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A ABSTRACT

"This paper deals with the formation of eddies in a straight

parallel or zonal flow and with the subsequent modification of the

flow profile. The fluid is taken to be homogeneous and inviscid.

Numerical analogues for the physical equations are developed in

detail and are analyzed.

The work begins with the linear theory of dynamic stability.

Numerical analogues are developed to determine the evolution of

perturbations, sinusoidal along the flow, which are initially pre-

scribed with arbitrary wave number, amplitude, and tilt varia-

tions, and which are superimposed on arbitrary flows. These

flows are straight-parallel and are unbounded, or are half-bounded

or bounded by plane surfaces. integrations are carried out for an

unbeunded flow profile with an inflection point. Unstable perturba-

tions are isolated and the unstable spectrum is determined.

A numerical analogue for the finite-amplitude problem, by

which one can study the tranaser cf energy from the mean fow to
the eddy ."., then developed. The most unstable perturbation, linearly

determined, is taken as a amall but finite disturbance. The integra-

tion is carried out and reveals the continued growth of the eddy and

the modification of the mean flow.

This method of investigation with added lapse rate and com-

pressibility is discussed as an approach to turbulence, and to the

modification of wind bhear and lapse rate by the developed eddies.

The general problem cf numerical analogues fcr integrations re-

quiring finite time-steps is also briefly discussed.
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A NUMERICAL INVESTIGATION OF THE BAROTROPIC

DEVELOPMENT OF EDDIES

1. INTPRODUCTION

The study of the behavior of sn,all disturbances superimposed on

straight parallel flow originated in classical hydrodynamics in connec-

tion with the stability of laminar flow. (For a review of the literature

and an excellent bibliography the reader is referred to Lin. 6) In the

preaent investigation, we treat two-dimensional motions of an inviscid

homogeneous fluid.

A straight parallel flow is said to be dynamically stable if all super-

imposed infinitesimal perturbations aie out or remain bounded at all

tinle3. Oiherwise the flow is upitable and the profile n-.sc be considered

a transitory state. Rayleigh 8showed that an iinflection point in the flow

profile is a iece*sary condition for inst&bility. Sufficient conditions have

been established for flow profiles of certain general types; however, no

complete theory has yet been developed.

Considering flow profiles with a point of inflection, Tollmien9 showed

that fc ' symmetrical profiles the existence of a neutral oscillation im-

plies a transition from stable to unstable solutions. In an investigation

of unbounded broken profiles, Holmboe3 round that those having maximum

vortlcty at the inflection point are unstable, whereas those having mini-

mum vorticity at the inflection point are stable. This condition is appar-

ently not sufficient for flow ir a channel. An example which does not con-

form is a sinusoidal profile in a channel whose width is less than half a

wave length of the profile. In this system the boundaries inhibit the de-

velopment of unstable disturbances. However, if the channel is wider

than half a wave length the current is unstable.

(Author's manuscript approved 2.4 October 1958)
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In the present work a method of testing the dynamic stability of arbi- i
trary profiles is developed. Initial value problems are solved 6y direct

numerical integration.

2. THE SYSTEM

The fluid is homogeneous, incompressible, and nonviscous. The

model is two-dimensional in the sense that there is no motion -- and no

variation in any of the fields or boundaries-along the third dimension.

The effect of gravity in the model is trivial since we shall not be dealing

with any free surfaces, and the gravity field is herewith dismissed.

However, for orientation we may refer to the straight parallel flow as

being horizontal, parallel to the x-axis, with the speed varying in the

vertical along the z-axis, although some applications of the models to

meteorological problems may be otherwise orientated.

The total velocity field, ,V is considered to be the resultant of

two component fields. One of these is the straight parallel flow,. J,
which would be a steady state if it existed alone. The -,ther component, 14

•/, shall be called the disturbance or perturbation velocity. Orny in

special cases is the resultant field a steady state. In general the flow

evolves. Its evolution sl9all be absorbed by W, the straight parallel

flow being maintained constant by choice. Thus

Because VY is the difference between two nondivergent fields, we

may represent it by a stream function,

\= x 74) + (2)k

2
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The total vorticity is given by

7 ) 7)~ u 4

The accent, whenever used, denotes differ entiation wvith respect to z. -

Henceforth the term "vorticity" will be applied only to the scalar mag-

nitude of the voi~ticity vtfctor sirnce the oritntation is a'I~a/s along the

/unit -vector. The total. vorticiti, is then given by

wh re has been written for 7Y the perturbation vorticity.

1*1

The models to be included are (a) an unbounded fluid, (b) a fluid

with a boundary surface b~elow, and (c) a fluid with boundary surfaces

bclow and aiuove. Hereafter these wilH be called the unboundd af
bounded, an~d bouredcd rrnodeis, rP-,ec!iveiy. Lin P.ny o,' these, the

.1

vorticity field ýwith boundary' conditions) provides a unique determina-

I,

tion of the velocity field, and the perturbation vorticity field is chosen

as the principal dependent vari.:,ble.

S(x, I)t*1

The mechanism w ef the evolution is contained in Helmholtz' principle

of individual vorticity constrvationce the t = 0 .iThis is developed

with the aid )f FIs. (1), (2), and (3) into

3
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I. . .. . ,• •A

(In treating zonal flow, U (2) is replaced by L (U ) "w [(I) where

F(z) is the Coriolis vorticity. LJcz)* then represents a westerly

current, and X and Z are the eastward and northward coordinates,

respectively.

We linearize at this point by considering the flow as zero-order state

Consequently, we shall be able to consider elements of an x-depen-

dency spectrum singly. The perturbation vorticity of such an element

is given by the real part of"-,ft

-Zt) e 1 R

where Zt is complex.":-
Thle boundary surfaces need not be smooth but, fot c,.3nsi,%'ency n•

this line:ar treatment, any departure from smooth mu.st necessarily, be,-

of the first order in smallness. Furthermore, the boundary deforma- -..

tions must be analyzed and paired element for element with the per-

turbation. Accompanying Eq. p5), the boundaries are given by the

real part of

where is a com is cmplitude factor. So paired, the mechanismx.

will not generate other wave numbers m Completeness is achieved by -

considering the entire real positiv r ger om of m ti b

At a boundary surface the slope of the streamline must be the same

as the slope of the boundary. This condition, integrated with respect

tA n( b ev

real.part'o



to X , gives the linearized relationship

(7)

at the bcundary levels. hi the unbounded and half-bouiided models, the

additional requirement that the perturbation velocity-field be upper-

bounded is imposed.

Applied to the arbitrary elemen.t, Eq. (4) becore•

= U (tc Q t) t (Z)4it] e (8ý

ar.d the perturba'.ion stream-function is th-ea given by

,J(z't) - kY(et. = 1 ,. e (9)

together witi- the boundary conditions stated in the preceding paragrapl;.

Since the x-.lep.en--ncv factorm out LI the aysvem, we Shalt uaub~ke-

quently omit the 2tk addendum unless specific reference is desired.

The utream-function which satisfies Eq. (9) can be expressed by a

Green's function integral*

P (it) [(z,t), (10) 4

where

*The integral can be deduced b, quasi-physical reasoning based on the
superposition of Rayleigh Wav, a. See Holl.'.

%..
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For the general solution we add the solutions of the reduced equation

and get

(Zt•= [ (Zt) + [ e + C_ e'
+

the complex coefficients, C+ and , of the harmonic fields are

determined by the boundary condtions.

In the unbounded model the fields extend frcm Z = - o to 7 =W

Arguing that the perturbation velocity field remains finite at • = 00

leads to

1-r --

The perturbation stream-function for the unbounded model is thus given

by

up _o (2),

in which the 3ubscript denotes the lower -and the supere.ript the upper-

limit of the integral.

In the .hall-bounded model the fields extend from the bounday at

Z = a0 to I = oO . The condition of finiteness leads to + 0

At the boundary surface Eq. (7) must be satisfied.

which determines C The perturbation stream-function for the

half-bounded model is thus given by

..-0
I t UI)3+ 1~.(~~ Z)(13)

6



in the bounded model the fields exteri4 fromn the boundary at Z = a. to

the boundary at 2 = b . At both boundary levels Eq. (7) must be satis-

fied. This gives a pair of simultaneout equations vhich, when solved

for + and , yield:

+ anda C.S(Lbte -e T(8 I tt

U J(a) Jýdý'~+U(5b) 5, (14)

e - e

The subscripts 0. and b have been attached to S so as to dif-

ferentiate between the complex amplitude of the corrugation below and

"the complex amplitude of the corruga.Ltio above. The perturbation

stream-function for the bounded model is thus given by
* IbF

4J (.t) I() .t + 1le (16)

• C -
where C + and . are given by Eqs. (14) and (15), respectively.

Regarding the unbounded model, there is a special case which is of

interest and which requires special treatment. This is the case of

periodicity in Z . The straight parallel flow and the initial distur-

*'• bance are periodic in _ , and they have the same period so thaL the

periodicty will be maintained. The perturbation vorticity at all times

satisfies the rel,,tionship

= ~(,a+ i Ht) (7

7



where H is the period and t. = ... 2 -Z , O, 1, 1 ...

To treat this problem we need focus our attention tzn only a eingle

layer, from a = 0L to Z = b , of thicknessH =b-= • we

develop 4) (Zt) in this layer, that is, where a. Z - -s b a •.s

follow 0:

P-o

b+qH

0+ rLH

Put S -' rLH , and, by virtue of Eq. (17),

S-e( ) Jt)ds
0.

Subsequently,
b

Ol(zt) = z.- 51- d1

0' b

b00

5 S e - m-- H) 9 s,t)di

0..

I



+ e (0(- 0

n.=I•(7 -0, +)
-t- e"i [ (b,) "

Whereupon, summing the series,

"+ (0e-)(I _ckH

These bouncLary-fitting solutions, of the stream-function, Eqs. (12),

(13), (16), and (11), when introduced in the teridenxcy equation, Eq. (3),
* give, in each case, a single all-inclusive governing equation. The

equation is sufficiently complicated to make the finding of even very

special analytic solutions exceedingly difficult. Besides, what is

desired here is a solution method which is applicable to any arbitrary
initial disturbance superimposed on any arbitrary profile. To at least

partially achieve this, we must use numerical methods; and we shall

find that the expressions we have developed are well suited for numer-

ical treatment.

3. NUMERICAL METHODS, AN INTRODUCTION

Finite-region fields in general cannot be completely specified by a
finite number of pieces of data. In fact not even is the exact value at

a point relayable. However, for numerical tractability, fields must

9



be defined (that is, approximated) by a finite set of rounded-off numbers

necessarily accompanied by an interpretation scheme. This discretiza-

tion can be accomplished in characteristically different ways.

The most common method, that associated with direct measurement.

is to give the value of a field, by a rounded number, at cach of a finite

number of points in the region and, in addition, to specify some interpo-
N lation scheme. Usually there is some orde-! in the spacing of these

S~points.

In another common method the field is expreised as a linear combi-

N nation of a given finite set of analytic functions. The value and deriva-

tives of each of these f'nctions can be computed, from its analytic form,

to any desired accuracy at any point in the region. The field is defined

o* by a set of rounded numbers which are interpreted, in a prescribed

order, as the combination coefficients of the analytic fuhctions in the

.4 linear combination.

"A fixed number of pieces of data represents only so much information

no matter which method is used. One method may give a better approxi-

mnation than another in particular cases, but basically one method is as

capable as any other. In fact, the two methods are equivalent if intjer-

*, polatior. in the first is based on th. fitting of the functions, used in the

%. second, to the data at the given points. The choice of method rests on

peculiarities of the particular problem. If functions can be found which

are indigenous to the system of equations, such that their use makes the

' problem more tractable, then the second method may oe preferable.

Generally the first method, with a uniform spacing of points (called

I a grid) is used. And it is often used with mixed interpolations (low-

order polynomials) even at the same place in a particuiar field. It is

up to numerical analysis tc determine if such inconsistency is permis-

sible. It is numerical analysis, the investigation of the method for

accuracy and econoyny, which gives confidence in the method and re-

sults therefrom.

'4 10



We shall use the grid discretization. The equations and boundary

conditions which define the continuous fields must be transformed so

that they define the discrete fields. This is generally done by evalu-

ating the equations at each of the grid points. Differentials in these

equations are approximated by corresponding differences so that

algebraic equations, called finite-difference equations, result. The

error introduced by these approximations is called truncation error

because it can be regarded as due to truncating series representations

of the derivatives.

P. D. Thompson* indicated the merits in developing the finite-

difference equations by an averaging of the differential equations over

finite elemental regions referred to the grid points. He has shown

that certain undesirable tiases in the finite-difference equations are

eliminated in this way.

A necessary condition which must 6e satisfied by the finite-differ-

ence equations is that they approach the equations which they approx-

imate as the space and time increments tend toward zero, However,

this is not sufficient to inwxre that the discrete fields computed from

the finite-difference equa.iopa wili apprcoximate the behavior vf the

continuous fields defined by the differential equatiors; the usurper

here is computational instability, an apparent "blowing up" of the

round-off error.

Certain finite-difference equations are referred to as "marching"

equations because of their use. They are similar to recurrence

formulae. Values at successive points are given in terms of those

that came before. The discretizatIon of initial value problems al-

ways results in marching equations.

In well-behaved marching equations the -round-off errors are ran-

dom and largely self-cancelling, while in others they may grow

rapidly and soon swamp out all significant digits. What happens in

the latter is actually a systematic growth of error, due to a more

or less complicated interplay of round-off errors.

*Private communication.

IA P
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An elementary example of a marching equation which is compu-

ýationally unstable is the recurrence formula foe Bessel functions of

increasing order at any fixed value of X ,

In linear theory the mechanism of computational instability is

relatively simple. Several forms are recognized. One is the admis-

sion of extraneous solutions which amplify more rapidly than the

desired solution. This is the cause of instability in the above equation.

The Neumann function of increasing order is also a solution of this

recurrence formula. The least round-off error admits the Neumann

function into the marching equation and, as the Bessel component

decreases, the Neu.m.ann component amplifies rapidly. In addition, at

each step, new round-off error changes the composition of the solution.

This recurrence formula is thus inadequate to compute more than

just a few Bessel terms. On the other hand, as a recurrence formula

for Neurmann functionr, the above is computationally stable. Now the

Bessel iurctions are the extraneous solutions, but these dampen and

are of less importance than the purely random round-off errors. We

shall again encounter this problem of extraneous solutions later on.

Some problems in mathematical phys'cs become tractable by only

a partial discretization. We shall also encounter an example of this

situation.

Discretization transforms fields into vectors. Each piece of

specifying data can be interpreted as a component of this vector in

some prescribed order. In a grid discretization the components are

given by the values at the grid points. Hence a field which is unknown

becomes a vector with as many unknown components as there are

points in the field. And when the differential equation which deter-

mines this field is transformed, we get one algebraic equation per

12



point-thus the same determinateness is maintained. The resalting

system of algebraic equations can generally be written in matrix

notation, a form which is also suitable for nmnerical. analysis.

4. THE SPACE DISCRETIZATION

In this section we carry out the diecretization of the Z-dependency,

the t -.dependency being left continuous. The 2 continuum is re-

placed by the points 2 =Mh .M = 0, *1, *2,... where K is a

fixed increment. The integer M will be called the "address" of the

point 2 = Wh, and will be used aa a labeling subscript. Our

principal dependent field, , becomes a vector, ( (I)

WMt being its M component.

Applied at the arbitrary point Z = Mh., our governing equation,

Eq. (8), tells us that

d~ M 1k [ ct) + U11 wM() (19s

We have developed four expressions io: 4 (,t) depending on the

boundary condtions. We are now going to develop the correayonding

expressions for 4 (t) , to be given in terms of its

" M component. b

We begin this transformat~on by evaluating the integral (I.a )
at the arbitrary point z -Mh. The grid is placed so that the level

7- = C. coincides with the point whose address is N1L. The fixed

incrt.aent, k , is chosen so that the level Z = b coincides with

another grid point, whose address shall be Mb , and so that the

number of points in between captures the desired amount of detail.

By expressing the integral as the sum of two parts,

0d = ý% ] Mh,t) + (Mkt),

13



we can remove the absolute value notation in the integrands.

We shall show the development of one of these (the second part)

and proceed as follows:

J, (Mat) F -[h-f • (#,t) dC
Mh

Mb-M-1

" " [M M+

Next replace the dummy variable # by S where [ [ M] 1 +.

We get

MI (M,) _ cs~t) ds, (o
0

where K e . At this point we must specify the interpolation

scheme. - or 3 (s~t) , in the interval 0 1 5 k where

variea from n (t) to we introduceM~m IvlM+I

rW +t 'I1 Z1

where I is the so-called truncation error in this expression. The

advantage in using linear interpolation will be seen in the resulting

simplicity of the operational matrix, particularly when boundaries are

involved.

If j (Zt) is analytic in , we can develop a series expression

for the truncation error. We may write

vs = 1,,+ 9',+ + (") Sy/a +. (2)

14



which is a Maclaurin series expansion about Z = Successive

derivatiNes can be eliminated by evaluating Eq. (22) at other grid

points. We eliminate the first derivative by substituting for it from

+ ( MMK+ ) ýI-rn

and get

+ =.*m+ ." ( - r) ... +

This gives

E~~ =T )+)M. (t- (r 23)

Proceeding with evaluating our integral, we intioduce Eq. (21)

into Eq. (20) which we develop as follows:

Mbk

H -1 k M

KM'

~2ke IM* [4 S~Mn1

0 0

15



MZ"i {KI ,-K+ m*reti K + 1
where

K1 k -1 K 2- k (24)

and

4k s termvs of klihker1e 2 MM~ + lorder ah j

In numerical analysis. Lhevalue of judging truncation error on the

basis of a few terms of the erro4 series is dubious and this practice can

be carried too far. At the stage where truncation error becomes

troublesome, the validity of such an approximation becomes questionable.

Furthermore, there is a tendency for such approximations to give a

talae sense of security in higher-order interpolation schemes, whereas,

in practice the arrival of intolerable gross-truncatiorn-error in compu-

tations is probably little delayed by such schemes. More consideration

should be given to the use of tighter grids (that is, smaller K) which

results in a more significant actual reduction ot truncation error.

In making real predictions from initial data, some investigators

object to the use of tighter grids. They feel the number of grid points

should not exceed the number of initial observations of the field. They

also feel that computations should be carried out with no more than the

number of significant digits in the observations. We believe these

notions are incorrect.

It is important to distinguish between the types of error with which

we are dealing. The initial error in the fields is due to limited ob-

servations. Truncation error is due to the disparity between finite-

16
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diffe-ence equations and differential equations. Because we are trying

to duplicate a differential process it behooves us to use as tight a grid

as is economically feasible; and, enough digits to give a significant

difference between neighbouring grid points should be carried,

In the absence of aay subjective analysis skill, the initial values

of the fields at the grid points are computed from some objective

interpolation scheme. Extra grid points thus ao not add to the specifi-

cation of the fields at the initial moment but at moments after the

initial. The values at the extra g;id points are not redund6ant and play

a significant role in holding down truncation error.

If it could be shown that physical differential processes are trans-

formable into algebraic relationships between values at grid points

without differentially dependent truncation error, then the comments

of the preceding two paragraphs could be ruled out.

Returning from this digression to our problem, we accept the

trun:ation error by dropping e.. This error can be estimated by

vi,4ually superimposing linear interpolation on plot of q vs. .

In our development we have reached

TM64MhM
I (MMh 0L t

In the second summation, put "m. W L- 1

Mb'M'I M6-M

iMh(Mh,t) = TK .T Kt m

Since i. is only a dummy, we can drop the bar, that is, we can

replace T-?L by .rt . If we now express the first term of the first

summation separately and add and subtract an extra term on its end, ,

17
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, , K M b K KM - MK-MNO- KTK + K. 7- • K ImtI
MK~~+ -Z M1 k.Im

then we can recombine the two summnations. Thus

SK, K3 •-M K M,.,,< -M.

NO g + ý-ýK m - K1 K~b
where

K3eK,++eKL] kk +(25)

By a siimilar treatment we f;nd

/ (Mi) _ K1 -d + KKM
-ý 4M -a K j .

Adding the two parts of the integral completes its evaluation at the

arbitrary point 2 = Ih.

I rvh~)=4K,~ + K3 Y-K q(26)

TR Mb-M

+K,Z -MYAK K, K 9 - K, IM

18



The two other integrals which need te evailuated can readily be

found from this one. The first :esults wh,-n r[/b goes to infinity.

Eq. (26) becomes

•Go

I(Mh - V 27)

+K - KM,,.-KIKM. iKK3 I.- ,,-. ,K,. ,L

The second results when in addition we let go to minus infinity.

(WO K, K, 7 K
[ "l

+K3 zE K I '- j
YT zl

We may now readily complete the four expressions •or 'P.4t)
corresponding to the different boundary conditions. We already have

it for the unbounded model. According to Eq. (12) page 6, it is

given by Eq.( 28):

S1Jtm= + (29)

+K3 Z K"% ]

At this point we should rnaki sorne rcreark as to what is going to

be done with tht infinite series. In computing, these must of course

be terminated; and, in practice, one can at most compute the evolu-

tion throughout a finite layer of the fluid (with the exception of the

19
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z-periodic case). This necessarily restricts the type of profiles that

can be handled with this method if there is to be any standard of accu-

racy. Since the stream function at any level in the layer is to be com-

puted only from the vorticity in the layer, it is required that the

ignored vorticity, • , outside of the la, -r we are considering is -and

is expected to remain-negligible in comparison with the vorticity in

the layer. The method is valid if this is initially so, and will remain

valid the longer the smaller U" is outside the layer. Fortunately

the condition can De checked quite simply. The vorticity at the end

points oi the layer may be regarded as an indicator of the magnitude of

the neglected outside vorticity. If these end vorticities become ap-

preciable, again by comparison, then the method begins to break down

as increasing error flows in from the outside.

In the absence of boundaries, tht addresses of the ext.zeme points"At
of the layer shall be given by I'/IU fo. the upper and 1"11L for the

lower. The upper liinits of the summations are thus replaced by

, ,U-1, for" cxD and by --- L fo.r oo We shall also at this

point introduce the notation

""L. r\.. TL (30)

where the subscripti LL and t indicate that the weighted summation

is to be taken over all the upper grid points and over all the lower grid

points, respectively.

The stream function of the unbounded model is given, with this

notation, by

(t) [KI I-M K5 (1m), K5 ) (31)

in which it i understood that the 5 are functions of time.IM "
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We now move on to the stream function of the half-boundeli model

as given by Eq. (13) page 6 . The discretization is accomplished with

the help of Eq. (27) for the integrals. Substituting as before 7- =

and labeling the uppermost point by Nt, . we find that

Mu-M

+K [ K, ,,., K, K1, ]

M-M&
K37 KI+

wherein the term K1 K ( appears twice and cancels. Since the

sumrrnations extend over all the grid points above or all the grid

points below, -ie again adopt the notation, Eq. (30). Hence, for the

half-bounded model,

4i[ýKtj + K3(M + K3(Mt (32)

+ zku()ý+ ?Kc + R3(,cj)] KM-Ma.

In the same way, with the help of Eq. (26), the stream function

of the bounded model, as given by Eq. (16), page 7, and the stream

function of the z-periodic case, as given by Eq. (18), are discretized.
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If we introduce generalized star functions, *1 and * 2 all four

expressions for the stream function can be given by onc expression:

M 42K, q+ K, (cj)u+ k3 (m)] (33)

+ K3  K tMb-M-+ "K3  KM-"

The corresponding star functions are given as follows:

* For the unhbunded model,

* = *�- = (34)

For the half-bounded model,

(35)
S-K~q + a) '

For the bounded model,

Lj" 4 A 4" bl't +J

~a=K4K9M± ~(36)"z •K% ÷( ,."t KbK,•.,b Im),)] +3z16

For the z-periodic unbounded model,

- 1 0.___ _______

(37)
"�-�,�-" [KK4 q Mb +
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The explanation of the new notations follows:

_ 2.K, kK~. + (KL) (38)

Kzk e. +(- L2)

K K Km/ (Ka~ Ka) (39)

Mb = b KM Mb)
,-. • -r K /(Kz'• K'"

i '50 = -?kU(t) 45/K3  (40)

, = Ko K' [ U(,k zK"-U(L) Kk K' U(,/K)
(411

OL K KU(& k K4" 3c,- U(b) zk K7' `- Sb] K

Substitution of Eq. (33) into Eq. (19) yields the tendency of the

arbitrary component IM t) :

T- [ 4 + VM{(qM)LL (42)

M VM]

where

/um U , U , UsK,,(3
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It should be apparent that these formulae have been designed for

simplicity in computing. For a given problem, the S's and K's are

all constants; and AJM and N)pj are components of constant vectors.

The • and the star functions are functions of time. The star

functions are computed at any instant from the constants and from

M, , qM ,and ( , and are independent of M
There is an all-important feature on which rests the simplicity

and economy of these formulae for computational purposes. As can be

seen from Eq. (30): f +(t,),_=K tA

(44)

It is these recurrence formulae which make it possible to compute

the tendency, at all grid points, by making at most only five computing

traverses of the grid points, no matter how many points there are in all. The

procedure is as follows:

a. Beginning with the top point and progressing downward, the con-

tribution of the term containing ( I ), is computed at each point

with the help of Eq. (44).

b. Beginning at the bottom, the contribution of the term containing

(IM )k is computed at each point ilso making use of Eq. (44). Upon

completion of these first two traverses the two star functions are

evaluated.

c. Then, beginning at the top, the contribution of the term containing

S1 is computed at each point.

d. Beginning at the bottom, the contribution of the term containing

-L is computed at each point. These latter two traverses

require only a multiplication by K in progressing with the factor from

one point to the next.

I
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e. The contribution of the term containing q. may be obtained by a

separate traverse, or may be combined with one of the other traverses.

At this stage, we may ask about the applicability of this investiga-

tion method. For one thing, (21 must be continuous. Should we

desire to investigate particular profiles in which this is not the case,

then we must either use a modified procedure or we can make an

approximation to the flow profile by fitting to it a curve which has a

continuous second derivative.

The perturbation vorticity distribution in - is being approximated

by a linear interpolation between grid points. The magnitude of the

space increment, I must be sufficiently small so that linear inter-

polation will closely approximate the initial distribution. Whether

the interpolation will yield a good approximation at later times de-0I

pends also on the smoothness of U(Z) and U (Z). Hence, h must

be chosen sufficiently small to also capture the detail of these functions.

Even with these precautions the linear interpolation of 4 during its

evolution may become completely inadequate. This is called the arrival

of the intolerable gross-truncation- error.

5. EIGENSOLUTIONS AND COMPUTAI iONAL STABILITY

For purposes of numerical analysis the governing set of linear

equations which is represented by Eq. (42) is written in matrix notation:

d C) + (45)

The coefficient matrix, , has only real constant elcments. The con-

stant vector, d , arises from the deformation of the boundary sur-

faces and may be complex. The presence of the boundary surfaces, but

not their deformation, affects the elements of C
The evolution of initial perturbations can be determined without

discretizing the t continuum. Partial discretization has made the prob-

lem tractable but the work is prohibitive unless 3 ) has few
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components. The solution method is based on the expansion of the

initial field into a linear combination of eigensolutions.

A particular solution of Eq. (45) is the steady state

-C d (46)

This may not be the most general steady state with wave number L
For the complete solution of Eq. (45) we must add to (45 the

general solution of the reduced equation,

d ~ C (47)
dt I

Introducing the eigensolution

-Lxt (48)c4(t) c jea

into Eq. (47) leads to

This is equivalent to

[C 1J9 O (49)

where i is the identity (or unit) matrix.

This system of linear equations, Eq. (49), being homogeneous

is overprescribed (thus cannot have any solution) unless the deter-

mina't of the coefficient matrix vanishes:

C- 0- (50)

This is a polynomial in N and is called the characteristic polynomial

of the matrix C . Its order is that of the matrix. Thus it has in
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general as many different roots as we have grid points. These are

called the latent roots of C and are the eigenvalues which we seek.

Corresponding to each latent root ,k there is a non-zero vector

which satisfies

C ~ V (51)

These are the latent vectors of C and are the eigenvectors which

we seek. Theyr are indeterminate to the extent of an arbitrary factor.

Thus we may add that they be normalized, that is, I q, I = I .

If Eq. (50) admits X = 0 as a solution, then the corresponding

eigenvector can be combined with to form a more general steady

state.

Because, in general, there are as many different eigensolutions as

there are grid points, the set of eigensolutions is complete. That is,

by a proper choice of complex weighting coefficients, a linear combina-

tion of the eigensolutions added to % can be made to fit any initial

vector q0 and thus will give its subsequent evolution.

Because C. has all real eleements, its latent roots are either

real or occur in complex conjugate pairs. If, as a special case,

is symmetric aa well, then all its roots must be real. However, the

"* roots of an asymmetric matrix may also all be real.

For a real latent root it is clear that the corresponding latent

vector can always be chosen so as to be real. If not so chosen, its real

and imaginary parts must be parallel.

If = Ao-4- LBO corresponds to one latent root of a complex

conjugate pair then q = A.0 - LBO corresponds to the other,

o and 0 here being real and not parallel. These statements

can be verified by substitution in Eq. (51).

The above remarks have a bearing on the "tilt" of the eigensolutions.

To introduce the tilt concept we must first return our X dependency.

The eigensolution is then given by
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cx,t) = fL: e- e(52)

The substitution of q A D0 + LB0 and X - + -iV, where

A01  o , and V are real, leads to

e "' [A, B-.t)-B Njv~ (k-AL

e evt P, D0  PO()-t

The components of D0  , the amplitude vector, and PC, the

phase-angle vector, are given by

Dom (AoM + B÷ )

0C.d-- (-Bo,/Ao,)

If Oc, varies with (tLiat is, with the height Z ) we say that

the wave "tilts. " The shape of the nodal "line" is given by the nodal

vector X =

The eigensolution which has a real eigenvalue (a real latent root)

yields a neutral wave which has no tilt. The eigensolution which has a

complex eigenvalue (one of a complex conjugate pair of latent roots)

yields a tilting wave.

A complex conjugate pair of eigenvalues yields one amplifying

wave and one damping wave. These have parallel amplitude vectors and

equal but opposite tilt. Where the nodal line of one tilts forward, the

nodal line of the other tilts backward by the same amount.

The dynamic stability properties of the flow profile a e revealed
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by the eigensolutions. In actual fluids, flow of smaller scale (down to

and including Brownian motion) will generate them. Thus, if Eq. (50)

admits any complex conjugate pair of latent roots, the perturbation

will grow indefinitely as it contains an exponentially amplifying eigen-

solution. The profile must then be considered a transient state as it

is dynamically unstable.

The eigensolution synthesis method of solving an initial-value

problem presents a formidable task which might be entertained if we

are dealing w.vith a small number of components. It is more feasible

to complete the discretization. Discretizing the time dependency

results in a marching equation.

In proceeding to discretize, one discovers that for our system

there are a .niunber of finite-difference analogues which satisfy the

necessary condition for validity mentioned on page 11. The choice

among these is made according to which of the analogues preserves

ti gA1ire of the time-continuous system as revealed by its eigen-

solutions. We shall examine some of the analogues in this manner
4

which has been expounded by Hyman and others.

The t continuuni is replaced by the discrete values t =-NT where

N is an integer and T is the time increment. The integer N

will be used as a labeling subscript. The continuously varying vector

(t) is thus replaced by discrete values: q at the time t iNt.
The resulting marching equation also has characteristic solutions.

We shall call these the T eigensolutions. They have the form

9. 7 **'J(53)

whereas the eigensolutions evaluated at t = N'T are given by

) e (54)
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We shall see that the eigenvectors are unchanged by the discretization.

Hence the change suffered by a particular eigensolution is entirely re-

vealed by the disparity between e- ' " and r .

All the valid analogues of Eq. (45), page 25* have the same partic-

ular solution as has Eq. (45) as given by Eq. (46). For this reason we

shall refer the analogues directly to the reduced system, Eq. (47),

thus avoiding the repetitious reduction in each case.

The first analogue we shall examine results when a forward first-

order difference is introduced for the derivative. The system,

Eq. (47), becomes

Substitution of Eq. (53) results in

C - (55)

Hence

which restricts . Comparison with Eq. (50) reveals that

( I - 9)/ LT can be identified with X . That is, corre-

sponding t6 each eigei.solution with eigenvalue )k. satisfying

Eq. (50) we have . " eigensolution whose t eigenvalue, ,

is given by

Also revealed by Eq. (55) is that the 't eigenvectors are the same

as the corresponding eigenvectors.
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Corresponding to a real + that is, the

magnitude of Y is greater than one. This means that all neutral d

waves are converted into amplifying waves by the discretization. We

need investigate no further; this analogue is computationally unstable.

We next examine the centered second-order analogue which has

received such wide use for a first-order system that it can be called

the "conventional! analogue. For Eq. (47) it takes the form

[0'+ , = Q1 C T (56)

Substitution of Eq. (53) results in

Thus, according to Eq. (50) the 's are given by

that i3

Each A gives rise to two values of 1 for the same eigen-

vector -twice as many "T eigensolutions as there are eigensolu-

tions! This multiplicity is needed for completeness because both

the initial-value vector and the vector at N = 1 must be accom-

modated. Both these vectors muust be specified before one can begin

to march with Eq. (56).

This analogue hardly preserves the nature of the first-order

tendency system which it purports to approximate. It actually has a
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nature corresponding to a second-order tendency equation.

Comparison with e-L Xr shows that the roots given by the plus

sign,

+ QT- LTXC (57)

are the proper roots. But we must attach a condition for the com-

putational stability of this set of roots. For a real Xk (neutral

wave).

provided the square root of Eq. (57) is real, that is, provided

~ (58)

According to Rayleigh's theorem, neutral wavea move with the

speed of the basic current at some level in the flow. * The trandla-j

tion speed of the neutral wave is given by / , 'ence

Introduced into Eq. (58), this yields the possibly stronger condition

(that is, sufficient but perhaps not necessary):

x K I/ I uiI r 4)
For a given T this defines a critical wave number:

*See, e.g., Garcia , p. 90.
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Neutral waves with a longer wave length ( K k ) are preserved

neutral but those with a shorter wave length ( -> • ) may be

computationally amplified.

The presence of the extraneoas roots is far more cause for

alarm. Were it not for round-off, could be chosen in complete

accord with 10 and the proper 3 eigensolution.a. Unfortunately,

the extraneous Xt eigensolutions do enter into the computing as a

result of round-off, or more rapidly by an incompatible first-time-

step (for example, a forward step).

Corresponding to a propagating neutral wave X. real' the

extraneous 't eigensolution introduces an additional neutral wave,

=1,travelling in the opposite direction.

Corresponding to an amplifying wave (one of a complex conjugate

pair) the extraneous wave has the same tilt but dampens. Corres-

ponding to a damping wave (the ether of this conjugate pair) the

extraneous wave has the same tilt but amplifies.

It is fortuitous that the latent roots in our case occur in complex

conjugate pairs; otherwise the "conventional" anaiogue could irtoduce

amplifying wayes (from darnming waves/ wh,-re none with that wave

length should be present. This could happen in other problems. As

it is here, the main nuisance value of the extraneous 'r eigen-

solutions is the distortion they can cause in the amplifyin6, .onfigura-

tiona.

The fact that the extraneous unstable component is oscillating

negative), that is, changes sign with each step, may make thi,1

trouble readily d-Zectable. The conventional analogue is further

criticized in Section 10.

Extraneous T' eigensolutions appear whenever a finite-differ-

ence analogue relates more in3tances in time than are permitted by

the order of the differential equation. A first-order differential

equation by its nature permits only a two-point analogue.
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A number of analogues which are composed of two operations have

been prepared. These readily yield to analysis. One particular group

has in common the second operation

where ( is an estimate of the value being sought and wixih

may be based on one of several different first operations.

The estimate may come from a simple linear extrapolation of

the vector itself:

- 2 q- (60)

Substitution of Eq. (60) in Eq. (59) reveals the true form of tMhs

analogue:

It is a three-point formula which will have extraneous 1' etgen--

soluthons. Substitution of Eq. (53) leads to

Hence, according to Eq. (50), page 26, the corresponding Y's are

given by

LT -. - A- (61)
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Another possible combination results when the estimate comes

from a forward time-step:

Combined with Eq. (59). the result is

[~~FqN]/r - [JC P i CqNa (62)

Introduction of Eq. (53) leads to

, • + iLXC -0- _~ ,

+ -tC-(

and the condition on is

.1 (631

According to a useful theorem* of matrix algebra, the latent

roots of the matrix +C LT CC) are given by (Iti " i-tX)
and the latent vectors are those of C . Hence,

- . (64)

A third combination results when the estimate for Eq. (59)

comes from the conventional analogue:

:i

::* See, e. g., M~ilne,7 p. 163.

7, 435
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"This leads to

Y L+ [L\ 1±+ Y] +i (65)

None of these schemes is satisfactory. The reader may complete

the critique by mapping their respective transformg, Eqs. (61), (64),

"and (65).

We now move on to the most natul finite-difference analogue of

our first-order system. This is the "centered" first-order scheme:

[A -([ + (66)"":: qN+• T•• Nk

The significant feature is that the diffeTence is related to the tendency

* evaluated for a centered mean-value of the argument.

Introduction of Eq. (53) leads to

~( ... -,: Z- •+ 1:1 = 0

!•': Hence,

b,.. ?._ I -r fY' XI:;- t t, is,
Tr it X- (.l •67)

"one value of . corresponds to each A. for the same eigenvector.

To simplify the investigation we introduce >1/a =A

where 17 and W are real. Y becomes
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This is to be compared with

Z L

Examination reveal& excellent agreement and no computational

instability. Neutral eigensolutions, Co 0 , become neutral

Seigensolutions. Damping eigensolutions, W < C , becomes

damping 1 eigensolutions. Amplifying eigensolutions, W• > 0

beoome amplifying • elgensolutions,

For • < 1 , the quantitative agreements of the

corresponding phase-speeds and the corresponding growth-rates

are very good indeed. Therein lies the advantage of using small

value o 1 , tofe time increment.

Lquation (68) can be used to compute • and W from for

a particular eigensolution.

This investigation. reveals the centered first-order finite-differ-

ence analogue to be the most natural analogue of our first-order

system. It will correctly detect the dynamic instability of flow pro-

files.
This is the analogue we shall use.

It may be feasible in special cases to transform a first-order

system into a legitimate second-order system. This is necessarily

accompanied by a corresponding reduction in the number of variables.

A second-order derivative has an easy-to-use analogue. Further-

more, the conventional analogue may be used for a first-order deriva-

tive when it appears in a second-order equation.
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The desired transformation is not accomplished by merely raising

the order of the system without losing variables in-the process. If the

same number of variables are maintained in the resulting higher-order

system, then the nature of the system has thereby been corrupted and

extraneous eigensolutions have entered. The extraneous eigensolutions

are carried over into '' eigensolutions and they would subsequently

develop in the computations.

*i The variables lost in the desired transformation manifest themselves

as initial tendencies and are related to the tendencies during the evolution.

Such a transformation is particularly simple in our system because

C is real. The differentiation of Eq. (45), page 25. and the subse-

quent substitution of Eq. (45) for the first derivative which appears on

the right, leads to:

d'~t -C~ qCt). 1] (69)

- The real part of Eq. (69) and also the imaginary part thereof form

two complete syutems, each having half the number of variables of the

foimer system, Eq. (45).

If we substitute 6( (t) = ' L , where A\() and ¶3(u)
are real, the real part of Eq. (69) is

S(70)

for which we have an initial value, and according to Eq. (45)

an initial tendency

44*,

38
.?4
-4'

. . . . . . . . . . . . . . . . . . . . . .



ii

SThe lost variables, the components of are related to AW
at all times by

& A&) 4 Ijru: a
dt

this relationship being the real part of Eq. (45).

In the same way we could deal with •(') as a principal dependent

- variable.

Equation (70) yields the same particular solution for k(A) as did

Eq. (45), namely, FuL: -cd To determine the general

solution we require a complete set of eigensolutions of thu reduced

equation

Ac t ,CQ -C- (t) (71)! at+..+..- - "

if "I t is a complex solution of Eq. (71) then the real and the

imaginary parts thereof are separately real eigensolutions of Eq. (71).

i Substitutions of in Eq. (711 leads to

,'.

K Lo

U Thus, according to Eq. (50), page 26, ± -t are the latent roots
which correspond to the latent vector, j . The roots -

do not add anything alien or extraneous, "they naturally belong. Their
presence in Eq. (71) verifies that the complex latent roots of the real

matrix Q must occur in conjugate pairs, or else the nature of the

problem would indeed have changed.

The finite-difference analogue of Eq. (70) after reduction is

(A,~ t 2- A, = CA~ (72)

'39
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If is a complex solution of Eq. (72) then the real and the

imaginary parts thereof are separately real T eigensolutions of Eq.

(72). Substitution of N " in Eq. (72) leads to

Thus, according to Eq. (50)

which. solved for , yields

X rL a ~ .(rZ r+ 4 (73)

corresponding to the eigenvector . The comparison of these

two values of i-r. with e* 4ýq shows the necessary quali-

tative as well as excellent quantitative agreement. The analogue is

computationally stable.

The application of this analogue is quite straightforward. Each

time-step requires the procedure described on page 24 to be per-

formed twice with slight modification.

Although it is highly recommended, we shall not use this analogue

of the cultivated second-order system because we made use of special

features of our first-order system. We are interested in dealing

directly with first-order systems for which we use the natural cen-

tered first-order analogue which we have analysed.
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6. THE INTEGRATING PROCEDURE (LINEAR PROBLEM)

The centered first-order analogue, •

can be made explicit as follows:

In some cases it might be desirable to use this explicit formula.

However, several objections may be raised: (a) the inver'3ion and

multiplication involve considerable calculation with accompanying

inaccuracies; (b) the riagnitude of the time step is froze•i; and c'" the

resulting coefficient matrix on the right hand side is generally far

more complicated than the matrix C . Simplifying features such

as exhibited by Eq.* (44), page 24, are lost.

Because of Eq. (44), it may be more convenient to use an itera-

tive method to achieve Eq. (74). This method is particularly inter-

esting because of its applicability to nonlinear systems (see Section 11).

Equation (74) may be written

N+1 L 14/ +i + (75)
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The iterative scheme for arriving at the solution of this equation is
revealed by

Lt ,rc a(76)

where the superscripts in parenthesis label the successive approxi-

mations of 'N+

To analyze the convergence of this scheme we set

() NI ± +e= O(.) .. ! (77)

and thereby define as the error of the k.-th estimate. The

subtraction of Eq. (7•) from Eq. (76) reveals

e(A- e _ . - (78)

Hence by induction

elY L . (79)

This scheme is convergent if e 0 o& t1L----- The neces-

sary and sufficient condition for convergence is that all the latent roots
of the matrix -. be less than "one" in magnitude.

According to Eq. (50), page 26, the latent roots of the matrix,

-are given by (w X.)jhere ft = 1, 2 .. 0
and Yo is the order of the matrix. Its latent vectors are those of C,

L 4L (80)
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Let us impose that the latent roots be numbered in descending

order of magnitude; and let us express . as a linear combination

of the latent vectors:

e(o) =(81)

Thus, according to Eqs. (79) and (80),

e I 09/ (82)

This makes apparent the stated necessary and sufficient condition !or

convergence. Imposing this condition on Eq. (82) yields

"- <.a/Ix~i -(83)

This is a definite limitation on the size of the time increment which

may be used with this iterative scheme.

On page 32 we stated that according to Rayleigh

LIi j

if ;k is real. If we assume that this also includes complex.

we are led from Eq. (83) to the sufficient condition

< 2A/kUL (84)

The first guess, 0 , may be chosen objectively. Let us

consider i -il compare choosing extrapolation (which we shall indicate

by E:) with choosing persistence (which we shall indicate by P:).

E. j(), = Z 1
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This yields

p: e (o)
N 4.

We can expand as a weighted sum of ' eigensolutions, Eq.

(53), page 29,

TLL Yn~

where the 0- Is are determined by fitting the initial vector 0+ and

the r Is are given by Eq. (67). it follows that the choices yield

(85)

it is of interest to determine which of the two cnoices yields

smaller values for the , Is. The ratio of the members of Eq. (85)

yields

This magnitude is 1 for Re: " Thus Re: 1/2

is critical. According to Eq. (68),
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where XT/L 77 + ' W ; and the critical value lies on the circle

2..
7? + (/- 11)3 = Ua/3)a

For values of T12/- falling inside the circle, extrapolation

yields a smaller value of y, than does persistence. That all

values of Xai/.. fall inside the circle can be assured by the suf-

ficient condition, XAJ T/z < 1/3, that is, by

t( < /3IxklI (86)

In practice, the incidence of two successive estimates which differ

in each component by less than some prescribed tolerance magnitude,

T , shall be accepted as convergence. The iteration which achieves

this is denoted by the subscript C , that is, by AC , and the ac-

cepted solution is q 00
If the matrix C is symmetric, then its latent roots are mutually

orthogonal and the analysis of the error extinction is rather elementary.

However, this is too special a case to dwell on and we shall not I-- so

restrictive.

If the matrix C is asymmetric, the3n the magnitude. of the error

vector and its components do not necessarily decrease monotonically

until the slowest decaying component of the error latent-vector expan-

sion dominates.

After some minimum number of iterations, /t.

if AC > tLm , the analysis of the rate of convergence can be based

entirely on• Eq. (87) because what happens to the other latent-vectors

of the error expansion does not matter.

Equation (85) reveals that in both cases the weights of the error

latent-vector expansion develop with the T eigensolutions.
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Corresponding to neutral waves, I II and the n. does not grow.

But in the case of dynamic instability > I for some L ,and

the corresponding 6L grows to progressively increase A.. For

this reason or more directly because T may hiave been chosen in-

sufficiently small, -AC may occur before -A-. . If this happens,

an effective analysis, with C asymmetric, depends on all particu-

lars of the problem and is tantamount to solving the particular evolution.

We restrict ourselves to Ac > 'PtM•

The reiteration is ended when

S(,'L-) C, ) _ = t)(88)
N+1,N•t -- N+ I

has all components less than 'Tin magnitude. This limits the error

because

• ~ ~ "--I e-- -Ar N+ )

Up to this point we have not discussed the effect of round-off during

the reiteration. Some comments are now called for. Round-off causes

spurious variationa which are usually confined to the last few binary

digits of the components of q(4) during each iteration. Because of9 •_N* I
these variations the iterations may not lead to a steady value for

Instead the reiteration may settle into a cycle of two or more iterations.

It may happen that during such a cycle none of the successive differ-

ences satisfies the tolerance, and convergence will not occur. This

bothersome phenomenon should not be mistaken for divergence. It

causes oscillations, not "blow-up."

46



This is a shortcoming of the test method to determine satisfactory

convergence. The probability of the occurrence of such oscillations is

reduced by increasing T . On the other hand, it is undesirable to

increase the tolerance not only because of reduced disparity in Eq. 174)

but also because the terms of the centered first-order analogue will not

have been met. In fact, if (0)÷i is b,ýing determined by extrapola-

tion then our operation still relates thre: instances in time. The

tolerance should be of the order of round-off so that only error which is

practically random remains.

Instead of testing for convergence it may be preferable to zimply

carry out and accept the result of a fixed number of iterations for each.

and every time etep. The number of iterations may be determined by

fixing a maximum error -to-wave -amplit,,de ratio.

If extrapolation is used the error vector is given by

-n. LL\i

and the vector itself by

Consequently the errbr-to-wave-amplitude ratio for the n-th wave

(n-th latent vector) is

We set the upper limit E on the magnitude of this ratio fce all T.

lf Eq. (86) is satisfied, it is sufficient that 'j L E~• or
A or

Both of these LL 's are negative.
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This method also takes on more significance if C is symmetric,

otherwise it also has its shortcomings. It is not as readily extenaible

to the iterative solution of nonlinear equations as is the tesL mnethod. In

tne integrations to follow, the test method is used,

The amount of computing may be reduced by making use of the fact

that C has all real elements. We introduce 1ý = A, M i-"L I
where AN and BN are real, into Eq. (76), page 42. The real

and imaginary parts of Eq. (76) then yield

'A. N+1 AN [ T N ]+ - I--

S1 (89)

B~2~= ~ f[A 4-A(kI) dR jN -N N C N4i

This reveals that it is redundant to compute all indicated successive

estimates for both AM4+ and B3 The even A. estimates of

A N+-I and odd )A. estimates of BN-t I converge quite independ-

ently of the odd A eftmat,ýs of A and the even A eatimatese lyof th d / B••:b'"
of.- . Boch gets converge to the same values, so it is

necessary to compute only one set. The set which begins with _

is chosen and so as to reduce the number of coding instructions, per-

sistence is chosen, B- -- B
The convergence test may be satiefied by either succeeding values

of BN 41 or of A- V I . The intervening value of the other part
- - t)

is then also accepted. For example, if • lies within tolerance

of _ •4) , then + " B-(6)
It may be possible to design iterative procedures for solving

Eq. (74), page 41, which converge more rapidly than does Eq. (76).

In this respect the techniques discussed in Section 10, in connection

with the iterative method of solving the finite-difference anaLogue of

Poisson's equation, might prove successful. However, the analysis by

Young10 does not apply because our matrix C does not have the

necessary property (property A).
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7. THE COMPUTING PROCEDURE AND OUTPUT

According to Eq. (42), page 23, and the marching procedure, the

equations which must be programmed are:

vf((B K -r B -. (-

LCIL)

B .,4, +1 B HAM + V AM),+ (AM)

i:- .y ( KK b. - 9 (m'(A),

where

S= L

The d toL "s, to 's, K , and the constants required

by the L-ar functions are precalculated and are stored in the computer.

A consideration of the types of profiles to be investigated, of

computer storage, and of the desirability to retain any symmetries,

led to the approximation of the a continuum by 33 points, 32

intervals.

Regarding the units of dimension, both the length unit and time

unit shall be selected from the straight parallel flow, thus keeping
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R' variable. Units which make

!UITul = I.
"I 

1 (90)

are selected for each profile. In atmospheric ":onsiderations, a lower
bound for the time unit is obtained by selecting extreme values for the

* shear. In the horizontal a representative high value is i 0 -4 seconds- ,

which yields a time unit of about 2 1/2 hours. Thia makes the length

unit corresponding to about a Ureax of 50 metcrs seconds-1, 450

kilometers. In the vertical a representative high value of the shear

is 10 seconds , which yields a time unit of only about 1 1/2 minutes.

This makes the length unit corresponding to a U of 50 meters

seconds -1 , 4 1/2 kilonmeters .

"To arrive at a graphical representation of the evolution we use

q. ~i A (zt) + B (Bt and 4 +

where A , B , CX and /3 are real functions of a and t

. *This leada to

CA C - A ( ,) k~Ix - B( 4j) aL',iL IKx.

"(91)

X) Zx,zt) C< (Z',0t) cadi- 6Lx -Xizt)~'

.-D (92)

*In a frame of reference moving with the fluid at some level.
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The computer* is instructed to output the set of 33 A's and the

33 B's for each time unit, that is, at intervals of time steps.

A second code is later used to compute the 33 % Is and the 33 16 to
from each set. According to Eq. (33), page 2Z, they are given by

N:k[?KIAm + K3"A m+ K., (Am),2k [ IK3, * (A) K b+ K3  , 2(A) KMM

Li
(93)

,Z[KiBm + K3(BM),,. + K3 (BM)t]

+ ! (B) K"mb+- _ (B) K"-

In addition, this second code computes a figure representative of the

perturbation kinetic energy, which will be used as an indication of the

.9• growth or decay of this quantity with time. This energy conrputaton

ic based on a linear interpolation of between points. A third

code** computes D and from each A . 5 pair and X and

e from each N , A6 pair according to Eq. (92). The D and X
retain all the significant digits of the A, B and 0G, 16 pairs,

respectively. The and e are obtained from a table-read

routine and are accurate to 10-3 degrees.

* The Standards Western Automatic Computer (SWAC). Numerical
Analysis Research (N.A. R.), University of California at Los
"Angeles.

** These codes are on file at the N.A.R. library.
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8. APPLICATION TO AN UNBOUNDED HYPEEBOLIC-TANGENT
PROFILE

The straight parallel flow profile is given by

U = - tdAk z* (94)

where z extends to * 00

This profile is one which is acceptable for the "contained" treat-"

ment discussed on page 19. By choosing a sufficiently deep layer

about Z = 0 , U1(a) can be made as small as desired in the

neglected exterior.

. This profile is skew-symmetric, that is,

:•U() U(--)• (95)

Hence also U() - . To preserve this property in

our space-discretized system, we center our grid at the level Z = 0

"with 16 intervals above and below.

It is usual to order the components of our vector, , and our

Bet of ecuations in ascending order of the grid points(that is, aicending

• Mh), However it will serve us better to adopt the order

'. M = -16, -15,... -1; 0; 16, IS.... 1.

Because we have no boundaries, d. of Eq. (45), page 25, in

*:' zero, and the elements of C , which we shall label CM, are

, given by

CMM M(U *~I (96)

CMj = (U• K3/'Z) KIM-i, J-:M

whe'e the columns are labeled as the rows, in the order

j n -16, -15, ... -1; 0; 16, 15, ... 1.

* In arbitrary units, Utz) = U tanK & a, and we are free to add an
arbitrary translation to our frame of reference.
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By virtue of Eq. (95),

'C 0= 0 C =M - CMj ,197)

To exhaust the relationships expressed by Eq. (97), we write the

relationship which the eigensolutions must satisfy as follows

*-Ib~"-I 0161

06 0... . 1) 0 .. (98)

which is the same as

SI ,- p +

o4 ( 99)

-,o, - -

We may note thatif \ then 04-0 0

Z $
It is apparent that one of the latent roots is •I=0•The

corresponding vector satisfies

* which shows this vector to be symmetric, that is,
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The tent roots in the case of skew-symmetric profiles occur in

pairs. If' A} satisfies Eq. (99), then also

does It follows fro m Eq. (99) t h

sixteen admissible values uf satisfy

This is a polynomial in with real coefficients. Hent-e an ad-

"* missible ý" is either real or is one of a complex conjugate pair.

i A complex conjugate pair of 's give rise to two pairs of complex

conjugate roots, ,A + 'LV and - t V) To

. each such pair there corresponds a complex conjugate pair of latent

vectors.

"It follows from the preceding paragraph that if Eq. (101) admits

'I a real ?a which is negative (that is, /A = ± LV -where V is

real), then the corresponding pair of solutions may be expressed by

Lv TP+Q, 0),P+i1
• (102)

"where r and are real.

The profile Eq. (94) has already been studied by Garcia. He

chose •4 as the principal dependent variable and investigated the
"a steady-state differential equation

-U(a) "- + U' z))0 (103)

"This steady-state condition is readily obtained from Eq. (8), page 5

with substitution for i according to Eq. (9).

With U = " tanhu z, Eq. (103) has the solutions

' 54

"a.



To satisfy the boundary conditions (which neither one of the above can

do) Garcia fitted these together (about the level z = 0 ) arriving at the

solution

% = [k - IU(I e- (104)

Since as well as 4' must be continuous, Garcia found k = I

to yield the only possible stationary wave, no matter at which level

the two solutions are fitted.

For k- / 1, Eq. (104) has a discontinuity in (that is, in

U,) at a = 0. The harmonic field which is compatible with this

slipping (sometimes called sliding vorticity) is

e killA (105)

Removing P from Eq. (104) Garcia arrived at the continuous field

'P 1-' [A + I U(A)i11e~ 16

which is no longer stationary. From the initial phase speed at all

levels, he found that for k < i an amplifying tilt develops and for

k > ) a damping Lilt develops. * This indicates the imminent

tendency. Garcia concluded that the short waves are stable while the

long waves are unstable and k. C= 1.

For extremely short waves ( k-. o ), the determinant, Eq. (101),

reduces to a diagonal with elements C( UM) 2 - )L . This means

that the components of q- , that is, the 9M Is, are each advected

by the straight parallel flow at their level, their influence on other

levels being negligible.

* *According to the Reynolds-Fjortoft criterion. See, e.g.,
Holmboe- p. 11.
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Thus for large k , all X (k) are real and positive. In the

light of Garcia's work we may expect one of the 16 values of z (it)
to become zero in the vicinity of k = L This value of ?• (k) may

become negative as k decreases further. The numerical results to

follow agree with this conjecture.

Garcia's stream function, Eq. (106), is taken as the initial field.

It is compatible with

which is symmetric and real. * The amplitude factor remains free
because it drops out of the homogeneous linear system.

The space increment, k , was chosen to be 3. 2. This extends

our grid from z = -3. 2 to z = 3. 2. Figure I shows U(0) and

U (z) in this interval.

ul 3.21

1.6-

- I. +1.0 -.. 0 +1.0
I0 Z. ..

•_ -3.2f

Fig. 1. The hyperbolic tangent profile.

*Such an initial value may prove to lack generality.
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Integrations were made in steps t = 1/20 or less, from t 0

to t a 15 for the values k = 0.3, 0.5, 0.7, and 2. 0. The last

of these, k = 2. 0, was apparently stable. The others lying within

0 k K I were unstable.

In each of the three unstable cases, a single ' eigensolution

corresponding to X = LV ( ) positive) rapidly dominated the

evolution. The growth rates were determined to be

- 0.3 0.5 0.7

(108)
v = 0.174 0.184 0.129

These values of ') are considered to be accurate to within 2 percent. *

In view of this wide margin the correction afforded us by Eq. (68),

page 37, is trivial. On the basis of these values the solid curve in

Fig. 2 was drawn.

The exact wave-number at which the negative ?$ becomes zero

is rather difficult to lockte by integrations. These Integrations would

harve to be extended ior long periods to detect the presence or absence

of slow growth rates.

0.3

0.2

0 01 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9

K

Fig. 2. The unstable band.

*More accuracy could have been attained by carrying each integration
further, thereby purifying the unstable eigensolution.
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The broken line extension of our curve has been drawn to the point

= 1, V = 0. It is not expected to be much in error.

It seems reasonable to assume that the other end of our curve

(approaching infinite wave length) will asymptotically approach the

dotted curve. This dotted curve represents the instability of the

kinked profile (the dotted curve in Fig. 1), of the same dimensions,

which has been investigated by Holmboe.

We will assume that except for the one value of A (k) which

passes through zero near K. = 1 and which is negative for

0 < / 1 , all other 15 values of >7 (k) are real and positive

for 0 I oO . This assumption may be verified by numeri-

cally computing all admitted by Eq. (101) for discrete values

of k . However there is no indication why the assumption should

not verify.

Because I = 0. 5 is about the most unstable, only its evolve-

ment from the initial state, Eq. (107), will be given in detail. The

evolutions for k. = 0. 3 and 0. 7 are basically similar. The

evolution for k = 2.0 showed a rapid fall-off in energy to less

than 1 percent of the initial by t = 6, at which time gross-truncation-

error became evident.

The evolution for t = 0. 5, wave length 4-I1 , is shown in the fol-

lowing diagrams, The representation, Eq. (91), is used. Figure 3

shows the amplitude and phase of the perturbation vorticity at times

t = 0, 5, 10, and 15. Figure 4 shows the saine for the perturbation

stream function. rhe "energy" growth of the perturbation is shown in

Fig. 5.

To draw the total streamlines and total vorticity isopleths we

must prescribe the amplitude of the perturbation. We may prescribe

it arbitrarily large to show the features of the flow. The lateral dis-

placement of a total streamline at a level a , consistent with the

linearization, is given by

_X- a-) cot, [k~x.- 9 5 (109)
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3.2•

1.6- - • - .-

UNIT

3.21

I II I

-1.6

-3.2- L, J

00 -600 0 +600 -60 0C +600 -600 00 +601

Fig. 3. The q-functions D (z) and # (z), longwave case
(k = 1/2) at times t = 0, 5, 10 and 15.
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3.2"

0

1.6--

z 0 _0

- 1.6-

-3.2--
1800 i1200 +1800-2400 1120* +1800 +24(r+120" +1800 +2400

Fig. 4. The ýSs-functions )C(z) and e (z), long wave case
(k = 1/2), at times t =0, 5, 10 and 15.
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6 60

5 50

4 40

K.E. - 30

2- 20

0 I 2 3 4 5 6 7 8 9 I0 II 12 13 14 15

t t

Fig. 5. Kinetic energy curve for K = 1/2.Ai
and thal of the total vorticity isopleth by

II-
- ~ (110)

Thest expressions Lpp91y cry a•. levels where the dr.torLnnator, UCz)

or U '(z) , is an order of magnitude greater than the numerator.

Figure 6 shows the total streamlines (solid curves) and total vor-

ticity isopleths (broken curves), at selected levels, at time i =

above and t = 15 below. The exaggerated amplitude of the per-

turbation has been reduced by a factor of 10 in the lower diagram I

relative to that of the upper diagram.

At no time does it appear as if the vorticity in the neglected

exterior has become significant.

All integrations and auxiliary computations carried out for this

skew-symmetric profile, with symmetric init,al values, retained

their symmetries to the last digit. Some twenty hours of high-speed

computing were involved. This speaks highly of SWAC. *

*See footnote, p. 51.
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Ls 47r

0.8

0.4.

-04 ___ __ ___ __

-1.2

1.2

0.8

0.4

- Q4

Fig. 6.. The total streamlines and total vorticity luolines of selected

selected levels, long wave case at t = 0 above and t a15 below.
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9. THE SIGNIFICANCE OF THE RESULTS

We have crossed three bridges to get to our numerical results.

The first bridge connects the governing finite--amplitude system to

the linearized system. The second connects the linearized system

to the space-discretized system. And the third connects the latter

to the space-and-time discretized system. If we are to consider

that our numerical evolutions represent first-order (in amplitude)

approximations to the evolutions of the finite-amplitude systems

then we must reconcile these crossings.

The analysis of Section 5 has shown that the character of the

system is unchanged by crossing the third bridge provided we use

the centered first-order analogue. The eigensolution q e1 Xt

where become the eigensolution qeLXt

The vector is unchanged. According to Eq. (68), • is-given by

= 4 + LV-

w here
f (+

It should be noted that each of the four quadrants of the complex

is altered in the same way. That is, any symmetries in the occur-

ence of eigenvalues are preserved.

We cannot as readily or as completely reconcile the second

crossing.

Let us consider what is revealed by the eigensolutions of the

linearized system. The eigensolution (a,) = (() e-'t

corresponds to e7. e-X" of the space-discretized system. Its

introduction into Eq. (8), page 5, leads to

- =k [Uq) + U'~ (a) V 1
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for the unbounded model. It has been imposed that U(z) be real and
.4•

that k be real and positive.

Equation (112) may be put into a standard form,

a. *0+h . (114)

The proof that Eq. (113) is a valid expression of Eq. 1112) re-

quires that

,Vc,) ••d• - ~) (115)-00

For sufficiently small positive a, ( ! ... 0 except for a

narrow region of half-width Za about = •. This permits us

to take a mean value of , for this rý.gion, outside of the

integral in Eq. (115). This value is (fz) . It follows that

-00 -00

" The second integral may be found in tables. -It is unity for all a

., and positive a. It should be noted that the limit is not Laken all

*• the way to a = 0 but rather to 0+ which can be as close to

* .zero from above as desired.

The form, Eq. (113), classifies our integral equation as a

singular homogeneous Fredholra equation of the second kind. The

determination of the 1- possessed by Eq. (113) for the profile,
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Eq. (94), for the real positive range of k. is beyond the scope of the

present work. We shall deal only with some salient points.

We may begin by indicating some of the similarities which Eqs.

(112) or (113) has with the space-discretized system. It can be

demonstrated directly that if X and q(?) satisfy Eq. (112) then

also do Xr- and 1C(P-) , where the subscript C, denotes the

complex conjugate. Because of the profile's skew-symmetry it can

"also be demonstrated that if X and 9 = X(t) satisfy Eq. (112)

then also do A and J = (-a)- . It follows that the two eigen-

functions corresponding to a T2 which is real and negative (if

such is admitted) may be expressed by

.,". . P(a)+ - Q(7) 107 ;7 0
,-.P(-•)-,Q(-•) iv- Z(<o (116)

L c-+ iQ-) 0 .

which ie the counterpart of Eq. (102).

The counterpart of Eq. (101) is alao readily developed:

where

K1t 1 ) U (y) I6>'( + Uift-Y (118)

j KL(yC) = U") l~k(,,, Ur6
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There is one very significant difference between the linearized
system and the space-discretized system. It has been shown* that

the zeros of U (a) - 17/ 1on the real axis; neutral wave) must

coincide with the zeros of U"(z) . For the profile, Eq. (94),

there is only one level where U1(Z) is zero, and that is at the

level Z = 0 where U = 0. Hence the only value of T- on the

real axis which may be admissible is -- = 0. Garcia has shown

further that V = 0 is only admissible for 1 = 1.

With this knowledge it can be shown that the eigensolutions of

Eq. (112) are not complete. Equation (112) evaluated at Z = 0

gives: -F -(0)= c . For k ;6 1 , "= 0 is not admissible.

All eigenfunctions must then be zero at Z = 0 and it follows that we

* . cannot fit a value of c(o) 7 0 by combining eigensolutions if

We n-ust conclude that all the real positive . which are ad-
nmitted by Eq. (101), yield space-discretized eigensolutions which

are extraneous. They are not approximations of eigensolutions of

the linearized system because the linearized system can have no

such counterpart.
The extraneous eigensolutions appear because the space-

discretized system must yield a complete set. The system can

"evolve all arbitrary initial fields with the aid of these eigensolu-

tions but the approximations necessarily deteriorate with time.

The extraneous eigensolutions cannot stand alone; either they rely

on gross-truncation-error or they are not capable of satisfying the

"boundary conditions in the limit as we approach the continuous

system.

It seems reasonable to believe that the real negative value of

>z (k') , 0 •- k 1. 0 yields eigens olutions which are legitimate
. counterparts of corresponding eigensolutions of the linearized sys-

tem. This implies that Eq. (117) admits only one value of p W

*See, e.g., Garcia p. 90, or Lin p. 118.
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which is real and negative for 0 k< I and which is zero and termi-

nates at k = 1 (Garcia's solution); and that there are no F admitted

for k > 1
Havi ig accepted the two eigensolutions with eigenvalues t V

for 0 < k < I as true eigensolutions of the linearized system, it

remains to determine their significance in the finite-amplitude system.

It is well known that the total energy (kinetic) is separable into the

energy of the mean flow defined by U -- V- IL d. where L

is the wave length of the perturbation, and the energy of the remainder

of the flow (the edy). This separation is possible because the spa'ce-

integral of the product term is zero by definition of the mean flow.

During evolution the finite-amplitude barotropic mechanism may trans-

fer energy between the mean flow and th2 eddy but the sum of the two

partial energies remains constant.

The linearized system violates this energy conservation, The

perturbation remains sinusoidal in X and hence remains the eddy;

the straight parallel flow which is held constant by choice, remains

the mean flow. Thus the energy of the mean flow is constant even as

the eddy grows.

The inclusion of the nonlinear part of the mechanism necessarily

rights this situation. The straight parallel flow may still be maintained

constant by choice and may make up all or part of the mean flow. The

perturbation does not then retain its sinusoidal dependency although it

does maintain its periodicity. Consequently the evolving perturbation

is made up of the eddy and an addition to the mean flow.

It is of particular interest to determine how the mean flow evolves

if the initial profile is dynamically unstable. We can determine this

and the significance of the unstable eigensolution by making a finite-

amplitude integration. As initial state, we take the straight parallel

flow plus a self-excited unstable eigensolution (logically, the most
unstable) with a small but finite amplitude.

We shall not further discuss the damped eigensolutions.
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10. THE FINITE-AMPLITUDE PROBLEM

The finite -amplitude evolution obeys

StC 1+ a ax. (119)

where ) . We shall continue to keep the straight parallel

flow, U = -tank z, constant by choice.

Only one integration is carried out. The perturbation is periodic

in X with period 41f . The initial perturbation is based on

jX z) D U(2) coat.[x~() 10

where k j 1/2 and D (Z) and (;) are given in Fig. 3 at

S=15 except that D (a) is sm oothed through Z = 0.

A grid is introduced having 272 independent points (16 columns by

17 rows). The 17 rows, at intervals of 11"/8, extend the grid from

= -iT to "f , inclusively. The columns divide the period 41T into

16 interval& of iT/4 each.

The grid, plus an ordering, transforms our fields into vectors,

The actual initial q is given in Fig. 7 for one complete wave length.

The cxtremes of the perturbation vorticity are approximately one-fourth

as big as those of the profile.

We may refer to a grid point by its coordinates relative to the

central leftmost point (0, 0):

I x = LrlT/4 , =ol,z... 15

-= "m.'I/8 , I= , t1, ... *8

Or we may refer to a point simply by giving its address (1, m).

I
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*rhe boundary conditions are treated essentially in the same way

as they are treated in the unbounded linear integrations. However,

instead of using a Green's function-integral type solution over the

whole grid, we use it only to determine the values along the two rows

"n. = k 8. In the interior we may then use the more rapid iterative

inversion of the differential operator analogue.

Any particular grid point ( to ) n.o ) together with the corres-

ponding point in each of the other periods constitutes a vortex row

with uniform strength, 5 , and uniform interval, L = 41f" . The

strength of each vortex is

where 8A = (i/4)( if/8). The stream function which is compatible

with sach an unbounded and infinitely extended single row is given at

the arbitrary grid point 1 -rn by*

r

~ o0 F (]v~) O~(Lo~

The stream function at the point ( v w. ), due to the entire

distribution, is then given by

K iMo 0 i(U-] (123)

in which the sum is taken over all the grid points as given by Eq. (121).

It may be noted that in determining the stream function we are neglect-

ing the vorticity outside our region of attention, as we did in the linear

integrations. It is assumed that the vorticity on the outside remains

negligible. This is something which will have to be checked by exam-

ining the growth at the extreme rows.

*See Lamb5 p. 224.
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For economy, Eq. (123) shall be used only for the extreme rows,

- ± 8. The values of YP , so determined on the extreme rows,

then play the role of boundary values for the interior for which we

shall invert a finite-difference analogue of V2  _ . At an

arbitrary point this analogue has the form

• ~.-

(P_'< i1  + ('i+i~Wi (124)

The coefficient of yL has intentionally been made -1. If

I = 15 then I + I is taken as 0, and if =0 then 1-l

is taken as 15 by virtue of the periodicity.

The interior grid is given some order t = A R.•, r•1)

Equation (124), applied at each point in this order, then yields the

system of simultaneous equations

Cq d (125)

If "t $ *7 then c. = ;- , . If rn= - 7 then the

known boundary value which P.ppears on the, left-hznd side of E'q.. 1124)

is moved to the right-hand side, and d- 1  L 4

Equation (124) is a partial difference equation of the elliptic type.

It is convenient to invert the system, Eq. (125), by an iterative pro-

cedure known as the method of successive overrelaxation. * To for-

mally exhibit the method, we first express as the sum of three

matrices + L - . In ,nonzero elements appear

only above the main diagonal. In L , nonzero elements appear only

below the main diagonal. The matrix 1 is the identity matrix.

The method is given by

( =j - + h (12 6 )

*The extrapolated Liebmann method is of this type.
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where

R( (1V21) L

The superscripts in parentheses number the successive approximations

of 4) . the operation is carried out in the order Y . Hence at a

point Yo , the points following, o , are operated on by U
and the points preceding which are once later estimates, r <o , by L

If we substitute + , where satisfies

Eq. (125), in Eq. (126) we find

eA +1) T I T~ e~ (128)

where

This reveals that the convergence depends on the eigenvalues of T
which are given by

T-x = (130)

The convergence rate is generally dominated by the eigenvalue having

the largest magnitude. * Let this magnitude be " . That -> 1 is

a necessary and sufficient condition for convergence. The rate of

convergence may be expressed by - )". N .

We are still free to select the ordering, r (-rtn.) , and the

value of co * We would like to select these so as to make N a

minimum. The following analysis of this problem is based on a de-

tailed paper by Young. 10

*This has been discussed in Section 6 in connection with Eq. (79).
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Substituting for T in Eq. (130) leads to the determinant

W(u+ it _W_1 =0 (131)

In particalar instances Eq. (131) is equivalent to

I (U + L) 0 (132)

This is so if each term of the formal expansion of the determinant

either vanishes because one or mrore of its elements is zero or, if all

its elements are nonzero, then as many come from above the diagonal

as from below. The above equivalence is generally latent in elliptic

difference equations for most, but not all, grid selections. The equiva-

lence may then be realized by choosing one of a more or less large

family of orderings (called "consistent" orderings by Young).

It will be seen that all consistent orderings lead to the same t•gen-

values for T . Young then proceeds to determine the best wn for this

family of orderings. The possibility remains, however, that Lheie may

exist an ordering which is not consistent and which leads to a snailer A

than can be realized with a consistent ordering. Young's analysis does

not rule out this possibility.

The equivalence is latent in our problem if, and only if, we divide

the X cycle into an even number of intervals greater than two-as

we have done. The simplest consistent ordering and the one we adopt

is then:

F 57 for even -"L odd
8yr + + 176 I/Z " " odd " odd (133)

56 1/2 " " odd " even
177 " " even " even

In effect, this numbers the 240 interior points as one would count

checkerboard squares, counting the light squares first and continuing

with the dark squares, beginning each traverse at the lower left.
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We may now proceed from Eq. (132). Let us denote the eigenvalues

of U + L -_ C + I by /,"j, p - ... ... Ljo . These

depend on Eq. (124) and the grid dimensions, but not on the ordering.

It follows from Eq. (132) that the are giPen by

)\r ,/ -_ = /• (134)

That A be less than 1 can be accomplished for some CJ only if

all H satisfy -I < Re: <, < 1. If in addition all // are real,

then Young has shown that the beLt w is given by

(-=b 4 [ + (135)

This yields

S= w- (136)

The eigensolutions o C + i -are given by-

i(LM) = ' aA M+) /LtS . (137)

where L and M take on the values

L = o, 1, 2 ... 15

MA = -7, -6, . . 0, .... 6, 7.

The corresponding eigenvalues are given by

S(LlM) _ + ( +M+8)] (138)
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Hence

c m (139)

- -.3 8 4- 3

For this value of 7 , Eqs. (135) and (136) yield

wb =L~v12 ; \ =(140)

Determining the rate of convergence by - ' A shows, in this

particular application, that using the best wJ accelerates convergence

by a factor jf 12 over and above the factor of 2 gained by relaxing the

grid points successively with W, = I in a consistent order.

The initial stream fRuction, -/ , as given in Fig. 8 was deter-

mined in the manner described, from the initial vorticity gi,6en in

Fig. 7. The relaxation wr s continued until Eq. (124) was satisfied at

each point within the exacting tolerance of 2-2- 2. 68 x 10- 8 , in

the same "units.

11. THE INTEGRATING PROCEDURE (NONLINEAR PROBLEM)

We shall take up the problem of the time-discretization as the

first stage in arriving at a complete numerical analogue for our non-

linear system, Eq. (119), page 68. This will be followedby the

space discretizatior. which was begun in Section 10 (for = V 2  },

The system, Eq. (119), is of the first-order in time and may be

regarded as a special case of the generalization

SX FL(X ,I ...), 1Z,3. (141)

whare XL is one of a finite number of fields. The F ls at any

instant are space dependent only.
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We shall again use *- to denote our time increment and mark off

the instances t = 0, 'VI -UI ... (tAJ- 1) C NT, (N + ly .

As the time-discretized form of Eq. (141) we offer

( (XN + -)~t

"where the bar implies the mean for the incremelvt, that is,

+"-! (-)143. g .
7 4 N+I

Linearized on 4 zero-order stationary state, Eq. (142) reduces

to the same formula used in our linear integrations. For its solution

we shall have to resort to a method of successive approximations

(reiterations). Because of the nonlinearity the problem of convergence

becomes largely a matter of trial and error.

For propagated effects the domain of dependence (region of influ-

ence) using Eq. (142) may be all inclusive for any "t even after

space-discretization.

Th'e form, Eq. (119), of our system was arrived at from the

governing equation,

Q(144at

where V A= V and Q = •• T by explicit refer-

ence to the zero-order straight parallel flow which •s kept constant

by choice:

We may instead refer to some other state which we shall call the

s field and denote by subscript s:
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which satisfies

0 (147)

This gives

% We may postulate that for a given region and particular time interval

* there exist an s field which minimizes in some prescribed manner

* the contribution of the nonlinear term of Eq. (148). The amount of

linearity exhibited in this manner may be called the inherent linearity

during that interval.

The evolution of the large-scale fields of motion in the atmosphere

probably exhibit a high degree of inherent linearity even up to periods

of a day or so.

"The degree of inherent linearity during one time-step (interval)

i. seems pertinent to the problem of convergence of the reiterative

procesa,. It may be tlat if 90 percent or so of the change comes from

the linear terms, then the convergence is eaventiaily governed by these

terms, This is incertain; but the smallness of '5 must certainly be

significant. It may be noted that even in the limit, i--tO, the

"mechanism generally remains nonlinear.

Another significant feature of the implicit formula, Eq. (142)

J- follows: Applied to the barotropic equation, Eq. (144). this formula-

tion preserves the conservation of total kinetic energy which is inherent

in the system for a closed region. It follows that the time-truncation

error remains bounded; hence, this form of tirne-discretization does

not introduce any computational instability.

The conservation of total kinetic energy is derived from Eq. (1441,

in a closed region (I = on the boundary), in the following manner.

Multiply Eq. (144) by • and integrate over the region:

A A
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* To show that the right-hand side is zero, we substitute

where the second and third terms are zero everywhere. Then by

Gauss' theorem

"-5 v.(VQ. > 0 =- I. dA

A
which vanishes because there is no outflow.

This leaves us with

A

=m
AA

The first of the two integrals on the right-hand side is zero because

and the total contained vorticity remains constant. Thus we have

shown

A
The proof for the time-discretized form

.9(149)
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is similar. We multiply by • and integrate over the area. As before,

the right-hand side drops out and we are left with

~ ( + ~ ±- TI~N ()N~ 0'-
A

A A

The second integral is zero because

A A
. This leaves us with

VI d a

A
* which was to be proven.

The preservation of this inherent property after space-discretiza-

tion leads to an analogue which may be rather difficult to use. To

achiev . it we multiply Eq. (149) by IP and transform the equation

into the form

ii •- ,- z.VT. V (15,0)•o

This is then space-discretized in such a manner that the summation

of the term on the right-hand side cancels over all interior grid points.

The boundary conditions must have the bracketed term zero at the
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boundary grid points.

In practice this analogue must then be solved by a reiterative

process. This may prove to be difficult.

Because of the nature of our boundary conditions, we have not fol-

lowed through with the total energy-conserving space-discretization.

Instead, for space we have used more coi'ventional finite-differencing.

We have already shown in Section 10 how = and the boundary

conditions are to be handled.

Our governing equation, Eq. (119), page 68, time-discretized has

the form

4- U) + (151 x

This is to be applied to our grid which at a representative interior

point has the spacing:

0

S

Compass directions are used to label neighbouring points relative to

the arbitrary point at which Eq. (151) is being applied. We choose to

use the analogue

IVI

9 1 A -is i w 0 (152'

where 06 = 2 .UM , 23 = zU" and -=if/8.

We have one such equation for each interior point. The vorticity

changes at the upper and lower boundaries may be obtained by a

linear extrapolation of the changes from the interior, or one may
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attempt to keep the values of 4 constant there in the hope that both

the values and gradients at these fringes will remain small anyway.

We will try the latter method and will check the validity of this pro-

cedure from our results.

The set of equations, Eq. (152), for all interior points may be

packaged into the representation

q -~
qN+N

This analogue must also be solved by reiterating. We shall attempt

the same procedure used in the linear integrations:

~+ (13

where

T +

is deterr+nined fr'm by the method of Section 10.
The i dterationsarerepeated from
The iterations are repeated until A. = S determined by 0-) 1=0

in that both are compatible with within the prescribed tole`r-

ance at all interior points.

As a first guess for •4 and for we choose linear

extrapolation in time,

0 (0) (154)

except for the first time-step where we take

(a) (o) P (155)
•c>_, o, _,±' _ ls
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We choose "1 = 1/ 10. It is hoped that the inherent linearity will

I be quite large for so small time-steps 4depending as it does on the

particular evolution) and that Eq. (153) will converge essentially as if

it were linear. •!l (4* I•(4.1.1 )The ,ietermination of , from • requires the de-

termination of 4 on the upper and lower boundaries by Green's

method, followed by the successive overrelaxation of the interior

points beginning with rN+ I as first guess. We desire compati-

"" bility of N and and to within quite small tolerance, but the

I successive estimates of these vectors need not be so highly compati-

ble. It would seem wasteful to make them so.

In an attempt to accelerate convergence to and

the following scheme is incorporated into the relaxation. After each

complete grid traverse in a series of traverses, the tolerance is

"raised by multiplication with a prescribed factor greater than one.
&+ (A ) t)

Hence, the more traverses it takes to determine qj, the

greater its incompatibility with N The tolerance is then reset

at its original small value to begin the next series of traverses. Thus,

if convergence (all within tolerance) is found on one traverse (whici'

signals A- = ) then %P.. , and Q, ,+ have been found to the

desired prescribed initial tolerance. This scheme considerably

shortened test corrputations in which a factor of 1. 25 was used.

12. THE RESULTS

The initial perturbation field which is superimposed on the un-

Sbounded hyperbolic-tangent profile is given in Figs. 7 and 8, pages
69 and 75, respectively. Computations have been carried out which

take the evolution to t a 5. * Outputs were obtained every five time-

steps, that is, at intervals of t = 1/2. Figures 9 and 10 show the

I fields at t = 2 and Figs. 11 and 12 at t a 5. Six more decimal

digits were carried and outputed beyond those shown in the figures.

*See footnote p. 51.
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It is notable that the position and growth develops essentially as

predicted by the linear integrations. This shows the significance of

the unstable characteristic yielded by the linear theory.

What we call the perturbation is now composed of an eddy and a

mean (averaged along Y. ) which when added to our profile gives the

mean flow. An examination of Fig. 11 reveals how the mean flow is

being modified. The centers of positive perturbation vorticity have

moved inward, toward the central level, and the centers of negative

vorticity have moved outward, away from the central level.

The profile itself has only negative vorticity with a maximum at

the central level. Thus, the eddy is altering the mean flow by trans-

porting mean negative vorticity away from the central level.

The perturbation fields at t = 5 are averaged along x to

bhow the following means.

8, -8 0 4

7,-7 -2Z 4

6, -6 - 70 - 1
5, -5 -205 - 15

4. -4 -497 - 62

3, -3 -593 -186

2, -2 -229 -400

1, -1 +860 -650

0 +1,524 -768

These values of IM and 4.yx have been amplified by 104/1.6.

The removal of these means from the perturbation yields the eddy

shown in Figs. 13 and 14. Figure 15 shows how these perturbation

means have altered the mean flow, tending apparently to stabilize it.
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It is quite noticeable that the error due to . ,ace-discretization is

becoming more serious as the evolution progresses. This is one reason

why the computations have not been carried further with our present

grid. Another reason for not continuing is that our initial value lacks

generality. We have placed the constraint of periodicity of period 411

on the evolution. As a demonstration of what may develop due to

dynamic instability and the presence of noise, we have gone far enough.

13. CONCLUDING REMARKS

The instability mechanism is pertinent to a number of meteorologi-

I cal problems on all scales. However, a more comprehensive approach

to any of these problems generally includes the effects of other meteoro-

logical parameters.

The results of Section 12 demonstrate the modification of motion on

one scile by the formation of eddies on a lower scale, the scale of the

edtlies being dynamically determined by the causative gradients. It has

clearly been revealed that such modification cannot be handled by an

"empirical eddy viscovity. The profile we have examined contains a

U vorticity maximum which is flattened by the eddies. If the profile had

a vorticity minimum instead, the rate of smoothing would not at all have

progressed so rapidly because such a profile is dynamically stable and

thus does not favor eddy formation.

Consider the large-scale vertical structure of the atmosphere. At

a single locality we may ignore horizontal variations at all levels if it

can later be shown that these variations are negligible on the scale of

the developing eddies. A comprehensive approach to the stability
problem might then be developed which takes account of variations with

height in the large-scale density, horizontal velocity, and humidity

distributions. It might also be wise to include the modifying effect of

the local variation with height in the large-scale fields of vertical

motion and horizontal divergence.

The eddies which form due to the vertical structure of the atmos-

," phere are not only significant because they are associated with
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convective clouds and turbulence but also because they modify the vertical

structure.

On the whole, the lapse rate must be the most significant parameter

in determining vertical dynamic stability of the atmosphere. Even though

it can be shown by a proper selection of units that the eddy in our studj

grew from having a maximum vertical component of about four meters

per second to twelve meters per second in less than eight minutes, this

in itself is not significant. Our thinking must be modiiied by other con-

siderations.

We must also consider the rate at which the dynamic instability of

the vertical structure is being built up by large-scale processes in-

cluding surface heating. As the vertical structure crosses thresholds

of instability how much energy becomes available to the eddies? And

are the eddies capable of modifying the vertical structure rapidly enough

to keep the instability at the threshold? What then is the strength of the

eddies? These are qucstions which may be answerable by numerical

integration studies.

Knowledge of how vertical structures are modified by eddies con-

stitutes a prerequisite for making dynamical riumrerical weather predic-

tions. Consider a model which discretizes the vertical structure by a

number of leveis, and which has grid spacings of the order of hundreds

of kilometers in the horizontal. If no allowance is made for the vertical

adjustments by eddies of a smaller scale than the grid, ridiculous pro-

files and lapse rates may be developed. However, if the mechanism is

understood and stratified empirical techniques have been developed,
then not only could the vertical structure be adjusted to keep the evolu-

tion on the right track, but al-•o useful predictions of turbulence and

%. convective cloud formations may result.

It. is hoped that such investigations will be undertaken. The numer-

ical techniques to be used are themselves in need of further develop-

ment.
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If the behavioral properties of a differential system are not known

and are being numerically investigated, then finite-difference approxi-

mations and the order of truncation error are of primary interest, and

the concept of the limit is essential. However, in practice, in numeri-

cally integrating partial differential systems such as those which model

atmospheric circulations, the precept that we are bound to finite dif-

ferences generally exists. The differences must be the larger the

faster we wish the integration to proceed relative to real time, and the

concept of the limit as our increments tend to zero does not enter.

In practice we are concerned with the complete system of finite-

difference equations as a numerical analogue of the complete differen-

tial system.

The procedure is to construct and modify a numerical analogue,

having finite increments, until its behavioral properties resemble as

closely as possible those of the given differential system. This re-

quires a pretty good understanding of the differential system.

For some systems, exact num'nerical analogues can be derived.

To illustrate this, let us take another look at the linear system

d C-t, (156)

We arrived, in Section 5, by what we shall call the finite-difference

approach, at the analogue

M LtC [I.+ T] (157)

which may be written in explicit form,

= = 
(158)
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where

_ rzI1  ircC (159)

Our analysis showed us that this analogue has similar properties to

the differential system but that the prediction deteriorates with length

of forecast.

If we abando,. for the moment the finite-difference approach, we

can, by a full appreciation of the properties of the differential system

as revealed by its eigensolutions, arrive at a numerical analogue

which exactly expresses the evolution. In terms of the eigenvectors

and eigenvalues of the matrix t

0C. AnNV(160)

gives the evolution of the initial vector

at intervals " . If we now construct a matrix M which has these

same elgenvectors but has eigenvalues , then

(161)

which expresses Eq. (160) exactly, no matter the magnitude of "( . *

*It may be noticed that the expression, Eq. (161), resembles a linear

regression formula in which the same set of parameters enters both
as predictor and predictand. If it is justifiable to assume that the
set of parameters is governed by an expression such as Eq. (156)
then from an analysis of the matrix, which has been determined
3tatistically, one may construct both the tendency matrix and a
matrix to be used for any other time interval. Some difficulty, how-
ever, will be encountered in interpreting those stable eigensolutions
which have undergone more than one oscillation in the data interval.
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We have demonstrated that for certain simple differential systems

exact (except for random round-off) numerical analogues are possible.

We have also indicated that we should not be constrained by the finite-

difference approach and the limit concept.

When dealing with nonlinear partial differential systems the problem

becomes rather nebulous. We have no eigensolutiona to guide us and we

may know very little about the s, stem. An attempt should be made to

learn as much as possible about the behavioral properties of the systems.

If limit cycles are understood these could perh4ps be modeled by the

analogue.

With little else to guide us in complicated systems, then perhaps

the best we can do is to attempt to preserve physical continuity princi-

pals which may be inherent in the system. An example of this is Eq.

(150), page 80, which attempts to preserve the conservation of total

energy in a closed system, It is not yet clear how many such princi-

pals one can preserve simultaneously.

This last approach .may lead to conside-able success ior General

Circulation models (models which contain atmcspheric forcing and

friction terms and which are integrated to times far removed from the

initial values). The problems are many.
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