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Tlffi -nffiORY OF INFORMATION 

I.    Introductory Remarks 

I.       Scope and Continuity of this Report 

This report discusses the moderr( theory of 2-point unidirectional 

communication that  is   associated with  the names  of Shannon and Wiener in 

the light of Shannon's Theory of information.     V/hile being for the  most 

part an outline of Shannon's classical paper (22),  the report also  sketches 

some applications and  presents a discussion on the  question of uniqueness 

of formulation of the theory of information. 

In an attempt not  to obscure the underlying train of thought, 

some of the mathematical proofs are heuristic in nature.    The theory's 

present state makes this  ine.itable anyway. 

The block diagram below summarizes the continuity of the  paper 

Introductory 

Remarks 

Concepts of 

Probability Theory 

\ f \ ' 

Definitions of 

Information Rates 

> ' 

\ f Properties of 

Information Rates 

Prediction of 

Time  Series 

I Fig,  1    Continuity Diagram 
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2. General Remarks on the Theory of Information 

During the last decade or so it has been realized that communi- 

cation in the presence of noise is a problem susceptible to treatment by 

the methods of probability theory.  In such treatments we have all been 

accustomed to the frequent use of such scalars as the second coments of 

distributions, etc. Shannon has shown the great usefulness of defining 

another scalar, called the information rate, and has built up a theory of 

commixnicat.ton in which information rate plays a fundamental part. The 

crux of the theory is that information rate is a scalar capable of charac- 

terizing a source in such a manner as to specify the speed at "•'hich source 

messages are to be transmitted in order that they may be received without 

error in spite of the presence of a given intervening noise,  (Actually it 

is usually possible only to transmit with an arbitrarily small, bui non- 

zero, probability of error., but this is a fine point of the type that will 

henceforth be overlooked.) 

In Shannon's paper information rate is introduced by first 

defining a quantity called information which is shown to warrant that name 

because it satisfies many of the intuitive requirements for such a quantity. 

For the sake of variety, a different approach is used in this report. We 

postulate certain requirements for a scalar which is to be called infor- 

mation rate, and show, by assuming certain restrictions, that the postulates 

imply a unique formulation. This "uniqueness theorem" gives some insight 

into the fact that information rate seems to be of such fundamental im- 

portance not only for the problem of two-point communication, but for 

CD 
broader fields as well x . 

(1) Cf. references 4, /, 19 
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As regards applicability of the theory to design of specific com- 

munication links as well as appraisal of existing links, such attempts 

usually turn out to be discouragingly difficult. In this respect infor- 

mation theory can be compared to electromagnetic theory where the analytic 

work involved in solving specific problems is often forbidding.  In 

information theory the fundamental "undefined" variables are "emitted symbol" 

and "received symbol". The existence of noise in the transmitting channel 

is taken care of in the theory by not requiring that the received symbols 

be the same as the symbols emitted by the source^ but only that there be 

a statistical dependence between the two.  The fundamental problem is to 

"code" the emitted symbols in such a way as to best combat the noise. 

In order to take into account the fact that the recipient may not be 

interested in all the detail of the emitted symbols the concept of "fi- 

delity" is introduced.  It is evident that a vast number of problems 

arising in technology can be described in terms of information theory by 

posing the problem of hoy to best modify (i,e, "code" or "modulate") the 

output of some source (i.e, "emitted symbol") so as to best suit the destined 

recipient, but where there is a chance that the article transmitted will be distorted 

along the way.  The following may briefly be cited as examples. 

(a) A source emits real numbers between 0 and 1 at the rate of ten 

per second, the distribution of the number being known. The recipient is 

interested in knowing '.  :e output correct to three decimal places. The 

transmitting facilities are capable of transmitting only O's and I's at 

the rate of 25 per second, and are disturbed by noise in such a way that if 

a certain symbol (i.e. a 0 or 1) is transmitted there is a probability of 

I 



■iik- — .71 

V 

RM-454 
9-20-50 
-4- 

/k  that the wrong symbol is received. The question arises;  Is it 

possible to satisfy the recipient's desire of 3-place accuracy, and if 

so, how should be source output be coded? Note that although it will 

be necessary to represent the real number in terms of a sequence of 

O's and 1's, this does not necessarily mean that the representation 

should be of the binary type (i.e. base 2 representation).  The fact 

that the noise corrupts O's and I's indiscrininately and independently 

would make it likely that a binary representation, where some digits 

carry more weight than others, is not as good as a more hybrid type of 

representation. 

(b) Speech is to be transmitted over a channel having 

a bandwidth of 10 cps. The transmitter is enable of delivering an 

(average) power of 1 kw.  The channel (including input circuit of re- 

ceiver) is permeated by white noise of 2  watts intensity. What type of 

modulation system should be used if the only criterion of fidelity is 

that the transmitted speech is received in intelligible form? 

(c) A photo-electric device equipped with telescope is 

to be capable of indicating on a ^-poaXtLon dial whether a cloud at 

which the telescope is pointed is predominantly of the cirrus, stratus, 

or cumulus type. How should such a device be made? To fit this 

situation into the mathematical model of information theory 44 is 

necessary to make the following interpretationsJ 

sky —> source 

device —^ coder 

space between dial and eye of observer  (possibly also nervous 

system of observer,  etc.)—►channel 

- 
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fhct that  channel can transait  only the words  "cirrus", 

"stratus",  and  "cumulus",  and that  these woras are   trans- 

mitted without  error when   so indicated on the dial > channel 

"noise"  characteristic 

To ftive an indication  or  the  potentialities of information 

theory we will now outline what infonr.ction  theory "tells us to do" in 

each of the three above cases.     The appendix will  show more   speedfically 

how the statements below follow  from the theory developed in the body 

of the  report. 

(a) Information  theory gives a mathemttlcal  scjv   s 

for obtaining the ortimum rcpresf.ntc.tion of the real numbers  in  the 

system using only 0's and I's.     This  scheme  rer-uires minimizing functions 

of several  varic-bles,  solving  equations,  etc.,  and   could be  achieved by a 

great  deal of horse work.     The   resulting optimum  system will  require an 

"infinite"  delay at the  trt-nsjiiitter,  and thus would have to involve a 

storige  tube  or equivalent device.     Jt  is likely that  if a common-sense 

coding scheue were used  instead,   the resulting  system,  although  not 

strictly optimum,  would have a much greater chance of being practically 

physically realizable, 

(b) Information theory tells us to build a detector 

capable of recognizing speech  sounds,  and a coder to code the detector 

output  into   samples of white noise.     Information  theory does not give any 

technically valuable hints  as how to build the speech  sound cetector. 

(c) Inforn. '.-ion  theory tells us to build the indicating 

device but gives no worthwhile indication of how to go about it. 
hi 
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Frora the above we see that information theory is 

in most cases unfortunately merely a device for reohrasing already 

well-realized technical difficulties into more generalized form.  The main 

selling point of information theory is that in reducing difficulties to 

a more generalized form it may of conceptual help in their solution. 

j* 
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II Concepts of Probability Theory 

1. Summary 

Probability distributions necessary for a statistic.-il 

description of 2-point communication in the presence of noise are 

defined. 

2. Statistical Description of Unidirectional 2-Point Com- 

munication 

We are concerned with the description of a link made up of 

a source, prcduving symbols, x, which are corrupted by noise into re- 

ceived symbols, y. 

1 
0 

^ OKK, OJC <l I 

'  Nioif^ 

Fig. 2 Fundamental Communication Link 

It is convenient to define "symbol" in terms of the actual output of 

the source in such a way that successive such symbols are independent 

and are affected independently by noise. For instance, if the source 

is one that produces letters of written English in the presence of a 

noise that affects successive letters independently, a symbol should be 

defined as a group of ten or more consecutive letters, because suc- 

(2) cessive such groups are practically independent in written English^  . 

(2) See reference 22. To be on the safe side it might be necessary to 

use considerably longer groups to eliminate context. 
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With the foregoing in mind, a message can be defined as a sequence 

of independent symbols. Messages can be described in terms of the pro- 

babilities of their symbols, the probability of a certain symbol being 

the fraction of time it occurs in a long message. The usefulness of 

the probabilistic approach is that for many statistical sources occurring 

in nature the probabilities associated with long messages from a given 

source are the same for all long messages from that source. 

In the presence of noise the emission of a certain symbol, x, by 

the source may result in the situation that the corresponding received 

.symbol, y, is not the same of x. Physically, the noise occurs in the 

transmission link, or "channel". The channel is described statistically 

by associating a family of transition probabilities with the noise. Ve 

define 

(i3£(y)dy = probability that the received symbol will be in the 

region (y^y+dy) of the symbol space ^f the emitted svmbol is x. 

Let us also define 

p(x)dx - probability that emitted symbol is in (x,x-fdx). 

These two distributions determine &  Joint probability: 

p(x,y)dxdy - p(x)dxa (y)dy, the probability that a symbol in the 

range Cx,x+dx) will be emitted and (as a result of this) a symbol in 

the range (y^y+dy) received. 

Focusing our attention of the received symbols without reference to 

their prime cause, we see a statistical situation described by 

4(y)dy ■ probability that a symbol in the range (y,y-*-dy) is received. 

It is also possible to define the inverse transfer probability 

p (x)dx ■ probability that the emitted symbol was in (x,x*dx) if 
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the received symbol was y. 

All the distributions can be expressed in terms of p(xßy)   ; 

p(x) - rpCx,y)dy 

1(7) - J,pCx,y)dx 

^(y) - p(*,y)/p(x) 

Py(x) - pCx,y)/q(y) . 

It should be noted that before the receipt cf a synbol the recipient's 

knowledge of what will be emitted is characterized by the distribution 

p(x), while after the receipt of say the symbol y «» m the relevant 

distribution as to what was sent is p (x). It is therefore natural to 

think of p(x) as the a-priori distribution, and p (x) as the distribution 

of what was emitted a-posterior.i to receipt of m.  To emphasize this we 

will often write pCx) » p (x). 

For cases in which the variables assume only a discrete set of 

values the distributions can be obtained by use of the Dirac delta 

function, tie  have 

p(x,y) - P(i,j)ö(x-i)ö(y-j) 

p(x) - P(i)6(x-i) 

1(7) - Q(j)6(y-J) 

^(y) - ^ - %Ü 6(y.j) - Qi(j)6(y.j) 

py(x) - PjCDöCx-i) 

where P(i,j),  P(i),  Q(j), Qi(j)>  P/1) ar« t*1® analogous pirobabilities for 

the discrete symbols. 
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III Definitions of Information Rates 

1. Summary 

A definition of information-receipt rate is evolved from 

fundamental postulates. Derived definitions are then formulated for 

the concepts of information rate of a source and information- 

transmitting rate of a channel. 

2. Information-Receipt Rate 

Let I(m) denote the information obtained as the result of 

receiving the particular message y » m. The following postulate sug- 

gests itself: 

Postulate I; I(m) is a scalar which depends on the a-priori and 

a-posterlori distributions of what the source emitted: 

IW - f [p0(x), Pm(x)J 

with the property that 

JIPOOO. P0(X)J - 0 . 

The second part of the postulate implies that no information was 

gained if the a-posteriori probability as to what was transmitted is 

the same as the a-priori one as to what will be transmitted. 

As the entire process under consideration is ä statistical one 

it is to be expected that statistical functions of I will play a 

more important part than I Itself, './e define the "information- 

receipt" rate R as the average amount of infom.ition received per 

symbolj i.e. as the expected value of I: 

R - E[l(m)]- rq(m)I(m)dm. 

K should be invariant under any transformation that merely 9 
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amounts to a one-to-one relabeling of the message symbols without 

changing the fundamental physical process; otherwise the information 

obtainable from a message could be changed by restating the message 

in a logically equivalent way. For instance, suppose the received 

3 
message is read from a meter calibrated according to yv instead of y. 

If the distributions p and p are recalculated on the basis of xr 
'o     m 

instead of x the resulting value of R should be the same. Now a re- 

labeling of the variable x-^f(x) transforms a distribution p(x) into 

the distribution p(x)/f,(x) where x • g(z) is the function inverse to 

z ■ f(x). Therefore we have the following postulate: 

Postulate II; The transformation 

p(x)-* p(g(x))/f•(g(x)) where g is the inverse of f,  and p 

generically represents all the probability distributions entering into 

the definition of R, leaves R invariant. 

Actually we will not consider the problem of finding the most 

general functional © that satisfies the postulates, because this 

problem is too difficult, and has not yet been solved to the author's 

knowledge. 

Assumption I;  I is of the form 

I = J F(po(x), x)dx - jF(pm(x), x)dx 

where F - F(u,v) is some real function of two real variables. 

We can think of rF(p. (x), x)dx as the "uncertainty" associated 

with the distribution p, (x). Then the restricted class of definitions 

of I determined by assumption I is one in which the received information 

i 
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is Liken as the difference between an a-priori uncertainty and an 

a-posteriori uncertainty.    Note  that  the assumed fashion  by which 

the distribution function determines the associated uncertainty is a 

common one for assigning scalars to distribution functions; for in- 

stance.,  the k'th moment of a distribution p(x)   can be written in the 

form      F(p(x),  x)dx if we take Fiu^v)  = uv . 

It will be assumed that F has  continuous partial derivatives 

through the second order,  and if fact,  we will from now on atjöume all 

sorts of  "good behavior",  including interchangeability of order of in- 

tegration,  etc.     With these limitations  in mind the following uniqueness 

theorem will be derived: 

Theorem I:     If the definition of information is restricted as in as- 

sumption I,  then in order to satisfy postulates I and II it is neces- 

sary and sufficient that 

(3) 
R - constant • f Jp^y)logpP{xjq(y) dxdy 

Proof; 

Since Assumption I automatically implies that postulate I is 

satisfied, and therefore it is only necessary to subject R to the 

conditions of postulate II. We have 

(1)     R « rF(po,x)dx - rrq(m)F(pm,x)dxdm. 

The invariance condition implies that 

(3) This is the formula for inforrr^tion-receipt rate proposed by 

Shannon on the basis of considerations other than those 

employed here. For definitions of symbols see page 8 
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.IPI 

dxdm ■ 

(2) 

rF \
p/6(x]] xldx   rrakisoi  K fpm(g(x)) J JF lf{g{x))> xJdx-   JJfTTOT)    F[f(g(x))/3 

' J T^TV' f(x)J f'^^x-J rq(ai)FJ ^j , f(x)|  f (x)d 

is independent of the choice of f. 

(3) Let FC^v) = uG(u,v). Then (2) becomes 

(4) rpoG(po/f',f)dx -rrqpmG(pm/f,f)dxdni. 

(5) Subject f to the variation ^ f(x)  -«w(x).     Since  (4) is independent 

of f the corresponding variation of (4) must vanish: 

(6.1) - JpJ}u(po/f,fV/f2dx -  rrqp2Gu(pm/f'>f)w'/f2dxdm * 

(6.2) * JpoGv(po/f Sf)wdx * f fcipmGv(pm/f •,f)wdxdm - 0 

Since w'  can be  very large compared to w lines  (6.1) and  (6.2) must vanish 

separately.    The  vanishing of (6.1) implies in turn that 

(7) pfGuCpo/f,'f) +JqpX(pm/f''f)dm = 0 

(8) Setting Gu(u>v)  = r(u,v)/u2 we obtain 

(9) r(po/f'f)   +J
,qr(pin/f',f)dm - 0. 

Note that a variation Ap(xJy) =eh(x)k(y), where P hdx - Pkdx = 0, is an 

admissible variation of p(x>y) providing h and k are appropriately 

bounded.  Such a variation produces the following variations in the as- 

sociated distributions: 

(10) f A po(x) - 0 

A q(m) =■ 0 

Apm(x) -€h(x)k(ra)/q(m). 

Subjecting the respective  quantities of  (9) to the  v.irintions pre- 

scribed by (10) yields 
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(11) JSru(pm/f',f)k(m)d!n - 0. 

Due to thfi arbitrariness of k(m)  (11) implies that 

(12) r (p/f'^f) • function independent of m. 

Subjecting (12) to another variation of the type (10) we obtain 

(12) + ^(12) ■ independent of m; therefore 

(13) f,A(12) =sruu(pm/f'>f)h(x)k(m)/q(m) - indep. of m. 

From the arbitrariness of k(m) it clearly follows that 

(14) ruu(
u>v) = 0 

Combining (14) and (8) gives 

(15) G(u,v) - a(v)lnu+b(v)/u+c(v) 

for some functions a.{v), b(v), c(v). 

Returning now to (6.2) we see that it implies 

(16) poGv(po/f>f) * rqpinGv(pm/fSf)din - 0. 

(17) Let G (u^v) - sCu^v)^, Then (16) becomes 

(18) s(po/f
,
>f) ♦ rqs(pm/f'f)dm - 0. As (18) is of exactly the same 

form as (9) it similarly implies that 

(19) s
uu

(u'v) = 0- 

Combining (19) and (1?) yields 

(20) Gv(u,v) = A(v) * B(v)/u. 

But (15) implies 

(21) Gv(u>v)  - a,(,v)lnu+b'(v)/u+c'(v). 

Combining  (20) and (21): 

(22) a«(v)  - 0. 

Thus 

(23) G(u,v)  »  const  •  lnu-*b(v)/u*c(v)    and 
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(14)   ^(u^v) 

(11) J'ru(pm/fSf)k(m)din - 0. 

Due to the arbitrariness of k(m)  (11) implies that 

(12) r (p /f ^f) - function independent of m. 

Subjecting (12) to another variation of the type (10) we obtain 

(12) + ^(12) - independent of mj therefore 

(13) f'^ (12) =«ruu(pm/f«>f)h(x)k(m)/q(m) « indep. of m. 

From the arbitrariness of k(m) it cle.irly follows that 

0 

Combining (I4) and (8) gives 

(15) G(u,v) - a(v)lnu+b(v)/u+c(v) 

for some functions a(v)> b(v), c(v). 

Returning now to (6.2) we see that it implies 

(16) poGv(po/f'>f) +|qpmGv(pm/f',f)dm - 0. 

(17) Let G  (u,v)  =•  s(u>v)/u.     Then  (16)  becomes 

(18) s(po/f
l,f)  + P qs(pm/f•f)dm - 0.     As  (18)  is of exactly the same 

form as  (9)  it  similarly implies that 

(19) s
uu(u,v)  = 0. 

Combining  (19)  and  (17) yields 

(20) Gv(u,v)   = A(v)  ♦ B(v)/u. 

But  (15)  implies 

(21) Gv.(u>v)  - a,(v)lnu*b,(v)/ut-c«(v). 

Combining (20)  and  (21): 

(22) a'(v)  = 0. 

Thus 

(23) G(u,v)  - const  •  lnui'b(v)/u+c(v)    and 
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(24)        F(u>v) - const • ulnu+uc(v)*b(v). 

Substituting (24) in (1): 

(2$)        R/const «J polnpodx - Pfqp^lnp^xdm *l (p    - J qp dm)c(x)dx. 

But J q(m)pni(x)dm - J q(ni)p(x>ai)/q(m)dm » P0(x). 

Therefore the last integral of (25)  vanishes., making it 

(26)        R/const  »f rp(x,y)lnpodxdy -rfp(x,ni)ln E*r*T« dxdra - 

as was to be proved. 

Arbitrarily setting the const of  (26) equal to -1,  we obtain four 

equivalent representations of R: . (4) 

» -|r'p(x)lnp(x)dx -J%q(y)lnq(y)dy »JJp(x,y)lnp(x,y)dxdy - 

- -jrp(x)lnp(x)dx + rrp(x/y)lnp (x)dxdy - 
J aJ y (5) 

- - ;jfq(y)lnq(y)dy + ifJ'p(x,y)lnq)c(y)dxdy. 

In the discrete  case the formulas reduce to 

R -X P(i,J)ln l&tfe-j   " 

« -5IP(i)lnP(i) -X Q(J)lnQ(j) ♦X- P(i,j)lnP(i,J)  - 

(4) Sometimes it is convenient to use the base 2 for the logarithm; in 

that case const » ~l/ln2. 

(5) More compact representations of these relations will be given in 

section IV, 

• 
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- - 2_ P(l)lnP(i) + 2I P(i>J)lnP,(i) - 
i i,J J 

- - IT Q(j)lnQ(j)* JZ POU)lnQ.(j). 

3.     Information flate of a Source 

The information rate of a source is defined in terms of the 

per-symbol rate at which information produced by the source is capable of 

being received. 

Consider the  expression for information receipt rate 

R - - rp(x)lnp(x)dx -»-r PpCx^yUnp (x)dxdy 

derived in the last paragraph.     On first thought one would be inclined to 

define the information rate of the source as the value of R that would be 

obtained if symbols emitted by the source (described by the distribution 

pCx)) were received in the absence of noise^ that is  with p (x)  = ö(x-y). 

In general,  however,   the  right side of the above expression for R will 

(6) become infinite for this type of transmission. order to make it 

unnecessary to set p (x) » &(x-y) information rate of a source will be 

defined relative to a fidelity criterion. 

Let PCx/y) be a continuous function of x and y whose value is 

a measure of the punishment meted out if the symbol y is received as a 

result of the source emitting the symbol x.  'Prer nably P (x,x) - 0; 

that is, there is no punishment if the emitte" symbol is also the received 

symbol.) 

: 

I 
(6)    The exprassion for R wfcll become infinite if p (x) -   *(x~y)J providing 

the source is not completely discrete,, 
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The average amount of punishment per transmitted symbol is 

(7) Let us call v the quality of the system w^ , The information rate of the 

source with given p(x) relative to the fidelity criterion v » PP pP dxdy 

is defined as the minimum information-receipt rate necessary to preserve 

the quality v. The minimum is taken over all possible noise conditions: 

.71 

R      ■ mln source 

I J P(x..y) 9 (x.,y)dxdy  = v » const. 

For discrete transmission systems the rate of the source is 

c R source Q^") h ^'»'M with 

P(iiJ) (? (x^y.) const. i,j '^'J/ ? (Xi'yj' 

In this case it is possible to obtain the rate of the source in an absolute 

sense by requiring perfect fidelity; i.e., by requiring PCi^j) • P(i)6. .. 

This means Q.(j) » 6. , and Q(j) - P(j). Therefore 

«source absolute " " ^ W™M 

In order to clarify the remarks of page(l6)we can think of the case where 

the source symbols have a continuous distribution as a limiting case of the 

discrete situation, with the help of the substitution P(i) » p(x1)^x. The 

(7)  "Infidelity" would be a better word. 
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fact that R     becomes infinite as Ax-»0 indicates that from the absolute s. ab. 

point of view (i.e. without reference to a fidelity criterion) continuous 

sources have an infinite information rate per emitted symbol. 

A formal, although not very useful, expression for the rate can be 

obtained by carrying out the minimization procedure indicated in the defi- 

nition. We will carry it out for the discrete case, and then state the 

analogous results for the more general case. 

It is desired to minimize 

(1)   - ■^'Q(j)lnQ(j) * 2^ P(i,j)lnQi(j) - 

- D -    -     ^ P(l)Qi(j)ln2:P(m)Qni(J) * ^ PCDQ^j)lnQ1(j) 

for given PiD'o over all Q,,(j),   subject to 

(2.1) 

(2.2) 

' Eo "   fh WVJ^^J) " V " const 

E
l ' ^:Qi(j) " 1    (i " 1.2,...) 

According to  the method of Lagranglan multipliers,  the minimum of 

D will be obtained  when 

W      S^TTT +   i   h S^TTT " 0 (k,l - 1,2,...) 

where the \.   are adjusted to satisfy (2).    From (1): 

From (2) 

b £ 

fp^^TT - P(k)log(P1(k)/P(k)) 

(5)    21 XiS^frj-V^^^1)+ \ 
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Putting (4), (5) into (3): 

(6)   R^k) - PCk) exp ["-X 0(k,l) -\/P(k)] " 

- ACk) exp(-\o»{kfl)). 

where the ACkj's are determined as functions of X by 

(7) ^   A(k)exp(-\o^(k,l)) - 1    (1 - 1,2,...) 

under the restriction that A(k) =» 0 if P(k) - 0. k    is adjusted to 

satisfy (2.1). 

Note that (7) detennines A(k) as the solution of a non-homogeneous 

system of linear algebraic equations.  Unfortunately, D cannot be evaluated 

directly from a knowledge of P(k), and P,(k).  It is first necessary to 

evaluate some one of the quantities, P(t,3),  QjCj), or Q(j), and this re- 

quires the solution of a system of linear algebraic equations. 

This is the roason why the expression (6) has only limited practical 

value for evaluating specific information rates of sources. 

In the special case where P(k) / 0 for any k =■ 0,*^,*2,... _>^«), and 

e(iiJ) -t(i-j) the solution of (7) is 

(8) A(k) - indep of k ■ o((X ), making the a-posteriori probability that 

i was transmitted an exponentially decaying function of the error metric 

T(i-j): 

(9) PjU) -o((X0)exp(-X0T(i-J)). 

Solutions for the continuous case are obtained by replacing the 

probabilities in the above formulas by the corresponding distributions, 

and the sigma signs by integrals.  This transforms the linear algebraic 

equations into integral equations. 

I  I " 

I 
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4. Channel Capacity 

In the theory of information the ability of a channel to transmit in- 

formation produced by a source to the receptor is described by a quantity 

known as channel capacity. The concept of the channel is needed to take 

into account the fact that the symbols emitted by the source are not 

necessarily the symbols arriving at the receiver. Loosely speaking, 

therefore, the channel is that part of a 2-point one-way communication 

system where the noise occurs. 

Since the physical nature of transmission links is often of such a 

nature as to limit the number of symbols per second that can be transmitted 

through it, channel capacity will be defined on a per-unit time, instead of 

a per-unit symbol basis. Let M be the number of symbols per second, and 

let Q^-Cy) be the transition probability distribution describing the noise; 

then the channel will be operating at its "capacity" C when the source is 

properly "matched" to the channel: 

"/Jp^Hfe^3«*- C • max 
p(x) 

The right side of the above equation will be maximized for some distribution 

p(x). The channel will be able to transmit the maximum amount  , information 

per second if it is fed by a source governed by the distribution p(x). This 

concept is valuable because it is always possible to code the output of a 

(S) source to give the encoded symbols an arbitrary given distribution.v   It 

should be noted that under certain conditions it may be desirable to maximize 

the channel over only a restricted class of permissible p(x)»s   ,     In 

that case the channel capacity is« relative to the permissible set of input 

symbols, 

(8) Details will be given in a later section. 

(9) For instance we may permit only pCx^s with a given second moment 

(a power limitation) 
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5.  Example: Capacity of a Band-limited Channel with White Noise 

The restriction of band limitation of say, from 0 to W cycles per 

second, means that the spectra of both the function emitted by the source 

and the noise are limited to the interval (0,W).  Such functions can be 

written in the form 

*9     _ 

(1)   f (t) - «ET f (k/2W) 1 (t-k/2W) 

where $ (t)  sin2nWt 

2nWt (10) 

Since  P f (t~m/Ztl)$ (t-n/2W)dt - ^Z2'^ for integral m and n 
-0» 

(2)   power of f(t) - lim (1/2T) J f2(t)^+ - 

- (1/2W) lim (1/2T) J> f2(k/2W) - 
!-♦•      k—2WT 

n 

» lim (l/2n) 
n-*«      k»-n 

f2(k/2lV) - f2(k/2W). 

From (1) we see that f(t) can be thought of as produced by a source 

that emits a pulse shape <£ with amplitude x » f(k/2W) at instants of time 

1/2W seconds apart.  If the x are picked from a distribution P(A) then (2) 

indicates that the power of f(t) will be the second moment of p: 

J08 

x p(x)dx 
-•o 

A representation of band-limited white noise of power N can be obtained 

by means of the concept that it results when a large number of correspondingly 

(10) This formula can be obtained by expanding the spectrum cf f(t) in 

a Fourier series, and then using the Fourier integral representation 

for f(t)* 
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band-limited functions are added at random. Let g(t) represent the noise, 

and f.(t) typify the functions that add to produce the noise,  evidently 

g(k/2W) •2fi(lc/2W). By the central limit theorem x - g(k/2W), will have a 

Gaussian distribution, which by (3) must have a second moment equal to Ns 

(4) r(x) » (1/ 'y/27iN)exp(-(x /2N) )sdistribution of g.x. 's corresponding 

to two different values of k are independent. 

In the preceding paragraphs we have spoken of f(k/2W) at  the coefflciant 

of the «lementary pulse shapes that make up the signal.  It is apparent that 

the pulse shapes themselves merely act as carriers,  A model for the entire 

process is obtained if we consider the source to emit a sequence of real 

numbers picked from a distribution, say p(x), with second moment S (the 

power of the source). These real numbers are the "symbols" produced by 

the source, the symbol-producing rate being 

(5) K ■ 2W symbols per second. 

The effect of the noise is to add a second sequence term by term to the 

source sequence, with the terms of the second sequence picked at random 

from the distribution (4). 

Due to the additive nature of the noise 

(6) p(x,y) - p(x)r(y-x). Therefore 

(7) R - -J q(y)lnq(y)dy*rP p(x,y)lnqx(y)dxdy - 

- - rq(y)lhq(y)dy+ rr(z)lnr(z)dz. 

By (4) 

(8) rr(z)lnr(z)dz - (-^Un^neN) 

The problem now is to maximize - rq(y).lnq(y)dy over all p(x). Since the 
u 

total power at the receiver is S+N the second moments of p(x) and q(y) must 
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be fixed at S and S+N respectively.  If the maximization of (7) were to 

be carried out over all possible q(y) instead of p(x) (as it actually 

must be) we could use the easily proved theorem that 

(9)   max - q(y)lnq(y)dy with y q(y)dy ■ fixed is obtained when q(y) 
q(y)  J 

is Gaussian; i.e., max - j q(y)lnq(y)dy «=(-j^)ln2ne(S+N), 
q(y)    J 

It  is, however,  certain.ly true in view of the  preceding that 

(10) <. value obtained when max    -I q(y)lnq(y)dy with x p(x)dx ■ 
_p(x)    J 

q(y) were Gaussian «•  (X )ln2ne(S+N). 

Now from the ec^uation 

(11) q(y) - Jp(x,y)dx = J p(x)r(y-x)dx 

and the fact that r(z) is Gaussian it happens to follow fortuitously that 

it is possible to make q(y) Gaussian by taking p(x) Gaussian: 

(12) p(x)  -   (l/^2^S)exp(-(x2/23). 

Therefore the inequality of  (10) becomes an equality, and we have,  combining 

(5),  (7),  (8),   (10) 

(13) C - Wlog(S*N/N) 

as the capacity of the model channel. But the model channel was obtained 

-.r the real channel by a relabeling process, namely by relabeling 

sequences of pulses as sequpnces of real numbers. Since (7) was derived 

under the postulate that it is invariant under relabeling     (13) 

is also the capacity of the real channel. According to (12) the channel 

(11) In the derivation of R it was actually only postulated that invariance 

held if real numbers were relabeled as other real numbers, md only 

one-dimensional distributions were considered. If the distributiorls 

had been taken multi-dimensional the above statement would have fol- 

lowed rigorously. 
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is maximized when the 
source emits white noise 

.71 
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IV.  Properties of Information Rates. 

1. Summary 

The various information rates are expressed in terms of the entropy 

and conditional-entropy functions which are defined and studied.  It is shown 

that the number of highly probable long sequences of symbols emitted by a 

source is closely related to the information rate of the source. 

In the last paragraph the fundamental theorem for 2-point, 1-way 

communication is derived. This states that with a proper en- and de- 

coding equipment the output of a source can always be transmitted in the 

presence of noise, without error, at a rate determined by the channel 

capacity and the information rate of the source. 

2. Entropy Functions 

Let the entropy G of a distribution function f(x) be defined as 

(1) 0 - - rf(x)logf(x)dx. 

Therefore the entropy of the source is 

(2) 0(S) ■ - Pp(x)logp(x)dx, where S stands for Source, 

and the entropy of the received symbols is 

(3) G(T) » - rq(x)logq(x)dx, where T stands for Receiver. 

We also define the mixed or relative entropies 

(4) GT(S) - -J Pp(x>y)logpy(x)dxdy and 

(5) GS(T) - -jrp(x,y)qx(y)dxdy. 

(4) is spoken of as the "entropy of S knowing T% and (5) the "entropy of 

T knowing 5". By thinking of the pair (x,y) as one symbol, we can extend 

(1) to cover the concept of Joint entropy? 
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(6) 0(1,3)  - -y/p(x,y)logp(x,y)dxdy. 

It  can easily be  shown that 

(7) G(T,S)  - G(T)  + GT(S)  -= G(S)  ♦ GS(T)  - G(S,T). 

It also follows from (4) and (5) that if x and y are independent then 

(8) GS(T) » G(T) and GT(S) - G(S). 

Thus if T and 3 are independent 

(9) G(T) - G(T) *  G(S). 

For the discrete case it is desirable to introduce analogous quantities 

(10) H(S) - - <^PilogPi 

(11) H(T) = -^QjlogQj 

(12) HS(T) --^ P(i,j)logQi(j) 

(13)  HT(S) - ^ P(i,j)logPj(i) 

(14)  H(T,S) - H(S,T) - HT(S) ♦ H(T) - H(S) f 1^(1) 

" " ^J P(i,J)logP(i,j). 

■ 

i 
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i ff 

It is possible to express information rate in terms of the 

quantities defined above.  The expression is in the continuous case 

(15) R » G(S) - GT(S) - G(T) - GS(T). 

According to III,  5,   (7) when the  noise symbols are  "additive" and 

independent of the source symbols  (15) becomes 

(16)' R = G(T) - G(N) 

where GCN) =» - J r(x)logr(x)dx is the entropy of the noise. 

For the discrete case (15) degenerates into 

(17)     R  - H(S)-Hr(S) - H(T)-HS(T).  
(12) 

The reader may have noticed that G(S) is actually the uncertainty 

function U(p) arrived at in III, 2,   (24).  (111,2,(25) shows that b(v), 

and c(v) appearing in 111,2,(24) ar« irrelevant.).  In other words (1) 

(13) is a measure of the uncertainty associated with the distribution f(x) v  . 

More generally, for instance, G„(G)  is the uncertainty of the symbol at S, 

knowing the symbol at T. With this interpretation we can easily "derive" 

relation (16). One need merely note that GS(T), the uncertainty of what 

was received/ knowing what was emitted, is, in the.case of independent ad- 

- 

' 

(12) This is true even though none of the G's individually degenerate into 

the corresponding H's. A G can be thought of as differing from the 

corresponding H by an infinite additive constant, these constants 

cancelling out when the difference of two O's or H'a is taken. 

(13) In the discrete case H ■ -^-f.logf, is a measure of the uncertainty 
associated with the probabilities (f,,f2,,,.,f ) in quite an absolute 

senee. It can be shown that H will be a maximum when all the f's are 

equal, and it is obvious that H is zero if and only if one of the I^s 

is unity and all others vanish. 



:r~ 
RM-454 
9-20-50 
-28- 

ditlve noioe, the uncertainty of received signal plus noise with the 

emitted signal known^ this being simply the uncertainty of the noise, 

G(N). Substituting GS(T) - G(N) into (15) yields (16), 

3.  Laws of Long Sequences 

This paragraph lists some properties of long sequences of output 

symbols from a discrete source, transmitted over a noisy channel. 

Law I; 

Every emitted sequence of length L»l symbols has w.h.p.   ^ 

•xp (H^CT)!)   received sequences of length L as possible  consequenceso 

Proof: 

If the sequence (»L,x2,...x.) is emitted it will w.h.p. contain the 

symbol xi P(i)L times (i - 1,2,.,.,n where n is the number of possible 

symbols). The emitted message can therefore be considered to consist of 

n (possibly interlaced) blocks of P(i)L symbols each. Each such i'th 

block will produce a block of P(i)L received symbols., containing the 

j'th symbol Qi(J)P(i)L - P(i,j)L times. The probability of a particular 

block of received symbols is therefore w.h.p, 

PC1>J)L TT M 
j-i L 1 J 

(14) The phrases, "with high probability" (w.h.p.), and "with probability 

zero" (w.p.z.) are to be interpreted as meaning that the probabilities 

referred to approach 1 and 0 respectively as L"*00. Sometimes when 

elements of a set V are H.h.p. also in the set W, we will say 

"All elements of V are in W", 
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The probability of the entire received sequence is therefore 

f7  faCj)]  P(i'j)L = exp(-Hs(T)L). 

The desired result now follows because each of the h.p. received mes- 

sages are equally likely. 

Corollary 1;    (The dual of Law I) ^15^ 

Corollary II; 

The number of h.p, emitted sequences of length L is exp(H(S)L). 

Corollary III;   (The dual of Corollary II) 

source  g^ ^ 
side     ^ channel 

o  receiver 
a   side 

a. 

exp (Hq(T)L) lines  per fan 

Fig. 2    Transmission of Sequences of L>>1 Symbols Over Noisy Channel 

Figure 3 illustrates the situation occurring when long sequences are 

transmitted over a noisy channel. Received and transmitted se4uences are 

represented as points on the right and  left respectively,    Kach fan  shows 

(15) The dual is obtained by interchanging; the words  "source" and  "receiver", 
the  symbols i and J, P(i) and Q(J), and Qi(J) and P^i). 
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how many received sequences a given emitted sequence can result in. 

Since the fans, in general, overlap the receiver cannot know exactly 

what was transmitted.  However, if only a few of the possible points on 

the left were actually used to represent messages it is conceivable that 

the resulting fans ndght not overlap.  A necessary condition for this 

to occur is certainly that no more than 

exp(H(T)L)/exp(Hs(T)L) - exp [(HCT)-HS(T))LJ 

Law II; 

If less than exp I (H(T)-HS(T)-6)L ]  (6>0) points are selected at 

random from the source side of the channel the resulting fins will over- 

lap w.p.z. ^ ' 

Proof: 

Suppose exp j (H(T)-HS(T) -6)11 points are selected at random from 

the left, making the probability that a particular point is a selected 

point 

exp [(H(T)-HS(T)-ö)L] /exp(H(S)L) - exp (-^(5)1-61). 

No two fans emanating fron selected points will overlap if any given 

point on the right cannot be "caused" by more than one selected point. 

Each point on the right can a-priori (i.e. if no selection of points on 

the left were used) be caused by exp(H_(S)L) left points.  The probability 

P that at least two of these points are selected points is less than 1-A, 

where A is the probability that none of the exp(HT(S)L) points is a 

(16) This is of course a much weaker theorem than one giving specific 

instructions as how to pick the points on the left to get the 

minimum possible overlap. Stronger theorems have been obtained 

for specific channels. See Refs. 2, 11, 20. 

i 

of the points on the left are used. 
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iJf 

expHT(S)L 
1    as    L- 

(17) 

selected point. 

A -[ l-exp(-HT(S)L-6L)] 

Therefore P—*0 as L —^ <•» ; q.e.d. 

Corollary IV; (The dual of Law II) 

Corollary V; 

If exp r(H(T)-Hs(T)+6)LJ points (6>0) are selected at random 

from the receiver side of a channel the fans emanating from them 

cover w.h.p. all the exp(H(S)L) points at the source side. 

Proof: 

By Corollary IV if exp [(H(T)-HS(T)-6)L] were selected at the 

right there would be no overlapping of fans so that exp f(H(S)-6)L] 

of the exp(H(5)L) points on the left are covered.  The desired result 

follows easily. 

U.     Fundamental Theorem for Transmission over Noisy Channel 

Theorem II; 

It is possible to match a  source producing R units of in- 

formation per symbol  (relative to a fidelity criterion)  to a channel of 

capacity C by means of coders in such  a way that if less than C/R symbols 

per unit time are transmitted the transmission quality will satisfy the 

fidelity criterion. 

Proof: 

The proof will consist in desc-ibing various coders and decoders 

(17)  These fans originate at the  right and spread out toward the left. 

They are the duals of the ones  shown in Fig.  3,  and  indicate the 

number of emitted sequences that could have  caused the  received 

sequence from which they emanate. 

f 
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by means of which it is possible to attain the objective announced. The 

pertinent block diagram is shown in Figure 4, 

source 
first 

quantizer 

second 

quantizer 
-**- 

channel 

matcher ■^-"channel decoder h«^ receiver 

Fig. 4 Block Diagram for Transmif-sion System With Coding Equipment 

(a) The first quantizer. 

The FQ (first quantizer) is not needed if the source is discrete. 

If the source is not discrete the FQ is used (purely for the sake of 

mathematical convenience) to quantize it into very fine but discrete 

levels.  It is intuitively obvious that very fine quantizing has no 

appreciable effect on the rate of the source. Thus the information rates 

at u and v are the same. 

(b) The second quantizer 

The SQ (second quantizer) is not needed if the fidelity cri- 

terion requires perfect transmission. If, on the other hand, it is not 

dictated that the symbols at v be transmitted with perfect fidelity 

(18) (i.e. if the rate R at v is not the absolute rate v   at v) the SQ 

quantizes the symbols at v in such a way that the c-uantized symbols put 

out at w have an absolute rate R.  (Therefore from w onward there must 

be no more distortion in the transmission system.) 

Fundamentally,, the SQ operates by first ascertaining which of an 

equivalent number of classes a given sequence v belongs to, and then 

transmitting a code number for that class; for instance, the code number 

might simply be the "central" sequence of the particular class. Spe- 

cifically, these clashes and their code symbols can be determined with 

(13) Cf. Ill, 3 as reference for this section 
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the help of Corollary V as follows:    We consider v the  "emitted" 

symbols «nd w the  "received"  symbols.     With this notation the   rate 

of information  per symbol at v 

R ■ ?0)   h P(1'3nn AT 

with const. y     P(i,J)yO(i,J) 

Suppose P'Ci^j) is the P(i>j) for which the minimum in the above 

definition of R is obtained.  Select,, according to the method of Cor. 5> 

exp(RL+6L) points on the "receiver" side of the transmission system 

obtained with P(i,j) ■ P'Ci^j). The SQ is to be constructed so that 

it will use a particular selected point as the code for the class of points 

caught in the fan emanating from the selected point. The S^ obtained 

by this construction satisfies the fidelity criterion, and has the 

property that, looking into its output terminal w, we see a source of 

absolute rate R units of information per symbol. 

(c) The channel matcher ^ 

The CM (channel matcher) is, as its name indicates, a device 

for encoding the symbols arriving at w into symbols that are best able 

to combat the noise present in the channel. Since it must be possible 

to recover the symbols w with perfect accuracy at the receiver, the CM 

must be a one-to-one coder; that is, it must be reversible. 

For purposes of discussing the CM consider x to be the "emitted" 

symbols and y the "received" symbols. Assume that the symbols x are 

(19) Cf.  Ill, A as reference for this section 
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produced according to  the distribution P"(i) and transmitted at the 

rate K*  symbols  per second.where p"(i) and M'  maximize  the   channel i.e. 

assume that 

- ^M ^ P^^ln ?Mhj'where K is the number of 

symbols per second,, is obtained for P(i) ■ P"(i) and M =» M',  If 

H(S") - - ^1 P"(i)logr"(i), then,, according to Cor. II, if the channel 

is operated with P(i) » P'^i) there will be exp(H(S")K»T) possible 

h.p. long sequences of length T seconds at point x.  According to 

Law II if less than exp(CT) of these sequences are used as messages 

the "receiver" at y will be able to ascertain exactly which message 

was sent. The oroblem for the CM is therefore only to code the symbols 

arriving at w into the exp(CT) symbols that are available for trans- 

mission without error. Since exp(RL) symbols of length L arrive at 

w such coding will obviously be possible if and only if RL< CT, i.e. 

if and only if no, of symbols per see. produced by source «= L/r<C/R/ 

where R is the rate of the source, and C the capacity of the 

channel. 

(d) The decoder 

The decoder performs the operation inverse to the CM, so that 

we end uo with the same symb/lr at z that originated at w. 

i 
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V.     Prediction of Time Series. 

1. Sumnary 

This section outlines the philosophy behind the prediction 

problem for time series chosen from an ensemble of time series for which 

a certain set of multi-dimensional set of probability functions exists, 

and is a-priori known. 

2. Multi-dimensional Probability Distributions 

(1) Let z.. jZ-,... ,2, , ... be a typical time series of an 

ensemble of time series. 

(2) Let Vk(y1,y2>,,.>yk)dy1dy2...dyk (k - 1,2,...) 

be the  probability that if a block of k  consecutive z's,  beginning 

with  z.  ,.  is selected at random from  (1)  the  z's will lie in the 
3*1* 

region 

yiSzi+j£yi*dyi    (i " 1^--->k)> 

relation  (2)   being postulated to hold independent of j, and  independent 

of which  particular  time series is chosen from the ensemble. 

(3) Let w
k(y1>y2',"''yk;yk+l^dyk+l       (k*1) 

be the probability that z .+k+1 will lie in the region 

'   yk^2j^i^yk^dyk*i il zi+j"yi  (i-i,2,...,k). 

If we arbitrarily set 

(4) Wo^  " Vi(y)    ifc follows that the V and  W functions are 

related through 

(5) Vk(yl'y2"--'yk)  " Vk.l(yl'y2"-"yk-l)Wk-l(yl'y2'-"'yk-l;yk) 

if k^2. 
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To obtain a complete statistical description of the stochastic 

process in question all the W. f8 (or what is easier experimentallv, 

all the V. 's) must be found.  In most practical cases there will be 

no "influence" extending further than, say J signals. This simply 

means that 

(6)       Wkfri'^'—'VW - F(yk->i'yk-j*2'--''yk'W 

for k larger than some sufficiently large j. 

3.  Pradictability 

Loosely speaking., the more redundant a time series is, 

i.e. the less uncertainty there is about the next signal, knowing a 

certain number of previous signals, the more easily predictable will 

the time series be. Some of the terms used in the preceding sentence 

can be defined exactly. 

(a) k-dei"ived uncertainty = H. 

Analogously to III, 3 let©(x,z) measure the punishment 

meted out if a signal x is predicted to be the symbol z, and let v 

measure the amount by which two signals must differ in order to become 

practically distinguishable. 

Define R to be the rate of a mathematically artificial 

source that produces symbols x independently according to the distribu- 

tion p(x) - W. (y;x) relative to the criterion 

rjp(x;z)fl (x,z)dxdy.- v; i.e. 

(8)     V?) - min^ JJ p(x,z)log g^^ dxdz 
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with 

/!■ P(x>z)P(x,z)dxdy - v, 

where    p(x,z)  - p(x)qx(z)>  q(z) «P p(x,a)dx. 

Let H.   be the average of R.   over the possible y-j^y^^^yj: 

(9) Hk "J ^(y^kCy)^   (a k-fold  integral) 

H.   is evidently the average amount  of information needed to 

specify a  signal if the   previous k signals  are known.    Thus it is a 

measure of the uncertainty with which we know what a  signal will be if 

we know the previous k signals, 

(b)     redundancy 

(10) Let H- lire    H. 0», k 

The redundancy of the time series can be defined as 

(11) /"-l-H^/H, 

If successive symbols are independent we will have 

(12) 

(13)     1^ - H0, so that /<- 0. 

If the next signal is,  on the  other hand,  completely determined 

once a sufficient number of preceding signals  are known   //■ 1. 

It should not be forgotten that,  in general,  the redundancy is 

relative to the  punishment function p(x,y) and  the distinguishability 

criterion v. 

4.    The Mechanism of Prediction 

(a)     choice of the  punishment  function P (x,y) 

In order to design a predictor,   it is,  in  principle. 

VC(y;x)  « W (x)     (all k), and therefore 
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necessary to first specify the function of two variables Ö(x,y) that 

measures the punishment meted out if the next signal is predicted to 

be "y" but actually turns out to be "x".  Although the choice of 

^ (x*y) will be dictated by the application of the predictor, its 

selection Is ultimately a psychological problem. 

The predictor is designed so as to minimize the expected 

value of ^ (x.y)/20^ 

A common choice forP(x,y) is 

(13) ^ (x.y) - f(x-y), 

in which case the punishment depends only on the error.  For instance 

the (for reasons of analytic simplicity) popular least-squares criterion 

(14) ^ (x,y) - f(x-y) - (x-y)2 

is of this type. 

(b) -unrestricted versus restricted prediction 

The most general form of predictor is a computer 

which, on the basis of all information at hand, predicts a signal so as 

to minimize the expected value of the punishment,, According to the 

(20) This might be called a "rational" prediction criterion.  It is 

conceivable (in fact the motivation for gambling) to have the 

punishment function dependent not merely on x and y,  but also 

on the probability that x will occur. Maximizing the expected 

value of 9  in such a case would amount to an "irrational" 

criterion. With irrational criteria it may be desirable for 

the predictor to play a mixed strategy against the time series, 

i.e. to "toss a coin". With rational criteria it is pointless 

to play a mixed strategy. 

- 

i 
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aforelying formulation of the prediction probiere the computer can do 

this if it remembers all previous signals, computes the a-priori dis- 

tribution of the signal to be predicted according to the W. functions, 

and then minimizes the expected value of P .  A process such as this 

can be called "unrestricted" prediction. 

On the other hand, consider the case where, for practical reasons, 

it is necessary to place theoretically artificial restrictions on the 

storage mechanism and permissible operations assigned to the computer. 

When this situation arises we speak of "restricted" prediction.  An 

example is the case of so-called linear prediction where the computer is 

permitted to evaluate only linear combinations (with permanently fixed 

coefficients) of amplitudes of past signals.  Although a time series of 

redundancy yu = 1 is perfectly predictable in the unrestricted sense it 

may not be so in the restricted sense. 

The more restricted a predictor is the larger the error of pre- 

diction will be. On the other hand the predictor may be applicable 

to a larger ensemble of time series if it is more restricted. Thus 

restriction of predictors has among other tilings the effect of trading 

error for versatility, 
i 

5. Examples 

(a)  sine wave samples 

Consider a source producing signals z, at discrete time 

instants (1 ■ 1,2,...) according to the recursion formula 

(15)     r(zi) - sin i        (i - 1,2,...) 

It can be shown that the points i mod (2n) cover the interval 
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(0,2«)  in an everywhere dens« fashion and in such a way that the pro- 

bability that i mod(2n) is between two real numbers exists and is flat 

over  (0,,2i0.    Therefore the  distribution W (z) for f(z.)  is the same as o i 

that obtained for sin t if t is picked at random from a distribution 

flat over (O^n).  This latter is ^21^ 

! 1 
j (16) Wo(z) -J   I/^TN/II?)      if       |z|< 1 

t [   0 if      |zUl 
ik 

(17)       Let a,   ■« sink,     b.    • cosk. 
i K K 

Then if a given signal has the amplitude z.  it  is equally likely that 

i 

i 

(18) bizi+ai v1"2^    or    blz1~al^l~z1  * Thus 

(19) W1(y1;y2) =(1/^6 ^-(b^^ VCf j ^/^ [ys'^l^l^l V^"^ j ' 

If two or more consecutive samples are known all future samples 

can be predicted perfectly because f(z.) satisfies a difference equation 

of the second order. The distributions are 

(20)       \(yi'y2'-"'ykiyk.i) =6 [^1-^2^1-^-1^1 >]  • 

(b) redundancy of English 

(22) According to an estimate given by Shannon the re- 

dundancy^ of written English relative to a criterion requiring perfect 

distinguishability o** different letters ia U~ 0.5.    This figure prob- 

ably neglects long-tenr  context. 

(21) Cf..,  for example,  ref.  21 

(22) Ref.   22 
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(c) Wiener predictor 

The Wiener predictor is a restricted predictor of the 

linear type with a least-squares error criterion.  To design such a 

predictor it turns out to be unnecessary to know all the W, functions, 

It is sufficient to have the autocorrelation function of the time 

series: 

(21)    ^ nOO - lim 1/(2N^ "]> 
Jl 

^y - ^ *,v—-^ ^    3izi+k: 

which is expressible in terms of the W's. 

(d) restricted prediction of digital expansions of ir- 

rational numbers 

As an example of the fundamental difference between 

restricted and unrestricted prediction consider the problem of pre- 

dicting the (k+l)st digit in the decimal expansion of an irrational 

(23) 
number,, say n ,  knowing the first k digits. 

Since n is defined by a recursion formula it is obviously 

possible to predict the next digit exactly, providing there are no 

restrictions on the computations permitted.  It is merely necessary to m 

use one of th« standard series expanaion». On the other hand, it would 

be a miraculous mathematical coincidence if, say, the Wiener predictor 

re able to yield future digits unerringly. 

(23) This is connected with the problem of the bandwidth required to 

transmit n  over a noisy channel. We assume, for the sake of 

this discussion, that the W. functions actually (»xist for n. 

There is some empirical evidence to support such a conjecture. 
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VT    APPÜNDIX 

( 

In 1,2 the limitations of infomation theory were illustrated 

(2L,) by three  examples  *       .     It will now be shown how the stateroants 

made  there  follow more  specifically from the theory presented in the 

body of the report. 

(a)    The problem is to  construct the  FQ,  SQ,,  and CM of 

Figure 4.    Assume th-~t the output has,  say a  flat distribution over 

(0,1),  i.e. 

(1) p(u) 1        Oixil 

0        otherwise 

Imagine the FQ to convert u to a finely quantized form,   say 

(2) 
PCv^)  - 10"10i (i - 0,1,2,...,10~10) 

Evaluate 

R -      min 

-10 

3=5 

p(vw ) 

< with      Qy (wj) - 0 if |vi-wj|>5 x 10~4 

and P(v,) as defined by (2). 

Let the minimum be achieved say for Q    (w.)  * Q'   (w.). 
^i J    vi J 

In order to build (on paper) a proper SQ consider a system with input 

statistic P(v.), and noise conditions described by Q1 (w.). The SQ 
■*■ "4  J 

should be designed to operate on long messages, say 100 seconds (■ 1000 

symbols) long.  If we arbitrarily pick 10 R of the possible high- 

(24) Cf. 1,2 for this section 
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probability received messages of the  system whose transfer statistic 

is Q'   (w ) and  construct the  fans from each of these  selected received 
i     J 

messages  to  the  corresponding high-probability emitted messages.,   then., 

according to Corollary V^  most of the emitted messages  will be covered 

by fans.     Let  a  fan be  called by the  received message from which it 

originates.     The SQ is then to be constructed in such a way as to 

code  an  emitted message  into the name of one of the  fans that  covers 

that emitted message.     Evidently the SQ will  involve  storage  facilities 

as  well as reading and  comparison circuits. 

In order to build the CM it is necessary to find the channel 

capacity. 

(4) C «  25    max 
PC V rfc^'^'V&h 

with Q    (y.)  - 3/4 6 
XiyJ 

where  say x,   and y,   represent the binary digit 0,  and X2 

and y«  represent  the digit 1. 

Let   the maximum be achieved for say P(x.)  - P"(x.).     If 1000R < 1000, 

i.e.   if R< C/lOj   it is  possible to code the  sequences at w into 

sequences at x in  such a way that, according to Theorem II there will 

be  no  error in transmission.    The  transmitted messages must have a 

statistic P'^x.)  and the  required CM will again involve  storage, 

reading,  and  comparison circuits. 

(b)    From the  fact  that the transmission is band-limited 

and  sub.-Ject  to an average  power limitation it follows that  the  speech 

should  be coded into white noise.     T.king 100 words  per minute as a 
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reasonable rate of speaking, the information rate of speech comes out 

to be about 10 units/second relative to a fidelity criterion that 
(2$) requires only intelligibility  v ^   , 

The combined FQ, SQ, and CM necessary would be a device that 

stores long speech-sound groups, say sentences, and looks up the ap- 

propriate white noise representation in a code book.    Building such a 

coder is a purely technical problem outside the scope of information 

theory. 

If the speech code is to be transmitted without error over a 

10 cps, band then, according to III,!?, (13) the received signal-to- 

noise ratio, S/N must be at  least as great as the root of 

(5) 10 ■ 101og(l+S/N)  or 

(6) Required S/N2 2, 

(c)    This problem can  be formulated mathematically but the 

formulation is actually quite useless.     If we assume the device to 

take photographs of the sky,   and if only a finite number of photo- 

graphs are possible (e,g,  if different photographs differ only in that 

different squares of a rectangular grid are filled in) there will be 

only a finite number of "source symbols", and it is only necessary to 

build an appropriate SQ,    Let the possible photographs be enumerated 

by i • 1,2,,,,,n, and the possible cloud types by j - 1,2,3.    In 

order to build the SQ it is first necessary to calculate the infor- 

mation rate of the source subject to the fidelity criterion 
5— 
ij ^(i»J)P(i»j) " const.    Thus it is necessary to have an a-priori 

(25)    A result  of experiments carried out to determine the redundancy 
of written English, See ref,  22, 

4 
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set of probabilities as  to the   types of photographs  expected,   and it 

is also necessary to know   /0(i,J)  in terms of i and J,    The latter 

requirement simply means that  it is necessary to know a decision 

method for determining '/hether an arbitrary fixed value of i  corresponds 

to a  cloud of the cirrus,  stratus,  or cumulus types before it  is  pos- 

sible to go ahead with the calculations necessary to obtain the SQ, 

However,  finding such a decision method is the entire essence of the 

posed problem. 
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