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ABSTRACT

This paper deals with the formation of eddies in a straight
parallel or zonal flow and with the.subsequent modification of the
flow profile, The fiuid is taken to be homogeneous and inviscid.
Numerical analogues for the physical equations are developed in
detail and are analyzed.

The work begins with the linear theory of dynamic stability,
Numerical analogues are developed to determine the evolution of
perturbations, sinusoidal along the flow, which are initially pre-
scribed with arbitrary wave number, amplitude, and tilt varia-
tions, and which are superimposed on arbitrary floxs, These
flows are straight-parallel and are unbounded, or are hal{-bcunded
or bounded by plane surfaces, integratione are carried out for an
unbeunded flow profile with an inflection point. Unstable perturba-
tions are isolated and the unstable spectrum is datermined,

A numerical analogue for the finite-amplitude problem, by
which one can study the tranafer of energy from the mean flow to
the eddy I, then developed. 7The moat unatable perturbation, linearly
determined, is taken as a amall but finite disturbance, The integra-
tion is carried out and reveals the continued growth of the eddy and
the modification of the mean flow,

This method of investigation with added lagse rate and com-
pressibility is discussed as an approach to turbulence, and to the
modification of wind shear and lapse rate by the developed eddies,
The general problem of numerical analogues fcr integrations re-

quiring finite time-steps is also briefly discussed,
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Y

A NUMERICAL INVESTIGATION OF THE BAROTROPIC

DEVELOPMENT OF EDDIES

I. INTRODUCTION

The study of the behavior of sn.all disturbances superimposed on
straight parallel ilow criginated in classical hydrodynainics in connec-
tion with the stabilily of laminar flow. (For a review of the literature
and an excelient bibliography the reader is referred tcv Lin, 6) In the
preaent investigation, we treat two-dimensional motions of an inviscid
homogeneous fluid.

A straight ‘&»arallel flow is said to be dynamically etabie if all super-
imposed infinitesimal perturbations aie out or remain bounded at all
times, Oiherwise the flow is unatabie and the profile must be considered
a transitory statt::.. Rayleigha show ed that an inflection point in the flow
profile is8 a necessary condition for instubility. Sufficient conditions have
been established for flow profiles of certain general types; however, no
complete theory has yet been developed,

Considering fiow profiles with a point of inflection, Tollmien9 showed
that fc : symmetrical profiles the existence of a neutral oscillation im-
plies a transition from stable to unstable solutions., In an investigation
of unbounded broken profiles, Holmboe> tound that those having maximum
vorticity at the inflection point are unstable, whereas those having raini-
mum vorticity at the inflection point are stable, This condition is appar-
ently not sufficient for flow ir a channel. An example which does not con-
form is a sinusoidal profile in a channel whose width is less than half a
wave length of the profile, In this system the boundaries inhibit the de-
velopment of unstable disturbances, However, if the channel is wider

than half a wave length the current is unstable,

{Author's manuscript approved 24 October 1958)
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In the present work a method of testing the dynamic stability of arbi-
irary profiles is developed. Initial value problems are solved by direct

numerical integration,
2. THE SYSTEM

The fluid is homogeneous, incompressible, and nonviscous. The
model is two-dimensional in the sense that there i3 no motion--and no
variation in any of the fields or boundaries—=-along the third dimension,
The effect of gravity in the niodel is trivial since we shall not be dealing
with any free surfaces, and the gravity field is herewith dismissed.
However, for orientation we may refer to the straight paraliel flow as
being horizontal, parallel to the x-axis, with the speed varying in the
vertical along the z-axis, although some applications of the models to
meteorological problems may be otherwise orientated,

The total velocity field, \/ , i8 considered to be the resultant of
two component fields, One of these is the straight parallel flow, L)ﬁ, ,
which would be a steady state if it existed alone. The osther component,
VY, shall be called the disturbance or perturbation velocity. Only in
special cases is the resultant field 2 steady state. In general the flow
evolves. Its evolution sl.all be absorbed by Y, the straight parallel

flow being maintained constant by choice.  Thus

Y = Uzt + v (X 24) (1)

Because YV is the difference between two nondivergent fields, we

may represent it by a stream function,

\yzjxv\l/:uﬁ+uf|k (2)
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The total vorticity is given by

7

v V= vx (Ut j v ¥)
= (U VY] =

The accent, whenever used, denotes differentiation with respect to =z.-
Henceforth the term "vorticity" will be applied only to the scalar mag-
nitude of the voirticity vector since the orientation is always along the

< unit-vectcr, The total vorticity is then given by
S

- L 2, .
(y=utV WzUH}f ;

where C# has been written for V“P . the perturbation vorticity.
The models tc be included are (a) an unbounded fluid, (b) a fluid
with a boundary surtface below, and (c) a fluid with becundary surfaces
below and above, Hereafter these will be called the unbounded, half-
bounded, and bourdcd models, respectively, In any of these, the
vorticity field {with boundary conditions) provides a unique determina-
tion of the velorcity field, and the perturbation vorticity field is chosen

a8 the principal dependent variable,
q = c.l(x_z,t)‘

The mechanism of the evolution is contained in Helmholtz' principle
of individual vorticity conserva.tion,DQ/Dt =z O . This is developed
with the aid of F.gqs, (1), (2), and (3) into

24~ 2 (Ugq+UUV)-vvq
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i N
(In treating zonal flow, U“(\Z) is replaced by U ® + I’(Z) where B
(2) is the Coriolis vorticity. LJ(Z)& then represents a westerly
current, and X and 7 are the eastward and northward coordinates, )
respectively,) ‘
We linearize at this point by consideriny the flow as zerov-order state

and the perturbation as first order in smallness,

2q = §x (~Uq + U“‘P> . (4)

Consequently, we shall be able to consider elements cof an x-depen-
dency spectrum singly., The perturbation vorticity of such an eilement
is given by the rcal part of

(1 (€A9) ein (5) ;

where 671 (2L is complex, :
Thre boundary surfaces need not be smooth but, for cansistency in
this lincar treatment, any departure from smooth must necessarily be
of the first order in smallness. Furthermore, the boundary deforma-
tions must be analyzed and paired element for element with the per- 1
turbation, Accompanying Eq. (5), the boundaries are given by the

real part of

5 eikx (6)

wherc S is a complex amplitude factor, So paired, the mechanism
will not generate other wave numbers. Completeness ii achieved by
considering the entire real positive range of k, .

At a boundary surface the slope of the streamline must be the same

a8 the slope of the boundary. This condition, integrated with respect
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to X , givea the linearized relationship

[\P:*Uﬁl e'hx (1)

at the becundary levels. In the unbounded and half-bounded modeis, the

additional requirement that the perturbation velocity-field be upper-
bounded is imposed.

Applied to the arbitrary element, Eq. {4) hecomes

{5%3( = b[-Uen + U wwz")]JL ¢ @

ard the perturbation stream-function is thzn given by

{\P'o(lgt) - k?,-\v @b = %(l,ﬁ)} eik! o)

togethier witn: the boundary conditicns stated in the preceding paragrapi.
Since the x-dependency factor# out of the sysiem, we shall subsae-

quently omit the e-*k-x addendum unless specific reference is desired,
The stream-functior which satisfies Eg. (9) can be expressed by a

Green's function integral®

Ve =len, (10)

where

-hlz &

lao 3 q(tH 4t . (11)

*The integral can be deduced b+ quasi-physical reasoning based on the
superposition of Rayleigh Wav- s, See Holi#
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For the general solution we add the solutions of the reduced equation

and get

Vap = Lap + [ e [ e

the complex coefficients, C+ and E_ , of the harmnic fields are
determined by the boundary condtions.

In the unbounded 1nodel the fields extend frem 2 = -o0 to £ =00 .
Arguing that the perturbation velocity field remains finite at # = £ 00O

leads to

The perturbation stream-function for the unbounded model is thus given

by
oQ

Vep=1 ap ) (12) -
)

in which the subscript denotes the lower —and the superscript the uppey-——

limit of the integral.

In the halt-bounded model the fields extend from the bounda;y at k ‘
£=08 to 2 =00 . The condition of finiteness leads to L O .

At the boundary surface Eg. (7) must be satisfied,
Can-C_etem U S,

which determines E_ . The perturbation stream-function for the

half-bounded model is thus given by

V(zt) = m)-[Umb ] nt)] k(z-0) (13)




in the bounded model the fields extend frora the boundary at 2 = Q to
the boundary at 2 = b , At both boundary levels Eq. (7) must be satis-

fied., This gives a pair of simultaneous equations which, when eolved
for E+ and L_ , yield:

( —Eﬁ——fs —ek'“I (G.t) + ebe (bt)

-U(a)saemuwsbew} S

C = -zm.l -TE{— ml @b + e I (b’c)
- e
"U((I)SCLG-m+ U(b)Sbe'hb *(15)

The gubscripts QA and b have been attached to S) 80 as to dif-
ferentiate between the complex amplitude of the corrugation belecw and
the complex amplitude of the cnrrugition above., The perturbation

stream-function for the bounded model is thus given by

Y (z’t) " Ee’“ + E Yats (16)

where C+ and E_ are given by Ega. (14) and (15), respectively,
Regarding the unbounded model, there is a special case which is of
interest and which requires special treatment, This is the case of

periodicity in Z , The straight parallel flow and the initial distur-

bance are periodic in Z , and they have the same period so thai the
periodicty will be maintained. The perturbation vorticity at all times

satisfies the relz:tionship

g = qz+ nHit) (17)




where H is the periodand w = ... -2, -1,0,1, 2...
To treat this problem we need focus our attention un only a gingle
layer, from Z =0 to &2=0b , of thicknessH =b-a . We

develop "P (21) in this layer, that is, where A5z < b , a8
follows:
f el
_k|z-T
Yy = X _g_-lbt,_—' q(f1) 4¢
-00
b+nH
Y M2 ey a2
n -L
a+nH

Put £ = 5 +nH, andg, by virtue of Eq. (17),

b
-‘L'l*S-ﬂH'
= R (st
Y () gj — q(s:) ds
o. .

Subsequently,
' b
-k z-s|
o= e (s,t) ds
vy j Ik
"
e8]
-k L +9% '\H
+ Z Q...;__(._.. 151(5,,) ds
n=| —tk
G
b
2 )
+ Z _e;-(-i:.;-n.H) (s,0)ds
-n=| -Lba
a
8
T R S A R A R L R L SN . LI O I I IO P



1

1
catarT,

ARV A A I I R S A A A IC AR ST I I NI

b
= 1_(z1

X -) b 000 _ _ -
. o k(b-z ch(a,t) >‘ . k (n-)H

n=\

- -ty ‘b = } \\
o k(7 )iatb,t) '2—: eh(m,H
-n=t

Whereupon, summing the series,

b .
b Fd lb\, (a'rt) -h(b'Z)
\P (Z,‘U = Ia \Z.ﬂ + TEEH— £ |
b "
L6} _-kG-0)
{-ekH

These boundary-titting solutions of the stream-function, Eqs. (12},
(13), {i4), and {18), when introduced in the tendency equation, Egq. {3),
give, in each case, a single all-inclusive governing equation. The

equation is sufficiently complicated to make the finding of even very

special analytic solutions exceedingiy difficult, Besides, what is
desired here is a solution method which is applicable to any arbitrary
initial disturbance superimposed on any arbitrary profile. To at least
partially achieve this, we must use numerical methods; and we shall
find that the expressions we have developed are well suited for numer-

ical treatment,

2. NUMERICAL METHODS, AN INTRODUCTION N

Finite~-region fields in general cannot be completely apxecified by a
finite number of pieces of data. In fact not even is the exact value at

a point relayable, However, for numerical tractability, fields must

(18)
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be defined (that is, approximated) by a finite set of rounded-off numbers

necessarily accompanied by an interpretation scheme., This discretiza- .
tion can be accomplished in characteristically different ways,

The most common method, that associated with direct measurement,
is to give the value of a field, by a rounded number, at cach of a finite
nurnber of points in the region and, in addition, to specify some interpo-
lation scheme., Usually there is some orde~ in the spacing of these
points, _

In another common method the field is exprei.sed as a linear combi-
nation of a given finite set of analytic functions. The value and deriva-
tives of each of these functions can be computed, from its analyiic form,
to any desired accuracy at any point in the region., The field is defined
by a set of rounded numbers which are interpreted, in a prescribed
order, as the combination coefficients of the analytic fuhctions in the
linear combination.

A fixed number of pieces of data rzpresents only so much information
no rnatter which method is used. One method may give a better approxi-
mation than another in particular cases, but basically one method is as
capable as any other, In fact, the two methods are equivalent if inter-
polation in the first is based on the fitting of the functions, used in the
second, to the data at the given points, The choice of method rests on
peculiarities of the particular problem. If functions can be ‘ound which
are indigenous to the system of equations, such that their use makes the
problem more tractable, then the second method may be preferable.,

Generally the first method, with a uniform spacing of points (called
a grid) is used. And it is often used with mixed intcrpolations (low-
order polynomials) even at the same place in a particuiar field. It is
up to numerical analysis tc determine if such inconsistency is permis-
sible, It is numerical analysis, the investigation of the method for
accuracy and econorny, which gives confidence in the method and re-

sults therefrom.,

10
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We shall use the grid discretization. The equations and boundary
conditions which define the continuous fields must be transformed so
that they define the discrete fields. This is generally done by evalu-

ating the equations at each of the grid points. Differentials in these

equations arc approximated by corresponding differences so that
algebraic equations, called finite-difference equations, result, The
error introduced by theee approximations is called truncaticn error
because it can be regarded as due to truncating series representations
of the derivatives,

P. D, Thompson* indicated the merits in developing the finite-
difference squations by an averaging of the differential eguations over
finite elemental regions referred to the grid noints., He has shown
that certain undesirable Liases in the finite-differcnce egquations are
eliminatcd in this way.

A necessary condition which must de satisfied by the {inite-differ-
ence equations is that they approach the equations which they approx-
imate as the space and time increments tend toward zero, However,
this i8 not eufficient to insure ihat the discretc fields computed from
the finite-difference equations will approximate the bebavior of the
continuous fields defined by the differential equations; the usurper
here is computational instability, an apparent "blowing up" of the -
round-off error, ,

Certain finite-difference equations are referred to as "marching"
equations because of their use, They are similar to recurrence
formulae, Values at successive points are given in terms of those
that came before, The discretization of iritial value problems al-
ways results in marching equations,

In well-behaved marching equations the round-off errors are ran-
dom and largely self-cancelling, while in others they may grow
rapidly and soon swamp out all significant digits. What happens in
the latter is actually a systematic growth of error, due to a more

or less complicated interplay of round-off errors.

*Private communication,

11
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An elementary example of a marching equation which is compu-
tationally unstable is the recurrence formula for Bessel functions of

increasing order at any fixed value of X ,

'i]—n"\.(x} = %C‘: Jn,(’() - JP.,-l(x) ;. (n=1,2, . ) .

In linear theory the mechaniam of computational instability is
relatively simple. Several forms are recognized. One is the admis-
sion of extraneous sclutions which ampiify more rapidly than the
desired solution. This is the cause of instability in the above equation,
‘The Neumann function of increasing order is also a solution of this
recurrence formula, The least round-off error admits the Neumann
function into the marching equation and, as the Bessel component
decreases, the Neumann component amplifies rapidly. In addition, at
each step, new round-off error changes the composition of the solution,

This recurrence formula is thus inadequate to compute more than
justa few Bessel terms, On the other hand, as a recurrence formula
for Neurnann functione, the abeve is computationally stable. Now the
Bessel functions are the extraneous solutions, but these dampen and
are of less importance than the purely random round-off errors. We
shall again encounter this problem of extraneous solutions later on.

Some problems in mathematical physics become tractable by only
a partial discretization, We shall also encounter an example of this
gituation,

Discretization transforms fields into vectors. Each piece of
specifying data can be interpreted as a component of this vector in
some prescribed order., In a grid discretization the components are
given by the values at the grid points. Hence a field which is unknown
becomes a vector with as many unknown components as there are
points in the field. And when the differential equation which detez-

mines this field is transformed, we get one algebraic equation per

12
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point—thus the same determinateness is maintained, The resulting
system of algebraic equations can generally be written in matrix

notation, a form which is also suitable for nwunerical analysis.
4, THE SPACE DISCRETIZATION

In this section we carry out the diecretization of the 2 -dependency,
the t -dependency being left continuous. The 2 continuum is re-
placed by the poirts 2 =Mh. ) M- 0, %1, #2,... where h isa
fixed increment. The integer M  will be called the "address" of the
point Z = Mh , and will be used as a labeling subscript, Our
principal dependent field, q_(z,t) , becomes a vector, q(t) ,

(t) being its M component, ~

Applied at the arbitrary point Z = Mh , our governing equation,

Eq. (8), tells us that

E{d? qM(t) = ik [—UMqM(t) + UM\IJM(t)] | (19}

We have developed four expressioneg ios \;) (Z,t) depending on the
boundary condtions. We are now going to develep the correaponding
expressions for (1) , to be given in terms of \UM('.‘: -, its
component, ~ . o b
We begin this transformation by evaluating the integral Ia (a,t)
at the arbitrary point z= Mh. The grid is placed so that the ievel
& = O coincides with the point whose address is Ma_. The fixed
increment, k , is chosen so that the level Z = b coincides with
another grid point, whose address shall be Mb , and 8o that the
number of points in between captures the desired amount of detail,

By expressing the integral as the sum of two 'parts.

Mh M

I bh(Mh;) = I

M

_Mih
Mhy) + | (Mhgh,

h
M+ ™Mb
13




we can remove the absolute value notation in the integrands,
We shall show the development of one of these (the second part)

and proceed as follows:
Mph

I (Mh J SIS g ((t) df

Mh

M+m+\]h

:_MbZM | J _Zk[M“ Jaund

mz=90 [M‘,m]h

n -
Next replace the dummy variable ‘( by S where { = '.M-rm}h‘f S.
We get h

N Mg M- m )
] - (Mhi) = i JSE gks qr(s,t) ds, (20)
1,6 20]

Mh
o

~Rk
where K = € . At this point we must specify the interpolation
scheme, For q(st) , in the interval O Z 358 h where (1

3M . r(1{£)+ , we introduce

varies {rom

1M v(l;\)

Y = (v) = t) -
q(S,t Clem * h{ M.(m)-rx M(:)m] t&, (1)

where € is the so-called truncation error in this expression. The
advantage in using linear interpolation will be seen in the resulting
simplicity of the operational matrix, particularly when boundaries are

involved.
If q(Z,t) is analytic in 2 , we can develop a series expression

for the truncation error. We may write

gl =q, + (‘Cl')mﬁ'n* (q")M”g%! . 22)

14



which is a Maclaurin series expansion about Z = (MHY‘«))’\. Successive

derivatives can be eliminated by evaluating Eq. (22) at other grid

points., We eliminate the first derivative by substituting for it from

] " 2
IMemet” Imem® (ci)m,,t‘ t (q )Mmtt A

and get

q(S) = c1M+m+ 'SR (qM+M1'; :1M*m) +(q;')nl+‘m%j (1 -lf})

|

+ (q'") g (1—-‘;;_) t..
This gives

€ =(q) 5 1-0) + (¢ %3'(1*%)+~~ 23)
Qmm‘ S 4'4“;,/‘- S

Proceeding with evaluating our integral, we introduce Eg. {21}
into Eq. (20) which we develop as follows:

Mph

] (Mht)

Mk
My M4 h

_'S'_" -ks N _
m=0 G Se (1’4*1: h[aMﬂmi %M*m] +€ds
0

M-M-{ m h . h "
ms=0 . ) )

15 .




M M-1
K™ A
= Z Y QMfm.K' t 4Mﬁfﬂf‘ K?- + 61
k.
m=0

where
-kh . -kh
- khegtt - 1-(1+kh)
K, e , Kz = - e ", (24)
and

M7+
M+m order in h

K
{ ks 3 .
- - - _ N o terms of high
€= [eeds = - (q) [ W]
V]

In numerical analysis, the value of judging truncation error on the
basis of a few terms of the errof series is dubious and this practice can
be carried toc far. At the stage where truncation error becomes
troublesorbe, the validity of such an approximation becomes questionable,
Furthermore, there is a tendency for such approximations to give a
talae sense of security in higher-order interpclation schemes, whereas,
in practice the arrival of intclerable grose-truncation-error in compu-
tations is probably little delayed by such schemes. More consideration
shouid be given to the use of tighter grids (that is, smaller h.) which
results in a more significant actual reduction ot truncation error,

In making real predictions from initial data, some investigators
object to the use of tighter grids, They feel the number of grid points
should not exceed the number of initial observations of the field, They
also feel that computations should be carried out with no more than the
number of significant digits in the observations, We believe these
notions are incorrect,

It is important to distinguish: between the types of error with which
we are dealing, The initial error in the fields is due to limited ob-

servations, Truncation error is due to the disparity between finite-
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diffe-'ence equations and differential equations. Because we are trying

to duplicate a differential process it behooves us to use as tight a grid

as is economically feasible; and, enough digits to give a significant
difference between neighbouring grid pointe should be carried,

In the absence of aay aubjective analysis skill, the initial values
of the fields at the grid points are computed from some objective
interpolation scheme, Extra grid points thus do not add te the specifi-
cation of the fields at the initial moment but at moments after the
initial. The values at the extra g.id points are not reduncdant and play

a significant role in holding down truncation error,

If it could be shown that physical differential processes are trans-
formable into algebraic relationships between values at grid points
without differentially dependent truncation error, then the comments
of the preceding two paragraphs could be ruled out.

Returning from this digression to our problem, we accept the
truncation error by dropping € . This error can be estimated by
vigually superimposing linlear interpolation on = plot of q vs. 2.

In our development we have reached

M-M-1 K M-t
K LY ™
(th) o :/j K™q, + 2% Z K'q,. .|

In the second summation, put M = m - 1 .

Mp-M

Z K"q. .-

Since T is only a dummy, we can drop the bar, that is, we can

Mph

] (M) = %Z_. K" Y

~L kK

replace M. by Y™ ., If we now express the first term of the first

summation separately and add and subtract an extra term on its end,
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Mg M Mi-M KL m
I (Mht) L("E KZ—_ %— K Clrvhm -K‘ K fziMbtm ZK qum )

then we can recombine the two summations. Thus

Mih ALy My~ M
M K K m K, K
LMD = 7% * A %‘? i eI K ey

K;=Kq+—:i—=[e + et Z.]/lh . @5)

By a similar treatment we find

where

? D ’:1;?’0 .-
.’{Mh(f\ﬁt"}.) 2 -51 G + K% 2 Km Kl YM N‘
Mgh AT 4 Wy

Adding the two parts of the integral completes its evaluation at the
arbitrary point Z = Mh .

Mph MM

I (W\t)-__m [ZKq F K SK 9y (26)

masl

i

L M-Ma

! ‘\3 YZ=:I chlM-m— Kl KMb.(;Mb— K'K QMo.j
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The two other integrals which need te =svaluated can readily be
found from this one., The first results when Mb goes to infinity,
Eq. (26) becomes

]?Mh.) 4 [ZK + K ZK Qo 27)

* K mZﬁ K Fuem = Kl KM‘MaqMa}

00
I (Mht) = L ZK 19 * K3ZK q (28)
- 00 Z M+rm
* K3 — K m- mj]’
m=1
We may now readily complete the four expressions for \UM(T)
corresponding to the different boundary conditions, We already have
it for the unbounded model. According to Eq. (12) page §, it is
given by Egq.({28):
- m
_ | \
O = - 17K g, + K, 2K qurm (29)

+ K3 ";i.l KmC‘M-m

At this point we should make sorne remark as to what is going to -
be done with the infinite series. In computing, these must of course
be terminated; and, in practice, one can at most compute the evolu-

tion throughout a finite layer of the fluid (with the exception of the

The second results when in addition we let [\/](L g0 to minus infinity,
7 19




z-periodic case). This necessarily restricts the type of profiles that
can be handled with this method if there is to be any standard of accu-~
racy. JSince the strearn function at any level in the layer is to be com-
puted only from the vorticity in the layer, it is required that the
ignored vorticity, Ci , outside of the lav r we are considering is-—anrd
is expected to remain-—mnegligible in comparison with the vorticity in
the layer. The method is valid if this is initially so, and will remain
valid the longer the smaller U“ is outaide the layer. ¥ortunately
the condition can be checked quite simply. The vorticity at the end
points oi the layers may be rega.rded as an indicator of the magnitude of
the neglected ouiside vorticity, If these end vorticities become ap-
preciable, again by compariscn, then the method begins to break down
as increasing error flows in from the outside.

In the abacnce of boundaries, the addresses of the extreme points
of the layer shall be given by i\/lu for the upper and f\/‘l_ for the
lewer, The upper limits of the surnmations are thus replaced by
[\/]U—P/i for o0 and by f\/i'ikaor - o0 . We shall also at this

point intrcduce the netation

M, M —
N o™ : <X7TT oM
T{:i ' Arwem = (QM)“ gl N Ygem (qm)i (30)

where the subscripfs W and ,Q, indicate that the weighted summation
is to be taken over all the upper grid poinis and over all the lower grid
points, respectively.

The stream function of the unbounded model is given, with this

notation, by

qjm(t): .%E [aK\‘iM . Kb( M)u + Ks( M)J , (31

in which it '3 understood that the iM‘S are functions of time,

4
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We now move on to the stream function of the half-bounde 1 model
as given by Eq, (13) page 6 . The discretization is accomplisked with
the help of Eq. (27) for the integrals, Substituting as before Z = Mh
a = M(Ah and labeling the uppermost point by MU » we find that

) MM
\pM(t) - :21‘_{ llK, qy * Ks wZ_lK Qure on

M-M,

m M-MA | ~
E K IR
+ K3 e K %M-m‘ K‘ |\ 1‘“& + Zi- -(_k.L}(ll\' &)
My-M M-M
, v— m _ a
. * ZKI C1Ma'+ k3 "%1 K 3"4&‘"“ K' K CiM(L. ’

M-Mgy
wherein the term K K q,.,a appears twice and cancels, Since the
summations extend over all the grid points above or all the grid
puints below, e again adopt the notatmn. Eq. (30). Hence, for the
half-bounded model,

Wo= [ Maar KoG)  KGd] e

M-Mq

+ 1. --Z_kU(O-)S * Z‘chlma+ Kz(qMa)“] K

‘ In the same way, with the help of Eq. (26), the stream function
1 of the bounded model, as given by Eq. (16), page 7, and the stream

function of the z-periodic case, as given by Eq. (18), are discretized.
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If we introduce generalized star functions, *l and *2 , all four

expressions for the stream function can be given by onc expressaion:

‘PM(*) - 1 [ZKl A + K3 (qm)u-k kS(qu)}l] (33)

(kR
K3 My~ ™M 'K3 M-Mg
+ = % K v % K

The corresponding star functions are given as follows:

For the unbgunded miodel,

= & = . 34
*, *, 0 (34)
For the half-bounded model,
*1 =0
(35)

* = K4QMQ+ (qMa)“+ '50

For the bounded model,

‘. el Y1 K TK o s la )
o= '/\b'LKMMmF \‘iMa"ﬂl 1 EL\‘"[KH"JL <V*”b)LJ *9)
(36)
X) = KQ{K43MQ+ (C«'rMa)uJ ) Kb[K4qu+(qu),_] +22
For the z-periodic unbounded model,
O K I O -
*l. 1 _ KMb"Ma | 4 /A ( Ma)u—_i (37)
D P ‘
LT - KT _K4 A (q'Mc)L-
22




The explanation of the new notations follows:

NN A " 38)

= K K l
K, = KK/ (K K“‘") J
S, = -2 Un 3/Ks ' (40) ‘
S = KK" :U(a)Zk K S-Um 2K S, 7 /X,
= U2 K S,- U 26K S ) /K

(39)

;4L

A

Substitution of Eq. (33) into Eq. (19) yields the tendency of the
arbitrary component ClM(ﬂ

PRI PR (TR 9

M-t " (42)
N M-Mg
B N YR ) K ] )

where
" "
= kUM+UMK|; vM:_UMKE/i - (43)
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; It should be apparent that these formulae have been designed for
z simplicity in computing, For a given problem, the S's and K's are
! all constants; and }JM and VM are components of constant vectors,
‘\.' The q_M 5 and the star functions are functions of time. The star

| functions are computed at any instant from the constants and from

X

qMa , q-”b , (qM(_l)u_ and ((}Mb )'_ , and are independent of M «
There i3 an all-important feature on which rests the simplicity
and economy of these formulae for computational purposes. As can be

seen from Eq. (30):

LA S g W Y

(qm)m = K (qM+l)u.+ %Mﬂ.]
I\"iM)Q = K

{44)

PR P

¢ s e v

It is these recurrence formulae which make it possible to compute
the tendency, at all grid points, by making at most only five computing

traverses of the grid points, no matter how many points thereare jnall, The

procedure is as fcllows:

a. PReginning with the top point and progressing downward, ihe con-
tribution of the term containing ( QM ). is computed at each point
with the help of Eq. (44).

b. Beginning at the bottom, the contribution of the term containing
(CiM )y 1is computed at each point 1lso making use of Eq. (44). Upon
completion of these first two traverses the two star functions are

evaluated,
c. Then, beginning at the top, the contribution of the term containing

*l KM5-M is computed at each point,

d. Beginning at the bottom, the contribution of the term containing

% KM ~Ma is computed at each point. These latter two traverses
require only a multiplication by K in progressing with the factor from

one point to the next,
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e. The contribution of the term containing qQu may be obtained by a
separate traverse, or may be combined with one of the other traverses.

At this stage, we may ask about the applicability of this investiga-
tion method, For one thing, U”(:‘.} must be continuous, Should we
desire to investigate particular profiles in which this is not the case,
then we must either use a modified procedure or we can make an
approximation to the flow profile by fitting to it a curve which has a
continuous second derivative,

The perturbation vorticity distribution in Zz is being approximated
by a linear interpolation between grid points, The magnitude of the
apace increment, F. . must be sufficiently small so that linear inter-
polation will closely approximate the initial distribution, Whether
the interpolation will yield a good approximation at later times de-
pends also on the smoothness of U(Z) and U”(Z). Hence, K must
be chosen sufficiently small to also capture the detail of these functions,
Even with these precautions the linear interpolation of 1’ during its
evolution may become completely inadequate. This is called the arrival
of the intolerable gross-truncation-error,

5. EIGENSOLUTIONS AND COMPUTATIONAL STABILITY

For purposes of numerical analysis the governing set of linear

equations which is represented by Eq. (42) is written in matrix notation:

Q ] (45)

d Ci({) =

i
at L

The coefficient matrix, g , has only real constant elements., The con-
atant vector, (i , arises from the deformation of the boundary sur-
faces and may be complex. The presence of the boundary surfaces, but
not their deformation, affects the elements of /C/

The evolution of initial perturbations can b:determined without
discretizing the t continuum. Partial discretization has made the prob-

lem tractable but the work is prohibitive unless Cl(l) has few
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components, The solution method is based on the expangion of the
initial field into a linear combination of eigensolutions,

A particular solution of Eq. (45) is the steady state

-1
q, = -C 4. (46)

~

This may not be the most general steady state with wave number P, .
For the complete solution of Eq., (45) we must add to qs the

general solution of the reduced equation,
d qt = -i(qt) . (47)
dt % =1
Introducing the eigensolution
N
q(t) = (1 e ) (48)

into Eq. (47) leads to

i
S>r
40
J!
]
D]

1

This is equivalent to
(C-]q-0.

where l is the identity (or unit) matrix. ‘
This system of linear equations, Eq. (49), being homogeneous
is overprescribed (thus cannot have any solution) unlesz the deter-

minant of the coefficient matrix vanishes:
| C-N|=0. \ (50)

This is a polynomial in )\ and is called the characteristic polynomial
of the matrix g_ . Its order is that of the matrix. Thus it has in

—
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general as many different roots as we have grid points. These are
called the latent roots of g and are the eigenvalues which we seek.

Corresponding to each latent root )\n there is a non-zero vector

which satisfies
{ —_ 51
~ q - >\YL (]('n. - Gh

These are the latent vectors of __C and are the eigenvectors which
we seek, They are indeterminate‘\io the extent of an arbitrary factor,
Thus we may add that they be normalized, that is, l C]{m I = 1.

If Eq. {50) admits A=0 asa solution, then the corresponding
eigenvector can be combined with (15 to form a more general steady
state, -

Becxuse, in general, there are as many different eigensolutions as
there are grid points, the set of eigensolutions is complete. That is,
by a proper choice of complex weighting coefficients, a linear combina-
tion of the eigensolutions added to q_s can be made to fit any initial
vector q and thus will give its subsequent evolution,

Because Q kas zli real zlemente, its latent roots are either
real or zccur in;omplex conjugate pairs., If, as a special case, Q
is symmetric aa well, then all its roots must be real, However, tl:;
roots of an asymmetric matrix may also all be real,

For a real latent root it is clear that the corresponding latent
vector can always be chosen so as to be real. If not so chosen, its real
and imaginary parts must be parallel.

If q = éo-{— i’Bo corresponds to one latent root of a complex
conjugate pair then q = éo - LB.O corresponds to the other,

éo and 50 here 3eing real and not parallel., These statements
can be verified by substitution in Eq. (51).

The above remarks have a bearing on the "tilt" of the eigensolutions.

To introduce the tilt concept we must first return our X dependency,

The eigensolution is then given by
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(1 (X,t) - RL: q e—- L)\t eka (52)

—

The substitution of q = éo + i@o and x ".:-,U. + i.\’. where
A , Bo , P and V are real, leads to

e[ A, v (hx-pt) - By aim (k)

q (x4)

- e"t DO i (kX‘)lt - @o)

The components of DO , the amplitude vector, and ?g , the

phase-angle vector, are given by
Z Z
DoM = (AOM + BOM
= aacdan (“BOM/AOM) .

If ¢c.4 varies with M - (taat ie, with the height Z ) we say that
the wave "tilts." The shape of the nodal "line" is given by the nodal

vector X = ¢o/k. .

The eigensolution which has a real eigenvalue (a real latent root)

) \/2

.

™M

yields a neutral wave which has no tilt. The eigensoluticn which has a
complex eigenvalue (one of a complex conjugate pair of latent roots)
yields a tilting wave,

A complex conjugate pair of eigenvalues yields one amplifying
wave and one damping wave, These have parallel amplitude vectors and
equal but opposite tilt, Where the nodal line of one tilts forward, the
nodal line of the other tilts backward by the same amount,

The dynamic stability properties of the flow profile a ‘e revealed
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by the eigensolutions. In actual fluids, flow of smaller scale (down to
and including Brownian motion) will generate them. Thus, if Eq. (50)
admits any complex conjuga‘e pair of latent roots, the perturbation
will grow indefinitely as it contains an exponentially amplifying eigen-
solution. The profile must then be considered a transient state as it
is dynamically unstable,

The eigensolution synthesis method of solving an initial-value
problem presents a formidable tagk which might be entertained if we
are dealing with a small number of components. It is more feasible
to complete the discretization, Discretizing the time dependency
resulis in a marching equation,

In proceeding to discretize, one discovers that for our system
there are a number of finite-difference analogues which satisfy the
necessary condition for validity mentioned on page 11. The choice
among these is made according to which of the analogues preserves
the nature of the time-continuous system as revealed by its eigen-
golutions, We shall examine some of the aralogues in this manner
which has been expounded by Hyma.n4 and others.

The t continuum is replaced by the diecrete values ¢ =NT where
N isan integer and T is the time increment. The integer N
will be used as a labeling subscript, The continuously varying vector

(t) is thus replaced by discrete values: q’N at the time t =NT.
~ The resulting marching equation also has characteristic solutions.
We shall call these the U eigensolutions. They have the form

- N
?.N = 9 T, (53)
whereas the eigensolutions evaluated at t = NT are given by

q_(NT) = q (e-i.)\T)N .

(54)
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We shall see that the eigenvectors are unchanged by the discretization.
Hence the change suffered by a particular eigensolution is entirely re-
vealed by the disparity between € AT and 1 .

All the valid analogues of Eq. (45), page 25, have the same partic-
ular solution as has Eq. (45) as given by Eq, (46), For this reason we
shall refer the analogues directly to the reduced system, Eq. {47),
thus avoiding the repetitious reduction in each case.

The first analogue we shall examine resuits when a forward first-

order difference is introduced for the derivative. The system,

Eq. (47), becomes

[%N+l- qu}/‘t = -..lg:%?d

Substitution of Eq. (53) results in

—ia
-y

(c-81)s-0

\ L
Hence

_ 1=y -0
'g i.TlO’ : :

N—t

which restricts ¥ . Comparison with Eq. (50) reveals that
(1 - ‘()/ LT can be identified with A . That is, corre-

sponding to each eigensolution with eigenvalue )\N satisfying

Eq. (50) we have = T eigensolution whose ‘T eigenvalue, ) A

is given by
V,=1-L1TA, - . | "

Also revealed by Eq. (55) is that the T eigenvectors are the same

as the corresponding eigenvectors,.
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Corresponding to a real )\ s lYla = 1- * (T>\)L. that is, the
magnitude of YT s greater than one., This means that all neutral
waves are converted into amplifying waves by the discretizaticn. We
need investigate no further; this analogue is computationally unstable,

We next examine the centered second-order analogue which has

received such wide use for a first-order system that it can be called

the "conventional' analogue., For Eq., (47) it takes the form

Q - a 21T = =1
[jjnn ,"-:N-&]/

Substitution of Eq. {53) results in

NS

I

that iga

Y=t [l- (fxn)z] Ao A

Each )\ gives rise to two values of Y for the same eigen-
vector —twice as many U eigensolutions as there are eigensolu-
tiona! This multiplicity is needed for completeness because both
the initial-value vector and the vectorat N =1 must be accom-
modated, Both these vectors must be specified before one can begin
to march with Eq, (56).

This analogue hardly preserves the nature of the first-order

tendency system which it purports to approximate, It actually has a
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nature corresponding to a second-order tendency equation.
. . - LAT
Comparison with €

shows that the roots given by the plus
sign,
| | %
Y., = + [1 - gm,)] - LT, (57)
are the proper roots, But we must attach a condition for the com-

putational stability of this set of roots., For a real >\“ (neutral

wave).

b2 -1 - (T.)\n)-‘ + (T)\n)zv"'l

"n+

K

provided the square root of Eq. (57) is real, that is, provided

T2 1/|N| (58)

According to Rayleigh's theorem, neutral wavea move with the
speed of the basic current at some level in the flow. * The tranala-

4
tion speed of the neutral wave is given by )\/}L , hence

AL, s RIULL,

Introduced into Eq, (58), this yields the possibly stronger condition

(that is, sufficient but perhaps not necessary):

. T s 1/R. IUlmML

For a given T this defines a critical wave number:
._k'c. - l/"" IUlmwy. '

*See, e.g., Garcial, p. 90,
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Neutral waves with a longer wave length ( k_( kc ) are preserved
neutral but those with a shorter wave length { k > kc ) may be
computationally araplified.

The presence of the extraneous roots is far more cause for
aiarm. . Were it not for round-otf, q\ could be chosen in coinplete
accord with qo and the proper o eigensclutions, Unfortunately,
the extraneous ¥ eigensolutions do enter into the computing as a
result of round-off, or more rapidly by an incompatible first-time-
step {for example, a forward siep).

Corresponding to a propagating neutral wave { 7\“ real) the
extraneous U eigensolution intrcduces an additional neutral wave,
IY _! =1, travelling in the opposite direction,

Corresponding to an amnlifying wave (one of a complex conjugate
pair) the extraneous wave has the epaine tilt but dampens, Corres-
ponding to a darping wave (the cther of this conjigate pair) the
extranecus wave has the same tilt but amplifies,

t is fortuitous that the latent roots in our case vccur in complex
conjugate pairs; otherwise the "conventional' anaiogue could introduce
areplifying waves ({rom damping waves) where none witn that wave
length should ke presgent, This could happen if‘z other problems., As
it is here, the main nuisance value of the extraneous 1 eigen-
solutions is the distortion they can cause in the amplifying configura-
tions,

The fact that the extraneous unstable component is oscillating
( Y“_ negative), that is, changes sign with each step, may make thia
trouble readily dutectable, The conventional analogue is further
criticized in Section 10,

Extraneous ‘Y eigensolutions appear whenever a finite-differ-
ence analogue relates more instances in time than are permitted by
the nrder of the differential equation, A first-order differential

equation by its nature permits only a two-point analogue,
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A number of analogues which are composed of two operations have
been prepared. These readily yield to analysis. One particular group

has in commeon the second operation

(9.7 wl/r=-illg+ 48l /e e

where N(i)\ is an estimate of the value being sought and wiich
may be based on one of several different first operations.
The estimate may come from a simple linear extrapolation of

the vector itself:

{
e - - .
Qun = ¢ ™ -t (60)

Substitution of Eq. (60) in Eg. (59) reveals the true form of thias

analogne:

c.._.__.l

fe=-il[3q,- 3.‘-;]/?- f

It is a three-point formula which will have extraneous T eigen-

407 54

solutions. Substitution of Eq. (53) leads tc

(¢- & W)

Hence, according to Eq. (50), page 26, the corresponding Yisare
given by

. 9 . ‘2
Y. = Ji-lc,’t)\nt[-“?_——‘gf?\tn—ﬂ}ﬂ] . (61
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Another possible combination results when the estimate comes
from a forward time-step:

[0~ ] = -1l

Combined with Eq. (59), the result is

(9o %] /7= -iC[2g,mivlg,]) /2 e

Introduction of Eq. {53} leads to

[ng +iv( - (1-?)1_) 9=0,

and the conditicn on Y is

ne

|(‘fz g' + 1T ) - (5'1)1 ! = Ov o (63)

According to a useful theorem* of matrix algebra, the latent
L . 2 .
roots of the matrix (TZQ + LTQ) are given by (‘tl N+ LT)\) ,

and the latent vectors are those of C: . Hence,

1“)’,; = N + LTA, - (64)

A third combination results when the estimate for Eq. (59)
comes from the conventional analogue:

[J}";’. - 3,..‘]/ZT = -ilq,

*See, e.g., Milne.7, n. 163,
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This leads to
z 2N\ _ co 1 o —
Y +[1’ >\n 1+,L_ln;|)’n+1,_%n_0 . (65)

None of these schemes is satisfactory. The reader may complete
the critique by mapping their respective transforms, Eqs. (61), (64), .
and (65),

We now move on to the most natural finite-differsnce analogue of

our first-order system. This is the f'centered' first-order scheme:

[(}"*‘. %le/t: —Lg[(?_m*' %NH]/Z ' (66)

The significant feature is that the difference is related to the tendency
evaluated for a centered mean-value of the argument,
Introduction of Eq. {53) leads to

(C-& 51 g-0

Hence,
2 1-% g
A-T '*\(ﬂ. 1" ?
that is,

N+ AT A /2

one value of T“_ corresponds to each 7\1\_ for the same eigenvector.
To simplify the investigation we introduce )\'f/?. =N +iw,

where 7 and W are real, Y becomes
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| —w + 7 .
h ) (68)
4w i anckan I—::w_'-n:_i

This is to be compared with
—O\T 2w u(-2y)
et = &P et

-

Examination reveals excelient agreement and no computiational
instability. Nsutral eigensolutions, (2 = O , become neutral
44 ei‘genaclutions. Damping eigensolutions, w < § , becomes
damping T eigensolutions. Amplifying eigensolutions, w >0,
become amplifying ‘¥ eigznsclutions, )

For |cu,'r;| «<d , the quantitative agreements of the
corresponding phase-speeds and the corresponding growth-rates
are very good indeed, Therein lieg the advantage of using small
values of T , the time increment, e .

Egquation (58} can be used to compute ‘Y] aund @ from ¥ for
a particular eigeneolution.

This investigation reveals the centered first-order finite-differ-

ence analogue to be the most natural analogue of our first-order

system. It wiil correctly detect the dynamic instability of flow pro-
files,

This is the analogue we shall use,

It may be feasible in special cases to transform a first-order
system into a legitimate second-order system, This is necessarily
accompanied by a corresponding reduction in the number of variables,

A second-order derivative has an easy-to-use analogue, Further-
more, the conventional analogue may be used for a first-order deriva-

tive when it appears in a second-order equation.

37

.................................
.............

S he Tty
.........




The desired transformation is not accomplished by merely raising
the order of the system without losing variables in-the process. If the
same number of variables are maintained in the resulting higher-order
system, then the nature of the system has thereby been corrupted and
extraneous eigensolutions have entered. The extraneous eigensolutions
are carried over into U eigensolutions and they would subsequently
develop in the computations.

The variables lost in the desired transformation manifest themselves
a8 initial tendencies and are related to the tendencies during the evolution,

Such a transformation is particularly simple in our system because

Q_ is real, The differentiation of Eq. (45), page 25, and the subse-

quent substitution of Eq. (45) for the first derivative which appears on

the right, leads to:
dz 6
= q_(t) = C I CQ(t)+d.| . (69)

The real part of Eq. (69) and also the imaginary part thereof form
two complete systems, each having half the number of variables of the
f{oimer system, Eq. (45).

If we substitute Q(t) =£\U) + L&({) , where é\("-) and ’@({)

are real, the real part of Eq. (69) is

d* = —
& At

ne

[ggm + Qe g] , (70)

for which we have an initial value, Ao , and according to Eq. (45},

an initial tendency

dt ~ =~ ~

(d.A(t)) = B, + bn - d
c
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The lost variables, the components of Q(‘l) , are related to E\(t)
at all times by

&AW = B +dm. d

this relationship being the real part of Eq. (45).

In the same way we could deal with B({) as a principal dependent
variable, -

Equation (70) yields the same particular sclution for ,A\_\(ﬂ as did
Eq. (45), namely, £‘§5 = “Q_.l KL: é . To determine the general

solution we require a complete set of eigensolutions of the reduced

equation
& An=-C
. AW = -0 A® . (71)
dtt ~ =
A
I q e“"l t is a complex solution of Eq. (71} then the real and the

imaginary parts thereof are separately real eigensolutions of Eq. (71).

-1t

Substitutions of (i e in Fig. (71} leads to

=~

€ -0
Thus, according to Eq. (50), page 26, r: t )\“ are the latent roots
which correspond to the latent vector, 9n f (;-i_ . The roots - 7\1'\.
do not add anything alien or extraneous, 'ihey naturally belong, Their
presence in Eq. (71) verifies that the complex latent rcots of the real
matrix Q, must occur in conjugate pairs, or else the nature of the
problem would indeed have changed,

The finite-difference analogue of Eq. (70) after reduction is

(A A - 2A)e=-CA, . (72)

-*-
~ N+ ~N=-i
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N
It qX is a complex solution of Eq. (72) then the real and the
imag‘ivnary parts thereof are separately real T eigensolutions of Eq.
(72). Substitution of QXN in Eq. (72) leads i2

i

Thus, according to Eq. (50)

LY, -L- T = T TR

whick, solved for /, , yields

L

Loz o - foanz | by a2
ho=1-=T Kniu(rkn-—é—'t “) (73)

corresponding to the eigenvector Ci»n. . The comparison of these

~r

two values of _ivn with e L)‘QT shows the necessary quali-
tative as well ag excellent quantitative agreement, The analogue is
computatiorally ‘stable,

The application of this analogue is quite straightforward. Each
time-step requires the procedure described on page 24 to be per-
formed twice with slight modification.

Although it is highly recommended, we shall not use this analogue
of the cultivated second-order system because we made use of special
features of our first-order system. We are interested in dealing
directly with first-order systems for which we use the natural cen-

tered first~order analogue which we have analysed,
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6. THE INTEGRA TING PROCEDURE (LINEAR PROBL EM)

The centered first~crder analogue,

[c}."*‘— ?‘.“]/‘s = Q—[%_N* C;{uw:l/a +d > (74)

can be made explicit as follows:

[2£+ arg] Q. (Zl-m'g] q, - 12Td

~

(
3 -1
Wl

-~

' -1
Que; = 2] + il ZL—'Lr(;)

In some cases it might be desirable to use this explicit formula,
However, several objections may be raised: (a) the inversion and
¢ multiplication involve consgiderable calculation with accompé.nying
inaccuracies; (b) the raagnitude of the time sten is frozen; and {} the
. resulting coefficient matzix on the right hand side is generaily far )
more complicated than the matrix ,C:_ . Simpiifying features such
as exhibited by Eq.’ (44), page 24, are lost.
Because of Eq. (44), it may be more convenient to use an itera-
tive method to achieve Eq. (74). This method is particularly inter-
esting because of its applicability to nonlinear systems (see Section 11),

Equation (74) may be written

e = ‘i.(“{& [@N* %N,‘J/c‘. + i} ' (75)
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The iterative scheme for arriving at the solution of this equation is

SRR (4 PR | VR INE

~N*\

revealed by

where the superscripts in parenthesis label the successive approxi-

mations of %N*H .
To analyze the convergence of this scheme we set

™M =q o+ ey n=onr2.. (77)
INTHI N+1 ~
and thereby define g('x) as the error of the M -th estimate. The
subtraction of Eq. (7j) from Eq. (76) reveals
. LS
M= 3 Y (78)
Hence by induction
[
) - ‘
\
=z (79)
€= (-3¢ e :

This scheme is convergent if g(m)__* Q_ oy h—>32C , The neces- '

sary and sufficient condition for convergence is that all the latent roots
of the matrix (-— L 12.';-] be less than "one' in magnitude,
According to Eq, (50), page 26, the latent roots of the matrix,

. el
I:-L%C,_), are given by (-LIZ: )s.,.\),where nNo= 1, 2....Mg
and Mg is the order of the matrix, Its latent vectors are thase of Q_ :

[—L%Q] %Nz(—L%)\ﬂ)%n (80)
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Let us impose that the latent roots be numbered in descending
order of magnitude; and let us express e(c) as a linear combination
—~,
of the latent vectors:

@) _
2= % € %n. (81)

Thus, according to Eqs, (79) and {80),
) _ 4 A 8
e _Z 6, CLEA) 4o - (82)

This makes apparent the stated necessary and sufficient condition {or
convergence. Imposing this condition on Eq, (82) yields

T <2/IN] - | (83)

This is a definite limitation on the size of the time increment which
may be used with this iterative scheme.
On page 32 we stated that according to Rayleigh

|7\l§ e kf!u!rrax

if >\‘ is real. If we assume that this also includes 7\1 compiex,
we are led from Eq. (83) to the sufficient condition

t < 2/e|U],,, - e

The first guess, q_'&?‘ » may be chosen objectively, Let us

consider - 11 compare choosing extrapolation (which we shall indicate
by E:) with choosing persistence (which we shall indicate by P:).

E: %t&?\ =L C-\__-N_ %N-I )

e _
i L N
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This yields

. (o)
E. £N+1 - Z%N‘ %“_1: iﬂ*’l'

N ) _
P: Ensr T ?r_N in-ot

We can expand Q-N as a weighted sum of T eigensolutions, Eq.

(53), page 29,

~

= % o'nqmyw: ’

where the @  's are determined by fitting the initial vector q‘o and
the I 's are given by Eq. (67). It follows that the choices yféld

Z N-f
(85)
» 7 - p—y z N
P- (t“)uﬂ = o (1 ﬁ‘) Tn . ,
it is of interest to deterrnine which of the two cnoices yields

smaller values for the én 's, The ratio of the members of Eq, (85)

yields
| £/p | = | Og-1/,
This magnitude is é 1 for Re: [;\ % {/2 . Thus Re: r\'= 1/2

is critical, According to Eq. (68),

vy = Ur)(-w)-n?
R:7 -afrn’

2
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where )\’l‘,'/?_ = 77 + LW ; and the critical value lies on the circle

ot (w- 13 = (L)

For values of )\“T/Z. falling inside the circle, extrapolation
yields a smaller value of én than does persistence. That all
values of )\“T/Z fall inside the circle can be assured by the suf-
ficient condition, | 7\.' T/Z < 1/3, that is, by

1< /3 (86)

In practice, the incidence of two successive estimates which differ
in each component by less than some prescribed tolerance magnitude,
T ., shall be accepted as convergence. The iteration which achieves
this is denoted by the subscript ¢ , that is, by Re s and the ac~ .
cepted'solution is g::" ‘

If the matrix Q is symmetric, then its latent roots are mumally
orthogonal and the anZlyais of the error extinction is rather elementary.
However, this is too special a case to dwell on and wa shall not ke so
restrictive, ,

If the matrix Q_ is asymmetric, then the magnitude of the exror
vector and its comp;nenta do not necessarily decrease monotonically
until the slowest decaying component of the error latent-vector expan-
sion dominates,

After some minimum number of iterations, Nn

w __ N
e ~€‘(LL>\1) Q> 2> hy (87)
If A‘c 2 Nyp s the analysis of the rate of convergence can be based
entirely on Eq. (87) because what happens to the other latent-vectors
of the error expansion does not matter,

Equation (85) reveals that in both cases the weights of the error

latent-vector expansion develop with the T eigensolutions.
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Corresponding to neutral waves, I Y“|= ! and the €, does not grow,
But in the case of dynamic instability l 71 I > | for some U , and
the corresponding €, grows to progressively increase Ay « For
this reason or more directly because T may Rave been chosen in-
sufficiently small, A. may occur before 4., . If this happens,

an effective analysis, with Q asymmetric, depends on all particu-
lars of the problem and is tanamount to solving the particular evolution.
We restrict ourselves to A, > Ay .

The reiteration is ended when

(Ao ) L (RemY) 8
~ N+t - %NH INt (88)

has all components less than T in magnitude. This limits the error

becauae

A("c’ = e("t‘ - e(ﬂc‘ )
~'N+1 C~ N+ ~N+|

P

v (FUEN-T I,

s

» Up to this point we have not discussed the effect of round-off during
the reiteration, Some comments are now called for, Round-off causes
spurious variations which are usually confined to the last few binary
digits of the components of %gh;)l during each iteration. Because of
these variations the iterations may not lead to a steady value for QA+l
Instead the reiteration may settle into a cycle of two or more iterations,
It may happen that during such a cycle none of the successive differ-
ences satisfies the tolerance, and convergence will not occur. This
bothersome phenomenon should not be miataken for divergence, It

causes oscillations, not '"blow-up."
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This is a shortcoming of the test method to determine satisiactory
convergence. The probability of the occurrence of such oscillations is
reduced by increasing T . On the other hand, it is undesirable to
increase the tolerance not only because cf reduced disparity in Eq. {74)
but also because the terms of the centered first-order analogue will not
have been met. In fact, if %S’li is b2ing determined by extrapola-
tion then our operation still relates thre< instances in time. The
tolerance should be of the order of round-off so that only error which is
practically random remains,

Instead of testing for convergence it may be preferable to simpiy
carry out and accept the result of a fixed number of iterations for each
and every time etep. The number of iterations may be determined by
fixing a maximum error-to-wave-amplitnde ratio.

If extrapolation is used the error vector is given by

e®™ _ Z:_ - oT’L(l—T;‘)l ﬂ.l('i%)‘n)nin ,

SN+t

and the vector itself by

N+t
Quat = 2 ¢ ¥ 9n

Ccnsequently the errbr-to-wave-amplitude ratio for the n-th wave
(n-th latent vector) is

- [/ ] e

We set the upper limit E on the magnitude of thish_ratio fo-all n .
If Eq. (86) is satisfied, it is sufficient that |Iz- 7\1| < E , or

A2 ME/L\.‘”%)\,| .

Both of these Ln. 's are negative,
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This method also takes on more significance if Q is symmetric,
otherwise it also has its shortcomings. It is not as rea—zﬂy extenaible
to the iterative solution of nonlinear equations as is the test method., In
the integrations to follow, the test method is useds

The amount of computing may be reduced by making use of the fact
that Q has all real elements, We introduce q_N = &“ + L«B.N

where AN and BN are real, into Eq., (76), page 42. The real
and imaginary parts of Eq., (76) then yield

AM oA L g[@NJfB’::-:)]/UDJm;Q

‘\aN+“ v\—N

(89)

n. { " ]
B, = B, - 'f{%[é\wéﬂ/“&:éf |

TNTI ~N |

This reveals that it is redundant to compute all indicated successive

estimates for both /j‘.\blfl and 5N+l’ The even N estimates of
AN*H and odd A estimates of 5N+I converge quite independ-
ently of the odd A estimatzs of .",".\,-N'H and the sven A estimates

= (@

necesdary to compute only one set, The set which beging with .)““

of 3 Nt . Both zets converge to the same values, sc it is

is chosen and 8o as to reduce the number of coding instructions, per-

sistence i8 checsen, BN-H = § N .

The convergence test may be satiefied by either succeeding values

of BN +) or of A w+l o The mtervenmg value of the other part
is then also accepted. For example, if BN-& \ lies within tolerance
of BW then AL 4 p@

PN s the QNH = .\1~| | 2

It may be possible to desiyn iterative procedures for solving
¥q. (74), page 41, which converge more rapidly than does Eq. (76).
In this respect the techniques discussed in Section 10, in connection
with the iterative method of solving the finite-difference analoguc of
Poisson's equation, might prove successful, However, the analysis by

Younglo does not apply because our matrix Q does not have the
necessary property (property A}, -
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' 7. THE COMPUTING PROCEDURE AND OUTPUT

According to Eq. (42), page 23, and the marching procedure, the

equations which must be programmed are:

A(h.) A av }JMB:-‘) - {(—Bf:‘))uf (B:‘))Q}

M, N+ M N

— Mg-M =(r-t) | yM-M
—vy (BN K" vy ,BK T,

N LR

MNEL oM
| _ o MM - "
- Q) ) gH-Ma
vy (@AM K" = vy x, AT)VK
where
- (r~V)
BM - 'Z'._(Bm,r‘xér BM,NH)' >

< (x (r)
A(M) = 'Iz' (AM,N N AM,NH) '

The M, °'s, \)M s, 1T ., K and the constants required
by the ..ar functions are precalculated and are stored in the computer.
A consideration of the types of profiles to be investigated, of
computer storage, and of the desirability to retain any symmetries,

led to the approximation of the 2 continuum by 33 points, 32
intervals. |
Regarding the units of dimension, both the length unit and time

unit shall be selected from the straight parallel flow, thus keeping
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k« variable. Units which make
U e = 17,
|
IUIW"—' L

are selected for each profile. In atrnospheric ~onsiderations, a lower

bound for the time unit is obtained by selecting extreme values for the

4 seconds-l,

(90)

shear, In the horizontal a representative high value is 10"

which yields a time urit of about 2 1/2 hours. Thia makes the length

" . n . . s
g Ciads s . o 7 * cre e T L =
S AR L o T R R P -
5 ~, . \s » B g 4 - 4 oy
- - o N =

unit corresponding to about a Uma,x of 50 meters seconds-l. 450

SO

kilometers. In the vertical a representative high value of the shear

3
3
5
1S

is 1072 seconds-l, which vields a time unit of only about 1 1/2 minutes.
This makes the length unit corresponding to a Uma.x of 50 meters
1, 4 1/2 kilometers,

» Jloarrive at a graphical representation of the evolution we use
qgebh=AGEYD + B} and VY(ED = alzi)+ L/J’(z,‘c)
where A , B , O and /3 are real functions of 2 and t .

Thiz leads to ’

seconds”

g (x,21) = A(z}) we kx - B@Et) aim kRx
D@ t) coe [h.x.-— ¢(z,t)] .

(91)
Yixzt) = x(zt) con Rx. -/3(2,{) ain R
= X@b) con [hx 8],
where
D= (BB @ = anctn (BA),

X = (+f%, 0 = anctam (-BJx).

*In a frame of reference moving with the fluid at some level.
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The computer * is instructed to output the set of 33 A's and the
33 B's for each time unit, that is, at intervals of l/’t' time steps.
A second code is later used to compute the 33 O 's and the 33 /J’ 's
from each set. According to Eq. (33), page 22, they are given by

= KA KL+ K]

f i @ KT B () KT
(93)
,3M='21—[2KB +K(B +K(B)]
+ 'f—f % (B) K™ + % %, (B) K™

In addition, this second code computes a figure representative of the
perturbation kinetic energy, which will be used as an indicatiuvn of the
growih or decay of this quantity with time. This energy computation
io based on a linear interpolation of Y between points, A third
code ¥* computes D and ¢ fromeach A ,B pair and X and
6 from each O, ,8 pair according to Eq. (92). The D anda X
retain all the significant digits of the A ’ B and o¢, ,8 pairs,
respectively, The ¢ and 9 are obtained from a table-read

routine and are accurate to 10”3 degrees,

* The Standards Western Automatic Computer (SWAC), Numerical

Analysis Research (N,A,R,), University of California at Los
Angeles,

¥* These codes are on file at the N, A, R, library,
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8. APPLICATION TO AN UNBOUNDED HYPERBOLIC-TANGENT
PROFILE

The straight parallel flow profile is given by

U@e) = - tanh 2* (94)

where z extendsto = o0 ,

This profile is onc which is acceptable for the ""contained" treat--
ment discussed on page 19. By choosing a sufficiently deep layer
about # = C , U”(z) can be made as small as desired in the
neglected exterior, |

This profile is skew-symmetric, that is,
U@ = -Uta) . (95)

" " '
Hence also U (@)= - U (-2Z) . To praserve this property in
our space-discretized system, we center our grid at the level 2z = 0
with 16 intervals above and below,
It is usual tc order the components of our vector, q , and our
set of equations in ascending order of the grid pointy{that is, ascending

). However it will serve us better to adopt the order

M = ‘16. ‘lspoco '1; 0; 16. 15.00. lo

Because we have no boundaries, ’d’ of Eq. (45), page 25, is
zero, and the elements of g_ , which we shall label C‘M . o are

given by J
1]
C=(rU,+UK)
™M M
MM ! (96)
_ 1" IM-3i .
where the columns are labeled as the rows, in the order
j b -16| "15' oo 0 "1; 0; 16' 15, o e 1.
* In arbitrary units, U(.Z) = U tanh ® 2, and we are free to add an
arbitrary translation to our frame of reference.
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By virtue of Eq. (95),

C.=0, C.=-C_ . . (97)

o) M,j -M'-J

To exhaust the relationships expressed by Eq. (97), we write the

relationship which the eigensolutions must satisfy as follows

“to-+-=1 O 1o~
o/ -16
: g IE’.l L ‘11
-l [T =) o b
0 0 :O: o) =\ 9, | O (98)
6 v e
. - .t -wW .
R P = 7Y
U T (iu |
which is the same as
A TR R L T
0 - 7\(40 (95}
Ph % YL T A
We may note that if 7\ # 0 then q_c =0 .
It is apparent that one of the latent roots is )\‘ = 0 . The
corresponding vector satisfies
/ “J \‘. ] -C
o= E . /(}l ~
- X ‘ = Q‘O ’
=P g/ \\(i' =
which shows this vector to be symmetric, that is,
-1
(ll = Q’u.z —qo(t_g -\—p) c {100)
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The .. tent roots in the case of skew-symmetric profiles occur in
+ pairs, If B R {?_(_, q*o‘ Y} satisfies Eq. (99}, then also

does - X, {Y, q,, X} It follows from Eq. (99) that the

sixteen admissible values of 7\2' satisfy

(- ple-p-X1] = 0. on

TaTs A2 3 GG A A R D v RO

[A
This is a polynomial in 7\ with real coefficients, Hence an ad-

[

missible 7\2' is either real or is one of a comrplex conjugate pair.

A complex conjugate pair of )\2' 's give rise to two pairs of complex
conjugate roots, >\ = M + v and A= —(,u * LV) . To

each such pair there corresponds a complex conjugate pair of latent

-

vectors.
It follows from the preceding paragrapa that if Eq. (101) admits
a real A* which is negative (that is, A = % LV  where V is

real), then the corresponding pair of solutions may be expressed by

v, {P+i0, 0, P- Q]

EEE YN VR

", ; 3 {102)
" -0 0. P

\ wy {P LQ_,L,,EHQJ

\!

-

¥ where P and Q are real.

! The profile Eq. (94) has already been studied by Garcia. 1‘ He

\: chose Y as the principal dependent variable and investigated the

N

steady-state differential equation

-Ue) [w“cz) -k‘\v(z)] + U'ev@=0 (103)

AT LN

This steady-state condition is readily obtained from Eq. (8), page 5,

£ e
ae's

with substitution for q according to Eq. (9).
with | = - tanh 2z, Eq. (103) has the solutions

Y= [k- Uu.)] ¢k ; ‘\PZ z [k+U(z)] o2

«
[Py

‘&‘ *‘. .’ .l
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To satisfy the boundary conditions (which neither one of the above can
do) Garcia fitted these together (about the level 2 = Q ) arriving at the

solution

Y, = [k + |U(z)|] & (104)

Since \V as well as \t’ must be continuous, Garcia found k,= )|
to yield the only possible siationary wave, no mat’er at which level
the two solutions are {fitted.

For R ;f 1, Eq. (104) has a discontinuity in \P' (that is, in
w) at £ =0 .. The harmonic field which is. compatible with this

slipping (sometimes called sliding vorticity) is

- -k|z|
Y = (k- 1/&) e | (105)
Removing ‘PR from Eq. (104) Garcia arrived at the continuous field
S W = -k|z|
b= - d= [1/L + |U(z)|] e (106)

whick ig no longer stationary, From the initial phase speed at all
levels, he found that for h. <! an amplifying tilt develops and for
k > {1 a damping tilt develops, * This indicates the imminent
tendency. Garcia concluded that the short waves are stable while the
long waves are unstable and k(‘. = 1,

For extremely short waves ( R — o0 ), the determinant, Eq.(101),
reduces to a diagonal with elements (k UM)Z-— 7\2' . This means
that the components of 9; , that is, the QM 's, are each advected
by the straight parallel flow at their level, their influence on other

levels being negligible,

-*According to the Reynolds-Fjortoft criterion., See, e.g.,
Holmboe? p.ll.
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Thus for large

k. , all >\Z (R) are real and positive., In the

light of Garcia's work we may expect one of the 16 values of >\z (k)

to become zero in the vicinity of R = l. This value of }\Z (k) may

become negative as R decreases further.

follow agree with this conjecture,

Garcia's stream function, Eq. (106), is taken as the initial field.

It is compatible with

q@@ = —Z(k+|tmhi|) ach? z & ,

The nurnerical results to

which is symmeiric and real. * The amplitude factor remsins free

because it drops out of the homogeneous linear system.

The space increment, h , was chosen to be 0,2. This extends

our grid from z = -3,2 to z = 3,2, Figure l shows U(Z) and
T
U ()  in this interval,
3271
Ui — +
| 16l
i
( ;
\ -t -—-‘U
-1.0 +1.0 -1.0 +1.0
L J 0_‘_2 t ]
- 1
3
|
| -1.6r
-32+

Fig. 1. The hyperbolic tangent profile,

*Such an initial value may prove to lack generality,
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Integrations were made in steps T = 1/20 or less, from t = 0 -
to I = 15 for the values R = 0.3, 0.5, 0.7, and 2.0. The last
of these, R = 2.0, was apparently stable, The others lying within
0<RkR <1 were unstable.

In each of the three unstable cases, a single T eigensolution
corresponding to A = iV ( V positive) rapidly dominated the
evolution. The growth rates were determined to be

R

0.3 0.5 0.7

(108)
0.174 0.184 0.129

v

These values of 1) are considered to be accurate to within 2 percent, *
In view of this wide margin the correction afforded us by Eq. (68),
page 37, ia trivial, On the basis of these values the solid curve in
Fig. 2 was drawn,

The sxact wave-number at which the negative }\Z' becomes zero
is rather difficult to locate by integrations. Thease integrations would
have to be extendzd for long pericds io detect the presence or absence

of slow growth rates.

0.3
0.2 —— ——
//
0.t / N ~ .
// ~ -~
~
SN
N
0 ~
(o] ol 0.2 03 0.4 05 0.6 0.7 0.8 09 10

K

Fig. 2. The unstable band,

*More accuracy could have been attained by carrying each integration
further, thereby purifying the unstable eigensolution,
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The broken line extension of our curve has been drawn to the point
R = 1, V= 0, Itis not expected to be much in error,

It seems reasonable to assume that the other end of our curve
(approaching infinite wave length} will asymptotically approach the
dotted curve, This dotted curve represents the instability of the
kinked profile (the dotted curve in Fig. 1), of the same dimensions,
which has been investigated by Holmboe. 3

We will assume that except for the one value of :‘\z(k) which
passes through zero near K. = 1 and which is negative for
0<k<¢ 1 , all other 15 values of >\l (k) are real and positive
for O < k< o0 . This assumption may be verified by numeri-
cally computing all )\2 admitted by Eq. (101) for diacrete values
of R . However there is no indication why the assumption should
not verify,

Because R = 0.5 is about the most unstable, oaly its evclve-
ment from the initial state, Eq. (107), will be given in detail, The

evolutions for R = 0.3 and 0.7 are basically similar. The
evolution for R = 2.0 showeda rapid fall-off in energy to lecs
than 1 percent of the initial by t = 6, at which time gross-truncation-

error became evident, -

The evolution for R = 0.5, wave length 417 , is shown in the fol-
lowing diagrams, The representation, Eq. (91), is used. Figure 3
shows the amplitude and phase of the perturbation vorticity at times
t = 0, 5, 10, and 15. Figure 4 shows the saine for the perturbation
stream function, The "energy'" growth of the perturbation is shown in
Fig, 5,

To draw the total streamlines and total vorticity isopleths we
must prescribe the amplitude of the perturbation, We may prescribe
it arbitrarily large to show the features of the flow, The lateral dis-
placement of a total streamline at a level 2 , consistent with the

linearization, is given by

- X@Et) o [kx- Q(Z,t)] , (109)

Ua
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Fig. 3. The q-functions D (z) and ¢ (z), long wave case
(k =1/2) at times t = 0, 5, 10 and 15,
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Fig. 4. The y -functions X (z) and 8 (g), long wave case
(k =1/2), at times t= 0, 5, 10 and 15,
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Fig. 5. Kinetic energy curve for K = 1/2.
4
and thag of the total vorticity isopleth by
Deb coq [Rx-deb] (110)

U"(Z)

Thess exprascions z2pply cnly 21 levels where the devominator, U
or U“(z) , is an order of magnitude greater than the nume‘rator.
Figure 6 shows the total streamlines (solid curves) and total vor-
“ticity isopleths (broken curves), at selected levels, at time t =0
sboveand t = 15 below. The exaggerated amplitude of the per-
turbation has been reduced by a factor of 10 in the lower diagram
relative to that of the upper diagram.,

At no time does it appear as if the vorticity in the neglected
exterior has become significant,

All integrations and auxiliary computations carried out for this
skew-symmetric profile, with symmetric 1n1t§al values, retained
their symmetries to the last digit., Some twenty hours of high-speed
computing were involved. This speaks highly of SWAC, *

*See footnote, p. 51,

61

[

LR 2

e

2 NN

LR ) G L)

' a" o e

‘FARR L




-1.2 P s ===

- s\ \ ~— - - -~
-~ ~ l/
-Q8 ==+ 1~ -
"~ - l
|2 L = s\\ J -, -
- g >
- ~ —
X

Fig. 6. The total streamlines and total vorticity isolines of selected
selected levels, long wave caseatt = 0 above and t = 15 below,
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9. THE SIGNIFICANCE OF THE RESULTS

We have crossed three bridges to get to our numerical results.
The first bridge connects the governing finite-amplitude system to
the linearized system, The second connects the linearized system
to the space-discretized system. And the third connects the latter
to the space-and-time discretized system. If we are to consider
that our numerical evolutions represent first-order {in amplitude)
apprbximations to the evolutions of the finite-amplitude systems
then we must reconcile these crossings,

The anaiysis of Section 5 has shown that the character of the

system ia unchanged by crcssing the third bridge provided we use

the centered first-order analogue. The eigensolution ¢ e")\t .
where A = Mo LY becomes the T eigensolution q en\ft

The vector is unchanged, According to Eq. (68), 7\1 i;given by

Ay = P+ v
- _1_ tam. MT . L Qﬂu 1+RZ+\"T.' (111
€ i_Rl Z-fc 1 + RZ. - 9T ?

‘where < : .
RE = (g/2) (u2+v) .
It should be noted that each of the four quadrants of the complex >\
is altered in the same way, That is, any symmetries in the occur-
ence of eigenvalues are preser\}ed. ;

We cannot as readily or as completely reconcile the second
crossing,

Let us consider what is revealed by the eigensolutions of the

linearized system. The eigensolution q(?_.‘t) = q(a) e—-'ﬂ"t
~LAt

corresponds to q e of the space-discretized system. Ita

introduction into Eq. (8), page 5, leadaooto
_ ol i e—k.| z -] ;
Tg@=k|-Uaqa+U (z)&_ﬁ q)dz (11

-l
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for the unbounded model. It has been imposed that U(z) be real and
that R be real and positive, |

Equation (112) may be put into a standard form,

cf " -kjz-21
(r/k)q(z) =J{U(z)l(z,[)- U &) _-e-E i qr([)d[ ; {113)
where
I(Z,[) = Lur —_o/m (114)

a— 0+ O +(£-37

The proof that Eq. (113) is a valid expression of Eq, (112) re-
quires that

lep q{{)df = q@ - (115)

3—%

For suificiently small positive a, I(B.I) =0 except for a
narrow region of half-width 2a about [ = #2. This permits us
to take a mean value of q_({) , for this région, cutside of the

integral in Eq. (115). This value is q_(z) . It follows that
o0 o

Jl(z,[) q({)dl = q@ I(z.l')d[ = q@) -

- 00

The second integral may be found in tables, -It is unity for all &
and positive a, It should be noted that the limit is not 1aken all
the way to a = 0 but rather to 0+ which can be as close to
zero from above as desired,

The form, Eq. (113), classifies our integral equation as a
singular homogeneous Fredholma equation of the second kind. The

determination of the T possessed by Eq. (113) for the profile,
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Eq. (94), for the real positive range of R is beyond the score of the
present work, We shall deal only with some salient points.

We may begin by indicating some of the similarities which Egs.
(112) or (113) has with the space-discretized system. It can be
demonstrated directly that if N and q_(i) satisfy Eq. (112) then
also do >\c
complex conjugate, Because of the profile's skew-symmetry it can
also be demonstrated that if )\ and q = X(Z) satisfy Eq. (112)
then also do — A\ and q= X(-2) . It follows that the two eigen-

functions corresponding to a ]"'?. which is real and negative (if

and qc(i) , where the subscript C denotes the

such is admitted) may be expressed by

| P@riQ@ v 250
v, q@& = | )
\ Pez)- Qe o z ¢ (116)

( Pa)-iQa@) for z >0

-, gq@= |
| Pea+iQta) fou 2 <O
which ie the counterpart of Eq. (102).

The counterpart of Eq. (101) ia also readily developed:
o) o0

(.E)Z Y@= X X-[K!L;.%) - Kl(z,wp][K‘(%.f)+K?_(\3§)] Y dydf ya1n

o O :
where

Y& = 4.@ + 4,62 ,

i k’ -
Kiyd) = U Tpr + Uy £ S (118)
" ~R(y+ D)
Kbp) = Uy & t
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There is one very significant difference between the linearized
system and the space-discretized system, It has been shown* that
the zeros of U(Z) - WR (ron the real axis; neutral wave) must
coincide with the zeros of U“(Z) . For the profile, Eq. (94),
there is only one level where UH(Z) is zero, and that is at the
level Z = 0 where U = 0. Hence the only value of T on the
real axis which may be admissible is T" = 0. Garcia has shown
further that | = 0 is only admissible for K = 1.

With this knowledge it can be shown that the eigensolutions of
Eq. (112) are not complete, Equation (112) evaluatedat 2 = 0
gives: -7 q(O)-“- C . For Rk Z |, r = 0 is not admissible.
All eigenfunctions must then be zero at Z = 0 and it follows that we
cannot fit a value of q(o) # 0 by combining eigensolutions if
R £ 1 .

We must conclude that all the real positive )\?_ , which are ad-
mitted by Eq. (101), yield space-discretized eigensolutions which
are extraneous. They are not approximations of eigenaolutions of
the linearized system because the linearized system can have no -
such counterpart.

The extratneous eigensolutions appear because the space-
discretized system must yield a complete set. The system can
evolve all arbitrary initial fields with the aid of these eigensclu-
tions but the approximations necessarily deteriorate with time,
The extraneous eigensolutions cannot stand alone; either they'reiy
on gross-truncation-error or they are not capable of satisfying the
boundary conditions in the limit as we approach the continuous
system.

It seema reasonable to believe that the real negative value of
N (RY ., 0<k«l, yields eigensolutions which are legitimate
counterparts of corresponding eigensolutions of the linearized sys-
tem. This implies that Eq. (117) admits only one value of T'L(k)

*See, e.g., Garcia.1 p. 90, or Lin6 p. 118,
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which is real and negative for O < R <1 and which is zero and termi-
nates at R = 1 (Garcia's solution); and that there are no T admitted
for Rk > | .

Haviig accepted the two eigensolutions with eigenvalues #+ LV
for O<kR <1 astrue eigensolutions of the linearized system, it
remains to determine their significance in the finite-amplitude system,

It is well known that the total energy (kinet‘i_c) is separable into the
energy of the mean flow defined by U = —:: f V L (“')(. where L
is the wave length of the perturbation, and the gnergy of the remaiuder
of the flow (the eddy). This separation i3 possible because the space-
integral of the product term is zero by definition of the mean flow.
During evolution the finite-amplitude barotropic mechanism may trans-
fer energy between the mean flow and the éddy but the sum of the two
partial energies remains constant,

The linearized system violates this energy conservation, The
perturbation remains sinuscidal in X and hence remains the eddy;’
the straight parallel flow which is held constant by choice, remains
the mean flow. Thus the energy of the mean flow is constant even as
the eddy grows.

The inclusion of the nonlinez;\r part of the mechanism necessarily
rights this situation, The straight paralliel flow rnay still be maintained
constant by choice and may make up all or part cf the mean flow. The
perturbation does not then retain its sinusoidal dependency although it
does maintain its periodicity., Consequently the evolving perturbation
is made up of the eddy and an addition to the mean flow.,

It is of particular interest to determine how the mean flow evolves

if the initial profile is dynamically unstable, We can determine this

and the significance of the unstable eigensolution by making a finite-
amplitude integration, As initial state, we take the straight parallel
flow plus a self-excited unstable eigensolution (logically, the most
unstable) with a small but finite amplitude.

We shall not further discuss the damped eigensolutionas,
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10, THE FINITE-AMPLITUDE PROBLEM

The finite-amplitude evolution obeys

> (aw ) 39 (gg ") oV
o = — | e¥Y + £y 119
ot @ az+Uax+azUax’ (119)
where qr = VZW . We shall continue to keep the straight parallel
flow, U = -tanh z, constant by choice.
Only one integration is carried out. The perturbation is periodic

in X with period 41 ., The initial perturbation is based on
q(x,z) = D@ wt [Rx— ¢(z)] , (120)

where h‘f 1/2 and D (z) and ¢ (2) are given in Fig, 3 at
t =15 éxcept that D (2) is smoothed through Z = 0,

A grid is introduced having 272 independent points (16 columns by
17 rows). The 17 rows, at intervals of ;lT/S, extend the grid from
2 = -T to M, inclusively., The columns divide the period 41 into
16 intervals of 1T /4 each.

The grid, plus an -orde;'ing, transforms our fields into vectors.
The actual initial q is given in Fig. 7 for one complete wave length.
The cvxtremes of the perturbation vorticity are approximately one-fourth
as big as those of the profile.

We may refer to a grid point by its coordinates relative to the

central leftmost point (0, 0):

Lwrsa 1
mi/8 m = 0, £1, ... %8 .

X

0,1, 2... 15
' (121)
%

Or we m:iy; refer to a point simply by giving its address (I, m).
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The boundary conditions are treated essentially in the sarme way
as they are treated in the unbounded linear integrations. However,
instead of using a Green's function-integral type solution over the
whole grid, we use it only to determine the values along the two rows
™M = %= 8, In the interior we may then use the more rapid iterative
inversion of the differential operator analogue.

Any particular grid point ( 10 , M, ) together with the corres-
ponding point in each of the other periods constitutes a vortex row
with uniform strength, S , and uniform interval, L = 47 . The

strength of each vortex is

5= Cllomo A

where OA = (/4)(1/8). The stream function which is compatible
with sach an unbounded and infinitely extended single row is given at

tlre arbitrary grid point .Q,, o by *

- i
v - S T o) — coe T (1-
d/i'm = = In | coth Al (*m’mos coe ZL(L L) o
~ To(122)
wm E (m-m)- mﬂ-u 1)

o
26 Hm,

The stream function at the point ( f, va. ), due to the entire

distribution, is then given by

11 (n-vm, w(l-1e
Z 178 qum [th e v —é—-] ) (123)

Lom,
in which the sum is taken over all the grid points as given by Eq. (121).
It may be noted that in determining the stream function we are neglect-
ing the vorticity outside our region of attention, as we did in the linear
integrations, It is assumed that the vorticity on the outside remains
negligible, This is something which will have to be checked by exam-

ining the growth at the extreme rows.

*See Lamb® p.224.
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For economy, Eq. (123) shall be used only for the extreme rows,
W. = %8, The values of ¥ , 80 determined on the extreme rows,
then play the role of boundary values for the ihterior for which we
shall invert a finite-difference analogus of V?' V= q . At an

arbitrary point this analogue has the form

| 4 Y - _
0 (‘Pm,m* %—Lm) "1 (wl.ml Wl,m—l) Ypm= 10 pm 2%

The coefficient of \Pl‘m has intentionally been made -1, If
I = 15 then 1 + 1 istakenas 0, andif § = O then 1 - 1
is taken as 15 by virtue of the periodicity.

The interior grid is given some order n = /L(ﬁ, m.) .
Equation (124), applied at each point in this order, then yields the
system of simultaneous equations

Cy=d . (125) -
wt -
I ™ 7# %7 then 4, = %5 Siwm + H M= #7 thenthe
known boundary value which appears on the left-hand side of Eq. {124)
is moved to the right—hand side, and dIL: % ‘11,:7 - % Q‘Q,*—B

Equation (124) is a partial difference equation of the elliptic type.
It is convenient to invert the system, Eq. (125), by an iterative pro-
cedure known as the method of successive overrelaxation, * To for-
mally exhikit the method, we first express ; as the sum of three

matrices - = U +L -1 ., In Q , nonzero elements appear

only above the main diagon;ﬂ. In L , nonzero elements appear only
below the main diagonal, The matrix l is the identity matrix,

The method is given by

«1) vz
v = g . wREH (126)

—

*The extrapolated Liebmann method is of this type.
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where

jw('&) - A \P(A) (127)

-+

R(_A + /2) _ L \P(Aﬂ)

o~
~ =

The superscripts in parenthes&s number the successive approximations
of \P . The operation is carried out in the order ¥ ., Hence at a
poinl?/ Y, » the points following, ¥ > Y, , are operated on by Q s
and the points preceding which are once later estimates, ¥ <7, T by L.
If we substitute \.P/‘A): \P + E(A) , where ) satisfies =
Ea. (125), in Eq. (126) we find -

~

+| 1
e(A, ): 'I‘e(a) - T(L* g(c) ; (128)

T = [_l- wg’i ((l-w)l + wg] " (129)

—~—
=

This reveals that the convergence depends on the eigenvalues of I

which are given by

I-)\l‘=0. (130)

The convergence rate is generally dominated by the eigenvalue having
the largest magnitude, * Let this magnitude be —7—\ . That —3\ <1 is
a necessary and sufficient condition for convergence, The rate of
convergence may be expressed by - A -7—\ . e
We are still free to select the ordering, r ( ), m } . and the
value of w . We would like to select these 8o as to make _7—\ a
minimum, The following analysia of this problem is based on a de-

tailed paper by Young, 10

*This has been discussed in Section 6 in connection with Eq. (79),
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Substituting for I in Eq. (130) leads to the determinant

(tz,l+)\g~—7-‘-’:—l‘;—“-’—ll =0 . (131)
In particular instances Eq. (131) is equivalent to
y 3
{ A (L:J+Q— 2‘—*:(%‘—’-—1 =0 . (132)

This is so if each term of the formal expansien of the determinant
either vanishes because one or more of its elemenis is zero or, if all
ite elements are nonzero, then as many come from above the diagonal
as from below. The above equivalence is generally latent in elliptic
difference equations for most, but not all, grid selections, The equiva-
lence may then be realized by choosing one of a more or less large
family of orderings (called ""consistent” orderings by Young).

It will be seen that all consistent orderings lead to the same cigen-
vaiues for I . Young then proceeds to determine the best w for this
family of orgerings. The possibility remains, however, that there may
exiat an ordering which is not consistent and which leads to a zmailer ‘:/\
than can be realized with a consistent ordering. Young's analysie does
not rule out this possibility, _

The equivalence is latent in our problem if, and only if, we divide
the X cycle into an even number of intervals greater than two—as

we have done. The simplest consistent ordering and the one we adopt

is then:
57 for i even wL odd
_ 176 1/2 v " odd " odd
Y = 8m + 1/2 + 56 1/2 " " odd " even (133)
177 1 " even " even

In effect, thia numbers the 240 interior points as one would count
checkerboard squares, counting the light squares first and continuing

with the dark squares ,beginning each traverse at the lower left.
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We may now proceed from Eq. (132). Let us denote the eigenvalues
of Q + g = £+l by Miv Mg oeee Mg eee /(LL4O . These
depend on Eq. (124) and the grid dimensions, but not on the ordering.

It follows from Eq. (132) that the A are given by

Apt w-1

"—'—w——?— = Mo, (134)

That .\ be less than 1 can be accomplished for some &) only if
all x4 satisfy -1 < Re: x <« 1. I inadditionall M4 are real,
. then Young has shown that the best w 1is given by

-2 Z

This yields
A= ol (136)

The eigensolutions of C + ‘are given by

it =—t

\PL(L.M) = an ZT%L i an ﬂ‘M@f—B) (m+8) | (137)
,m

where L and M take on the values
L = o 1,2 ... 15
M = -7' '6, v o e 0| LRI ) 6|7o

The corresponding eigenvalues are given by

(LM = —’5- [ Con ‘7-—|“6L + 4 cou ﬂ%)] (138)
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Hence

I :%‘:|+4Cm%‘| (139)

For this value of /C , Egs. (135) and (136) yield

wp = 168125 N = 06812 (140)

Determining the rate of couvergence by — In N shows, in this
particular application, that using the best (U accelerates convergence
by a factor >f 12 over and above the factor of 2 gained by ~elaxing the
grid points successively with ( = 1 in a consistent order,

The initial stream function, LP , as given in Fig., 8 was deter-
mined in the manner descrited, from the initial vorticity given in
Fig. 7. The relaxation wrz 8 continued until Eqg. (124) was satisfied at
each point within the exacting tolerance of 2—281: 2.68 x 10-8, in

the same units,
11, THE INTEGRATING PROCEDURE (NONLINEAR PROBLEM)

We shall take up the problem of the time-discretization as the
first slage in arriving at a complete numerical analogue for our non-
linear system, Eq. (119), page 68. This will be followed by the
space discretizatior which was begun in Section 10 (for q = VI\}I ).

The system, Eq. (119), is of the first-order in time and may be

regarded as a special case of the generalization

a@t’ X; = F'L(XI,XZ...), L=123..., (141)

where XL is one of a finite number of fields, The F 's at any

instant are space dependent only,
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We shall again use T to denote our time increment and mark off
the instances 1 = 0, T, ZT, e (N-DT,NT, (N+1)T ...

As the time-discretized form of Eq. (141) we offer

() = ) = (R Ry ) i= 2. a2

Un
where the bar implies the mean for the incremei:t, that is,
T | |
=z - + — . 143
() = L0),+ 10, <

Linearized on any zero-order stationary state, Eq. (142) reduces
to the same formula used in our linear integrations. For its solution
we shall have to resort to a method of successive approxim:—itions
(reiterations), Because of the nonlinearity the problem of convergence
becomes largely a matter of trial and error.

For propagated effects the domain of dependence (region of influ-
ence) using Eq. (142) may be all inclusive for any ‘U even after
space-~discretization,

The form, Eq. (119), of our system was arrived at frecm the
governing equation,

8 0=-V. :
atQ V-vQ, (144

where VY = ﬁ x ¥ and Q = vt \P , by explicit refer-
ence to the zero-order straight parallel flow which /s kept constant

by choice:

V=Ut+rv= Q=U'+q - | (14¢

We may instead refer to some other state which we shall call the

8 field and denote by subscript s:

V';Vs-i-v:)Q:Qsd-q) (14
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which satisfies

V.. vQ.=0. (147)

This gives
5% g = - (“\/;-*:7)g{-(vos)—\y-—\v-vQr . (148)

We may postulate that for a given region and particular time interval

there exist an s field which minimizes in some prescribed manner
the contribution of the nonlinear term of Eq. (148). The amount of

linearity exhibited in this manner may be called the inherent linearity

during that interval.

The evolution of the large-scale fields of motion in the atmosphere
probably exhibit a high degree of inherent linearity even up to periods
of 2 day or so.

The degree of inherent linearity during one time-step (interval)
seems pertinent to the problem of convergence of the reiterative
process, It may be that if 60 percent or sc of the change comes from
the linear terms, then the convergence is edsentially governed by these
terms., This is uncertain; but the emallness of T must certainly be
gignificant. It may be noted that even in the limit, T—0, the
mechanism genrerally remains nonlinear,

Another significant feature of the implicit formula, Eq. (142)
follows: Applied to the barotropic equation, Eq. (144), this formula-
tion preserves the conservation of total kinetic energy which is inherent
in the system for a closed region. It follows that the time~truncation
error remains bounded; hence, this form of time-diacretization does
not introduce any computational instability.

The conservation of total kinetic energy is derived from Eq. (144),
in a closed region (} = on the boundary), in the following manner.

Multiply Eq. (144) by ? and integrate over the region:

(Fhpo - (pvecs

A A
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To show that the right-hand side is zero, we substitute

PV 9 Q= v (VD) -QPpv-V-QVivy

where the second and third terms are zero everywhere. Then by

Gauss' theorem

-{ v (Vg - EVQP.dn

A

which vanishes because there is no outflow.

This leaves us with

The first of the two integrals on the right<hand side is zero because

S 4,500 an = § % (odan,
A

and the total contained vorticity remains constant. Thus we have

) 2 -
a—t%\//a da=0 .

A
The proof for the time-discretized form

v NaL V= V-9 Q

shown
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is similar. We multiply by \P and integrate over the area. As before,

the right-hand side drops out and we are left with

[+ (0, +0) (o ) =0

A

Z_lj‘(\,tp .v\]’/—v\y. v\I/N) do + gv- [;P_(v\pN“— V\I/N)] da=0.

N+l Nt N
A

The second integral is zero because

™ 74, o= YU, 8 d
:WbX(VZ\PNH-v’\PN)AA= ‘PJ Vool de=o0 .

-1
J
A A
This leaves us with

N : 2 _ 2
% \/NH da = &\'/N da.
g A A

which was to be proven,
The preservation of this inherent property after space-discretiza-
tion leads to an analogue which may be rather difficult to use. To

achiev . it we multiply Eq. (149) by \I) and transform the equation

into the form
o0 vl 1o vh s o

7 - [@ (V\IJNH-— v+ TVQ)]

This is then space-discretized in such a manner that the summation
of the term on the right-hand side cancels over all interior grid points,

The boundary conditions rmust have the bracketed term zero at the
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boundary grid points,
In practice this analogue must then be solved by a reiterative

process, This may prove to be difficult,

Because of the nature of our boundary conditions, we have not fol-
lowed through with the total energy-conserving space-discretization.
Instead, for space we have used more corventional finite-differencing.
We have already shown in Section 10 how Vl\l/ =q and the boundary
conditions are to be handled,

Our governing equation, Eq. (119), page 68, time-discretized has

the form

Fyer  W=" [- (%g * U) 29 + (-.3{1 + U") gg] s

This is to be applied to our grid which at a representative interior

point has the spacing:

o
~
=
hwoO T OO0z
~
Pt
(4]
m

-Compass directions are used to label neighbouring points relative to

the arbitrary point at which Eq. (151) is being applied. We choose to

use the analogue
= X U -T = _=z\_(= _5 Y :
e W zh’-[(ws ww)(ﬁ“r W ‘15) (QE gfw) (“’*q'u Ws)] y (152
where o = 2hUy B = 2hUy and W= /s
We have one such equation for each interior point, The vorticity

changes at the upper and lower boundaries may be obtained by a

linear extrapolation of the changes from the interior, or one may
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attempt to keep the values of 3- constant there in the hope that both
the values and gradients at these fringes will remain small anyway.
We will try the latter method and will check the validity of this pro-
cedure from our resulis,

The set of equations, Eq. (152}, for all interior points may be

packaged into the representation

QNH: iN+TF§ \P

o~

This analogue must also be solved by reiterating, We shall attempt

the same procedure used in the linear integrations:

Q-(MU = qN v ’E(Fi(b) ) ‘\pm) 3 (153)

N+!
-~ -4
where
® - il +a® 1. ¢ 3 N @]
i thcin %N*.‘- L AN+
(L‘i") (A.‘S'ii
w4t 18 determined from Nt by the method of Section 10,
The iterations are repeated until A = S determined by q’f\\l:)\N 4%1—?

(a~-1) .

in that both are compatible with \{/N within the prescrff:ed toler-

ance at all interior points,
As a first guess for %N*H and for ,‘Z_PNH we choose linear

extrapolation in time,
() CI - 154
%Nu ¢ % N L E‘.jNH Z!N EJN" i (134)

except for the first time-step where we take

(e) _ (o) !
q' = q.o 3 Y| = fo (155)
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We choose T = 1/10. It is hoped that the inherent linearity will
be quite large for so small time-~steps {depending as it does on the
particular evolution) and that Eq, (153) will converge essentially as if
it were linear.

. (a+1) (ath)

The determination of N+t from Q. ., requires the de-
termination of Y  on the 1;;)per and lower boundaries by Green's
method, followed by the sﬁccessive overrelaxation of the interior
W
bility of ’\JLJNH and i to within quite small tolerance, but the

points beginning with as first guess, We desire compati-
successive estimates of these vectors need not be so highly compati-
ble, It would seem wasteful to make them so.

In an attempt to accelerate convergence to \,Y,Nﬂ and %N_” R
the following scheme is incorporated into the relaxation, After each
complete grid traverse in a series of traverses, the tolerance is

raised by multiplication with a prescribed factor greater than one,

Atl)
Hence, the more traverses it takes to determine \V‘(\H\ the
. 1.s1s . \ - .
greater ite incompatibility with (:': ,‘) . The tolerance is then reset

at its original email value to begin the next series of traverses. Thus,
if convergence (all within tclerance) is found on one traverse (whick
signals A = 5) then Y, ,, and Q ., have been found to the
desired prescribed initiZI tolerance, ~This scheme considerably

shortened test computations in which a factor of 1,25 was used.
12. THE RESULTS

The initial perturbation field which is superimposed on the un-
bounded hyperbolic-tangent profile is given in Figs. 7 and 8, pages
69 and 75, respectively. Computations have been carried out which
take the evolution to t « 5, % Outputs were obtained every five time-
steps, that is, at intervals of t = 1/2. Figures 9 and 10 show the
fields at t = 2 and Figs., 11 and 12at t « 5, Six more decimal

digits were carried and outputed beyond those shown in the figures.

*See footnote p. 51,
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It is notable that the position and growth develops essentially ae
predicted by the linear integrations., This shows the significance of
the unstable characteristic yielded by the linear thzory.

What we call the perturbation is now composed of an eddy and a
mean (averaged along X ) which when added to our profile gives the
mean flow. An examinztion of Fig, 11 reveals how the mean flow is
being modified, The centers of positive perturbation vorticity have
moved inward, toward the central level, and the centers of negative
vorticity have moved outward, away from the central level,

The profile itself has only negative vorticity with a maximum at
the central level. Thus, the eddy is altering the mean flow by trans-
porting mean negative vorticity away from the central level,

The perturbation fields at t = 5 are averaged along x 'to

show the following means,

m c4m ‘Pm
8, -8 - 0 4
7, -7 | .2z 4
6, -6 - 70 ' -1
5, -5 -205 - 15
4, -4 - 497 - 62
3, -3 -593 -186
2, -2 -229 -400
1, -1 +860 -650
0 +1,524 -768

These values of qm and (L‘m have been amplified by 104/1. 6.
The removal of these means from the perturbation yields the eddy
shown in Figs. 13 and 14, Figure 15 shows how these perturbation

means have altered the mean flow, tending apparently to stabilize it,
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It is quite noticeable that the error due to . sace-discretization is
becoming more serious as the evolution progresses, This is one reason
why the computations have not been carri.ed further with our present
grid. Another reason for not continuing is that our initial value lacks
generality, We have placed the constraint of periodicity of period 41
on the evolution., As a demonstration of what may develop due to
dynamic instability and the presence of noise, we have gone far enough,

13. CONCLUDING REMARKS

The instability mechanism is pertinent tc a number of meteorologi-
cal problems on all scales, However, a more comprehensive approach
to any of these problems generally includes the effects of other meteoro-
logical parameters.

The results of Section 12 demonstrate the modification of motion on
one scale by the formation of eddies on a lower scale, the scale of the
eddies being dynamically determined by the causative gradients. It has
clearly been revealed that such modification cannot be handled by an
empirical eddy viscogity, The profile we have examined contains a
vorticity maximum which ia flattened by the eddies. If the profile had
a vorticity minimum instead, the rate of srnoothing would not at all have
progressed so rapidly because such a profile is dy.rnamically stable and
thus does not favor eddy formation,

Consider the 1ax:ge-aca1e vertical structure of the atmosphere, At
a single locality we may ignore horizontal variations at all levels if it
can later be shown that these variations are negligible on the scale of
the developing eddies. A comprehensive approach to the stability
problem might then be developed which takes account of variations with
height in the large-scale density, horizontal velocity, and humidity
distributions, It might also be wise to include the modifying effect of
the local variation with height in t’ile large-scale fields of vertical
motion and horizontal divergence.

The eddies which form due to the vertical structure of the atmos-

phere are not only significant because they are associated with
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convective clouds and turbulence but also because they modify the vertical

structure,
On the whole, the lapse rate must be the most significant parameter

in determining vertical dynamic stability of the atmosphere. Even though

it can be shown by a proper selection of units that the eddy in our study
grew from having a maximum vertical component of about four meters
per second to twelve meters per second in less than eight minutes, this
in itself is not significant, Our thinking must be modiiied by other con-
siderations, '

We must also consider the rate at which the dynamic instability of

the vertical structure is being built up by large-scale processes in- '
cluding surface heating, As the vertical structure crosses thresholds

of instability how much energy becomes available to the eddies? And
are the eddies capable of modifying the vertical structure rapidly enough
to keep the instability at the threshold? What then is the strength of the
eddies? These are quecstions which may be answerable by numerical
integration studies,

Knowledge of how vertical structures are modified by eddies con-
stitutes a prerequisite for making dynamical numerical weather pr'edic«
tions, Consider a model which discretizes the vertical structure by a
number of levels, and which has grid spacings of the order of hundreds
of kilometers in the horizontal. If no alilowance is made for the vertical
adjustments by eéldies of a smaller scale than the grid, ridiculous pro-
files and lapse rates may be developed. However, if the mechanism is
understood and stratified empirical techniques have been developed,
then not only could the vertical structure be adjusted to keep the evolu-
tion on the right track, but al:o useful predictions of turbulence and
convective cloud formations may result,

It is hoped that such investigations will be undertaken, The numer-
ical techniques to be used are themselves in need of further develop-

ment,
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If the behavioral properties of a differential system are not known
and are being numerically investigated, then finite-difference approxi- .
mations and the order of truncation error are of primary interest, and
the concept of the limit is essehtial. However, in practice, in nurneri-
cally integrating partial differential systemsa such as those which model
atmospheric circulations, the precept that we are bound to finite dif-
ferences generally exists., The differences must be the larger the
faster we wish the integration to proceed relative to real time, and the
concept of the limit as our increments tend to zero does not exnter.
In practice we are concerned with the complete systein of finite-

difference equations as a numerical analogue of the complete differen-

tial system,
The procedure is to constsuct and modify a numerical analogue,
having finite increments, until i’s behavioral properties resemble ag .

closely as possible those of the given differential system. This re-

quires a pretty good understanding of the differential system. .
For some eystems, exact numerical analogues can be devived.
To illustrate this, iet us take another look at the linear system .
d gty = -.Cqw 156)
g 39 = -2y ( :

We arrived, in Section 5, by what we shall call the finite-difference

approach, at the analogue
q.-9 -_-—'Li{»_(;q,+q_ ) (157)
INHL TN =1 IN Insd

which may be written in explicit form,

9,.= Dq, =

N+l

)

c}'o , (158)

b
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where

-1
L) = [21z+ i'rg] iZl- 'LTQ . (159)

Our analysis showed us that this analogue has gimilar properties to
the differential system but that the prediction deteviorates with length
of forecast,

If we abandou for the moment the finite-difference approach, we
can, by a full appreciation of the properties of the differeatial system
as revealed by its eigensolutions, arrive at a numerical analogue
which exactiy expresses the evolution, In termus of the eigenvectcrse
and eigenvalues of the matrix Q .

W 2 % G € e | (160)

n
gives the evolution of the initial vector

%= & %0 Gn

at intervals T . If we now construct a matrix M which has these

—~

same eigenvectors but has eigenvalues e“)"‘ , then

N
9y = M 9. - [:] - (161)

which expresses Eq. (160) exactly, no matter the magnitude of T ., *

*It may be noticed that the expression, Eq. (161), resembles a linear
regression tormula in which the same set of parameters enters both
as predictor and predictand. If it is justifiable to assume that the
set ¢f narameters is governed by an expression such as Eq. (156)
then from an analysis of the matrix, which Las been determined
statistically, one may construct both the tendency matrix and a
matrix to be used for any other time interval. Sorne difficulty, how-
ever, will be encountered in interpreting those stable eigensolutions
which have undergone more than one oscillation in the data interval.
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We have demonstrated that for certain simple differential systems
exact (except for random round-off) numerical analogues are possible. .
We have also indicated that we should not be constrained by the finite-
difference approach and the limit concept,

When dealing with nonlinear partial differential systems the problem
becomes rather nebulous. We have no eigensolutions to guide us and we
may know very little about the system. An attempt should be made to
learn as much as possible about the behavioral properties of the systemas.
If limit cycles are undersiood these could perhaps be modeled by the
analogue,

With little else to guide us in complicated systems, then perhaps
the best we can do is to attempt to presarve phyaical continuity princi-
pals which may be inherent in the system., An exampie of this is Egq.
(150), page 80, which attempts to preserve the conservation of total
energy in a closed system, It is not yet clear how many such princi-
pals one can preserve simultaneously,

This last approach may lead to considerable success for General
Circulation models {rmnocdels which contain atmespberic forcing and
friction terms and which are integrated to times far removed from the

initial values). The problems are mémy. -
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