UNCLASSIFIED # AD NUMBER AD114884 **CLASSIFICATION CHANGES** TO: unclassified confidential FROM: LIMITATION CHANGES TO: Approved for public release, distribution unlimited FROM: Controlling DoD Organization. Bureau of Aeronautics [Navy], Washington, DC **AUTHORITY** BUAER ltr, 31 Aug 1968; BUAER ltr, 31 Aug 1968 21269 CONFIDENTIAL 50 A 37133 ## FINAL REPORT COVERING CONTRACT NOnr 1487(00) ENGINEERING CONSULTING SERVICES FERFORMED BY BECCO CHEMICAL DIVISION OF FOOD MACHINERY AND CHEMICAL CORPORATION IN CONJUNCTION WITH ALTON PROJECT DEVELOPMENT AT U.S. NAVAL ENGINEERING EXPERIMENT STATION, ANNAPOLIS, MARYLAND JUNE 1954 - JUNE 1956 #### Prepared by: Willard A. Sanscrainte - Senior Development Engineer James C. McCormick - Group Leader Ralph Bloom, Jr. - Project Supervisor Approved by: Nosh S. Davis, Jr., Manager Special Projects "This document contains information direction the notional difference of the United States within the measury at the trye mage the contained of the thought of the trye mage the contained of the trye magnitude of the contained of the contained personal prohibited by law. 31 August 1956 BECCO CHEMICAL DIVISION FOOD MACHINERY AND CHEMICAL CORPORATION STATION B BUFFALO 7, N. Y. COFY NO. 6 Reproduction of this noter in any form by other than Noval activities is not authorized except by specific approval of the Secretary of the Novy. # FINAL REPORT COVERING CONTRACT NOnr 1487(00) ENGINEERING CONSULTING SERVICES PERFORMED BY BECCO CHEMICAL DIVISION OF FOOD MACHINERY AND CHEMICAL CORPORATION IN CONJUNCTION WITH ALTON PROJECT DEVELOPMENT AT U.S. NAVAL ENGINEERING EXPERIMENT STATION, ANNAFOLIS, MARYLAND JUNE 1954 - JUNE 1956 #### Prepared by: Willard A. Sanscrainte - Senior Development Engineer James C. McCormick - Group Leader Ralph Bloom, Jr. - Project Supervisor Approved by: Noah S. Davis, Jr., Manager Special Projects Reproduction of this matter in any form by other than Navel activities is not authorized except by specific approval of the Secretary of the Nave. "This document contains information affecting the national defense of the United States within the matrix of the End, agreement, 200, 38 (10.00), includes 793 and 794. Its transmission or the resolution of its contants in any matrix of an industriated person is prohibited by law." 31 August 1956 BECCO CHEMICAL DIVISION FOOD MACHINERY AND CHEMICAL CORPORATION STATION B EUFFALO 7, N. Y. #### DISTRIBUTION LIST | Nos. 1-8 | Chief of Naval Research | |----------|-------------------------| | | Department of the Navy | | | Washington 25, D.C. | Attention: Code 429 No. 9 Chief, Bureau of Ships Department of the Navy Washington 25, D.C. Attention: Code 320 No. 10 Chief, Bureau of Ships Department of the Navy Washington 25, D.C. Attention: Code 525 No. 11 Chief, Bureau of Ships Department of the Navy Washington 25, D.C. Attention: Code 551 Nos. 12-13 Commanding Officer Office of Naval Research Branch Office 316 Broadway New York 13, New York Nos. 14-15 Director U. S. Navel Experiment Station Annapolis, Maryland No. 16 Chief, Bureau of Ordnance Department of the Navy Washington 25, D.C. Attention: Re6 No. 17 Chief, Bureau of Ordnance Department of the Navy Washington 25, D.C. Attention: Ad3 Nos. 18-19 Commanding Officer U. S. Naval Underwater Ordnance Station Newport, Rhode Island Nos. 20-21 Commander U. S. Naval Ordnance Test Station, Inyokern China Lake, California Attention: Technical Library #### DISTRIBUTION LIST No. 22 Commanding Officer & Director U. S. Naval Boiler and Turbine Laboratory Naval Base Philadelphia, Pennsylvania No. 23 Aerojet-General Corporation Azusa, California Via: Commanding Officer Office of Naval Research Branch Office 1030 East Green Street Pasadena 1, California ### $\underline{\mathtt{C}} \ \underline{\mathtt{O}} \ \underline{\mathtt{N}} \ \underline{\mathtt{F}} \ \underline{\mathtt{I}} \ \underline{\mathtt{D}} \ \underline{\mathtt{E}} \ \underline{\mathtt{N}} \ \underline{\mathtt{T}} \ \underline{\mathtt{I}} \ \underline{\mathtt{A}} \ \underline{\mathtt{L}}$ | | esuTeningsunn | TABLE OF CONTENTS | | |--|----------------|--|----------| | a tistigania suar
gigi affizienista | | And the second of o | Page No. | | | and the second | Abstract ** ** ** ** ** ** ** ** ** ** ** ** ** | | | | I. · | Introduction | 1 | | | II. | Alton Chamber Analysis and Modification Recommended | 3 | | ٠ | III. | Test System At EES | 6 | | • | IV. | Preliminary Testing | 9 | | | | Results of Test Runs and Conferences Held at EES | | | | ٧ | During the Test Program a. Conferences and Results of Test Runs #6-71-12B b. Results of Test Runs 71 and 72-12B | 13
24 | | | VI. | Summary Discussion of Combustion Chamber Modifications | 25 | | | VII. | Results of Combustion Tests Carried out at Becco | 27 | | | VIII. | Conclusions and Recommendations | 31 | | | Tables | | | | .* ~ | I. | Test Data Run #68 Modified CC-12 Combustion Chamber | 35 | | | II. | Instrumentation at EES | 36 | | | III. | Run 5-12B Summary Data | 38 | | | IV. | Data Before and After Temperature Changes | 39 | | | ٧. | Data Summary Runs 71 and 72-12B | 40 | | · | VI. | Various System Pressures Additional Data - Run 72-12B | 42 | | | VII. | Test Results - 90% H_2O_2 Decomposition Diesel Fuel Combustion at Becco | 43 | | | Plate | | | | | 1. | Fuel Spray Pattern Used in Runs Nos. 1-6 at Becco - Donut Baffle Attached | 7171 | | | 2. | Fuel Spray Pattern #70-80° Monarch Hollow Cone Used in Runs Nos. 7 and 8 at Becc | 45 | | | 3. | Fuel Spray Pattern #28-60° Monarch Hollow Cone Run No. 9
Becco Tests | 46 | # TABLE OF CONTENTS (contd) | | TABLE OF CONTENTS (contd) | erina er
Erina erina er | |-------|--|--| | | | rage MC | | Liane | Fuel Spray Pattern Solid Cone Run No. 10 Spraying | | | li. | Fuel Spray Pattern Solid Cone Run No. 10 Spraying Systems No. 5 | д тште α цγ аша | | 5. | Fuel Spray Pattern Spraying Systems #3.5 Solid Cone Run
No. 11 | 48 | | 6. | Nitrogen and Aluminum Powder Flow Pattern Through Plastic
Mockup with Ring Baffle Installed | 49 | | Figur | es | | | 1. | Allis Chalmers 10" x 16" Combustion Chamber | | | 2. | Modified Liner in Allis Chalmers 10" x 16" Combustion Chamber (CC-12 Chamber) | | | 3. | Modified Fuel Injector Used in Hull Mockup Test Runs Nos. 69-80 | | | 4. | Modified Liner in CC-12 Combustion Chamber Used in Test Runs Nos. 76-80 | | | 5. | Engineering Experiment Station Designed CC-13 Combustion Chamber Used in Test Runs Nos. 81-84 | | | 6. | Modified Head Section for the Experimental Combustion Chamber CC-12 | | | 7• | Details of the Modified Head for the CC-12 Combustion Chamber used in runs nos. 1-72-12B | | | 8. | Schematic Diagram of the Flow System at the Engineering Experiment Station. Used for the Chamber Tests | | | 9. | Safety Trip-Out System Incorporated in the Combustion
Chamber Flow System at the Engineering Experiment Station | | | 10. | Plan View of CC-12 Combustion Chamber as Modified for Test Runs Nos. 1-5-12B. | | | 11. | CC-12 Combustion Chamber Showing Thermocourle Location | | | 10 | Fiel Triector as Modified for Test Run #8-12B | | #### TABLE OF CONTENTS (contd.) #### Figures - 13. Fuel Injector Incorporating a Sleeve Deflector Used in Runs #14-17-12B, 19-22-12B Model 12BF - 14. Baffle Evaluated as a Control for the Oxidant Gas Stream Used in Test Runs #23 24-12B - 15. Baffle Evaluated as a control for the Oxidant Gas Stream Model #12B2B Used in Test Run #25-12B - 16. Baffle Evaluated as a Control for the Oxidant Gas Stream and as a Possible Flame Holder Model 12B2C Used in Test Run #26-12B - 17. Becco Designed
"Donut" Baffle as Mounted on the Fuel Nozzle Model #12BE Used in Test Runs #27 and 29-12B - 18. The Donut Baffle Incorporating Various Modifications Used in Test Runs #30-45-12B - 19. Arde Associates Designed Dual Swirl Turbulence Inducer Baffle Used in Test Run #46-12B - 20. Donut Baffle as Redesigned and Built with 1/4" Throat to Baffle Clearance Used in Test Run #48-53-12B - 21. Donut Baffle as Modified for Test Runs #54-56, 58-66-12B - 22. Modified CC-12 Combustion Chamber Incorporating a Water Spray Ring at the Uncooled Liner Packing Section - 23. Becco Designed Umbrella Type Single Diluent Water Nozzle as Mounted in the CC-12 Chamber for Test Runs #63-64-12B. - 24. Donut Baffle as Modified by the Addition of Slots Through the Baffle Spacer Ring Used in Test Runs #67-12B, 71 and 72-12B. - 25. Donut Baffle as Modified and Mounted for Test Runs #68 and 69-12B - 26. Combustion Chamber Configuration Used in Test at Becco 2-1/2" ID x 4-5" long combustion zone - 27. Flow System Used in Combustion Chamber Tests at Becco - 28. Becco Combustion Tests Flat Flame Holder Through Restricted Entry head Insert - 29. Becco Combustion Tests Conical Flame Holder Through Restricted Entry Head Insert CONFIDENTIAL ### <u>COMFIDENTIAL</u> #### TABLE OF CONTENTS (contd.) #### Figures - 30. Becco Combustion Tests Flame Holder, Straight Through Head - 31. Reverse Flow Test Assembly Used in Tests at Becco - 32. Apparatus Used to Study the Flow Characteristics in a Transparent Model Combustion Chamber Using High Speed Photograph #### ABSTRACT A 10,000 shaft horsepower submarine propulsion system utilizing a closed, steam generation cycle with turbine - reduction gear drive was assembled and operated at the U.S.N. Engineering Experiment Station, Annapolis, Maryland, from 1946 to 1954. The system was designated the Alton cycle. The propulsion unit utilized the combustion of diesel fuel and decomposed 90% hydrogen peroxide. Exhaust gas from the water cooled combustion chamber was desuperheated to provide turbine steam inlet conditions of 750 psig and 1300°F at full power. The cooling and desuperheat water supply was furnished by the turbine condenser. The Alton cycle represented an improved version of an H₂O₂-diesel fuel propulsion system rated at 2500 shaft horsepower developed by Germany during World War II. When the Alton project was terminated on 1 March 1954, the only major component of the system requiring further development was the combustion chamber. The first Alton combustion chamber failed because of burning of the water cooled chamber liner which was in contact with the intense combustion. Modifications of the liner, fuel nozzle, and liner cooling water system were unsuccessful in preventing liner burnout particularly at extended full-power operation. Becco Chemical Division of Food Machinery and Chemical Corporation was awarded a contract on 1 May 1954 to analyze the failure of the Alton cycle combustion chamber and to recommend steps to prevent burnout. On 1 July 1954, a research project commenced at the Engineering Experiment Station to develop a reliable chamber for the Alton system. The development program was sponsored jointly by the Bureau of Ships Research and Development Section and the Office of Naval Research. Becco's contract was amended to provide engineering consulting services during the duration of the program. ļ., The actual test work under the new program was started in January 1955, utilizing a combustion chamber liner design and liner instrumentation previously proposed by Becco. Fuel nozzle, decomposition gas inlet turbulence devices, and combustion gas cooling water spray modifications were made with varying degrees of success during 71 development test runs. A final design evolved which gave successful operation for 2-1/2 hours of continuous running at near full power in the final run, #72-12B. It is Becco's opinion that the chamber configuration employed in run 72-12B could successfully meet the requirement of full power operation for 10 hours. The program was terminated on 31 June 1956. A brief decomposed H₂O₂ - diesel fuel combustion study was conducted at Becco in May and June of 1956 with a small combustion chamber. The program evaluated 8 fuel injection or liner modifications that had not been evaluated during tests of the Alton system. On the basis of the test program at EES and Becco, recommendations are made for further improvement of the simplicity of design and reliability of the combustion chamber configuration which operated successfully in run 72-12B. One of the recommendations is based on an analytical description of the Alton chamber combustion reaction prepared by Becco consultants. The development of the analytical description and the close degree of correlation between the analytical predictions and test results is summarized. Additional recommendations are given for further test work to help form the basis of future H2O2 supported combustion chamber design. A possible method of more economical testing of combustion chambers is proposed. #### I. INTERCORTECTION During World War II a gas renerating turbine system utilizing high strength hydrogen peroxide, fuel, and water was developed by Germany for submarine propulsion. By the end of the hostilities, many sea trials with the submarines had been conducted, but the craft had not reached the operational stage of development. A complete propulsion system was brought to this country in 1945. Tests conducted at the Engineering Experiment Station, Annapolis, Md., with the German equipment proved that the application of high strength H₂O₂ and fuel for submarine propulsion was feasible. The German system utilized 83 per cent H₂O₃ (17 per cent by weight water) and synthetic Diesel fuel. At a chamber pressure of 500 psig 2500 shaft horsepower could be developed with the steam turbine- reduction geer arrangement. Starting in 1946, a new proposition system similar to the German plant was built by Allis-Chalmers Mfg. Corp. and was designated the Alton Cycle. It was installed in a submarine hill mock-up. The Alton Cycle was originally designed to produce a maximum of 7500 shaft IP at 750 psig chamber pressure and 1300°F combustion chamber discharge temperature. Early in the test program, the output power rating was increased to 10,000 shaft HP at the same exhaust temperature and chamber pressure. Full power operation was to be sustained for 10 hours. The combustion chamber (Figure 1) was fed with decomposition products of 90% HgOg, Diesel fuel, and water. The PaOg was first decomposed in a catalyst chamber into steam and oxygen at 1360°F. Fuel was injected into the decomposition gases as they entered the combustion chamber. Ignition of the Diesel fuel occurred without the help of an igniter because of the high temperature of the decomposition gases. The diluent water which circulated through the catalyst and combustion chamber cooling passages was sprayed into the combustion gases just above the combustion #### CCEFIDENTIAL chamber cutlet to reduce the exhaust temperature to 1300°F. At the time of work termination, the only component of the system that required further testing was the combustion chamber. Operation at 750 psig chamber pressure resulted in combustion chamber liner burning. Efforts to prevent liner damage, increased cooling vater velocity, thinner liner walls, more heat resistant material for liner composition, larger liner diameter at the combustion zone, swirl imparted to the fuel spray, elimination of helical fins or other guide fins in the cooling passages, and the use of Solaramic coating for the inner liner surface, were ansuccessful. As a result of a conference held on 5 May 1954 at ONE, Washington, D. C., Becco submitted a proposal to CMP to conduct a complete study of the AllisChalmers chamber failure and to recommend steps to prevent burnouts. The contract awarded to Becco on the basis of the proposal was designated Nonr 11:87(00). On 1 July 1951, a research project sponsored jointly by BuShips Pesearch and Development Section and the Office of Naval Research, Power Branch, commenced at the U. S. Naval Engineering Experiment Station, Annapolis, Md., (E.E.S.) to develop a reliable combustion chamber for the Alton Cycle. Becco's basic contract was amended to provide consulting services during the total time of the project at E.E.S. which terminated on 1 July 1956. This report will, in part, summarize the information presented in Becco Report NR-1 titled, "Preliminary Analysis of Burnout Failures of the Alton Cycle Combustion Chamber CC-12", issued in January 1955. In addition, the report will provide a description of the test system and the results of the runs made at E.E.S. The information will parallel the report prepared by E.E.S., but is presented here to act as a background for the medifica- CONTIDENTIAL #### COBEJDENTIAL tions advocated by Becco and MES bersonnel. The results of a short HoOg-Diesel fuel combustion study conducted late in the contract period at Becco and final recommendations for the combustion system run at MES are also included. #### II. ALTON CHAMBER ANALYSIS AND MODIFICATION RECOMMENDED Based on experience gained through bunker testing at EES from 1948 to 1950 a prototype combustion chamber designated as CC-12 was designed in 1950 to be fabricated from 347 stainless steel. (Fig. 1) The CC-12 chamber completed a total of about 10 hours of successful operation in bunker tests of short duration during 1951 and 1952. In 1953 the chamber was operated a total of approximately 23 hours during 62 test runs in the submarine hull mock up. In the latter series of tests the general trend was increased power development for successive runs. Runs 59 thru 62 were made at 735 psig turbine inlet pressure which is approximately full power. In the 63rd test run, which was scheduled for 10 hours at full power, the exhaust temperature and pressure began to decrease after 3 hours and 7 minutes on test. The unit was
secured. Examination of the chamber liner revealed numerous loles and severe burning in the conical head section and approximately 1/64" of scale on the water side of the liner. The chamber was repaired and modified by replacing the 347 stainless steel conical section of the liner with a ceramic-coated 25-20 stainless steel section of the same dimensions. The ceramic-coated 25-20 stainless steel was expected to be more heat resistant. The conical head of the liner burned out after a few minutes of operation at 700 psig in run No. 65. The liner was then made up with 1/8" nickle wires to control the coolant flow pattern over the head section. The water passage clearance between the head and jacket was reduced to 1/8" (Figure 2). The liner showed signs of burnout after 5 minutes operation in run 68 which was made at 728 paig turbine inlet pressure. SCHEEDENTIAL A new fuel nozzle was the constant, a with holes at an angle to both the vertical and horizontal axis of the nozzle in the same direction as the swirl pattern of the decomposition gases (Figure 3). The tabeliances of the 3h7 stainless steel in the head section was also reduced .030" to an amorage of 2755". Operation for 8 minutes at 720 psig in run 71 resulted in severa liner curning. The next modification consisted of reducing the liner wall thickness to an average 1/8 of an inch. Runs 72 thru 71 ith operation at 650 psig were successful. Three hours operation at 650 psig in run 7% consect lines burnout. A new chamber was evaluated in rows 20.80 (Figure 4). The lower diameter of the conical head section was increased from 10 to 10-3/4" thus tending to give the liner a bell shape. The cone angle of the head was slightly wider. The cooling water passage width and liner thickness were both 1/8". It was hoped that the flame would maintain its previous dimensions leaving a space of no combustion next to the walls at the turn of the belled section. After rans (6 and 80 at 500 and 600 psig evidence of metal flow was found in the head section. The EES combustion chamber CC-13 was then installed. (Figure 5) Liner material was 25-20 stainless steel, 7/64" thick. Chamber pressure was increased during runs 81-83. Run 84 was made at 600 psig for 5 minutes. Liner inspection after the run disclosed that the liner had collapsed inward in the lower part of the straight section. No burning at the heal was noted. The Alter test program was terminated with run 84. At the outset of Becresscantract work a heat transfer analysis of the Alton combustion chamber (1) using data from run 60. Table I was performed and Becco submitted a modified and completely instrumented (thermosouples and pressure tape) liner design (Figures 6 & 7). CCKEIDENTIAL Best Available Copy ^{(1) &}quot;Preliminary Analysis of Bellocal Failures of Alton Cycle Combustion Chamber CC-12" Technical Report NR-1, Beica Chambel Division, January 1955 A preliminary heat transfer enelysis of the Alton chamber was presented by Becco at a conference held on 19 July 1980 at EES. The liner design drawings were sent to EES in August 1956. The principle leatures of the proposed liner design were as follows: - a. A flat type head was recommended to reduce the gas velocity in the zone where burning occurred an arrayious tests. This reduced velocity would decrease the heat transfer film coefficient on the gas side of the liner and consequently reduce the temperature at the marface of the liner. - b. The cross-sectional area of the cooling water annulus in the head section was increased from 1/24 to ≈1/44. This change was designed to allow gas bubbles formed by be limit to decope without being trapped and causing a hot spot. The elimination of gas bubbles was deemed more important than the higher water velocity attached with the 1/84 dimension. - heat transfer area and higher water velocity beyond the area where most severe burning occurred with the Alten cycle liners. Continuing the helical cooling fins to the throat had previously been found to be unsatisfactory. An extensive thermocouple installation on the outer surface of the inner liner was proposed in order that the affects of the fuel nozzle and liner design variables could be obtained quantitatively and with a minimum of testing. It was hoped that the tests with the instrumented liner would share as a guide in determining which design changes would be best in carrying on a successful test program. The recommended liner design and thermocouple installation were incorporated in the combustion chamber development program. Additional recommendations for the program were included in report NR-1. The use of nickle "A" or Rosslyn metal instead of stainless steel for liner fabrication would decrease the liner temperature in the gas side through the increased thermal conductivity CORFIDENTIAL of the nickle "A" and Rosslyn metal. Elimination of scale on the water side of the liner was considered to be one of the most important factors in successful operation of the chamber. The continued use of a closed water system was suggested in order to reduce the scale buildup. The angle of fuel injection could be investigated to reduce the direct impigment of burning fuel on the liner walls. The effect of inlet oxidant gas swirl might also be evaluated. The recommendations given in report NR-1 were based, in part, on the advice solicited from individuals outside of Becco who were experienced in the field of high energy release combustion systems and heat transfer. These individuals were contacted during the period July 1954 - January 1955. Additional information was gained by Mr. Ralph Bloom, Jr., of Becco, on a trip to the United Kingdom in January of 1955⁽²⁾. Thus the background for consulting services that Becco had gained through previous test work at Becco was augmented by several sources. #### III. TEST SYSTEM AT EES The test system employed at EES for the combustion chamber tests is presented schematically in Figure 8. The system was installed in a test bunker at one end of the building. A reinforced concrete wall separated the system from the operating station. The instrumentation that was incorporated is given in Table II. The complete H2O2 flow system was as follows: a. HaOs was pumped from 30,000 gallon storage tanks to a small "day tank" which had sufficient capacity for approximately one hour of chamber operation. The large storage tanks and day tank were located in a separate building and are not shown on the schematic diagram of the system. ⁽²⁾ British Submarine Plant Combustion Chamber and Other Hydrogen Peroxide Developments Report of Visit to Great Britain, 31 January - 16 February 1955, - b. From the day tank the HaOa flowed down through a degassing pot to the HaOa booster pump. The degassing not removed any gas entrained in the HeOs. - c. After passing through a proportioning device the H-Oz reached the suction side of the triple feed pump. The triple feed pump consisted of three positive displacement pumps, one for each of the system fluids driven by a single motor through speed increasers The pump raised the liquid pressure from the 30-40 psig discharge pressure of the booster pumps to about 200 psig above combustion chamber pressure. The flow of H202 through the proportioning device controlled the flow rates of the cooling water and fuel in preset ratios. - d. From the triple feed pump discharge the H2O2 passed through a two way airoperated pressure valve. Actuation of the valve by-passed the H2O2 flow back to the degassing pot. - e. Normally the H2O2 passed through the two-way valve to a throttle valve which was operated from the main control panel located outside the bunker. - f. Next the HgOz reached a cam stop valve. The cam valve was also manipulated from the main control panel. The hand wheel had 4 positions: off; No. 1, H2O2 only; No. 2, Ha Oz and cooling water; No. 3, Ha Oz, water and fuel. - After passing through the cam stop valve the H2O2 entered the catalyst chamber The water system was a closed loop with the following flow sequence: - a. The water booster pump took suction from a feed tank located inside the bunker. A strainer was installed in the line to help prevent scale build-up on the combustion chamber liner. - b. The water booster pump discharged through a filter to the triple feed pump suction. CONFIDENTIAL - c. From the triple feed pump the water entered the proportioning device where the water flow rate was controlled in a ratio of approximately 2 to 1 gpm of HaOs flow. - d. Water flow from the proportioning device entered the cooling water passages of the combustion chamber and catalyst chamber in that order. - e. Part of the water discharge from the catalyst chamber could be circulated through a cooler and pumped back to the combustion chamber inlet to increase the flow of coolant through the cooling passages. - f. The heated cooling water then passed through the cam operated valve and entered the water spray arrangement located inside and at the bottom of the combustion chamber. THE REPORT OF THE PERSON TH The fuel system followed a similar path from storage tank, booster pump, filter, triple feed pump, proportioning device, cam valve, and solenoid valve to the fuel nozzle located at the top of the combustion chamber in the flow of decomposition gases. The combustion chamber exhaust passed through the following units in order: - a. Steam separator removed entrained liquid or solid particles that would harm the turbine of a complete propulsion system. - b. Orifice simulated the pressure drop through the turbine. - c. Desuperheater supplied the reduction in temperature of the turbine exhaust. - d. Condenser as in the Alton cycle. - e. Condensate pump - f. Water feed tank. During operation of the combustion system the excess water produced was dumped down a drain. The test system incorporated a trip out circuit (Figure 9) both for safety of operation and ease of shutdown. The entire system could be secured by a manual switch
<u>CONFIDENTIAL</u> on the main control panel or would trip out automatically in the event of: - a. loss of control air pressure - b. loss of triple feed pump lube oil pressure - c. excess temperature of exhaust either in steam separator or exhaust line loop. When the trip out circuit was opened either with the hand switch or because of emergency conditions, a, b, or c above, the triple feed pump and booster pumps were shut off, a solenoid valve in the fuel line to the combustion chamber stopped fuel flow and the air operated H₂O₂ by-pass valve stopped the flow of H₂O₂ to the catalyst chamber. In addition, red warning lights installed on the main control board flashed on in the event of: - a. loss of lube oil pressure to triple feed pump - b. loss of control air pressure - c. loss of condenser vacuum - d. high temperature, triple feed pump lube oil - e. excess pressure in steam separator - f. loss of seawater pressure to condenser - g. high temperature, water to catalyst chamber cooling passages - h. high temperature, HgOg after throttle valve #### IV. PRELIMINARY TESTING The installation of the test system at EES was completed in early January 1955. The catalyst bed used during the later Alton runs was reactivated with samarium nitrate. The bed consisted of h - 10 inch diameter silver spirals each 2-1/2 inches thick. The first few preliminary runs at EES were operated with decomposition only; no fuel was injected. The catalyst bed functioned as desired. On 2h January 1955 the first combustion run was made at 300 psig combustion pressure employing a fuel nozzle that had been used in the Alton runs (Fig. 3) and with a chamber configuration as indicated by Figure 10. The run was designated 1-12B. Inspection of the combustion chamber liner after the run revealed that no damage had occurred due to overheating of the metal. The Teflon tips of the wall temperature thermocouples were found to be crushed by the expansion of the liner during combustion. It was decided by EES and Becco to replace the Teflon tipped thermocouple arrangement before the next run with wires peaned into shallow holes drilled in the outside of the liner. Thermocouple location and number designation is given in Figure 11. The second run, 2-12B, was conducted on 3 February 1955. Chamber pressure was raised to 450 psig. The thermocouple installation was found to be satisfactory although the wall temperatures were lower than recorded in run No. 1 and the difference between readings for thermocouples in the same plane was as much as 400°F. The insulating affect of the Teflon tips accounted for the lower wall temperatures in run No. 2 but no explanation could be advanced for the large difference between readings of thermocouples installed in the same plane. Each wall temperature reading remained essentially constant after a rapid rise when combustion was initiated. Chamber pressure was increased for each of runs 3, h, and 5-12B to 650 psig in run 5-12B. Data summary for run No. 5-12B is given in Table III. The liner was removed after run No. 5 for inspection. Metal flow was present in two areas about 120° apart and approximately 2 inches below the beginning of the straight section. A red oxide deposit was present in the dome, extending about an inch below the beginning of the straight section. This was followed by a black carbon deposit around the circumference of the liner, about 1-1/2 inches wide. After inspection, the liner was cleaned of all deposits. The test procedure developed consisted of the following major steps: a. booster pumps on b. triple feed pump on, low speed c. HaO2 throttle valve opened part way - d. HeOz cam valve opened decomposition started - e. combustion chamber pressure from decomposition increased to approximately 150 psig - f. water cam valve opened briefly to check correct operation of water system. Water cam valve closed. (Diluent water flow indicated by rapid drop of exhaust temperature. This check was made as a precaution against combustion without cooling water which would result in immediate severe damage to the combustion chamber. The recirculation of water through a heat exchanger was maintained during startup). - g. water and fuel cam valve opened almost simultaneously. Combustion initiated. - h. visual observation of the test system was made through peep holes in reinforced wall between operating station and combustion chamber. Instrument operation.checked. - i. booster pumps and triple feed pump speeds increased until desired chamber pressure attained. Average length of starting sequence approximately 2 min. The water cooler could be by-passed if and when desired. - j. readings taken off non-recording instruments on signal. Data points marked on recording instruments. Orsat analysis samples taken. - k. triple feed pump speed decreased until chamber pressure reached approximately 150 psig. - 1. hand trip switch opened fuel flow stopped, triple feed pump off, booster pumps off, system secured. Recording instruments off. (stopping sequence duration ≈ 80 seconds). CONFIDENTIAL m. HeOm lines from day tank to combustion chamber drained if no further runs were to be made the same day. During the period that the first five runs were made, Becco contracted Professor Warren Rohsenow of MIT as a consultant on the test program. Professor Rohsenow had been associated with the program under consulting contract with EES. Arde Associates, an engineering consulting firm, in Newark, New Jersey was also contracted at this time by Becco to make a preliminary analysis of the fuel spray pattern for the fuel tip, and chamber configuration utilized in runs 1-5-12B. (3) After run No. 5 Becco obtained thermocouple wires that were insulated and bound together so that a single hole thermocouple packing gland could be used, reducing the time required to install the thermocouples. A double hole packing gland had been in use. After the thermocouple wires were peaned into the liner wall, installation of the liner in the combustion chamber jacket was complicated by the need to pull the thermocouple wires out through holes in the jacket and then thread the wires through the two hole packing glands. A co. I. Mark ern in Ma Wellin M. . . After run No. 5-12B the Becco representative at EES suggested a light and mirror arrangement that would permit inspection of the liner in place after the catalyst chamber was removed. The method was employed in subsequent tests. The liner was removed from the combustion chamber jacket only for repairs. ⁽³⁾ Arde memorandum "Alton Combustion Chamber" March 11, 1955 ### V. RESULTS OF TEST RUNS AND CONFERENCES HELD AT EES DURING THE TEST PROGRAM #### A. Conferences and Results of Test Runs #6-71-12B A conference was held at EES on 11 March 1955 to discuss the results of Runs 1-5-12B and to determine the procedure to follow in future test work. It was generally accepted that the burning of the liner was due to liquid fuel hitting the walls and burning there. The EES representatives pointed out that changing the position of the fuel nozzle would not be a desirable method of preventing liquid fuel from reaching the walls. Tests with the Alton system had shown that the nozzle position was critical; either raising or lowering even slightly, adversely affected combustion efficiency. For the rest test runs it was decided to first double the number of holes in the fuel nozzle to reduce the fuel droplet velocity. If the increased number of fuel holes would not prevent burning, the H2O2 gas swirl vanes on the fuel inlet pipe were to be removed. As a last step the gas swirl in the discharge from the catalyst chamber was to be eliminated. It was also agreed that Arde Associates would be contracted by Becco to make a complete analytical analysis of the fuel injection and design a new fuel nozzle to eliminate liquid fuel from reaching the wall. The test program was resumed with runs 6 and 7 employing a fuel tip with the number of holes in the periphery of the nozzle increased from 12 to 24 and the diameter of the holes increased from .0625 to .067 in. The chamber pressure for runs 6 and 7 was 650 psig and time on fuel was 26 and 31 minutes respectively. Inspection of the liner after run No. 6 revealed a red oxide deposit as noted for runs 1-5, extending from the silver deposit on the inlet neck to about 1-1/2 inches down the straight section. There was no evidence of metal burning, flow, or slag deposits. After run No. 7 the liner was slightly pitted about 1/2 inch below the neck. A very slight evidence of metal flow was observed approximately 2 inches down the straight section about 2 inches wide. Runs CONFIDENTIAL Runs 6 and 7-12B showed marked improvement over runs 1 through 5-12B (reduced liner temperatures with approximately the same combustion efficiency) but the evidence of metal flow in run 7 indicated the need for further changes. Following run 7-12B the fuel nozzle was modified by adding 12 - 1/16" dis. holes in the bottom of the nozzle parallel to the chamber axis (Figure 12) to further reduce fuel injection velocity. Run No. 8 at 610 - 670 psig chamber pressure for 24 min. with the 12 additional holes in the bottom of the nozzle resulted in more serious scale formation and pitting at the top of the liner dome. Metal flow in small rivulets was present around the entire circumference of the liner about 1-1/2 inches down the straight section. Run No. 10-12B was conducted with the number of holes in the bottom of the fuel tip decreased to 4 as recommended in Becco's letter of 4 April 1955 to the Director of EES. No data was taken during run No. 9 because diluent water pressure was lost soon after the start of the run. A repeat run, No. 10, caused increase in the metal flow and pitting observed after run 8-12B. The liner was cleaned of all deposits after run 10. Control of the second s PARK ARE LESS. Runs 11 and 12-12B were run with all holes in the bottom of the nozzle plugged except the central drain hole and the
diameter of the 24 peripheral holes increased from .067 to .070 inches. Run No. 11 was conducted at 610 psig chamber pressure. The chamber pressure was increased to 650 psig during run No. 12; time on fuel for each run was about 14 minutes. The liner was inspected after tun 12-12B and slight pitting was found just below the inlet neck. Run 13 was made at Becco's suggestion with decomposition gases alone and indicated that the liner wall temperatures were highest at the beginning of the straight section of the liner as noted for the previous combustion runs. The run indicated that the liner burning problems were related to the HaO2 decomposition gas flow patterns in the chamber caused by the swirl vanes on the fuel nozzle. #### LOOPE TORETTAL the DEES barries. (Figure 13) For redfile was obtain to deflect the fact and any from the liver walls. Since the maximum wall temperature coadings draw, each of, and 15-128 at 650 psig were near those observed for raps 6 and 7 the combustion pressure was raised to 750 psig (maximum design operation pressure) during runs 16 and 17-128. The inside of the combustion liner was inspected after each run and no burning was noted. Wall temperature readings were closer to those a run of and 7-128 than any of the intervening runs but still higher. Run 18-12B was conducted with no Jecomposition gas swirl vanes on the fuel inlet and a fuel nozzle design conforming with that of runs 6 and 7-12B (2h - .067 holes on periphery plus 1/16" diam. hele). Ignition of the fuel was attained but the combustion efficiency was peer, with Orsat measured CO₂ at 79.6% versus approximately 26% for all previous runs. Thus the need for a configuration such as the swirk vanes to provide turnulant mixing of decomposition gases and fuel apray was clearly indicated. THE REPORT OF THE PARTY Run No. 19-12B demonstrated that the results of runs 14 and 17-12B with notate 12-BF (Figure 13) bould be reproduced; no changes had occurred as a result of run 18-12B. No data was taken during runs 20 and 21 because of malfunction of the proportioning device. Run No. 22-12B with notate 12-BF was made to check out the repaired proportioning device and to see if liner turning would occur during a more extended run. Time on fuel for this run 22 and his minutes. The longest previous run with notate 12-BF was 26 min. hO sec. in run 16-17B. But because the liner wall readings were above those in runs 6 and 7 in which liner burning occurred, the need for further modifications was indicated. Run 23-12B incorporated a coaxial barile arrangement without the fact inlet swirl value that had been proposed by Beeso (Figure 15). It was born that the coaxial #### COUPLDENTIAL a congeniant would provide in facilities larger of decementation passes confide the finer of the first was read at 610 year with a function of 12 min. I sees. The CC percentage of the man-condensibles of the exhaust jases wis (L.) which showed an improvement over the plane nousle with gas swirl removed (run 18-12B). The liner was examined and found to be in satisfactory condition. A second conference was held at EES on 26 May 1955 to discuss the test results Strained since the conference on 11 March 1985. Andé Associates reported the preliminary results of the analytical invectigation of the fuel injection for review and comment. The received that the time of the meeting indicated that the fuel droplet size and consequently droplet ponetration to the liner walls is mostly dependent on chamber. breasure. The formula used for droplet size calculations was questioned but it was agreed that no better formula was available. The affect of the fuel inlet swirl in increasing the heat transfer coefficient in the head section by reducing the gas film shickness was also discussed. A threefold increase was accepted as possible. It was decided that investigation of factors that affected liner life and combustion efficiency to continued even if such an investigation would eliminate the possibility of a 10-hour run with the H.Oz that was on hand. (The program was started with a limited amount of HaOa and no funds were provided to purchase more). It was further agreed that additional study of fael inlet velocity (changing " tip hole wir) was not mactical because further improvements apparently would be too small to be detected within the experimental variations. Increasing the fuel tip holes from .067 to .070 inches in diameter had resulted in only slight changes in the liner thermecouric readings. In suspery, future posts work to be directed toward attrioment of sufficient mixing to provide a COs content in the non-condensibles of the exhaust of at least 90% by voluce wather elaminetary patreme valorities in the gages of the combantion wall. One approach to the #### CONFLDERTIAL process was to be the addition of tartalones inducing devices to the Bosco coaxial Run 2h-12B made on dune 2, 1924, was made with a coaxial coffin of the same dimensions as nozzle 12B2A evaluated in run 23-12B but included the gas swirl vanes on the fuel inlet pipe. Average chamber processes with point time on fuel was 22 min. 45 sec. The results were discouraging. COs measured by Orsat analysis was almost the same as run 23. The readings averaged bhook. The lower edge of the haffle was molted off savi the inlet neck of the liner was polytrally burned just above the weld between the neck and the dome. The liner was labely and at its lower end where it is backed with packing. After the liner was repaired run Pf-128 was made with a small coardal baffle with a turbulence ring added to the lower end of the baffle. The swirl vanes on the deal later were removed. (Figure 15) Commetion was not satisfactory, 79-80% CC2. No liner or baffle damage occurred. For run 26-12B a 1/8" wire cross was added to the turbulence ring (Figure 16). The cross burned off and combustion was unset slectory, CO2 79%. Run 27-12B evaluated a Becco proposed sturbulence donut befile welded to the fuel nozzle which was positioned to reduce the fuel spray angle, a change evaluated previously in runs 1h through 17-12B and 19 through 22-12B (Figure 17). The run was made at 60C paig chamber pressure for a devation of 10 min. 15 sec. CO2 was 89.6%; wall temperature readings were low 130-305°F; no liner or fuel tip damage occurred. The run 27-12B was considered more encouraging than any previous test. The halfle was designed to create fuel and exident mixing by directing the decomposition gas stream to the center of the chamber. min 18-17B was made as a month of our constraint for the Tun 16-12F. The run was made #### <u>CONFIDENTIAL</u> with the fuel nozzle configuration used in runs 11 and 12-12B. The resulting wall temperatures and CO₂ were similar to the data of runs 11 and 12. A hole was burned in the dome of the liner. A third conference was held at EES on 7 July 1955. Runs 2h-12B through 28-12B were reviewed. The burning of the lower end of the liner where it is backed with packing in run 2h-12B was attributed to contact with burning droplets of molten metal from the baffle and the liner neck. It was felt that the hole burned in the liner dome in run 28 resulted from the decreased cooling water passage width at the dome which was caused by the repair of liner damage from run 2h-12B. The conference discussed the read for a new liner, because the EES engineers felt the liner in use was near the end of its life. Becco had been in contact with the Youngstown Welding and Engineering Corporation of Youngstown, Chio, concerning the fabrication of a liner from Rosslyn metal. The contact resulted from Becco's search for a material suitable for liner fabrication and which had a greater heat transfer coefficient than stainless steel. The price of the Rosslyn metal liner, was approximately twice the cost of fabrication of a 25-20 stainless steel liner from stock that was on hand at EES. It was resolved to make a new liner out of the 25-20 stainless steel for economy reasons. The ONR representatives pointed out that the entire Alton propulsion unit would be held in reserve until such time as it might be needed in the case of serious national emergency. The need for at least a 5 hour, full load, continuous test run was also stressed. Arde Associates presented a counter swirl fuel nozzle jacket design that was accepted for fabrication and test. It was decided that the next runs were to be made with turbulence rings added to the ball beiffe that had given good results in run No. 27-12B after the results of pre to were shown to be reproducible. These turbulence #### O O N F T D E, N T I A L rings were to increase mixing and thus improve combination efficiency. It was hoped an optimum design would be indicated. Run 29-12B on 22 July 1955 demonstrated the reproducibility of run 27-12B. In general, runs 30 through 45-12B, evaluated the addition of turbulence rings of increasing thickness to the ball baffle (Figure 18). The affects of closing the 1/16" drain hole in the center line of the nozzle and the addition of two holes in the bottom of the tip plus the drain hole were also determined. One other slight modification evaluated during runs 43 through 45-12B (Figure 18). During the series of tests 29 through 45-12B, which were completed on October 12, 1955, difficulties were encountered both with the catalyst bed and the proportioning device. No light off was attempted during runs 36, 38, 39, and 41-12B because of excessive pressure drop across the catalyst bed. The bed was changed for run 37 and activated for runs 39, 40, and 42-12B. Some of the successful runs had to be re-run because of exident rich operation due to malfunction of the proportioning device. Runs 29 to 45-12B yielded the following results: - the gap between the liner throat and turbulence ring was 1/h in. With the 1/4# gap the CO2 was 92-93%. - (b) Plugging the fuel tip drain hole reduced performance - (c) Addition of 2 1/16" diameter holes to the bottom of the fuel tip reduced
performance. - (d) Increasing the spray angle of the fuel slightly by cutting back the bottom of the ball baffle (runs 43-45-12B) did not affect performance. - (e) No liner burning or fuel tip melting occurred. Run 46-12B on 18 October 1955 evaluated the Arde dual swirl nozzle (Fig. 19). Performance was fair with 91.8% CO₂ but the lower end of the nozzle was burned. CONFIDENTIAL #### <u>CONFIDENTIAL</u> The next series of tests, runs 18 through 53-12B were made with a 3" diameter ring baffle that gave at first, a 1/11" clearance between the ring and the liner throat. (Figure 20) Additional modifications made to the 3" ring baffle during the runs are indicated on Figure 20. Runs 18-53-12B which were completed on 7 November 1955 gave results that were inferior to the optimum arrangement of small ring baffle and turbulence ring. During the fourth conference held on 8 November 1955 at EES it was agreed that a successful 5 hour run could be made with the small ring beffle plus turbulence ring. The 5 hour run would have to wait until the new liner was completed. In view of the poor results of runs 48 through 53-12B it was decided to machine a ring baffle with the same shape and dimensions as the baffle with added turbulence ring that had given the best results and to check the reproducibility of those results. Runs 54 through 56-12B were made in accordance with the decisions of the 8 November conference. The fuel nozzle employed is shown in (Figure 21). Guide vanes were installed on the fuel inlet pipe in runs 54 and 55-12B. Run 54-12B at 650 psig chamber pressure was without incident; CO₂ was 91.6%. The new liner (EES designation - No. h) which was designed by Arde Associates (h) was installed for run No. 55-12B. The changes made to the previous design were as follows: - (a) reduction of wall thickness to 1/8" (from 3/16" in the present liner) - (b) reduction of fin height to 3/8" (from 5/8" in the present liner) - (c) increase in liner I.D. to 10-3/8" to incorporate (a) and (b) above and maintain the transverse dimension of the previous liner, 11-3/8". ⁽b) "Modified CC12 Liner Design", Arde Associates, Report No. 4553-1 26 July 1955 In run 55-12B at 645 psig for 3 man, 48 sec. purning occurred at the lower and of the liner where it is backed with packing. The furned area was directly below the fact inlet pipe elbow. The fuel injector assembly was found to be tilted slightly toward the burned area. Guide lugs were added to the ball baffle for run 56-12B in an attempt are prevent tilting of the fuel injector. In run 56-12B on 11 January 1955, which was conducted at 650 psig chamber pressure for 6 min. 5 sec., additional burning of the bottom of the liner occurred in two areas directly above diluent spray nozzles. A fifth meeting was held at EES or January 19, 1956, to discuss the liner damage caused by runs 55 and 56-12B. Beach presented two methods of providing more positive cooling about the entire inside diameter of the liner at its lower edge. One method was to add a cooling water ring just above the critical section. The ring would be supplied by four pipes one from each of the four diluent nozzles (Figure 22). The second approach would be to install a single water spray nozzle to replace the four nozzles that had been in use (Figure 23). The addition of a gas deflector ring to deflect gases away from the dead space provided for liner expansion was also discussed as a means of preventing burning. Improvements to the Arde dual swirl nozzle were advanced since this nozzle was still believed to be of superior design. Steps for the next runs were agreed to and were carried out in runs 57 through 62-12B. Run 57-12B was made with a slightly modified Arde dual swirl fuel nozzle. High combustion efficiency was obtained, 97.7% CO₂, but serious burning in the dome of the liner occurred. For run 58 the donut baffle fuel nozzle (Figure 21) was reinstabled and a gas deflector ring was installed just above the diluent nozzles. The deflector ring was installed to prevent gas and/or unbornt fuel from collecting in the dead space provided for liner expansion. The rung burned off almost completely during the bast. During runs 59 and 60-12B the h diluent water agray nearles were baffled in an attempt to provide complete liner wall coverage. During run 60-12B minor liner burning near the diluent nozzles occurred. It was agreed that the baffling of the heaviles was not a satisfactory approach. For runs 61 and 62-12B the cooling water ring and h diluent nozzle arrangement was evaluated. Burning of the liner at its lower end was successfully prevented at 650 psig chamber pressure for a total run time of about 2h minutes. Data was obtained in run 62-12B for liner wall and jacket temperature changes that had been noted previously in runs 56,60, and 61 (Table IV). The temperature changes occurred rapidly after varying periods of operation while the system feeds, pump pressures, etc. remained essentially constant. The liner wall and jacket readings remained steady before and after the change. It appeared that the region of most intense heat release suddenly dropped lower in the chamber because of some change in the character or geometry of combustion independent of the external system. The change was marked by a decrease in CO₂. The phenomena was of concern because it was an indication of unstable combustion. Runs 63 through 65-12B evaluated the Becco "umbrella" diluent nozzle (Figure 23) one central nozzle replaced the h nozzles used previously. The nozzle had been installed lower than Becco had recommended. Minor liner burning at its lower end occurred during run 64-12B. A deflector ring was added to the nozzle to depress its spray for run 65-12B. Severe liner damage resulted. The bottom of the liner was completely melted around one half of its bottom circumference. The burning extended from the bottom of the liner up to a point corresponding to the height of the packing backing the liner. The liner was removed for repairs. The central nozzle idea was abundaned because the HaO2 available for testing was limited and the addition of the Lookard, ring had proved successful. Becco felt that the central nozzle sould be made to work by increasing its height above the bottom of the chamber. CORFIDERTIAL The old liner that had been used early in the test program was installed for run 66-12B and the 1 nozzle, cooling ring arrangement was tested at 700 psig chamber pressure. No burning or liner wall temperature shift occurred during 11 minutes of operation. COm was 91.4%. The percentage of CO₂ in the non-condensibles of the exhaust gas decreased from approximately 9h% at 650 psig to 91% at 700 psig chamber pressure. It was decided that more intense mixing of the decomposition gases and fuel spray was needed to keep the CO₂ above the accepted minimum of 90% when full power operation at 750 psig chamber pressure was attempted. Becco felt that additional turbulence would prevent the liner wall temperature changes that had occurred previously. Prior to run 67-12B, buttlee 45° angle slots, each 3/32 of an inch wide, were cut in the lower end of the donut baffle in order to increase the turbulence (Figure 24). Data was taken at 650 and 750 psig chamber pressure in run 67-128. The percentage of CO₂ of the non-condensibles of the exhaust gases was 94.0 and 90.5 respectively. The slots in the fuel nozzle did not increase the CO₂ but were successful in preventing the liner wall temperature change. No liner burning occurred. Four small swirl vanes were then added to the slotted ring baffle in an effort to improve mixing (Figure 25). The swirl vanes improved the combustion in run 68-12B. The CO₂ was 95.9% at 650 psig chamber pressure. The same fuel nozzle was evaluated in liner No. 4 in run 69-12B. CO₂ was 97.2% at 675 psig chamber pressure but slight burning of the liner dome occurred. The swirl vanes were reduced in width for run 70-12B with liner No. 4. No burning occurred in run 70 but there was little performance increase over the slotted ball baffle without the swirl vanes. After run 70 it was apparent that an extended run could be attempted using liner No. 4, the slotted ball baffle fuel nozzle, and the 4 nozzle, cooling ring, diluent water arrangement. The length of the final extended run was reduced from 10 to CONFIDENTIAL 5 hours and finally to 2-1/2 hours based on the amount of H_2O_2 expended for the development of a satisfactory combustion chamber configuration. ONR's decision to go ahead with the extended run was prompted by the H_2O_2 that was on hand and also by the desire to complete the program by June 30, 1956. A brief check out run and the final 2-1/2 hour test are described in the next section. #### B. Results of Test Runs 71 and 72-12B は一般には、 ない、 これには、 ないのでは、 ないのでは Run No. 71-12B was conducted to verify the assumed trouble-free operation of the combustion chamber configuration consisting of the slotted ball baffle fuel nozzle, liner No. 4, and the cooling ring, 4 nozzle diluent spray. The slotted ball baffle fuel nozzle had not been evaluated in liner No. 4. The results of run 71-12B, no liner burning or liner wall temperature changes, 94.5% CO₂ at 660 psig chamber pressure, and stoichiometric fuel and H₂O₂ proportioning, demonstrated that the long run could be attempted. Data summary for run 71-12B is given in Table V. It was decided by EES and Office of Naval Research representatives that the final run would not be made at full rated power with a combustion chamber pressure of 750 psig. Instead, to help insure a successful test, the flow rate was to be limited so as to hold the chamber pressure at approximately 650 psig for a duration of 2-1/2 hours. The final run was made on 7 May 1956. Data summary is given in Tables V and VI. With reference to the data summary, the variation in chamber pressure readings was due, in part, to an accumulation of foreign material found after the run in the line to the Bourdon tube pressure gage
and the continuous recorder. The Bourdon tube pressure gage located on the main control panel showed decreasing chamber pressure after completion of approximately half of the run because of the restrictions in the line. The operators increased the flow rates when the false decrease in chamber pressure was noted. The chamber pressure also varied as a result of slight changes in the diluent water flow to the nozzles (not shown by the water/H2O2 flow ratio). A relatively small amount of diluent water was by-passed during the first half of the run in order that a high exhaust temperature could be maintained. The pyrometer giving the exhaust temperature indicated occasional surges. During the second half of the run, less diluent water was by-passed thus reducing the exhaust temperature and the possibility of plant trip-out during exhaust temperature surges. The increase in CO₂ together with the rise in liner wall temperature readings, jacket water temperature readings, cooling water and diluent water temperature readings, in the first 36 minutes of operation on fuel indicated that the data of previous runs taken at shorter intervals after startup did not reflect the steady state operation of the system. Some of the liner and jacket water temperature readings did not settle out until later in the run. Many of the liner temperatures were above values that had been observed in previous runs when liner burning had resulted. Inspection of the liner after run 72-12B revealed that no burning had occurred. In addition the fuel nozzle was undamaged. The run was successful. It was the opinion of the EES personnel and the Becco representative who had witnessed the final run that the run would have been equally successful at 750 psig chamber pressure. In run 67-12B which utilized the slotted ball baffle fuel nozzle, the liner wall temperatures recorded at 650 and then 750 psig showed an average increase of 24° for the 750 psig operation. Part of the increase is the normal rise for the system. # VI. Summary Discussion of Combustion Chamber Modifications - Project "Hill" Changing the design of the head section of the combustion chamber liner from the conical shape utilized during the Alton project to the dome shape recommended by Becom did not eliminate burning of the top portion of the liner (Figures 1 and 7). The liner burning was attributed to liquid fucl reaching the liner wall and burning there. Attempts to reduce the fuel spray penetration by reducing the fuel injection velocity gave improved operation but liner turning still occurred. The fuel injection relocity was decreased from 72.5 ft/sec. about 20 ft/sec. by increasing the number of holes in the fuel nozzle (Figures 3 and 12). A 24 hole fuel nozzle giving a conical spray pattern and an injection velocity of 30 ft/sec. gave the best test results. Decreasing the included fuel spray angle also proved to be unsuccessful in preventing liner burning. The original combustion chamber incorporated an HaOz decomposition gas swirl just above the fuel tip. Data taken during a test without combustion showed that the location of the highest liner temperatures was the same for the non-combustion and combustion runs. The gas swirl was causing increased heat transfer by reducing the thickness of the gas film at the liner wall. A combustion run with the gas swirl vanes removed gave poor performance (79.6% CO₂). The need of a turbulence producing device other than the gas swirl vanes was indicated. "Coaxial" baffles, and "dual swirl" turbulence producers were unsuccessful (Figures 14, 15, 16, and 19). A ring baffle proposed by Becco (Figure 17) approached the desired results. No liner burning occurred but the combustion efficiency was low (CO₂ - 89.6%). Modifications were made to the ring baffle to give an optimum performance of about 95% CO₂ (Figures 18, 20, and 21). High performance of the ring or "donut" baffle resulted in chamber liner burning at its lower edge where it was backed with packing as indicated on Figure 10. If ling of the diluent spray nozzles was unsuccessful in preventing the damage to the bottom of the liner. The addition of a water spray ring at the critical section provided a semewhat make-shift solution. A central nozzle was partially evaluated (Figure 23) but return to the a nozzle - spray ring arrangement was made because of limited project funds. A liner wall temperature fluctuation noted during the high performance (95% CO₂) with the donut baffle was eliminated by adding slots to the baffle (Figure 25). The slotted donut baffle turbulence ring together with the conical fuel spray and diluent arrangement of h nozzles and the cooling ring gave high performance (average 97% CO₂) for a 2-1/2 hour run at 650 psig chamber pressure without any liner damage. VII. Results of Combustion Tests Carried Out at Becco In accordance with contract amendment No. 6 dated 29 February 1956, a brief H₂O₂-diesel fuel combustion study was conducted at Becco from the middle of May to the end of June 1956. The basic combustion arrangement of H₂O₂ externally decomposed and limit diesel fuel injection employed at EES was retained with a 2-1/2" J.D. combustion chamber. Flow rates of H₂O₂, fuel, and water to the 2-1/2" chamber were based on a combustion zone cross-section area ration to the modified Alton unit. Thus the heat release rate per in. of liner area was approximately equal to that of the modified Alton chamber. The combustion chamber run at Becco had an effective combustion zone length of about 4 and later 5 inches taking the distance from the throat of the head to the point where the flame was quenched by diluent water. The effective length of the modified Alton chamber was about twenty inches. The first five runs at Becco were a simulation of the combustion chamber arrangement that proved successful in test runs at EES (Figure 26). All subsequent tests incorporating changes to be described later, were compared to the simulated Alton arrangement. The changes made in the chamber configuration and fuel spray were an attempt to study configurations which might yield significant increases in performance over that attained in Runs 1 through 5 or at least to point out fruitful avenues of approach in future combustion chamber development work utilizing decomposed HaO2 and fuel. Emphasis was placed on evaluating as many configurations as possible rather than gaining optimum performance for a few changes. Therefore, the test results are to be considered as preliminary only. A schematic diagram of the test system employed at Becco is shown in Figure 27. Runs 1 through h were conducted for system check out and to femiliarize operating personnel with test procedures. Run No. 5 gave results for comparison with later runs, Table VII. All tests were of approximately 5 minutes duration and utilized diesel oil as fuel. Run No. 6 was made at increased flow rates and chamber pressure and indicated a slight decrease in CO₂ (82.3 vs. 81.6%) correlating with slight CO₂ decrease with increased pressure obtained during runs at EES. The fuel spray pattern for runs 5 and 6 is shown in Plate 1. The first change in the combustion configuration was an attempt to reduce the size of fuel droplets. Both Arde Associates and the engineers at Becco favored the approach of reduction of fuel spray droplet size. (5) A Monarch #70-80° hollow cone nozzle was used together with the flat baffle for Run No. 7 (Plate 2). CO₂ decreased from 82.3 to 75.4%. In runs 5, 6, and 7 operation was exident rich. Correction for the exident rich combustion was approximated by subtracting the volume of excess O₂ from the sample volume. Run No. 8 was an attempt to increase the chamber performance by lowering the diluent nozzle to increase the effective combustion length from 1, to approximately 5 inches. No increase in CO₂ was noted. Combustion was fuel rich which accounted for the increased chamber pressure with lower CO₂. ^{(5) &}quot;Analysis of Combustion in the Alton Chamber" Dr. E. Mayer, B. J. Aleck, Arde Associates Report No. 2567-1. For run No. 9 the fuel spray droplet size was further reduced by employing a #28-60° Monarch hollow spray nozzle (Plate 3). The percentage of CO₂ in the non-condensibles of the exhaust gases was lower than Run 7 which employed a #70-80° Monarch. Further reduction in droplet size was considered useless. Runs 10 and 11 were to evaluate solid spray nozzles (Plates 4 and 5) and indicated an increase in COs with decreased droplet size. Run No. 12 incorporated a fuel nozzle configuration that had proved successful in previous test work at Becco. The arrangement utilized a bluff body type flame holder (Figure 28). The fuel tip was a #70-80° Monarch. A comparison of runs 7 and 12 indicates excellent operation with the flat flame holder. Because flow patterns about a conical flame holder appeared to give more intense mixing (6) a conical flame holder was installed for run No. 12 (Figure 29). Performance decreased. The "straight through" head arrangement (Figure 30) for Run 14 was evaluated to explore the possibility of a simpler head design in comparison to the "restricted" entry used in the previous runs. Performance decreased. An interesting effect of the use of flame holders was noted. The straight through head insert had never been exposed to high temperatures before the run. After the run an inspection of the insert revealed only very slight discoloration of the metal. The flame holder stabilized the combustion in a manner that eliminated high heat transfer to the head section. Runs 15 and 16 incorporated a rather drastic change over the general configuration tested at EES. The fuel tip was installed in the diluent spray nozzle giving "reverse flow" fuel injection (Figure 31). It was hoped that the stay time; ^{(6) &}quot;Some Experimental Techniques for the Investigation of the Mechanism of Flame Stabilization in the Wakes of Bluff Bodies" H. M. Nicholson, J. P. Field, LCdr, USN, Bureau of Ordnance,
Contract NOrd 7386 i.e., the length of time each particle of fuel could burn before being quenched by the diluent water spray, would be greatly increased thus assuring efficient combustion. A baffle was installed just below the throat at the liner inlet to prevent any fuel from being sprayed into the uncooled chamber below the catalyst bed. The fuel sprays were checked before each run by removing the catalyst chamber and baffle at the head and observing the amount of fuel spray emitted through the throat of the head insert. Very little fuel was sprayed out of the chamber with the #70-80° Monarch at rated flow. Considerable spray was emitted when the #50-35° Monarch was installed. Runs 15 and 16 gave poor results. No difficulty was experienced with light off and chamber pressure remained steady. The preliminary conclusions from the H2O2 decomposition liquid diesel fuel injection tests made at Becco are as follows: - (a) Reduction of droplet size in a hollow cone spray by increasing the pressure drop across the fuel nozzle will not increase combustion efficiency. - (b) Decreasing fuel droplet size with a solid spray increases combustion efficiency. - (c) "Restricted entry", flat flame holder below the throat, will give good operation and reduce heat transfer at the head of the liner. - (d) "Reversed flow" fuel injection as performed resulted in poor performance. - (e) Removal of the restricted HaOz decomposition gas entry passage decreases performance. - (f) A flat flame holder gives better performance than a conical flame holder. In addition to the combustion tests, flow tests were conducted with a plexiglass mockup of the combustion chamber. An attempt was made to obtain a picture of a 2 dimensional flow pattern within a 3 dimensional flow (Figure 32). Nitrogen and entrained aluminum particles passed through the mockup. Difficulties experienced fabricating the plexiglass and obtaining satisfactory pictures within the short test period (Plate 6) prevented the possible use of the flow pattern pictures in the selection of test set-ups that would give better performance. The degree of correlation between the intensity and geometry of turbulence obtained with the plestic chamber and the performance of the stainless steel combustion chamber would have determined the usefulness of the plastic mockup. More development work is required before adequate flow pattern pictures can be obtained with a 3 dimensional mockup of a combustion chamber under consideration. The shortness of the test program prevented experimentation with other types of fuels. An analytical description of combustion prepared by Arde Associates (7) for Becco predicted a gain in combustion efficiency when more volatile fuels than diesel oil are burned in a given short combustion chamber. A summary of the analytical description of combustion is presented in Appendix A. #### VIII. Conclusions and Recommendations 1 Full power operation of the H₂O₂-diesel fuel Alton combustion chamber called for maintaining 750 psig chamber pressure and 1300°F exhaust continuously for ten hours with a minimum of 90% CO₂ by volume in the non-condensibles of the exhaust. The combustion chamber developed during Project "Hill" demonstrated near full power operation for 2-1/2 hours with an exhaust temperature at an average of approximately 1200°F in run 72-12B. The CO₂ of the exhaust during the 2-1/2 hour run was well above the minimum of 90% and the combustion chamber liner burning that ⁽⁷⁾ loc. cit. Arde Associates No. 2567-1 occurred during full power operation of the Alton system was eliminated. It is Becce's opinion that the combation chamber configuration test was employed in run 72-12B could operate successfully at full power for ten hours. As mentioned earlier, the final run configuration was operated at 750 psig chamber pressure for a short time in run 67-12B without causing any liner damage. In addition, if 90% HaOs of slightly greater purity than that on hand at EES were employed in a 10 hour test, a samarium treated silver screen catalyst bed could be expected to provide satisfactory decomposition for the duration of the test. The catalyst difficulties experienced half way through the Project "Hill" test program prompt the previous statement. The following modifications might prove to further increase the reliability and/or simplicity of the Project "Hill" chamber: - (a) Substitution of a properly located central spray diluent nozzle fed from four plain pipes for the cooling ring, four nozzle diluent arrangement. - (b) Installation of a 3/4" pape spray ring in place of the 3/8" cooling ring and removal of the four spray nozzles. The larger ring would be drilled to provide a spray against the bottom of the liner to accomplish the affect of the cooling ring addition. The larger ring could also be drilled to provide a cone of flame quenching diluent water in the bottom of the combustion space. - tip length, and the addition of a h" diameter flat flame holder to give a configuration similar to the flat flame holder restricted entry arrangement that showed promise during the tests at Becco of maintaining high combustion efficiency while eliminating the cooling problems in the head section. Additional combustion studies could be made at Becco in order to reduce the development time required for the proper operation of a HaCa supported combustion system. The information obtained may also contribute in a small way to the better understanding of the whole field of turbulent, high pressure combustion. Development work with HaCa decomposition gases to which a swirl is imparted as was done with the swirl vanes on the fuel inlet of the Alton chamber and with the Arde dual swirl nozzle tested during Project "Hill" could be continued. Such general combustion configurations using air can give high heat release rates while maintaining relatively cooling combustion chamber walls. (8) Reverse flow fuel injection could also be investigated further. Such an arrangement should provide the intense mixing that efficient combustion requires. In fact, the configuration run at Becco probably provided too intense mixing. It appeared that the turbulence inside the chamber during combustion caused a blow out of the burning of the heavier fuel fractions and consequently poor combustion. More volatile fuels than diesel oil may prove to be more easily adaptable to an H_2O_2 supported combustion chamber. The relations developed in the Arde Report summarized in Appendix A, indicate that more volatile fuels would give more trouble-free operation. More exact design parameters could be developed for the restricted-entry flat flame holder arrangement. Finally, an approach to the problem of the development criteria for successful chamber design was only begun in the test work at Becco described earlier in this report. The possibility of proving the existence of a correlation between the geometry and intensity of turbulence obtained by photography of a non-combustion ^{(8) &}quot;Flame Stabilization in Gases Flowing Cyclonically Flow Characteristics, Temperatures and Gas Analysis" L.F. Albright, L.G. Alexander, University of Oklahoma plastic chamber mockup and the combustion efficiency obtained in the steel counterpart appears attractive. If such a correlation exists, considerable development work could be done with inexpensive fluids (nitrogen and aluminum particles). This general approach could be carried one step further if the first phases described above are successful. Glass wall combustion chambers together with Schlieren photography and flame ionic probes could then be used to more fully describe the actual flame. The existance of a correlation between the plastic mockup flow patterns and the local conditions of temperature, velocity, and degree of reaction obtained by Schlieren photography and ionic probes would give useful data to the entire field of turbulent combustion research. The affects of flame generated turbulence would be the least that would be obtained. #### TABLE I # TEST DATA RUN #68 MODIFIED CC-12 COMBUSTION CHAMBER | Date | 18 January 1953 | |----------------------------------|-----------------| | Combustion Chamber Pressure | 728 psig | | Water/H2O2 ratio in gals. | 2.00 | | Fuel/HgOs ratio in gals. | .210 | | Catalyst Chamber Disch. Temp. | 1255°F | | Comb. Chamber Disch. Temp. | 1200°F | | Cooling water to comb. ch. Temp. | 111°F | | Diluent to spray mezzles temp. | 30 4° F | | Diluent to comb. ch., pressure | 800 paig | | Δ P across diluent spray nozzles | 72 psi | | Fuel to comb. ch. pressure | 775 psig | | △ P fuel injector | 47 psi | | Time on fuel | 5 minutes | | Tetal flow | 52,682 #/hr. | | | | #### TABLE II # INSTRUMENTATION AT EES | | | , | Pre | ssure | Tempe | rature | |-------------------------------|------------|--|-----|---------------------------------------|-------|--------| | Fluid or Material | | Location | | Recorder | Gage | | | laOa decomposition g | gases | catalyst chamber discharge | | | | | | Exhaust gases from chamber | comb. | steam separator | | | | | | 1 11 P | 4 | exhaust line loop | | | | | | | t | after orifice | | | | | | | 1 | to desuperheater | | 1 | | | |) 11 § | † · | to condenser | / | | | | | later | | booster pump disch. | / | | | | | H . | • | triple feed pump suction | | | | | | 11 | | triple feed pump discharge | | | | | | | | proportioning device outlet | | | | | | 11 | | to combustion chamber cooling passages | i | · · · · · · · · · · · · · · · · · · · | | | | н | | to catalyst chamber cooling passages | / | | / | | | M · | | to diluent nozzles | | | | | | 11 | | from cooler | | | | | | Ħ | | to desuperheater | | | | | | tt . | ÷ | combustion chamber cooling jacket* | | | | 8. | | Seawater | | to condenser | | | | | | I ₂ O ₂ | | booster pump disch. | | | | | | 11 | | triple feed pump disch. | / | | | | | u | | after throttle valve | | | | | | Fuel | - | booster pump
disch. | | | | | のです。 というとは、の様とは、これのでは、これのとなって、「ないできるなどのできるないない」と、「我のでは、ないないないないないない。」と ## <u>CONFIDENTIAL</u> # TABLE II (contd.) | | | | sure | | rature 🥖 | |--------------------|--|------|----------|--------|----------| | Fluid or Material | Location | Gage | Recorder | Gage | Recorder | | ruel | triple feed pump suct. | | | | | | n | triple feed pump disch. | | | | | | tt · | proportioning device outlet | | | · , | | | H | to combustion chamber (after solenoid valve) | | · | i
i | | | Steam | Condenser shell | | | - | | | Control air | after solenoid valve | | | .: | | | Lube oil | to triple feed pump | | | i | | | п п | from triple feed pump | - | | | | | Triple feed pump | 3-upper sleeve bearings | | * | | | | н п н | 3-lower sleeve bearings | | | | - | | H. H | 3 - ball bearings | | | | | | H H H | housing | } | | | | | Combustion chamber | thermocouple wires peaned into wall * | | | | 28 | * located as per dwg. SP 859-R2 # TABLE III # RUN 5-12B SUMMARY DATA | Date: 17 Februa: | ry 1955 | Wall and Jacket Temps. | •F | |---|--|---|--| | Combustion Chamber Press. COs COs CO H2 Water/H2O2 ratio, gpm Fuel/H2O2 ratio, gpm Cat. chamber discharge temp. Comb. " " (Sep.) temp. " " (loop) temp. Cooling water to comb. ch. temp. " " temp. | 650 psig
97.9%
1.71%
.13%
.21%
1.96%
.206
1320°F
1180°F
1160°F
1160°F
192°F | Liner wall temp., dome W 1 W 1A W2 W3 W3A W4 3-1/8"" from throat W5 W6 W7 W8 W9 W10 | 352
361
230
425
534
509
495
660 | | Recirculating pump H2O2 after throttle valve, pressible illuent to comb. chamber, press. Fuel to comb. chamber, press. Time on H2O2 Time on Fuel | On
700 paig
700 paig | W11 4-1/8" from throat W13 W14 W15 W16 4-15/16" from throat W17 W18 W19 W20 5-11/16" from throat W21 W22 W23 W24 | 500
483
765
665
400
682
330
933
218
752 | | | | 10-1/8" from throat W25 W26 Jacket Water, dome J1 J2 3-1/8" from throat J3 J4 5-11/16 from throat J5 J6 10-1/8" " J7 J8 18-1/8" " J9 J10 | 199
158
244
143
157
140
121
114
111;
94 | での祖信報の独立機能の第1の指引の行うとこと、ここと、この機能を表現 # TABLE IV # RUN 62-12B # DATA BEFORE AND AFTER TEMPERATURE CHANGES | Cooling water to comb. ch. F 60 65 | | Before | After | | | | |------------------------------------|---|---|--|--|--|--| | W 19 213 168 | W3A W4 3-1/8" from throat W5 W6 W7 W8 W9 W 10 W 11 4-1/8" from throat W 14 W 15 | 95.1
60
204
215
215
298
420
365
272
317
366
267
250
425
250
425
221 | 93.3
65
160
175
0ff
190
225
203
185
209
190
177
220
220
153
167 | W23 W24 10-1/8" from throat W25 18-1/8" from throat W27 W28 Jacket water, Dome J 1 " " J 2 3-1/8" from throat J 3 " " J 4 10-1/8" from throat J 7 J 8 18-1/8" from throat J 9 | 220
211
300
340
280
127
189
184
175
185
146
144 | 167
168
310
197
126
228
153
154
150
154
148
147 | | | W 19 | 213 | 168 | Section 1997 in the sectio | | - | TABLE V DATA SURMARY RUNS 71 AND 72-12B | | | | | | | | | | | 1 | | | | | |--|----------|------------------|-----------|----------|---|--------------|--------|-------|------------|------------|--------------|------|-----------|--| | RUN NUMBER | | | | | | | | | 72-12B | | | | | <u></u> | | | | -12B | | | | | | | | | | |

- | | | Date 1955 - 1955 | 1 | 3 May | | | | | | ~ | Hay | 1956 | | ! | | _ | | Comb. Ch. Pressure | PSIG | 099 | 099 | 019 | 655 6 | 9 059 | 650 64 | or or | pl smal | राष्ट्र था | 5 665 | | 589 | - | | 202 | 60 | 94.5 | 95.2 | | 97.3 | 10 | 98.2 | † | 1 | 6 | 97.2 | T | 6.76 | + | | 02 | 68 | 3.01 | 3.26 | , | | Γ | 12 | ľ. | ľ. | | Ł | Γ | | T- | | 00 | 60 | 99. | 7 | | , | | 13 | ŀ. | ļ. | | -52 | 1 | | Γ | | II.2 | ક્લ | 1.74 | 1.06 | , | , | | .23 | - | ŀ. | H | 8 | T. | | _ | | Water/H2O2 Ratio | 1 | 1.94 | 1.95 | 1.93 | 1,92 1 | .95 11 | .92 L | .93 L | 93 1. | .93 L | P | 16. | 1,93 | _ | | Fuel/H202 Ratio | • | \$200 | - | 206 | +* | ~ | + | 1 | 200 | 7 | 206 | T | 206 | 1: | | Ch: Discharge | ÇE4 | 1320 | _ | _ | • | 320 1 | - | • | 7 | ₽ | 330 13 | Г | 320 | 1 | | Comb. Ch. Disch. (Sep) | £4, | 1160 | | 1320 | - | 尸 | f | P | P | P | L | 1210 | 1240 | τ- | | (door) a H | [2]
0 | 1040 | 1120 | 1260 | 270 | 1 087 | 220 | 尸 | 230 [2 | 220 12 | 220 12 | Г | 1220 | T | | | | | | 9911 | - | य 0611 | 130 | न भग | 1,00
11 | -51 | | | 071 | • | | Gas Temp. after orifice | E. | 0119 | 582 | 915 | 031 | Þ | 120 | 017 | 乃口 | H
H | f | П | 1168 | _ | | | 24 | 69 | 89 | H | | 135 | ┢ | ┢ | ₩- | ┢ | ╄- | П | 127 | 7 | | From E | Ĭ. | 226 | 218 | 260 | | ├- | ╌ | Ι- | ┢ | ╀ | ┢ | 2772 | 267 | _ | | Diluent to comb. ch. | Ţ | 239 | 232 | 276 | 293 | 291 | - | H | ₩- | 762 | ┿ | 98 | 282 | 1 | | Recirculating Fump | ı | OFF | _ | | | H | H | H | H | | $\ $ | | 1 | _ | | H2O2 after throttle V. | PSIG | 820 | _ | 810 | 810 | 810 | ├- | 810 | ╀─ | 830 | 830 | 370 | 900 | | | ent to | PSIG | 30 0 | 680 | 690 | 630 | 675 | 91 519 | 019 | Н | 680 3 | 675 7 | g | 725 | _ | | across Di | PSIG | O [†] ? | 20 | 20 | | Η- | Н | H | - | Н | | 5 | O‡ | - | | to comb. c | PSIG | 089 | 019 | 680 | 0/9 | 1 599 | 2 099 | ┝ | 665 (| Н | 522 | 069 | 7.10 | _ | | cross fu | PSIG | 20 | 10 | 10 | 15 | 15 | _ | - | \vdash | | | 25 | 25 | | | on H ₂ O ₂ - | 1 | 15-20 | | | 2 h | hrs. 40 | O min. | | 5 | sec. | | | | - | | lime on fuel - min sec | 1 | 13-50 | | | 7 p | hrs. 3 | / min. | | | Sec. | | | | _ | | | | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15年 | 15 | | | Press. drop across fuel nozzle.decomp. gas | PSIG | 20 | 15 | Œ | 82 | 20 | 37 | ଥ | 23 | 23 | 25 | 33 | 25 | | | Reading time (on fuel 11:11) | | | 97:11 | | 11:3111:4612:0112:1612:3112:4613:0113:1613:31 | 12:01 | 12:18 | 2:3 | 2:10 | 3:0 | 3.161 | 3:31 | 13:46 | <u>. </u> | | Wall temp. dome W 1A | Ĭ. | 595 | 536 | 768
2 | Γ | | Γ | ı | 635 | Т | 658 K | 1 | 554 | 1 | | 3 | | 335 | 345 | 388 | | ŢΠ | 365 3 | | Γ | 362 3 | П | 360 | 382 | | | M (| | 1 | ı | 1 | | | | | | | | | ŧ | _ | | *** | | 1,70 | <u>₹9</u> | 525 | 535 | 540 | 535 5 | 535 | 1 055 | 51.015 | 9 875 | 2015 | 205 | | | ≒ | | 260 | 1 250 | 285 | | | | | | | | | 302 | _ | | | | | | | | | - | | | | | | | . ·
• | CONFIDENTIAL CONFIDENTIAL TABLE V (contd) | ate 1955 = 1956 Mary Harman 128 | MUTURE | | | | | | | 72 | 128 | | | | | |
--|-----------------|-------|-------|------|-----------|--------------|----------|--|----------|--------------|----------|------|------|-------| | 1955 - 1956 3 May 1452 1450 1451 1450 1451 | | -12B | | | | | | | | | | | | r. | | From throat M M M M M M M M M | 7 | 3 May | | | | | | 7 Ma | | 9 | | | | | | We Light | throat | 797 | 363 | | | | Н | Н | 109 | Н | Н | | 165 | | | W W W W W W W W W W | 91 | 1917 | 001 | | | _ | Н | Н | | Н | - | | 728 | | | From threast W 21 2 27 2 27 2 27 2 27 2 27 2 27 2 27 | <u> </u> | 370 | †70†/ | | | | Н | Н | Η | Н | I | | 1,58 | | | W W W W W W W W W W | 20 | • | 8 | 0 | | | \vdash | • | . 3 | - | - | 8 | • | 1. | | W 10 374 345 345 346 346 346 476 470 4 | | 113 | 707 | 9£17 | | | Н | Н | - | Н | Н | 1,18 | 430 | | | Volume W 12 36 13 16 170 180 15 16 170 180 150 180 <td></td> <td>374</td> <td>34.5</td> <td>383</td> <td>365</td> <td></td> <td>-</td> <td>Н</td> <td>Н</td> <td>Н</td> <td>Η</td> <td>390</td> <td>001</td> <td></td> | | 374 | 34.5 | 383 | 365 | | - | Н | Н | Н | Η | 390 | 001 | | | V M 12 398 395 1435 1460 1470 1470 1480 1450 1440 1450 1480 rom throat W 11 375 12 2 2 2 2 2 1 | | 8 | 8 | | | | Н | Ε | 1 | 1 | Н | • | • | | | From throat W 13 | 74 | 398 | 395 | | | Н | Н | - | - | - | H | 8 | 1527 | | | W 11, 375 385 410 420 420 425 410 445 410 425 410 425 420 | throat | | 1 | _ | | \vdash | H | \vdash | H | ⊢ | 1 | • | ı | | | From throat W 15 | 77. | 375 | 385 | _ | | Н | | ┢┷ | H | \vdash | ┪ | | 125 | | | From throat W 16 524 4,95 593 610 628 620 611 572 645 577 600 Ircm throat W 18 313 313 370 370 370 380 380 390 405 405 405 400 40 | W 15 | 0 | | ı | | | - | ┝− | _ | ⊢ | - | | | | | From throat M 17 609 615 662 765 674 575 522 685 553 575 550 670 M 18 18 18 18 18 18 18 18 18 18 18 18 18 | ₩ 16 | 524 | 567 | | | _ | ┝- | ┝ | - | - | | Г | 505 | | | W 18 343 340 370 375 380 380 390 405 403 110 400 W 19 | throat W | 609 | 615 | | | | | ┝ | _ | ┢ | ┿ | | 175 | | | V M 19 M 19 1/70 1/50 605 64,3 670 65,3 610 565 560 552 from throat M 21 273 290 315 380 390 350 410 405 420 M 22 282 285 315 316 330 322 338 330 325 336 315 315 310 325 336 315 316 425 326 425 326 426 426 427 427 428 428 336 330 322 338 330 325 336 315 315 330 325 336 315 326 236 426 226 226 226 226 325 326 | 87 S | 343 | 330 | 370 | | _ | \vdash | - | - | ┝ | ┝ | | 338 | | | V V V V V V V V V V | 6T M 136 | ů. | 0 | 1 | -1 | 1 | 一 | , | Т | U | , | 1 | 6 | | | from throat W 21 273 290 315 380 390 360 410 405 420 430 425 415 412 412 412 412 412 412 412 412 412 412 | ₩ 20 | 470 | 720 | | | ┝ | ├- | - | ┝ | | ۲- | - | 612 | | | W 22 | throat W | 273 | 290 | | | Η- | - | | ┝ | ├ | ← | 255 | 391 | | | W 23 | | 282 | 285 | | - | | Н | \vdash | | - | — | 33.5 | 305 |)
 | | W 25 250 295 315 313 310 380 290 295 355 355 325 | | 8 | 3 | 3 | ı | 9 | . 0 | | | 0 | ŋ | 0 | | | | Trom throat J 2 150 290 295 315 313 310 380 290 290 295 325 316 310 310 310
310 355 356 215 325 310 310 310 310 310 315 315 315 310 310 310 310 310 310 310 310 310 310 | - 1 | 5 | 0 | • | 0 | | Н | \vdash | | \vdash | Н | | 0 | | | from throat W 26 240 245 290 335 342 320 323 320 355 356 356 357 300 230 240 215 232 231 225 223 ater dome J 1 212 207 249 260 260 260 256 256 257 195 191 260 260 260 258 261 262 256 262 256 256 256 257 261 257 260 260 260 258 262 256 256 256 257 251 253 251 253 251 <t< td=""><td></td><td>250</td><td>290</td><td>Н</td><td></td><td>\vdash</td><td></td><td></td><td>-</td><td>₩</td><td>├-</td><td></td><td>282</td><td></td></t<> | | 250 | 290 | Н | | \vdash | | | - | ₩ | ├- | | 282 | | | trom throat W 27 332 253 375 300 230 240 215 232 231 225 223 223 atex dome J 1 212 207 249 264 260 262 258 261 195 210 190 210 207 207 249 264 260 262 258 262 262 262 263 255 255 255 255 255 255 255 255 255 25 | 3 | 240 | 245 | | | | | - | Ι | - | - | | 358 | | | ater dome J 1 212 207 219 206 206 205 256 256 258 251 200 258 251 250 257 250 247 262 260 262 258 256 257 258 251 257 258 257 2 | throat W | 332 | 253 | | | - | - | | - | H | ├- | | 210 | | | ater dome J 1 212 207 249 264 260 262 258 261 260 258 253 255 251 255 | <u> </u> | 11/3 | 150 | _ | | | \vdash | | Н | \vdash | - | | 182 | | | rom throat J 2 207 200 217 262 260 260 258 262 262 263 264 257 265 267 | | 212 | 207 | | | | | Н | Н | _ | ⊢ | | 252 | | | rom throat J 3 196 191 238 254 254 253 256 256 256 257 256 257 256 257 258 251 248 from throat J 5 - | J 2 | 207 | 200 | | Н | Н | Н | - | \vdash | _ | - | | 254 | | | from throat J 4 208 201 248 262 266 262 256 260 260 250 251 252 256 | from throat J 3 | 196 | 191 | | Н | Н | \vdash | | _ | _ | - | | 24,3 | | | from throat J 5 - | | 208 | 201 | | _ | | | | _ | _ | - | _ | 250 | | | throat J 7 161 151 200 213 215 213 211 216 215 209 209 209 119 111 155 161 161 165 172 170 169 158 159 159 150 150 150 150 150 150 150 150 150 150 | | 8 | 9 | 0 | 0 | 6 | 0 | 0 | _ | | C | Γ | C | | | throat J 7 161 151 200 213 215 213 211 216 215 209 209 209 209 209 209 209 209 209 209 | 9 F | 0 | | 0 | - | 8 | 0 | | H | 0 | 0 | | 0 | | | J 6 149 144 195 205 203 206 205 208 209 205 201
threat J 9 112 104 157 164 164 165 172 170 169 158 159 159 159 159 159 159 159 159 159 159 | throat J | 191 | 151 | _ | - | | - | - | ├ | - | ┢ | Г | 207 | | | Unread J 9 112 120 104 157 164 164 165 172 170 169 158 159 159 159 159 156 165 157 167 167 166 166 | ا
ا | 7T | 17/1 | 7 | -+ | 4 | - | | -+ | | | 7 | 200 | , | | 111 155 168 168 168 157 167 167 166 156 | unreat d | 717 | 107 | _ | - | | - | \dashv | ᅱ | | | | 154 | | | | OT r | 120 | 111 | _ | | | - | - | ┝ | ۲ | ۲ | ۲ | 77, | | CONFIDENTIAL のでは、「日本のでは、日本のでは、日本のでは、「日本のでは、日本のでは、日本のでは、日本のでは、「日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本ので TABLE VI VARIOUS SYSTEM PRESSURES ADDITIONAL DATA - RUN 72-12B | | | | | | | | | | | | | | | • | | | |------------------|----------------|-------------|-------------|----------|------|-------|----------|-------|--------------|-------|------|-------------------|---|-------|--------------|---| | Triple | Feed | 当山 | - | 2.5% | 0.00 | 39).0 | 0±5£ | 3937 | . 0.
(36) | 30,00 | 35.6 | 08 99. | <u>, , , , , , , , , , , , , , , , , , , </u> | 000 | CCIT | | | Fue ? | £5 | Combe | Chamber | | 675 | 989 | 670 | , 66⊄ | 6eb | 050 | 663 | 1;
40
70 | ** | 7.5°C | C | | | viluent fuel | Maior to | Comp | Chamber | psi | 680 | 069 | 9 | 519 | 529 | 019 | 680 | 680 | ,
7, | 07/ | 7.05 | | | Steam | 5 | Con- | hargedenser | 15d | 22.5 | 23.0 | 22.0 | 21.5 | 27.5 | 12.00 | 25 | 22.5 | 21.5 | 22.5 | ሊያ የ ረ | | | ì | | Dise | arar ge | ted | 5.9 | Ċ89 | 675 | 519 | 999
902 | 098 | 929 | 670 | 029 | 306 | υ <u>τ</u> 2 | | | Water Water Cat. | Prep. | Out | | psı | 059 | 659 | 650 | 650 | 650 | 650 | 650 | 629 | , 65c | 7.7.0 | 32.i | | | ater | Prope | In | | p51 | 850 | 830 | 64,0 | 64,0 | ्राहु
इ | 850 | 840 | 0 1 18 | 870 | 870 | 890 | | | Fue | Prop | ģ | | isc. | 720 | 71,0 | 730 | 720 | 77 | 370 | 062 | 723 | 715 | 750 | 765 | | | Fuel | Prop. | | | ısd | 830 | 800 | 820 | 800 | 300 | 800 | 800 | හිත | 900 | 830 | 360 | | | Comb | GH. | Disa | charge | psa | 650 | 099 | 650 | 650 | 650 | 079 | 059 | 515 | 640 | ō£9 | 625 | | | Peroxide | | Discharge | | psi | 990 | 820 | 820 | 825 | 815 | 815 | 83.0 | 810
018 | 815 | 850 | . 680 | | | Peroxide | Booster | Discharge | | rsd | 71 | 52 | 145 | 94 | 9ħ? | 917 | 5.13 | r. | ų? | 75 | IJ, | | | Mater | BoosterBooster | Before | Filter | rsd | 143 | 917 | 7,8 | 617 | 67 | 50 | 51 | 72 | 52 | 忲 | 50 | | | Fue1 | Booster | Before | Filter | rsd | 50 | 54 | 5 | 54. | 갻 | 55 | λ, | 8 | 32 | 56 | 56 | | | | , | | Time | 50 CO CO | 9111 | 1137 | भूरा | 1201 | 1216 | 1231 | 1246 | 1307 | 33.6 | 2,337 | 1346 | 1 | | Comb. Ch | Disch, Con- | tinous rec- | order Sepi | ದಿನ | 260 | 670 | 575 | 550 | TC. | 540 | · | 15. | 979 | €99 | £83. | | CONFIDENTIAL - 42 - CONFLUENTIAL TABLE VII TEST RESULTS - 90% H202 DECOMPOSITION DIESEL FUEL COMBUSTION AT BECCO | ::
2= | | | i | | | | |--|---|----------------|--------------------------|----------------------|------------------|---| | RGIN
NO. | CONFIGURATION | FLOW RATE | AV. CH.
PRESS. | AV. EXHAUST
TEMP. | 0
0
8 | | | and Service (1995)
Service (1995)
Service (1995)
Service (1995) | | Haos
Fuel | AND
FLUCTU-
ATIONS | : | | REWARKS | | | Mozzle No. 1 ring baffle restricted entry | 15.31 | 1,50 ± 0 | 950 | 82.3 | Corrected for exidant rich operation | | V | E Company | 23.18 | 590 = 50 | 750 | 81.6 | 7 | | ا
د اردیو
دستانده | #10-36° Norarit ring paifie restricted entry | 16,21 | 1,50 = 15 | 850 | 1
1
1
1 | 1 | | 6 5.11.1 | Same, as 7 increased effective combustion Lengin (c. 25) | क्षां क्ष | 5 ± 024 | 925 | 73,60 | Fuel rich operation | | cer | | 21,90 | 640 5 40 | 950 | ટ•ેજ9 | i · | | .σ, | #28-60 Monarih ring baffle restricted entry | 32°9€ | ०र ÷ ०८ग | 9,40 | 72.6 | | | C. | No. S Minarch solid spray a ring baffle a
restricted entry | 76 . 32 | 120 ± 5 | 450 | 9•9ग | Very rough openition at
the end of the run | | | No. 3.7 Monarch solid spray - ring baffle -
restricted entry | ze•9r | 455 = 20 | 920 | 9.9% | | | 3 | #70-80° Monarch restricted entry - flat | ¿6•9 <u>r</u> | 0 - 597 | 950 | 76.3 | | | 1-1
47 | #70-60° Monarch restricted entry - conical
flame holder | 36,32 | 1,50 ± 3 | 906 | .2°59 | | | a a | #70-60° Monarch straight through heat flat
flame holder | 16,32 | 1430 ± 0 | 850 | 56.2 | Only slight heat discoloration of nead insert | | , <u>, </u> | Reverse flow #70-50° Monarch | २ ६•9ा | 700 ± 5 | 430 | 36 . 4 | No burning or
discoloration of baffle at nead | | 92 | Reverse flow #50-35° Monarch | 16.32 | 375 = 2 | 450 | 4.96. 4 | * | FUEL SFRAY PATTERN USED IN RUNS NO. 1-6 AT BECCO DONUT BAFFLE ATTACHED PLATE NO. 2 # FUEL SPRAY PATTERN #70-80° MONARCH HOLLOW CONE USED IN RUNS NO. 7 AND 8 AT BECCO PLATE NO. 3 FUEL SPRAY PATTERN #28-50° MONARCH HOLLOW CONE USED IN RUN NO. 9 BECCO TESTS PLATE NO. 4 FUEL SPRAY PATTERN SOLID CONE RUN NO. 10 SPRAYING SYSTEMS NO. 5 PLATE NO. 5 FUEL SPRAY PATTERN SOLID CONE RUN NO. 11 SPRAYING SYSTEMS NO. 3.5 PLATE NO. 6 NITROGEN AND ALUMINUM POWDER FLOW PATTERN THROUGH PLASTIC MOCKUP WITH RING BAFFLE INSTALLED ATITS CHALMERS 10 x 16 COMBUSTION CHAMBER 大学 はないとなって、本にはないないないとないであり、ないないないのでは、 一日 機能監禁、生息を開発をいておいかは、火はるときできてきるとなった。 西京では MODIFIED LINER IN ALLIS CHALMERS 10 x 16 COMBUSTION CHAMBER (CC-12 CHAMBER.) TETATION CONTECTIONS 1-16 DIA. HOLE THROUGH 12 - TO DIALTOLES EQUALITY STACED \$ 45 SKEW TO MAIS OF NORZEE Nine # Best Available Con MODIFIED LINER IN CC-12 COMBUSTION CHAMBER USED IN TEST RUNS #76 - 80 FIGURE 4 Best Available Copy ENGINEERING EXPERIMENT STATION DESIGNED CC-13 COMBUSTION CHAMBER USED IN TEST RUNS #81 - 84 MODIFIED HEAD SECTION FOR THE EXPERIMENTAL COMBUSTION CHAMBER CC-12 א שכווחדש ג · A TINTAGAT TANKAY Best Available Copy PLAN VIEW OF CC-12 COMBUSTION CHAMBER AS MODIFIED FOR TEST RUNS #1-5-12B. Best Available Co 12-16 DIA HOLES 24-067 DIA HOLES SKEWED Best Available Copy For the Edit A was Min or the Form to 12 for 12 SP-17 Free INTEREST HOORELATER & SLEEVE DETILO CROUSES A MARS* 14 17-126, O W-28-128, Mars. 1-1286 THAT IS SENTENDED 3477, 1 347L 18-8 S.S. BAFFLE EVALUATED AS A CONTROL FOR THE OXIDANT GAS STREAM MODEL 1282B USED IN TEST RUN #25-12B 5P-1916 BAFFLE EVALUATED AS A CONTROL FOR THE OXIDANT GAS STREAM AND A POSSIBLE FLAME HOLDER. MODEL 12820 USED IN TEST RUN #26 128. BECCO DESIGNED "DONUT" BAFFLE AS MOUNTED ON THE FIEL NOZZLE MODEL NO. 12BE - USED IN TEST RUNS NO. 27 \$ 29-12B SKIRT MODIFICATION FOR RUNS 43-45-12B Best Available Copy The Proof Francis Survey Test ARDE ASCOCIATES DEFINAD D'AC EVAMPLE TERRITORIO MODIFICA FINALE USEL O TRUIT HON #45 124. DONUT BAFFLE AS REDESIGNED AND BUILT WITH 1/4" THROAT TO BAFFLE CLEARANCE USED IN TEST PUNS # 48-53-12B. MODEL 1282P さいかいかつか AMOR VANES RMISSAFEERS REMOSED AFFERS RUN 55-12B TO 15 115 \$ 54-56, 58-66-12B MODIFIED CC-12 COMBUSTION CHAMBER INCORPORATING A WATER SPRAY RING AT THE UNCOOLED LINER PACKING SECTION ## CONFIDENTIAL BECCO DES GNED UMBRELLA TYPE SINGLE DILUENT WATER NOZZLE AS MOUNTED IN THE CC-12 CHAMBER FOR TEST RUNS #63-64-1215 AC MICE FIED BY THE Best Available Copy COMBUSTION CHAMBER CONFIGURATION USED IN TEST AT BECCO. 2 1/2 1.D. x 5" COMBUSTION ZONE. CONFIDENTIAL CHER BY SECRETE 4356 CHER BY SECRETE 4356 SUBJECT SCHEMATIC FLOW DIAGRAM FOR ONR TEST SYSTEM JOS NO. 206 5P-1793 FOOD MACHINERY AND CHEMICAL CORPORATION SPECIAL PROJECTS CONFIDENTIAL FLOW SYSTEM USED IN COMBUSTION CHAMBER TESTS AT BECCO. BECCO COMBUSTION TESTS FLAT FLAME HOLDER THROUGH RESTRICTED ENTRY HEAD INSERT BECCO COMBUSTION TESTS CONICAL FLAME HOLDER THROUGH RESTRICTED ENTRY HEAD INSERT ## CONFIDENTIAL Becco Combustion Tests Flame Holder Straight Through HEAD REVENUE FLOW TEST ASSEMBLY USED IN TESTS AT BECCO FIGHER 31 CONFIDENTIAL APPARATUS USED TO STUDY THE FLOW CHARACTERISTICS IN A TRANSPARENT MODEL COMBUSTION CHAMBER USING HIGH OFEEL PHOTOGRAPHY ## CONFIDENTIAL ## APPENDIX A In addition to designing liner No. h, presenting the dual swirl nozzle, and making a preliminary analysis of the fuel spray in the modified Alton combustion chamber, Arde Associates of Newark, New Jersey, was contracted by Becco to develop an analytical expression of turbulent, HaOz supported high pressure combustion. The report is summarized here to show the excellent correlation between the performance predicted by the expressions developed in the report and the actual performance of the modified Alton chamber. The factors that would increase performance as indicated by the expressions developed are, therefore, substantiated within the limitations imposed by the conditions not taken into account in the derivations. The report develops an equation from which an approximation can be made of the time required for the complete burning of liquid fuel droplets sprayed into a high pressure combustion region supported by the decomposition products of H₂O₂. The derivation begins with the consideration of the burning of a single droplet in static oxygen-rich surroundings. The model assumed consists of a spherical liquid droplet surrounded by a concentric spherical flame of negligible thickness. The flame is located at a distance which is determined by the location of stoichiometric proportioning of evaporated fuel diffusing outward from the droplet and oxygen transported and diffused toward the flame. The products of combustion spread outward from the flame. The principle additional assumptions made were as follows: (a) the heat value, thermal conductivity, specific heat, and diffusivity of each unit mass of evaporated fuel are constant. ⁽⁹⁾ loc. cit. Arde Associated 2567-1 - (b) the temperature is uniform throughout it fuel droplet and equal to the boiling temperature. - (c) the fuel droplet size changes slowly, therefore a steady state situation is assumed. - (d) the fuel diffusivity is directly proportional to the evaporated fuel density. - (e) the pressure is constant throughout the model and equals 1 atmosphere. The fuel life time calculated by the equation developed for the single droplet is found to be close to the time measured by experimentation; (10) calculated X 100 = 97%. experimental The single droplet theory is modified to take into account the affect of the high combustion pressure developed in the EES chamber. The effect of the depletion of oxygen as combustion proceeds is found to be small and is replected. The fuel life time expression thus modified is used to calculate the time required for complete combustion in the Alton chamber; t_b= .045 seconds. The actual fuel residence time calculated from experimental data is approximately .035 seconds. The calculated residence time predicts a combustion efficiency that is approximately 10% lower than that actually obtained with the EES chamber. The following conditions not taken into account by the derivation are discussed in the report: (a) the fuel spray is composed of droplets of many sizes; the droplets larger than the mean tend to increase t_b ; those that are very small burn with the rapidity of premixed combustible gases which is so great that they, in effect, contribute nothing to the mean lifetime and could therefore be excluded. The tradition of the property of the state o ⁽¹⁰⁾ Godsave, S. A. E., Fourth Symposium on Combustion, Pg 818, Williams and Wilkins, Baltimore, 1953 - (b) the larger fuel droplets would be deformed by drag forces which would increase their burning rate by increasing their surface area, (increased evaporation rate). - (c) the turbulent combustion caused by swirl vanes or beffles in the decomposition gases would decrease $t_{\rm h}.$ - (d) because of the geometry of the central fuel nozzle spray in the Alton chamber a finite time delay exists until mixing conditions approaching stoichiometric are established. - (e) the lack of internal circulation in the smaller fuel droplets promotes preferential vaporization of the lighter fuel fractions. This could lead to carbon formation and incomplete combustion. The formula developed for t_b is used to compare the effect of the use of different fuels. Both the formula and test data from various literature sources show a definite gain in combustion efficiency in the modified Alton chamber would be attained if a lighter hydrocarbon fuel than the diesel oil were employed. The formula also predicts a decrease in fuel droplet lifetime for smaller droplets. A comparison of various sized droplets was made during the tests at Becco and showed smaller droplets to yield inferior results. It might be expected that the increased velocity of fuel injection reduced the stay time in the short chamber at a faster rate than the life time was reduced by smaller droplets. As the effective length of the combustion zone in the Becco chamber was 1/h that of the modified Alton chamber, it could be expected that the efficiency would be lower than that experienced in the modified Alton chamber.