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OPTIMAL INVENTORY DEPLETION

By

Peter W. Zehna

Introduction and Summary

In recent years, a great deal of attention has been focused on inventory

problems, particularly the problem of optimal policies for ordering stock.

More recently, Derman and Klein [1], along with Lieberman [2] have investi-

gated the problem of optimal policies for depleting stock. More specifically,

an operation requires a stockpile of items to be issued according to some

specified demand. Tre field life of an item is a known function, L(S), of the

age, S, of the item upon being issued. The problem is to éetermine the order

of issue (issue policy) which meximizes the total field life of the stockpile.

Such a policy is called optimal and it should be noted that optimality is

defined only up to an equivalence, two policies being equivalent if they

yield the same total field life.

In practice, one finds [3] that the two most commonly used policies are

those of LIFO (last in, first out) the policy of always issuing the newest

item when demanded, and FIFO (first in, first out) the policy of always

issulng the oldest item when demanded. Under the assumption that demand

occurs only when the item in use is completely exhausted, the authors in [1]

and [2] determine conditions on L(S) for which these two issue policies

are optimal. Derman and Klein in [1] first prove the general inductive

theorem that if L(S) is a convex function and LIFO is optimal for a stock-

pile of size two then LIFO is optimal for any size greater than two, thereby
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reducing the problem for convex functions to verifying the case n = 2 ,
where n 1s the size of the stockpile. It is then shown that LIFO is
optimal for n = 2 for the special cases L(S) = % (a >0, b >0) and
L(S) = ce-ks(c SO )T 0

Lieberman in [2] concentrates on the FIFO policy. He first proves a
general inductive theorem to the effect that if L(S) is a differentiable
function with derivative L'(S) > -1 for all S and LIFO is optimal for
n = 2 then LIFO is optimal for all n . He then shows that if either
L(S) 1s convex or L'(S) > -1 and FIFO is optimal for n =2 then FIFO
is optimal for all n . Finally it is shown that if L(S) 1is concave and
monotone with L'(S) > -1 then FIFO is the optimal issue policy.

In both [1] and [2], the authors pose the problem of further charac-
terizing the class of functions for which LIFO and FIFO will be optimal
issue policies. The purpose of the present research is to examine and
extend, where possible, some of the results found in [1] and [2], as well
as to investigate other models which are stochastic in character. The
findings are summarized below.

In Section 2, the Derman-Klein paper is analyzed. It is pointed out
that an incorrect proof of their basic inductive theorem is given in [1].
It is sinown thet the policy of issuing just one item, the source of diffi-
culty in their proof, may indeed be optimal. Furthermore it is proved
that the hypothesis of their basic theorem cannot be satisfied unless the
field life function, L(S), is monotone. With the added assumption of

monotonicity, a correct proof for the Derman-Klein basic theorem is then
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glven. It is then shown that if L(S) 1is convex and L'(8) < -1 for all
S then LIFO is optimal for all n . A condition yielding LIFO as an op-
timal policy for all n for a convex, twice differentiable function L(8)
is proved to be that i?(g is a non-decreasing function. This condition
is found to encompass the special life functions found in [1] alluded to
above and the theorem is applied to give an immediate generalization.
Finally it is shown that LIFO is optimal for a concave field 1ife L(8)
provided that L'{S) < -1 forall § .

Section 3 1s devoted to an investigation of the FIFQ policy under the
same model assumed in Section 2. It is shown that Lieberman's condition
that L'(8) > -1, ylelding FIFO as optimal for L(S8) concave and monotone,
may be extended to include non-monotone functions and that for concave
functions, the condition is necessary as well as sufficient. It is also
proved that whenever L(S) is convex and L'(S) >1 then FIFO is again
optimal for all n .

An attempt is made in Section 4 to generalize the preceeding results
to the case where there is more than one source of demand for the items
in the stockpile still under the deterministic model of a known field
life function. It is shown, by example, that some of the "nicest” cases
fail to generalize in a natural way so that no general statement can be
made. However, it is proved that in the special case L(3) =a +b 8§
(>0, -1 <b <0), so that L'(S) > -1 s FIFO remains the optimal
policy for two demand sources. Also, when L(S) 1is either convex or

concave with L'(S) < -1 for all § » LIFO is optimal for two sources.

W/
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Finally a general theorem is proved whereby whenever LIFO or FIFO is the

optimal policy for two demand sources, the same will remain true for any

finite number of sources greater than two.

Ir Section 5, the requirement that the field life function be known
is relaxed and field life is allowed to be & random variable with known
mean value. The concept of total field life is replaced by expected
field life (called utility) and the inherent difficulties imposed by
such a model are discussed. Nevertheless, some isolated resulte are ob-
tained. Thus, whenever ficld life is distributed by a [I-density with
mean value a +b S (a >0, b >0) , FIFO is optimal for all n , while 3
if the mean value is given by L(S) = e'ks(k >0) , LIFO is optimal for
the case n =2 . In accordance with Derman and Klein in (1], demand g
is then made independent of field life so that it is assumed that an
item is replaced in the field every t wunits of time. Under such a
model, Derman and Klein have shown that if the mean value, U(S) , is
convex, LIFO is optimal for all n . They further remark that FIFO is
optimal whenever U(S) 1s concave. An example is provided which shows
that the latter statement is not always true. If it is assumed that all
the arguments of the function U(S) involved in the expression of total
utility lie in the region of concavity then the statement is true and
this corrected version is given. Moreover, the results are proved to
remain true in the case of more than one demand source.

Finally, in the spirit of the remark made above, that LIFO and FIFO

are the two most commonly used pclicies, the requirement of optimality




is suppressed in Section 6. A sequential model 1s defined whereby at the
beginning of the operation, two items are in the stockplle. One of the two
items 1s issued to begin the operation and immediately replaced by & new
item, the next issue taking place when the field l1ife of the item in use 1s
exhausted. The operation then proceeds in stages, a new item always re-
placing the one issued and, moreover, it is agreed that either the LIFO or
FIFO policy is followed at each stage. It is of interest to compare the
relative merits of the two issuing schemes.

The ages of the two items at any time % are assumed to be random
variables and thereby determine a stochastic process which is shown to
have an imbedded Markov process under the two schemes of following LIFO
and FIFO throughout. Field life 1s related, in a natural way, to the age
of the newer item at any issue stage. If the fleld life, Z, of an item of
age t at 1ssue is assumed to be distributed by the density,

a+l
h(z,t) = 1P 2 e -z(t+ﬁ)(z >0) with parameters a > -1, B >0,

r{a+l
the Markov process under each respective scheme 1s shown to have a unique
stationary absolute probability distribution. The explicit solutions are
displayed in each case &nd 1t 1s found that the calculation of moments of
these distributions is not amenable to elementary calculus techniques. The
special case a =0, B =1 1s then analyzed completely, moments being
compared numerically to find that the LIFO scheme has greater stationary

utility than that of FIFO.
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2. Optimality of LIFO under Model I

2.1 Definition of Model I

Model I i1s defined by the following set of assumptions:

(1) At the start of the operation, a stockpile has n

items of ages S.,S ,8, where Si#SJ for

175000
143 and S, >0 for i =1,2,:-+,n .
(11) The field life of an item is a known, non-negative
(2.1) function L(S) of the age S of the item upon

being issued, where S >0 .

(111) A new item is issued only when the entire 1life of

the preceeding one 1s ended.

(iv) Items are issued successively until the entire

stockplle is depleted and no new items are ever

added.

(v) sie{le(s) >0} 1=1,2,+++, n.

The ages in (1) are called initial ages and (v) guards against beginning
the operation with items which can yield no field 1ife at the outset. The
model is called deterministic in the sense that (11) requires that L(S)
be known. In what follows, convexity and concavity of L(S) play an
important role. A real-valued function f with real domain [a,b] is

17%

= i
>0, 8 +a, =1, 1t follows that (alxl-+a2x2) =

defined to be convex [concave) if, for every xl,x2€[a,b] and real a

satisfying ay >0, a,

. | s e et srmemmeres o
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< alf(xl)+ an(XQ) [f(alxl +aex2)'2 alf(xl)+-aaf(x2)] .

Several properties of convex [concave] functions which will be used
are well known and may be found in many standard sources, [4] being '
mentioned as an excellent reference. Geometrically, a function i1s convex

[concave] if for every pair of points in the domain of f , the

2%
line through f(xl) and f(xa) never lies below [above] the graph of f.

It follows that f 1s continuous on (a,b) and if f 1s twice differentisable,
f 1s convex [concave] if and only if f"(x) >0 [f"(x) < 0] for all
x€(a,b) . Finally, if f is convex, a,8 real numbers with a <p and

f(xo+a)-f(x°) f(x°+ B)-f(xo)
= B

xo,xo+a, x°+f3 in the domain of f , then 5

+a all in the domain of

and, if a >0 and x, < x, with X 3%, %)+, X, .

1 2

P ) = £ (56 (54 -f{x
p - T ) Sl ety )

== < = with the reversed inequalities holding

2 gl 2 e

for f concave. 1
Before proceeding, it is convenlient to introduce the notion of a trun-

cation point. In writing explicit expressions for I{(S) , defiued for at

least S5 > O , one must guard against allowing L to be negative in ac-

cordance with assumption (11) in the model. Even the general assumption

tkat L{(S) be concave and monoctone decreasing has inherent in it the fact |

that if this 1s to hold for all S >0 , there then exists a finite Sc> |

for which L(So) =0 and L(S) <O for all S > S, - In such cases, it T

is necessary to re-define L(S) to be identically zero for S > S, and

So is called a truncation point for L . In some cases it is convenient
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to speak of a truncation point when no such finite So need exist as,
for example, when L{(S) 1is convex decreasing. In such cases SO may
be taken as + @ . In summary, then, if L 1is monotone decreasing
on [S', ) where 0 <S' &and M9)>0,tMnS°5w is a trun-
cation point for L if and only if S = inf (s e[s', o)L(S) <0)
and then it will always be understood that L 1s re-defined to be

identically zero for S > Sn 3

2.2 Modification of the Derman-Klein Theorem

Derman and Klein in [1] propose the theorem that if L 4is a con-
vex function and LIFO is optimeal whenever n = 2 , then LIFO is optimal
for all n > 2 , thereby reducing the problem of determining LIFO as an
optimal policy for convex L to that of verifying its truth for the
simple case n = 2 . However, the proof of the theorem relies heavily
on the statement made that "obviously the policy of issuing but one
item cannot be optimal." It will be seen presently, however, that this
is not the case. In addition, the hypothesis cannot be satisfied un-
less L 1is a monotone function, as may be seen from the following thec-

rems.

Theorem 2.1: Suppose L(S) 1is a convex increasing function. Then
LIFO cannot be optimal for n = 2 .

Proof: Let L+(S) = lim b S+hh'L 8) pe'the right-hand derivative
h—-0

of L . Since L 1is convex, L+ is defined for all S > O and, moreover,

bt — . . - - - -— o — - —— i o . el ——— AP ———— =
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Lt s non-negative, non-decreasing with LY(S) >0 for § >0 . Let

0 <SS <T be any pair of initial ages. If the FIFO policy is followed let
Q’F denote the totel field life so that Q’F = L(T) + L(3 + L(T)) ; if the
LIFO policy is followed, its total field life, say QL , will be given by

QL = L(S) + L(T + L(S)) .

: L(8)-L(s, )
Now suppose there exists S, >03 L' (S,) >1 and let f£(S) =
1 1/ = S-Sl
for all S>S . Since L is convex, f(S) 2L+(Sl) and 1im f(S):L*(sl)
S-S
1

so that f(S) >1 implies L(s)-L(sl)gs-sl or Sl+L(S)ZS+L(Sl) for
all S >8S, whence L(Sl+L(S)) > L(S + L(Sl)) and, since L(S) >L(Sl) ;

L(S) + L(Sl + L(S)) >L(S + L(Sl)) . Thus for this choice of S, and any

10
82 > Sl b Q’F > QL so that LIFO is not optimal.

On the other hand, suppose L*(S) <1 for all S >0 . Since L'(S)
is non-decreasing and L+(S) >0, there exists a3 0<a <1 and

1im L*(S) = a . Define F(8) = L*(s) + L*(s)L*(5+ L(S)) -L*(s+L(8)) for
S-o

S>0. Then 1im F(S) = o° and o<a251. But G° >0 means there
S -0

is an 5 >0 F(S;) >0 . For this 8, let G(S) = L(S) + L(S, + L(8))-

L(Sl) -L(S + L(Sl)) for 8 >8, .

Then,

6'(8) = LY(8) + L*(B) L+(Sl + L(8)) -L+(S+L(Sl)) and,

G+(31) 5 L+(Sl) + L+(Sl) L+(Sl + 1(8))) - L+(Sl+L(Sl)) = F(s;) >0

which, together with G(Sl) = 0 implies the existence of 82>813 G(SQ) >0

——
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and for this choice of initial ages QF = G(Se) + Q’L > Q’L . Again LIFO

cannot be optimal. g.e.d.

Theorerm 2.2: Suppose L(S) 1is a convex function and not monotone.

Then, neither LIFO nor FIFO can be optimal for n = 2 .

Proof: Since it is required that L(S) >0 for all § >0, and L
is not monotone, L(0) >0 . Also, since L 1is continuous, there is
an Soa Lzt strictly decreasing for 0 <S5 < So and non-decreasing
for § > So and there exists Scla _>_Sos L(S) is again strictly increasing

for S >Sc'> . Moreover, lim L(S) = + oo
S =00

Now in the region S > SO » L 1is convex increasing so that by Theo-
rem 2.1, LIFO cannot be optimal here, hence in the region § >20.

Choose Sle (O,So) . Then L(S) -+ o implies the existence of
5, > 5, 2 L(Sz) = L(Sl) . Since L 1is convex,

L(S2)-L(Sl) L(82+ L(Sl)) -L(Sl+ L(Sl)) L(S2+ L(Sl))-L(Sl+ L(SE))
<

9y . R o e
s0 that L(SE)-L(Sl) & L(s2 + L(Sl)) -L(Sl+L(S2)) or,
- { =
QG = L(82)+ L(Sl+L\82)) < L(Sl)+L(S2+L(Sl)) Q , i.e., FIFO

is not optimal for this choice of Sl, S? for initial ages. g.e.d.

In the light of these two theorems, the basic theorem of [1]) is revised
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and proved as follows.

Theorem 2.3: If L(S) is a convex monotone function and LIFO is

optimal for n =2 , then LIFO is optimal for all n >2 .

Proof: Suppose LIFO is optimal for n = 2 and assume LIFO is optimal
for n=k>2 . Llet n=k+1 and 0 < Sl < 82 <..0 < Sk+ 1 be an
arbitrary set of initial ages. For any issue policy, let S* denote the
age of the last item issued as in [1]. First observe that none of the k !
policies having S* = S1 can be optimal for, in any one of them, if S1
denotes the initial age of the item issued next to last, then Si > Sl and,
by hypothesis, this policy could be improved by interchanging the order of
issue of these last two items.

Now for S* # S1 let x denote the total field life obtained from
the issue of the k preceeding items. Then x can assume only the posi-

tive values [xi}i;l say and let x* = m?x [x1] . By the induction as-
sumption, o & L(Sl) +y vhere y >0 . As in [1], let Q(x):x-+L(x-+S*)
denote the total field life of all k +1 items for fixed S¥ . Since L
is now assumed to be monotone, two cases arise.

If L 1is non-decreasing, then so is Q and hence @ is maximized
by x = x* 5

If L is non-increasing, then §; < g implies L(Sl).Z L(S*) and
x> L(s,) so that Q(x) = x" + L(x"+8") > x" >L(8)) >L(s") = &0) .

#*
But foreny, 4 €295k 1) 5 Xy <x and Q 1s convex so that
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Ax )-(0)  Q(x)-q(0)  a(x")-q(0)
<

<
e * =3
=1 x Ay

* * *
since Q(x )-Q(0) > 0 anda o0 <%, <x . Then Q(xi) <Q(x ) for i=1,2,--- k!,

¥* ¥*
Thus, in both cases, Q(x) is maximized by x = x and so, for fixed S 9
the optimal policy is obtained by using a LIFO order on the first k items
issued by the inductive assumption.

¥*
Letting S vary over S '-,Sk+l s one obtains k policies and sup-

2 S3:'
3* *
pose the optimal among these is not the one where S = Sk+l 5 ot HS™ = Si b

*
say. Then, since x is a result of LIFO order, the item of age S was

k+l
issued next to last and, by hypothesis, the policy could be improved by inter-
changing the order of issue of these last two items. Hence the optimal policy
must be the one having S* = Sk+1 which is precisely the LIFO policy with

n = k+l . The theorem then follows by induction. q.e.d.

2.3 Optimality Conditions for LIFO

Having thus established the general Theorem 2.3, it is desirable to charac-
terize the class of convex functions for which LIFO is optimal by verifying

the case n =2 . A partial answer is glven by the following two theorems.

Theorem 2.4: If L(S) 1is a convex, differentiable function and L'(S)<-1

for all S >0 , then LIFO is optimal for HLSHEN.

Proof: 1In accordance with Secton 2.1, L possesses a finite truncation
point S0 80 that L(S) = 0 for all S > S0 . Sti1ll, L(S) 1is convex for

all § >0 . Moreover, for § <S,, L(8) >8-S or 8+ L(S) > S, , while
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if s 25, L(S) = O and hence S + L(S) >8S, . Thus in all cases,

S + L(s) > S, so that,

(2.3.1) L(S + L(S)) =0 for all S >0 .

By Theorem 2.3, it suffices to verify the case n =2 . Suppose,

then, that 0 < Sl < S2 < SO are given initial ages and let Q‘L i Q’F

B | pm———

denote total field life under LIFO and FIFO respectively. Now

s, + L(Sl) >8, + L(Sl) >8, so that

(2.3.2) L(S2 + L(Sl)) = 0 and Q’L = L(Sl) 4

|
L(S,)-L(S;)  L(S,#L(S,))-L(S +L(S,) 1
Since L 1s convex and L(S2) >0, Sz'sl S2-Sl |
L(Sl+L(S2)) I

= - T_Sl— by (2.3.1) and s, - S, >0 implies | |
|
(2.3.3) Q = L(S2) + L(sl + L(S2)) SL(Sl) . |

Combining (2.3.2) eand .(2.3.3) , Q. > Qp so that LIFO is optimal for

n = 2 since the choice of Sl’ S2 was arbitrary . q.e.d.

Theorem 2.5: Suppose L(S) 1s a twice differentiable, strictly

L"(s

(s non-de-

convex function which is decreasing on (0,w), with

creasing. Then LIFO is optimal for n >2 .
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Proof: Since L 1s convex decreasing, it suffices by Theorem 2.3

to verify the case n = 2 . Suppose that 0 < Sl < 82 are the given

initial ages. For S >S5 define

1 2

(2.3.4) G(s) = L(S) + L(sl + L(S)) - L(Sl) - L(S + L(Sl)) 5

Since G(SZ) =Qp - QL , 1t suffices to show G(S) <0 for all S > 5, -

L'(S+L(Sl))

(2.3.5) Let H(S) =1 + L'(sl + L(8)) - —IET for all 8 >§, .

Then H(S) 1s decreasing on [Sl,cn) wvhich may be seen as follows.

L'(S)L"(S+L(Sl))-L"(S)L'(S+L(Sl))

[L'(s)]°

H'(S) = L'(S)L"(Sl+ L(S)) -

" L"(s+L(s,)) "
L'(S 1 L8
and, since I7(s is non-decreasing, ET(§IET§I7) > 178 or" )}

multiplying by the positive number L'(S)L'(S + L(Sl)) 5

(2.3.6) L'(S)L"™(S + L(sl)).g L"(S)L'(S + L(Sl))
so0 that,
L%Sﬁ%S+MSﬂ)-UTML%S+MSﬂ)
(2.3.7) 5 > 0.

[L'(s))

Applying (2.3.7) to H'(S) , since L'(s)L"(sl-+L(s)) <10, EUE)R<sO

for all S > Sl a
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Since L 1s strictly convex and positive, it is clear that

(2.3.8) lim L(8).= > 0. snd Liw'isL'(8) =0 .
S - S » 00

Moreover, since a >0 ,

(2.3.9) ‘ 1lim G(S)
S s

a + L(Sl+a) -L(Sl) -a<0.

Now G(Sl) =0 and

G'(8) = L'(S) + L'(S)L'(S, +L(S)) -L'(S+L(S,)) = L'(S) K(S)

Suppose B(Sl) <0 . Since H 1is non-increasing, H(S) <0 for

all S >S. so that G'(S) >0 or G 1is increasing on [Sl,co) vhich,

1
together with G(Sl) = 0 implies 1im G(S) > 0 contrary to (2.3.9) .
S » @

Thus H(S,) >0 . If H(S) >0 forall §3>S, , then G'(S) <O or G
is decreasing on [Sl’ o ) which, together with G(Sl) = 0, implies

G(S) <0 forall S >8S On the other hand, if it is not true that

o
H(S) >0 for all S >S§

then there is S >3, for which H(S) >¢

1 i

for all Sl <8 < So and H(S) <0 for S > So since H 18 decreasing

and continuous. Then G'(S) <O or G 1is non-increasing on [Sl,SO]

while G'(S) >0 or G 1is increasing on (So’ oo0) which, together with

c(sl) =0 and lim G(S) <O, implies G(S) <O for all S >s, .
S -

S




i
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Thus in all cases,

&Sy <0 “Por a1 7B >s, . q-e.d.
While the attention thus for has been on convex functions due to the
general Theorem 2.3, there is a special case of concave functions for

which LIFO is the optimal policy as seen in the following theorem.

Theorem 2.6: Suppose L(S) is a concave, differentiable function

with L'(S) < -1 . Then LIFO is optimal for n > 2 .

Proof: Again there is a truncation point S° for L and the
condition L'(S) < -1 1is thus taken to hold on (O,So) o ~Algoy dif
0 < S1 < 82 < So are given initial ages,

L(Sl) L(Sl)-L(So)

= < (e
Sl-So Sl-So il

so that L(Sl) >so-s1 or S+ L(Sl) >8§_ whence L(Sl+ L(Sl)) =0 .

Also So- Sl < L(Sl) with L continuous and decreasing on [Sl’so]
[} 1R e 4 .
implies the existence of s e(Sl,So) for which L(So) 8,-8; For

each S >8 define

1 2
(2.3.10) G(S) = L(S) + L(Sl+L(S)) - L(Sl)

and observe that



G'(s) = L'(S) + L'(S)L'(Sl+ L(S)) = L'(S)[1 + L'(Sl+ L(s))]

¥ow; 1If S so that S + L(s) >

] ' = =
<s <s!, LS)>L(S)) =8 -8

1

- = ) = A = - o
§, +8, -8 =8  end L(sl + L(S)) = 0. Then G(S8)=L(S) L(Sl) <0
1 t = t [o] =
If 8, <8 <8, then Sl+L(S) <Sl+L(So) =8 . But L (sl+ L(S)) <-1
so that 1 + L'(Sl+L(S)) <0 while L'(S) < -1<0 implies G'(S) >O0.

Also,

G(Sc')) = L(Sc'>) +L(Sl+ L(Sc')))-L(Sl)= 5,-5; + L(sl +So-Sl)-L(Sl) = (So-Sl)-L(Sl) <0

and
G(So) = L(So) + L(Sl+L(So)) -L(Sl) = L(Sl) -L(Sl) =0

so that G 1s non-decreasing on (Sc'),So) or G(S) <0 foral Se(Sc'),So) .

Thus,

(2.3.11) 6G(s) <0, or L(S)+L(Sl+ L(S)) <L(Sl) for all 8, <S <8 .

Now QL = L(Sl) + L(52+ L(Sl)) = L(Sl) since 52+ L(Sl) > Sl+L(Sl) >so,
and Q’F'QL=G(S’2) <0 so that LIFO is optimal whenever n = 2 .

Assume LIFO is optimal for n = k-1(k > 3) and suppose n =k . Let

0 < Sl < 82 < eee <L Sk < S0 be given initial ages. An issue policy P 1is

Just an ordering S ’<S, g where (J,,-++,4,) is a permutation
S T iy Sy it k
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of (1,--+,k) and Sa~-<(SB means the item of initial age S, 1s issued

prior to that of initial age SB . The totsl field 1ife Q(P) of such

a policy is then given by

k
(2.3-12) Q(P) = L(8, ) + L(B, + LS, )) + b L(sJ # xi)
1 2 1 =3 1
where
X3 = L(sJ2 + L(le)) and %, =X + L(sJi + L(le) + xi) 1=3,4, 0 ,k-1.
Observe that xk > xk-l % > x3 > 0.

Let J; =1 be fixed where 1 € (1,2,--°,k} . Of the (k-1)! policies
given by Si.“<332“<"' d(SJk, the induction hypothesis states that the
optimal one is Pi where P1 is charscterized by J2 < J3 < eee < Jk 5
Then there are k such policies as 1 varies among which Pl’ given by
Ji wrdy 4= 250,k 1 the LIFO policy. Clearly, the optimal policy among

Pl,Pa,---,P is optimal for the problem at hand.

k
In sccordance with (2.3.12), the total field life for LIFO is

k
Q(Pl) = L(Sl) + L(s, + L(Sl)) + %é% L(s, + L(Sl) + xi) d

But, S, + L(sl) >8, + L(Sl) >S5, so that Xy = L(s2 + L(Sl)) = 0 and,

for, L >3




&l

5, + L(Sl) +x, >8, + L(Sl) >8,

i L

so that L(si + L(Sl) 5 xi) = 0 . Thus Q(Pl) = L(Sl) 5

For m#£ 1 , the total field life of policy o

k
Q(P ) = L(8 ) + L(S; + L(S_)) + > L(S

+ L(S.) + x,)
=3 Ji m -

and, for 1 >3,

a
S5, + L(Sm) + X

= c \ o
3 >, ¥ L(Sm) +x, = [ul + L(Sm)] + L[sl + L(Sm,} >3,

1 3

and L( + L(Sm) + xi) = 0 . Hence, Q(Pm) = L(Sm) + L(sl - L(Sm)) and,

SJi

by (2.3.11), where S, was arbitrarily fixed, Q(Pm) < L(Sl) = Q(Pl) !

1

Then LIFO is optimal for n = k and, by induction, for all n >2 . q.e.d.

2.4 Applications and Examples

Theorem 2.4 now provides a counter-example to the statement that the
policy of issuing only one item cannct be optimal. For if L satisfies the
conditions of the theorem, LIFO is optimal and, by (2.3.2) its total field
life is given by the issue of a single item, the newest.

It is proposed in [1] that FIFO is an optimal policy to use whenever L
is linear. An application of Theorem 2.4, however, shows this to be false.

Thus, let L(S) = a-bS where a >0, b >1 so that L has truncation point%,

e r - — - — =3
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Now L 1s convex and L'(8) = -b < -1 for all 0<§ < % so that L

satisfies the hypotheses of Theorem 2.4 and hence LIFO is an optimal policy.
It is interesting to note that for b =1 both LIFO and FIFO are optimal and
according to Lieberman {2], FIFO is optimal for b <1 so that b =1 1is &
boundary case.

Derman and Klein have shown in [1] that LIFO is optimal for the two cases
L(S8) = ce b (e,k >0) and L(S) = E%§ (a2 >0, b >0) . Their proofs in-
volve some rather cumbersome algebra. It 1s easily verified that botn of

these cases satisfy the conditions of Theorem 2.5. As a further app:ivation

of that theorem, the latter case has an immediate generalization as follows.

Let L(8) = — where a >0, b >0 and X\ >0 . Then,
(b+8)
- 1 TS A+l
L'(S) = Sl L"(9) - ShANE whence = - which
A+l A2 L'(S (0+9)
(b+S) (b+s)

is non-decreesing in S . Hence LIFO is optimal.

3. Optimality of FIFO under Model I

Lieberman has shown in [2] that the following general theorem is true.
If, under Model I, L(S) 1is differentisble with L'(S) > -1 and either
LIFO or FIFO is optimal when n = 2 then LIFO or FIFO, respectively, is
optimal for all n >2 . It is also shown (Theorem 2 of [2]) that if L(S)
is convex and FIFO is optimal for n = 2 then FIFO is optimal for all

n >2 . However, by Theorem 2.2, if L 1is not monotone then FIFO cannot

—— - = = == - - et . ot . i s

Skdeags —
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be optimal for n =2 . If the added condition of monotonicity is imposed

on L(S) , then Lieberman's Theorem 2 is, nevertheless, valid, the proof
deperiding only on the fact that Q(x) , as defined in the proof of Theorem 2.3,
is maximized by making x as large as possible.

A set of sufficient conditions is then given in [2] under which FIFO is
optimal for all n >2 . Thus, Theorem 3 of (2] states that if L(S) 1is a
concave, monotone, differentiable function with L'(S) > -1, then FIFO is
optimal for n >2 . It is & curious fact that, while monotonicity was so
crucial when L 1s convex, the monotonicity requirement may be suppressed
in this theorem and, moreover, if L(S) 1is concave, the condition L'(8)> -1
is necessary as well as sufficient. These remarks are embodied in the next

two theorems.

Theorem 3.1: Suppose L(S) is a concave, differentiable function, not

monotone, with L'(S) > -1 . Then FIFO is optimal for n >2 .

Proof: Since L 1is not monotone and L(O) >0 , there is an S‘ >0
for which L 1is increasing on (O,S*) and non-increasing on (S*, o) .
Moreover, for some S > s" , L'(8) < 0 (otherwise L would be monotone)
and hence L possesses a truncation point So > S* . lLet O0< Sl< 52< So
be any given initial ages.

* *
If S, >S , then FIFO is optimal by Theorem 3 of [2]. If 5,<8,

L
*
then, since L is continuous, 0 < L(Sl) <L(S ) and 1lim L(S) =0 so
S -5
o

*
that there is an Si such that S < 8] <S_  and L(Sl) = L(Si) s
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Several cases then arise depending upon 82 5

(3.1) Suppose S! <'S

0 <8 o that L(8,) < L(s,) .

2

. 1)
Case I: S, + L(s2) < 8] . Then L(sl + L(Sa)) > L(Sl) and

*
L(S2) > L(S2 + L(Sl)) , since L 1is non-increasing on (S , ®) , so

that L(s2) + L(sl + L(s2)) > L(Sl) + L(s2 + L(Sl)) or FIFO is optimal.

S ' \
Case II: Sl + L(S2) >S, . Then Sl <8, + L(Sa, <8 + L(Sl) and
L 1is non-increasing so that L(S1 + L(Sa)) > L(Sl + L(Sl)) and

L(8,) + L(S; + L(S,)) > L(S,) + L(S; + L(5,)) > L(§;) + L(S, + L(S,)) ,
the latter inequality from the concavity of L . Again, FIFO is optimel.

(3.2) Suppose Sl <8, < Sl so that L(Sl) < L(Sa) §

2
Case I: 5 + L(Se) SisNeiEng S. { L(Sl) <8 + L(Se) . Then,

2
L(32+L(Sl))-L(Sl+L(82))

> L'(S L(s > -1 snd (S_+ L(S S. +L(S) < 0
(8,+L(8)))-(8,+L(S,)) > L'(8; + L(S,)) > -1 and (8,+L(8,))S, +L(S)))

s0 that

L(s2 +L(Sl))-L(Sl+ L(Se)) < Sl-+L(32)-82-L(Sl) < L(S2)-L(Sl) 5 Ba®an

S - S— o —— = — — -
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L(Sz) + L(sl + L(Sz)) > L(Sl) + L(s2 + L(Sl)) or FIFO is optimal.

*
Case II: Sl + L(SZ) >S5 sand S5, + L(Sl) > Sl + L(Sz) . Then,

2
L(S2 + L(Sl)) < L(Sl + L(Sz)) since L 1is non-increasing on (S*, )
while L(Se) > L(Sl) so thzt L(Sz) + L(Sl+L(82)) > L(Sl)+L(82+ L(Sl))

. and FIFO is optimal.

8 ITII: § S s” Th S, + L(S f

ase : l+L( 2) < : en S+ 15( l) <Sl+L(82) <s 1e)
that L(S, + L(S;)) < L(S, + L(S,)) since L is increasing on (0,87) .
Hence, L(82)+ L(Sl+L(82)) >L(82)+L(Sl+ L(Sl)) zL(Sl)+L(82+L(Sl)) 7

the latter from the concavity of L , and, again, FIFO is optimal.
Thus, in all cases, FIFO is optimal whenever n =2 and hence for

all n by Theorem 1 of [2] . o q.e.d.

Theorem 3.2: Suppose L(S) 1s a concave differentiable function.

Then FIFO is an optimal policy for n >2 if and only if L'(8) >-1 .

Proof: Suppose FIFO is optimal. If L 1is monotone increasing, then
L'(8) >0 > -1 . Otherwise, there is a finite truncation point So :
If L(S*) < -1 for some S < S, » then since L is concave, L' is
decreasing so that L'(S) < -1 for all S* S So . But LIFO is optimal
on [S*, SO] according to Theorem 2.6 which is a contradiction. Thus

L'(8) > -1 .




Conversely, if (S > -1 then FIFO is optimal for n >2 by

applying Theovem 3.1, together with Theorem 3 of [2]. q.e.d.
The next theorem shows that FIFO need not be restricted to concave

functions.

Theorem 3.3: Suppose L(S) 1is a convex, differentiable function

and L'(S) >1 forall § >0 . Then FIFO is optimal for all n >2 .

Proof: Let n=2 and O K< Sl < 82 bve any given initial ages.

Since L is convex and L'(S) >1,

L(Sz)-L(Sl)
5,-5,

> 1 of Sl+L(SE) > 82+L(Sl) and L(Sl+L(Se)) > L(SQ+L(Sl)).
But L(Sz) > L(Sl) so that L(Se) + L(Sl-+L(SQ)) > L(Sl) + L(824-L(Sl)) 5

Hence FIFO is optimal for n = 2 and, by Theorem 2 of [2], is optimal
for all n>2 . q.e.d.
The following example shows that it is not possible, however, to

extend the preceeding theorem to all convex increasing functions.

(3.3) Example: Let

1(B) =

and suppose S, = I,s,=4. Ten L(s))= & » Tifiy)os Ly TiE L(szgk=%




}

and .L(82+L(Sl)) = %% . Then
L(S,)+ L(S,+ L(S,)) = 1 + £ = 2.25 < 2.3125 = L(S,) + L(S,+ L(S,)) .

It is very easy to find, on the other hand, Sl and 82 for which the

inequality is reversed, for example, S, =1, S, = 2

4. Model I with Multiple Demands

4.1 General Formulation and Counter-Example

In the preceeding sections, it was assumed that there was only one
source of demand for the items in the stockpile. A natural generalization
would appear to be the case where there is more than one source of demand.
More specifically, suppose the same deterministic model as outlined in
(2.1) holds. In addition, it will be assumed that there are Vv sources
demanding items from the stockpile in acccrdance with those assumptions.
Let the sources be labeled Ml, M2,---,Mv .

It is assumed that there are n > v {items in the stockpile. The
operation begins by 1ssulng v 1tems to Ml,M2,---,Mv and proceeding
thereafter according to Model I. Clearly, it makes no difference which
sources are labeled MI,ME,---,Mv . In other words, for any specified
issue order (policy), the first v items issued may be freely inter-
changed at the outset within sources without affecting the total field

life, 1.e., there are v ! policies having the same total field 1life.

Again, a policy will be optimal if its total field life is at least as
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large as that of any other policy.

It would be highly desirable, under this model, to establish that if
LIFO (FIFO) is optimal for Vv = 1, then LIFO (FIFO) will be optimal for
arbitrary v . Unfortunately, this is not the case as may be seen from

the following example where v =2 .

(4.1.1) Example: Let

1'111(3'1)2 1<8 <2

L(S) =
< t-%s 2<s <]
0 1 <s

b

so that L has truncation point % and

0 0<s<1
L'(S) = % t % s 1<8<2
1 i
e 2<8<4

“

Now in the region [0 l] , L is concave and differentiable in (O, 1)
& B D

indeed continuously so, with L'(S) > - % >-1 . Hence L(S) satisfies

the conditions of Theorem 3 of [2] and FIFO is optimal for v =1 . But

suppose V = 2 and the initial ages are S, = S\ 82 =_J6 ), 8 =i2e

1 3
Su = 3.1 and 85 = 3,3 . Letting QF denote the total field life of tae

FIFO policy,

=S — . - - — - - r—— i .t c———
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Qp = L(S5) + L(S,) + L(Sq +L(s5)) +L(S, +L(85),)) +L(S; + L(S,) + L(85+ L(S5)))

= 0.1 + 0.2 + 0.4 + 1+ .9996 = 2.6996 as is easily verified by checking
the demands efter the initial issue of S5 and Sh to begin the operation.
Now consider the policy of issuing S5 and S3 to begin with then follow-
ing in the order Sh,S2 and Sl . Denoting the total field life of this

policy by Q , it is readily verified that,

D
"

L(S5) + L(S3) + L(Sh+L(S5)) +L(52+L(S5)+ L(Su+L(S5))) +L(Sl+ L(S3))

0.1 +0.45+0.15+1 +1=2.70.

Thus Q > QF so that FIFO cannot be optimal.

It is worthy of note that under the conditions of Theorem 3 of {2]
FIFO is optimal for v = 2 vwhenever n = 3,4 as may be verified by sheer
enumeration of cases. There is a speciel case, however, for vhich FIFO is

optimal for the present problem as will be seen in the next sub-section.

4.2 Optimality Conditions for Two Sources

The following theorem gives a set of anfficient conditions for which
FIFO will be the optimal policy. Its proof is facilitated by means of

several lemmas given below.

Theorem 4.1: Let a >0 and -1 <b <0 be real numbers and

L(S) = a + bS (hence with truncation point - %) . Then, for a stockpile
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of in ; {tems= i (n > 2) , FIFO is the optimal policy for two sources Ng,Mz q

Lat O0<'Bo. <5

1 e O Sn <~ £ »e arbitrary initial ages. For

2 b

i=1,2, let SiJ’ J=1,2,-",k denote the initial age of the Jth item

issued to M1 in any given issue policy. Then, the total field life, say

Q1 , contributed by M, for this arbitrary issue policy will be given by

i

(4.2.1) Q = L(Sil)+L(812 + L(Sil)) + L(s13 + L(Sil) + L(Siz + L(Sil))) 4 0o

Now if all the arguments of L involved in Q, lie in the region (0,- %) 3
it makes sense to use the identity L(x+y) = L(x) + by , obviously valid

only when (x+y)e(0,- %) . When this is the case, the set {Sile:l of

initial ages will be said to satisfy Condition A throughout this section.

The first lemma relates this condition to total field life.

Lemma 4.1: If the set {SiJ]J}_fl of initial ages satisfies Condition A ,
then
k k-1 k-2 -3 2iz 5
Q = J% L(8;;) +b ng L(8; ) +b(b+1) fi‘} L(SU)+---+b(b+lf J=ZIL(-%”)*A»(IHI)k 2L(Su)-

Proof: The statement is trivial for k=1 . For k= 2 , by definition,
Q = L(Sil) + L(Si2 + L(Sil)) = L(Sil) + L(Siz) +b L(Sil) in accordance with
the assertion. Assume the lemma is true for k =m > 2 and suppose k = m+l .

Again by definition, Qi = Qi,m + L(Si,m+l + Qi,m) where Qi,m is the total

e m——r il
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field 1ife resulting from the ages (S, ,) T . Since Condition A 1is

13°3=1
assumed, L(Si,m+1 + Qi,m) = L(S i +l) +Db Q . In that case,
Q = L(s . +l) + (b4-1)Q and, by the inductive assumption,

m m
(b+1)Q, = > L(S, ,)+D ZL(SiJ)+b(b+l)ZL(S )4 -ee+b(b+1 )BT us,,) ,
4 J=1 J=1 J=1

m+1l

Z L(S;,) +b Z L(S;,) + =+ + b(b+l)m'lL(Sil)

which is the assertion for k = m+l . The lemma thus follows by induction.
q.e.d.
The next lemma gives & simple criterion in order that the ages satisfy
Condition A which will be found useful in computing the total field life

when FIFO is followed.

Lemma 4.2: The set (S,,) ¥ Srasal i ages satisfy Condition A if

1)79=1

v i AR

ole

Proof: First observe that if x €(O,- %) , then x + L{x) < -

Consider the case k = 2 (k=1 having no meaning). Then QizL(Sil) +

L(Siz‘ + L(Sil)) + Now S,, 1lies in the interval (o, - %) and

a
812 + L(Sil) <S,. + L(Sil) < - = so0 that the assertion is true.

11 b

Assume the lemma is true for k <m and suppose k = m+1 . Then,
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+L(Si,m+Q )

- T S
Q =Q 3+ U5 mt O 1) B ey * Qe

b

i,m-1

m-1
where Q’i,m-l is the total field life resulting from [si,j],j=l BT

the inductive assumption, all arguments of L in the expression for

a
Qi,m-l and si,m + Qi,m-l lie in (O,- S-) and, moreover,
a
Sy mi* Y ey YIS ot O gpan) 85 5 HO e ¥ U8y n* %Y ,m1) < "%
which is the assertion for k=m+1l .
The lemma thus follows by induction. q.e.d.

The last two lemmas are concerned with the special policy of FIFO,
the final one asserting, as one would intuitively surmise, that if FIFO
is being considered, enlarging & stockpile can only increase the total

field life.

Lemma 4.3: If the FIFO policy is followed on (S,) 12‘1 , then the

total field 1life, QF, of the policy is given by,
n

/ n-h
i L(S:L) +b i L(Si) +b(b+1) i L(Si)+---+b(b+1) v i L(Si)ibrn even
1=1 1=3 1=5 {=n-1
% =8
n n B2 n-3
2>_L(5,)+D =>_ L(5, )+ -+b(b+1) - L(S,) +b(b+1) 2 L(S_ )for n odd.
\ 1=l 1=3 i=n-2 "
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-

Proof: First observe that, regardless of which items are issued Mi
in this policy, the corresponding sets of initial ages satisfy Condition A

by lemma 4.2 . Moreover, if u>v > 0 and Se€(0,- %) , then
(4.2.2) u+LiS+u) >v+ L(S+ V)

is a trivial consequence of the conditions on L .
Consider first the case where n = 2N for some N > 1 . Let Qi ok
)
be the total field life resulting from the issue of the first 2k 1items

in source M, for i1 =1,2 . Then, for k =1, Q1,2 = L(Sn) 5 Q2,2 %

il

L(s,_,) end Q<Y ;-

Assure for k=m >1 , that M, receives items of initial ages

1

(hence M, receives those of ages Sn-l’sn-3""’sn-2m+1)

B 2

Sn’ n-2"."sn-2m+2
and that Q?,Zm-2 < Q1,2m < Q2,2m . Then, Ql,2m < Q2,2m implies

Q1,2m+2 = Q1,2m + L(Sn-2m + Q1,2m) > Ql,2m + L(Sn-2m+1 + Ql,2m) since

S But ,

n-2m - Sn-2m+1 2
% om * S oma * Y on) 2% onen * MBS opa Y % opp) =% oy

taking u = Q and v=Q,, , in (k.2.2) . Then, similarly,
) ) &

U ,omen 2 oy 10PLIes Qo o = Q% op * LS opg * % on) 2

B S S —— — - - =
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+ L(S Thus M1 receives items cf initial

9 ,om n-2m * %,2m) = Y om2 -

ages  5.y8, 00" s 8 onypr Sppp 80d VonS Y ome S Lopue ¢ BY

induction (taking k = N) , M1 receives items of initial ages

S

nSn.prtttr Sy wnd Q on 5 < Q oy S & oy

If n = 2N+1, the preceeding analysis applies to the first 2N = n-1

items issued so that Ml receives items of initial ages

) S and

heg? """ By Lona S Yoy SO

sn’ 2,2N
so that the last item, of initial age Sl ; is demanded by Ml at time

Q1,2N so that M1 receives items Sn,Sn_e,---, 83, Sl o

Applying lemms. 4.1 when n is even, substitution ylelds,

n n .
2 2 = -2

n
2
(4.2.3) Ql’n o % L(821)+b % L(521)+b(b+1) 125 L(521)+-..+b(b+1)2 L(Sn),

and
= Il n
2 2 2 %-2
Qe’n = é L(8,, _1)+b % L(8,, _1)+b(b41) % L(8,y 1 )+ ++b(b+1) 18,.,) - )

Observe that in (4.2.3) the subscript 21 denotes the product and not the

double subscript previously employed, a slight ambiguity which is immediately
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resolved when the results are combined to give,

n n n =-2n
= 2
(4.2.4) Q = s Qe’n—ZL(SiHb > L(Si)+b(b+1) b L(s, )+ b)) S I.(Si).
n i=1 i=3 1=5 i=n-1
Similarly, applying lemma 4.1 and combining, for n odd,
n+l n+l adS ngl -3

& b L =
2 2
9,0 EL(SEi_l)m %L(321_1)+- «++b(b+1) §(321_1)+b(b+1) L(s,)

n-

i=—=
(hi2rsy)
n-1 n-1 n-1
T - “—;7- K n-3
Q = SL(S,, )+b > L(S,, )+ +b(b+l) > L(S,, )+b(b+l) e )
B T 251 ) 21 = 21 n-1
= = faBos
2
and
2 e & 8 = a2
G = L(Si)+b L(S‘i)+---+b(b+1) L(Si)+b(b+1) L(Sn)
n i=1 i=3 i=n-2
and the lemma is proved. q.e.d.
Lemma 4.4: Let 0 < 8, <8, <ver B <. %' be a set of given initial

ages and Q’F the total field life obtained by issuing according to FIFO.
N

M

*
5/ SiG(O,- %) be given

*
Let M >1 additional items of initial ages [81]1
and Q’F the total field life obtained by issuing a8ll N+M items according
N+ M

to FIFO . Then, > for any N and M.
Q/FN+M Q'FN
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Proof: First consider the case where N 1is odd. Suppose M =1 .

Then three cases arise as follows.

¥* *
(L.2.6) Case I: §, < 8, . Then let T,=8, » TJ=SJ+1 J=12,:-,N

Now N+1 is odd and, by lemma L.3,

N+l N+l 52w 5w
Q = L(S )+ZL(T )+b ZL('I Yoo o« d(BAL) " L(T, )4b(be1) ° > L(1y)
N+1 1=N-2 1=N
o 1 N N—éz N 3y
= L(s,)+ ZL(Si)+b ZL(Si)+---+b(b+l) il L(S, )+b(b+1) B L(s,)
1=1 1=2 1=N-3 1=N-1
N-5 N-3
= L(S )+ ZL(S )+b ZL(S )4+ -4b(b41) ° 2 L(s)+b(b+1) © L(S )]
i=3 i=N-2
1] R-3
+DL(8y)4+ - n(be1) 2 L(Sy_,)4b(b+1) P 3
N-p R-3
> L(S)) {140 47+ b(bsl) ° +b(b+1) % ] + Q since L(5)) > L(s,)

N

J=2,46,-+-,N-3,N-1 , b <0 . Using the easily verified fact that

(2. 7) (b+l)k=l+b+b(b+l) oot b(b+1)k'l for any integer X ,

N-l
¥*
QF > Q,F (be1) © L(8;) > Qp  since b+1 >0 .
N
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*
(4.2.8) Case IT: S _<S . Thenlet T, =S j=1,2,--+,8 and

N 1 J Sl

*
fi =S, . By lemma 4.3,

T R |
N+l N+l N+l N—23 N+l
% Z L("‘ o ST L(T, )+b(b+1) Z L(T, Y4+ 40(b+1) L(’Ii)
N+l 1=3 1=K
.N_'i N-3
. L(SI)[l+b+b(b+1)+---+b(b+1) ] +ZL(S )+b ZL(S Y4+ o+ +b(b+1) . L(sy)
1=1
N-1
) *
= b(b+l) L(S,) >
. 1/ * QFN - Q‘FN

*
(k.2,9) Case III: There is integer 1€{i,2,::-,N} for which S, <85 <8

=)

i+1 °

*
Then iel TJ =S,j L P00 F5 LTS 1+l=Sl and TJ=SJ-1 o EEIIERET peeRee Tl

Then T, <T. < :-- <T N+l 1is even and 2k-1 < i+l < 2k+l for some

1 2 N+l °

k e{1,2,°+-,N}) . Again, by lemma 4.3,

N+l N+1 k-2 N+l o lN+1
Q = ZL(T )+b ZL(T -« 4b(b+l) > L(T J4b(b+1) ZL(T Y4
N+l =1 =3 J=2k-1 J=2k4
—3- N+l

#(bel) 2 z L(T,)

N
= L(8)) [14b+- - +b(b41) 2] ZL(S + ZL(S Jao e n(041)52 S 1(s
=3 J=2k-1

31
N-3

2 N+1
+ 5. SOl T L)
m=k-1 jabms3 19

s et

J

)

—
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=3 &
2 o N4l = X
But > _ b(b+l) > L(TJ) = > blbel) > L(SJ)
m=k-1 J=2m+3 m=k-1 J=2m+2
N-3 b3
2 & N
= > b(b+l)"L(S, o) + > b(o+1)" S L(s,)
m=k-1 m=k-1 3=2m+3
so that
N-3
= L(ST)[1+b+- - -+b(b41)X2) + i b(b+1)"L(S,_..)
Q’FN ] S om+2
+1 m=k-1

3 X .| e
i = L(SJ)+b - L(SJ)+---+b(b+l) > I(SJ)+b(b+1) ZI.(SJ)P--

Jsl J=3 J=2k-1 J=2k+1

N-3

To(nal) * L(Sy)]

Now 2k-1 < 1+1 < 2k+l 1implies i+1 < 2k and hence

*

*
S, <8 <18k «<S & |7 s0 that L(Sl)zL(S

1 S04 < Pgp < Sgpes <t N-1 oms2)

and, since

b(b+1)® < o, b(b+1)mL(S,2m+2) 2b(b+1)mL(SI) all flor WEke Ly sy B

Consequently,
N-3
¥* - {3
% 2 L(Sl)[1+b+---+b(b+1)k Zio(o41) e m(v41) 2 ) 4 g

N+1 N-1 N

W 2
= L(S,)(b+1) >
(8, )(b+ +QFN_QFN

B e e o e v - — - S — - —
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Thus, in all cases > whenever N 1is odd. The proof for
’ ’ =z
N+1 N

the case N even is, mutatis mutandis, the same.

Now suppose the lemma is true for M > 1 and consider adding M + 1

* *
items of initial ages [Si} Tti . Ignoring SM+l temporarily, the total
field 1ife of the remaining items, QF satisfies QF > QF by the
N+M N+M N
inductive assumption. Then, adding S;+1 can only increase the total field
life by the case M =1, i.e., > > .
QFN+M+1 QFN+M QFN
By induction, the lemma is proved. q.e.d.

With the aid of the above lemmus, Theorem 4.1 admits the following

proof.

Proof of Theorem 4.1: Consider first the case where n 1is odd so i

that n = 2N+1 where N >1 . Let QF denote the total field life of
n
the FIFO policy. For any other policy a certain number, say k, of items

will be issued M1 and, in accordance with lemma 4.1, the order of issue

is specified by Now, without loss of generality, it is su-

{513}3:1 :
posed that k <N for if k >N then, because of the symmetric roles of
M1 and M2 , there corresponds a case k' < N yielding the same total
field 1life. For this arbitrary policy, let Qi denote the field life
contributed by Mi Jai=l,25 and=iQ = Ql + Q2 the total field life of
this arbitrary policy.

k n-k

Suppose the sets of initial ages {le}J=1 and {82J}3=1 both

satisfy Condition A . By lemma k4.1,
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X k-1 2
k-3 k-2
Q= ZL(le)+b %L(slj)+. -++b(b+l) J_ZlL(le)m(bu) L(S,,), and

3=1
(4.2.9)
S s, 'S s, e anlo K3 L, oo F RS L, )
=STL(s,, )+ L(S,, )4+ -+b(b+l L(S,, )+b(b+l L(s
% £ 2yt 25 1y T <7 028
k-1 n-2k kn-2kd_ N lN-k+l
#b(b+1)" 7" S L(S,, )4b(b4l)” S L(S,, )+ -4b(b+1)T T > L(S,,)
R S = A
e n-k-2
+b(b+1)" 2 L(S,, )+ *+b(b+1) L(S,,) . Combining,
=
Sus (St 15, ) S L5, )1 #o(o)E R 1 S
Q= L(S, )+b L(S, . )+ L(S 4.+ +4+b(b+l L + HES= il
R = e F M~ S 1 e
k_lxx-Qk kn-2k-l N_lN-k+l
b (b+1) ST L(S,, )+b(b+1)" > L(S,, )+ +b(b+l)" ~ > L(S,,)
i 2 >~ =,

n-k-2

N-k
s ST L(SQJ)+---+b(b+l) L(S, ) . Finally,
=1

I

n k-2 k-3-1 n-
(Ko 2O s sum S~ L(SJ)+ Zo (b(b+1)91 i_ L(S,,) + L(S,,)])
J=

k-
J=1 i=1 f=)

N-1 Jny-l n-k-2 ynigkey-l
+ > (b(b41)Y S L(S,,)) + > b(b+1) L(s,,)
J=k-1 1= J=N 1=1

e e . - — — . = - [
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By lemma 4.3,

QG - iil L(S,) +b :23 L(S, )+« + - +d(b+1)*7? <= L(S,) +b(b+1)*t i L(s, )

i=2k-1 1=2k+1

M iponi)*e 5 L(s,) +b(®+1)" ™t L(s ) or,
i=n-2

n

n k-2 n
(h211) @ =3>_L(s,) +>_nba)! S i(s,) Z b(b+1)? Z Ky -
n i=1 J=0

1=2J +3 J k-1 234‘3

Consequently, using (4.2.10) and (4.2.11) ,

n-k-1 n-k-j-

i
(4.2.12) Q& b(b+1)9[ LS, )- L8 ) S -
4 - 'Z +)1%+3(1)§<11)T=_1 (5,,)

n-k-j-1 n-k-2
+ Z p(b41)3[ S— L(s, )- Z L(S,,)]- Zb(b&)‘j ZJ-L(821).

J=k-1 1=23+3

n
Consider Jje{0,1,-++,k-2} . Since > L(Si) is the smallest possible
1=23+3
n-k-1
sum of the L(s ) having n-23-2 such terms,1:%J+3L(Si) :g L(Sli)

n-k-j-
- § L(Sai) < 0 end, since b(b+1)'j < 0, the first term on the right in
i=1

(4.2.12) 1is non-negative.




o

If je(k-1,+-+,N-1) , then O < j-k+¢l < N-k and

n n-k=-J-1 n n=23-2
b(b+1)9] = L(s, )~ IEZ? I&Sei)]zb(b+l)J[ =5 L(s, )- jgf L(S,,)]
1=2)+3 1=1 1=23+3 1=1
T
b(be1)d %gi‘i" L(84:)
i=n-23-1 .

the first term of which is non-negative as above and the second term of
which is non-negative since b < O . Thus the second term on the right
in (4.2.12) is non-negative.

Finelly, if Jje(N,+-+,n-k-2) , b(b+1)J <O and the last term on the

right in (4.2.12) is non-negative. This shows that Qp >Q so that
n

FIFO dominates. The proof for the case n even and the initial ages of
an arbitrary policy satisfying Condition A is, mutatis mutandis, the same.
Now suppose n 1is arbitrary and consider any issue policy where the
initial ages do not satisfy Condition A . Then there are exactly M
items, say, that contribute nothing to the value of Q , the total field
life, where 1 < M < n-2 . In other words, @ is the total field life
based on the issue of n-M items that do satisfy Condition A . Let
Qn-M jenote the total field life thet would be obtained had only these
n-M items been issued in FIFO order. Then, by the preceeding part of

the proof, Qp > Q and, by lemma 4.k, G > > Q.
n-M 03 n-M

- e
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Thus, in all cases, QF > Q so that FIFO 1s optimal. q.e.d.
n

A result similar to Theorem 4.1 holds for LIFO without the restriction

to linear functions.

Theorem 4.2: Suppose L(S) 1s either a convex or concave differ-
entiable function with L'(S) < -1 . Then LIFO is optimal for two

sources Ml and M2 5

Proof: 1In both cases, as in Section 2 , L has a finite truncation
point So . Moreover, as in the proofs of Theorems 2.4 and 2.6,

S+ L(S) >8, or L(S+ L(S))=0 for Se(O,So) . Let 0<§ <8, <+ <8 <§

be n given initial ages, where n > 2 .

Consider the LIFO issue policy with total field life QL . By con-
vention the ltem of initial age S1 is issued M1 and that of age 32
to M2 to start the operation. Now, for any 1 >3 and Jj=1,2,

(4.2.13) Si+L(SJ) > s +L(SJ) > 8

]
and so L(Si4-L(SJ)) = 0 . Thus, in the LIFO policy none of the items of

initial ages S -»8, contribute to Q or Q = L(Sl) + L(Sz) 5

30"
Now consider an arbitrary issue policy with total field 1life Q and,
k n-k
as in Theorem 4.1, let {Sljljxl and [SEJ]J=1 be the initial ages of

those items which would be issued M1 and M2 respectively, with respective
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field life contributions Ql and Q2 so that @ = Ql + Q2 . Let

k k k

[TlJ}J=l be the set [SlJ]le ordered by < , i.e., TlJ e[SlJ]le
Py n-k

for §=1,2,c-,k and T, <T), < <Ty - Let (Ty,l07 be

similarly defined.

Ignoring M, , and issuing items

5 according to the order

k
k

(which is LIFO for M, with ages ( would yield a

n
S1373=1)
field life, say Q; , and, by Theorem 2.4, Q >Q, . Defining Q)
similarly, Qé > Q2 « ‘But TlJ > Tll T8 P 2050, kesinpildas

T1J+L(Tll) >Ty,+ L(Tll) >8, _or L(TlJ+L(Tll)) =0 J=2,.-4,k

(e}

so that Qiz:L(Tll) and, similarly, Q, =IiTél) and it follows that

Q=Q +Q,<Q +Q, = L(Tll)+L(T21) . Bub;
L(Sl) + L(Sz) = 1m:xJ [L(Si) +L(SJ)]

1,J3e(1, --- ,n)

so that, Q = L(Sl) +L(82) » L(Tll) +L(T21) > Q and hence LIFO is

optimal. q.e.d.

4.3 General Inductive Theorem

The characterization of the class of functions yielding LIFO and

FIFO as optimal policies in 4.2 is admittedly far from satisfactory.

b
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This section will be closed with a general theorem which extends theorems

4.1 and 4.2 from two to an arbitrary number, Vv , of demand sources.

Tneorem 4.3: Suppose FIFO (LIFO) is optimal for v = 1,2 demand

sources. Then FIFO (LIFO) is optimal for v > 2 demand sources.

Proof: Assume FIFO is optimal when v = 1,2 and let Ml,Mz,-u,Mv 0

v > 2 be the demand sources with initial ages O < Sl < 82 < 00 < Sn

where n>v . If the n items are issued according to FIFO then a

certain number n, of items of initial ages Sil’ 312;"’: Sini are

issued Mi , where the second subscript, as before, denotes the order of

issue. For fixed ie(l,2,-:-,v]} , S ,. > S;p >0 > S clearly so

gl
that the contribution to the total field life by Mi alone cannot be

i1 2
strictly improved by issuing only these items in any other order since
FIFO is optimal for v =1 .

Moreover, for two sources Mi and MJ , the items issued these sources,
taken in totality and ignoring the other sources, preserve the FIFO order
(simply by deleting the items in the original FIFO order which were not
issued Mi and MJ) . Hence the total field life of these two sources
alone cannot be strictly improved since FIFO is optimal for v = 2 .

Thus, any policy not having at least these properties cannot be considered
optimal since the total field life of such a policy could be improved

(though possibly not strictly so) by ignoring the other sources and chang-

ing to FIFO order in the one source, or two sources, as the case may be.

e S — st - - i - - —— - Lot - PR
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Now consider any policy other than FIFO. Then there is an integer
ie{1,2,:++,n} for which the item of initial age Si was issued prior
to that of age Si+l . Either these two items were issued the same source
or two different sources. In either case the total field life of this
policy can be improved by issuing in the opposite order and ignoring the
other sources. By the above remarks, this policy cannot be optimal.

Thus FIFO yields a total field life at least as large as any other
policy and hence is optimal.

The proof for LIFO is, mutatis mutandis, the same. qg.e.d.

Pl Model IT - A Stochastic Version of Model bt

5.1 Definition of Model IT

The usefulness of the preceeding results is, of course, dependent
upon the exact knowledge of the field life function. This is rarely the
case in practice and hence one must be content with knowing the general
nature of L(S) within limits, viz., concavity, convexity and deriva-
tives, and apply the results as approximations. On the other hand, it is
natural to introduce randomness into field life and, on the basis of
assumptions as to the distributions of the resulting random variables,
hope to determine optimal (in some sense) issue policies.

The simplest natural generalization of Model I to a stochastic

model is Model II, defined by the following set of assumptions.

H e e e L

T i
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(1) Assumptions (1i),(i1i) and (iv) of Model I given in (2.1)

(5e1) are to hold.

(11) The field life of an item is a non-negative random variable

X(S) dependent on the age, S , of the item upon being

AT .

issued, where S >0 .

Under the asbove set of assumptions it is seen that field life X(s)
defines, as S ranges over its set of pcssible values, & non-negative
stochastic process. If some distribution is imposed on the process, a
mean value function will be thereby determined. The total field life,
say Qn » of a given issue policy is now the sun of n dependent random
variables. As in [1] let U = EQn , the expected value of Q , to be
called the utility of the issue policy. A policy which maximizes this
utility will then be ralled optimal for the stockpile of n items.

Since Qh is the sum of n dependent random variables, a natural
plan of attack would seem to be that of iterating conditional expecta-
tions in order to compute the utility. It might then be possible to
compare the utilities of all possible policies and select the optimal

one. This general method is illustrated in the following section.

5.2 Some Optimal Conditions

The first theorem gives a set of sufficient conditions for FIFO to

be optimal.

et s - - -— - e -
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Theorem 5.1: Suppose for each S >0 , X(S) has density

1 a - L{S)

(L(s)1%* r(a+1)

where L(S) = a+bS with a >0, b >0 and a > -1 . Then FIFO is

an optimal policy for n >2 .

Proof: Suppose n =2 and 0 < Sl < S, are given initial ages.

2
Let QF and QL denote the total field life of the FIFO and LIFO
policles, respectively, with UF = EQF and UL = EQL the corresponding
utilities.

Now according to the model, Qp = X(Sz) + X(Sl + X(Sz)) and

Q = x(sl)+x(sz+x(sl)) . Let Y, = x(sz) . Y1=X(Sl+ x(sz))= X(Sl+Y2) ;

Then, since the density assumed is the TI'-family with mean value

(o +1)L(8) , EY, = (o +l)L(Sz) . Moreover,

E(Ylle) = (a-+l)L(Sl-+Yé) = (a-fl)L(Sl)+-b(a4-l) Y, so that

EY, = EE(Yl]Yz) = (a+1)L(Sl)+b(a+l)EY2 = (o +1)L(Sl)+b(a+1)2L(Sz).

Thus

U, = EY2+EY

F 1= b(a+l)2L(Sz) + (x +1)L(Sl) + (a+l)L(Sz) J wSimiderly,

U = b(a +l)2L(Sl) + (o +l)L(Sl) + (a +1)L(Sz) o that Up-U =

b(a-rl)z[L(Sz)- L(Sl)] > 0 since Sl < 82 and L is non-decreasing.
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Thus UF > UL and FIFO is optimal for n = 2 . |

Assume FIFO is optimal for n = k and suppose n = k+1 . Let
*
0< Sl < 32 E pefeke Sk+l be given initial ages and S denote a fixed

member of (S s

17 2, g k+1] to be the initial age of the last item

+*
issued. For any one of the k! policles resulting from fixed S
+*
let Qk denote the total field life of the first k 1tems issued with
+* *
utility Uk . Then, the total field life, Qk+1 , of the stockpile is

* +* E 3 * * * ¥* *
glven by Q ., = Q. + X(s +-Qk) and has utility U ., = U + E(X(S-+an.

Now E(X(S" +Q,k |Qk] (a+1)L(S +Qk)=(a+1)L(S )+b(a+l)Qk

and hence E(x(s +Qk (a+ l)L(S Y+ b(a+ l)EQk (a+ l)L(S )+b(a+ 1)U 5

¥* +* %
Thus, U,, = (@ +1)L(5 )+ [1+b(a+1)] U, , an increasing function of
¥* ¥*
Uk . But by the induction assumption, Uk is maximized by issuing

»*
according to FIFO while Uk is maximized by making Uk as large as

1
possible. From this point the proof is, mutatis mutandis, the same as
that of Theorem 2.3. q.e.d.
In some practical situations 1t may happen that the stockpile
consists of only two items as, for example, stocking heavy and/or

expensive equipment. If this is the case, the next theorem glves a

set of conditions for LIFO to be the optimal policy.

Theorem 5.2: Suppose for each S >0 , X(S) has density

X
L £1 e L:Sj for x > 0

[L(8) 1% r(as1)
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where L(S) = e"kS X >0 and integer a > -1 . Then LIFO is optimal

whenever n=2 .

Proof: Let O < Sl < 82 be given initial ages and observe that
E(X(S)) = (@+1)L(S) . As before denote total field life and utility

by Q’L y UL ’ Q’F ’ UF for the respective policies of LIFO and FIFO.

The fact that,

(5.2) T S El)  sor > aly ' 503
0 ba,+l

which is easily verified by the change of variable z = bw , will be use-
ful.

Letting Y, = x(sl) and Y, = x(s2+x(sl)) = x(s2 +Yl) p
Q = x(sl) + x(s2+x(sl)) =Y +Y, and hence U = EY, + EY, . Now,

since L(x+y) = L(x)L(y) for x>0 ,y2>0,

(5.3) E(Y2|Yl) = (a +1)L(82+Yl) = (o +1)L(82)L(Yl) so that

EY, = EE(YalYl) = (a+l)L(82)E(L(Yl)) :
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Y1
-k T IRy
() =g Yy o 2 ° B
But B(L(Y,)) = E = dy
¥ y 0 [L(sl)]"“'l r(a+1) .
l+kL(Sl)
7 ® 4 - I(5,) 1y,
5 oL s dyy
[L(Sl)] Mo+1911 o
P(a+1)[L(s,) 1"
i 1 i
= . » applying(5.2) .
[L(S 1% r(ox1) [1+r(s N [1+(s, ) P

(a+1)L(52)

Substituting in (5.3), EY . : Sie
[1+kL(s))]

2

vhile EY, = (a+l)L(Sl) so

r L(s,)
that U = (a+1) L(Sl) il — Similarly,
L (1+kL(s,))
(5.4)
L(Sl)

U, = oL [L S e =
B 1l (1hr1(s,) )

ry

. ——
bl St
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i L(s, )
Now define F(S) = L(S,)-L(S 1
ow define (s) ( 1) (8) + [1+kL(Sl)]a+l [l+kL(S)]a+l

and observe that UL--UF = (a+1)F(Sz) . The theorem will be proved
then if it can be shown that F(S) > O whenever S > S, -

But F(Sl) =0 and, since 1lim L(S)=C¢, 1lim F(S8) =0.
S S—-m

Also, since L'(S) = -kL(S) ,

L(sl)(a+1)[1+kL(s)]°‘ . KL'(8)

FI(S) - _Ll(s) L’(S)
1 [1+1<L(sl)]°‘+l . [1+kL(S) ] 22+2
2
L(S)L(s 1)K
[14kL(S,) ) il [1+kL(8) ]9
= KL(S)G(S) , where
I k(a+1)L(S, )
6(s) =1 - L 5 i
[1+kL(S, ) it [L+kL(S)]**?
k3(a+l)(a+2)L(Sl)L(S)
Now, G'(S) = - < 0 so that G is decreasing.

[1+kL(s)]®*3

e oot

e e L
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If G(S) <0 forall S >8 F'(8) = XL(S)G(S) <0 by (5.5) and F is

l J
decreasing on (Sl,oo) which cannot be since F(Sl) =0= 1im F(S) .
S s

Similarly it cannot be true that G(S) >0 for all S >S5S Then,

it

k{a+l )L(Sl)
]a+2

1
[l+kL(Sl)

=] -
P (eas))

[l+kL(Sl)]a+2 - [14k1(S))] - K(a+1)L(S, )
BT

(1+kL(8; )]

(5.6)

)]a+2

[1+kL(Sl -1 -k(a+2)L(Sl)

) ](1+2

[1+kL( 5,

a2 s 3
l+k(a+2)L(Sl) 4 22 ({ 3 )[kL(Sl)] 3L -k(a+2)L(Sl)
=

[1+ki(s, ) 1%+
a+2
>_ (s
= &2 @
[L+kL(s ) 1%

But, since G(Sl) > 0 and decreasing while it is not true that G(S) >0

for all § >8§ , there exists §, > 8, for vhich G(S) >0 on [sl,sO]

J.

and G(S) <0 for all § > S, - But then, by(5.5),F'(S) >0 on [sl,so]

N

ikl 2 e =T gy
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and F'(S) <0 on (So,oo) or F(S) 1s non-decreasing on [S"So] and

decreasing on (So,oa) which, together with F(Sl) =/ @O¥S 1) 1 dlmt- BPESH)
S - 00

implies F(S) > O for all S >8 q.e.d.

1 -
It is freely sdmitted that it may be difficult to find applications
of Theorem 5.1 because of the assumption of an increasing mean value
function. On the other hand, Theorem 5.2 holds only for the case n=2 .
However, any attempt to impose decreasing mean value functions of the
types given in Sections 3 and 4 for which optimality of the two policies
considered was established, generally carries with it the necessity of
truncating at a finite point So whence it is necessary to define
X(8) = 0 for 5 > So to preserve the non-negativity of the process.
The difficulties caused before of such truncation are magnified here and
appear insurmountable. Moreover, in any case, the extreme dependence of
the present state of the process on the entire past results, upon attempt-
ing the iterative procedure beyond two steps, in expressions for which
the corresponding conditional expectations are completely unwieldy.
Attempts at a general inductive theorem to carry optimality from the case
n =2 to arbitrary n have only resulted in failure and this technique

will be explored no further.

5.3 Modification to an Independent Demand Schedule.

The above-mentioned difficulties can, to a certain extent, be over-

come by relaxing (iii) of (2.1)(which is to hold for Model II) in

T e 1 e e —

=
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accordance with [1] . Thus, instead of waiting to issue an item until the
Preceeding one has failed it will be assumed that there is a scheduling
interval t >0 , an item is issued to begin the operation, and one is
issued every t units of time thereafter until the stockpile is depleted.
With this modification of Model II , field life X(S) 4s still a non-
negative stochastic process with non-negative mean value U(S) . An issue
policy is again optimal if it maximizes the total utility.

Derman and Klein have shown (Theorem 2 of [1]) that if U(S) is
convex then LIFO is optimal regardless of the size of the stockpile. They
remark that if U(S) 1is concave, FIFO is an optimal policy. However, in
the case of monotone decreasing U(S) there may be a truncation point
SO <® for U (necessarily so if U 1is concave). Then one is forced
to define U(S) = O hence X(S) = 0 for S > S, in order to comply
with the model. Now in the convex case, U(S), though so truncated is
still convex and the optimality of LIFO is preserved as in Theorem 2 of
[1]. In the concave case, however, U(S) when so truncated is no
longer concave on (0,00). Then it may very well be that FIFO is no
longer optimal even though the initial ages are restricted to (O,SO) 5

That this is indeed the case is seen in the following example.

5,7) . Ezample:. Let U(S).=2 - 28° for 0. <8 .<2  with truncation
Example - <8 <

point So = 2 . Suppose Sl=0.l, S,=1.6 and t=1.5 . Then, in the

2
notation previously adopted, Q. =X(0.1) +X(3.1);3 U = U(0.1)+ U(3.1)=1.995

while Q,F=X(l.6)+ Xe1=6) be Up= U(1.6)+ U(1.6)= 2U(1.6)= 1.4k , since




BETSERNER T e o

-5k

U(3.1) = 0 . Thus Up < U and hence FIFO is not optimal even for n = 2 .
The simplest condition to impose on concave U(S) in order that FIFO
be optimal is one similar to Condition A of Section 4. Thic is embodied in

the following theorem.

Theorem 5.3: Suppose U(S) 1is a concave function with truncation
point So < oo . If the initial ages O < Sl < 82 < ee0 < Sn satisfy the

condition Sn-+(n-l)t <8, , then FIFO is optimal.

Proof: For any i <n and k <n-1, 8, +kt <§_ +(n-1)t < S, so
that S, +kte(S{U(S) >0) . Thus any issue policy has the property that
all arguments of U in the expression for total utility are in the region

of concavity of U . Then the proof given for Theorem 2 in [1] applies

with the reversal of inequalities for U concave and FIFO is optimal. gq.e.d.

The condition Sn-+(n-l)t < So may be checked prior to the operation.
If the condition is not satisfied, no gereral statement can be made as the

following example shows.

(5.8) Example: Let U(S) be defined as in (5.7) and S1 = 0. 82 = 0.6

with t = 1.5. Then 82 +t = 2.1 >2 so that the condition of Theorem 5.3

is not satisfied. Still, UF=U(.6) +U(1.6)= 2.54 >1.95= U(.1)+U(2.l)=UL :

Thus when the condition of Theorem 5.3 is not satisfied the choice of

a policy depends on the relative initial ages and t ,the scheduling interval.

An interesting situation results whenever U(S) = a+bS , a >0 with

truncation point - % if <0 and + o0 1if b >0 . Suppose the

.
p—
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initial ages O < Sl <& 82 S -y <S Sn < So satisfy the condition

Sn-+(n-l)t < So - In this case both Theorem 5.3 and Theorem 2 of [1]
apply so that both LIFO and FIFO are optimal regardless of b . This
1s contrasted with the same case in the deterministic model where the
value of b was critical. Indeed, even more is true in this case.
Since, for any 1 <n and k <n-l,8 +kt< Sni-(n-l)t <8, , it
follows that U(Sii-kt) = U(Si)-+kbt and it is readily verified that

n
the total utility of any issue policy whatever 1s given by E U(Si)

i=]
4 n(n-1)bt

5 - Thus all policies are optimel. It should be remarked
that if Sn-+(n-l)t'2 So » Theorem 5.3 no longer applies and one should
then follow the LIFO pPolicy since the utility is then at least as large
&s any other policy and may be larger.

Theorem 2 of [1] may be immediately extended to the case of more
than one demand. Using the notation of Section L, let M, denote the
ith demand source, i =1,:--,v . It is assumed that the present model
holds, that v i1items are issued to begin the operation and Vv 1items

are 1ssued every t units of time thereafter until the stockpile is

depleted.

Theorem 5.4: If U(S) 1s a convex function and n > v , then

LIFO is the optimal issue policy for arbitrary v 2 Bl

Proof: First consider the case for v=2. If n=3 , there are

three distinct policies having utilities,
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U= U(Sl) + U(Se) + U(53+t) ,the LIFO policy;
(5.9) U, = U(S3) + U(Se) + U(Sl+t.) ,the FIFO policy; and

U = U(Sl) + U(SB) + U(52+ t)
Now U, -U. = [U(S3) - U(s,)] - [U(s3 +t) -U(S; +t)] < O by convexity,
and U-U = [U(s3) -U(Sz)] - [U(s3 +t) -U(82+ t)] < 0 again, by

convexity. Thus LIFO is optimal for n = 3 .

Assume LIFO is optimal for all n <m and suppose n=m+l . For

th

an arbitrary policy, let Si denote the initial age of the item

J

issued Mi for i=1,2. For fixed Sll = Si and - S21 = SJ =y

let U(i,J) denote the total utility of any of the (m-1)! policies having

i,J fixed so that U(i,J) = U(Si)+U(SJ)+xiJ where Xy 4 is the total

utility of the remaining m-1 items. Now at time t the stockpile
consists of m-1 items and, by the induction assumption, xiJ is maxi-
mized by issuing these in LIFO order. Let U*(i,J) denote the maximum
value of U(i,J) so achieved. Then U*(l,2) is the utility of the LIFO
policy for n=m+1 .

Now suppose S,=8; . If sJ=s2 then U(1,2) SU*(1,2) . I
sJ # S, then u(1,4) < U*(l,J) = U(Sl)+U(SJ)+ U(Se+ t)+yiJ vhere

is the remaining utility not accounted for by Sl’SJ and 32 with

and 82 in the

yiJ

LIFO followed after time t . Now consider changing SJ

issue order. This policy clearly has utility U(1,2) = U(Sl) + U(S2)

+ U(SJ-kt) + yiJ since yiJ is not affected by the interchange. Moreover,
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u(1,2) < U'(1,2) ana U*(1,J) -u(2,2) = [U(s,) - U(,)]-[U(S, + £) ~U(S, +£)] < O

¥* ¥
by convexity and S, > S Thus, U (1,]) <hSO(IpEYE SR

3 L
»*
Stnilerly if S, =S, then U'(1,1) < U'(1,2) from the symmetric
roles of M1 and M, .

Finally, 1f S, #5) 8, then U*(i,J)=U(Si)+U(SJ)+U(Sl+t)+y1J

and, interchanging S; and 8, ylelds the utility u(l,3) = U(Sl)

J

+ U(SJ)+U(Si+ t)+y1'j . Again,

UT(1,3) - U(L,3) = [U(S,) - U(S))1-[U(S +8) -U(S, +t)] < 0.

* * *
Then U(1,J) < U (1,J) < U(1,J) < U(1,)) < U (1,2) from the preced-
¥*
ing and in all cases U (1,2) is the maximum utility. Hence LIFO is
optimal for n > 3 by induction.

If v >2 then LIFO is still optimal by Theorem 4.3 with the trivial

modification of replacing L(S) by U(S) and field life by utility. gq.e.d.

This section is closed with the remark that if U(S) 1is concave with
truncation point So < @, it trivially follows that FIFO is optimal for
v > 2 demand sources provided Sn s [Eel]t < So where [A] 1is the greatest
integer in )\ . The proof would be identical to that of Theorem 5.4 with
inequalities reversed for concavity, the condition insuring that all argu-

ments of U involved lie in the region of concavity.

R0 4
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6.

Model III - A Sequential Stochastic Model .

6.1 Definition of Model III

As previously remarked, the most commonly used issue policies are
those of LIFO and FIFO. It has been shown that in the stochastic model
discussed, the question of an optimal policy admits no obvious answer.

It may therefore be of practical interest to simply compare the relative
merits of the two policies LIFO and FIFO. Even this simplication of the
problem does not, however, overcome the inherent difficulties of Model II,
viz., the extreme dependence on the entire past. It was also pointed out
in Section % that a practical model might be one in which only two items
are allowed in the stockpile. In terms of a long-range operation, it
would then be practical to consider replacing an item upon being issued
and thus maintain a stcckpile of size two at all times. It would then

be of interest to compare the overall effects of the LIFO policy versus
that of FIFO.

More precisely, Model III is defined by the following set of as-

sumptions:
(1) The stockpile consists of two items having random ages
X, wdith X >Y B 0.
o’o o] o =

(6.1) (ii) The operation begins by issuing one of the two items in

(1) and replacing immediately by an item of age zero.

(1i1) Given that the item issued in (1i) was of age t, the

amount of field life obtained from that item is a non-
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negative random varialbe Z having a dezsity function

hi sghd (A=>20) safOrp tmdt O

(1iv) The next issue takes place only when the item issued in
(111) 1s exhausted, one item is issued and immediately
replaced by a new item (age zero) and the operation

continues by stages in this manner.

(v) At each stage of the operation, one of two decisions must
be made, namely, issuing the older (FIFO) or the newer
(LIFO) of the two items in stockpile. It is assumed that
either the never item is issued at every stage, called
the LIFO scheme, or the older is issued at every stage,

called the FIFO scheme.

The problem, then, is to compare under Model III the relative merits

(with some suitable definition of merit) of the two schemes.

6.2 Imtedded Markov Process for LIFO Scheme

At any time t after the start of the operation, the two items
in the stockpile have random ages Xt and Yt , say, with Xt > Yt o
However, the only ages relevant to the problem are those at the
instant of demand for an item. It is then possible to determine an
imbedded Markov process as follows.

If the LIFO sheme is followed, then the item that was the older

of the two in stockpile at the beginning of the operation is never

v e s - o e — e —

P —————

el



-60-

issued and hence may be ignored. Then, at any stage N of the operation
(a stage being determined from one demand time to the next), the age of
the newer item in the stockpile, say YN , is & random variable. More-
over, YN is just the amount of field life contributed by the issue of
the newer item in the stockpile at the (N-1)-st stage (of age YN-l)
since, at that time, the age of the present item was zero (it having
been a replacement item then) and hence its present age is the ambunt,
of time the operation continued &s & result of issuing an item of age
YN-l . Thus YN is dependent upon YN_l but clearly is independent
of any stage prior to the (N-1)-st, or, P[YN < y[Yo,Yl,---,YN_ll

= Py, < yIYN_ll for y >0 . Then the age, .YN , of the newer item
in the stockpile at stage N 1is a discrete parameter (N), continuous

state Markov process with state space X = [0,0) . Moreover, in

accordance with assumption (1ii) of (6.1),
A
P[YN < leN_l =t] = {) h(z,t)dz

is clearly independent of N and defines a one-step, constant transi-
tion probability distribution.

Having thus found an imbedded Markov process, it would be desirable
to find & unique stationary (absolute) probability distribution and
compute the expected value under this distribution. The importance of
such & discovery is, of course, the fact that if such & distribution

exists then, regardless of the initial distribution imposed on Yo 5 A
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a sufficient number of stages have occured the age Y of the newer item
in storage (hence field life) may be taken to be approximately distri-
buted according to the stationary distribution. Thus the asymptotic
nature of field life would be determined and the corresponding expected
field life (utility), denoted ELY , will be called the stationary
utility of the LIFO scheme. -

The results to follow lean heavily on Chapter 5 of Doob [5]. The

relevant parts of that chapter are here duplicated for the sake of

continuity. The state space X has a Borel fleld 9; of subsets of X .

The transition distribution from a state x€ X to a state in Aef?;

is denoted p(x,A) , and when given by a density function, the corre-
sponding density is denoted po(x,y) ae DEENG s d Borel set in &
Euclidean spece and 57; the o-field of Borel subsets of X (the
present case) Doeblin's condition 1s said to be satisfied if there
exlsts a finite measure ¥ on f?; such that for some v >1 ,
p(v)(x,A) < ¥(A) uniformly in xe€ X , where p(v)(x,°) is the v-step
transition which is found by the iterative formula, p(v)(x,A)

j;\p(v'l)(g,A)p(x,dg) . A set Eegx— is invariant if, for each

S e ) 0 e L T set Ee &, 1s ergodic if E s

invariaent and there is a probabllity measure =n on 9; for which

{E) =1 and 1lim
n - o

S

S o ®x,8) = x(a)
n=1

¢ i b el
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for every Aec g;—. Doob then shows that if Doeblin's condition is satis-
fied, then ergodic sets exist and the corresponding limits = are station-
ary absolute probability distributions. In particular, if there is only a
single ergodic set (as will be the case here) then Theorem 5.7 of [5] states
that there is a unique stationary absolute probability distribution, =« ,

given by the solution of the integral equation [ p(x,E)n(dx) = =(E) .
X

In order to carry the enalysis further, it is necessary to make some
assumption concerning the distribution of field life Z . A quite general
family of distributions suitable to the non-negative characterof Z 1s the

P-family of densities. Thus, it is further assumed

a+l -z(t48)
(6.2) h(z,t) = i%%g%ij— %e vhere a >-1 ,p6 >0,

so that Z has mean value %%% , & monotone decreasing function of t .
Now, under the LIFO scheme, the imbedded Markov process has, accord-

ing to the gbove, a cornstant transition distribution function
of
p%,7) = PIY, <y|¥e . = x] = [ hiz;x)de
N N-1 0

and so in this case there is a transition density po(x,y) = {%% = h(y,x) .

The following lemma shows Doeblin's condition is satisfied with v=2 .

Lemma 6.)1: There is a finite measure ¥ on f?; (the Borel subsets

of X = [0,00)) such that p(z)(x,A) < ¥(A) , Ae 9; uniformly in x .

e o — - - — - — s . . ———

=
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Proof: (2) i
PPy (%) = fo p,(x,2)p (z,y)dz

o) a+l -z(x+8) a+l ~-y(z+8)
{) i‘ﬂaza g 2% (Iz‘za+15 Y .

a+l a PY oo -z(x+y+8)
(x+ﬁ2) Yy e f za( Z+ﬁ )a+le dz .
r“(a+l) 0

a+l a+l
Z

Applying the ¢ -inequality to (z+8) whence (z+{3)"‘z+1 .

c
a+l

a+l o
+ ca+16 s Where L 1l or 2@ accordingas a <0 or a >0,

and using the fact mentioned in (5.2) ,

@
-z(x+
a+1f Lo ( y+f3)dz

+8
0
a+l_a -By
g (x#8)" "y e C el r(20+2) P 5a+11‘(a+1)
r°(a+l) (xey+p ) 2+2 (x+y+p )2
a+l
/ °a+1p(31+1) Cas1P a -By

IA

+ ye
Ba+ll‘2(a+l) F(a+l)




i

|

%

since (x+6)a+l « (x+y+B)Ct+l and (x+y+{3)a+l 6a+l . Denoting
°a+lr( 2a+2) Cas1P
a+1 2 T{a+1) 2

I“(a+l)

a constant independent of x , by K, péa)(x,y) < Kyae-By 7

r{a+l

o+l
B

But f y e Bydy < 00 . Hence, taking W¥(A) = K f y e 6ydy i

¥ 1is a finite measure on X and p(a)(x A) = f P, (x,y)dy <K f e Bydy =¥A)

for every Aeﬁ 5 q.e.d.

Having established Doeblin's condition, it is clear that no set other
than X itself may be invariant since, for any xeX , po(x,y) >0 for
all 0<y <o . Thus if E 1is any proper subset of X and xeE ,
p(x,X-E) > 0 so that E cannot be invariant. Hence there can be only one
ergodic set and there exists a unique stationary absolute probability dis-

tribution, the solution of
oo

(6.3) F(y) =/ p(t,y)dF(t) or, 1f aF(t) = f(t)dt ,
0

D ae-By © B
(6.4)  tly) = ] po(tyete)as = froay [ (t48)* e e(t)at .



B 1L éze-at
AES* Por™ (4 = k(a,Bjr(t+ﬁ)a+l where
®.a -Bt [0}
k(a,B)= [ L f t%Ptat <
! 0 (t+ﬁ)a+l = Boz+1 o 4
yae-ay fa}t_'_ﬁ)a."l -y-tflt)dt & Xae-ey . fwta 't(}""ﬁ)d
Ma+) At o Ma+l) k(@8] 7 = y
LTRY  Touad o - B
Fla+l) X{a,B) (y+ﬁ)a+1

a_ -8y
). 4 ol >
~ k(a,B) (y+ﬁ)a+1 £(y) . Thus,
the unique stationary density is
a -8y
AL y e
(6.5) f(y) =

6.3 Imbedded Markov Process for FIFO Scheme

If the FIFO scheme is followed then the ages of both items in the

stockpile are relevant since, at any stage (demand time) it is the older

of the two items that 1s issued and the newer of the two items at this



= e — i — — —

stage becomes the older at the next stage. Let XN and YN , as before,
denote the ages of the older and newer items, respectively, at the N-th
stage. At the (N-1)-st stage, the item of age Yy was of age zero so that
its present age 1s the field life contributed by the 1ssue of the item of
age Y‘N-l . Cnce egain, fleld life may be interpreted in terms of the age
of the newer of the two items at any stage. Thus (XN,YN) is a random
vector dependent upon (XN-l’YN-l) but clearly is independent of any stage

prior to the (N-1)-st, or

w e {: = -~ Y
PlXy < 2,%y < gHXGpY )y e Oy oYy g )] = PIXy <,y <y [(Xy 5%y ,)]

for all x>y >0 . Then the ages (XN,YN) define a discrete parameter (N),

continuous state, two~-dimensional Markov process with state space
X=((x,y)]x >y >0) .

The imbedded Markov process in the present case is further complicated
by the fact that if XN-]_ = s and YN-l =t with 8 >t , then a transi-
tion can only take place in one step to a point (t+z,z) where 2z 1s the
observed value of fileld life 2 conditioned on the issue of an item of age s,
i.e., an observation from the distribution h(z,s) as specified by (1ii) of
(6.1) and, more specifically, by (6.2). The transition is however, clearly

independent of the parameter N . Consequently, the one-step transition

.
R W=

Bl
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distribution may be found as follows (cf.Fig.l.)

1
t,0) #

Fig.l

Let' (s,t) ve rixed. T x >% an@ ast <y dxs

pl(s,t),(x,y)] = P[XN <x,Yy < yIXN_l =8,Yy | = t] = P[Z < x -t|s]
X-t
= H(x-t,s) where H(x-t,s) = [ h(z,s)dz .
0

On the other hand, if x>t and 0 <y < x-t ,
pl(s,t),(x,y)] = P[Z <yls] = H(y,s) ,

no other transitions being possible. Summarizing, then,

H(x-t,s)if x >t, x-t <y < x
(6.6) pl(s,t),(x,¥)] =( H(y,s) if x>t, 0 <y < x-t

0 otherwise

e

P S
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defines a (constant) one-step transition distribution function for the
imbedded Markov process.

Once again it would be desirable to find a unique stationary distri-
bution for the ages X and Y of the older and newer items in storage
respectively. The marginal distribution for Y would then characterize
the asymptotic nature of field life under the FIFO scheme and the expected
value under this distribution, denoted EFY , will be called the stationary
utility under the FIFO scheme.

To proceed it is necessary to verify Doeblin's condition and it is
remarked that X 1is a two-dimensional Borel set and 9;( is taken to be
the set of Borel subsets of X . In the pre;aent case, the transition
distribution possesses no bonafide two-dimensional density function since
a transition from (s,t) is only possible to (t+y,y) where y >0 , i.e,,
the measure p[(s,t),d(u,v)] concentrates all its mass on a line. How=-
ever, it is clear, and verified below,that the 2-step transition distri-
bution possesses a density for, having made the transition to (t+ y,¥)
from (s,t) ,the next transition takes place to (y+2z,2) where z > 0.

The set of lines thereby determined as y ranges over its set of pos-

sible values spans X . More precisely, for z >w 2 0,

2@ (s,t),(2,0)] = J L), (20 Ipl(s,),800,0)]

= fLP[(u)v),(Z’U)]P[(S)t),d(“’v)] » Wwhere
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L={(u,v)eX|lu=t+y,v=y , y >0} , since p[(s,t),d(u,v)] is zerc ohterwise.

Buton L,

H(z-y,t+y) if z-w <y
pl(u,v),(z,w)] =p[(t+y,y),(2,w)] =( H(w,t+y) 1if O0<y <z-w

0 otherwise

and, using the natural isomorphism (t+y,y) @ y , y > 0,
pls,t),d(u,v)] = dH(y,s) = h(y,s)dy for t fixed and hence,

(2) -
P [s,t),(z,u) = fo p[(t"‘YJY):(z)U)] h(Y)B)dy

Z=w

(o 0)
= {) H(w,t+y)h(y,s)dy + f H(z'y,t"'y)h(}')s)dy .
Z=w

Then, applying Leibnitz' rule,

(2) ©
QPBT = H(w,t+z-w)h(z-w,s) + [ h(z-y,t+y)h(y,s)dy-B(w,t+z-w)h(z-w,s)

Z=-w
m ]
= [ h(z-y,t+y)h(y,s)dy and hence,
z

py  [(8,t),(2,0)] = Sfe— = h(w,t+z-0)h(z-w,s) Z>uws >t .

It will be shown in the following lemmas that Doeblin's condition

is satisfied with v = 4. Observe that,



30~

@ @
2 1s,0), (6301 = 1 1 2B 0(s,1), (0,0 1082 [(w,v), (x,) ] duav
O Sy

@ o
= [ [ h(v,t+u-v)h(u-v,s)h(y,v+x-y)h(x-y,u)dudv
Q9 ¥

o
= [ [ n(v,t+z)h(z,s)h(y,v+x-y)h{x-y,v+z)dzdv , using
0O O

the chenge of varisble 2z = u-v,v=v with Jacobian 1. Finally,

6.7)  21(s,t),(x,3)]

: Imfoo shads a+l Voze-v(t,+z+£3) oy a+l zcz&-z(zwa)
0 Fla+l5 F3a+l$

r—— a+l yge-y(v+x-y+a) L (x_y)ae-(x-y)(z+v+a)dzdv
Fia+l$ Mo+l

o)
) 1 (P et P sy P o
0O O

¥ (x-y)%e
rh(a+l)

(v+z+a)a+lJ3£1e'v(t+x+B)'z(v+s+x'Y+B) s i)

In the sequel, since finite bounds are of interest, K , with or without

subscripts, 1s used generically throughout to denote & constant depending

oty - - e — - P e
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only on a,8 . Also, (5.2) will be freely used.

a1 1(s, 1), (x,3)]
Fx-3) % Y(X-¥)-xB

Lemma 6.2: Let I =

o
Proaf: 1= | (v+x-y+B)a+l 'Jae-v(t+x+E)£ldv where
0

©
I,= [ (s )a+l( t+z4p )a+l( v+z+48 )a+lzae -z(v4s+x-y+p )dz . Applying
0

the c_.-inequality to (t+z+{3)a+l and (v+z+B)CH'l 3

2‘t'.!(t+z+{3)t'.!+l(v+z+‘3)<:¢+l v c§+l[z3a+2 - (t+a)“*lz3”1 "

(vep )a+122a+l + (tsp )<:¢+l(v+‘3 )a+lza] ]

@
Then, Il SK(S+{3)a+l f [z3cz+2 4 (t+B)a+122a+l+(v+B)a+lzaz+l +
o]

(t48 )a+1(v+{3 )oz+1zoz]e-z(v+s+x-y+{3)dz

a+l
= K(s4p)0*L r'(30+3) st (t+8) r‘(ag;ig ’
(vis+x-y48) (v4s+x-y48)

(48)*"r(2m2), (648) " rapf Iasn )
(v4s+x-y48 )21+2 (v+s+x-y+8 )C‘+l

(O

T

. Then I <K +K (x-ysgf**t,

T . e o SR S

o
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and, since t+B <s + B < vés+x-y+3 while (v+s+x-y+ﬁ)m > g% for m >0 p

1. < Kr(3a+3)

\.a+l
1l - B&-&-Z d

o+l
)

+ KT (2042) + KP(2x+2)+(t+8 (v+p KT (a+1)

= Kl + K2(t+ﬁ)a+l(v+ﬁ)a+l .

o0 Y
Thus, I < K [ (véx-y+s el -vithng),, |
0

(0]
KE( t+‘ﬁ )G"'l f V+x-y+B )a"'l(v"_ﬁ )a+lvae -V( t+x+ﬁ)dv :
0

Applying the ¢ -inequality to (v+x-y+ﬁ)a+l , the term

@
I, = I v+x-y+ﬁ)a+lvge-v(t+x+ﬁ)dv <
(0]
® @
K | vaa+1e-v(t+x+ﬁ)dv " K(x-y+6)a+l f vae-v(t+x+3)dv
(0] (0]

_Kr(aose) | K(xeyes)*Hr(as) . Kr(ase)

a+l = x+2

+ K'(a+l) = K .
(t+x+48) B

Applying the c -inequality to (v+6)a+l as well, the term

o+l

o]
Iu = ( t4—ﬁ) f (v+x-y+ﬁ )a+1( V48 )a+lvae—v( t+x48 )dv S
@

[ [ S,

- 4



Sa=
w 1
K(t+B)a+l f [v3a+2 > E32a+1vaz+1 . (x_y+6)a+lvm+.h »
0

Ba+1(x_y+ﬁ)a+1va]e-v(t+x+e)dv

a+l il
g (04

= K(t+a)a+l [ r(3x+3) /i r(a+2) - (x-y+8)" T(20+2) /!

(t+x48) I3 (Laxe8) T2 (paxep) 2

a“*1<x-y+a)“*1r(a+1>]

(texsp)O*L
Kr'(3a+3) Kﬁa+lr(2a+2) a+l a+l
& + Kr(2o+2) + KB~ T(a+l)(x-y+8)
= Baa+2 Ba+1
a+l )

= K, +K (x-y+8)

a+l

Hence, I < K113+ K’elh = K1+K2(x-y+6) q.e.d.

Lemma 6.3: There is a flnite measure ¥ on .Gf; such that

pM((s,t),A1 < W(a),he &

X ? uniformly in s,t.

Proof: From (6.7) and applying lemme 6.2,

S -y(x-y)-x8
e

2 1(s,0), (x,y) ) = AL
ria+l)

b sumed 8 LEseEses e T



-Th-
[K, + K (x-748) 3 ¥ (xoy) % YY) x>y 0.

Letting g(x,y) = [xl4.KQ(x-y+5)a*l]gi(x_y)ae-Y(X-y)-XB g

o O o @
| | elx,y)axdy = [ [ glz+y,y)dzdy
0y 0 0

o) @® : 00 1)
= K | yae-ay [ zae-z(y-ﬁ)dzdy + K, I yae-ayf za(z+B)a+le-z(y+B)dzdy

0 0 0 0
© a -By ® _a -By
< Kl T _lLE_a:I dy + K2 f € Y y(using cr-inequality on (z+B)a+l)
0 (y+8) 0 (y)
[os] o4 o4
-BY y 1 1
<K /[ e"Ydy | since < and <
ES L= Gl X+2 = _a+2
0 (y+8) ) (y+8) )
= g =K<

Hence, the measure ¥(A) = [[g(x,y)dxdy 1is finite and independent of s,t .
A
| Moreover, p{*)[(s,t),A] = gpg“us,t),<x,ynmy < [fo(x,y)asdy = ¥(A)

for every Aeffx uniformly in s,t . q.e.d.

Having thus established Doeblin's condition it is once more clear

that there can be but one ergodic set. For given any proper subset
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e (0708 B OIS Eeg-;{ » 1t is always possible to find a point (s,t)<E for
vhich p([(s,t),X-E] >0 . Thus only X can be invariant. Then there

exists a unique stationary absolute probability distritution, the solu-

s g

tion of

(6.8)  F(x,y)

JJ pl(s,t),(x,¥))dF(s,t) or, i1f dF(s,t) = f(s,t)dsdt,
X

(6°9) PXy)

éf pl(s,t),(x,y)]f(s,t)dsat

X 00 X-y @
= [ [ H(x-t,s)f(s,t)dsat + [ [ H(y,s)f(s,t)dsdt .
Xx-y t 0 +
Then , }
3T fes) X-y @ 00
= [ H(Y:s)f(ij'}’)ds ® [ ] h(y,s)f(s,t)ds -/ H(Y:S)f(s:x'}’)ds
3y
X=-y 0o t xX-y
X-y 0o
=[ [ n(y,s)f(s,t)ds , whence
o &

3°F

feo)
(6.10) f(x,y) = = [ n(y,s)f(s,x-y)ds or,letting t=x-y,u=s-t,
525}’ x-y

«©
J h(y,u+t)f(u+t,t)du
(0]

(oo} a+l
(u+t+8) a =y(u+t+p)
fo (o ye fu+t,t)du =

(6.11) ft+y,y)



-76-

a -y(t+) o

+1 -
:LF(W é (u+t+8)% e P (ust, t)du .

(ut)ae-(ut+u5+t5) 00 m
But 1f f(u+s,t) = =7 » Where c(a,B) = [ [ fu+t,t)dudt,
c(a,8)(u+t+p) : 00
a -y(t+#8) o a_-y(t+) ®
e a+l -yu _ye ..o -t8 “u(twy 48 )
%m—— fo(u+t+6) () f(u+t,t)du = ‘CL(W e fo u(.ze du
= yae-y( t$)-t6ta . P(a+l> = (ty)ae-(ty+w+yﬁ) E f( t+}';}’)
M@BINEL) (hayag )™ o(a,8)(tryep )P

so that the given density is the unique stationary distribution which may

be expressed as,

2
(6.12) £(x,y) = fz(x-y)ae-(XS+xy-y )
c(aJB)(X"‘B)

a+l a5 A4

6.4 Comparison of Utilities under Stationary Distributions.

Having found unique stationary distributions, a natural criterion for
Judging the relative merits of the two schemes would be the stationary
utilities. Thus in the notation adopted the FIFO (LIFO) scheme is preferred

to the LIFO (FIFO) scheme if EFY > ELY (ELY > EFY) . Unfortunately the

NI - —

PR e i A
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general solutions (6.5) and (6.12) are not amenasble to standard calculus

forms and each case should be treated individually, by numerical methods

if necessary, before making a decision. This section is closed with a

complete analysis of the case a =0, 8 =1 .

[o 0] O =-u
According to (6.5), k= K0,1) = [ =X ay = e [ E— du = eE, (1)
0 y+1 1 u i
a _-u

where Ei(x) = [ EE— du 1s the exponential integral function, tabu-
- 4

lated in [6] for x >0 . In particular, Ei(l) = 0.219383931;+ and so

@ -y @ -y
= i Py = L A= L T L% L
k = 0.596340674" . Now EY=i é — i {) e dy - fo S dy

=l

-1 and, with k < .59634l , EY > .67689291 .

0 y2 @ e-x(y+l)
In the FIFO case, (6.12) yields c=c(0,1) = [ e ~ =
0 y

and, by the change of variable u = (x+1)(y+l) , for each y >0 ,

-u
(6.13) — ax = P 25— au = g [(y41)°]
y b (ya)

ooe-x(y+l)

so that,

@ 2
(6-14) Y= P +y+lEi[(y+l)2]dy a4
0

o) 2
(6.15) E.Y %fo ye¥ +y+lEi[(y+l)2]dy

(o] 2 @ _ 2
1 +y+1 2 1 1 2
== (eya)ed VR () lay - 5 S TR 1(r4) ey .
0 0

e _ D

s e il

B —
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But the last integral in (6.15) is Just c¢ =and the first may be inte-

2
s oe~{T*L)
grated by parts taking u = Ei[(y+l) ] whence du = - —4—;:I——— and
2 hy+l 2 hyel
av = (2y+a1)ed 1Y so that v = e 7Y to yleld
@ 2 2 o) @ -y
[ (ey+1)e? MR [(341)%)ay = & THE (31021 | +2) SLay .
0 0 y+1
Applying L'Hospital's rule,
2
-(y+1)
2 -2
B [(r+)7) . 2
lim ——— = 1lim Y = lim ——= .0

> 2 ¥
Y@ i) Y@ o0y~ (TH) ¥ o (ya)(2ydl)e

so that
e 2+ +1 2
[ (ey+1)e” Y E [(y#1)7]dy = - eE,(1) + 2k = -k + 2k = k .
0
Thus,
kK 1 k-c
(6506) BY =355 = B

By applying successive approximations a bound for ¢ may be

determined as follows. Returning to (6.12) ,

T .2 o e-x(y+l)
c=[¢& =y dxdy .
0 ¥

-
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PEn
For fixed y > O , the function ¢{x) = %E%-ey+l has the properties,
. XY
ey+l
e(y)=1 , o' (x) = 5 (x-y) >0 for x>y, i.e. ¢(x) increases on
(x+1)
_ {xey)
1 g v+l
[y,oo) so that — >T . Thus,

S 2 = 5 2 ®
@ _x(y+l) y+l [o'0) -x[i-&llll.] y+l -x[M]
e e y+1 e +1
LS — >3 | i i 8
0 0 (y+1)“+1 it
%
o-Y(y+1) S
l—e= and therefore,
(y+1)°+1
ooeyee-y(wl) L AR 4
(617) o> | HE——aya ] =—uqy
0 y +2y+2 0 y +2y+2
1
2] = =
=] =& + [ 55—
0 y +2y+2 37 +2y+2

The same type of approximation is again employed. Thus, on [0,% 9

i
the function o(y) = _§2e hes the properties,
Yy +2y+2
2e” 2
= Sragr I e
p(0)=1 , ¢'(y) = 5 > 0 for y >0 so that o(y) >1
(y“+2y+2)

f
|

—




or s> L e

y2+2y+2

13 %(y- -é—)
e

Similarly, on (% , 03) the function W(y) = has the

y2+ 2y + 2

13 5 3)

1 L 2= 20 A~ AL
properties ¥(3) = 1, ¥'(y) = —g——— (§5 ¥~ f3(2y42)) >0 fory >3,
(y“+2y+2)
since -]-'-g- y2 - -%—(2y+2) is zero for y =-12—‘ and increases on (-12: 5 0) 4
- E(y- 9
Thus ¥(y) >1 or _2.1_>.11i3_e 13 2" for y>-é—.
y +2y+2
Applying these results to (6.17) ,
1 1 1
2 -y 2 2 -1
f -Te————dy>% Ji e-zydy=%[-e'2y] "IJ';"SL_ and
0 y +2y+2 0 0
(6.18)
1
25 6 25 qoo -=
-y ¥ 53 ® =g% 7 = -g7y]" & "2
f 2 d>—f-el3fel3 dy——lt-el3 -e 13] =5°®
= 13 x 25 &
Bl =t 2 2
1 1
1 e T - +
so that ¢ >E'T+§53 = .25 - .09198" + .09704 q

> .25 - .09198 + .09704 = .25506 > .255 .
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Applying (6.18) to (6.16) ,

k-c < .597-.255 = .342, 2¢ > .51 and 2—1c C | (© S s

Then E.Y =S < 671 < .676 <E.Y , and the stationary utility of
2c L

the LIFO scheme dominates that of FIFO .
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