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THE THEORY OF INFORMATION

! I. Introductory Remarks

I. Scope and Continuity of this Report
This report discusses the moderrn theory of 2-point unidirectional

communication that is associated with the names of Shannon and Wiener in

e e sawaT

the light of Shannon's Theory of information. Whi;e being for the most
part an outline of Shannon's classical paper (22), the report also sketches
some applications and presents a discussion on the guesticn of uniqueness
of formulation of the theory of information.

In an attempt not to obscure the underlying train of thought,

some of the mathematical proofs are heuristic in nature. The theory's

e cmmey v e vy

present state makes this ine.itable anyway.

¥ The block diagram below surmarizes the continuity of the paper
Introductory Concepts of
Remarks Probability Theory
' Definitions of
N Information Rates .

§ )
Y Properties of
Information Rates

Prediction of

Time Series

1’ Fig. 1 Continuity Diagram
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2. General Remarks on the Theory of Information

During the last decade or so it has been realized that communi-
cation in the presence of noise is a problem susceptible to treatment by
the methods of probability theory. In such treatments we have all been
accustomed to the frequent use of such scalars as the second moments of
distributions, etc. Shannon has shown the great usefulness of defining
another scalar, called the information rate, and has built up a theory of
communication in which information rate plays a fundamental part. The
crux of the theory is that information rate is a scalar capable of charac-
terizing a source in such a manner as to specify the speed at hich source
messages are to be transmitted in order that they may be received without
error in spite of the presence of a giveﬁ intervening noise. (Actually it
is usually possible only to transmit with an arbitrarily small, bul non-
zero, probability of error, but this is a fine point of the type that will
henceforth be overlooked, )

In Shannon's paper information rate is introduced by first
defining a quantity called information which is shown to warrant that name
because it satisfies many of the intuitive requirements for such a quantity.
For the sake of variety, a different approach is used in this report. We
postulate certain reqyuirements for a scalar which is to be celled infor-

mation rate, and show, by assuming certain restrictions, that the postulates

imply a unique formulation. This "uniqueness theorem" gives some insight

into the fact that information rate seems to be of such fundamental im-
portance not only for the problem of two-point commuﬂicatibn, tut for

broader fields as well (l).

(1) Cf. reoferences 4, [/, 19

3
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As regards applicability of the theory to'design of specific com-
munication iinks as well as appraisal of existing links, such attempts
usually turn out to be discouragingly difficult. In this respect infor-
mation theory can be compared to electromagnetic theory where the analytic
work involved in solving specific problems is often forbidding.' In
information theory the fundamental "undefined" variables are "emitted symbol"
and "received symbol". The existence of noise in the transmitting channel
is taken care of in the theory by not requiring that the received symbols
be the same as the symbols emitted by the source, but only that there be
a statistical dependence between the two. The fundamental problem is to
"code" the emitted symbols in such a way as to bhest combat the noise.

In order to take into account the fact that the recipient may not be

interested in all the detail of the emitted symbols the concept of "fi-

delity" is introduced, It is evident that a vast number'of problems

arising in technology can bte described in terms of information theory by

posing the problem of how to best modify (i.e. "code® or "modulate") the

output of some source (i.e. "emitted symbol") so as to best suit the destined
recipient, but where there is a chance that the article transmitted will be distorted
along the way. The following may briefly be cited as examples,

(a) A source emits real numbers between 0 and 1 at the rate of ten

per second, the distribution of the number being known., The recipient is
interested in knowing ‘ e ocutput correct to three decimal places, The
transmitting facilities are capable of transmitting only O's and 1's at

the rate of 25 per second, and are disturbed by noise in such a way thét it

a certain symbol (i.e. a O or 1) is transmitted there is a probability of
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%/L that the wrong symbol is received. The question arises: Is it
possible to satisfy the recipient’s desire of 3~place accuracy, and if
8o, how should be source output be coded? Note that although it will
be necessary to represent the real number in terms of a sequence of
O's and 1's, this does not necessarily mean that the representation
should be of the binary type (i.e. base 2 representation). The fact
that the noise corrupts 0's and 1's indiscriminately and independently
would make it likely that a binary representation, where some digits
carry more weight than others, is not as good as a more hybrid type of
representation.

{(b) Speech is to be transmitted over a channel having
a bandwidth of 10 cps. The transmitter is cirable of delivering an
(average) power of 1 kw. The channel (including input circuit of re-
ceiver) is permeated by white noise of 2 watts intensity. What type of
modulation system should be used if the only criterion of fidelity is
that the transmitted speech is received in intelligible form?

{¢) 4 photo-electric device equinped with telescope is
to be capable of indicating on a 3-position dial whether a cloud at
which the telescope is pointed is predominantly of the cirrus, stratus,
or cumulusrtype. How should such a device be made? To fit this
situation into the mathemstical modsl of information theory #b s
necessary to make the following interpretations:

sky —~» source
device —3 coder
space between dial and eye of observer (possibly also nervous

system of observer, etc,) —» channel

T
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fact that channel can transmit only the words "cirrus',

"stratus”, and "cumulus", znd that these worus are trans—
mitted without error when so indicated on the dial —> channel
"noise" characteristic

To give an indication ol the potentialities of information
theory we will now outline what inform:ition theory "tells us to do" in
each of the three azbove cases. The wcprendix will show more specifically
how the stztements below follow from the theory developed in the body
of the report.

(a) Information theory gives a mathemc tical scr. =
for obtaining the ortimum repres:«nt:tion of the rezl numbers in the
cysten using only O's and 1's, This scheme recuires minimizing functions
of several veriebles, solving esuations, etc., and could be zchieved by a
great deal of horse work. The resulting ortimum system will rejuire an
"infinite" delay at the trensmitter, and thus would have to involve a
storige tube or eauivalent device, It is likely that if a common-sense
coding; schenie were used instead, the resulting systen, although not
strictly ortimum, would have a much greater chance of being pructically
physicelly reslizable,

(b) Informstion theory tells us to build a detector
capuble of recognizing speech sounds, and & coder to code the detector
outrut into sumples of white noise. Information theory does not give uny
technically valuable hints as how to build the speech sound cetector,

(¢) 1Infori rion theory tells us to build the indicating

device but gives no worthwhile indication of how to go ubout it.
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From the above we see that information theory is

in most cases unfortunately ierely a device for reohrasing already

well-realized technical difficulties into more generalized form. The main

selling voint of information theory is that in reducing difficulties to

a more generalized form it may of conceptual help in their solution.

i
2
i
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II Concepts of Probability Theory
1. Summary
Probability distributions necessary for a statistical
description of 2-point communication in the presence of noise are
defined,
2. Statistical Description of Unidirectional 2-Point Com-
munication
We are concerned with the description of a link made up of

& source, prcdu.ing symbols, x, which are corrupted by noise into re-

ceived symbols, y.

1

! Ru..i;ﬁ,a. ;
|

* - L e

30\..\,%02

— Sl

Fig. 2 Fundamental Communication Link
It is convenient tc define "symbol" in terms of the actual output of
the source in such a way that successive such sympols are independent
and are affected independently by noise. For instance, if the source
is one that produces letters of written English in the presence of a
noise that affects successive letters independently, a symbol should be
defined as a group of ten or more consecutive letters; because suc-

cessive such groups are practically independent in written English(z).

(2) See reference 22, To be on the safe side it might be necessary to
use considerably longer groups to eliminate context,

Wt
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With the foregoing in mind, a message can be defined as a sequernce
of independent symbols. Messages can be describéd in terms of the pro-
babilities of their symbols, the probability of a certain symbol being
the fraction of time it occurs in a long message. The usefulness of

the probabilistic approach is that for many statistical sources occurring

in nature the probabilities associated with long messages from a given

source are the same for all long messages from that source.

in the presence of noise the emission of a certain symbol, x, by

the source may result in the situation that the corresponding received

transmission link, or "channel”, The channel is described statistically
by associating a family of transition probabilities with the noise. We

define

qx(y)dy = probability that the received symbol will be in the

region (y,y+dy) of the symbol space if the emitted symbol is x.
Let us also define

p(x)dx = probability that emitted symbol is in (x,x+dx).
These two distributions determine s joint probability:

p(x,y)dxdy = p(x)dqu(y)dy, the probability that a symbol in the
range (x,x+dx) will be emitted and (as a result of this) a symbol in
the range (y,y+dy) received,
Focusing our attention of the received symbols“without reference to
their prime cause, we see a statistical situation described by

q(y)dy = probability that a symbol in the range (y,y+dy) is received.

It is also possible to define the inverse transfer probability

py(x)dx = probability that the emitted symbol was in (x,x+dx) if
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i the received symbol was y,

All the distributions can be expressed in terms of p(x,y) :

p(x) = [p(x,y)dy i
aqy) = fp(x,y)dx *

a, (¥) = p(x,¥)/p(x)

—

py(X) = p(x,y)/aly) .

It should be noted that before the receipt c¢f a symbol the recipi=nt's

cp e saes

knowledge of what will be emitted is charactefized by the distribution

e

p(x), while after the receipt of say the symbol y = m the relevant

distribution as to what was sent is pm(x). It is therefore natural to

aa—y A e Wy

think of p(x) as the g-priori distribution, and pm(x) as the distribution
,l ( of what was emitted a-posterior! to receipt of m. To emphasize this we

will often write p(x) = po(x).

For cases in which the variables assume only a discrete set of

values the distributions can be obtained by use of the Dirac delta

function. #e have

p(XIY) = P(i,J)5(X—i)5()"J)
p(x) = P(1)s(x-1)

é
‘a(y) = 23)6(y-3)
a () = B o B 5(y-9) = 2, (5s(y-3) ;
Py(x) = Py(1)8(x-1) 3

where P(1,3), P(1), Q(3), Qi(J), PJ(i) are the analogous probabilities for :

{ the discrete symbols,
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III Definitions of Information Rates
1, Summary
A definition of information-reccipt rate is evolved from
fundamental postulates. Derived definitions are then formulated for
the concepts of information rate of a source and information-
transmitting rate of a channel,
2. Information-Receipt Rate
Let I(m) denote the information obtained as the result of
recelving the particular message y = m. The following postulate sug-
gests itself:
Postulate I: I(m) is a scalar which depends on the a-priori and

a-postepriori distributions of what the source emitted:

I(m) = § [po(X), pm(X)]
with the property that
JPox)s pm ] =0

The second part.of the postulate implies that no information was
gained if the a-posteriori probability as to what was transmitted is
the same as the a-priori one as to what will be transmitted.

As the entire process under consideration is a statistical one
it is to be expected that statistical functions of I will play a
more important part than I itself. Ve define the "information-
receipt” rate R as the average amount of information received per

svmbol, i.e. as the expected value of I:

R=E [I(m)] = Jq(m)l(m)dm.

K should be invariant under any transformation that merely
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amounts to a one-to-one relabeling of the message symbols without
changing the fundamental physical process; otherwise the information
obtainable from a message could be changed by restating the message

in a logically equivalent way. For instance, suppose the received

message is read from a meter calibrated according to y3 instead of y.

If the distributions Py and p, are recalculated on the basis of x3

instead of x the resulting value of R should be the same. Now a re-
labeling of the variable x = £(x) transforms a distribution p(x) into
the distribution p(x)/f'(x) where x = g(z) is the function inverse to
z = f(x). Therefore we have the following postulate:

Postulate II: The transformation

p(x) = p(g(x))/f£'(g(x)) where g is the inverse of f, and p
generically represents all the probability distributions entering into
the definition of R, leaves R invariant.

Actually we will not consider the problem of finding the most
general functional ? that satisfies the postulates, because this
problem is too difficult, and has not yet been solved to the author's
knowledge.

Assumption I: I is of the form

I=[F(py(x), xax = [ F(p (x), x)ax

where F = F(u,v) is some real function of two real variables,
We can think of I F(pi(x), x)dx as the "uncertainty" associated
with the distribution pi(x). Then the restricted class of definitions

of I determined by assumption I is one in which the received information
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is tnken as the differcnce between an a-priori uncertainty and an
a-posteriori uncertainty. Note that the assumed fashion by which
the distribution function determines the associated uncertainty is a
common one for assigning scalars to distribution functions; for in-
stance, the k'th moment of a distribution p(x) can be written in the
form j F(p(x), x)dx if we take F(u,v) = uvk.

It will be assumed that F has continuous partial derivatives
through the second order, and if fact, we will from now on assume all
sorts of '"good behavior", including interchangeability of order of in-
tegration, etc. With these limitations in mind the following uniyueness
theorem will be derived:

Theorem I: If the definition of information is restricted as in as-
sumption I, then in order to satisfy postulates I and II it is neces-

sary and sufficient that

R = constant 'J\Ip(X;Y)log;E%ﬁjﬁ%;) dxdy (3)
o

Proof:
Since Assumption I automatically implies that postulate I is

satisfied, and thercfore it is only necessary to subject R to the
conditions of postulate II1. We have

(1) R= [F(pg,xax - [[a(mF(py,x)axdn,

The invariance condition implies that

(3) This is the formula for information-receipt rate proposed by
Shannon on the basis of considerations other than those

employed here., For deéfinitions of symbols see page 8
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[Po(s(x)) ] m pm(g(x)). '
IF i)’ *J9* - ”f'gm) FlTEGy, A dxam =

po(x) Dm(x)
(2) - f F ) £(x) r'(x)dx-ij(m)r-' UK £(x)|] £'(x)dxdm

is independent of the choice of f.

(3) Let F(u,v) = uG(u,v). Then (2) becomes

(4) J‘poc(po/f',nctx —”qpmc(pm/f',r)dxdm.

(5) Subject f to the variation & f(x) = éw(x). 3ince (4) is independent

of f’ the corresponding variation of (4) must vanish:

(6.1) - IpﬁGu(pO/f',f‘)w'/!"zdx - f‘[qpflcu(pé/f"f)"'/f'zdx‘m Y
(6.2) + Ipon(po/f',f)mx +Ijqpva(pm/f' ,f)wdxdm = O

Since w' can be very large compared to w lines (6.1) and (6.2) must vanish

separately. The vanishing of (6.1) implies in turn that

(7) piGu(po/f',f) +fqp::<2u(pm/f',f)dm =0.

(8) sSetting Gu(u,v) = r(u,v)/u2 we obtain

(9)  r(p,/1'2) + [ar(p,/t!,f)dm = 0.
Note that a variation Ap(x,y) =€ h(x)k(y), whereJ' hdx -Ikdx = 0, is an
admissible variation of p(x,y) providing h and k are appropriately
bounded. Such a variation produces the following variations in the as-
sociated distributions:
(10) FaN po(x) =0

A g(m) =0

A op (x) = €h(x)k(n)/q(m).
Subjecting the respective quantities of (9) to the variations pre-

scribed by (10) yields




(11) J\ru(pm/f',f)k(m)dm = 0.

Due to the arbitrariness of k(m) (11) implies that

(12) ru(pm/f',f) = function independent of m,

Subjecting (12) to another variation of the type (10) we obtain
(12) + & (12) = indeperdent of m; therefore

(13) £t AN (12) =6 r_ (p /f',f)h(x)k(m)/q(m) = indep. of m.

uum
From the arbitrariness of k(m) it clearly follows that

(14) ruu(u,v) =0

Combining (14) and (8) gives

(15) G(?,v) = a(v)lnu+b(v)/ustc(v)

for some fﬁnctions a(v), b(v), c(v).

Returning now to (6.2) we see that it imoplies

(16)  p G, (p /f",f) +qum0v(pm/f',f‘)dm = 0,
an Let Gv(u,v) = s(u,v)/u. Then (16) becomes

(18) s(po/f',f) +J‘qs(pm/r'f)dm = 0. As (18) is of exactly the same

form as (9) it similarly implies that
(19) suu(u,v) = 0.

Combining (19) and (17) yields

(20) Gv(u,v) = A(v) + B(v)/u.

But (15) implies

(21) Gv(u,v) = a'(v)lnu+b'(v)/utct(v).
Combining (20) and (21):

(22) a'(v) = 0,

Thus

(23) G(u,v) = const - lnu+b(v)/u+c(v) and

3
4
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(11) J‘ru(pm/rv,f)k(m)dm - 0.

Due to the arbitrariness of k(m) (11) implies that

(12) ru(pm/f',f) = function independent of m,

Subjecting (12) to another variation of the type (10) we obtain
(12) + & (12) = independent of m; therefore

(13) £ A@Q2) =er_(p /f',f)h(x)k(m)/q(m) = indep. of m.

uu " m
From the arbitrariness of k(m) it clearly follows that

(14) ruu(u,v) =0

Combining (14) and (8) gives

(15)  G(w,v) = a(v)lnus+b(v)/use(v)

for some fﬁnctions a(v), b(v), c(v).

Returning now to (6.2) we see that it implies

(16)  poOy(p/£1,8) + [ apyGy(py/T",1)dm = O.
a7) Let Gv(u,v) = s(u,v)/u. Then (16) becomes

(18) s(p,/T!,f) #J\qs(gm/f'f)dm = 0. As (18) is of exactly the same

form as (9) it similarly implies that

(19) s, = o.

Combining (19) and (17) yields

(20) Gv(u,v) = A(v) + B(v)/u.

But (15) implies

(21) Gv(u,v) = a'(v)lnusb? (v)/ usct (v),
Combining (20) and (21):

(22)  a'(v) = O.

Thus

(23) G(u,v) = const - lnu+b(v)/u+c(v) and
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(24) F(u,v) = const ¢ ulnu+uc(v)+b(v),
Substituting (24) in (1):
(25) R/const -Ipolnpodx -J\J\qpmlnpmdxdm +I {p, - J\qpmdm)c(x)dx.
But  [amp (x)am = [a(m)p(x,m)/a(m)dn = p_(x).
Therefore the last integral of (25) vanishes, making it
(26) R/const =ffp(X,Y)lnpodMy -J‘Ip(x,m)ln %—?)- dxdm =
- [ ity
’ P, (x)aly !
as was to be proved,
Arbitrarily setting the const of (26) equal to -1, we obtain four
equivalent representations of R: . (4)
. x
{ R = ” p(x,y)1n iy dxiy -
= -E]"p(X)lnp(x)dx —J<1(y)1nq(y5dy =”p(X.y)lnp(x,y)dxdy =
= -{[PC)1ap(x)ax + [ f p(x,¥)1np (x)dxdy = )
5

- -jj‘?q(y)lnq(Y)dy +J\f p(x,y)1nq (y)dxdy.

In the discrete case the f ormulas reduce to

< P(i
R % P(1,3)1n ?‘éﬁ‘%%‘ﬁ

5 -%P(i)lnp(i) -2'5 Q(H1n2(3) + 2 P(4,$)1nP(4, ) =

1,

(4) Sometimes it is convenient to use the base 2 for the logarithm; in

that case const = -1/1n2,

(5) More compact representations of these relitions will be given in

' section IV,

-
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= - 2 P(1)InP(1)+>_ P(4,3)1nP (i) =
i 1,3 : .

- - )?‘ Q(3)1nQ(3)+ ?:_'J P(4,4)1nQ, (4).

3. Information Rate of a Source
The information rate of a source is defined in terms of the
per-symbol rate at which information produced by the source is capable of

being received.

Consider the expression for information receipt rate

R = -jp(x)lma(x)dx . I Ip<x,y>1npy(x>dxdy

derived in the last paragraph. On first thought one would be inclined to
define the information rate of the source as the value of R that would be
obtained if symbols emitted by the source (described by the distribution
p(x)) were received in the absence of noise, that is with py(x) = 5(x~y).
In general, however, the right side of the above -xpression for R will
become infinite for this type of transmission.(é) <u order to make it
unnecessary to set py(x) » §(x=y) information rate of a source will be

defined relative to a fidelity criterion.

Let ?(x,y) be a continubus function of x and y whose value is
a measure of the punishment meted out if the symbol y is received as a
result of the source emitting the symbol x, ’Prec nably ?(x,x) = 0;

that is, there is no punishment if the emitte~ symbol is also the received

symbol, )

(6) The expr2ssion for R wgll bacome infinite if py(x) = &(x-y), providing

‘the source is not completelv discrete,
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The average amount of punishment per transmitied symbol is

v =I[p(x,y) § (xy)dxdy.

Let us call v the quality of the system (7) . The information rate of the
source with given p(x) relative to the fidelity criterion v = J‘j‘ pq dxdy
is defined as the minimum information-receipt rate necessary to preserve

the quality v. The minimum is taken over all possible noise conditions:

R = min X
source qx(y)J\J\p(x,y)ln ;%573%37 dxdy with

IJ‘p(x,y) ? (x,y)dxdy = v = const.

For discrete transmission systems the rate of the source is

R = min > Pgi,j;
source Qi(j) 3 P(i,3)1 TR with

E%B P(4,3) ? (xi,yj) = v = const,

In this case it is possible to obtain the rate of the source in an absolute

sense by requiring perfect fidelity; i.e,, by requiring P(1,jJ) = P(.‘L)&‘,‘.‘j

This means Qi(j) ='6ij, and Q(j) = P(J). Therefore

- 2
Rgource absolute ™ ~ “T P(1)1nP(1)

In order to clarify the remarks of page(lé)we can think of the case where
the source symbols have a continuous distribution as a limiting case of the

discrete situation, with the help of the substitution P(1i) = p(xi)zs.x. The

(7) "Infidelity" would be a better word,

L
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fact that Rs ab becomes infinite as A x—+0 indicates that from the absolute

point of view (i.e, without reference to a fidelity criterion) continuous
sources have an infinite information rate per emitted symbol.
A formal, although not very useful, expression for the rate can he
obtained by carrying out the minimization procedure indicated in the defi- -
nition. We will carry it out for the discrete case, and then state the
analogous results for the more general case,

Tt is desired to minimize

(1) - FrANIne(y) + 2 P(,3)1q(3) -

-0 - - 5 PG (N TR, (I) + Ty P(1)Q(3)1ng (3)

for given P(i)'s over all Qi(J), subject to

¢
[
(2.1) [ B, = 29 PIQ(Q,3) = v = const
(2.2) By = Z Q) =1 (=1,2...)
According to the method of Lagrangian multipliers, the minimum of
D will be obtained when
[-\%
dD i
(3) 55;137 + :§: A 55;137- =0 (k,1 = 1,2,...) l
where the A, are adjusted to satisfy (2). From (1):
3D 9 (1)
() 3q (1) - P(k) log l=prmSe—iy~ cu sl F(k)log(P) (k)/P(k)) !
From (2)
{ dE
i
5) A = A P(k) @(k,1) + A,
® ( ;F: i st(TS o ? Me




T ST IOR=R R rm

4

j y

‘. RM=1454

| 9=-20-50 f

| -19- 3

I

R

1 ,
Putting (4), (5) into (3): 1

(6) P (k) = P(k) exp [-2,0 (k,1) -y /P(K) | -

e e e 4

= A(k) exp(--ko q (k,1)).

where the A(k)'s are determined as functions of A, by

(7) T{; Al)exp(-r, @ (k,1)) = 1 (1=1,2,...)
under the restriction that A(k) = 0 if P(k) = O, A, is adjusted to

satisfy (2.1),

Note that (7) determines A(k) as the solution of a non-homogeneous
system of linear algebraic equations. Unfortunately, D cannot be evaluated
directly from a knowledge of P(k), and Pl(k). It is first necessary to
evaluate some one of the guantities, P(4,3), Qi(j), or 2(j), and this re-

i (~ quires the solution of a system of linear algebfaic equations,

This is the reason why the expression (6é) has only limited practical

value for evaluating specific information rates of sources,

‘In the special case where P(k) # O for any k = 0,41,+2,... = * @, and
g(i,j) =T (i-j) the solution of (7) is
” (8) A(k) = indep of k = &(X ), making the a-posteriori probability that
i was transmitted an exponentially decaying function of the errcr metric
T (1-3):
(9)  Py(1) = (r;)exp(=r, T(1-3)). '

Solutions for the continuous case are obtained by replacing the

probabilities in the above formulas by the corresponding distributions,
and the sigma signs by integrals, This transforms the linear algebraic

equations into integral equations,
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4. Channel Capacity

In the theory of information the ability of a channel to transmit in-
formation produced by a source to the receptor is described by a quantity
known as chann<l capacity. The concept of the channel is needed to take
into account the fact that the symbols emitted by the source are not
necessarily the symbols arriving at the receiver. Loosely speaking,
therefore, the channel is that part of a 2-point one-way communication
system where the noise occurs.

Since tlie physical nature of transmission links is often of such a
nature as to limit the number of symbols per second that can be transmitted
through it, channel capacity will be defined on a per-unit time, instead of
a per-unit symbol basis, Let M be the number of symbols per second, ard
let qx(y) be the transition probability distribution describing the noise;
then the channel will be operating at its "capacity” C when the source is
properly "matched" to the channel:

X
C =max M J‘J‘ p(x,y)ln%%-iﬁ%ﬁdxdy.

p(x)
The right side of the above egquation will be maximized for some distribution

p(x). The channel will be able to transmit the maximum amount ‘. information

per second if it is fed by a source governed by the distribution p(x). This

concept is valuable because it is always possible to code the output of a

source to give the encoded symbols an arbitrary given distribution.(s) It

should be noted that under certain conditions it may be desirable to maximize
(9 1

the channel over only a restricted class of permissible p(x)'s .

that case the channel capscity is relative to the permissible set of input

symbols,

(8) Details will be given in a later section.
(9) For instance we may permit only p(x)'s with a given second moment
(a power limitation) :

|
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5. Example: Capacity of a Band-limited Channel with White Noise

The restric£ion of band limitation of say, from O to W cycles per
second, means that the spectra of both the function emitted by the source
and the noise are limited to the interval (0,W). Such functions can be

written in the form

(1) £(t) =2 £0k/20) & (t—k/2W)

sin2niWt

where & (t) = it *

(10)
-]

Since I § (t-m/20)§ (t-n/2W)dt = &__/2W for integral m and n
-8

.
(2)  power of f(t) = lim (1/2T) J" £2(t)at =
Tow Ly

- (1/2M) 1lim (1/2T) S £2(k/20) =

T-ye k=-2AT

n —p—— -
= lim (1/2n) Z £2(k/20) = £2(k/2W).
n-see k=-n

From (1) we see that f(t) can be thought of as produced by a source
that emits a pulse shape f with amplitude X = f(k/2W) at instants of time
1/2W seconds apart. If the x  are picked from a distribution p(x) then (2)

indicates that the power of f(t) will be the second moment of p:
on
(3)  power of f(t) =I xzp(x)dx
’ ~ o0

A representation of band-limited white noise of power N can be obtained

by means of the concept that it results when a large number of correspondingly

(10) This formula can be obtained by expanding the spectrum of £(t) in i

a Fourier series, and then using the Fourier integral representation
for £{t).

=
e
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band-limited functions are added at random. Let g(t) représent the noise,
and fi(t) typify the functions that add to produce the neise. Lvidently
g(k/2W) -Zri(k/zw). By the central limit theorem x = g(k/2#), will have &
Gaussian éistribution, which by (3) must have a second moment equal to N:
(4) r(x) = (l/-/E;ﬁ)exp(-(xz/zN)):distribution of g.X 's corresponding
to two different values of k are independent.

In the preceding paragraphs we have spoken of f(k/2W) ac the coefficient
of the elementary pulse shapes that make up the signal. It is apparent that
the ;ulse shapes themselves merely act as carriers. A model for the entire
process is obtained if we consider the source to emit a seqyuence of real
numbers picked from a distribution, say p(x), with second moment S (the
power of the source). These real numbers are the "symbols" produced by
the source, the symbol-producing rate being
(5) M = 2W symbols per second.

The effect of the noise is to add a second sequence term by term to the
source sequence, with the terms of the second sequence picked at random
from the distribution (4).

Due to the additive nature of the noise

(6) p(x,y) = p(x)r(y-x). Therefore

(7) R = —f Q(y)lnq(y)dy+” P(x,y)lng, (y)dxdy =

- - Iq(y)an(y)dy+I r(z)lnr(z)dz,
By (4)
(8) J’r(z)lnr(z)az - (4)1n(2neN)
The problem now is to maximize -‘Iq(y)lnq(y)dy over all p(x). Since the

total power at the receiver is S+N the second moments of p{x) and q(y) must
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be fixed at S and S+N respectively.‘ If the maximization of (7) were to
be carried out over all possible g(y) instead of p(x) (as it actually

must be) we could use the easily proved theorem that

(9) max -\rq(y)lnq(y)dy with yzq(y)dy = fixed is obtained when q(y)
a(y) :

is Gaussian; i.e., max —‘fq(y)lnq(y)dy =({L)ln2ne(S+N).
a(y)

It is, however, certainly true in view of the preceding that

(10) m?x) -J\q(y)lnq(y)dy with xzp(x)dx = 5| £ value obtained when
p(x

a(y) were Gaussian = (4!)1n2ne(S+N).

Now from the equation

(A1) q(y) = fp(x,y)dx =J\p(X)r(y-X)dx

and the fact that r(z) is Gaussian it haprens to follow fortuitously that

it is possible to make g{y) Gaussian by taking p(x) Gaussian:

(12)  p(x) = (1/ NZB)exp(-(x7/25).

Therefore the inequality of (10) becomes an equality, and we have, combining
(5), (1), (8), (10)

(13) C = Wlog(S+N/N)

as the capacity of the model channel. DBut the model channel was obtained
+.z0 the real channel by a relabeling process, namely by relabeling
sequences of pulses as seyuences of real numbers. Since (7) was derived

under the postulate that it is invariant under relabeling (11) (13)

is also the capacity of the real channel., According to (12) the channel

(11) In the derivation of R it was actually only poetulated that invariance
held if real numbers were relabeled as other real numbers, ind only
one~dimensional distributions were considered, If the distributiors
had been talien multi-dimensional the above statement would have fol-

lowed rigorously.
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is maximized when the source emits white noise, i
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IV. Properties of Information Rates, o

1. Summary
The various information rates are expressed in terms of the entropy
and conditional-entropy functions which are defined and studied., It is shown
that the number of highly probable long sequences of symbols emitted by a
source is closely related to the information rate of the source. )
In the last paragraph the fundamenta} theorem for 2-point, l-way i
communication is derived., This states that with a proper en- and de-
coding squipment the output of a source can always be transmitted in the
presence of noise, without error, at a rate determined by the channel
capacity and the information rate of the source.
2. Entropy Functions .

Let the entropy G of a distribution function f(x) be defined as

(1) G = -‘ff(x)logf(x)dx.

Therefore the entropy of the source is

(2) G(S) = -‘rp(x)logp(x)dx, where S stands for Source,

and the entropy of the received symbols is

(3) G(T) = -.rq(x)logq(x)dx, where T stands for Receiver. ﬂ
We also define the mixed or relative entroples

(W) p(8) = [ [ plx,y)108p (x)cxy and

(5)  Gg(m) = - [ PxsmIa (p)axay.
(4) is spoken of as the "entropy of S knowing T", and (5) the "entropy of
T knowing S", By thinking of the pair {x,y) as one symbol, we can extend :

$ (1) to cover the concept of joint entropy:
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(6)  G(T,8) = -‘/jﬁp(x,y)logp(x,y)dxdy-

It can easily be shown that

(7)) G(T,8) = G(T) + Gp(8) = G(5) + Gg(T) = G(5,T).

It also follows from (4) and (5) that if x and y are independent then

(8) GS(T) = G(T) and GT(S> = G(S). i
Thus if T and S are independent |

(9 G(T) = G(T) + G(S).

For the discrete case it is desirable to introduce analogous quantities:
(10)  H(S) = - &P, logP,

3
(12)  Hg(T) =" 25 P(1,3)20gQ, (3)

(11)  H(T) = - %:leogQ

(13)  Hy(S) = - 5 P(1,3)10gP (1)

(1) H(T,S) = H(S,T) = Hp(S) + H(T) = H(8) + Hg(T) =

- i,Zj P(i:.j)lc’gp(i:.j)-




It is possible to express information rate in terms of the

quantities defined above. The expression is in the continuous case

According to III, 5, (7) when the noise symbols are "additive" and

independent of the source symbols (15) becomes -

(16)" R = G(T) = G(N)
! where G(N) = -\fr(x)logr(x)dx is the entropy of the noise.
For the discrete case (15) degenerates into

(17) R = H(S)-Hp(S) = H(T)-Hg(T). (12)

The reader may have noticed that G(S) is actually the uncertainty
function U(p) arrived at in III, 2, (24). (II1,2,(25) shows that b(v),
( and c(v) appearing in II1I,2,(24) are irrelevant.). In other words (1)
is a measure of the uncertainty associated with the distribution f£(x) (13).
More generally, for instance, GT(S) is the unceytainty of the symbol at S,
knowing the symhol at T. With this interpretation we can easily "derive"
relation (16). One need merely note that GS(T), the uncertainty of what

4 was received, knowing what was emitted, is, in the.case of independent ad-

P

? (12) This is true even though none of the G's individually degenerate into
the corresponding H's, A G can be thought of as differing from the
corresponding H by an infinite additive constant, these constants
cancelling out when the difference of two G's or H's is taken.

(13) In the discrete case H = -?%-filogfi is a measure of the uncertainty *
associated with the probabilities (fl,fz,...,fn) in quite an absolute
sense, It can be shown that H will be a maximum when all the f's are
equal, and it is obvious that H is zero if and only if one of the f's

I

\ x is unity and all others vanish, -
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ditive noise, the uncertainty of received signal plus noise with the
emitted signal known, this being simply the uncertainty of the noise,
G(N). Substituting GS(T) = G(N) into (15) yields (16).
3. Laws of Long Seguences

This paragraphk lists some properties of long sequences of output
symhols from a discrete source, transmitted over a noisy channel.

Law I:

Every emitted sequence of length L»»1 symbols has w.h.p. (14)

exp (HS(T)L) received sequences of length L as possible consequences,
Proof: _ .
If the sequence (xl,xz,...xL) is emitted it will w.h.p. contain the
symbol ii P(iji timeg.ii ; 1,2,...,n where n is the number of possible
symbols). The emitted message can therefore be considered to consist of
n (possibly interlaced) blocks of P(i)L symbols each. Each such i'th
block will produce a block of P(i)L received symbols, containing the
jtth symbol Qi(j)P(i)L = P(1,3j)L times. The probability of a particular
block of received symbols is therefore w.h.p.

n

7 [Qi(.i)] P

J=1

(14) The phrases, "with high probability" (w.h.p.), and "with probability
zero" (w.p.2z.) are to be interpreted as meaning that the probabilities
referred to anproach 1 and O respectively as L-*o9, Sometimes when
elements of a set V are w.h.p. also in the set W, we will say

“All elements of V are in W",
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The probability of the entire received sequence is therefore

iﬁfl [Qi(J)] P(1i,3)L _ exp(-Hg (T)L).

" -

32

The desired result now follows because each of the h.p. received mes-
sages are equally likely.

Coroliary I: (The duval of Law I) (15)

o S v G

1 Corollary II:

——

The number of h.p. emitted seyuences of length L is exp(H(S)L).

Corollary III: {The dual of Corollary II)

—

J/m
/ y'

exp(H(T)L) points

receiver
side

d

source

side channel

|
i

-

AMLAAA

exp(H(S)L) points

4

exp (Ho(T)L) lines per fan
S

Fig. 3 Transmission of Sequences of L>>1 Symbols Over Noisy Channel

4
Figure 3 illustrates the situation occurring when long 3equences are

transmitted over a noisy channel., Received and transmitted seyuences are

represented as points on the right and left respectively. Each fan shows 1

(15) The dual is obtained by interchanging the words "source" and "receiver",
the symbols i and 3j, P(i) and Q(J), and Q(J) and Pj(i)' i
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how many received sequences a given emitted sequence can result in,
Since the fans, in general, overlap the receiver cannot know exactly
what was transmitted. However, if only a few of the possible points on
the left were actually used to renresent messages it is conceivable that
the resulting fans might not overlap. A necessary condition for this
to occur is certainly that no more than

exp(H(TIL) /exp(Hg(DL) = exp [ (H(D)=g())L]
of the points on the left are used.
Law II:
If less than exp [(H(T)~HS(T)-6)L] (8 0) points are selected at

random from the source side of the channel the resulting fans will over-

lap w.p.z. (16)

Proof:

Suppose exp [(H(T)-HS(T) -6)1] points are selected at random from
the left, making the probability that a particular point is a selected
point

exp [ (H(T)-Hg(T)-8)L] /exp(H(S)L) = exp (<Hy(5)L-L).

No two fans emanating from selected points will overlap if any given
point on the right cannot be 'caused" by more than one selected point.
Each point on the right can e-priori (i.e. if no selection of points on
the left were used) be caused by exp(HT(S)L) left points. The probability
P that at least two of these points are selected points is less than 1-A,

where A is the probability that none of the exp(HT(S)L) points is a

(16) This is of course a much weaker theorem than one giving specific
instructions as how to pick the points on the left to get the
minimum possible overlap. Stronger theorems have been obtained
for specific channels. See Refs. 2, 11, 20,




selected point.

epoT(S)L

A -[ l-exp(-HT(S)L—bL)] —31 as L—e,

Therefore P90 as L —e; 4g.e.d, i

Corollary IV: (The dual of Law II)

Corollary V:

If exp [(H(T)-HS(T)+6)LJ points (5 »0) are selected at random h

from the receiver side of a channel the fans emanating from them (17)

cover w.h.p. all the exp(H(S)L) points at the source side.
Proof:

By Corollary IV if exp [(H(T)-HS(T)—b)L]'were selected at the
right there would be no overlapping of fans so that exp [(H(S)-é)ia
of the exp(H(5)L) points on the left are covered. The desired result
follows easily.

4. Fundamental Theorem for Transmission over Ndisy Channel

Theorem 1I:

It is possible to match a source producing R units of in-
formation per symbol (relative to a fidelity criterion) to a channel of
capacity C by means of coders in such a way that if less than C/R symbols
per unit time are transmitted the transmission quality will satisfy the
fidelity criterion.

Proof:

The proof will consist in describing various coders and decoders i

(17) These fans originate at the right and spread out toward the left,
They are the duals of the ones shown 'in Fig. 3, and indicate the
number of emitted sequences that could have caused the received

seyuence from which they emanate,
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by means of which it is possible to attain the objective announced., The !
pertinent block diagram is shown in Figure 4.
u first y)»second channel < v 2 1
source I quantizer quantizer|  |matcher| |channel > decader [ receiver |
b ]
*
Fig. i Block Diagram for Transmission System With Coding Equipment
(a) The first quantizer. ]

The FQ (first quantizer) is not needed if the source is dizcrete,
If the source is not discrete the FQ is used (pﬁrely for the sake of
mathematical convenience) to quantize it into very fine but discrete
levels, It is intuitively obvious that very fine qpantizing has no
appreciable effect on the rate of the source. Thus the information rates

( at u and v are the same,
(v) The second yuantizer

The 52 (second quantizer) is not needed if the fidelity cri-
terion requires perfect transmission, If, on the other hand, it is not
dictated that the symbols at v be transmitted with perfect fidelity

(18)

(i.,e. if the rate R at v is not the absolute rate at v) the SQ

quantizes the symbols at v in such a way that the uantized symbols put

e el

out at w have an absolute rate R, (Therefore from w onward there must
3 be no more distortion in the transmission system,)
Fundamentally, the SQ operates by first ascertaining which of an 4

equivalent number of classes a given sequence v belongs to, and then

‘transmitting a code number for that class; for instance, the code number
might simply be the '"central" sequence of the particular class. Spe-

cifically, these classes and their code symbols can be determined with

(18) Cf. III, 3 as reference for this section
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the help of Corollary V as follows: We consider v the "emitted"
symbols and w the "received" symbols, With this notation the rate

of information per symbol at v

e

with '%_ P(i,j)/o(i,j) = const. §
1,

Suppose P'(i,3) is the P(4,3) for which the minimum in the above
definition of R is obtained. 3Select, according to the method of Cor., 5,
exp(RL+8L) points on the "receiver" side of the transmission system
obtained with P(i,j) = P'(i,j). The SQ is to be constructed so that
(. it will use a particular selected point as the code for the class of points
caught in the fan emanating from the selected point. The SJ obtained
by this construction satisfies the fidelity criterion, and has the
property that, looking into its output terminal w, we see a source of
absolute rate R units of information per symbol.
(¢) The channel matcher (19)
The CM (channel matcher) is, as its name indicates, a device
for encoding the symbols arriving at w into symbols that are best able i
to combat the noise present in the channel. Since it must be possible
to recover the symhols w with perfect accuracy at the receiver, the CM
must be a one-to-one coder; that is, it must be reversible. g

For purposes of discussing the CM consider x to be the "emitted"

symbols amd y the "received" symbols., Assume that the symbols x are i

(19) Cf. 1III, 4 as reference for this section

1
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produced according to the distribution P"(i) and transmitted at the
rate M! symbols per second, where P"(i) and M' maximize the channe), i.e,
assume that

C = ?ax M :E: P(i,3)1ln %%%’%%37 , where M is the number of

(1) 1,3

symbols per second, is obtained for P(i) = P"(i) and M = M', 1If
H(S") = - :§: P"(i)logP"(i), then, according to Cor. II, if the channel
is operated with P(i) = P"(i) there will be exp(H(S")M'T) possible
h.p. long seuyuences of length T seconds aﬂ point x, According to
Law II if less than exp(CT) of these sequences are used as messages
the "receiver" at y will te able to ascertain exactly which message
was sent. The oroblem for the CM is therefore only to code the symbols
arriving at w into the exp(CT) symbols that are available for trans-
mission without error. Since exp(RL) symbols of length L arrive at
w such coding will obviously be possible if and only if RLL CT, i.e.
if and only if no. of symbols per sec. produced by source = L/T¢C/R,

where R is the rate of the source, and C the capacity of the

channel.
(d) The decoder
The decoder performs the operation inverse to the CM, so that

we end up with the same symb.i- at 2z that originated at w.
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V. Prediction of Time Series,

I. Summary

This section outlines the ghilosophy behind the prediction

problem for time series chosen from an ensemble of time series for which
a certain set of multi-dimensional set of probability functions exists,
and is a-priori known.

2. Multi-dimensional Probability Distributions
¢ Let 2,,25,0..,2y,... be a typical time series of an
ensemble of time series,
(2) Let V) (¥,¥,s0+5¥)dy dy,. ..y, (k = 1,2,...)
be the probability that if a block of k consecutive z's, beginning

with z is selected at random from (1) the z's will lie in the

J+1’

region
¥3$ zi+j$yi*dyi (i=1,2,...,k),

relation (2) being postulated to hold independent of j, and independent

of which particular time series is chosen from the ensemble.

(3) Let, wk(yl'y2"."’yk;yk+l)dyk+l (kzl)

be the probability that zj+k+l will lie in the region

Vieo1S Zgakal SVke1* W1 1L 24,5 myy (1= 1,2,000.k).

If we arbitrarily set
(&) Wb(y) = Vl(y) it follows that the V and ¥ functions are
related through
(5) Vk(yIIY2) s o0 )Yk) = Vk_l(Yl)yz’ 000 )yk‘-l)vlk_l(yl}yzl QO0GC )yk_l;yk)

if k2 2,

oy




»

To obtain a complete statistical description of the stochastic
process in gquestion all the Wk's (or what 18 easier experimentally,

all the Vk's) must be found., In most practical cases there will be
no "influence" extending further than, say j signals. This simply
means that
(6) W (F15¥ 000 ces¥3¥0y) = F(yk-;}+l’yk=j+2-’ oY ¥ieay)
for k larger than some sufficiently large j.

3, Predictability

Loosely speaking, the more redundant a time series is,

i.e. the less uncertainty there is about the next signal, knowing a
certain number of previous signals, the more easily predictable will
the time series be, Some of the terms used in the preceding sentence
can be defined exactly.

(a) k-derived uncertainty = H

Analogously to III, 3 let ?(x,z) measure the punishment
meted out if a signal x is predicted to be the symbol z, and let v
measure the amount by which two signals must differ in order to become
practically distinguishable,

Define Rk to be the rate of a mathematically artificial
source that produces symbols x independently according to the distribu-

tion p(x) = wk(§;x) relative to the criterion

I p(xsz)'g (x,2)dxdy = v; i.e.

(8) R ) = iy ““ p(x,2)log

qx 2) p(x q z)

¥




with
ffp(x,Z)f(x,Z)dxdy = v,
where p(x,2) = p(x)q,(z), ua(z) -f p(x,z)dx.

Let Hk be the average of Rk over the possible Y1s¥or98s¥yt

(9) H, =f Rk(-y.)Vk(;)d;" (a k-fold integral)

Hk is evidently the average amount of information needed to
specify a signal if the previous k signals are known., Thus it is a
measure of the uncertainty with which we know what a signal will be if
we know the previous k signals.

(b) redundancy

(10) Let H_ = lim H
. ke K

The redundancy of the time series can be defined as
(11) M= l-H“/Ho

If successi've symbols are independent we will have

(12) WkG;x) = wo(x) (all k), and therefore
{(13) Hk = Ho, so that u= 0,

If the next signal is, on the other hand, completely determined
once a sufficient number of preceding signals are known u= 1,

It should not be forgotten that, in general, the redundancy is
relative to the punishment function ’)(x,y) and the distinguishability
criterion v,

4. The Mechanism of Prediction

(a) choice of the punishment function f(x,y)

In order to design a predictor, it is, in prineciple,
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necessary to first specify the function of two variables1§(x,y) that
measures the punishment meted out if the next signal is predicted to
be "y" pbut actually turns out to be "x", Although the choice of

g (x,y) will be dictated by the application of the predictor, its
selection is ultimately a psychological problem,

The predictor is designed so as to minimize the expected

)_(20)

value of € (x,y

A common choice forg(x,y) is
(13) g(x,y) = f(x-y),
in which case the punishment depends only on the error. TFor instance

the (for reasons of analytic simplicity) popular least-squares criterion

(W) § (xy) = flxy) = (xy)?
is of this type.
(b) -unrestricted versus restricted prediction
The most general form of predictor is a computer
which, on the basis of all informatioh at hand, predicts a signal so as

to minimize the expected value of the punishment. According to the

(20) This might be called a "rational" prediction criterion. It is
conceivable (in fact the motivation for gambling) to have the
punishment function dependent not merely on x and y, but also
on the probability that x will occur. Maximizing the expected
value of g in such a case would amount to an "irrational"
criteriop. With irrational criteria it may be desirable for
the predictor to play a mixed strategy against the time series,

i,e, to "toss a coin", With rational criteria it is pointless

to play a mixed strategy.

giiu—'al-

W [Peec -t
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aforelying formulation of the prediction probler the ccmputer can do
this if it remembers all previous signals, computes the a-priori dis-
tribution of the signal to be predicted according to the Nk functions,
and then minimizes the expected value of q . A process such as this
can be called "unrestricted" prediction.

On the other hand, consider the case where, for practical reasons,
it is necessary to place theoretically artificial restrictions on the
storage mechanism and permissible operations assigned to the computer.
‘When this situation arises we speak of "restricted" prediction. An
example is the case of so-called linear prediction where the computer is
permitted to evaluate only linear combinations (with permanently fixed
coefficients) of amplitudes of past signals, Although a time series of
redundancy 4= 1 is perfectly predictable in the unrestricted sense it
may not be so in the restricted sense,

The more restricted a predictor is the larger the error of pre-
diction will be. On the other hand the predictor may be applicable
to a larger ensemble of time series if it is more restricted. Thus
restriction of predictors has among other things the effect of trading
error for versatility, '

5. Examples

(a) s=ine wave samples
Consider a source producing signals N at discrete time

instants (1 = 1,2,...) according to the recursion formula

(15) f(zi) = sin 1 (1 =1,2,...)

It can be shown that the points i mod (2n) cover the interval
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(0,2n) in an everywhere dense fashion and in such a way that the pro- "
!; bability that i mod(2n) is between two real numbers exists and is flat

over (0,2rn). Therefore the distribution Wo(z) for f(zi). is the same as

that obtained for sin t if t is picked at random from a distribution

flat over (0,2n). This latter is (21)

- (16) W (z) = 1/(1«'\/1-z2) it |zj< 1

0 it Jz|21

(17) Let a - sink, bk = cosk.
Then if a given signal has the amplitude zJ. it is evgually likely that

z be

J+1

* % sx=

2 2 2
o {(18) blzj’al 1--zJ or blzj.al Vl—z‘j . Thus

(19) W, (yy5y,) =@/2p [yz-(blyl*al Vl-y§']+ a/% [yz-(blyl-al l-yi)] .

If two or more consecutive samples are known all future samples
can be predicted perfectly because f(zi) satisfies a difference equation

; of the seccend order. The distributions are

| (20} W (Fys¥00ees¥yiVyyy) = 8 [yk*l'(aky2/al'ak-lyl/al)] .

* (b) redundancy of English

X #
;‘; According to an estimate given by Shannon (22) the re-
h‘! dunc'!ancy/v\of written English relative to a criterion requiring perfect
b distinguishability of different letters is/‘- C.5. This figure prob- 4
r. ably neglects long-term context,

o

F 8 (21) cf., for example, ref, 21
i s ’ =
4 (22) Ref, 22
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(¢) Wiener oredictor
The Wiener predictor is a restricted predictor of the
linear type with a least-squares error criterion. To design such a
predictor it turns out to be unnecessary to know all the Wk functions,
It is sufficient to have the autocorrelation function of the time

series:

1) @ k) - [Lim 1/2N+]) Z it
which 1s expressible in terms of the Wts,
(d) restricted prediction of digital expansions of ir-

rational numbers

As an example of the fundamental differerice between
restricted and unrestricted prediction consider the problem ;f pre-
dicting the (k+l)st digit in the decimal expansion of an irrational
number, say =n (23), knowing the first k digits.

Since n is defined by a recursion formula it is obviocusly
possible to predict the next digit exactly, providing there are no
restrictions on the computations permitted. It is merely necessary to

——— s

use one of the stundard series expans%?ns. On the other hand, it would

be a miraculous mathematical coincidence if, say, ti.e Wiener predictor 1

‘re able to yield future digits unerringly. i

(23) This is connected with the problem of the bandwidth required to
transmit n over a noisy channel. We assume, for the sake of H
this discussion, that the Wk functions actually exist for =«.

There is some empirical evidence to supnmort such a conjecture,
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VI APPLNDIX

In I,2 the limitations of information theory were illustrated
by three examples (24). It will now be shown how the statements
made there follow more specifically from the theory presented in the
body of the report.

(a) The problem is to construct the FQ, SQ, and CM of
Figure 4. Assume tl-t the output has, say a flat distribution over
(0,1), i.e.
(1) plu) = |1 O0s<xsgl
0 otherwise

Imsgine the FQ to convert u to a finely guantized form, say

(2)
P(v) =207% (i =0,1,2,...,20719)
Evaluate
=10
P(v, ,w, )"
(R =~ min % P(v, ,w )10g-7-1$—2—y
Q’v (wj) ~3=0 i’73 Pviij
i

-l
{ with Qvi(wJ) =0 ifr 'vi-wj|>5 x 10

‘ and P(vi) as defined by (2),

Let the minimum be achieved say for Qvi(wj) = Q¢i(wj).

In order to build (on paper) a proper SQ consider a system with input

statistic P(vi), and noise conditions described by Q! (wj). The SQ
i

should be designed to operate on long messages, say 100 seconds (= 1000

symbols) long. If we arbitrarily pick 103R of the possible high-

(24) Cf., I,2 for this section

—————

vl

1
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probability received messages of the system whose transfer statistic

is QG (wj) and construct the fans from each of these selected received

messages to the corresponding high-probability emitted messages, then,
according to Corollary V, most of the emitted messages will be covered
by fans, Let a fan be called by the received message from which it .

originates. The SQ is then to be constructed in such a way as to

code an emitted message into the name of one of the fans that covers

that emitted message. Lvidently the SQ will involve storage facilities

as well as reading and comparison circuits.,

In order to build the CM it is necessary to find the channel E
capacity.
() (¢ = 25 O P LA
N = 2 max :55:i P(x;,y lbg-z—-y—%—-y

- i’ Q

( P(w)) 13- ST e
I Y with _ (y,) = 3/4 b
W 1 y -
X5 J xiy"j
hwhere say X and ¥y represent the binary digit'O, and X5

and Y, represent the digit 1.

Let the maximum be achieved for say P(xi) = P"(xi). If 1000R € 100C,
i.e. if RCC/10, it is possible to code the sequences at w into
sequences at x in such a way that, according to Theorem II there will
be no error in transmission., The transmitted messages must have a
statistic P"(xi) and the required CM will again involve storage,

reading, and comparison circuits,

(b) From the fact that the transmission is band-limited

g

and subject to an average power limitation it follows that the speech

.l should be coded into white noise., T .king 100 words per rinute as a
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reasonable rate of speaking, the information rate of speech comes out
to be about 10 units/second relative to a fidelity criterion that
requires only intelligibility (25>.

The combined FQ, SQ, and CM necessary would be a device that
stores long speech-sound groups, say sentences, and looks up the ap=
propriate white noise representation in a code book, Building such a
coder is a purely technical problem outside the scope of information
theory.

If the speech code 1s to be transmitted without error over a
10 cps. band then, accarding to 1IT,5,(13) the received signal=-to=-
noise ratio, S/N must be at least as great as the root of
(3) 10 = 10log(1+5/N) or
(6) Required S/N2 2,

(¢) This problem can be formulated mathematically but the
formulation is actually quite useless, If we assume the device to
take photographs of the sky, and if only a finite number of photo=-
graphs are possible (e.g. if different photographs differ only in that
different squares of a rectangular grid are filled in) there will be
only a finite number of "source symbols"™, and it is only necessary to
build an appropriate SQ. Let the possible photographs be enumerated
by 1 ® 1,2,.444n, and the possible cloud types by j = 1,2,3, 1In
order t0 build the SQ it 1s first necessary to calculate the infor-
mation rate of the source subject to the fidelity criterion

%EE; ?(i,j)?(i,J) = const. Thus it is necessary to have an a-priori

(25) A result of experiments carried out to determine the redundancy
of written English, See ref, 22,
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set of probabilities as to the types of photographs.expegteﬂ, and it

is also necessary to know f)(i,j) in terms of i and j. The latter
reguirement simply means that it is necessary to know a decision

method for determining +hether an arbitrary fixed value of i corresponds
to a cloud of the cirrus, stratus, or cumulus types before it is pos-
sible to go ahead with the calculations necessary to obtain the SQ.

However, finding such a decision method is the entire essence of the

posed problem,

O
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