional relations whose 

physical meaning is not apparent.   In discussing results obtained by Enskog' s method of integration of 

the Maxwell-Boltzmann equation, Truesdell (Ref.  172, p. 145) points out that the successive approxi- 

mations are uniquely defined only in terms of a certain formal procedure which perhaps may not yield all 

terms Involving some magnitude at the mth stage.   Thus some of the terms which appear in Burnett' s 

equations may possibly be cancelled by terms from presently undetermined higher approximations. This 

anomaly is not inherent in the kinetic theory treatment, for Grad' s results seem to be free of it. Truesdell 

(Ref.  172, p. 146) maintains that the whole subject of the derivation of hydrodynamical equations from the 

kinetic theory deserves to be re-evaluated, clarified, and presented from a more general point of view. 

The comparison of the results of the two approaches (continuum and kinetic theory) to the problem of 

determining the stress and heat flux in rarefied gas seems to indicate that the present form of the kinetic 

theory becomes less adequate for the ordinary prediction of gross phenomena the higher the degree of 

approximation required (Ref.  172, p. 148). 

One may summarize the advantages of the kinetic theory as follows: 

(a) In its broader features,  the molecular model more closely resembles the accepted 

picture of physical matter.    This advantage is seriously reduced, however, by the 

extreme idealizations which must be incorporated in the model if the calculations 

are actually to be carried out. 

(b) The numerical values of the coefficients are predicted, while in a continuum theory 

these must be experimentally determined. This argument is the strongest of all in 

favor of the kinetic theory. 

(c) In principle, it should be possible to calculate boundary conditions as well as equations 

of motion from the kinetic theory; to obtain boundary conditions in a continuum theory, 

one must in effect postulate them.    A satisfactory kinetic theory treatment has yet to 

be given, however. 

(d) In a general kinetic theory the model may be adjusted so as to yield different results 

for very rare gases, very dense gases, liquids, etc. 

Advantage of continuum theory are as follows: 

(a) It is not restricted to perfect gases, to compressible fluids, to homogeneous 

substances,  etc. 

(b) Its results are free from the special relations among the coefficients, which kinetic 

theory predicts but does not explain or justify.    On the other hand, it gives no hint of the 

numerical values assumed by these coefficients. 

(c) The terms of any given degree (following Truesdell' s proposition) are relatively simple 

when compared with the elaborate calculations of the kinetic theory. 

(d) Continuum theory, being independent of deterministic mechanics of the ultimate particle, 

serves as a general guide with which any molecular model must be consistent. 
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In his discussion on the controversy regarding the bulk viscosity of fluids, Truesdell (Ref. 177) 

points out that recent physicists regard the Stokes relation as obviously false. Truesdell's paper is 

abstracted below. 

The controversy concerning bulk viscosity (M   + 3 M) separates into the following parts: (1) What 

is the effect of the value of (M' + IM) 
uPOn solutions of the classical equations of fluid dynamics? (2) In 

2 
physical fluids which obey these equations, how is ((/   + jjx) to be measured? (3) Which physical fluids 

fail to obey the classical equations? (4) What mathematical theory is appropriate for these fluids? 

Beginning with the first question, Truesdell maintains that there exist only three groups of solutions 

which seem to be useful: plane shock-layer solutions, infinitesimal wave solutions, and second order 

circulatory solutions.    Gilbarg and Paolucci (Ref. 36) have solved the plane shock layer exactly and 

completely.   Their results show: (1) that shock thicknesses computed earlier are much smaller than 

those given by the rigorous theory employing the physically appropriate dependence of viscosity upon 

temperature, and (2) that large enough bulk viscosity yields arbitrarily thick shocks.   The position, 

relative to the exact theory, of solutions of the linearized equations for infinitesimal waves remains to 

be established mathematically.    The exact solutions for free plane waves, forced or free spherical waves, 

and shear waves are not yet known.   The solutions for acoustic streaming are more controversial. 

The second question asks: " Which physical fluids obey the equations?"   It is still widely believed 

that few,  if any, physical fluids experiencing shock-layer or ultrasonic phenomena behave like the mathe- 

matical viscous fluid.   Truesdell maintains that more physical fluids will show agreement with the 

mathematical model. 
Concerning the value of the bulk viscosity, the question arises whether the hydrodynamical theory 

can account for " relaxation effects. "   Truesdell answers,  " No,  it cannot. "   Briefly, a systematic 

perturbation scheme to take into account the absorption and dispersion phenomena at higher frequencies 

reveals the difficulties usual for second order effects. 

This brings the reader to the third question.    Many ordinary fluids, all the common polyatomic 

gases being included, do not behave like the classical viscous fluids when subjected to an ultrasonic 

disturbance. 
Now for the fourth question,  which concerns the theory appropriate for these fluids.    While there is 

a good deal of literature attempting to fit the data to viscoelasticity (the usual term among ultrasonic 

workers is " complex and frequency dependent viscosity"),   the various proposals either fail to agree with 

experiment or contain so many empirical constants that almost anything can result.   Recent proposals 

regarding such a physical fluid as a mixture of two or more components, each of which Is a continuous 

medium diffusing through the rest, offer some possibilities.   In the final step, the bulk viscosity appears 

In such a scheme as a crude equivalent which one may, but need not,  introduce.    For physical fluids which 

behave neither as pure fluids with linear viscosity nor as mixtures of such fluids, various theories of non- 

linear viscosity have been proposed. 

It Is natural to suppose that the kinetic theory can give us much more dependable Information. Such 

must Indeed be the case ultimately, but It Is not the case today.    Beginning with the theory of moderately 

rarefied monatomlc gases, one finds five essentially different types of methods proposed for solving the 

Maxwell-Boltzmann equation: the Hllbert-Enskog-Chapman (perturbation) series, the Jaffe-Keller 

(perturbation) series.   Grad* s method of moments, Mott-Smith' s method of Interpolation, and the 

Bhatnagar-Gross-Krook Iteration method for a particular case.    From the first three, none has been 
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shown to converge or to be meaningful in any sense.    Jeffreys (Ref.  62) has made some penetrating 

remarks which question whether for non-equilibrium states the Maxwell-Boltzmann equation itself is the 

correct mathematical statement of the physical ideas which constitute the kinetic view of the gaseous state. 

But the recent result of Morgenstern (Ref.  115) indicates that the doubts regarding the existence and 

uniqueness of a solution of the Maxwell-Boltzmann equation may soon be allayed. 

When we come to polyatomic gases,  the situation is worse.    Every attempt to calculate bulk 

viscosity from the kinetic theory has proved incomplete or faulty (Ref.  175),    Moreover, there exists no 

systematic theory analogous to those just mentioned for monatomlc gases.    The controversial state of 

the kinetic theory of liquids need hardly be emphasized.    Thus for the immediate future one is not likely 

to gain any certain information from the kinetic approach to the problem of viscosity.    But Truesdell 

(Ref.  177,  p. 64) expresses hope that the substantial progress made recently in various parts of continuum 

mechanics will encourage pursuit of the basic problems concerning viscosity with the care and the criti- 

cism required for exact treatment of the appropriate nonlinear field equations. 

In sum,  it may be hoped that the indifferent mathematics applied in the past to the kinetic theory 

will be abandoned in favor of real mathematics which may permit better results based upon the kinetic 

theory, which theory must ultimately give a better picture than continuum.    The controversy between 

continuum and kinetic theory seems to be interpreted wrongly.    There is no question that the physical 

model of the kinetic hypothesis appears correct.    A mathematical representation of this model, the 

Maxwell-Boltzmann equation,  may not be quite correct in non-equilibrium conditions,  but this does not 

indicate that the physical model of the kinetic hypothesis is wrong.    Some techniques of the solution of 

the Maxwell-Boltzmann equation,  like that of Chapman-Enskog-Burnett,  may be incorrect.    But again, 

this does not imply that the physical model of the kinetic hypothesis is wrong.    Another question is that 

there are strong indications that fluid dynamics must take into account " sub-miscroscopic"  phenomena, 

like those of the nature of atomic and molecular structure in order to explain macroscopic kinematic and 

thermodynamic phenomena. 

And still another problem is the application of hydrodynamic equations to motions of the earth' s 

atmosphere.    What equations can describe such phenomena is not yet thoroughly understood.    Until now 

the Navier-Stokes or even Euler' s equation are generally used,  often in a linearized form,   i. e. , 

du/dt = ~  au/at,  with the omission of the uu    ,  etc.    The necessity,  in fact, of using these nonlinear 

forms in describing the motions of the atmosphere at altitudes greater than 100 kilometers has been 

demonstrated by Pekeris (105). 

2. 4 Systems of Charged Particles and Scattering of Electromagnetic Radiation by Turbulence 

The theory of oscillations in ionized gases is still tentative (Refs.  7, 8) although a number of 

features can be understood,  at least qualitatively.    An essential difference from the theory for neutral 

gases is that approximately undamped waves can be propagated not only at high but also at low pressures'. 

The mechanism responsible for the cooperative behavior of the medium is different in the extreme cases 

of low density and high density (Refs.  12, 13).    At low densities the collisions are of only secondary 

importance,  and the forces acting to change the state of motion of a particle are electromagnetic In 

character.    Energy and momentum are transferred from one group of particles to another through the 

intermediary of the electromagnetic field in a way now familiar from the study of microwave devices.    It 

WADC TN 56-360,   Part XV 23 



Is Important to note, however, that the transfer of energy by the high frequency components of a pulse is 

a very slow process in low pressure plasmas (Refs. 7, 8). 

Some attempts have been made to treat the oscillations of ionized gases quantitatively by the 

methods of kinetic theory.    The long range of the Coulomb force imnHes that the concept of definite 

binary collisions is inadequate except for very close encounters.    Instead,  it appears that every charged 

particle is continually interacting with all the particles of the assembly. 

An important theoretical step,  making possible the approximate treatment of many properties of 

ionized gases, was taken by Vlasov (Refs.  182, 183).    Langmuir (Ref. 99) had already pointed out that 

the Debye length is characteristic of the dynamic behavior as well as of the static properties of an 

ionized gas.    Vlasov assumed that apart from close collisions a particle moves in an average electric 

field arising from the other particles and proposed to describe the system by a one-particle distribution 

function. 

Others (Refs.   11, 23, 33,94,  and 95) have treated various processes in ionized gases by using the 

binary collision approach even for distant colliaions.    Such distant collisions involve small momentum 

transfers, and thus expansion of the distribution functions in the collision integral term in powers of the 

momentum transfers leads to terms very similar to those given by the Fokker-Planck equation.  Although 

this procedure is only approximate,  in the present primitive state of the theory it is worthwhile exploring 

the consequences of this approach.    The Fokker-Planck approach has already been used in the study  of 

plasm;" oscillations by Logunov. 

There exist several studies of the oscillations of ionized gases using transport equations.    For 

example,  the Thomsons (Ref.   163, ii,  353) and subsequently Bailey (Ref.  4) base their discussions on 

Maxwell' s equations of transfer,  and the Thomsons'   approach is further brought out in an alternative 

treatment by Linder (Ref.   102). 

The recent approach of Bhatnagar,   Gross,  and Krook (Ref.  8),  although an approximate one, 

offers some possibilities,   since the equations for neutral and ionized gases are extremely complicated in 

practice because of the intractable nature of the Boltzmann binary collision term.    While Linder,  Bailey, 

and the Thomsons discuss some simple kinetic models which permit exact mathematical treatment 

including the solution of the definite boundary value problem,  Bhatnagar,  Gross,  and Krook refer to both 

electron-neutral or ion-neutral collisions and election-electron or ion-ion collisions,  which are im- 

portant in high pressure ionized gas.    The modified collision terms are constructed so that each collision 

conserves particle number,  momentum, and energy; other characteristics,  such as persistence of 

velocities and angular dependence,  may be included.    Their article illustrates the technique for a simple 

model which involves assuming a collision time independent of velocity. 

In the field of electro-magneto-fluid dynamics, Villars and Weisskopf (Ref.  182) apply to the 

electromagnetic problem in compressible medium the results of the statistical theory of locally Isotropie 

homogenous turbulence developed for incompressible media.    In particular, they apply the hypotheses of 

Weizsäcker and Heisenberg.    According to this theory, the pressure fluctuations produce density fluctu- 

ations in refractive index and hence a scattered field.    Silverman and Baiser (Ref.  148) apply the theory of 

Villars and Weisskopf to derive the amplitude distribution of the scattered radiation.    Good agreement 

with experimental results is obtained. 

Severnyi (Ref. 147) derives a mathematical analysis of the motion of nodes and streams in pro- 

tuberances, based on the fundamental equations of magneto-hydrodynamics for small scale motions in 

the neighborhood of the hydrostatic equilibr.'um of plasma.    The passage of a plane aerodynamic wave 
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through a plane Ionosphere In a magnetic field is discussed by Lucas (Ref.  109).    The phenomenological 

theory of turbulence in magneto-hydrodynamics was developed by Chandrasekhar (Ref. 17) on the basis 

of the equations of motion derived by Batchelor (Ref.  5).    It was generalized to compressible fluid flow 

regime by v. Krzywoblock! (Refs. 83-85).    Some particular problems in that regime are discussed by 

Gjellestad (Ref. 37).    The solution of Boltzmann' s equation for a Lorentzian gas and the application to 

weakly ionized gases is treated by Bayet, Delcrolx, and Denisse (6).   The hydrodynamic equation of an 

electron stream,  similar to the Navier-Stokes equation of motion with one additional term is derived by 

Howard (56).   Application of this equation to the boundary layer of an electron stream was done by 

v. Krzywoblock! (Ref. 91). 

2. 5 Free Molecule Flow and Newtonian Gasdynamics 

Above a certain degree of rarefaction of the body of the gas, neither the mechanics of continuum 

nor the kinetic (molecular) theory of gases can describe the phenomena.    Here the collision between the 

molecules of the gas may usually be neglected, partially or completely, as compared to the collisions 

of molecules with the object.    The hypothesis of Newton on the drag of a body moving in a gas is revived 

and readjusted; the drag is caused by collision of a solid body with particular discrete molecules of the 

gas.    In this regime Epstein (Ref.  30) has obtained the drag on a sphere at very low Mach numbers, 

Zahm (Ref.   198) the drag on a plate, and Tsien (Ref.  179) on an element of surface at all Mach numbers. 

Epstein' s work was generalized and extended by v. Krzywoblockl (90). 

The bibliography lists several other papers on the subject in question.    They distinguish two 

regimes: (1) free molecule flow, where after the reflection the molecules possess both normal and 

tangential velocity components,  1. e. , the molecules are fully elastic; (2) Newtonian gas dynamics where 

following the collision only the tangential velocity component is preserved, 1. e. , the molecules are 

inelastic.    The latter type of flow Is extremely unlikely and probably physically impossible. 

The momentum transmitted to the object each second depends partly on the way the molecules are 

reflected at the surface.    Experiments show that at least three different types of reflection can occur 

depending on the state and nature of the surface, the kind of gas, the density of the impinging stream, 

and the respective temperatures of the gas and surface (46).    These are:  specular reflection, diffuse 

reflection,  and condensation and re-emission. 

In specular reflection, the components of the molecular velocity tangent to the surface remain 

unchanged,  but the component normal to the surface reverses its sign.   The most conclusive experimental 

results liave been obtained by Stern and collaborators (46), who showed that specular reflection, under 

the condition that the surface forces are not too strong,  can occur in two cases:  (1) when the surface 

irregularities are of the same or smaller order of magnitude than the de Broglie wave length of the 

incident particle,  which condition can be satisfied by having very smooth surfaces or by allowing the mole- 

cules to strike the surface at very small glancing angles; (2) when the molecules are scattered from a 

crystal whose grating space Is of the same order of magnitude as the de Broglie wave length of the incident 

particles. 

In the diffuse case, the molecules are reflected at random from the surface, all traces of their 

past history having been lost; they obey a cosine law similar to that of a surface emitting radiant energy. 

In the case of condensation and re-emlsslon, the molecules condense on the surface for a certain 

period of time T,  after which they are re-emitted in a random way.    In true condensaiion and re-emlsslon. 
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the number of molecules emitted by the surface each second Is not necessarilly equal to the number that 

hits the surface each second. 

Sänger (Ref.  139) assumes In calculating the flux of momentum and energy that the gas molecules 

collide with single atoms in the solid; apart from this assumption the familiar kinetic theory is applied 

The contribution of elastic collisions is taken into account.    A regime on the border between slip flow 

and free molecule flow was treated by Epstein (Ref.  30), v. Krzywoblocki (Ref. 90), and others. 

2. 6 Relativlstic Approach 

There exist various approaches to macroscopic theories of fluid dynamics from the standpoint c 

relativity.    One can mention here the works of Lamia (Ref.  93),  Eckart (Ref.   26),  Jüttner (Ref.  65), 

Taub (Refs. 160,161), Salzman (Ref. 134), and Salzman and Taub (Ref.  135). 

In particular, Khalatnikov (Ref.  77) In anticipation of future application to nuclear physics has 

studied the adiabatic, nondissipative flow of liquids according to special relativity, obtaining the general 

solution of the resulting equations lor flow in one dimension. 

2. 7 Statistical Mechanics of Fluids 

An extensive application of statistical methods in the theory of turbulence inspires many to investi- 

gate the statistical mechanics of fluids.   In the purely descriptive theory, the kinematics of a turbulent 

velocity field and the stationary random functions seems to be a well suited tool;  but when one turns to 

the dynamics, he is stopped almost immediately if he restricts himself to the domain of mechanics of 

continuum.   Kampe de Fe'riet (Ref.  63) concludes that the mixture of the methods of probability used in 

the statistical approach and of equations suggested by the fluid dynamics of continuum is perhaps unfortu- 

nate.    A return to the foundations in constructing a statistical fluid mechanics is thus suggested. 

The characteristic features of the statistical mechanics of a conservative dynamical system having 

a finite number of degrees of freedom and satisfying the Hamilton-Jacobi equations are as follows: j 

(1) definition of the phase-space fi;  every state of the system is characterized by a point weU; 

(2) proof of a uniqueness theorem; starting at the initial time t = 0 from a given initial state (■>; 
all the subsequent or prior states Tt ui, where t varies from - oo to + oo, are perfectly well 
determined and described, in il, a curve, the trajectory r{<»); 

(3) definition of a measure ß in U invariant under the transformations Tw (Liouville1 s theorem); 

(4) proof of the ergodic theorem: the time-average computed along a trajectory r((«)) exists for 
almost all w; time-average and statistical average are equal if the transformation T. ü) of IJ 
into itself is metrically transitive. 

Since in the most general approach a fluid flow system has an infinite number of degrees of freedom, 

one has to take a function space instead of a phase space, a new difficulty but not an impossibility; Kampe 

de Ferlet has shown that for some continuous medium having a function space it is easy to build a complete 

statistical mechanics (Refs. 72,73). 

From the Lagrangian point of view a fluid state at a given time t is defined by the positions and the 

velocities of all the particles. Let us call a(a , a2, a3), a e X, the position of a particle at the initial time 

t = 0; the coordinates of the same particle at the time t are three continuous functions of four variables 

{a1, t} (i = 1,2,3), i.e. : 

x. = x. (a,t) j = 1,2,3, (54) 
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the correspondence between x and "a"   being one-to-one.    The components of the velocity of the particle 

are given by: 

u, = ± x.(a,t). (55) 

One has to take as the phase space U a function space in which a point oi is defined by a set of six 

functions of three variables {3 .} (i = 1, 2, 3): 

co = {a (a), /3.(a)} j = 1,2,3, (56) 

the functions  or.(a),  /3.(a) being continuous to any order " n"  that we want to use later in the equations of 

fluid dynamics.   A state of the fluid is represented in the function space Q  by the point  w  such that: 

x.  =  a.(a) 
J ] 

(57) 
Uj   = ^(a), 

and a motion of the fluid is represented in il by the set of points u (trajectory   r) such that: 

(58) 

a (a) = x(a;t) 

/3(a) = u.(a;t). 

To proceed further we must have a uniqueness theorem:   starting from a given initial state 

(■) E (2 at t • 0,   we must be assured that all the subsequent states of the fluid are fully determined.   But 

at present the results are indefinite for both a perfect and a viscous fluid.    Although Leray (Ref.   101) has 

proved that with regular initial conditions in an incompressible viscous fluid filling the whole space X 

there is one and only one regular motion in a finite interval for the case of finite total enef gy of the fluid, 

normally the interest is in velocity fields for which total kinetic energy Is infinite,  and thus his results 

are of little use.    The fact remains that no uniqueness theorem has been advanced which is broad enough 

to be used as a foundation for statistical fluid dynamics. 

Kampe de Feriet discusses briefly the question of an invariant measure (Ref.  71,  p.   158).    In 

classical statistical mechanics the existence of an invariant measure in  Q (Liouville's theorem)  is 

connected with the fact that the system is a conservative one;  if there are dissipative forces acting on the 

system, the energy will tend toward zero as the time increases: all trajectories in il will have the par- 

ticular point u) corresponding to equilibrium as the limiting point; this fact is obviously not comparable 

with the invariance of measure along a trajectory.    The same contradiction will appear for a viscous fluid 

when the total kinetic energy is finite at the initial time;  the final state of the fluid will always be the 

equilibrium; thus the definition of a measure invariant along energy trajectory is impossible. 

If the total kinetic energy is infinite there is hope that an escape from the logical contradiction is 

possible in some cases. Kampe de Feriet (Ref. 71, p. 159) concludes that an invariant measure would 

exist only in the case of conservative systems--that Is, only for perfect fluids. 

New possibilities in this field are opened by Morrey (Ref.   116),  who suggests several methods for 

deriving the laws of the mass motion of a " continuous medium" from the study of the motions of finite 

systems of particles (point-masses).    Since such systems are not contlnous media,  some way must be 

found to "pass from the discrete to the continuous. "    Morrey employs three methods: (1) a study of the 

motions of the particle systems themselves by means of the Fourier-Stleltjes transforms of the corres- 
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ponding (finite) distribution of mass, momentum, and energy; (2) the Introduction of a continuous family 

of systems of particles by introducing a probability distribution in " phase-space" (an idea originally 

conceived by Gibbs); (3) the reduction of a problem of finding time averages to that of finding space 

averages using the ergodlc theorem. 

2. 8  Quantum Hydrodynamics 

Below is a brief chronological review of some papers on quantum hydrodynamics.    Similar reviews 

are In the dissertation by Whlttenbury (Ref.   194) and in the paper by v.  Krzywoblocki and Whittenbury 

(Ref. 82). 

2.8.1.   Madelung (110) 

using the second form of Schrödlnger' s equation: 

M - Si* mh"2 Ity - 14» mh-1 i|(,    . 0, 

and the proposition ^ = a  exp (ifl),  Madelung obtains two equations: 

Aa - a (smd ß)2 - Sn2 mh'2 U + 4irmh"1 aß,.  ^ i 

a&ß + 2 (grad a grad ß) - 4irh"1  o,.  = 0. 

The second equation with <)>   = ;3h(2»)     gives 

div (a2 grad*)  + (a2)>t = 0, 

(59) 

(60) 

(61) 

(62) 

which can be interpreted as a continuity equation with p = a' and u = grad «K   Equation (60) gives with 

curl ü = 0: 

du/dt = - m"    grad U + grad [or"1  Aah2 (8ir2ma)"  ], (63) 

which can be interpreted as Euler' s equation of motion with the first term on the right side of eq. (63) 

equal to mass force fp  ' and the second one to the pressure term - J p  1 dp. 

2. 8. 2 London (105-108) 

London in 1938 advanced the hypothesis that the transition of liquid helium I into liquid helium II 

might be caused by the condensation mechanism of the degenerating Bose-Einstein gas.    He suggested 

that the superfluld flow might be connected with the condensed phase which consists of molecules of 

macroscopic de Broglie wave length.    His 1945 paper discusses low temperature transfer. 

2.8.3 Tisza (165-168) 

The idea of applying results of the ideal gas theory to the liquid state appears at first sight some- 

what daring.    Yet for liquid helium the gas picture is probably not quite so unrealistic as it would be for 

any other liquid.   It was Tisza who first recognized the possibility of evading the pitfalls of a rigorous 

molecular kinetic theory employing the qualitative properties of a degenerating Bose-Einstein gas to 

develop a consistent macroscopic theory.   This two-fluid theory is based on the following assumptions: 
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(1) Liquid helium consists of two mutually Interpenetrating fluids, the « superfluld" of density P3 and 

the " normal" fluid of density pn.    Each Is supposed to have Its own velocity field vs.  and V  respective- 

ly.    At any point in the space the mass velocity p is written in the form p = ps + pn and the mass current 

density J.   = p v     +p v ..   (2) The entropy s^ - 0.    (3) The viscosity coefficient of the superfluld is 
ue     uy U1       Ks si       n m s 
zero.    (4) The normal fluid is supposed to be the carrier of the whole thermal excitation of the liquid; the 

entropy of liquid helium 11 is entirely attributed to the normal liquid. 

2. 8. 4 Yvon (197) 
Yvon shows that the relatlvlstic mechanics of Dirac gives the same transformation as the procedure 

of Madelung,  who uses the Schrödinger mechanics in a more mechanical than a quantum sense. 

2. 8. 5  Landau (94-36) 
Landau rejects the gas statistics approach,  arguing that a liquid is generally much more like a 

solid than a gas,  and he attempts to put his two-fluid theory on an entirely new basis.    His point of 

departure is an extension of the quantum theory of fields,  and accordingly he tries to represent the liquid 

as a quasi-continuum whose excitations are quantized,  as in the Debye theory of the solid body or in 

quantum electrodynamics.    He assumes that the excited states of liquid can be represented by two kinds 

of elementary excitations, the " phonons"   and the " rotons. "    The phonons are the excitations of the 

longitudinal sound waves, and represent the potential motions of the liquid, characterized by curl V = 0. 

The rotons are described as the elementary excitations of a vortex spectrum (curl V ^ 0).   The roton 

spectrum is assumed to be separated by an energy gap from the lowest phonon state, the ground state of 

the potential motions being the lowest state of the system.    Both rotons and photons are supposed to have 

an effective roass and a momentum which are attributed to the " normal fluid. "   The remaining mass 

corresponds to the superfluld,  which is assumed to be able to move as a whole with its own velocity and 

without dissipation.    Once the possibility of the two velocity field is granted, the development of the 

macroscopic hydrothermodynaraics has to proceed along the same line as in Tisza' s theory. 

2. 8. 6 Dingle (24) 
The paper reviews the theories which have been proposed to explain the peculiar properties of 

liquid helium.    Dingle discusses the Bose-Einstein condensation of an ideal gas, order-disorder tran- 

sition theories.   Landau' s quantum hydrodynamics,  Green' s theory of quantum liquids,  etc. 

2. 8. 7 Takabayasi (156) 
By re-expression of the generalized Schrödinger equation in its coordinate representation In terms 

of amplitude and phase of the state vector, a quantum mechanical change of a system can be made to 

correspond to an ensemble of classical motions of the system to which Is added some Internal potential. 

Böhm' s renewed form (9) of the statistical interpretation of quantum mechanics is criticized In several 

points.   The hydrodynamlcal picture formally equivalent to the statistical picture In one-body problems 

Is considered, and from such analogy a formal generalization of the Schrödinger equation Is suggested. 

2. 8. 8  Kronlg and Thellung (82) 
The classical hydrodynamics of non-viscous fluids for the case of Irrotatlonal motion In the absence 

of external forces Is represented In terms of general field theory.   The velocity potential and the density 
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appear as canonically conjugate variables In a rigorous sense.   A quantization is carried out along the 

usual lines, justifying a number of results previously presented by Landau and his collaborators. 

In the second paper Thellung (Ref.  162) extends his previous work to Include vortex motions. With 

the aid of a transformation by Clebsch It is possible in this general case to bring the hydrodynamical 

equations into a canonical form.    The total Hamiltonian is then found to consist of three parts involving: 

(1) the phonon field; (2) the roton field, and (3) an Interaction between the two.    In this way Landau's 

interpretation of the properties of helium n can be given a more secure foundation. 

2.8.9  Ziman(199) 

The Ciebsch formula for fluid velocity allows the classical hydrodynamical equations,  including 

vorticlty, to be derived from a variational principle ajid put Into canonical form.    The standard quanti- 

zation procedure of the theory of fields then gives a set of field operators satisfying the commutation 

relations obtained by Landau in 1941.    The Hamiltonian contains terms corresponding to the excitation 

of the "roton"   states of Landau' s theory. 

2. 8. 10 Itö (57) 

A canonical formalism in hydrodynamics is developed with the aid of Clebsch' s transformation. 

If one considers the adiabatic process where the entropy is preserved, the vortex motion is found to be 

closely connected with the entropy.    Euler' s hydrodynamical equation emerges factorized into four 

fundamental equations which are discussed from the thermodynamical point of view.    Although Ito has 

succeeded in constructing a Lagrangian formalism in hydrodynamics, the idea of " roton"  is not clari- 

fied in this paper.    The commutation relations do not assume the validity of the standpoint of quantum 

hydrodynamics if Ito' s results are the same as London' s or Landau' s. 

2. 8. 11 Takabayasi (157) 

The formulation of quantum mechanics in terms of the picture of trajectory ensemble or of the 

hydrodynamical picture, developed in Takabayasi' s previous paper (Ref.  156), is further supplemented 

Individual trajectories for some typical non-stationary state are explicitly obtained, illustrating that thej 

generally show complicated fluctuations due to the action of quantum potential.   Next,  emphasis is placed 

on the fact that the Schrödinger field admits a mechanical model.    Finally, the picture of trajectory 

ensemble is generalized to represent wave equations with sources. 

2.8.12 Tyabji (181) 

A number of authors (Itö, Kronig and Thellung,  Ziman) nave recently quantized the motion of an 

inviscid fluid.    The starting point has been Bateman' s variational principle, which uses the Clebsch 

variables.    The density turns out to be the canonical conjugate to the velocity potential, and the transition 

to the quantum theory is then made in the usual way.   If the fluid Is making small vibrations,  " phonons, " 

which are scalars, appear as a result of the quantization. 

In this paper the Lagrange variables of classical hydrodynamics are used because of their similarity 

to the variables of particle dynamics.    The principal difference from the work In the Clebsch variables Is 

that vector rather than scalar "phonons"   appear.    If these "phonons"   are resolved In the direction of 

the wave-number vector k, and transverse to it, the transverse part may be identified with " rotons. " 
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2. 8. 13 Kaempffer (68) 

Attempts by Takabayasl and Kaempffer at an entirely different method of field quantization are 

examined in the light of Ziman' s successful approach to the quantum hydrodynamical problem.    It is 

pointed out that the energetic impossibility of a roton spectrum in an ideal continuum fluid makes it 

necessary to introduce a fundamental length, which acts as high frequency cut-off.    Takabayasi' s gener- 

alized hydrodynamic formulation of the nonrelativistic Schrödinger equation is treated as an example. 

2.8.14 Kaempffer (69) 

There exist at present two entirely dlfftrent approaches toward quantization of classical field 

theories.   In the conventional approach the field under consideration is described in terms of a wave 

function I|I and its complex conjugate i))*, and these are subjected to commutation of the type: 

[4.(x);   ^»(x')] = 6(x- x'), (64) 

where a quantization leading to Bose statistics Is used. The eigenvalues of the operator _/ i^* tdx turn 

out to be integers and are therefore interpreted as the number of particles present in a given state of the 

field. 

In the approach of quantum hydrodynamics, the same field Is described in terms of suitably chosen 

density p and velocity potential  *,   and these are subjected to commutation relations of the type: 

[*(x); p(x')l =  6(x - x'). (65) 

This gives rise to a description in terms of an excitation gas of Bose particles, which is made responsible 

for all observable effects of the field, while the ^-field is demoted to the somewhat inferior role of the 

underlying fluid, in which observable effects appear as excitations of the motion. 

As there is no a priori reason for preferring one or the other of these approaches toward quanti- 

zation of a given classical field theory, there is still doubt about the Justification for the quantum 

hydrodynamical approach.   The reason is the belief that the conventional quantization method gives an 

essentially correct many-particle quantum theory, and that a justification for the procedure of quantum 

hydrodynamics has to consist of a proof that the commutation relations (Eq.  65) follow from the commu- 

tation relations (Eq.  64), or that quantum hydrodynamics can at best yield only an approximate description 

of a many-particle system.    Kaempffer in this paper examines the conditions under which the procedure 

of quantum hydrodynamics is a consequence of the conventional quantization procedure, and vice versa. 

2. 8. 15 Morita (115) 

Morita derives the equations of hydrodynamics from the equations of hydrodynamics given by Irving 

and Kirkwood by means of the statistical mechanics.    The newly derived equations contain explicitly the 

quantities concerning both phonons and macroscopic fluid flow. 

2. 8. 16 Schönberg (143,144) 

Schönberg discusses a new hydrodynamical model for the Schrödinger equation which differs from 

that of Madelung by the existence of turbulence.   It follows directly from the ordinary interpretation of 

quantum mechanics, by the introduction of operators for the charge and current densities and the com- 

ponents of the stress tensor in the one particle formalism.   The model is developed for any values of the 
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spin.    The Madelung fluid corresponds to the mean motion of the special turbulent medium.   The quantum 

potential appears as a combination of pressure with terms arising from the turbulence.    It is shown that 

the quantization of the motion of the Madelung fluid introduces the right kind of turbulence.   The tra- 

jectories of the deBroglle-Bohm theory appear as trajectories of the mean motion of the turbulent medium, 

Schönberg shows clearly that the Madelung fluid corresponds to the expectation values of the quantities of 

the quantized fluid in the one of quantum states.    The quantization of the motion of the fluid regenerates 

the turbulence eliminated by taking the expectation values in the one particle formalism.    The regeneration 

of the turbulence can be related to the vacuum fluctuations of the quantized Madelung fluid. 

2. 8. 17 Schönberg (145) 

Schönberg discusses the general motions of the continuous medium (Madelung fluid), whose irro- 

tational motions are described by the Schrbdinger equation.   It is shown that many of the the basic 

theorems of the vortex motions of the inv.scid barotropic fluids are also valid for the Madelung fluid. 

2. 8. 18 Alcock and Kuper (1) 

The quantum mechanical Hamiltonian obtained by Ziman and by Thellung for an ideal liquid is 

diagonallzed in the vicinity of small compressibility.    On taking account of the interaction between 
n phonon" and " roton" variables, the roton rest energy is found to be proportional to the inverse of the 

sound velocity and to the ninth power of the wave number cut-off.  The effective mass /i.      of the incom- 

pressible roton is given by 

u.      = 9p   »2 k "3 

inc o o 

where 

p    = the mean value of the density, 

k    = the cut-off in wave-number space. 

It seems reasonable to picture the roton as a moving sphere of liquid,   with a radius of the order 

)r(2k )'   to ik      .On this basis the effective mass should be of the order p   v (6k    )     to 4p   jr (3k    )    , 

which is not in disagreement with the exact value of the equation.    The possibility of classical vortices 

of this type was originally demonstrated by Hill in 1894 (see also Lamb,  1932) and has recently been 

pointed out by Pekeris (1953).    Vorticity must arise, for instance, at the edges of the moving sphere, 

so that such excitations would be forbidden in an irrotational fluid.    For illustrative purposes, nk 

is equal approximate.'/ to six or seven atomic distances. 

2. 8. 19 Discussion 

It is difficult to divide the field of quantum hydrodynamics into distinct groups. Nevertheless, it 

is certainly desirable to fill out the gap between various approaches and to construct a unique theory of 

quantum hydrodynamics,    I have tried here to divide the existing approaches into three distinct groups. 

~f 

Group I.   In this group are included attempts to derive the equations of classical hydrodynamics 

and to describe phenomena of a hydrodynamical nature starting from the fundamental equations of wave 

mechanics.   As might be expected, the starting point is often the Schrödinger equation, but here and 

there are attempts to obtain the same goal by starting from relativistic mechanics.    These approaches 

seem to be more formal, and the mathematical formulation of the problem is primary, serving to 

WADC TN 56-360,  Part XV 32 



descrlbe the phys.ca! concepts that are .ehtnd the conttnuu. theory.    In this e-oup. as K    mp«     points 

out, one .ay .sttn^ish two .roups: (a) descHpttons o, the «eW in UM* a -^   ^ ^    ; 

descriptions of the phenomena of a hydrodynamlcal nature In terms of density and velocUy pot ntlal 

Th;   U w   g ^y he inctuded In this group.    Madeiun. has shown the Nation between SchrodIn^r^ s 

Ld   l; s ejtions.    Won has shown the relation between Madelun,, s mechanica! approac   and 

^ ac-s retatlvlstlc mechanics.    Ta.abayasi, in two papers,  presents the hydrodynam.capxcture 

"TaU, equlvalent to the statistica! picture and suggests a formal .enervation of Schroder s 

eZion     Böhm presents a deterministic interpretation of quantum mechanics.    Schonberg shows that 

Mad     ng. s appr ach can be .eneralized to include the turbulence, which can be refated to the vacuum 

Ttuati ns of   he Madelun, fluid.    Mori and Co derive the .uantum mechanlca! BoUzmann e.uat.on 

rinin, the molecuUr phase space distribution for non-uniform gases.   Hoss and .rKwood present 

an alternative method of averapn^ 
Croup H.    fn this .oup one may Include the wor.s which approach the soXutlon - - -bfem of 

descr.^^Tnomena of a hydrodynamica! nature starting from the method of .uantum field theory 

1 e     introducln. canonical formalism and auantization.    U seems that worKers in thU grouP propose 

m mods of a rather intuitive nature, in which physical description of phenomena in the med.um m 

or ml v     This group is almost exciusively concerned with liquid helium 1 a.d H.    London, 

ZZIZZ I::: L ^ .- a^es .e hypothes. concernlng the transition «d 

H I ton    Tisza develops the idea of the two-fluid theory further.    Landau puts the two-flu.d 

I6 ;:   n an ena     y ntba is; he assumes two kinds of etementary excitations in the fluids, phonons 

a„d rot    s     O       eIv.ews the theories of liquid helium.    Thellun. uslng the Clebsch transformat.on, 

Jve      andau- s hypothesis a more secure foundation.    Ziman shows that *- hydrodynamica! e.uaU 

Taiid in the doma.n of Landau' s  hypothesis can be derived from a variaUona! pr.nc.ple.    Ito,  us.ng 

Lairranee formalism,  obtains a result similar to Ziman' s. 
Oro p m     in ihls group one may include papers which attempt to find the relation b.ween the 
Gr    P ^ ,      H rrnuD n     fa this group we can include the works of Kaempffer. who 

rriTrirrrirpL:: x i be ^. ea. ^. ** z^ 
I h the fie d under consideration is described in terms of the wave function and it, comp ex 

ZZl   which are su.ect to the commutation rules.    In the second approach of -ntum hy^dy- 

J . field is described In terms of the density and the velocity potential.   Kaempffer 

:::::.rz:r ;:;::„,..«..—- - -'~ »■ - —-—■ 
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3.     SOME ELEMENTS OF ATOMIC STRUCTURE 

3.1  The Quantum Hypothesis 

The quantum theory of radiation was derived by Planck (1900) on a classical basis from fundamental 

thermodynamic considerations of black body radiation.    Einstein successfully applied the theory to the ex- 

planation of the photoelectric effect, which we will now describe.   When light falls on a metal surface 

electrons are liberated.   The energy of the individual electrons is not dependent on the intensity of the 

light.   No electrons at all will be emitted if the frequency of the Incident light is less than a threshold fre- 

quency u   .    At frequencies above v   the emitted electrons possess energies in the range 0 < E < Emax, 

where 

E        « hv - *   . max 

Here h Is Planck' s constant, and 0, the work function, is a constant for the particular metal and equal 

to he       Einstein' s hypothesis (1905) was that the energy of the incident light wave Is associated with 
o 

small particles (photons) of energy hi*. 

This idea of quantization was extended to the energy levels of the atom by Bohr (1912).   According 

to his theory, electrons circle the nucleus in stationary orbits under Coulomb attraction.   The orbital 

velocity of an electron may be derived by equating the centrifugal and Coulomb attractive forces, and we 

may then write the momentum as 

P . mv = (mZe2/r)1/2 (66) 

where m and e are the electronic mass and charge,  Z is the atomic number, and r the orbit radius.  We 

now make a heuristic argument which will be completely justified below.   If we raise an electron from 

its ground state to some excited state, we must do this by adding energy in the form of a photon of 

energy hv.   The excited electron now possesses this energy, and we may visualize it as being stored 

in the form of a standing wave associated with the electronic orbit.   In order that the wave be stable 

we require that Its wavelength be an Integral sub-multiple of the orbit circumference: 

nX 
2» 

(67) 

where n is an integer larger than zero. 
A full understanding of the relation between eqs. (66) and (67) was not attained until de Broglle 

(1924) made the bold generalization which bears his name.    From the theory of special relativity, we 

know that the momentum p   of a photon Is 

E/c (68a) 

where c is the velocity of light (and of course of the photon).    Using the Planck equation, E = hv, we 

obtain from (68a) 
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p   = hv/c = h/X (68b) 

We now assert that (68b) is true for the waves associated with any particle, whatever its velocity.   That 

this is indeed a valid assumption was shown experimentally by Davisson and Germer (1927), who suc- 

ceeded in diffracting the waves associated with a beam of low-energy electrons. 

We can now combine eqs.  (66), (67), and (68b), and obtain the expression 

2  -1  -1 p • 2wmZe n    h (69) 

2       2 2 
Remembering that E=T+V = ^--^- = -^-   (where T is the kinetic and V the potential energy of the 

2 ID     m AIII 

orbital electron) we obtain the Bohr quantum levels 

E 
„  2      4„2u-2 -2 
2ir me  Z h    n (70) 

We can see that E    is limited to discrete values depending on n, where n is the principal quantum number, 
n 

3. 2  Radiation 

If we now calculate the energy of the photon emitted by an electron falling from a level of larger 

n to a level of smaller n, we obtain 

2      42-2    -2       -2 hi' = E      - E      = 2» me  Z h    (n.    - n    )    . 
nl        n2 2 1 

Balmer and others have established the empirical rule, based upon spectroscopic measurements on 

hydrogen, 

-2       -2 
hi/ = R      (n„    - n,  ) exp   2 1 

(71a) 

(71b) 

where R       is the Rvdberg constant, which can be measured experimentally.   The experimental value 
exp 

corresponds with remarkable accuracy to 

2      4-2 
R^. = 2)r me h theor. 

(71c) 

where, for hydrogen,  Z « 1. 

The Bohr theory thus explains most satisfactorily the gross features of the atomic spectrum of 

hydrogen.   The fine structure, as well as the details of the spectrum of more complex atoms, requires 

the development of a more sophisticated theory for its explanation. 

3. 3 Wave Mechanics 

A more general interpretation of atomic structure was proposed by Schr'ddinger (1925).    The 

starting point in the development of the so-called "new" quantum mechanics is the above-mentioned 

de Broglie hypothesis.    In the Schrb'dinger formalism, one investigates the motion of a particle in 

terms of a function associated with the de Broglie waves, whose modulus squared is a measure of the 

probability of finding the particle at any given point as a function of time.   We introduce the wave function 
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* = ^exp (-2irli't)>       ij(/=i//(x) (72) 

For a point of mass m, the wave equation has the form 

Ai^ + 8)r2mh'2(E-V)i//=0 (73) 

where  E = hv  Is the total energy of the mass point and V Is the potential energy. 

While heuristic justifications can be made for presenting (73) as the equation of motion of a quantum 

mechanical particle, we must In the final analysis accept it as an axiom which is nothing but the quantum 

mechanical equivalent of Newton' s second law,  F = ma.    The analogy becomes more evident if one writes 

Newton' s second law In the Hamlltonlan formulation; we will not here digress to do this.   It is often con- 

venient to write the Schrddinger equation as 

m Ei^i (73a) 

where H is the Hamlltonlan of the system and E   Is the set of energy eigenvalues.    In general, eq. (73) 

possesses solutions only for certain values of the total energy E.   These eigenvalues of E correspond, 

in the particular case of the Bohr model, to discrete orbits of an electron around the nucleus.   When one 

wishes to deal with several non-interacting particles in the same potential, the equation has the form 

^T m^1Aki// + 8ir2h'2(E-V)^= 0 (74) 

k 

where the subscript k refers to the k     particle, and where 

k      ^- ,  2 
1    3xik 

2-1 Consider the case of an electron with charge -e moving in a potential of the form V = - Ze r     ; 

then the solution of the Schrbdinger equation leads to the following eigenvalues of the energy E: 

E    =-27r2me4zW2 

n 

which agrees with the solution derived implicitly from the Bohr quantum condition,  eq. (70). 

If the nucleus of the atom is not fixed, it and the electron revolve about a common center and we 

must substitute for the electronic mass m in eq. (70) the reduced mass 

ß = mM(m + M) (75) 

where M Is the nuclear mass.   With this modification to eq. (70), we have again the expression for the 

energy levels of the Bohr model of one hydrogen atom. 
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3.4  The Uncertainty Principle 

The Heisenberg uncertainty principle Is Implicit In  the above formalism.    It states that the posi- 

tion of a particle and its momentum cannot simultaneously be measured to an arbitrary degree of accuracy. 

Let us denote by Ax the uncertainty In the measurement of the coordinate x1 of a particle.   Similarly, let 

Ap    denote the uncertainty In the conjugate momentum.    The uncertainty principle states that 
xl 

AxAp     =h(27r)"1 =*    ■ (78) 
Xl 

This notion can be generalized to any pair of canonlcally conjugate quantities; in particular, 

AEAt ih   . (77) 

Bohr has proposed an idealized experiment which provides a clear (although not completely rig- 

orous) derivation of the uncertainty principle.   Consider a particle In the field of view of a microscope 

whose objective lens subtends an angle 29 at the position of the particle.   The Raylelgh criterion gives 

the resolving power of a microscope as 

Ax, =X/(2slne) (78) 

where X Is the wavelength of the radiant energy used to Illuminate the particle.   Now In order to see the 

particle, we must Illuminate It with at least one photon, which will be deflected by the particle into the 

microscope and there collected by a suitable detector at the focus.   In the process of being deflected, 

the photon transfers a certain quantity of momentum to the particle.   Since we know the initial momentum 

of the photon, we could calculate the momentum transferred to the particle If only we could measure the 

final momentum of the photon.    However, all we know of the post-collision history of the photon Is that 

It Is deflected into the microscope somewhere within the cone of apex angle 29.   This Introduces an un- 

certainty In our knowledge of the photon momentum (and hence of the particle momentum) of 

Ap     = 2p sin e = 2h x"1 sin 9    . (79) 
Xl 

From (78) and (79) we Immediately obtain 

Ax.Ap     =h     . (80) 
I     x. 

The fact that (78) and (80) differ by a factor of 2i Is a consequence of the choice of a resolution     . 

criterion, and Is of little consequence. 

3. 5  Angular Momentum 

In section 3. 1 above we have shown that the states of the hydrogen atom are discrete and descrlb- 

able in terms of a set of eigenvalues called quantum numbers.   The quantum number Is the analogue of 

a constant of the motion In the classical scheme.   An Important example is angular momentum.   Just 

as angular momentum is a constant of the motion for the classical sun-planet system. It can be expressed 

In terms of a quantum number for the hydrogen atom. 
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Let us represent the angular momentum of the hydrogen atom as a vector of appropriate magnitude. 

It can be shown that the square of the orbital angular momentum Is limited to the values 

|{l2 = je(C+l)h2 (81) 

where 0 < f < n, and n is the principal quantum number mentioned in eq.  (70).   This corresponds to a 

generalized Bohr model in which elliptical as well as circular electron orbits are permitted.   The azl- 

muthal quantum number, t, measures the eccentricity of the orbit.    The orbit is circular for f=n.   The 

restriction of the angular momentum to units of h is a typical consequence of the quantum mechanical 

approach and can be derived straightforwardly from the Schrödinger equation.   An older semi-classical 

treatment based on the Bohr model was given by Sommerfeld and yields the same result except that 

fU + 1) is replaced by i2.   It is clear that in the classical limit, where fr-MO, «(4 +1)—«   • 

Clearly, we cannot specify the direction of the angular momentum vector except in relation to 

some direction in space.    For the case of the free atom in free space, however, such specification is 

meaningless, since we take it as axiomatic that free space is Isotropie.    But if we place the atom in the 

presence of a magnetic field, its electron, being charged and in motion, will interact with the magnetic 

field, which thus serves to pick out as unique some special direction in space. 

We can visualize the T vector as precessing about the direction of the magnetic field (arbitrarily 

chosen in the "?direction), describing a cone.   The component of T along the field will be constant. 

Using the formalism described in Section 3. 3, one inserts into the Schrödinger equation (73a) the inter- 

action energy of the electron with the field. 

H 2m (p I»* (82) 

where A* is the vector potential of the magnetic field and the other symbols are defined above.   The solu- 

tion yields a set of eigenvalues for   {   .   One finds 

iV =mf
h (83) 

where - * < m   < f.   When m. »1, the atom is aligned with its angular momentum vector parallel to the 

magnetic field; mf = -{ corresponds to antiparallel alignment, and the intermediate values to interme- 

diate alignments. 

3. 6   The Zeeman Effect 
Consider again a hydrogen atom in a magnetic field.    In the light of the above discussion, the 

energy of the atom can be d«s»Ifaed in'terms of three quantum numbers, n, t, and ny   It can be shown 

that except for a relativistic correction, all values of £ (for a given n) lead to the same energy—that Is, 

they are degenerate.   Now, when the atom emits a photon, n changes and (in conformity with certain 

selection rules) m   also changes.   The latter change involves considerably less energy than the former, 

but results in a splitting of each of the spectral lines described in equation (71a) into a characteristic 

number of components.   This number depends upon the selection rules, and also upon the number of 

values which m^ can take under the restrictions   I mf. I < C j < nj,   I m{f I < f f < nf .    Here the subscripts 
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i and f refer to the initial and final states respectively.   A detailed description of this splitting, known 

as the Zeeman effect, is beyond the scope of this discussion. 

3. 7   Electron Spin 

If the electron were the inert particle originally described in the Bohr theory, the basis of the 

description of atomic states and atomic spectra would now be essentially complete.   However, the 

electron (in common with many other elementary particles) possesses an angular momentum of its own, 

which is frequently visualized as a spin about its own axis.    This angular momentum, called s,  is con- 

stant in value, and, like the angular momenta treated above, is expressed in units of h, viz: 

i7\Z = s(s +  l)h2 (84) 

where the quantum number s = 1/2 always.    Hence, 

lsr = 3/4h    . (84a) 

Just as the vector C   precesses in the presence of a magnetic field,  so does s.    The quantum num- 

ber analogous to mc is m , and,  as might be expected. 

1 
ms=i 2 

and 1 s    =mh=+öh z s        ~ 2 
(85) 

We can define the total angular momentum of the hydrogen atom, j,  as the vectorial sum 

j = f + s     . (86) 

The corresponding quantum number j describes the range of allowed values of  Ijl 

lTi2 = j(J + Dh2 (87) 

in complete analogy to (81)- and (84) above .    Further,  we h?ve in a magnetic field 

V =mjh • (88) 

We have now discussed the quantum numbers n, t,  m  ,  s, m   ,  j,  and m..    It is clear from eq. (86) 
 ^  ^ s J 

that of j,  f , and s, only two are necessary for a complete description of the system, since the third is 

derivable from the other two.   A complete description of the state of the hydrogen atom can be made in 

terms of four quantum numbers.    Such a choice is called a representation.    Two very useful ones are 

{n, i,  s,  j} and {n, £,  m  ,  m }. 

The significance of such a representation is as follows.   We remember that classically a system 

can be described completely for all time if we can specify at a given moment the position and momentum 

of each constituent particle with complete exactitude.    In view of the uncertainty principle,  this is a goal 

which cannot be attained in quantum mechanics, and we are obliged to abandon such a representation of 

the system.    The quantum number representations discussed above are the quantum mechanical analogues 

of the classical representation of a system in terms of constants of the motion. 
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3.8  Nuclear Spin 
We have discussed above a number of angular momenta associated with atomic electrons which 

are of Importance In describing atomic spectra.   Each Is quantized In units h,   and they add vectorlally. 

The nucleus, too, possesses an angular momentum because of Us .mall radius. (10"   atomic radius). 

The nucleus contains only a very small part of the total angular momentum of the atom.   Nonetheless 

the splitting of spectral lines due to the vectorlal addition of the nuclear spin is detectable by means of 

high-resolution spectrographs and Is one of the causes of the hyperflne structure.   The nuclear spin may 

also be observed by means of nuclear magnetic resonance.   The radiation emitted by a transition In the 

nuclear spin Is In the radio frequency region orthe spectrum. 

The nuclear angular momentum Is calledl? and Its magnitude Is 

m2 = 1(1+1) h2 (89) 

There Is an associated magnetic quantum number 

,^l2=MI(MI+l)h2     . (90) 

Adding the nuclear angular momentum Tto the electronic angular momentum Y gives a total atomic 

angular momentum F,   restricted to the values 

l?|2=F(F+l)h2 ÖD 

F =(]+!), (J+I-l) 0-1)     • 

3 9   Many-Electron Atoms 
^The above discussion has been restricted to the hydrogen atom.   While the principles enunciated 

apply to more complicated atoms, the treatment becomes considerably more involved.    In particular, 

care must be taken as to the rules which apply In adding the angular momenta of the various electrons. 

In practice, the exact calculation can become exceedingly difficult, and approximations must be made. 

The total angular momenta of all the electrons are represented by capital letters; we replace 

f by L, s by S, etc. 
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4.     ELEMENTS OF MOLECULAR STRUCTURE 

4. 1   General Description of the Diatomic Molecule 

If we combine two atoms into a molecule, the individual atoms will continue to display all the prop- 

erties described above.   There will be additional properties, however, which must be ascribed to the co- 

operative effect of the two atoms Interacting with each other, and must hence be called molecular properties. 

We have seen that isolated atoms produce various types of spectral emissions which can be as- 

cribed to combinations of electronic and nuclear  motions within the atom.    In a molecule,  we must add 

to these motions two more.    First, the two atoms may rotate about their common center of mass much 

as do the electron and proton in the hydrogen atom.    Secondly,  the atoms may vibrate about some equi- 

librium distance of separation.    We will treat these phenomena separately. 

4. 2  The Rigid Rotator 

For the time being,  we eliminate the vibrational mode from consideration by regarding the mole- 

cule as a rigid dumbbell-like structure.    We first make the usual calculation of reduced mass (see eq. 76) 

and also observe that there can be no potential energy of rotation in a rigid body.    The Schrodinger equa- 

tion then becomes 

Ai//+ 2^h     Ei/' = 0 (92) 

where E now contains only kinetic energy; 

E = 1/2 la) (93) 

Here u  is the angular frequency of the rotator and I its moment of inertia,  equal to the classical value 

M-r   , where  ß is the reduced mass and r the interatomic distance.    The solution of eq.  (92) is simple, 

and leads to the energy eigenvalues 

: J(J+1) h2(2pr2)'1 (94) 

where J,  the rotational quantum number,  is restricted to the values 0,  1,   2,  3,   ...   . 

The transitions from one value of J to another are accompanied by the emission or absorption of a 

light quantum. For most molecules, ß and r are of such magnitude that the wavelengths associated with 

these quanta are in the infrared region. 

4. 3   The Harmonic Oscillator 

We now take into consideration the fact that the molecule is not a rigid dumbbell.   Clearly, there 

is some equilibrium interatomic separation.    If the atoms are pushed closer together (but not too far) a 

mutual repulsion comes into play.    If they are pulled apart (not too far) the atoms attract each other.  We 

assume in first approximation that the restoring force is proportional to the difference between the inter- 

atomic distance and the equilibrium distance.    The problem then becomes the familiar one of the quantum 

mechanical harmonic oscillator.    The Schrodinger equation is 
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Ai//+ 2Mh"2[E - l/2k(5r)2]^ = 0 (95) 

where k is the force constant and 5r the displacement from equilibrium position.   The equation possesses 

solutions only for the energy eigenvalues 

E(v) = Mk/M)1-72 (v + 1/2) (96) 

where the vibrational quantum number v can take the values 0,  1, 2  

4.4  The Anharmonic Oscillator 

It is clear that the molecular restoring force cannot be of a strictly harmonic character.   On the 

one hand, we know that if we pull the two atoms far enough apart, the attractive force ceases to increase 

and in fact decreases to zero at infinite separation.   In the case of any pair of atoms which will not com- 

bine exothermally at absolute zero, e. g., SiC, there will even be a natural repulsion at some distance 

larger than the molecular diameter.    On the other hand, if we compress the molecule sufficiently, elec- 

tron core interactions and later nuclear Interactions will become significant.   The resulting anharmonicity 

will be observable in the molecular spectrum.    For the lower vibrational states, which are encountered 

almost exclusively if one remains sufficiently below the dissociation temperature, the deviations from 

harmonicity are small, and can be handled by means of perturbation theory. 

4. 5    The Molecular Spectrum 

Selection rules, the details of which we will not treat here, usually forbid a vibrational transition 

except when a rotational transition occurs simultaneously.    Since the rotational energy levels are very 

close together,  the vibrational spectrum is broadened into a group of very closely spaced lines which 

form a characteristic band, in a manner similar to that in which the main atomic levels are split into 

components in the Zeeman effect. 

4. 6   The Electronic Energy Levels 

In a diatomic molecule, the valence electrons are shared by the two constituent atoms.    Thus, 

these electrons lie in a Coulomb field which is produced by both atoms, and which, moreover, varies 

in time as the molecule oscillates.   These and other interactions complicate the molecular spectrum 

I as well as modify the individual atomic spectra, and must be taken into account in a complete descrip- 

i tion of molecular behavior. 

4. 7   More Complicated Molecules 

As one considers larger and larger molecules the problem becomes more complicated very rapidly. 

More vibrational and rotational modes are added, the electronic configuration may become quite compli- 

cated, and the molecules tend to become anisotropic.   A number of very powerful techniques of approxi- 

mation and computation have been developed to treat such molecules and their spectra, and such experi- 

mental methods as nuclear magnetic resonance and electron paramagnetic resonance, together with 

isotope substitution techniques, are used to add to the information gathered by classical optical and 

Infrared spectroscopy. 
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A special case of the very large molecule Is the crystal.   Here a number of very Important simpli- 

fications can be made by virtue of the periodicity of the crystalline lattice and consequently of the poten- 

tial field in which the electrons find themselves.    The most striking effect upon the atomic structure is 

that an electron can no longer be said to belong to a certain particular atom.   In quantum mechanical 

language, its wave function extends throughout the crystal.   This results in the broadening of the lower- 

energy spectral lines into broad bands, which in some cases actually overlap.   The relative position of 

these bands will determine whether the solid is a dielectric, a semiconductor, or a conductor.    A full 

treatment of this and related effects lies in the domain of solid state physics. 

WADC TN 56-360,   Part XV 43 



-1 

5.   POSSIBLE TRENDS IN FLUID DYNAMICS 

5. t General Remarks 

The development of fluid dynamics has been briefly outlined.    Beginning from hydraulics, fluid 

dynamics of incompressible media, and the concept of continuum, the field of fluid dynamics subsequently 

introduced the concept of compressible continuous media and the principles of the kinetic hypothesis with 

transport phenomena.    From the concept of a particle and the phenomena associated with it, fluid dy- 

namics passed to the concept of a molecule with the corresponding phenomena.    But the modern require- 

ments superimposed upon the field of fluid dynamics are much stronger.    As a field of science, fluid 

dynamics should be able to describe such phenomena as radiation, ionization, dissociation, etc. , in 

moving laminar and turbulent gaseous media;  one may mention an well a liquid-gaseous system with 

nuclear phenomena and transformation of mass into energy (the sun). 

It is obvious that the existing concepts of a particle or a molecule as the fundamental element of fluid, 

are insufficient.     The molecular and atomic structure of the medium in question must be taken into account. 

Fluid dynamics considered as a field of classical physics or applied mathematics must adjust itself to the 

modern development in mathematical physics. 

5. 2 Classical Models 

Assume that the definition of the word "mechanics" includes the notion of statistical mechanics. 

Then the following charts (Matrices la,  and lb) contain an elementary description of the contents of some 

subfields of the field of mechanics.    Similarly, one can discuss subfields of acoustics with related subfields 

such as hydro(aero)-acoustics, etc., and the subfield of electromagnetism with related subfields such as 

hydro(aero)-electro-magnetism, etc.   One may also discuss the possibility of application of various modern 

theories to fluid dynamics and related subfields.    Matrix 3  briefly outlines a few such possibilities. Matrix 

2 divides fluid dynamics according to the magnitude of the Mach number and according to the main phe- 

nomena of the system in question. 

5. 3  Brief Discussion of Some Subfields 

The field of fluid dynamics was originated and developed as a field of the dynamics of liquids.    The 

first approach considered only laminar motion in the macroscopic sense,  and considered not the phenomena 

due to internal friction but only due to the external forces.    Later, the need to consider the effect of internal, 

(frictional) stresses became obvious. 

The first model used was that of continuum; there is no free space between the particles or molecules 

of the medium in question. The fluid represents a homogeneous non-porous medium subject to deformation 

and action of internal stresses. Since there is no free space between the molecules, the only way to change 

the volume is to change the volume of each molecule. The volume of a molecule of a polyatomic gas can be 

changed by changing the following molecular energies: £_,  E , E  ..   , E ,      .    In a monatomic gas the 

above requirement implies a change of the volume of an atom.    But the changes in volumes of atoms and 

molecules are insignificant;   changes in volume of a gas are caused by the changes in intermolecular distance. 

Consequently the model of mechanics of continuum cannot represent phenomena in all kinds of gases,  being 
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Main subfield: 

Fluid Dynamics. 

Phenomena of motion of a medium (fluid) with no heat 

addition from outside, no electro-magnetic phenomena 

(radiation), no nuclear reaction;  principally: distribution 

of the velocity, density, pressure and temperature. 

Related subfields: 

Thermo-fluid dynamics 

(thermo-aerodynamics) 

Keat phenomena in moving media due to internal friction 

are taken into account; emphasis upon fluid dynamics 

phenomena 

Acoustico-fluid dynamics 

(-hydrodynamic s) 

Bordering subfield between acoustics and fluid dynamics; 

acoustic phenomena in moving media; emphasis upon fluid 

dynamics phenomena 

Electro-magneto-fluid dynamics 

(radiation-fluid dynamics) 

Bordering subfield between electromagnetism and fluid 

dynamics; radiation phenomena in moving media; emphasis 

upon fluid dynamics phenomena. 

Nuclear-fluid dynamics Bordering subfield between nuclear physics and fluid 

dynamics;  nuclear reaction phenomena in moving media 

are considered;  emphasis upon fluid dynamics phenomena. 

Matrix la.    Elementary Description of the Subfields: Fluid Dynamics and Related Subfields. 

at best only a first approximation.    In case one uses the model of continuum and some average (mean) 

functions,  the problem needs to be referred to statistical mechanics. 

Thus the most justified model to account for the phenomena in moderately and strongly rarefied gases 

is a model of physics of gases: for example, that of the kinetic hypothesis of gases. 

All the other regimes and fields in Matrices  2  and 3  are self-explanatory.    The subfield nuclear-fluid 

dynamics can be illustrated as follows: the sun can be treated as a liquid state system subject to continuous 

nuclear reactions,  which implies a continuous change of mass into energy.    The fundamental equations of 

such a system are yet unknown. 

From the matrices presented, it seems obvious that the field of fluid dynamics tends to proceed 

along the same lines as the modern field of mathematical physics, i. e. , a description of macroscopic 

phenomena in the system in question by means of microscopic phenomena in molecules and atoms. 
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Main subfield: 

Therraodynami c s 

Phenomena In a medium at rest due to heat addition from 

outside, no electro-magnetic phenomena (radiation), no 

nuclear reaction; principally: distribution of heat and 

temperature. 

Related subfields: 

Hydro-(Aero)- 

Thermodynamics 

Therraodynamic phenomena in moving media; emphasis 

upon thermodynamic phenomena. 

Acoustic-Thermodynamics Bordering subfield between acousticsand thermodynamics; 

acoustical phenomena in thermodynamic systems; emphasis 

upon thermodynamic phenomena. 

Electro-Magneto- 

Thermodynamics 

Bordering subfield between electro-magnetism and thermo- 

dynamics; radiation phenomena in thermodynamic systems; 

emphasis upon thermodynamic phenomena. 

Nuclear-Thermodynamics Bordering subfield between nuclear physics and thermo- 

dynamics; nuclear reaction in thermodynamic systems; 

emphasis upon thermodynamic phenomena. 

Nuclear-Hydro-(Aero)- 

Thermodynamlcs 

As above, In moving media; emphasis upon thermodynamic 

phenomena. 

Matrix lb.   Elementary Description of the Subfields: Thermodynamics and Related Subfields. 
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Regime o{ Fluid Dynamics Possible Mach No. 

and other characteristics 

Incompressible fluid: liquid-continuum p = const. 

Compressible medium: gas p 4 const. 

Subsonic: pseudo-conlinuum,  or physics of gases M <   1 

Transonic: pseudo-continuum, or physics of gases M   ^ 1 

Supersonic: pseudo-continuum, or physics of gases,  slip flow 1  < M < 7 

Hypersonics, hyperballistics (rarefied gas),  slip flow ~ 7  < M ~  15  T   20 

Free molecule flow,  Newtonian gas dynamics (rarefied gas) ~  15 f  20  < M 

Meteoritical fluid dynamics (meteors) 100 <   M 

Fluid dynamics of system subject to electro-magnetic phenomena Ionosphere, radiation 

Cellestial fluid dynamics 

Fluid dynamics of systems subject to nuclear reaction Hydrodynamics of the sun 

Meteorological fluid dynamics 

Matrix 2.    Division of Fluid Dynamics 
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Matrix 3.- Possible Physical Models as Applied to Fluid Dynamics and Related Subfields 

1 

Field Fundamental Model Possibility of Application 

1. Mechanics of Deformation of a particle, shearing stress Fluid dynamics of incom- 

continuum tensor pressible media, extended 

to compressible media 

2. Physics of gases- Collision of molecules, transport phenomena Fluid dynamics of compressible 

kinetic theory of media, thermo-fluid dynamics 

gases-(statistical 
■ ■ 

slip flow 

mechanics) 

3. Free molecule flow Reflection of fully elastic molecules from the Hypersonic flow regime. 

surface of a body with normal and tangential hyperballistic 

velocity components 

4. Newtonian gas Motion of fully inelastic molecules along the Hypersonic flow regime. 

dynamics surface of a body with normal velocity 

component equal to zero 

hyperballistics 

5. Molecule dynamics- Motion of atoms inside a molecule: Variation of c ,  c ,   y with 

quantum theory translation,  rotation, vibration the temperature,  dissociation, 

heat-capacity lag (relaxation 

time) thermo-fluid dynamics, 

hypersonic regime 

6. Quantum theory- Motion of electrons around nucleus (proton). Radiation,  ionization, hyper- 

quantum mechanics- radiation,  electro-magnetic phenomena sonic regime,  electro-mag- 

theory of structure neto-fluid dynamics, meteor- 

(mode).) of an atom itieal fluid dynamics, celles- 

tial fluid dynamics 

7. Electron theory Electrical charges of electron and proton As in 6 

8, Theory of rela- There is no absolute motion and no absolute Cellestial fluid dynamics; 

tivity, special set of coordinate axes;  velocity of light in phenomena between cellestial 

(systems moving free space is a universal and invariant bodies; application to the 

with uniform constant of nature; acceleration due to atomic structure (Dirac rela- 

velocity) and gravity is indistinguishable from any other tivistic approach to atomic 

general (acceler acceleration;  equivalence of mass and structure). 

ated systems) energy 

9. Nuclear reaction Equivalence of mass and energy: Nuclear fluid dynamics 

H2  + H2 —► H3  + n + 3. ? ''ev (the sun) 
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5. 4 Radiation and Dissociation Phenomena in Moving Media 

To illustrate let us discuss briefly the possible model of a dense fluid dynamic moving system with 

radiation and dissociation phenomena.    Since each phenomena in a fluid are obviously described by the 

methods of quantum mechanics, the following combination can be considered: 

(i)     A system (one or more) of Schrödinger equations combined by means of the proper 

" links"  with the system of macroscopic fluid dynamics equations based upon continuum 

which equations are expressed in terms of kinematic properties u., p, thermodynamic 

properties p, T,  and the proper coefficients ß. (i =  1,  2),  X; the "links'' may contain 

T, or other magnitudes,  expressing the relation between the microscopic phenomena due 

to radiation and dissociation and the macroscopic properties such as heat content.   The 

resultant system may be subject to boundary conditions superimposed upon the kinematic, 

thermodynamic,  electro-magnetic, and radiation magnitudes.    For example, the iono- 

sphere is subject to high energy electro-magnetic radiation impinging upon this gaseous 

domain from the sun.    This model is a simple one and although acceptable from the 

mathematical point of view,  it may be challenged from the physical standpoint in its 

marriage of continuum and atomic structure. 

(it)     As at/ove, applied to the kinetic theory.    This model seems to be highly desirable from 

the physical standpoint due to realistic features of the kinetic hypothesis.    But if transport 

phenomena are considered, this model may present enormous mathematical difficulties: 

the molecules are not perfectly elastic spheres, etc.    The already extremely difficult 

equation similar to the Maxwell-Boltzmann equation will be accompanied by a simultaneous 

system of Schrödinger equations, 

(iii)     As above, applied to the free molecule flow. 

As a final remark,  one can mention that the application of nuclear phenomena to combustion 

processes is also under investigation (Ref.  2, p.  68, Ref.  15). 
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