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OPTIMAL INVENTORY DEPLETION 

By 

Peter W. Zehna 

1. Introduction and Summi ary 

In recent years, a great deal of attention has been focused on inventory 

problems, particularly the problem of optimal policies for ordering stock. 

More recently, Derman and Klein [l], along with Lieberman [2] have investi- 

gated the problem of optimal policies for depleting stock. More specifically, 

an operation requires a stockpile of items to be issued according to some 

specified demand. The field life of an item is a known function,  L(S), of the 

age, S, of the item upon being issued. The problem is to cetermine the order 

of issue (issue policy) which maximizes the total field life of the stockpile. 

Such a policy is called optimal and it should be noted that optimality is 

defined only up to an equivalence, two policies being equivalent if they 

yield the same total field life. 

In practice, one finds [3] that the two most commonly used policies are 

those of LIFO (last in, first out) the policy of always issuing the newest 

item when demanded, and FIFO (first in, first out) the policy of always 

issuing the oldest item when demanded.  Under the assumption that demand 

occurs only when the item in use is completely exhausted, the authors in [l] 

and [2] determine conditions on L(S) for which these two issue policies 

are optimal. Derman and Klein in [l] first prove the general inductive 

theorem that if L(S)  is a convex function and LIFO is optimal for a stock- 

pile of size two then LIFO is optimal for any size greater than two, thereby 
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reducing the problem for convex functions to verifying the case n = 2 , 

where n is the size of the stockpile. It is then shown that LIFO is 

optimal for n = 2 for the special cases T,(S) = r-ö (a > 0, b > 0) and 

L(S) = ce   (c > 0, k > 0) . 

Lieberman in [2] concentrates on the FIFO policy.  He first proves a 

general inductive theorem to the effect that if L(S)  is a differentiable 

function with derivative L^S) > -1 for all S and LIFO is optimal for 

n = 2 then LIFO is optimal for all n . He then shows that If either 

L(S) is convex or L'(S) > -1 and FIFO is optimal for n = 2 then FIFO 

is optimal for all n . Finally it is shown that if L(S)  is concave and 

monotone with L'(S)  >  -1 then FIFO is the optimal issue policy. 

In both [1] and [2], the authors pose the problem of farther charac- 

terizing the class of functions for which LIFO and FIFO will be optimal 

issue policies. The purpose of the present research is to examine and 

extend, where possible, some of the results found in [l] and [2], as well 

as to Investigate other models which are stochastic in character.  The 

findings are summarized below. 

In Section 2, the Derman-Klein paper is analyzed.  It is pointed out 

that an incorrect proof of their basic inductive theorem is given in [1]. 

It is shown that the policy of issuing Just one item, the source of diffi- 

culty in their proof, may indeed be optimal. Furthermore it is proved 

that the hypothesis of their basic theorem cannot be satisfied unless the 

field life function, L(S), is monotone. With the added assumption of 

monotonlcity, a correct proof for the Derman-Klein basic theorem is then 
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given.  It is then shown that If L(S) is convex and L'(S) < -1 for all 

S then LIFO is optimal for all n .  A condition yielding LIFO as an op- 

timal policy for all n for a convex, twice differentiable function L(S) 

is proved to be that ^||| is a non-decreasing function.  This condition 

is found to encompass the special life functions found in [l] alluded to 

above and the theorem is applied to give an immediate generalization. 

Finally it is shown that LIFO is optimal for a concave field life L(S) 

provided that L'(S) < -1 for all S . 

Section 3 is devoted to an investigation of the FIFO policy under the 

same model assumed in Section 2.  It is shown that Liebeman's condition 

that L'(S) > -1, yielding FIFO as optimal for L(S) concave and monotone, 

may be extended to include non-monotone functions and that for concave 

functions, the condition is necessary as well as sufficient.  It is also 

proved that whenever L(S) is convex and L,(S)>1 then FIFO is again 

optimal for all n . 

An attempt is made in Section k  to generalize the preceeding results 

to the case where there is more than one source of demand for the items 

in the stockpile still under the deterministic model of a known field 

life function.  It is shown, by example, that some of the "nicest" cases 

fail to generalize in a natural way so that no general statement can be 

made.  However, it is proved that in the special case L(3) = a + b S 

(a > 0 , -1 < b < 0) , so that L!(S) > -1 , FIFO remains the optimal 

policy for two demand sources. Also, when L(S) is either convex or 

concave with 1/(3) < -1 for all S , LIFO is optimal for two sources. 



Finally a general theorem is proved whereby whenever LIFO or FIFO is the 

optimal policy for two demand sources, the same will remain true for any 

finite number of sources greater than two. 

In Section 5, the requirement that the field life function be known 

Is relaxed and field life is allowed to be a random variable with known 

mean value. The concept of total field life is replaced by expected 

field life (called utility) and the inherent difficulties imposed by 

such a model are discussed.  Nevertheless, some isolated results are ob- 

tained. Thus, whenever field life is distributed by a T-density with 

mean value a + bS(a>Ü, b>0), FIFO Is optimal for all n , while 

kS 
if the mean value is given by L(S) = e  (k > 0) , LIFO is optimal for 

the case n = 2 .  In accordance with Derman and Klein in [l], demand 

is then made independent of field life so that it is assumed that an 

item is replaced in the field every t units of time. Under such a 

model, Derman and Klein have shown that if the mean value, U(S) ,  is 

convex, LIFO is optimal for all n . They further remark that FIFO is 

optimal whenever U(S) is concave. An example is provided which shows 

that the latter statement is not always true. If it is assumed that all 

the arguments of the function U(S) involved in the expression of total 

utility lie in the region of concavity then the statement is true and 

this corrected version is given. Moreover, the results are proved to 

remain true in the case of more than one demand source. 

Finally, in the spirit of the remark made above, that LIFO and FIFO 

are the two most commonly used policies, the requirement of optimality 
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ls suppressed in Section 6. A sequential model Is defined whereby at the 

beginning of the operation, two Items are In the stockpile. One of the two 

Items Is Issued to begin the operation and Immediately replaced by a new 

item, the next issue taking place when the field life of the item in use is 

exhausted.  The operation then proceeds in stages, a new item always re- 

placing the one issued and, moreover, it is agreed that either the LIFO or 

FIFO policy is followed at each stage. It is of interest to compare the 

relative merits of the two issuing schemes. 

The ages of the two items at any time t are assumed to be random 

variables and thereby determine a stochastic process which is shown to 

have an Imbedded Markov process under the two schemes of following LIFO 

and FIFO throughout. Field life is related, in a natural way, to the age 

of the newer item at any issue stage. If the field life, Z, of an item of 

age t at issue is assumed to be distributed by the density, 

w/ *\      (t+ß)01"*"1 a  -z(t+ß) (z > 0) with parameters a > -1, P > 0, 

the Markov process under each respective scheme is shown to have a unique 

stationary absolute probability distribution. The explicit solutions are 

displayed in each case and it is found that the calculation of moments of 

these distributions is not amenable to elementary calculus techniques. The 

special case a = 0, p « 1 is then analyzed completely, moments being 

compared numerically to find that the LIFO scheme has greater stationary 

utility than that of FIFO. 
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2. Optlmallty of LIFO under Model I 

2.1 Definition of Model I 

Model I Is defined by the following set of assumptions: 

(I) At the start of the operation, a stockpile has n 

items of ages S.,S0,...,S  where S.^S.  for 
1 2     n 1  J 

i ^J and S > 0 for i = 1,2,--^n . 

(II) The field life of an item is a known, non-negative 

(2.1)      function L(S) of the age S of the item upon 

being issued, where S > 0 . 

(ill) A new item is issued only when the entire life of 

the preceeding one is ended. 

(iv) Items are issued successively until the entire 

stockpile is depleted and no new items are ever 

added. 

(v) S^SlUS) > 0)  i = 1,2,---, n . 

The ages in (i) are called initial ages and (v) guards against beginning 

the operation with items which can yield no field life at the outset.  The 

model is called deterministic in the sense that (ii) requires that L(S) 

be known.  In what follows, convexity and concavity of L(S) play an 

important role.  A real-valued function f with real domain [a,b] is 

defined to be convex [concave] if, for every x ,x £[a,b] and real B-,,^ 

satisfying a1 > 0, a2 > 0 , a1+ a2 = 1, it follows that ^a^+a^) < 

_ 



< a1f(x1) + a2f(x2) [f(a1x1+a2x2) > tL^t^X.)*m^ix^)]   • 

Several properties of convex [concave] functions which will be used 

are well known and may be found in many standard sources, [k]  being 

mentioned as an excellent reference. Geometrically, a function is convex 

[concave] if for every pair of points x1,xp in the domain of f , the 

line through f(x ) and f(x ) never lies below [above] the graph of f. 

It follows that f is continuous on (a,b) and if f is twice differentiable, 

f is convex [concave] if and only if f"(x) > 0 [f"(x) < 0]  for all 

xe(a,b) , Finally, if f is convex, ct,ß real numbers with a <ß and 

f(xo+a)-f(xo)   f(xo+ß).f(xo) 
x ,x +a, x +3 in the domain of f , then   <  ■  
o' o  ' o ' a      —      (3 

and, if a > 0 and x < x  with x ,x ,x1 +a, x +a all in the domain of 

f(x2)-f(x1)   f(x2+a)-f(x1+a) 
f ,   <    with the reversed inequalities holding 

X2'X1 X2"X1 

for f concave. 

Before proceeding, it is convenient to introduce the notion of a trun- 

cation point.  In writing explicit expressions for L(S) , defiacd for at 

least S > 0 , one must guard against allowing L to be negative in ac- 

cordance with assumption (ii) in the model. Even the general assumption 

that L(S) be concave and monotone decreasing has inherent in it the fact 

that if this is to hold for all S > 0 , there then exists a finite S 
-  ' o 

for which L(S ) = 0 and L(S) < 0 for all S > S  .  In such cases, it 

is necessary to re-define L(S)  to be identically zero for S > S  and 

S  is called a truncation point for L .  In some cases it is convenient 



to speak of a truncation point when no such finite S  need exist as, 

for example, when L(S) is convex decreasing.  In such cases S  may- 

be taken as + oo .  In summary, then, if L is monotone decreasing 

on [S1, oo) where 0 < S' and L{S')  > 0 , then S < oo is a trun- 

cation point for L if and only if S = inf (S e[S', oo)iL(S) < 0) 

and then it will always be understood that L is re-defined to be 

identically zero for S > Sn . 

2.2 Modification of the Derman-Klein Theorem 

Derman and Klein in [l] propose the theorem that if L is a con- 

vex function and LIFO is optimal whenever n « 2 , then UFO is optimal 

for all    n > 2 , thereby reducing the problem of determining LIFO as an 

optimal policy for convex L to that of verifying its truth for the 

simple case n = 2 . However, the proof of the theorem relies heavily 

on the statement made that "obviously ths policy of issuing but one 

item cannot be optimal." It will be seen presently, however, that this 

is not the case.  In addition, the hypothesis cannot be satisfied un- 

less L is a monotone function, as may be seen from the following theo- 

rems. 

Theorem 2.1:  Suppose L(S) is a convex increasing function. Then 

LIFO cannot be optimal for n = 2 . 

Proof: Let L+(S) = lim H3^^3) be the right-hand derivative 

of L . Since L is convex, L is defined for all S > 0 and, moreover. 
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L  Is non-negative, non-decreasing with L+(S) > 0 for S > 0 . Let 

0 < S < T be any pair of Initial ages. If the FIFO policy is followed let 

Op denote the total field life so that Qp = L(T) + L(3 + L(T)) ; if the 

LIFO policy is followed, its total field life, say Q^ , will be given by 

QL •= L(S) + L(T + L(S)) . 

. L(S)-L(S1) 
Now suppose there exists S. > 0 a L (Sn ) > 1 and let f(S) =  =• 

1 1' — * '     S-S 

for all S > S1 . Since L is convex,  f(S) > L+(S ) and lim ftS)»^!!) 
s ->s1     ■L 

so that f(S)>l implies L(S)-L(S1) > S^ or S^^ + L(S) > S+L(S ) for 

all S>S1 whence L(S1 + L(S))> L(S + L(S1)) and, since L(S) > L(S ) , 

L(S) + L(S1 + L(S)) > L(S + L(S1)) . Thus for this choice of S  and any 

S2 > Sl  ' ®T > \    S0 that LIF0 ls not 0Ptima1' 

On the other hand, suppose L+(S) < 1 for all S > 0 , Since L+(S) 

is non-decreasing and L+(S) > 0 , there exists as 0 <a < 1 and 

lim L+(S) *a  .    Define F(S) = L+(S) + L+(S)L+(S + L(S)) - L+(S + L(S)) for 
S->oo 

S > 0 . Then lim F(S) »a2 and 0 < a2 < 1 . But a2 > 0 means there 
S -» oo 

is an S1 > 0 3 F(S1) > 0 . For this S^ let G(S) ■ L(S) + L(S + L(S))- 

LiS^  -L(S + LiS^)    for S > S1 . 

Then, 

G+(S) = L+(S) + L+(S) L+(S1 ♦ L(S)) -L^S + US^^)) and, 

G+{S1)  = L^S^ f  L"*^) L+(S1 + L(S1))-L
+(S1 + L(S1)) = F^) >0 

which, together with 0(8^) = 0 implies the existence of S >S a G(S ) >0 
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and for this choice of Initial ages ^ = G(S2) + ^ > ^ . Again LIFO 

cannot be optimal, ' q.e.d. 

']?leoreig 2-2:     Suppose    L(S)     is a convex function and not monotone. 

Then,  neither LIFO nor FIFO can be optimal for    n = 2   . 

Proof:    Since it is   required that    L(S)  > 0    for all    S  > 0,  and    L 

Is not monotone,     L(0)  >0 .    Also,  since    L    is continuous,  there is 

an    So3 L(S)    is   strictly decreasing for    0 < S < So    and non-decreasing 

for    S > So    and  there exists    S^ > So3 L(S)    is again strictly increasing 

for    S > S^   .    Moreover,     lim    L(S) = + oo   . 
S -» oo 

Now In the region S > So , L is convex increasing so that by Theo- 

rem 2.1,  LIFO cannot be optimal here, hence in the region S > 0 . 

Choose S1£ (0,So) . Then L(S) -»+00  implies the existence of 

S2 > So 5 L^S2^ " L^Sl) ' Slnce L ls convex, 

L(!>)-L(81^ < L(S2''L(Sl))'L(Sl4L(Sl))   L(S2+L(S1)).L(S1+L(S2)) 
S2-Sl s2-s1 VS1 

so that L(S2)-L(S1) < L(S2 + K^))-K^^Mf^)) or. 

Op = L(S2)+L(S1 + L(S2)) <L(S1)+L(S2+L(S1)) = Q^ ,  i.e., FIFO 

is not optimal for this choice of S.^ S? for initial ages.       q.e.d. 

In the light of these two theorems, the basic theorem of [l] is revised 
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and proved as follows. 

Theorem 2.3:  If L(S) Is a convex monotone function and LIFO 1& 

optimal for n = 2 , then LIFO is optimal for all n > 2 . 

Proof:  Suppose LIFO is optimal for n = 2 and assume LIFO is optimal 

for n = k > 2 . Let n = k+ 1 and 0 < S, < S0 < .. • < S,  , be an 
12 k+ 1 

arbitrary set of initial ages. For any issue policy, let S  denote the 

age of the last item issued as in [l]. First observe that none of the k .' 

policies having S = S1 can be optimal for, in any one of them, if S 

denotes the initial age of the item issued next to last, then S > S. and, 

by hypothesis, this policy could be improved by interchanging Uie order of 

issue of these last two items. 

Now for S / Sj^ let x denote the total field life obtained from 

the issue of the k preceeding items. Then x can assume only the posi- 

k1 * 
tlve values f^)^ say and let x = max (x ) . By the induction as- 

sumption, x ■ L(S1) + y where y >0 . As in [1], let Q(x)«x+L(x+S ) 

denote the total field life of all k +1 items for fixed S* . Since L 

is now assumed to be monotone, two cases arise. 

If L is non-decreasing, then so is Q and hence Q is maximized 

by x = x 

If L is non-increasing, then S1 < S  implies L(S ) > L(S ) and 

x > L(S1)  so that Q(x ) = x + L(x +S ) > x > L(S ) > L(S ) = Q(,0) . 

But for any i e (1,2,•••,k !) , x < x  and Q is convex so that 
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QU^-QCO)    Q(x*)-Q(0)    Q(x*)-Q(0) 
 1   <   B   <   

since Q(x )-Q(0) > 0  and 0 < x1 < x* .  Then QCx^ < Q(x*) for 1-1,2,--^k: 

Thus, In both cases, Q(x) Is maximized by x = x* and so, for fixed S* , 

the optimal policy Is obtained by using a LIFO order on the first k Items 

issued by the inductive assumption. 

Letting S vary over 8gJ S^,--.,^ , one obtains k policies and sup- 

pose the optimal among these is not the one where S* = S   . but S* = S 

* 
say.  Then, since x  is a result of LIFO order, the item of age S    was 

Issued next to last and, by hypothesis, the policy could be improved by inter- 

changing the order of issue of these last two items. Hence the optimal policy 

must be the one having B* = Sk+1 which is precisely the LITO policy with 

n = k+1 . The theorem then follows by induction. q.e.d. 

2.3 Optimallty Conditions for LIFO 

Having thus established the general Theorem 2.3, it is desirable to charac- 

terize the class of convex functions for which LIFO is optimal by verifying 

the case n - 2 . A partial answer is given by the following two theorems. 

Theorem 2.k:     If L(S)  is a convex, differentiable function and L1(S)<-1 

for all S > 0 , then LIFO is optimal for n > 2 . 

Proof:  In accordance with Secton 2.1, L possesses a finite truncation 

point So so that L(S)=0 for all S > So . Still, L(S)  is convex for 

all S > 0 . Moreover, for S < S   L(S) > S - S or S + L(S) > S  , while 
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if S > S , L(S) = 0 and hence S + L(S) > S  . Thus In all cases. —    O ^   '  _    Q 

S + L(S) > S  so that. 

(2.3.1) L(S + L(S)) = 0 for all S > 0 

By Theorem 2.3, it suffices to verify the case n = 2 . Suppose, 

then, that 0 < S1 < S2 < So are given initial ages and let Or , Op 

denote total field life under LIFO and FIFO respectively. Now 

S2 + L(S1) > S1 + LiS^  > So so that 

(2.3.2) L(S2 + LiS^)  = 0 and ^ = L(8u) . 

L( S ) -L( S )    L( S +L( S )) -L( S. +L( S.)) 
Since L is convex and L(S„) > 0 ,  = =- *?  = = = 

2     '   S.-S, 
2 "1 s2-s1 

L(S1+L(S2)) 
^   by (2.3.1) and S - S. > 0 implies 
1 ?   * 

s2-s. 

(2.3.3) Qp = L(S2) + L^  + L(S2)) < L(S1) 

Combining (2.3.2) and (2.3.3) , Q^ >   (^    so that LIFO is optimal for 

n = 2 since the choice of S , S  was arbitrary . q.e.d. 

Theorem 2.5: Suppose L(S) is a twice differentiable, strictly 

convex function which is decreasing on (0,QO), with rrfff non-de- 

creasing. Then LIFO is optimal for n > 2 . 
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Proof:  Since L Is convex decreasing, it suffices by Theorem 2.3 

to verify the case n = 2 . Suppose that 0 < S < S  are the given 

initial ages. For S > S , define 

(2.3.4) G(S) = L(S) + L{S1  +  L{S)) - L^) - L(S + L^))   . 

Since G(S ) = Qj, - Q^ , it suffices to show G(S) < 0 for all S > S1 

L'CS+US )) 
(2.3.5) Let H(S) = 1 + L'(S1 + L(S)) V (s) fOT  a11 S - Sl 

Then H(S) is decreasing on [S , 00) which may be seen as follows. 

n'{S)  - L,(S)L"(S1+ L(S)) - 
L,(S)LM(S+L(S1))-L"(S)L

,(S+L(S1)) 

lL'{S)]2 

L"(S) KO-r^v^J / L"(S) 
and, since j^    is non-decreasing, ^^^-^ > ^^ 

multiplying by the positive number 1/(3)1/(3 + L(S )) , 

or 

(2.3.6)        I/(3)L"(S + LiS^)  >   L"(S)L,(3 + LfS^) 

so that, 

(2.3-7) 
L'(3)L"(S + L(S1)) -L"(3)L'(3 + L(31)) 

[L^S)]2 
> 0 

Applying (2.3.7) to H'(S) , since I/(3)L"(3 +L(S)) <0 , H^S) <0 

for all S > S  . 
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Since L Is strictly convex and positive, it is clear that 

(2.3.8)       lim  L(S) = a > 0  and  lim  1/(3) = 0 
S -» 00 S -» 00 

Moreover, since Ot > 0 , 

(2.3.9)      lim  G(S) = a + L(S +a)-L(S )-a < 0 
S -»oo 

Now 0(3^^) = 0 and 

G'(3) = L^S) + L,(S)L,(S1 + L(3)) -L
,(3 + L(S1)) = L^S) H(S) . 

3uppose H(3 ) <0 . 3ince H is non-increasing, H(S) <0 for 

all 3 > 3.  so that G'(S) >0 or G is increasing on  [S , 00) which, 

together with G(31 ) « 0 implies lim  G(3) >0 contrary to (2.3.9) • 
3 -»oo 

Thus H(31) > 0 .  If H(S) > 0 for all 3 > 3 , then G,(3) < 0 or G 

is decreasing on [3 , oo ) which, together with G(31) = 0, inqplies 

G(S) < 0 for all 3 > 3  . On the other hand., if it ib not true that 

H(3) > 0 for all 3 > 3  then there is 3 > 3  for which H(S) > C 

for all 3, < 3 < 3  and H(S) < 0 for 3 > 3  since H is decreasing 
1 —  — o o 

and continuous. Then G'(S) < 0 or G is non-increasing on [S ,3 ] 

while G,(3) > 0 or G is increasing on (3 ,00) which, together with 

C(£ ) = 0 and lim  G(3) < 0, implies G(3) < 0 for all 3 >3  . 
1 3 -»00 
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Thus in all cases. 

G(S) < 0  for all  S >S q.e.d 
- 1 

While the attention thus for has been on convex functions due to the 

general Theorem 2.3, there is a special case of concave functions for 

which LIFO is the optimal policy as seen in the following theorem. 

Theorem 2.6: Suppose L(S) is a concave, differentiable function 

with 1/(3) < -1 . Then LIFO is optimal for n > 2 . 

Proof: Again there is a truncation point S  for L  and the 

condition 1/(3) < -1 is thus taken to hold on (0,S ) .  Also, if 
o 

0 < S1 < 32 < 3o are given initial ages , 

L(3 )  L(S ).L(S ) 

1 o    1 o 

so  that    L(31)>So-31    or    3^ 1(3^  > So    whence    L(3+L(S))-0. 

Also    So-S1 < 1(3^    with    L    continuous and decreasing on   [3 ,3   ] 

implies the existence of    3^ e(3  ,3  )    for which    L{S') = S   -S    .     For 

each    3 > 3    , define 

(2.3.10) G(3)  = L(3)  + 1(3^1(3))   - 1(3^ 

and observe that 
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»»(■) = L^S) + L,(S)L,(S1+L(S)) = L,(S)[1 + L'(S1+ L(S))] . 

Now, If 1. <8 <i* | L(S) > L(S^) = s
0-

s
1    s0 ^&t    s1

+  L(s) > 

S, + S - S, = S   and  L(S. + L(S)) = 0 . Then G(S)x L(S) - U.S. ) < 0 . 1   o   1   o 1 i 

If S' <S <S , then 5^^ + 1(3) <S1 + L{S^) = So . But 1/(3^1(3)) <-1 

so that 1 + L'(S +L(S)) < 0 while L,(S)<-1<0 implies Gl(S)>0. 

Also, 

G(S^)-L(S(;)+L(S1+L(S(;))-L(S1)-So-S1 + L(S1+So.S1)-L(S1)= (S^S^-L^) < 0 

and 

G(So) « L(So) + L(S1 + L(So)) -USj^) = L(S1)-L(S1) = 0 

so that    G    is non-decreasing on    (S^S  )    or    G(S) <0    for all    S€{S^,So) . 

Thus, 

(P.3.11)    G(S)  < 0, or    L(S)+L(S1+L(S))  < 1(3^^)       for all      S1 < S < So   . 

Now    (^ = L(S1)  + L(S2+L(S1)) = US^^)    since    S2+ USj^)  > Sj^ + LCSj^)  > So, 

and    (^j, - Qj =G(S2)  < 0    so that LIFO is optimal whenever    n ■ 2  . 

Assume LIFO is optimal for    n ■= k-l(k > 3)    and suppose    n = k  .     Let 

0 < S,   < S    < •••   <   S,   < S      be given  initial ages.    An issue policy    P    is 

Just an ordering    S,    -'C S     -^ <S        where    (j,,"-,^)   is a permutation 
Jl J2 «Jk IK 
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of (l,---,k) and Sa«<Sß means the item of initial age Sa is issued 

prior to that of initial age Sß . The total field life Q(P) of such 

a policy is then given by 

k 
(2.3.12)    Q{P) - USj ) ♦ L(SJ2 ♦ LiS^))  ♦ g ^^  + *i) 

where 

.    - US.    ♦ L(S )) and x1+1 = ^  ♦ L(S  ♦ L{S ) ♦ xj    i-3,^---,k-l . 

observe that ^ > xk_1 > • •• > *■■$ > 0 • 

Let J. - 1 be fixed where i t [1,2, — ,« • Of the (k-l): policies 

given by S ^S -< <S , the induction hypothesis states that the 
i ' J2        Jk 

optimal one is P1 where P1 is characterized by J2 < J3 < ''" < Jk • 

Then there are k such policies as i varies among which P^ given by 

j • 1, 1 • 2,"*,k is the LIFO policy. Clearly, the optimal policy among 

p P ....P  is optimal for the problem at hand. 
1' ?.' k 

In accordance with (2.3-12), the total field life for LIFO is 

Q(P1) - U^) ♦ L(S2 ♦ US^) ♦ g L(S1 ♦ L^) ♦ x^ . 

But, S2 * UBJ > 51  ♦ US^ > So so that ^  - L(S2 « US^) - 0 and. 

for i > 3 , 
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S4 + L(Sn) + x4 > S, + 1(3,) > S i     x    i — i.     1    J 

so that L(S + L(S ) + x.) = 0 . Thus QCP,) ■ 1(3.) . 

For m ^ 1 , the total field life of policy P  Is m 

Q(P  )  = L(S   )  + L(3    + L(3   ))  + 21 L(S,    + L(Sj  + xj 

and,  for    1 > 3  , 

3      + L(S   )  + x    > S    + L(S   )  + x    =   [S    + L(SJ]  + L[31   + !,(•  )]  > So J. mil mji m i mo 

and    L(3.     + L(S   )  + x, ) « 0  .     Hence,    Q(P  ) = L(S   )  + L(3n   + L(S   ))    and, J. mi mmlm 

by (2.3'11), where S^^ was arbitrarily fixed, Q(P ) < L{3 ) » QCP,) . 

Then LIFO Is optimal for n « k and, by Induction, for all n > 2 .  q.e.d. 

2.U Applications and Examples 

Theorem 2.U now provides a counter-example to the statement that the 

policy of issuing only one item cannot be optimal. For if L satisfies the 

conditions of the theorem, LIFO is optimal and, by (2.3.2) its total field 

life is given by the issue of a single item, the newest. 

It is proposed in [l] that FIFO is an optimal policy to use whenever L 

is linear. An application of Theorem 2.4, however, shows this to be false. 

Thus, let L(S) = a-b3 where a > 0, b > 1 so that L has truncation point- 
b 
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Now L Is convex and L'(S) = -b < -1 for all 0 < S < |j so that L 

satisfies the hypotheses of Theorem 2.k  and hence LIFO Is an optimal policy. 

It Is Interesting to note that for b * 1 both LIFO and FIFO are optimal and 

according to Lieberman [2], FIFO is optimal for b < 1 so that b » 1 is a 

boundary case. 

Derman and Klein have shown in [l] that LIFO is optimal for the two cases 

L(S) = c e "^ (c,k > 0) and L(S) = ^ (a > 0, b > 0) . Their proofs in- 

volve some rather cumbersome algebra. It is easily verified that bot.i of 

these cases satisfy the conditions of Theorem 2.5. As a further application 

of that theorem, the latter case has an immediate generalization as follows. 

Let L(S) = —     where a > 0, b > 0 and \ > 0 . Then, 
(b+S)X 

L'(s>;^'L"<s,-(^ vhmoe ^i--^ -"«■ 

is non-decreasing in S . Hence LIFO is optimal. 

3. Optimality of FIFO under Model I 

Lieberman has shown in [2] that the following general theorem is true. 

If, under Model I, L(S) is differentiable with L'(S) > -1 and either 

LIFO or FIFO is optimal when n = 2 then LIFO or FIFO, respectively, is 

optimal for all n > 2 . It is also shown (Theorem 2 of [2]) that if L(S) 

is convex and FIFO is optimal for n = 2 then FIFO is optimal for all 

n > 2 . However, by Theorem 2.2, if L is not monotone then FIFO cannot 
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be optimal for n = 2 .  If the added condition of monotoniclty is imposed 

on L(S) , then Liebennan's Theorem 2 is, nevertheless, valid, the proof 

depending only on the fact that Q(x) , as defined in the proof of Theorem 2.3, 

is maximized by making x as large as possible. 

A set of sufficient conditions is then given in [2] under which FIFO is 

optimal for all n > 2 . Thus, Theorem 3 of [2] states that If L(S) is a 

concave, monotone, differentiable function with L'(S) > -1 , then FIFO is 

optimal for n > 2 . It is a curious fact that, while monotonicity was so 

crucial when L is convex, the monotonicity requirement may be suppressed 

in this theorem and, moreover, if L(S) is concave, the condition LI(S)>-1 

is necessary as well as sufficient. These remarks are embodied in the next 

two theorems. 

Theorem 3.1:  Suppose L(S) is a concave, differentiable function, not 

monotone, with L'(S) > -1 . Then FIFO is optiiial for n > 2 . 

Proof:  Since L Is not monotone and L(0) > 0 , there is an S > 0 

* # 
for which L is increasing on (0,S ) and non-increasing on (S , oo) . 

Moreover, for some S >S , L'(S) < 0  (otherwise L would be monotone) 

and hence L possesses a truncation point S > S . Let 0 < S. < S < S 

be any given initial ages. 

If S1 > S , then FIFO is optimal by Theorem 3 of [2]. If S < S*, 

then, since L is continuous, 0 < L(S.. ) < L(S ) and lim  L(S) = 0 so 
S -*S 

o 

that there is an S'  such that S < S' < S  and L(S, ) = L(SJ) . 
1 1   o       v I7   v 1' 
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Several cases then arise depending upon Sp . 

(3.1) Suppose S^ < S2 < So so that L(S2) < US^   . 

Case I:  8. + L(S2) < S^ . Then L(S1 + L(S2)) > LiS^    and 

L(S?) > L(S? + 1(3.)) , since L is non-increasing on (S , 00) , so 

that L(S2) + LCSj^ + L(S2)) > L(S1) + L(S2 + L^)) or FIFO is optimal. 

Case II: S1 +  L(S2) > S^ . Then 8^58^ L(S2) < S^^ + L(S1) and 

L is non-increasing so that L(S + L(S )) > L(S + L(S )) and 

L(S2) + L^ + L(S2)) > L(S2) + L(S1  + LiS^)  > L^) + L(S2 + US^)   , 

the latter inequality from the concavity of L . Again, FIFO is optimal. 

(3.2) Suppose S < S2 < S'  so that L(S1) < L(S2) . 

Cas e I:  S1 + L(S0) > S  and S2 + LiS^  < Sj^ + L(S2) . Then, 

L{S2+L(S1))-L(S1+L(S2)) 

(S2+L(S1))-(S1+L(S2)) 
> V{S1  + L(S2)) > -1 and (S2 + 1,(3^)-^ + L(S2)) < 0 

so that 

L(S2+L(S1))-L(S1+L(S2)) <S1+L(S2).S2-L(S1) < LCS^-L^) , i.e.. 
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L(S2)  + L^ + L(S2))  > US^  + L(S2 + US^)    or FIFO is  optimal. 

Case II:    Sn   + L(S0) >S and    S0 + L(Sn )  > S.   + L{S_)   .    Then, 

L(S    + L(S   ))  < L(S    + L(S  )) since    L    Is non-lncreaslng on  (S  , oo) 

while    L(S2)>L(S1)     so tl-^t ^Sg)  + L(S1 + L(S2))  > L(S1) + L(S2+L(S1)) 

and    FIFO Is optimal. 

Case III:     S1+L(S2)<S*   .     Then    S1+L(S1)  <S1 + L(S2)  <S*      so 

that    1(3.   + 1(3.))  < L(S    + L(S2))     since    L    Is increasing on (0,3   )   . 

Hence, L(32) + 1.(3^ L(S2)) > L(S2) + 1(3^ 1(3^ )  > 1,(3^ + L(S2 + 1(3^)  , 

the latter from the concavity of L , and, again, FIFO Is optimal. 

Thus, In all cases, FIFO Is optimal whenever n = 2 and hence for 

all n by Theorem 1 of [2] . q.e.d. 

Theorem 3.2:  Suppose L(S) Is a concave differentlable function. 

Then FIFO Is an optimal policy for n > 2 If and only if 1/(3) > -1 . 

Proof:  Suppose FIFO Is optimal.  If L Is monotone Increasing, then 

L'(S) > 0 > -1 . Otherwise, there Is a finite truncation point 3  . 

If L(3 ) < -1 for some 3 < S , then since L Is concave, L' Is 
o 

decreasing so that L'(3) < -1 for all 3 < 3 < 3  . But LIFO Is optimal 

on [3 , S ] according to Theorem 2.6 which is a contradiction. Thus 

L'(S) > -1 . 
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Conversely, if L'(S) > -1 then FIFO Is optimal for n > 2 by 

applying Theorem 3.1, together with Theorem 3 of [2].        q.e.d. 

The next theorem shows that FIFO need not be restricted to concave 

functions. 

Theorem 3-3: Suppose L(S)  is a convex, differentiable function 

and 1/(3) > 1 for all S > 0 . Then FIFO is optimal for all n > 2 . 

Proof: Let n = 2 and 0 < S1 < S2 be any given initial ages. 

Since L is convex and L'(S) > 1 , 

L(S2)^(Sl)  > 1 or S1+L(S2) > S^Li^)  and U^U^)) > U^+USj)   . 

But L(S2) ZUBJ  so that L(S2) ♦ L(S1 + L(S2)) > 1(3^ ♦ L^+L^)) 

Hence FIFO is optimal for n = 2 and, by Theorem 2 of [2], is optimal 

for all n > 2 . (l-e-d- 

The following example shows that it is not possible, however, to 

extend the preceeding theorem to all convex increasing functions. 

(3.3) Example:  Let 

0 < 3 < 1+ 

5 
and suppose \ ' I ^2 ^  •    ^ ^V = 8 ' L(S2) = l' L(Si+L (S2))= IT 
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and L(S2 + L(S1)) = || . Then 

L(S2)+L(S1+L(S2)) = 1 + J - 2.25 < 2.3125 = US^   + L(S2+L(S1)) 

It is very easy to find, on the other hand, S  and S  for which the 

inequality is reversed, for example, S = 1, S0 = 2 . 

h.    Model I with Multiple Demands 

^.1 General Formulation and Counter-Example 

In the preceedlng sections, it was assumed that there was only one 

source of demand for the items in the stockpile. A natural generalization 

would appear to be the case where there is more than one source of demand. 

More specifically, suppose the same deterministic model as outlined in 

(2.1) holds. In addition, it will be assumed that there are v sources 

demanding items from the stockpile in accordance with those assumptions. 

Let the sources be labeled M. , M-,--^^ . 

It is assumed that there are n > v items in the stockpile. The 

operation begins by issuing v items to M],Mp,'-.^4  and proceeding 

thereafter according to Model I. Clearly, it makes no difference which 

sources are labeled M^,Mp,,'',M .  In other words, for any specified 

issue order (policy), the first v items issued may be freely inter- 

changed at the outset within sources without affecting the total field 

life, i.e., there are v I    policies having the same total field life. 

Again, a policy will be optimal if its total field life is at least as 
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large as that of any other policy. 

It would be highly desirable, under this model, to establish that If 

LIFO (FIFO) Is optimal for V • 1, then LIFO (FIFO) will be optimal for 

arbitrary V . Unfortunately, this is not the case as may be seen from 

the following example where v = 2 . 

(^,1.1) Example: Let 

1 - ^(s-i)2 

L(S) = / 
1 

0 

=■ s 

so that L has truncation point ^ and 

0 < S < 1 

1 < S < 2 

2 <S <| 

1/(3) = i-i B 2  2S 

1 
2 

0 < S < 1 

1 < S < 2 

2 < S <| 

Now in the region [0, ^] , L is concave and differentiable in (0, ^) , 

indeed continuously so, with V(B) > - h    > - 1 . Hence L(S)  satisfies 

the conditions of Theorem 3 of [2] and FIFO is optimal for v = 1 . But 

suppose  v = 2 and the initial ages are S = .^h  , S2 = .6 , S = 2.6 , 

S, = 3.1 and S = 3.3 . Letting (^, denote the total field life of t.ie 

FIFO policy. 
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Qp = L(S5) + L(S1+) + L(S3+L(S!.))+L(S2+L(Slt))+L(S1 + L(S5) + L(S3 + L(S5))) 

= 0.1 + 0.2 + 0.U + 1 + .9996 = 2.6996 as is easily verified by checking 

the demands after the initial issue of S^    and S^ to begin the operation. 

Now consider the policy of issuing 3^    and S3 to begin with then follow- 

ing in the order S^Sg and Bj . Denoting the total field life of this 

policy by Q , it is readily verified that, 

Q=L(S5) + L(S3) + L(S^ + L(S5)) + L(S2 + L(S5)+L(SU + L(S5)))+L(S1+L(S3)) 

= 0.1 + 0.45 + 0.15 + 1 + 1 = 2.70 . 

Thus Q > ft-j. so that FIFO cannot be optimal. 

It is worthy of note that under the conditions of Theorem 3 of [2] 

FIFO is optimal for v = 2 whenever n = 3,^ as may be verified by sheer 

enumeration of cases. There is a special case, however, for which FIFO is 

optimal for the present problem as will be seen in the next sub-section. 

h.2    Optimality Conditions for Two Sources 

The following theorem gives a set of sufficient conditions for which 

FIFO will be the optimal policy. Its proof is facilitated by means of 

severaJ. lemmas given below. 

Theorem k.l:     Let    a > 0 and -1 < b < 0 be real numbers and 

L(S) = a + b S (hence with truncation point - ^) . Then, for a stockpile 

I 
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of n items (n > 2) , FIFO is the optimal policy for two sources 14, ,Mp . 

Let 0 < S^ < S2 < < S < - ? 
n r-  be arbitrary initial ages. For 

th i ■ 1,2, let S , J » l,2,---,k denote the initial age of the J   item 

issued to M  in any given issue policy. Then, the total field life, say 

Q,^  ,  contributed by M.  for thib arbitrary issue policy will be given by 

{k.2.1)    Q1 = L(S11) + L(S12 + L(S11)) + L(Si3 + 1(3^) + L(S12 * L{S±1)))+--- 

Now if all the arguments of L involved in Q  lie In the region (0,- ^) , 

it makes sense to use the identity L(x+y) ■ L(x) + by , obviously valid 

only when (x+y)e(0,- r-) . When this is the case, the set {S^, J, ,  of D 1J J=l 

initial ages will be said to satisfy Condition A throughout this section. 

The first lemma relates this condition to total field life. 

Lenma l*.l:  if the set (Sj.).^ of Initial ages satisfies Condition A 

then 

k-1 k-2 
Q - 21 L(S  )+b ^2 L(S  )+b(b+:) JT L(SJ+-..+b(b+l^-

32lL(S.>b(b+l)k_2L(S.1). 
j=i  1J  j=i  1J     JSL    ^ j=i y 

Proof: The statement is trivial for k = 1 . For k = 2 , by definition, 

Ql " L^Sil^ + L^S12 + L^S11^ = L^Sil- + L(S12) + b 1(3^) in accordance with 

the assertion. Assume the lemma is true for k » m > 2 and suppose k = m+1 . 

Again by definition, QH = Q.  + L(S. _,. + QL  ) where Q,   is the total 
i    i, in      i ^ m+± 1 ^ in 1 ^ Ifl 
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fleld life resulting from the ages ^jJ,™-] • Since Condition A Is 

assumed,  L(S.  , + Q.,  ) = L(S,  . ) + b Q,   . In that case, 
l,ni+J.   i,m     i,m+i     i ,m 

Q. = L(S.  n) + (b+l)Q,    and, by the Induotlve assumption, 1        1,111+1 1,01 

m m m-1 
:b+1)^ m = 

,yL(S..)-t-b^"L(S  )-t-b(b-t-l)^"L(S )-i----t-b(b-t-ir'1L(S ) , 
'   j=l   J   J=l    J       J-l  y 

m m m-1 
5lL(8..)+l>^L(8.,)*b(b*l)2 
j=l  1J   J=l   1J      J 

and 

m+l m 
Q. =2lL(S  ) + b X; L(Si<)  + •" + b(b+l)m_1L(S  ) 1  J=l   1J     J=l   1J 

which Is the assertion for k ■ m+1 . The lemma thus follows by Induction. 

q.e.d. 

The next lemma gives a simple criterion In order that the ages satisfy 

Condition A which will be found useful In computing the total field life 

when FIFO is followed. 

it 

Lemma 4.2:  The set ISj.}».;] of Initial ages satisfy Condition A If 

B11>S12>... >Slk . 

Proof:    First observe that If    x e(0,- ^)   ,  then    x + L(x) < - r • 

Consider  the case    k = 2 (k«l    having no meaning).     Then    Q. "L{S     )  + 

L(Si2 + L(S11))   .    Now    S        lies In the Interval    (0,  - ^)    and 

S p + 1(3..) < S..  + iCSj^n) < " vT    s0 that tlie assertion Is true. 

Assume the lemma Is  true for    k < m    and suppose    k « m+ 1   .    Then, 
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^1 ■ «i^-l^^i^^l^-l-'^-l^l^i^l^^l^^i^-l^ 

,m-l 
where Q      Is the total field life resulting from (S^)^  •  By 

the Inductive assumption, all arguments of L in the expression for 

Q,   . and S,  + Q,  , lie in (0,- ^) and, moreover, 
i ,m-l      i,m   i,m-l o 

^^l^i^-l^^i^^i,»-^ <Si,m + Qi,m-l+L(Si,m + QiIm-l) < ^ 

which is the assertion for k = m + 1 . 

The lemma thus follows by induction. q.e.d. 

The last two lemmas are concerned with the special policy of FIFO, 

the final one asserting, as one would Intuitively surmise, that if FIFO 

is being considered, enlarging a stockpile can only increase the total 

field life. 

Lemma U.3:  If the FIFO policy is followed on [8^)-^ , then the 

total field life, Qp, of the policy is given by, 
n 

n-k 
I       n 

51 L(S,)+b 3~ L(S.) +b(b+l) 21 L(S   ) + .-.+b(b+l) ^    2lL(S1 
i=l 1 i=3 1-5 i-n-1 

L(S   )&r n even 

^    "     \ 
n- 

L(S, )+b ^ L(S  ) + ---+b(b+l) 2    ^ L(S  )+b(b+l) '     L(Sn)ft)r n odd. 
^    i-1        i i=3 i=n-2 
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Proof:  First observe that, regardless of which items are issued M 

in this policy, the corresponding sets of initial ages satisfy Condition A 

by lemma K.2  .    Moreover, if u > v > 0  and S €(0,- r-) > then 

(4.2.8) u + L(S + u) > v + L(S +v) 

is a trivial consequence of the conditions on L . 

Consider first the case where n = 2N for some N > 1 . Let Q „, 

be the total field life resulting from the issue of the first 2k items 

in source M  for i ■ 1,2 . Then, for k = 1, Q- „ = L(S ) > Qo 2 = 

L(Sn.l) ^ ^1,2 < «2,2 • 

Assume for k = m > 1 , that M.  receives items of initial ages 

Sn'Sn-2''"'Sn-2m+2 
(hence M2 receives those of ages Sn_l'

Sn-3''" *'S^m^ 

and that Q^^ < Qlj2m < ^^ . Then,    Q1>2ffi < ^^ impli. Les 

^,^2 '  «1^ + L(Sn-2m + ^^ * «1^ + L(Sn-2m+l 
+ «1,21») since 

Sn-2m < Sn-2m+l ' But' 

«1^ + L(Sn-2m+l 
+ \^  > «2^-2 + L{Sn.2a*l  + Q2,2m.2) = «2^ 

taking u = Qi Pn- and v = Q      in (U.2.2) . Then, similarly. 

«1^+2 ^ «2^ imPlles «2,21^2 * S^ + L(Sn-2m-l + ^^   * 
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Ql,2m * L(Sn-2m + Ql,21n
) = Ql,2m+2 ' ^^ \    receives items P* Initial 

■2'-"' Sn.2m+2' Sn-2m ^ «2,2111^ ^^+2^ ^^^  ' ^ 
ages S ,S 

Induction (taking k = N) , ^ receives items of initial ages 

Sn'Sn-2'---' S2  ^  «2,2^2 < S^N < ^2, 2N 

If n = 2N+1,  the preceeding analysis applies to the first 2N = n-1 

items issued so that KL  receives items of initial ages 

Sn'Sn-2'--'' S3  ^  «2,2^2 < «1,2« < ^,21 

so that the last item, of initial age S  , is demanded by M^  at time 

«1 2N SO that ^1    recelves Items S ,S 2,'", S , S  . 

Applying lemma h.l  when n is even, substitution yields, 

n n n 
2 2 2 £ -2 

(^.2.3)  Q, n = 2lL(S21)+b IE! L(S  )+b(b+l) X
L(SP1) + ---+t>(t>+l)2  L(S), 

'   1=1   **   i=2    X i=3   dl n 

and 
n 
2 

n 
I 

n 
2 S-2 

«2,,, = 21 «Sl-l^ § «»^.^^(b*!) g L(S21_1) + ...+b(b+l)
2 JiS^) 

Observe that in (1+.2.3) the subscript 2i denotes the product and not the 

double subscript previously employed, a slight ambiguity which is immediately 
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resolved when the  results are combined to give, 

|-2 n 
{k.2.k)    CL,  =Q1      +Q9     =^L(Sj+b ]0(Sj+b(b+l) ]0(Sj + .-.+b(l*ir    5~^S.), 

n      i'n      £;'n    1=1      1        1=3      ^ 1=5 i=n-l   1 

Similarly, applying lemma k.l  and combining, for n odd. 

n-t-1 
2 

n+l 
2 

c n+l 

2 2 ^ n= 2I
L(S2i.1)+b ^L(S2i_1) + ...+b(b+l) ^ 2lL(S2i_1)+b(b+l) " L(Sn) 

'   1=1 1=2 n-1 

2 
n-1 
2 n-7 

n-1 n-2 
^••+b(b+l) 2 ^ L(S2i)+b(b+l) 

2 L(Sn 1) ^ n~ ^ "v t'n 1=1  ^   i=2 

and 

n 

z ln 1=1 

n- 

Qp = 21 L(Si)+b ^ L(3i) + ---+b(b+l) c ^ L(Si)+b(b+l) '    L(Sn) 
n 

l=n-2 

Uli 

and the lemma is proved. q.e.d. 

Lemma h.k:    Let 0 < S < S < ••• < S < - ^' be a set of given Initial 

ages and Q,,  the total field life obtained by Issuing according to FIFO. 

Let M >1 additional items of initial ages  (S*) ^ , S*^0,-  ^) be given 

and Qp,    the total field life obtained by issuing all N + M items according 
N+ M 

to FIFO .  Then, % > ^rr  for any N lm'1    M 
N + M    N 
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Proof:     First consider the case where    N    Is odd.    Suppose    M « 1   . 

Then three cases arise as  follows. 

(U,2.6)    Case I:    S* <   S1  .    Then let    T^S*  , *« ••«4l J = i»2»"'^  • 

Now   N +1    ifl odd and, by lemma U.3, 

N+l N+l ^ N+l ^ N+l 
(^      = LCSj + TZKTj+b T"L(T. ) + .--+b(b+l)  ^    21 L(TJ+b(b+1)        3~L(T  ) 
^N+l 1      1=2      i        1=3 i=N-2      1 i=N 

^   N ^    N 
L(S:) + 3~L(Sj+b FlL(Sj + ...+b(b+l)  ^ " L(S.)+b(b+l)  ^    21 L(S   ) 

1       1=1      ^^ 1=2       1 1=N.3       1 1=N-1 

N-5 üil 
^S^-^^ 2IL(sJ+b 2lL(S.)+---+b(b+l) * 21 L(S.)+b(b+l) *  L(S )] 

1   1=1  1   1=3 i=N-2 

N-2 N^i 

+ [bL(S2)+---+b(b+l) 2 L(SN_3)+b(b+l) 
2 LCSJJ^)] 

> L(S*)[l+b +•••+ b(b+l) 2 +b(b+l) 2 ] + Qj, since L(S*) > L(S ) 
N 

J ■ 2,U,6,---,N-3,N-1 , b < 0 . Using the easily verified fact that 

(1+.2.7) (b+l)k-l+b+b(b+l) +•••+ bCb+l)11'1  for any Integer k, 

N-l 

^        >   Q^    +  (b+1)  2    L(S*)  >   Q since    b+l>0 
N+l N ■L N 
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(4.2.8)     Case II:       S.. < S.   .     Then let    T, = S,   ,   j  = 1,2,"-,N    and 
  Hi J J 

^+1  =  Sl   *     By  lemm  h'3' 

N+l N+l N+l ^N+l 
%        = 21 L(T   )+b 21 L(T   )+b(b+l) 21 L(T   )+-..+b(b+l)  "    2lL(T) 

N+l       1-1        x i=3 1=5 i=N 

M N N ±1 
=  L(S*)[l+b+b(b+l)+..-+b(b+l)  2  ]   + ^~L(S   )+b y~L(S   )+---+b(b+l)  2 L(S   ) 

1.1      1        1=3      1 

N-l 

= b(b+l) 2    L(S*) + ft^    >   ft^      . 
1        ^N "    ^N 

{U.2.9)    Case III:    There is Integer    i e{l,2, • • • ,N}    for which    Sj^ !: S]^ < s1+1 

Then I»t    Tj = Sj   ,   j = 1,---,1  ; T1+1 = S*   and    '«■>..!  >  J = 1+2 ,'--,N + l  . 

Then    T,   < T0 < • • •  < T„ .   ,  N+l    is even and    2k-l < 1+1 < 2k+l    for some 

k e{l,2,-,,,N)   .    Again, by lemma 4.3, 

N+l N+l v   o N+1 u  1
N+1 

%        = 2lL(T  )+b 2lL(T  ) + ---+b(b+l)K"d2I    L(T   )+b(b+l)K-i2:L(T.) + - 
rN+l      J«l      J J=3      J J«2k-1       J >2k+l   d 

^N+l 
+b(b+i) * 21 L(Ti) 

J=N J 

N N N 
= L(S*)[l+b+---+b(b+l)k"2]+ ^D^S   )+b 2llL(S  ) + ---+b(b+l)k'2 2-^  L(S   ) 

J=l       J        J=3       J J=2k-1       J 

N-2 
2 N+l 

+ 21    b(b+l)m    X      ^T.) 
m=k-l J=2m+3 d 
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Uli 
2 N+l 

Nil 

But yz b(b+ir>_   L(T.)=2I b(b+i) 
■ 

m=k-l J=2m+3 m=k-l J=2m+2 

Nil 
2 

asj) 

2 
. 2Ib(b+l)

mL(S2m+2) + 2Ib(b+l)mZ:    L(S   ) 
in=k-l m^k-l J=2m+3 

so that 

Nil 
2 

Q.        = L(S*)[l+b+---+b(b+l)
k"2] +£:b(b+l)mL(S ) 

*N+1 i in=k-l ^ * 

+   [ 21 L(S.)+b 21 LCSj + ^-fbCb+l)1'-2 2"    L(S. 
.1=1        J        J-3        ^ J=2k.l    J 

N N 

usj+bib+i)^1^!^^- 
>2k+l   J 

+b(b+l)  *    L(SN)] 

Now    2k-1<    i + l<    2k+l    implies    1 + 1 <    2k    and hence 

Sl * Sl+1  < S2k < S2k+3 < •••   <    SN-1    SO that    ^ ^ L(S2m+2) 

and,  since 

b(b+l)m < 0, bCb+l^CS^^) ^bCb+l^CS*)    all for    m = k - l,k, • • •, ^ 

I 
Consequently, 

Q.      > L(S*)[l+b+...+b(b+l)k'2+b(b+l)k'1+---+b(b+l) 2  ] + CL, 

Ü    — 
= L(s*)(b+i) 2   + %   >q,^     . 

± N N 
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Thus, in all cases, (L,   > ^p  whenever N Is odd. The proof for 
N+l   *N 

the case N even is, mutatis mutandis, the same. 

Now suppose the lemma is true for M > 1 and consider adding M + 1 

items of initial ages {S.) . . . Ignoring S.. ..  temporarily, the total 
1  1=1 M+l 

field life of the remaining items, Q_    satisfies ftp   > Qp  *>/ the 

N-tM N+M     N 

inductive assumption. Then, adding S    can only increase the total field 
M+l 

life by the case M = 1, i.e., Q^     > Op   > ^  • 
N+M+l     N+M     N 

By induction, the lemma is proved. q.e.d. 

With the aid of the above lemmas. Theorem k.l  admits the following 

proof. 

Proof of Theorem U.l:  Consider first the case where n is odd so 

that n = ?N+1 where N > 1 . Let Q^  denote the total field life of 
n 

the FIFO policy. For any other policy a certain number, say k, of items 

will be issued hL  and, in accordance with lemma k.l,   the order of issue 

is specified by {sl1)1 •, • Now, without loss of generality, it is sa- 

posed that k < N for if k > N then, because of the symmetric roles of 

M^  and Mp , there corresponds a case k1 < N yielding the same total 

field life. For this arbitrary policy, let Q  denote the field life 

contributed by M , i«l,2, and Q = Q + Q  the total field life of 

this arbitrary policy. 

k n-k 
Suppose the sets of initial ages {S ]    and {S )    both 

satisfy Condition A . By lemma h.l, 
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k-l 
Nk-3 Q.-^as. J+b 2lL(S1J + --'+b(b+l)K":S yL(S     )+b(b+l)"'"L(S     ),  and 

1    J-l      iJ        J-l      ^ J-l      iJ 

(^•2.9) 
n-k n-k-1 .   -n-2k-& n-2k+l 

Q.-2~L(S9.)+b 21 aS-J + .-.+bCb+D^^ 21 L(S     )+b(b+l)W 2>I L(S     ) 

n-2k . n-2k-l N-k+1 

+b(b+l)k-1 21 L(S-.hb(b+l)k 21 L(S   J+.-.+bCb+l)"-1 2lL(S     ) 
J=l        dJ J=l J J=l      ^ 

N-k 
+b(b+l)N 2lL(S    ) + "-+b(b+l)n'k"2 L(S    )   .    Combining, 

J-l        J 

k-1 n-k-1 n-ac+1 
Q=2   L(S.)+b[2' L(S1.)+XlL(Sp.)] + ...+b(b+l)k"2[l,(S^)+ ^ L(S     )] 

j=l      1 J=l -'■J       J=l        ^ ^     J-l J 

n-2k n-2k-l N-k+1 
H-bCb+l)^1 'Zi L(S_.)+b(b+l)k 21 L(Sp.)-(---+b(b+l)M-1 ZlL(Sp.) 

J=l        ^J J-l ^ J=l        J 

N-k 
+b(b+l)N       ^ L(S    )+.--+b(b+l)n"k'2 L(S21)   .    Finally, 

J-l 

n K-? k-J-1 n-k-J-l 

(It.2.10)    Q = 21 ^SJ+ZI  lb(b+1)   f 2_ L(Sii)  +2I    L(S21)]) 
J=l        J       J-0 1-1 1-1 

N-l , n-k-J-l n-k-2 n-k-J -1 

+ 21 lb(b+l)J 21   L(S    )) +2It(b+l)J 21   L(s21) 
J=k-1 1=1 ** J=N 1=1 
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By lemma 4.3, 

0,,   = ^UsJ+b^Ks )+...+b(b+i)k-2x:   us.)-^ih+i)*-1 jr   L(S.) 
n      1=1 ' 1=3 i=2k-l       1 l=2k+l      1 

+ ..-+b(b+l)N"2 21    L(S   )+b(b+l)N"1 L(S   )    or, 
l=n-2 1 n 

' n k-2 n N-l n 
(4.2.ii) Q^ = ^r L{S) + ^rh{b+iy ^r L(S ) + 2Ib(b+i)J ^1 L(s<) 

n       1=1 * J=0 l=2J+3 J=k-1 1=2j+3 

Consequently,  using (4.2.10)  and (4.2.11)   , 

k-2 n n-k-1 n-k-j-1 
(4.2.12)    CL, - Q = X>(b+l)J[ ;>!    L(S   )- 21 L(S     )- 21    L(S9J] 

n J=0 i=2J+3 1=1 1=1 

N-l 
Jl 

n-k-J-1 n-k-2        .^c-J-l 

J=k-1 l=2J+3 1=1 J=N 1=1 

.n^c-Ul 

Consider j€(0,l,•••,k-2] . Since      L(S,) Is the smallest possible 
l=2J+3 

n       n-k-1 
sum of the L(S ) having n-2J-2 such terms, >  L(S )- > 1(3,.) 

l=2J+3 1=1 
n-k-J -1 

L(S  ) < 0 and, since b(b+l)J < 0 , the fl 
1=1 

rst term on the right In 

(4.2.12) is non-negative. 
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If Je[k-1,'--,N-1) , then 0 < J-k+1 < N-k and 

n-k-J-1 .  n       n-2J-2 
b(b+l)J[ ^ L(Bj-2_ L(S-.)l=b(b+l)0[ ^ L(S.)-X; L(S  )] 

1=1    dl        l=2J+3     1=1 

r. 

i-2j+: 

n-k-J-l 
-b(b+l)J >     L(S_) , 

l=n-2J-l 

the first term of which Is non-negative as above and the second term of 

which Is non-negative since b < 0 . Thus the second term on the right 

In (^.2.12) Is non-negative. 

Finally, If jefN, • •-.n-k^) , b(b+l)^ < 0 and the last term on the 

right In (1|.2.12) is non-negative• This shows that Op > Q so that 
n 

FIFO dominates. The proof for the case n even and the initial ages of 

an arbitrary policy satisfying Condition A is, mutatis mutandis, the same. 

Now suppose n is arbitrary and consider any issue policy where the 

initial ages do not satisfy Condition A . Then there are exactly M 

items, say, that contribute nothing to the value of Q , the total field 

life, where 1 < M < n-2 . In other words, Q is the total field life 

based on the issue of n-M items that do satisfy Condition A . Let 

Ö    denote the total field life that would be obtained had only these 

n-M items been issued in FIFO order. Then, by the preceedlng part of 

the proof, Qu        > Q and, by lemma k.k,    Q- > Q-   > ^ • 
^n-M " n    *n-M 
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Thus, In all cases, ft^ > Q so that FIFO is optimal.      q.e.d. 
n 

A result similar to Theorem h.l  holds for LIFO without the restriction 

to linear functions. 

Theorem k.2:    Suppose L(S) is either a convex or concave differ- 

entlable function with L'(S) < -1 . Then LIFO is optimal for two 

sources VL    and M^ . 

Proof:  In both cases, as in Section 2 , L has a finite truncation 

point S . Moreover, as in the proofs of Theorems 2.h  and 2.6, 

S + L(S)  >S      or    L(S+L(S))«0    for    S€(0,S  )   ,  Let   0<S1 <S/,  < •••<S   <S ~   o o x       . n     o 

be n given initial ages, where n > 2 . 

Consider the LIFO issue policy with total field life Qj. . By con- 

vention the item of initial age S  is Issued R.  and that of age S? 

to M^ to start the operation. Now, for any 1 > 3 and J= 1,2, 

(^.2.13) S1 + L(Sj)> S +L(SJ) > So , 

and so L(S +L(S.)) = 0 . Thus, in the LIFO policy none of the items of 

initial ages S , • • • ,S  contribute to Q. or t - US.)  + L{S ) . 

Now consider an arbitrary issue policy with total field life Q and, 

k n-k 
as in Theorem U.l, let [S,,), . and (S_,), . be the initial ages of 

those items which would be Issued K.     and NL respectively, with respective 
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field life contributions tL    and Q  so that Q = Q. + Qg . Let 

(
VJ=I 

betheset tvA orderedby <**•••. T
IJ ^sijjA 

for i = l,2,'--,k    and T^ < ^2 < '' * < Tlk •  L6* {T2J)J=1  be 

similarly defined. 

Ignoring Mp , and issuing items  (S  )    according to the order 

^iJ^i  (which is LIFO for Mn with ages (S, J." ) would yield a 

field life, say Q' , and, by Theorem 2.k,    Q{ > Qi • Defining Qi 

similarly, 0^ > Qg • But T^ > T^ , J = 2,---,k implies 

^J*^^5 -'ril+L(Tll) - So 0r L^+LCl^)) = 0  J=2,...,k , 

so that    Qi'-'LCT    )    and,  similarly,    ^p-^oi^    and lt follüWS that 

Q=Q1+Q2<Q^ + ^    =    L(T11)+L(T21)   .    But, 

L(S   )  + L(S-)  = max [L(S,) +L(S.)] 
1 2 i ^ J i J 

i,JeU,-,n) 

so that, (^ = L(S1) +L(S2) > LCT^) +L(T21) > Q and hence LIFO is 

optimal. q.e.d. 

^.3 General Inductive Theorem 

The characterization of the class of functions yielding LIFO and 

FIFO as optimal policies in k.2  is admittedly far from satisfactory. 
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Thls section will be closed with a general theorem which extends theorems 

4.1 and k.2  from two to an arbitrary number,  v , of demand sources. 

Theorem 4.3:  Suppose FIFO (LIFO) is optimal for v = 1,2 demand 

sources. Then FIFO (LIFO) is optimal for v > 2 demand sources. 

Proof:  Assume FIFO is optimal when v = 1,2 and let M jM^,,---^ , 

v > 2 be the demand sources with initial ages 0 < S^^ < S2 < • • • < S^ 

where n > V .  If the n items are issued according to FIFO then a 

certain number n  of items of initial ages 8-., S12,''', Sin  are 

issued M , where the second subscript, as before, denotes the order of 

issue. For fixed ie{l,2,•••,v) , S^^ > S12 > ••• > Sln  clearly so 

that the contribution to the total field life by M  alone cannot be 

strictly improved by Issuing only these items in any other order since 

FIFO is optimal for v = 1 . 

Moreover, for two sources M and M , the items issued these sources, 

taken in totality and ignoring the other sources, preserve the FIFO order 

(simply by deleting the items in the original FIFO order which were not 

issued M  and M ) . Hence the total field life of these two sources 
i      J 

alone cannot be strictly improved since FIFO is optimal for v = 2 . 

Thus, any policy not having at least these properties cannot be considered 

optimal since the total field life of such a policy could be Improved 

(though possibly not strictly so) by ignoring the other sources and chang- 

ing to FIFO order in the one source, or two sources, as the case may be. 
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Now consider any policy other than FIFO. Then there Is an Integer 

i€(l,2,---,n)  for which the Item of Initial age EL was issued prior 

to that of age S   . Either these two items were Issued the same source 

or two different sources. In either 3ase the total field life of this 

policy can be Improved by issuing in the opposite order and ignoring the 

other sources. By the  above remarks, this policy cannot be optimal. 

Thus FIFO yields a total field life at least as large as any other 

policy and hence is optimal. 

The proof for LIFO is, mutatis mutandis, the same.        q.e.d. 

5.  Model II - A Stochastic Version of Model I 

5.1 Definition of Model II 

The usefulness of the preceeding results is, of course, dependent 

upon the exact knowledge of the field life function. This is rarely the 

case in practice and hence one must be content with knowing the general 

nature of L(S) within limits, viz., concavity, convexity and deriva- 

tives, and apply the results as approximations. On the other hand, it is 

natural to introduce randomness into field life and, on the basis of 

assumptionc as to the distributions of the resulting random variables, 

hope to determine optimal (in some sense) issue policies. 

The simplest natural generalization of Model I to a stochastic 

model is Model II, defined by the following set of assumptions. 
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(l)  Assumptions (l),(ill) and (iv) of Model I given in (2.1) 

(5.1)     are to hold. 

(ii) The field life of an item is a non-negative random variable 

X(S) dependent on the age, S , of the item upon being 

issued, where S > 0 . 

Under the above set of assumptions it is seen that field life X(S) 

defines, as S ranges over its set of possible values, a non-negative 

stochastic process. If some distribution is imposed on the process, a 

mean value function will be thereby determined. The total field life, 

say ^ , of a given issue policy is now the sum of n dependent random 

variables.  As in [l] let Un = EQ^ , the expected value of 0 , to be 

called the utility of the issue policy. A policy which maximizes this 

utility will then be called optimal for the stockpile of n items. 

Since ft  is the sum of n dependent random variables, a natural 

plan of attack would seem to be that of iterating conditional expecta- 

tions in order to compute the utility. It might then be possible to 

compare the utilities of all possible policies and select the optimal 

one. This general method is illustrated in the following section. 

5.2 Some Optimal Conditions 

The first theorem gives a set of sufficient conditions for FIFO to 

be optimal. 
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Theorem_5.1:  Suppose for each S > 0 , X(S) has density 

[L(S)]a+1 r(a+l) 

a " ITsT 
x e for x > 0 

where L(S) = a+ bS with a > 0, b > 0 and a > -1 . Then FIFO Is 

an optimal policy for n > 2 . 

Proof:  Suppose n = 2 and 0 < S < S  are given initial ages. 

Let Qp and Q^ denote the total field life of the FIFO and LIFO 

policies, respectively, with IL, = EQp, and IL = Eft^  the corresponding 

utilities. 

Now according to the model, (^, = X(S ) + X(S + X(S2)) and 

QL = X(S1) + X(S2 + X(S1)) . Let Y2 = X(S2) , Y1 = X^ X(S2)) = X^ + Y2) . 

Then, since the density assumed is the r-family with mean value 

(a+l)L(S) , EY2 = (a+l)L(S2) . Moreover, 

E(Y1|Y2) = (a + l)L(S1+Y2) = (a + i)L(S1)+b(a+l) Y2  so that 

EY^^ = EE(Y1|Y2) = (ct+l)L(S1) +b(a+l)EY2 = (a+l)L(S1)+b{a+l)
2L(S2) 

Thus 

UF = EY2+EY1 = b(a+l)
2L(S2) +(a+l)L(S1)+(a+l)L(S2) . Similarly, 

UL = b(a+l)
2L(S1) + (a+l)L(S1) + (a+1)L(S2)  so that UF - UL = 

b(a + l) [L(S )-L(S )] > 0  since S < S  and L Is non-decreasing. 
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Thus    U_ >   UT     and FIFO is optimal for    n -■ 2   . 

AsD-jme FIFO is optimal  for    n = k    and suppose    n = k+ 1  .    Let 

0<S    <S    <"'<S.   ,    be given initial ages and    S      denote a fixed 
X t K+J. 

member of i5^5^'''''^i^    to be the lnitial aee of the last ltem 

issued. For any one of the \al    policies resulting from fixed S , 

let Q* denote the total field life of the first k items issued with 

utility U* . Then, the total field life, Q^ , of the stockpile Is 

given by Q£+1 = 0^ + X(S*+ Q*,)    and has utility U*+1 = U* + E(X(S*+Q*)}. 

Now E{X(S* + Q^)|QJ[) = (a + l)L(S*+Q^)-(a + l)L(S*)+b(a + l)(^ 

and hence E[X(S*+Q^))= (a+l)L(S*) + b(a+l)EQ^= (a+l)L(S*) + b(a+l)Uk 

Thus,    U*in  = (a+l)L{S  )+[l+b{a + l)] Uk    , an increasing function of 

k 

« « 
U. . But by the induction assumption, U.  is maximized by issuing 

according to FIFO while U is maximized by making Uk as large as 

possible. From this point the proof is, mutatis mutandis, the same as 

that of Theorem 2.3. q.e.d. 

In some practical situations it may happen that the stockpile 

consists of only two items as, for example, stocking heavy and/or 

expensive equipment. If this is the case, the next theorem gives a 

set of conditions for LIFO to be the optimal policy. 

Theorem 5.2: Suppose for each S > 0 , X(S) has density 

x 
_ xa / ITsT    for x > 0 

[L(S)]Q:+1r(a+l) 
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where L(S) = e'^ k > 0    and integer a > -1 • Then LIFO is optimal 

whenever n » 2 . 

Proof: Let 0 < S < S? be given initial ages and observe that 

E{X(S)] = (a+l)L(S) . As before denote total field life and utility 

by Q. , U , Q,^ ,  Uy    for the respective policies of LIFO and FIFO. 

The fact that, 

oo 
(5-2) 

a -bw . 
u) e   düj 

r(a-KL) 
^a+1 

for a > -1, b > 0 , 

which is easily verified by the change of variable z = bw , will be use- 

ful. 

Letting Y1  - X^) and Y2 = X^+X^)) . X(S2+Y1) , 

C^ « XCS^^) + XCSg + XCSj^)) = Y^^ + Y2 and hence UL = ^  + EY2 . Now, 

since L{x+y) - L{x)L(y)  for  x > 0 , y > 0 , 

(5.3)    E(Y2|Y1) = (a+l)L(S2+Y1) - (a+l)L(S2)L(Y1)  so that 

EY2 = EE(Y2|Y1) = (a + l)L(S2)E(L(Y1)) . 
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kY, 
But E(L(Y1))  = E(e      1)    =    / 

-^1   a 
) e        v1^ 

ITsTT 

o    [L(s1)]a+1 r(a+i)       yi 

l+kL(S1) 

L yie dyi [L(s1)rT-Lr(a+i)    o 

[L(s1)]0£+1r(a+i) 

r(a+i)[L(s1)r a+l 

na+l [l+kL(S1)r
T-L [l+kL(S1)]1 .a+l ,   applying(5.2) 

Substituting in  (5.3),     EY    = 
(a+l)L(!30) 

[l+kL(S1)] 
~   while    Vi1 = (a+l)L(S1)    so 

r L(SO) 
that    U    =  (a+l)    L(S   )  +     S __ 

L                    [      1 (l+kL^))0"1 

(5A) 

Similarly, 

L(S1) 
U    = (a+l)  [L(S  )  + 

[      2 (l+kL(S2))a+1 
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L(S)                         L(S1) 

Now define    F(S) = US. ) - L(S)  +  ^' —» 
1 [l+kL(S   )]a+1       [l+kL(S)]a+1 

and observe that    UT - U,, = (a+l)F(S0)   .    The theorem will be proved 

then If It  can be shown that    F(S)  > 0    whenever    S > S     . 

But    F(S   ) = 0    and,   since       11m    L(S) = 0  ,       11m      F(S)  ■ 0  . 
S -» CD S -♦ ao 

Also,   since    L^S)  =  -kL(S)   , 

F'(S)  =  -L'(S)  ♦  L'^    ^   ♦  i 
US, )(a+l)[l+kL(S)]a •  kL'CS) 

[l+^S^^)]^1 [l+^S)]23"*-2 

.   rqv L(S)L(S  )(a+l)k2 

(5.5) -    kL(S) kL^S^   a+1 ^—WI*- 
[l+kL(S  )]a+1 [l+kL(S)]a^ 

kL(S)G(S)   ,  where 

k(a+l)L(S  ) 
G(S) = 1 i     -     i- 

[l+kLCS^]^1 [l+kL(S)]a+2 

k3(a+l)(a+2)L(S )L(S) 
Now, G'(S) = —   < 0  so that G Is decreasing. 

[l+kL(S)]
a+3 
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If G(S) <0 for all S > S1 , F'{S)  = kL(S)G(S) < 0 by (5-5) and F is 

decreasing on (S ,a>) which cannot be since F(S ) = 0 =  lim F(S) . 
S -» oo 

Similarly it cannot be true that G(S) > 0 for all S > S  . Then, 

0(8^ = 1  
k(a+l)L(S1) 

[l+kL(S1)]a+1 [l+kKS^j^2 

,a+2 
[l+kLiS^r™ -  [1+1^(3^^)]  - k(a+l)L(S1) 

[l+kL(S1)] a+2 

(5.6) 
,3+2 [l+kL(S1)rT" -1 -k(a+2)L(S1) 

[1+1^(3^^)] a+2 

a+2 
l+k(a+2)L(S  ) +21 (, ^[kKS.)]-3 -1 -k{a+2)L{S.) 
  >2 

[1+^(3^^)] a+2 

a+2 

izl 
{af)[)^{S1)]i 

[l+kKS^^)] a+2 >   0 

But,   since    0(3^  > 0    and decreasing while it  is not true that    G(S)   >0 

for all    3 >SL,   there exists    3    >S      for which    G(3)  > 0    on  [3  ,3   ] 

and    G(3)  <0    for all    S > 3o   .    But then,  by(5.5) .F'(3)  > 0    on  [S ,3   ] 
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and F^S) <0 on (S ,00) or F(S)  is non-decreasing on [8, *0] and 

decreasing on (S ,00) which, together with F(S ) = 0 =  lim  F(S) 
0 •L       S -»00 

implies F(S) > 0  for all S > S1 . q.e.d. 

It is freely admitted that it may be difficult to find applications 

of Theorem 5.1 because of the assumption of an increasing mean value 

function. On the other hand, Theorem 5.2 holds only for the case n=2 . 

However, any attempt to impose decreasing mean value functions of the 

types given in Sections 3 and k  for which optimallty of the two policies 

considered was established, generally carries with it the necessity of 

truncating at a finite point S  whence it is necessary to define 

X(S) s 0  for S >S  to preserve the non-negativity of the process. 

The difficulties caused before of such truncation are magnified here and 

appear insurmountable. Moreover, in any case, the extreme dependence of 

the present state of the process on the entire past results, upon attempt- 

ing the iterative procedure beyond two steps, in expressions for which 

the corresponding conditional expectations are completely unwieldy. 

Attempts at a general inductive theorem to carry optimality from the case 

n = 2 to arbitrary n have only resulted in failure and this technique 

will be explored no further. 

5,3 Modification to an Independent Demand Schedule. 

The above-mentioned difficulties can, to a certain extent, be over- 

come by relaxing (iii) of (2.l)(which is to hold for Model II) in 
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accordance with [l] . Thus, instead of waiting to issue an item until the 

preceeding one has failed it will be assumed that there is a scheduling 

interval t > 0 , an item is issued to begin the operation, and one is 

issued every t units of time thereafter until the stockpile is depleted. 

With this modification of Model II , field life X(S) is still a non- 

negative stochastic process with non-negative mean value U(S) . An issue 

policy is again optimal if it maximizes the total utility. 

Derman and Klein have shown (Theorem 2 of [l]) that if U(S)  is 

convex then LIFO is optimal regardless of the size of the stockpile.  They 

remark that if U(S) is concave, FIFO is an optimal policy. However, in 

the case of monotone decreasing U(S) there may be a truncation point 

3o < oo  for ü (necessarily so if U is concave). Then one is forced 

to define U(S) s 0 hence X(S) = 0 for S > S  in order to comply 

with the model. Now in the convex case, U(S), though so truncated is 

still convex and the optimality of LIFO is preserved as in Theorem 2 of 

[1].  In the concave case, however, U(S) when so truncated is no 

longer concave on (0,oo). Then it may very well be that FIFO is no 

longer optimal even though the initial ages are restricted to (0,S ) . 

That this is indeed the case is seen in the following example. 

(5.7) Example: Let U(S) = 2 - | S2 for 0<S<2 with truncation 

point So = 2 . Suppose S = 0.1, S =1.6 and t= 1.5 . Then, in the 

notation previously adopted, (^ =X(0.1) +X(3.1), U = U(O.l)+ U(3.1)= I.995 

while QF = X(1.6)+X(1.6) , UF=U(1.6)+U(1.6)= 2U(1.6)= l.W , since 
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U(3.l) = 0 . Thus U„ < UT  and hence FIFO Is not optimal even for n = 2 . 
r     li 

The simplest condition to impose on concave U(S) In order that FIFO 

be optimal Is one similar to Condition A of Section k.    This Is embodied in 

the following theorem. 

Theorem 5-3:  Suppose U(S) is a concave function with truncation 

point S < oo .  If the initial ages 0 < S. < S_ < • • • < S  satisfy the 

condition S +(n-l)t < S  , then FIFO is optimal. 

Proof: For any 1 < n and k < n-1 , S. +kt < S + (n-l)t < S  so 

that S^ + kte{Siu(S) > 0) . Thus any  issue policy has the property that 

all arguments of U in the expression for total utility are in the region 

of concavity of U . Then the proof given for Theorem 2 In [l] applies 

with the reversal of inequalities for U concave and FIFO is optimal, q.e.d. 

The condition S +(n-l)t < S  may be checked prior to the operation. 

If the condition is not satisfied, no general statement can be made as the 

following example shows. 

(5.8)  Example:  Let U(S) be defined as in (5.?) and S = 0.1 , S = 0.6 

with t » 1.5. Then Sp +t « 2.1 > 2 so that the condition of Theorem 5.3 

is not satisfied.  Still, Uj,« U( .6) +U(l.6)- 2.51* >1.95-U( .1) + U(2.l) - UL . 

Thus when the condition of Theorem 5-3 Is not satisfied the choice of 

a policy depends on the relative initial ages and t ,the scheduling interval. 

An interesting situation results whenever U(S) = a+bS , a >0 with 

truncation point - r-  if b < 0 and +00 if b > 0 . Suppose the 
D — 
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inltlal ages 0 < S1 < S2 < ••• < Sn < So satisfy the condition 

s
n+(n-l)t < So .  In this case both Theorem 5.3 and Theorem 2 of [l] 

apply so that both UFO and FIFO are optimal regardless of b . This 

is contrasted with the same case in the deterministic model where the 

value of b was critical.  Indeed, even more is true in this case. 

Since, for any i < n and k < n-1 , S.+ kt < S +(n-l)t < S  .it 
1    — n o 

follows that U(Si+kt) = UCs^+kbt and it is readily verified that 

the total utility of any issue policy whatever is given by y~  U(S ) 

. n(n-l)bt    ,„,_ 1=1 

+   2     • Thus a11 Policies are optimal.  It should be remarked 

that if Sn +(n-l)t > So , Theorem 5-3 no longer applies and one should 

then follow the LIFO policy since the utility is then at least as large 

as any other policy and may be larger. 

Theorem 2 of [l] may be immediately extended to the case of more 

than one demand. Using the notation of Section k,  let M  denote the 

1  demand source, i=l,...,v .  It is assumed that the present model 

holds, that v items are issued to begin the operation and v items 

are issued every t units of time thereafter until the stockpile is 

depleted. 

Theorem 5-4:  If U(S) is a convex function and n > v , then 

LIFO is the optimal issue policy for arbitrary v > 2 . 

Proof:  First consider the case for v = 2 .  If n = 3 , there are 

three distinct policies having utilities. 
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U
L 

= U^si^ + U^S2^ + u(sQ + t) 'the LIF0 policy; 

(5-9)    U^ = U(S0) + U(SJ + 0(3, +t) ,the FIFO policy; and r j £1 L 

u = vis^ + u(s3) + u(s2+t) . 

Now UF-UL = [U(S3) -U(S1)] - [U(S3 +t) -U(S1+t)] < 0  by convexity, 

and U - UL = [U(S3) -U(S2)] - [U(S3 +t) -U(S2+ t)] < 0 again, by 

convexity. Thus LIFO Is optimal for n = 3 . 

Assume LIFO is optimal for all n < m and suppose n = m +1 . For 

an arbitrary policy, let S   denote the initial age of the J  item 

issued M1 for 1=1,2.  For fixed S^ = Si    and S  = S , 1 ^ j , 

let U(l,j) denote the total utility of any of the (m-l): policies having 

i,J fixed so that U(i,j) = UCS^+UCS )+x   where x   is the total 

utility of the remaining m-l items. Now at time t the stockpile 

consists of m-l items and, by the induction assumption, x   is maxi- 
•if- 

mized by issuing these in LIFO order. Let U (i,j) denote the maximum 

value of U(i,J) so achieved. Then U (1,2)  is the utility of the LIFO 

policy for n = m + 1 . 

Now suppose S1 = S1 . If S =S  then U(l,2) < U (l,2) .  If 

Sj ,< S2 then Ud^) < U*(1,J) = U(S1) + U(SJ)+U(S2+t)+y1J where 

y   is the remaining utility not accounted for by S ,S  and S  with 

LIFO followed after time t . Now consider changing S  and S? in the 

issue order.  This policy clearly has utility U(l,2) = U(S ) + U(S?) 

+ U(S +t) + y   since y   is not affected by the Interchange.  Moreover, 
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11(1,2) <U (1,2)  and U*(l,j) -U(l,2) = [U^) - U(S2) MiKSj + t) -U(S2+t)] < 0 

by convexity and    S    > S2   .     Thus,    U (l,j)  <    U(l,2)  <    U*(l,2)   . 

Slnllarly If    S    ■ S1    then    U*(l,l) <   U (1,2)    from the symmetric 

roles of    M      and    li,  . 

Finally,   If    S1 ^ S^^ ^ Sj     then    U*( l,j)=U(Si)+U(S J+^S^^ + t)+y 

and.  Interchanging    Si    and    S1    yields the utility    U(l,j) = U(S  ) 

+ U(SJ) + U(Si+t)+yiJ   .     Again, 

u*(i,j)-u(i,j) = [u(s1)-u(s1)]-[u(si +t) -u(s1 +t)] < 0. 

Then U(i,j) < U (i,j) < U(l,j) < U (l,j) < U (1,2) from the preced- 

ing and  In all cases U (1,2)  Is the maximum utility.  Hence LIFO is 

optimal for n > 3 by induction. 

If v > 2 then LIFO is still optimal by Theorem 4.3 with the triviaJ. 

modification of replacing L(S) by U(S) and field life by utility, q.e.d. 

This section is closed with the remark that if U(S) is concave with 

truncation point S < OD , it trivially follows that FIFO is optimal for 

v > 2 demand sources provided S + I^—]t < S  where [\]  is the greatest 

Integer in \ . The proof would be identical to that of Theorem 5.U with 

inequalities reversed for concavity, the condition insuring that all argu- 

ments of U involved lie in the region of concavity. 
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6.  Model III - A Sequential Stochastic Model 

6.1 Definition of Model IIT 

As previously remarked, the most commonly used issue policies are 

those of LIFO and FIFO.  It has been shown that in the stochastic model 

discussed, the question of an optimal policy admits no obvious answer. 

It may therefore be of practical interest to simply compare the relative 

merits of the two policies LIFO and FIFO.  Even this simplication of the 

problem does not, however, overcome the inherent difficulties of Model II, 

viz., the extreme dependence on the entire past.  It was also pointed out 

in Section 5 that a practical model might be one in which only two items 

are allowed in the stockpile.  In terms of a long-range operation, it 

would then be practical to consider replacing an item upon being issued 

and thus maintain a stockpile of size two at all times.  It would then 

be of interest to compare the overall effects of the LIFO policy versus 

that of FIFO. 

More precisely. Model III is defined by the following set of as- 

sumptions : 

(i) The stockpile consists of two items having random ages 

X ,Y  with X > Y > 0. 
o' o       o   o — 

(6.1) (ii) The operation begins by issuing one of the two items in 

(i) and replacing Immediately by an item of age zero. 

(ill) Given that the item issued in (ii) was of age t, the 

amount of field life obtained from that item is a non- 

I 
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negative random varialbe Z having a density function 

h(z,t) (z > 0)  for t > 0 . 

(iv)  The next Issue takes place only when the Item issued in 

(iii) Is exhausted, one item is issued and immediately 

replaced by a new item (age zero) and the operation 

continues by stages in this manner. 

(v)  At each stage of the operation, one of two decisions must 

be made, namely, issuing the older (FIFO) or the newer 

(LIFO) of the two items in stockpile.  It is assumed that 

either the newer item is issued at every stage, called 

the LIFO scheme, or the older is issued at every stage, 

called the FIFO scheme. 

The problem, then, is to compare under Model III the relative merits 

(with some suitable definition of merit) of the two schemes. 

6.2 Imbedded Markov Process for LIFO Scheme 

At any time t after the start of the operation, the two items 

in the stockpile have random ages X  and Y , say, with Xt > Y . 

However, the only ages relevant to the problem are those at the 

instant of demand for an item.  It is then possible to determine an 

imbedded Markov process as follows. 

If the LIFO sheme is followed, then the item that was the older 

of the two in stockpile at the beginning of the operation is never 
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issued and hence may be ignored. Then, at any stage N of the operation 

(a stage being determined from one demand time to the next), the age of 

the newer item in the stockpile, say YN , is a random variable. More- 

over,  YN is Just the amount of field life contributed by the issue of 

the newer item in the stockpile at the (N-l)-st stage (of age Y^^) 

since, at that time, the age of the present item was zero (it having 

been a replacement item then) and hence its present age is the amount 

of time the operation continued as a result of issuing an item of age 

Y   . Thus YN is dependent upon Y . but clearly is independent 

of any stage prior to the (N-l)-8t, or, P[YN < ylYo,Y1,.••,YN_1] 

■ P[Y < ylYj,,] for y > 0 . Then the age, YN , of the newer item 

in the stockpile at stage N is a discrete parameter (N), continuous 

state Markov process with state space X ■ [0,ao ) . Moreover, in 

accordance with assumption (lii) of (6.1), 

y 
P[YN <y|YN_1 - t] - / h(z,t)dz 

is clearly independent of N and defines a one-step, constant transi- 

tion probability distribution. 

Having thus found an  imbedded Markov process, it would be desirable 

to find a unique stationary (absolute) probability distribution and 

compute the expected value under this distribution. The importance of 

such a discovery is, of course, the fact that if such a distribution 

exists then, regardless of the initial distribution Imposed on Yo , if 
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a sufficient number of stages have occured the age Y of the newer Item 

In storage (hence field life) may  be taken to be approximately distri- 

buted according to the stationary distribution. Thus the asymptotic 

nature of field life would be determined and the corresponding expected 

field life (utility), denoted ETY , will be called the stationary 

utility of the LIFO scheme. 

The results to follow lean heavily on Chapter 5 of Doob [5]. The 

relevant parts of that chapter are here duplicated for the sake of 

continuity. The state space X has a Borel field ^y of subsets of X 

The transition distribution from a state xe X to a state in ktj 

is denoted p(x,A) , and when given by a density function, the corre- 

sponding density is denoted p (x,j) . If X is a Borel set in a 

Euclidean space and j       the cr-field of Borel subsets of X (the 

present case) Doeblin's condition is said to be satisfied if there 

exists a finite measure \|f on ^ such that for some v > 1 , 

p^(x,A) < +(A) uniformly in xeX , where p^Vnx,') is the v-step 

transition which is found by the iterative formula, p^  (x,A) 

= / P    U,A)p(x,dO • A set Ee Sy is Invariant if, for each 
A X 

xeE, p'n'(x,E) - 1 for all n . A set Ee ^ is ergodic if E is 

invariant and there is a probability measure n on 9L for which 

n(E) = 1 and  lim -     JT" p(m)(x,A) = n(A) 
n 

n -» oo    m=l 
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for every Ae yl  .    Doob then shovis that If Doeblln's condition is satis- 

fied, then ergodic sets exist and the corresponding limits n are station- 

ary absolute probability distributions.  In particular, if there is only a 

single ergodic set (as will be the case here) then Theorem 5.7 of [5] states 

that there is a unique stationary absolute probability distribution, n , 

given by the solution of the integral equation / p(x,E)jt(dx) = n(E) . 
X 

In order to carry the analysis further, it is necessary to make some 

assumption concerning the distribution of field life Z . A quite general 

family of distributions suitable to the non-negative character of Z is the 

r-family of densities. Thus, it is further assumed 

(6.2)        h(z,t) = ^ff^ zae       where a > -1 , & > 0 , 

so that Z has mean value —5" >  a monotone decreasing function of t . 

Now, under the LIFO scheme, the imbedded Markov process has, accord- 

ing to the above, a eonstsat transition distribution function 

y 
p(x,y) - P[YN < ylYjj^ = x] = / h(z,x)dz 

and so in this case there is a transition density P0(x,y) = -£- ■ h(y,x) 

The following lemma shows Doeblln's condition is satisfied with v«2 . 

Lemma 6.1:  There is a finite measure \|f on $■      (the Borel subsets 

of X = [0,oo)) such that p^ ^(x,A) < \|/(A) , A€ &1   uniformly in x . 
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(2) ^ 
Proof:    p^  ;(x,y) = /    po(x,z)po(z,y)dz 

I   rgfer26       -Tiitrry6      dz 

/   lQ Na+1 a -Py   oo ,   . 
^l      y e f    za(24e)a+1e 

r^Ca+i) o 

z(x+y+e) 
dz   . 

Applying the    (^-Inequality to    (z+ß)a+1    whence  (z4^)a+1 <    c +1za+1 

+ c
a+1ß >    where    c ^ = 1 or 2      according as   or < 0    or   a > 0 , 

and using the fact mentioned In (5.2)  , 

/    „\a+l a "Py 
(2),        v       (X"^)       y e       Ca+1 ^   Pru-I   -z(x+y+ß) 

pJ^W) < . ^i //    z^^e dz 
0 r2(a+l) 1   0 

Qa+1  r00 a -2(x+y+e) 
+ ß        /    z e dz 

(x4ß)^Ve-ßyc 
a+l 

r2(a+l) 
r(2a+2) ß^^Ca+l) 

(x+Y+ß)23"1-2 (x+y+ßf41 

/^J^^     c^\    a.ßy 
"    ßa+1r2(a+i)    'T&*T    y e 
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since    (x4fi)a+1 < (x+y-^)a+1    and    (x+y-fe)a+1 > ßa+1  .    Denoting 

ßa+ir2(a+1)   
+   -rT^ir      ' 

a constemt  independent of    x  ,  by    K  , pv     (x,y)  <   Ky e"  y  . 

But    /00yae"ßydy = -^^   < oo .    Hence, taking    *{A) = K / yae_ßydy  , 
0 ßa+1 A 

*    is a finite measure on    X    and    p^(x,A) = / p (x,y)dy < K / yae'Pydy=KA) 
A 0 A 

for every Ae Jv • q.e.d. 

Having established Doeblin's condition, it is clear that no set other 

than X itself may be invariant since, for any xeX , p (x,y) > 0 for 

all 0 < y < oo . Thus if E is any proper subset of X and xcE , 

p(x,X-E) > 0 so that E cannot be invariant. Hence there can be only one 

ergodic set and there exists a unique stationary absolute probability dis- 

tribution, the solution of 

oo 
(6.3)  F(y) - / p(t,y)(iF(t)  or, if dF(t) - f(t)dt , 

0 

oo a -ßy oo    .-IM- 
(6A)  f(y) = / po(t,y)f(t)dt . f^ / (t^)a+Vytf(t)dt 
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tae-ßt 

But,  for    fit)-^-^—     where 
(t^)L 

k(a,ß)- / 
CD .a -ßt .        CD 

dt < .  /    t e     dt < oo  , 
0   (t+ß) a+1 ßa+1   0 

00 
^jy/Ct^)      e      f,t)dt = ^r7 • ^^y/^   t e 'dy 

yae-ßy .      1 rCa-t-l) 
r(a+l)      k(a,ßT     (y4^)a+1 

1 
k(a,ß) 

£ -ßy 

(y^)' 
a+l « f(y)  .    Thus, 

the unique stationary density Is 

(6.5) 
a -ßy 

f(y) ■ -" 
i 

k(a,ß) 
(y^)' 

a+l    " 

6.3 Imbedded Markov Process for FIFO Scheme 

If the FIFO scheme Is followed then the ages of both Items In the 

stockpile are relevant since, at any stage (demand time) It Is the older 

of the two Items that Is Issued and the newer of the two Items at this 
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stage becomes the older at the next stage. Let TL,    and YN , as before, 

denote the ages of the older and newer items, respectively, at the N-th 

stage.  At the (N-l)-8t stage, the Item of age Y„ was of age zero so that 

its present age is the field life contributed by the issue of the item of 

age X^  . CT.CC  again, field life may be interpreted in terms of the age 

of the newer of the two items at any stage. Thus (X^Y ) is a random 

vector dependent upon (X^ ,Y  ) but clearly is independent of any stage 

prior to the (N-l)-st, or 

P^ < x,YN < y|(Xo,Yo),...,(XN_1,YN,1)] = P[XN <x,YN <y|(XN_1,YN_1)] 

for all     x > y > 0  .     Then the ages  (X^,Y  ) define a discrete parameter (N), 

continuous state,  two-üimensional Markov process with state space 

X - ((x,y)lx >y >0)   . 

The imbedded Markov process in the present case is further complicated 

by the fact that if X^  » s and Y   = t with s > t , then a transi- 

tion can only take place in one step to a point (t+z,z) where z is the 

observed value of field life Z conditioned on the issue of an item of age s, 

i.e., an observation from the distribution h(z,s) as specified by (ill) of 

(6.1) and, more specifically, by (6.2). The transition is however, clearly 

independent of the parameter N . Consequently, the one-step transition 
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distribution may be found as follows (cf.Fig.l.) 

^8,t) 

Fig.l 

Let (s,t) be fixed.    If    x > t    and    x -t < y < x  , 

p[(s,t),(x,y)] - PLXJJ < x,YN < yl^^ = s,?^ = t] - P[Z < x -tja] 

x-t 
■ H(x-t,s)    where    H(x-t,s)    =    /    h(z,s)dz   . 

0 

On the other hand, if x > t and 0 < y < x-t , 

p[(s,t),(x,y)] = P[Z < yjs] = H(y,3) , 

no other transitions being possible. Summarizing, then. 

(6.6)  p[(s,t),(x,y)] =/ 

H(x-t,s)if x > t, x-t < y < x 

H(y,s) if x > t, 0 < y < x-t 

0    otherwise 



defines a (constant) one-step transition distribution function for the 

imbedded Markov process. 

Once again it would be desirable to find a unique stationary distri-

bution for the ages X and Y of the older and newer items in storage 

respectively. The marginal distribution for Y would then characterize 

the asymptotic nature of field life under the FIFO scheme and the expected 

value under this distribution, denoted E^Y , will be called the stationary 

utility under the FIFO scheme. 

To proceed it is necessary to verify Doeblin's condition and it is 

remarked that X is a two-dimensional Borel set and ^ is taken to be 

the set of Borel subsets of X . In the present case, the transition 

distribution possesses no bonafide two-dimensional density function since 

a transition from (s,t) is only possible to (t + y,y) where y > 0 , i.e., 

the measure p[(s,t),d(u,v)] concentrates all its mass on a line. How-

ever, it is clear, and verified below,that the 2-step transition distri-

bution possesses a density for, having made the transition to (t+ y,y) 

from (s,t) ,the next transition takes place to (y + z,z) where z > 0 . 

The set of lines thereby determined as y ranges over its set of pos-

sible values spans X . More precisely, for z > w > 0, 

p^[(s,t),(z,w)] * / p[(u,v),(z,u))]p[(s,t),d(u,v)] 
X 

= / p[(u,v),(z,w)]p[(s,t),d(u,v)] , where 
L 
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L •{(u,v)eX|u = t +y,v« y , y > 0} , since p[(s,t),d(u,v)] is zero ohterwise 

Bat on L , 

p[(u,v),(z,u>)] = p[(t+y,y),(z,u>)] » 

H(z-y,t+y) if z-w < y 

H(w,t+y) if 0 < y < Z-CJ 

0 otherwise 

and, using the natural isomorphism (t+y,y) ** y , y > 0, 

p[s,t),d(u,v)] • dH(y,s) » h(y,s)dy for t fixed and hence, 

(2) 00 

P [s,t),(z,w) = / p[(t+y,y),(z,w)] h(y,s)dy 

z-uj oo 
/ H(w,t+y)h(y,s)dy + / H(z-y,t+y)h(y,b)dy . 
0 z-u 

Then, applying Leibnitz' rule, 

(2) oo r 
Z-U) 

- H(w,t+z-w)h(z-w,s) + / h(z-y,t+y)h(y,8)dy-H(u),t+z-aj)h(z-w,s) 

oo 
= / h(z-y,t+y)h(y,s)dy and hence, 

Z-U) 

^2 (2) 
p^2' t(s,t),(z,w)] = • h(w,t+z-u))h(z-u),s) z > w,s > t . 

It will be shown in the following lemmas that Doeblin's condition 

is satisfied with v = ̂ . Observe that, 
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0D 00 

p!)
lt)[(s,t),(x,y)] - r/^2)[(s,t),(u,v)]pj)

2)[(u,v),(x,y)] dudv 
0  v 

oo oo 
/ / h(v,t+u-v)h(u-v,s)h(y,v+x-y)h(x-y,u)dudv 
0  v 

oo oo 
/ / h(v,t+z)h(z,s)h(y,v+x-y)h(x-y,v+z)dzdv , using 
0  0 

the change of variable z = u-v,v=v with Jacoblan 1. Finally, 

(6.7)  piM[(s,t),(x,y)] 

r00 r00   (t+z+ßf*1 v«e-v(t+z4e)  {s+ef+1 zae-z{8^  . 
0  0 

r(a+l) rTäTTT 

/    ,Q\a+l a -y(v+x-y+ß) /   „NQ+I /  vO -(x-y)(z+v+ß), 
(v-fx-y4ß)   y e '^   "^  ' (v-t-z4ß)   (x-y) e v "^   w/dzdv 

r(a+i) r(a+i) 

P^ ,Aaö-y(x-y)-xe  oo oo 
— ; ; (^r^t+z^r^v+x-y+er^ ... 

0 0 

y (x-y) e •,v       f*" f""/_ .Q sOt+l^ ._ .0Na+l/_ 

r^a+l) 

/  .„xa+laa -v(t+x+e)-z(v+s+x-y4ß) . , (v+z+ß)  v z e     H-/  v     J »-/ dzdv. 

In the sequel, since finite bounds are of Interest, K , with or without 

subscripts. Is used generlcally throughout to denote a constant depending 
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only on a,ß . Also, (5.?) will be freely used. 

Aa+l)p^
)[(s,t),(x,y)] 

Lemma 6.2: Let I - 
?{x..yfe-yU-y)-*ß  • Then I < K1+ K2(x.y4ef

+1. 

a 
Proof:  I = / (v+x-y+ßf*1 ^eMt+x-^) . dv    where 

00 

if / (s^f^ct+z^r^v+z+er^^-^^3^-^)^. Applylng 

the    cr-inequality to  (t+z-fß)a+i    and    (v+2-tf!)a+1   , 

za(t+z^r1(v+z^r1 < c*    U**8 ♦ (t^f^z23^ ♦ a+l1 

(v^f^z^1 ♦ (t^)a+1(v^)a+1
z
a] 

00 
Then,  ^ < KCs-^f-'1 /     [z^2 + (t46f+1,^1 + (v^^23+1 + 

0 

(t+6)a+1(v^)a+1za]e-z(v+s+x-^)dz 

KU-fß)' a+l r(3a+.3) ,  (t-fß)a-,-1r(2a+2) 

(v+s+x-y-^)3a+3       (v+s+x-y4ß)2a+2 

(v-^f^rc^^), (t^)a+1^Bf+1r(a+n 
v2a:+2 (v+s+x-y-jß)'" "      (v+s+x-y+ß)' a+l 
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and,  since    t+ß < s + ß < v+s+x-y+t3    while    (v+s+x-y+ß)    > ß      for    m > 0 , 

h ^2S2^)+ ^(^^  + Kr(2cr+2)+(t+p}a+1(v4ß)a+1 Kr(a+l) 
ß 

^ ♦ ^(t+ßf^v^r1 

Thus,  I < I^/  (v+x-y4ß)a+1va
e-

v(t+x^)dv 

00 

Mt^f*1 /  (v+x.y^f+1(v^f+1vae-v(t+x^)dv 
0 

a+l Applying the c -Inequality to (v+x-y+ß)   , the term 

oa 
I, = / (v+x-y+ß)' ot+l a -v(t+x+ß) v e dv    < 

K /'WV^^dv ♦ K(x-y^)a+1 /Ve-^^dv 
0 0 

Kr(a3+2) * K(x-y4ß)a+1r(q+l)        Kr(^2) ,        . 

(t+x+ß)^-2    (t+x+ßr1    - ^ +Kr(a+1) K  . 

a+l Applying the    cr-inequality to  (v+ß) as well, the term 

I,   =  (t4ß)a+1 /"(v+x-y+ßr^v+ßrVe-^^^^dv   < 
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oo 

0 

0      (x-y+e)      v  Je    v       ^'dv 

K(t4e)' a+1 

(t«^)^^      (t«^)^2 (t+x+f)^2 

ßa+1U.y^)a+1r{a+l) 

(t+x+e)' a+l 

a
a+1n'' 

<   mML + ^     ?'lT*2) ^ ^(^2) - Kßa+1r(a+l)(x.y^f+1 
,a+l 

K1+K2(x-y+ß) a+l 

Hence,   I < K1I3+K2IU < ^ + KgCx-y-^)' a+l q.e.d. 

Lemma 6.3:  There is a finite measure + on jf  such that 

3 ^[(s,t),A] < >|f{A),A€ 5^ , uniformly in s,t. 

Proof:  From (6.7) and applying lemma 6.2, 

pi1+)[(s,t),(x,y)]=^^4- 
£/„ .\a_-y(x-y)-xß 

r 'a+l) 
I < 
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[K^K^x-y^r^y^x-yfe-^-^-^ x > y > 0 

Letting    g(x,y) =  [^ + K2(x-y^)a+1]ya(x-y)0£e-y(x-y)-xe  , 

00   OD 00    QD 
/    /    g(x,y)(ixdy   =    /    /    g(z+y,y)dz!iy 
0   y 0    0 

h ryae-K /^e-^^^zdy ♦ K2 Ty^"^ /00
2
a(z+ß)a+1e-z(y+e)dzdy 

,a+l> oo     a -ßy as      a -ßy 
< K.   /        y e n^  dy + K    /        y e ^^.oMusing    c -Inequality on (z+ßf    ) 
"    1   0     (y4ß)a+1 2  0     (y-H?)23^ 

-Py^„   I  .*.-.     Z  . ^_    and  L_^ <-J: ydy    slnce _z)a+i _ 
(y+ß)^^ - ßa+2 

f=K<ao 

Hence,   the measur-p    *(A) =  //g(x,y)dxdy    is  finite and independent of    s,t 
A 

Moreover,    pW[(s,t),A]  = ;/p^) [(s,t),(x,y)]dxdy < //g(x,y)dxdy = ^A) 
A   0 A 

for every Ae^Ty uniformly in s,t . q.e.d. 

Having thus established Doeblin's condition it is once more clear 

that there can be but one ergodic set. For given any proper subset 

■ , 
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E of X , Ee J^ , It Is always possible to find a point (s,t)<l for 

which p[(s,t),X-E] >0 . Thus only X can be invariant.  Then there 

exists a unique stationary absolute probability distribution, the solu- 

tion of 

(6.8)  F(x,y) = // p[(s,t),(x,y)]dF(s,t) or., If dF(s,t) = f(s,t)dsdt, 

(6.9)  F(x,y) = // p[(s,t),(x,y)]f(s,t)dsdt 
X 

x oo x-y oo 
=/ / H(x-t,s)f(s,t)dsdt + /  / H(y,s)f(s,t)dsdt . 
x-y t 0   t 

Then , 

oo 
5-=/ H(y,s)f(s,x-y)ds + /  / h(y,s)f(s,t)ds -/ H(y,s)f(S,x.y)ds 

x-y 0   t x-y 

x-y oo 
= /  / h(y,s)f(s,t)ds , whence 

0  t 

^2^   oo 
(6.10)   f(x,y)=53S-=/  h(y,s)f(s,x-y)ds or,letting t.x-y,u=s-t, 

x-y 

oc 
(6.11)   f(t+y,y) = / h(y,u+t)f(u+t,t)du 

0 

r00Iu+t+e)a!+       a -y(u+t+B)   , = !       r(afl)        y e ^;f(u+t,t)du 
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r(a+l) !  (u+t^)
a+1e-yUf(u+t,t)du 

/  va -(ut+uß+tp) 
But if f(u+-,t) = iSU     t  «h,,^ c(a) 

c(a,e)(u+t+er ■L 

00 CD 

P) » / / f(u+t,t)dudt, 
0 0 

^^ nu««)^-f(u.t,t)dtt . 4^^T -tV^e^«^ oo. 
r{a+l) o c(a,ß)r(a+l) 

yae-y(t+e)-tßta   vl    ^ (ty)ae-(ty^te+yß) 

so that the given density is the unique stationary distribution which may 

be expressed as, 

(6.i2) f(x,y) = y (x-y) e ^^^^-(^«y-y ) 

c(a,ß)(x+ß)1 a+1 x > y > 0 

S.h    Comparison of Utilities under Stationary Distributions. 

Having found unique stationary distributions, a natural criterion for 

judging the relative merits of the two schemes would be the stationary 

utilities. Thus in the notation adopted the FIFO (LIFO) scheme is preferred 

to the LIFO (FIFO) scheme if EyY > ELY (ELY > EpY) . Unfortunately the 
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general solutions (6.5) and 1,6.12) are not amenable to standard calculus 

forms and each case should he  treated individually, by numerical methods 

if necessary, before making a decision.  This section is closed with a 

complete analysis of the case a = 0, ß = 1 . 

ao oo   -u 
According to  (6.5),   k =   k(0,l) = / ^ dy = e /    V du = ^Z1) 

0 y 1 
oo   -u 

where    E (x)  = /      du    is  the exponential integral function,   tabu- 

lated in  [6]  for    x >0  .    In particular,    E (l) = 0.219383934+    and so 

oo       -y        -i     c10 1     oo  -y 
k= 0.596340674    .    Now    V = ^/     ^^/^   e-^dy-i/^dy 

i -1    and, with    k < -5963^1  , ELY > .67689291  . 

00    2    00 -x(y+l) 
In the FIFO case, (6.12) yields    c=c(0,l) • /    •'    / dxdy 

0 y 

and,  by the change of variable    u =  (x+l)(y+l)   ,   for each y > 0  , 

oo   -x(y+l) 00 -u 
(6.13)     /    e    x+1      dx = ey+1    /        2V du = e^XKy+D2] 

y       x+1 (y+D   u 1 

so that, 

oo     2 
{6.1k)     c=/    ey +y+1E   [(y+l)2]dy    and 

0 

■1    00      2       1 - 
(6.15)    E^Y 4/   yey +y+1E  [(y+l)

2]dy 
0 

= ^ r(2y+l)e
y +*+\[{y+lf]äy - ^   /^ ^^[(y+D^dy 

00   2. 

0 
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But the last integral in (6.15) is Just c and the first may be inte- 

2e •(y+ir grated by parts taking u = E [(y+l)^] whence du = - ~  

2 2 
dv = (2y+l)ey +y+1 so that v = ey +y+1 to yield 

J^De* V+hMjAfto =  ey +y+1E   F(y+l)
2]  T  ♦ 2 ^C dy 

0 b 0 y 

-2e -(y+D' 

Applying L'Hospital's  rxile, 

E1[(y-(-l)
2] 

lim       ^     =    lim 
y-^GD   e-(-y"+y+l) y-*oo   .^y+De'^^7^ 

y+i =    lim = 0 
y ^ QD   (y+l)(2y+l)e'' 

so that 

M^y+De3^ +y+1E.[(y+l)2]dy 
0 1 

eE1(l)  + 2k =  -k + 2k = k 

Thus, 

(6.16) F Y  -   —       l ^-S. 
F    ~  2c ' 2 2c 

By applying successive approximations a bound for    c    may be 

determined as  follows.     Returning to  (6.12)   , 

CD  2    00     -x(y+l) 
c =  / e^     / 

0 x+1 
dxdy 
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*il 

For fixed y > 0 , the function 9(x) = ^j ey+   has the properties, 

(p(y)=-1- , 'P'(x) 
(x+l)' 

(x-y)  > 0    for    x > y  ,   i.e.  (p(x)  increaser s on 

[y,ao )  so that    -ir > e 
y+i 

x+l y+1 Thus, 

y 2 
OD   -x(y+l) y+l      oo   -x[-^ill_Ü] 

/    ^-rr^  dx > x+l y+i 
/    e y+1    ' dx = € 

y+i 

(y+i)2+i 

..[kiiifiir' 
y+1 

e-y(y+i) 
 5—  and therefore, 
(y+i) +1 

,*      ^       f
0Oey e"y(y+l) (6.17)   c > / ^—S  
0 y +2y+2 

oo  e-y 
dy = / -x  dy 

0 y +2y+2 

2   e-y        oo   -y 
/ —  dy + A -^  dy . 
0 y +2y+2 

Jl     2 
| y'::+2y+2 

The same type of approximation is again employed.  Thus, on [0,^ ] , 

the function q>(y) 2eJ 

2 
y +2y+2 

has the properties. 

2 y 2 
cp(0)=l , (p'(y) =  p y   > 0 for y > 0 so that cp(y) > 1 

(y<;+2y+2)^ 
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or 
y +2y+2 

>i ^ 

,'1 \   .,      ^      ^. ,/   \        4   e "^ Similarly, on (^  ,  co)  the function    if{y) = has  the 
y  + 2y + 2 

properties     i|r(|) = 1,   ♦'(y)  = iÄ g- (i| y2. ^(2y+2))  > Ü    for y > | , 
(y +2y+2) 

12    2       1 1 1 
since    TS f    - Tö-(2y+2)     is  zero for    y " ö    and increases on  (^  ,  QD )   . 

Thus    t(y)  > 1      or 

12,       lv 
U     * 13(y- ^ 

y2+2y+2 13 

1 
2 

Applying these results  to  (6.17)   , 

111 

/2^-dy>|    / e^dy - J t-e-2y]2 

0   y +2y+2 0 0 

1      e"1 

and 

(6.18) 

6 25 

J!    -g  dy > — e J /^^ e       J    dy 
^    y +2y+2 ^ 

JLe13 

25 

. 25    -.00 
13 

1 
2 

1 
h    "2 

25e 

GO  that      c  > ^ 1- + 25 e - .25 - 

> -25 - 

.09198' +  ,0970^+ 

.09198 +  .09704 =  .25506 > .255 
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BSI 

' 

Applying (6.1H) to (6.l6) , 

k-c < ,597--255 = -3^2, 2c > .51 and ^ < I.961 . 

Then ELY = ^^ < .671 < .676 < E Y , and the stationary utility of 

the LIFO scheme dominates that of FIFO . 
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