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COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, VOL. IX, 1-31 (1956)

Free Boundary Problem for
the Heat Equation with Applications to Problems

of Change of Phase*

I. GENERAL METHOD OF SOLUTION

I. I. KOLODNER

In the physics of change of phase processes (melting, evaporation,
recrystallization, dissolution) one often encounters a boundary value problem
for the heat equation in a domain whose boundary is not fully known but

which must be found. It is customary to call such boundaries free bound-
aries.

1. The Problem

Let DR be an open and-for simplicity of the argument-a simply
connected domain in the z, t-plane. Let its boundary, as in Figure 1, con-

sist of: the unknown arc AB represented by the equation x = R(t), the
given arc AC, the segment BC of the characteristic t = 1.

\B -C

A

0 a X
Figure 1

The coordinates were so chosen that the unknown arc meets the given
arc at a point (a, 0). Without loss of generality we may assume that a = 0,
although in some cases-as in examples 3-5 of Section 6-it is convenient
to have a 0 0.

The problem is to find R(1), 0 t : 1, and u(x, t) = u(P), P e D,
satisfying':

•Thispaper represents results obtained under Contract N6ori-201, T. 0. No. 1, sponsored

by the Office of Naval Research.
'The following abbreviations are used throughout: DE-differential equation, IC-

initial condition, BC-boundary condition, FBC-free boundary condition, JC-jump con-
dition, oC-condition for large lxi.
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I. I. KOLODNER

DE Lu u_ - , = 0, PEDR,
BC Pu 0 on arc A C,

(1.1) FBC1 u(R, t) = /(t) for 0 t <1,
FBC2 u.(R, t) - g(t) for 0 < t 1.

As to the functions 1(t) and g(t), we shall not require that they be ex-
plicitely given as functions of t, but permit them to be functionals of R(t).
In all the examples considered in Section 6, they are functions of R(t),

R(t) etc. We shall occasionally use the notation f[R], g[R]. We assume
that if 0 (t) is continuously differentiable in the half-open interval (0,1] and

(1.2) < At-1/2, e(O) = a,

then f[el is, as a function of t, continuously differentiable in the half-open
interval (0, 1], and g[e]-Lipschitz continuous, and

S(1.3) ! < At-'+', e> 0, [g[ At -
112

The nature of the boundary operator r along the given arc A C is best
described in terms of an auxiliary boundary value problem. Let D be the

domain of points P lying to the left of AC, and let v be a differentiable
function along AC. r is required to be such that the problem for w (x, t) =

w(P), P e D,

DE Lw = 0, PeD,
(1.4) BC '(w + v) = 0 on arc AC,

IC w(x, 0) = 0 z < a,
00C Iw(x, t)I " A,

has a unique solution.
In the following we shall derive a functional equation which the un-

known boundary function R (t) must satisfy. In the process of the derivation
we shall also obtain a representation of u(x, t) involving the boundary
function. Thus the problem will be solved once the functional equation for
the boundary is solved.

It is remarkable that in a problem of the type considered, where the
notions of the boundary and of the solutions of the differential equations
are interlocked, it is eventually possible to eliminate all reference to the
latter. Due to this reduction, the onus of the problem is transposed to the N

solving of the equation for the boundary. While this need not be a trifle-
this equation turns out to be a non-linear integro-differential equation-we
shall here adopt the attitude that an essential simplification has been
achieved, and that we are faced with a problem of a lesser order of difficulty.



FREE BOUNDARY PROBLEM

In chapters to follow, we shall study and solve some of these equations.
Already in Section 6 of this chapter, it will become apparent that the
equations obtained in cases of physical interest -complicated as they are-
are all of Volterra type and of the second kind. Hence they are amenable to
numerical treatment. Further analysis will, of course, be required, if the
solution in the large (or bounds for it) are desired.

We have here formulated the simplest free boundary value problem;
namely the problem in which the medium is described by a single, one-
dimensional heat equation and which is bounded by a free boundary on one
side. From the context of Section 2, it will become apparent that various
extensions can be easily achieved. One such extension-to two media each
governed by a different heat equation and separated by the free boundary-
is considered in full detail in Section 7, while others, also briefly discussed
in that Section, will form the object of further studies.

Special problems of type (1.1) have been considered for over a century 2,
although the problem never received as much attention as the corresponding
free boundary problem for the potential equation. Except for the
very special cases when the solution can be found explicitly, the only
rigorous solutions can be found in [2, 13, 14, 3, 10, 11, 12]. The last three
of these references are based already on the method proposed here. The
demand for solutions resulted in the development of various approximation
procedures which apply to selected cases with varying success. For samples
of these consult [4, 5, 8].

2. Heuristic Considerations

Since the ordinary boundary value problem is usually considered of
lesser difficulty than the free boundary problem, one is tempted to
give up one of the free boundary conditions, and first solve the boundary
value problem so posed with a fixed though arbitrary boundary; then to use
this solution for the determination of the boundary function by requiring
that the second free boundary condition also be satisfied. Let e(t) be an
arbitrary function satisfying condition (1.2), and denote by DQ the domain
formed analogously to DR (see Figure 1), with arc A B represented by.
x = o (t). The first part of the proposed program is to find the functional
u[e,/] (P), P e De satisfying

DE Lu 0, P f D,
(2.1) BC ru =0 on arc A C,

BC u(et)-/(t) for 0 < t : 1.

For references that appeared prior to 1929 consult the expository paper of Briliouin
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The second step is to select among all functions e(t) those for which u[e,I]
satisfies the second free boundary condition. That is, to solve the functional
equation for e,

(2.2) u.[e, 0](e, t) = g(t).

This program is defeated at the first step, since it is impossible to deter-
mine the functional u[e, /] in closed form. Consequently, equation (4.2)
cannot be written out.3

A successful attack stems from a different interpretation of the solution.
Denote by D+ the domain sought (heretofore denoted by DR), and let D-
be the complementary domain, P c D-[P: x < R(t), 0 < t ]. Extend
the notion of the solution into the domain D; by defining

(2.3) u(x, t) =- 0, PeD-.R

With this definition, u(x, t) has the following properties:
Lu = 0, PeD-U D,

Fu = 0 on arc A C,

(2.4) u(x, 0) = 0 for x < a,
[u] =1(0), 0 t <! 1, 1
[u.] =g(t), 0 < t: E t.I

Here [ denotes the jump across the line x = R(t), i.e.,

[u] = lim u(x, t) - lim u(x, t), t fixed.
X-+RiO z--R(t)

PEDj PEDj

This suggests that we seek the solution among all functions which satisfy,
in addition to the first three conditions (2.4), the two jump conditions across
an arbitrary curve x = e(t).

Let D- and D+ be domains formed as D-, D +, with x = e(t) replacing
the separation line. The auxiliary functional Ue(z, t) is defined by

DE Lu = 0, P e D; u D+ ,

BC Fu = 0 on arc A C,
(2.5) IC ue(x, 0) = 0 for x < a,

JC1 [uQ = [e] for 0 < t <5 ,
JC2 [ue.] = g[e] for 0 < t < 1.

sAn approximation procedure based on this program is, nevertheless, frequently used.
In this procedure, one selects the zero-th approximation Re to R arbitrarily and solves (2.1)
with e = Re to get the first approximation u, to u. R1 is now obtained by solving (2.2)
with Q replaced by R1, and higher order approximations are determined by reiterating this
process. In applications one takes R. _= a. Usually then ul and R1 can be determined explicitly,
while the continuation presents already all the difficulties of the program. The sequences
UR, R., were shown in [3] to converge to the unique solution u, R of the problem in a special case.
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We assume that e is subject to condition (1.2), and that has a finite number
of extremum points. Since g[e] may be singular at t = 0, we cannot expect
ue to have a bounded x derivative in D; U D+. Some restrictive conditions
are nevertheless required if the auxiliary functional is to be uniquely de-
termined.

Let D: be the closure of D in the set
E[-oo<x<oo, 0 t<t, Ix-aI+t>01. Let D---D+uF,)
and let D be the interior of D. It is observed that both D and D are inde-
pendent of Q(t). Define ue (P), P cD by
(2.6) u01 (p) = lim ue() D'.

Q-*P

We impose in addition to the requirement of existence of uea and uji the
following conditions:

(2.7) I uu,-I !_ A
to , t) 00 0.

It will be shown in Section 4 that the problem for the auxiliary function-
al u9: has a unique solution. This solution will be determined explicitly
provided that we know how to solve a certain boundary value problem in
the determined domain D. Granted the uniqueness and existence of u ±, we
have the following

THEOREM 1: I/ the free boundary problem has a solution u(P), R(t),
PD + , then

RU == Ur  P e D+R

and R(t) satisfies

(2.8) uR+(R, t) = /[R], R(0) = a,

(2.9) uR+(R, t) = g[R], R(O) = a.

The truth of this statement follows from our reinterpretation of the free
boundary value problem, and from uniqueness of the auxiliary functional.

THEOREM 2 (UNIQUENESS THEOREM). If either one of the equations (2.8),
(2.9) has at most one solution, then the free boundary value problem has at most
one solution.

Indeed, for every R(t), u(x, t) solving the free boundary problem,
R(t) must satisfy both equations.

Although we have thus established that R (t) must satisfy both equation
(2.8), (2.9), what is actually desired is to show that the solution of either
one of these equations will also satisfy the other; for it would then be possible
to prove the existence theorem for the solution of the original problem. This
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will be shown in Section 5. Here we remark that if uQ and ue were bounded,
we would have for R satisfying (2.8),

U = 0 on the boundary of D-,

Lu - ---- 0, P e D-.
Hence, by a well known theorem, see e.g., [6], Chapter XXIX

u R- 0, P D-.
Consequently,

a -- 0,

and
u.+(R, t) = g[R] + u-(R, t) = giR],

which is equation (2.9). Actually ut need not be bounded, but as we shall
see, its behavior is sufficiently mild to enable us to prove that uR- - 0,
P cDR, is a consequence of (2.8).

The construction of the auxiliary functional is based on properties of
integrals analogous to the single and double layer potentials of potential
theory which we now proceed to study.

3. Integrals Analogous to Simple and Double Layer Potentials

In this and in part of the next section we refer to the set E, the interior
of the set E defined previously and to sets E:. E-e is the same as D-, while
E+ is the set of points lying to the right of x = e(t). Let U(x, t, t, r) be the
fundamental solution of the heat equation,[exp {-(x - )/4(t - )}, t > v

(3.1) U(x, e, t,r) = 2V-r)

The simple and double layer potentials are defined by

(3.2) S~b f . U(x, e(r), t, r)h(r) dr,

D, b[XhA](XI =b U, U(x, e (T), t, r) h(r) dr.
If a = 0, b = t, we use the simplified notation

Sea = S, Do t = D.

S*-, De are defined in E similarly to ueL .

These potentials have the following properties:
1) If e C[0, t], JhJ 5 A in the half open interval (0, t], and h is

integrable, then Se[h] is a regular solution of the heat, equation in E- u E+,
and is continuous in E. Furthermore, Se[k](p, t) has a meaning and

SQ*[h]((0, 0 = S[h](L, t).
2) If e C(O, t], and h is Lipschitz continuous in the half open interval
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(0, t] and is also integrable, then DO [h] is a regular solution of the heat
equation in E- U E+ but has a jump of magnitude h (t) across the line

= (t). Furthermore the DJ+ have a meaning in E, De[h](o(t), t) has
a meaning for t > 0, and

W:L[h](e(t), t) = DY[h](Q, t) ± jh (t), t > 0.

3) If e and h satisfy the conditions of 2, then

S;[h]= -D [h].

4) If i e C(O, t], and h exists in (0, t], and is integrable, then
h(O)

D'[h] - -h) exp {- z'(x, 0)} - De[hj] - Se[h].

Here

-z(x,o) x-O(o)

Properties of simple and double layers were established by Holmgren
[7] in the case when the conditions imposed on L and h held in the closed
interval [0, t]. Our extension is based on the observation that for any 6 > 0,

S = So + S0,,
D = D0,6 + D8,s.

Both S.,,, and Do,, are solutions of the heat equation analytic in z and t
for t > 6, while in the interval [6, t] Holmgren's conditions are satisfied.

The formula for SO is obtained by differentiation under the integral
sign. To get the formula for De, we first write.

De [h] = DQ [h] - Se [h] + Se [h ].
Now,

I1[h] - SQ[hj] =(z, r ) (T) exp {- z'(x, r)}h(T) dT

f z,(, -r) exp {- z2(X, i)}h(T)dT

h (O ) ( °' e p { } d a , f t ) ( 1" r)
= { a'} da - j g(T ) exp o4- 2}) d,

on integrating by parts. Here

(34) if z > e(l)
(34)ZXt) 0 if X < a (t).
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Differentiation and use of the formula for S now yield the result in the
desired form.

4. Construction of the Auxiliary Functional

We first consider a special case when D+ is E+ , that is when the given
arc A C consists of the x-axis for z > a, and when F is the identity operator.
The solution in this case will be referred to as the fundamental part v0 .
It is required to satisfy equations (2.5)-(2.7) with the exception of BC in
(2.5) which is replaced by

ve(x, O) =0, x > a,
(4.1) BC

ve(cO, t) = 0.

We will now show that

(4.2) v = Del] - Se[g + 161

is the unique solution of this problem.
First recall the conditions imposed on e, / and g, namely:

e C (0, 1], has at most a finite number of extremum

fe C1(O, t], points,

(4.3) g is Lipschitz continuous in (0, 1],

SAt-l, e(O) = a,j'j t-je > 0, ,
Igf I At-1I2.

Here, and thereafter, A denotes a positive constant, not always the same.

1. v satislies the differential equations in E; u E+.e 'O
This follows from properties 1 and 2, discussed in the previous section,

since the conditions on e and A = / in the case of the double layer, and on
and k = g + /j in the case of the single layer, are satisfied.

2. v satisfies the jump conditions.

Using properties 1 and 2, v is defined, and

[v*] = f(t).

Now, using the differentiation formulae (properties 3 and 4) we have

- (0 exp {-z'(x, 0)} + De[g] - Se0].
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Again, the conditions on 0 and h = g in the case of the double layer, and on
e and / = 1 in the case of the single layer are satisfied; by properties 1 and 2,
v+ exists and

vg* (e, t) = v (e, t) 4- Ig(t),
[v = g(t).

3. vt(x, 0) = 0 for z V a.
Using the definitions of Se and DO, equations (3.2),

2v/e f' (2(_ ) z(x, T) g- + .r)) exp {- z'(x, r)} dr.

Let 6 > 0, 0 t < 6. Then lo(t) -. a1 2AV/, as seen from conditions
(4.3). Assume that

Ix- al > 2AV&a + 2e, > 0.

We get, for finite x,

0 < 2e ix - al - 2AV /3 5 Ix - e(t)I
= (x- a) - (e(t) - a) 1 ; Ix - al + 2AV/-6 A,

if 0 < t < 6. Therefore, using (4.3)

A_
I/(A)z(x, r) exp {- Z2(X, T)}I exp {-(/t-- )2 },

A

Ig(T) + I(r)(r)I exp {- Z2(X, T)} 5 exp {-(e/Vt--r)2 }.

Hence
e1 A /exp T ) dr

=2(-+ n) A f exp {-a2} da.
I lVt

This shows that It#i -- 0 as t -+ 0 and x =, a since 6 and e are arbitrary.

4. v(± co, t) = 0.
Let Ix - aJ > 2A.4, for any t. Then

Ix-e(r)jIx-al-2V =k for 0r t

and k oo Q as Ix]-- o. Now

1 2 2
X-~ r z (x, r) :5- z(z, -r)

1 4< z2(z, r).
t -
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Also, for any value that z may assume,

Iz exp {- z'} _ 1-

Iz' exp {- Z2)1 ;5 (2)

Therefore,
/(r)A I exp{- A}1 Az exp({- z} <:j 'ex_---}I,'

g() + (-r)e('r) A A
exp{- z2} z Izexp{-z 2 } 1 < -

Vt - VTk V;Tk'
and

Ivij Af( +i dT --* as k-+o.

5. JvJA.
Observing that

l~(X,~ z') ) = Z,(X, r),

we get on integrating by parts,
1 /g( x(0)

--exp Z(, T)} dr - exp {-a } do

fo \az(,, f exp {- al} d) dr.

The last two integrals are clearly finite, since 1/1 5 At- +8 . As to the first

integral, we have

Or) A
_ exp{-z'(x,r)} ! A

so that
f g(r) A dr AVx

Hence, v0 is finite.
6. Ivg A.
Using the definitions of S*, DO, we have, from the formula for z

V= (O) exp {-z(x, 0)} -$ AT) exp{-z(x,r)dr

+ [ g') z(z, 'r) exp{- z2(x, T)} dr.
2:;of r
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Denoting the three terms by a, P, y, consecutively, we have
a At-%;

Ifii< A = At-% d_ At-%. .
-1+8 Nt --- f 0-+ /- A-, t<t

To estimate y we split the interval of integration into two parts: from 0 to
t/2 and from t/2 to t. For 0 ! T t/2,,

g(r) zexpA{-Z2}

For t/2 < r < t,

jg(r) At-%

Z( )exp{-Z} 2(- 2V!g Z (r) exp{-Z}
- -(r) (t A-) 2~t_

+ I i(T) exp {-z} I(,T) I exp{- z' (, )} + A

Hence

+I -4 - exp{-z 2 (x,r)}z,(x,r) dT.-y 75 t o V +T f2," i-T ' ,/2 ,

Now, since j(t) has at most a finite number of extremum, points, the same
holds for e(t), and consequently

1 (---0(r))!j
z , )=2V t+/-i- T U2(t - T)

may have at most a finite number of zeros, T, as T runs from t/2 to t. There-
fore,

f nexp {- z' (x,z} I z, (x, ) I d- f , ,, + f(n+

where n is the number of zeros. We now get

l ; A f Y2 da A 1 da A -,; (n + 1) A

Adding the three results,
S1-*I~ ;5 N/ilal + 1#1 + Ijl) A.

This completes the proof of the existence theorem. We now show that
7. v is the unique solution for the auxiliary functional in E. u E +.

It
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Suppose that to the contrary there are two such solutions t1 and V. and
let

F satisfies the same conditions as t#, except that both F and F0 are continuous
in E.

We use the identity

(4.4) 2 jf dxdt ' 2dx + 2Tpq.dt
domain boundary

satisfied by regular solutions of the heat equation, see e.g. [6], which we apply
to F in the domain indicated on Figure 2. This domain is obtained from the
rectangle jxj k, large k, 0 t < t0, to ;5 t but otherwise arbitrary, by
cutting out a strip of width 6 about the curve x = e(t) and a rectangle of
width 2A V and height e centered at x = e(0 ), t 0. We now let 5 -- 0

t X M(t)

F toE EF

C D

49 G'
A B A'
-k o-A./" 0 o+A,/ +k x

Figure 2

and k - oo, keeping e fixed. Contributions to the line integral along AF
and A'F' vanish, while those along DE and D'E' cancel each other. Further-
more, on A B, A'B', V = 0, so that also there the contribution is nil. Along
BC and B'C' the contribution is bounded by

f dt = 4A

while along CD and C'D' we get at most

: A i 2dx = 2A3Vt,,

see conditions (2.7). Hence these also vanish as e -+ 0. Passing to the limit,
we now get

2 ff Vxdt + f 2(x, to) dX= o,

Ogt~jto

O : f~*
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i.e., iT(x, to) 0. Consequently iY'(x, t) = 0, and v4 v= t#.

We now consider the general problem for the auxiliary functional.
Write ul as the sum of the fundamental part vQ and a complementary part W,

(4.5) ue = Ve + w0, P eD; UD+'

Substituting in (2.5) and (2.7) and using the properties of Ve we find that
We satisfies

DE Lw = 0, PeD,
BC P(w0 + Ve = 0 on arc A C, Figure 1,

(4.6) IC We(X,)=O0 for x < o(0) =a,
00C We (x, t) :5'A,

Ve is clearly continuously differentiable on AC, and therefore, by the assump-
tion on the nature of the boundary operator I', see Section 1, equations
(4.6) have a unique solution. ue is also unique; for, if there were two such
solutions, ule and ue, then

We= ue - ve,

U2= 12- V

would both satisfy equations (4.6) and consequently we would have

We W W, Ul i4 "0 ue f

5. Reduction Theorems

It will now be shown that the free boundary problem can be re-
duced to solving a certain functional equation for the boundary. Consider
the following equations

(5.1) ue-(9, t)= 0, eo(0) = a,

(5.2) uQ.(Q, t) = 0, Lo(0) = a,

(5.3) 6(t)u-(e, t) + 2 u*.(e, t) 0, e(O) = a.

Explicitly, these equations are

+ u#e )=0,
(5.2)' ve(e, t) - jg[e] + w(Q, t)

-- eXp {_ Z2(e(t), 0)) + De[g](Lo't) -Sey](e' t) - g[e]

+ we(e, 0 = 0,
(5.3)' (t)vO(e, t) + 2v.1(e, t) - j(t)/(I) + 2g (t)) + jWe(e, 1) + 2w~e(Lo, t) = 0.
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Assume that these equations have solutions R1, R2, R. respectively which
satisfy the conditions imposed on e(t), (see conditions (4.3)).

THEOREM 3. If R1 (t) exists for 0 5 t 1, then

R (t) = Rl(t),
14(Z, t) = u'+(x, t), P e D+l

form a solution of the free boundary problem.

Proof: Consider uRI (x, t), P -E D,, and apply the identity (4.4) to uRj
in the domain A BCDEFA, Figure 2, with e(t) replaced by R(t) and 6 = 0.
Along A B the contribution is zero, since ue(x, 0) = 0 for x < a. Along DE
the contribution is zero in view of the definition of R. Contributions along
A F and BCD tend to zero as one lets k --: o, e -+ 0, and one gets

2ff + f (U )2dX 0.

D7-

Hence
u" (x, 1) - O, P D-, I,

uRL(RI, t) - 0.

Since all conditions imposed on u (x, t) are automatically satisfied by u (x, t)
for any L, with the exception of the free boundary conditions, we have to
verify the latter. Now

uRt (R, t) uR (RI, t) + f[R] = [R],

uJ (R, t) = u'(R 1 , t) + g[R] = g[R],

completing the proof.

THEOREM 4. I/ R2 (t) exists for 0 s t I, and hs(t) ! 0, then

R(t) = R2(t),
U (X, t) = uR+ (X, t), Pc D+RS

form a solution of the free boundary problem.

Proof: Proceeding as in Theorem 3, we find

0S 2 f (uR2)'d ,dXt + f (uRI)2 dx f (UR; (R 2 , t)) 2h,(t) dt O.
D- 

0

RS
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Hence

Th rmand f, 'P e th..
The remainder of the proof is identical with the preceding proof.

THEOREM 5. If R2(t) exists for 0 9 t < 1, then

R(t) = R3(t),

u(x, t) = uR(x, t), P e DR,

/orm a solution of the free boundary problem.

Proof: One proceeds exactly as in the proof of Theorem 3.
Remark: Clearly, every solution of (5.1) is also a solution of (5.2) and

(5.3), and every solution of (5.3) is also a solution of (5.1) and (5.2). As to
solutions of (5.2), Theorem 4 in conjunction with Theorem 1 show that only
those solutions of (5.2) which have a nonpositive derivative are also solutions
of (5.1) and (5.3). Although we feel that in the latter case the sign of the
derivative is immaterial, we were not able to prove Theorem 4 when this
sign is positive. This is, unfortunately, a serious drawback. To determine
R we have at our disposal three equations. (Many other equations can be
also obtained.) In applications-see Section 6-it turns out that equation
(5.2) is usually the easiest to handle. The'existence of a solution R Of this
equation insures the existence of a solution to the free boundary pro-
blem only when R ; 0. If it happens that j? > 0 for some t then the
existence theorem remains unproven, and one has to consider either equation
(5.1) or equation (5.3).

HI

6. Applications

We consider a number of examples drawn from physics of change of
phase. In each case we shall derive the auxiliary functional and the equation
for the free boundary. Some of these equations will be considered in detail
in' the following papers.

We define

(6.1) in(a) exp {- o},

z - ro( )
(6.2) z(x, r) -2 t-T 0!< r t,

and observe that r + 0o if x> (t)
(6.3) z(x, t) lim - = j 0 if x = e(t), t > 0

2,/t? . - 0o if x < (t).
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1. Motion of a plane liquid-vapor interlace.

A liquid in the presence of an undersaturated mixture containing its
own vapor will evaporate, while if the mixture is supersaturated, the vapor
will condense. We assume that the process occurs at a constant temperature
and denote by g the saturation vapor density, and by co the initial vapor
density. The problem is to find the interface, x = R(t), R(0) = 0, and the
vapor density u(z, t) satisfying

R)

liquid
vapor

Figure 3

DE Du.= u, for x>R(t), t > 0
BC u(x, 0)=c o  for x>0,
FBC1 u(R,t)=g for t 0.

To these we adjoin a second boundary condition on the free boundary
expressing the conservation of mass across the boundary, namely

FBC2 Du.(R, 1) = (e - g)A(t) for t > 0.

Here D is the coefficient of diffusion, and e the density of the liquid.
On introducing dimensionless variables and functions, 1, 1, R(I) and

f4(1, 1), defined by

z = lg, t = 12D-11, 4 (;?, 1) - u -(x, co, R (t) = IR(t),
g -C O

the problem reduces, on omitting bars, to finding u(z, t), R(t) satisfying
DE uXX==ut, z >R(t), t>O0,

BC u(, 0) = 0, x > R(0) = 0,
FBCI u(R, t) = 1, t > 0,
FBC2 oau(R, t) = R, t > 0.

The specifications are completed by adding a condition at infinity which on
physical grounds is u(oo, t) = 0. In the above, I is an arbitrary length, while

__g - co
9 -- O
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If the vapor is undersaturated, co < g and a > 0. In the case of superqatu-
ration, co > g and m < 0. Since, however, p > c0, it follows that in this case

C-o g

The equality c = -1 occurs only when co  Q, that is, when the liquid
cannot be distinguished from its vapor.

Thus, this problem is of the type formulated in Section 1, with /(t) - 1,

g(t) = cc-'R (t), a = 0, while the given part of the boundary is the positive
x-axis, and F is the identity operator. Part of the given boundary has been
removed to infinity, and the problem would not be properly posed without
some growth condition as x -+ co. We chose here the conditions u (oo, 0) = 0
but the result would be the same if we had only required that I u(x, t)1

A exp {kx 2}, t < 0o. Conditions (1.2), (1.3) on / and g are obviously
satisfied.

This problem can be solved explicitly.' The result is
00

u =a exp {- a2) cia,

R(t) = -2bt
w here 00

a =(f exp {_ a2} da) - 1

and b is the root of

= 2bexp {b2} exp {- a2} da.

This equation for b has a unique real root provided c > - 1, and b - -

as a -* - 1. This does not, however, imply the uniqueness of the solution
of the problem itself.

It is observed that in this problem, R (t) = 0 (t-12). The same singular-
ity will occur in some of the other problems considered here; this is at the
root of our assumptions on the behavior of /(I) and g(t), see conditions (1.2),
(1.3). Had we imposed more stringent conditions, these problems would be
eliminated from the general analysis.

Although a solution is known, it is nevertheless instructive to apply the
method discussed in this paper. Since in this example D+ = E + , and

r( X) = ) 0 oX > 0
U.(00, I)i t >_ 0

'From dimensional analysis one can conclude that u(x, t) is a function of x/1/1 only
and the result follows at once.
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the auxiliary functional uQ consists of the fundamental part vO only. Using
formula (4.2),

U -(X , t)t) - +- r) (z(x, r)) dT

= f (W, O) 
0 /' -"

l f(,O)da - I- f" LO7'' i(z(x,r)) d-r.

,,(x, 1) = - 2/- (z(x o)) + f o ') - (z (x, T)) dr.

The equations (5.1)-(5.3) are in this case:
0

a) 7(ao)da - f 1o r n i(z(e, T))dT - = 0, e( 0 ) = 0,
fJz(,O) 2oc J 0 v

b) -_1t7(z(Q, 0) + I z(e, r)n(z(Q, ))dT-- L 0, L(0) = 0,

2 2N/t 2mcJOt -r o

C) t) i(da -n((, 0)) ,)
+( 2oo=t _ nz 0

+- !, @Z (LO, T)n (Z(e, r))dT + I~ e~ (t) = 0, e(O) 0.

The first of these equations is of the first kind and would be difficult to

handle. The second one is clearly of the form

b') (t). = G[e], e(O) = 0,

suitable for an iterative attack. Its solution need not, however, imply the

solution of the original problem, unless the result has a negative derivative;
see Theorem 4. However, every solution of the problem must satisfy this
equation, so that a statement concerning the uniqueness of solutions can be

made independently of the sign of the derivative. We know, however, that
the free boundary problem has a solution, while the uniqueness question
is still open. This can now be resolved by showing that equation b) has a

unique solution.
It is now possible to indicate in what sense the auxiliary functional ue

differs from the functional u[e, /] defined in Section 2 by equations (4.1).

Even in this simple case u[e, /] cannot be determined in closed form. If,

however, we further restrict the class of functions e to functions

2 = -2b -- < 00,

one finds
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.[L, /1 =( exp {- a do) ( f exp (_ ) , Pe D+.

For uQ, we get, after somewhat involved computations,
1 ( 2b * ( ' t )  \ Z(Xrt)

u4=/- l+-exp{b2} exp{-a2}da) f exp{-a 2}da, PeD- u D+ .

The two functionals are defined as functions of (x, t) over different domains.
They are both defined in D+ , and

ul+(, t) - u[ ,f1(X,t)
only if

1 +2 exp {b'} exp {- a2l do) = (fb exp {-a2}d) -

or, if b is such that
ao

2b exp {b2} exp {- a2} da = a.

-b

For this value of b,, however, uQ- -- 0. Hence the only function which
the two functionals have in common is the solution of the free boundary
problem.

2. Motion of plane liquid-vapor interlace in a confined medium.
If we complete the picture of example 1 with the requirement that the

R (t)

liquid vapor u,,0

M i

Figure 4

vapor remains confined in the domain x - M ,while at M there is an imper-
vious boundary, see Figure 4, the problem is identical with the preceeding
except that:

u(x, t) is defined for R(t) < x < M, t > 0, u,(M, t) = 0.

Here /[0] = 1,. g[]---- -, +[(t) <x <M], a = O, and
ot

V u(zO) 1 for O<x<Mu.(Mt) 0 for t _ 0.
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The fundamental part is the same as in example 1. The complementary
part can be found by the image method, and one gets

w = z(2M - ,t), X f M.
Thus,
It = n(a) da + n(a)da - - () [(Z(X, ))

dX(0,O) f (2M-w,0) 2ot 0 -- IT
+ fO(z(2M -x, t))] dr.

Here again, equation (5.2) for the determination of R(t) is easier to handle
than the other two equations. This equation is

U-(, t) = 0, Q(o) = 0,
or

e(t)= 0-))(x(e, 0))-n(z(2M--e,O))]+ [z(, ri(z(e,' ))

- z(2M - e, r)?(z(2M - e, r))] dr,
e(o) =0.

Again, the solution R(t) of this equation will be the desired free bound-
ary only if A (t) turns out to be negative and this is the case when m > 0..
When a < 0, A > 0 and the theorem may be established by using equation
(5.3), while (5.2) can be used to determine the solution. The same remark
will apply to almost all the examples considered here.

The problem of solving the equation for R(t) will be considered later.
Here we note that a good approximation is obtained by setting 0 = 0 in the
right hand side of the equation. Then

S- (1 - exp {-(M/ Vi)}),

R ' - 2 [N t,(1 - exp {-(MIV/)'} + 2M exp {- a'} da].

3. Decay by evaporation (or growth by condensation) of a liquid drop.
This is the three-dimensional analogue of example 1. Assuming that in

the process of evaporation (or condensation) the drop will remain spherical
due to some extraneous mechanism like surface tension, and that the
saturation density of the vapor is independent of the radius, the radius of the
drop R (t), and the density of the surrounding vapor u (r, t) will be deter-
mined by

DE Au = ut for r>R(t),t>O,
BC u(r, 0) =0 for r>R(0) = 1,

FBC1 u(r, t)= I for t > 0,
FBC2 atu,(R, t) A for t > 0.
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The derivation of these equations is similar to that of example 1, and they
have been written in dimensionless form, using for the unit of length the
initial radius of the drop, 1.

As is well known, c = ru (r, t) satisfies the one-dimensional heat equa-
tion. Using c, the problem is now formulated as follows:

DE c,, = ct for r> R(t), t>0,

BC c(r, 0) =0 for r > R(0) = 1,

FBC1 c(R, t) =R for t > 0,

FBC2 au,(R, t) = RR + ac for t > 0.

In case of condensation (- 1 < a < 0) the drop will grow ad infinitum.
In case ac > 0, it is expected that the drop will disappear in a finite time to,
i.e., R(to) = 0. For t > to there will of course be no boundary to determine,
and the free boundary conditions will be replaced by

u,(0, t) = 0, for t > to,
or

lim r-lc(r, t) = finite, for t > to.
r-+0

Here, /[e] = e, g[e] = + 1, D + = E+ , a = 1, and

= U(X, o) 0 X>1
F(u) t). t__o.

The complementary part is zero, while the fundamental part is

V = = z(x, r) - )-()k) + + (0()) n(z(, ,r)) dr0o t - Vt _-'!
f SE€, 0) 1c fo VlVt 17(z(x, 0)) + i n(,,)d,, - -- J ()olt nz~,))

For the equation for the boundary one now obtains

(A) e=- 2af tJ (a)da -- n(z(e,0)) + f, - 1)(z(Q' ))da'
ft J-000 t-T

e(0) = 1.

When studying a free boundary problem one generally feels that
an extension of the solution into regions where the final result is of no interest
will only complicate the problem. 6 In this example, stemming from a three-
dimensional problem, one almost fears extending our considerations into
the region of negative r. Let us then see what our procedure would lead to
had we not made this extension.

'To our knowledge, the only previous exception to this attitude is found in [15], where
analytic continuation is used to produce solutions to the Helmholtz problem.

t,
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We restrict the domain under consideration to the point set t > 0,
r > 0. The domain D- is therefore the point set (t > 0, 0 < z < e(f)),
and at x = 0 we impose the boundary condition,

ue(0, t) = 0.

The auxiliary functional ae is easily found by using the method of images.
If ve(z, t) is the fundamental part-the same as the one obtained previous-
ly-,

IV (x, t) = t#(Z, t) - v(- x, t), X 0.
Since e(t) > 0 for t < t ', v (- x, t) is a regular solution of the heat equation

in D.
The equation for the boundary is again

a -((t),t) = 0.

Now, in view of the jump conditions,

ve.-e(t), t) =ve(e(t), t) ,-,o~e + 1),
while

V -- (0t) = .v - (t), t.}

The equation for the boundary is therefore

(B) e(t) = 2a [v(o(t), 1) - j + vQ(- (t), t)], L(0) 1.

Equation (B) differs from the equation (A) by an additional term,
2tve(- e(t), t) and thus appears more complicated. We will show that
every solution R(t) of (A) also solves (B). Indeed, if R(t) is a solution of
(A), then vR-(x, t) -- 0, and consequently v.-(- R(t), t) = v.(- R(t), t)
= 0. Hence for Q(t) = R(t)-and in this case only-the left hand sides of

both equations coincide. Furthermore, since for x > R(t), - x < -R(t)
<R(t), v'+(- x , t ) =

- 0 in D+. Hence,

uR+ z f4R+ ,  Pe D + ,

although in general, ue 0 ae. It would be quite difficult to verify the
converse had we not known it in advance.

4. A theory of cloud behavior.
Let the cloud consist of a collection (finite or denumerably infinite) of

disjoint spherical drops growing or decaying according to the mechanism
assumed in example 3. Let g, be the center of the i-th drop, R,(1) its radius,
Ri(0) = l. Denote by Di(t) the point set ix - 1,1 > R,(t), and by S, its
boundary Ix - gJ = R,(t). The problem is to determine the density
function u(x, t) and the radia R,(t) satisfying:
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DE Au u. for x eQD(t), t > 0,
BC u = 0 for x eQ D,(0),
FBClt u= 1 for X eSj, t Z>0, i 1, 2,.....,

FBC2, f f u,(x, t) do k,(t) for t >0, i 1,2,....

In this formulation, the problem of cloud behavior is of much greater
complexity than the preceeding problems in that the concentration satisfies
a three-dimensional heat equation, and in that there are many free bound-
aries to determine. While the method devised in this Part 1 is inadequate
to treat this problem, it will be dealt with later when extensions of our
method are considered.

For some purposes the behavior of the cloud is satisfactorily described
by assuming that all drops are initially of the same radius and that their
centers form a cubic lattice. The problem is then identical with that of a
single spherical drop located at the center of a cube whose boundary is
impervious to vapor. If the side of the cube is large compared to the radius
of the drop, a further satisfactory approximation is obtained on assuming
that the cube is replaced by a concentric sphere of the same volume. The
density function u then depends only on the distance from the center of the
drop, and the problem becomes identical with Problem 3, except that

u(x, t) is defined for R(t) < r < M, t > 0,

u,(M, t) = 0.

Here M is the dimensionless radius of the sphere. Using again the function
c = ru(r, t) the problem is formulated as follows:

DE c,, =c . for R(t) < r < M, t > 0,

BC c(r,)=0 for I=R(0)<r<M,
I Mc,(M, t) - c(M, t) = 0 for t 0,

FBC1 c(R, t) = R for t - 0,

FBC2 acc,.(R, t) = RlA + c for t > 0.

As in example 3, Q[,] = e, g[e] = LOP + 1, but D+[q(t) <x < M,

t>0], a=!, and
Iu(, 0) for l<x<M

u Mu.(Mt) -u(M, t) 0 for t > 0.

The fundamental part v is the same as in Problem 3, and the complementary
w part satisfies,
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DE L =O, PeD,
IC we(Z, 0) = 0, x M,
BC MwA(Mt) -u (m,t) = - (Mv e(M,t)-v 0 (Mt)), t > 0
00C wQ (x, t) <A, lI / we.(x, t)1 :<9A.

One finds,

we(,t) = Vtn(z(2M - x, 0)) + i_()__- f (T Ti=() ci-- '

(2M-,O) 0c ~-

n/(z(2M-x,T))d' -2(M- 1)exp { MM I -1a+,If

MY M e((2-)0

--Mfe(')6() exp 1MM -- (f __(d
M +z(2M-xv)

The simplest equation that the boundary function must satisfy appears to
be the equation

Muz-(Q, t) - u, t) = 0,
or, explicitly,

ee(t) = 2 (1- )(a)da - n ,(a) d )

M(/ (ffx0.MeO
I(0 +el t[(z(Q, 0)- q) (z (2M - e, 0)))K

TheradusR(t) of a gas bubble submerged in a liquid, and the concen-
traionu~r t)of the gas dissolved in the liquid satisfy the following equations

z (2r e, ) ru+r, t):

DE e,=ct for r> R(t), t>0,
C c(r,0)=0 for r>.R(0)=1,

S c(R, t) = (1 -l)R+l for t0,

FBC2 ,ccr(R,t)= (R+m)i?+ aI1-l+ for t>0.

4A simplified formulation according to J. B. Keller.
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Here, 1, m, t are constants, and I 0, m : 0, a > - 1. In this formulation
the effects of surface tension are included. When these effects are neglected,
I = m = 0, and the problem becomes identical with Problem 3.

Here, []=(1--)Q +l, g[e] = Q +  ) + l-+-D +  E + ,

e
a = 1, and

u(x,O)) for x> 1

u(oo, t) 0 for t __0.

This problem is similar to Problem 3. The complementary part is zero and
one finds for the fundamental part of the auxiliary functional

= = -(1 - 1)V V7(z(x, 0)) + [(1 - l)Ox + I' r.( 0t)

rf (Q(T) + m)6(r) + l-(r)
2 o 0 it __T

Equation (5.2) for the boundary is then

((t) + m) (t) 2o -2(1 - 1)f 27(a) dci - -'?1(z (Q, 0)) - ode-'(t)

T ) + M)li(T) + od- (,r)
+ z(e, ),i(z(Oe, .)) d,f o t -r

(0) = 1.
6. Change of phase without appreciable change ol density (e.g., recrystalli-

zation).
When heat is supplied to a solid at a recrystallization temperature, a

partial recrystallization will occur. Part of the heat will be used to supply
the latent heat of recrystallization while the remainder is used to increase the

Rt\) recrystolized
part
U 2

original u .k(t)
crystals
u=.O

Figure 5

temperature of the recrystallized solid. The moving front, R (t) and the tem-
perature u(x, t) of the recrystallized part are determined in appropriate
dimensionless variables by solving
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DE "t  for O<z<R(t), t>O,

BC i.(0, =k(,BC RMo o,

FBC1 u(R, t) =0 for I 1 0,
FBC2 u.(O, t) - R for t > 0.

Here k(t) 0 is the heat input function (in appropriate units), and it has
been assumed that the recrystallization temperature is normalized to zero.
Alsoi[e] = 0, g[] - Q, D+[e(t) < x < 0], a = 0, and

Tu = 11 (o, t) - k (t) = o, t > 0.

The fundamental part is

=1 f (r) , (z(x, -))dr.
o V--.

The complementary part is obtained by using the method of images. One
finds

- n(x) n((- x, T)) dtI + f T n ( . dr.
Vf __T

The equation (5.2) for the boundary is

(t) =(') ( (-)7 ( WI )dr + o - [z(Q, T )(z(e, r))
- z(- Q, 'r)17(z(- Q, r))] dT,

Q(0) 0.

7. Generalizations. Problems of Freezing of a Lake and of
Solidification of the Terrestrial Crust

So far we considered the simplest type of free boundary problem
for the heat equation. Two kinds of complications could be conceived. First
there may be more than one free boundary. Secondly, the differential equa-
tion may be different from the one considered. To see under what conditions
our method can be applied to more complicated cases, let us briefly review
the main factors which contributed to the establishment of the reduction
theorems of Section 5.

We associated with the free boundary an auxiliary functional having
appropriate jumps across the candidates for the free boundary. The con-
struction of the fundamental part of the auxiliary functional depended
essentially on the existence of a fundamental solution of the equation in the
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large. Finally, the reduction theorem could be established mainly because
of the uniqueness theorem for the first boundary value problem for the heat
equation.

Disregarding then all technical difficulties, an auxiliary functional could
be constructed whenever the differential equation has a fundamental solu-
tion in the large. If there are more than one free boundary, this functional
will contain in addition to the complementary part the sum of as many
fundamental parts as there are free boundaries. Each of these will have
appropriate jumps across the corresponding boundary, being regular else-
where. To establish the reduction theorem we would need again the unique-
ness property of solutions for the first boundary value problem.

Clearly then our procedure can be extended to problems involving the
heat equation in more than two independent variables, and to free boundary
problems for the potential equation. The latter lead to certain complications
which are now being studied.

Here we shall consider still another kind of extension. Namely, we
shall consider problems involving two media, each governed by a different
one-dimensional heat equation and separated by a free boundary. Since no
additional preparation is required we proceed immediately to application
to two still unsolved problems of great historical importance.

1. Freezing of a lake of finite depth.
We assume that the lake has a constant depth h, and that its bottom

and its lateral boundaries are nonconducting. Let
t t

ice woter
(I) (2)

U. T, U.0

Figure 6

C1 2  specific heat
d1,2  density
k1. coefficient of conductivity
L latent heat of fusion

a, , ak2

Subscript 1 will refer to conditions in the layer of ice, subscript 2 to con-

ditions in water. We shall assume that in the process of freezing there is no
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heat transfer by convection, and-what is more disturbing-that all the
parameters remain fixed, and that in particular d1 = d2 = d. Then the
temperature u(x, t) and the freezing front R(t) satisfy:

a2

DE jU'X 11t 0 < x < R(t) inie
BC ", (0, 0) ---T, , t 0 int 0 ce

DE 42x U, R(t) < x < hi

BC u 2(z, o) =T 2 , 0--R(0) <x<h in water,
lu2,,(h, t)= 0 ,t > o

FBC1 u1 (R(t), t) = u2(R(t), t) =0, ] at the
FBC2 kulch, (R(t), t) - ku 2,(R(t), t) =LdR(t) f freezing front.

Let us first consider the problems in ice and water as two separate
problems. Let ,,(R(t), t) = a(t),

%,(R(t), t) = g2(t).

The auxiliary functional uQ for the problem in ice is

Z,( 'r) X - t) P Da U D),2~~~~~2a vd7ztx =_r) (z(xr]d +T

where DT, is the point set (t > 0, 0 < x < e(t)) and D+ , is the point set
(t > 0, x > Q(t)). For the problem in water we get

2a2 (Vt €/ -'"d

t e(X, t)=- a2 r g,(r)  'r*( )) +17(,(h-x, T)) dr+r, 4(2"Vi (a ,

z2(x, -r) =) PL-D ,Q (D+

where D e is the point set (t > 0, z < p(t)), and D2, is the point set (t > 0,
e(t) < x < h). The equations that the boundary curve must satisfy are.

for the problem in ice, u+ - ,, ), (0) = 0,
for the problem in water, 2,- t) ---0, or g(t) = 2"2,(e, 0), e(0) =O.

We now recall that these are not independent problems, but that g,(t)
and g,(t) are related by FBC2. Thus we get three equations for the three
unknowns, g,(t), g2(t), and Q(t). These equations are, explicitly,
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g1t)= f i~r [zije T)n (zj(Q, T)) + Z,( e~n )1(Z(-,o, -r)) d-r

T2

+ T [n(Z2(e, 0)) - n (z{(2h- e, 0))],

e, W = k, gl(t) - _L2 g(t), e(o) = 0.

2. Solidification of the terrestrial crust.
This is the three-dimensional analogue of the preceeding problem.

Subscript 1 refers to the crust, subscript 2 to the liquid interior of the earth,
all symbols having a meaning similar to that in the preceeding problem.
The temperature u(r, t) and the solidification front R(t) are determined by

DE afAu 1 = u,,, R(t) < r < a in the crust
BC ul(a, t) = T1 , t 0 a = radius of the earth,

DE a/AJu= u,,, 0 < r(< R(t)"
C u2(r,0) = T2 , O r< R(0) =a in the liquid,B2 [ u r(0, t) ---0, t 0

FBC1 u,(R, t) = u2(R, t) = 0 at the
FBC2 klu,.(R, t) - ku 2u,,(R, t) = LdR(t) solidification front.

As in examples 3-5 of Section 6 it is again convenient to introduce c
ru(r, t). c(r, t) then satisfies:

2a.
DE acLr,,.,r= ct, R(t) <r< a in the crust,
BC c,(a, T) = Tla, t > 0c
DE -c,, = 2 ,t, 0 < r < R(t) 1
BC c2(r, 0) = T2r, 0 < r < R(0) a in the liquid.

c,(0, t) = 0, t 0
FBC1 c(R(t), t) = c2(R(t), t) = 0,
FBC2 kic,,(R(t), 1) - k2c2,,(R(t), t) = LdR(t)R(t).

Proceeding as in the previous example, we find for the auxiliary
functionals:

9J (g"x)j)I v/2 t /

u(X, t) !!f J [i(z 1(x, )) -n(z 1 (2a-xr))] +aTP n D D,

2I
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2 'at (x-a)/2a,Vi '

tTaV f lx-a\)/2aDSQUD-Q+( T+, - ,- x + a ], P ,DZ U D2,,.

Here the various point sets are defined as follows:
D-, Et > 0, - 00 < X < QWt], ,

D+ , [t> 0, Q(1) <x < a],
2D-,Q Et > 0, 0 < X < Ot]

D+ , [t> 0, 0(t) <x < + oo].

To determine the position of the interface, one has to solve a system of three
equations for g,(t), g2(t) and @(t), namely,

g1(t = 0- [z1(e, T) n (zl(Q, r)) + z,(2a - Q, r) n(z,(2a - 0, r)) ] d
oT aT (a I ((e, 0)),

g)= - f [Z2 ,. r)n(;2(e, T).) + z2(- e. T)n(z(- e, T))] d-c

e,(O+2) at2a

fid +(x ) u2Tz , an(t)atisfyn z(,o): (, ,o)

kC k2a )=9~xz<0

eC(t) _ gl(t) _j_ g g(t), t() = . (

In connection with the last two examples we note that Rubinstein [14],
obtained in a similar problem the same equations for the free boundary that
we would get by applying the method of this paper. The problem considered

by Rubinstein is a generalizatio o coans oltion an (see [1]), namely to
find r(x, t), (x, t), and R(t) satisfying:

DE a,%,=. = U, , ti > 0, x < R(t),IC u1(X, 0) = P dX), X < o,
DE a4U2, = U2,0 t > 0, x > R(t),
IC ut(X, 0) = Ph2W, X > 0,

FBC1 ul (R (t), t) = ul (R (t), t) = 0,
FBC2 ul,. (R (t), t) -- ku2,.(R (t), t) =R(t).

(When T, (x) and 97,(z) are both constants, a solution can be obtained in
closed form.)
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It was first observed that if a solution to the problem exists, then ul
and u2 have the following representations derived from Green's formula:

t 0UJI(X t ) V tj f (z, (x, lr)) dr + pl fgx exp -- (x - 12a, V-] 2} d ,

0 x < R(t),

U2(X,t)= _!2 nz 2 xT)'c ~u,&,O=r f p2 exp {- (x - /2a2a/]

0 0 x > R(t),

where g1(t)= i 1, .(R(t), t), g(t) = u2, ,(R(t), t). The equations which the
boundary function must satisfy were then derived by requiring that

lim Ul,(x, t) =g(t),
R(t)>e-+R(t)

liM u2,, t) 0 92(t),
R(t) <X-*R(t)

and adjoining the FBC2. We note that this attack would prove unsuccessful
if the domain of definition of u1 or u2 were finite.
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On a Class of Solutions of Maxwell's
Electromagnetic Equations

G. E. HUDSON* AND D. H. POTTS
DbIartment of Physics, College of Engineering, New York University

und Navy Electronics Laboratory, San Diego, California

§1. In discussions of electromagnetic propagation in a homogeneous
isotropic conducting medium [1], it is frequently found convenient to regard
the solutions as built up from the real parts of component plane wave solu-
tions having the "damped monochromatic" form

E = A exp {i(cut - kn x) - ocot - fl0n. x),

H = B exp {i(wt - kn x - V) - md - #on. x}.

Here E and H are the electric and magnetic vectors respectively, A and B
are thus real constant vector amplitudes, and n is a unit vector in the direc-
tion of propagation; k and #0 are the propagation and absorption constants,
o and ato are the frequency and decay constants, and V is a constant phase
difference. A and B may be shown to be orthogonal.

The form of such solutions suggests that one might obtain more general
ones by substituting a real general phase function p(x, y, z) for the linear
function - kn x and real general vector amplitude functions Eo(x, y, z)
and H,(x, y, z) for the factors A exp {-fln. x} and B exp {-#, n. x),
respectively. The quantity V, too, might be allowed to depend upon position.
If such substitutions are made, the resulting exprepsions represent "waves"
which are in general no longer plane, and do not have constant amplitudes.
It is clear however that Maxwell's electromagnetic equations will impose
certain restrictions on 9, V, E0 and H 0 , which it is the purpose of this paper
to investigate.

§2. Maxwell's equations for a homogeneous isotropic conducting
medium are

aHV x E + I t 0

(1) VXH-ea E
at(V E) V H -, H 0,

V.E=V.H=0,

*Work performed chiefly while Professor Hudson was in residence at the Navy Elec-

tronics Laboratory, summer of 1953.
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34 G. E. HUDSON AND D. H. POTTS

, e, and a being the permeability, dielectric constant, and conductivity,
respectively, of the medium. We look for electric and magnetic vectors E
and H satisfying (1) of the form

E = E0 exp {- ot + i(9 + ojt)},
H = Ho exp {-ot + i( - + ot)},

where E0 , H0 , 9 and V are real functions of position and ao and c are
real constants.

§3. Certain preliminary results will be needed.

LEMMA 1. [2] A necessary and suf/icient condition that a vector field V
be of the form V = /Vh, where / and h are scalar functions o position, is that
V. V X V= 0.

LEMMA 2. I/ (i) 'JVJJ2 1,
(ii) V . V.*= Ve. Vf = V* Vf = 0,

where 4', ;F, J are independent scalar functions ot position, and g is a non-
vanishing function of f only,

then V2g V2d. = 0.
Vg x V.,r

Proof: We first note that VJf =X Vl"

Then we consider M#V4'. We have

V x (Jv1 ) = V0 x Vd - gVar.

Thus V. (gV.*Y) = g'VJ. VAr + gV2.W
=gV2,,'  

.

- 4- V. V x (1W?)

-0.

Hence V2a 0. Similarly V2J = 0.

LEMMA 3. Necessary and sufficient conditions that there exist functions
7, ,t, -f and g(1), satisfying the conditions of Lemma 2 are that either:

(i) g(J.) = constant, and
(ii) the line element in Euclidean space must be expressible in the torm

(3) ds2 - p2 (Jaf') (mof + n)'(dgt + d.*Y2) + dl'2

where
I82 82

(4) ( + a-) In p + m2p2 = 0

I,
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and m and n are constants, or: (i)' g or g--1 is a linear function of J, and (ii)'
the line element is expressible either in the form,

(3)' ds2 = de 2 + f'da" + d1j2

or

(3)" ds2 = 0
2 d' 2 + d,*" 2 + df 2 .

Proof: By the conditions of Lemma 2., we may take the quantities d,
.01 and f as coordinates in a triply orthogonal coordinate system. If we denote
the corresponding scale factors by h, h2 and h. then, since I Vll = h11,

WY h'l , and IVJJ = h31.
we have

(5) h= ghA, h3 - 1.

Now the scale factors must satisfy the conditions of Lam6 [3]. (These
are the conditions for the vanishing of the curvature tensor of an orthogonal
line element in three dimensions). For brevity, let a subscript 1, 2, or 3
following a comma denote differentiation with respect to df, ay*, or J,
respectively. Then the Lam6 conditions for our case are:

,h,h + h2, = h.1h, + h,,,-ad, ,,
h, h2 2h 1 + h12 ,2h2,2 -~A328

(6) h1 . ±hh 2 = 11,h,.2 = h.,2h2,3, h1 ,3 = 0,

hxh23 =-- h2 , l h, 3 , h2 ,3 = 0.

We see immediately that h, and h2 have the forms

(7) h= a-+fl

h2 =yJ +6

where c, P, y, and 6 are functions of d' and r only. Furthermore we must
have from the last two Lam6 conditions on the left

(8) CX, = fly']. 60c', = fl,2
since they must be true for all J. Now we have

(9) (f + 6) = g(of +),

and differentiation of this with respect to d' or *' yields equations from
which g can be eliminated using (9) (since g = 0). Then identification of
coefficients of powers of f yields linear homogeneous equations in the deri-
vatives of o, fl, y, and 6. If we consider these in conjunction with (8) we find
that either (a) 0 =- fly or (b) c, fl, y and 6 must all be constants.

In the latter case, simple substitution into the first Lam6 condition
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shows that either a = 0, in which case g is a linear function of f1, or , 0,
so that g-1 is linear in J, or both % and y vanish. If a = y = 0, then g = 6/fl
= constant, which will be considered under case (a). In no event can 6 and
P vanish simultaneously. Now, if g or g- 1 is a linear function of J, it is clear
that a redefinition of J in terms of this linear function, and a renormaliza-
tion of e and .Y will bring the Euclidean metric into one of the forms (3)'
or (3)". Note that the surfaces J = constant for these metrics, are circular
cylinders along whose generators either d or *1' varies.

In case (a), we quickly see that

y och 2,h, = flh2

so that by (5), g = constant. A rescaling of the variable Jye allows us to take
this constant equal to unity. Hence also

Equations (8) now imply adfl fldo; this is satisfied if and only if

where m and n are constants. Simple substitution into the first Lam6 con-
dition shows that p must satisfy the equation (4).

From (7) we have

h, = h2 = (mf + n)p(C, J)

so that the line element is indeed of the form (3). The situation for which
o and y both vanish and fl = 6 = constant is obviously a special case for
which m = 0 and p = constant.

LEMMA 4. [4] The surfaces f = constant in a triply orthogonal system of
surfaces J' f(x, y, z), _3F = a-Y(x, y, z), and J = J(x, y, z), chosen so that

the Euclidean line element can be written in the form

ds2 = S(f){g1 (d,.X) de 2 + g2 (d,a*) dX'2} + dJ2

are either spheres or planes.

§4. It is convenient to introduce the notation

k, + i4 = #(o + i%)e-",
(10) k2 + i12 = [e(o + iM) - ia]e",

E0 = E0o, Ho= HoI.

Note that 1 = dk1/d, 12 = -dk 2/dtp. Then we may state and prove:
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THEOREM 1. Necessary and sufficient conditions chat electromagnetic
vectors of the form (2) be solutions of the system (1) are that

(i) V is a function of op,

E0 x H0  k1k2
(11) (ii) V9 = where 02 - ,

E0 Ho ' f -- V'

(iii) E0 and H o are orthogonal vectors for which

(iv) E0 and H o have the forms

(13) E - exp{ f /dJ H = -x f - (1 - V')dT} V. *

where % is an arbitrary lower limit and e and A' are scalar function of position.
Proof: If we substitute the expressions (2) into (1) and separate the

resulting equations into real and imaginary parts, the system becomes

V Eo - l1 H o = 0 , VE o 0 ,

(14) V X Ho +1 2Eo  0, V'H o =0,V99 X E0 +kLHo=0, Vp.E o = 0 ,

(V9 - VV) X Ho - k2 Eo= 0, (V9 - VV) • H o = 0.

The equations in the left hand column will be termed "vector" equations,
and those on the right will be called "scalar" equations.

From these equations we infer the additional orthogonality relations

E0 . H o = V 9 H o = V. H = V . E0 =0.

Hence the vectors Vp, Vi,, E0 X H o are parallel. Thus ip is a function of
9 and we may write

dPovv, - v_ = v'g

Also V9 has the form (11). For, IV9'IE0=klH and IV9IHo =
[k/(1 - V') I E° from the last two vector equations in (14). Hence I Vpl1 =
k[kt (1 - V')1, from which (11) follows immediately. Moreover we see

that Eo/H = I (k/k2)(1 - V')I1Y which is just (12).
We note that E 0 . V x E 0 = H o •- V XH = 0. Application of Lemma I

permits us to write

(15)Eo = eaVe,
Ho = OV*'.
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Substitution of these expressions into the vector equations in (14) yields

V9' x Vd' = -klVoyeb-5

k2
Vp × VJY = Vore" - ,

Va x Ve' = 1,feb- 1'

Vb x Vjr = -12Ve -b.

Clearly a is a function of ip and ' only, while b is a function of 92 and X
only. Moreover these equations show that

aa

a b 1 2 P I

which are functions of i only. Hence

a = - f d9, + ao(e),

b = -f (1 -p') d + bo(,Y)

where 9o is any arbitrarily chosen lower limit. By examining the resulting
expressions for E0 , Ho we find that the factors eao, ebo may be absorbed into
Vd', V (by replacing 4', .W by Je-de, fe'odj). Thus we finally have

a () = - d,,
(16)

b = b(9) = - 1 V,')dT.

We now note that (13) is a consequence of (15) and (16), which completes
the proof of the necessity of Theorem 1.

As an immediate consequence of the above we see that if P' is defined
by

(17) J f' :' d97

where %1 is arbitrary, the functions J, of, and .* all satisfy the conditions
of Lemma 2. For, g = I Vd'j /I VW' is defined by

(18) g--exp{J, f( V1')] d9  V')

k, k2 k
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and this is a function of _f through (17). In proving the sufficiency of
Theorem 1 by direct differentiation and substitution, use must be made of
Lemma 2. We formalize this step in the next result.

THEOREM 2. The "potential" functions d' and.* of Theorem 1 satisfy the

equations

(19) V2af = V2X = 0.

The surfaces of constant phase, 97 = constant, are also surfaces on which
f = constant. Hence, in view of Lemmas 3 and 4, we have the additional

THEOREM 3. The surfaces of constant phase 9,, for electromagnetic waves
of the type (2), are either concentric circular cylinders, concentric spheres, or
parallel planes.

In proving the above theorem, it will be seen that the function g in (18) is
not unrestricted but is either a linear function of J, the reciprocal of one, or
a constant. By suitably choosing To and 9P, we may infer in any case that

(20) [f' k1 yl d9,]f (1-V g

are the corresponding three rather complicated-appearing integro-differential
equations for V. The exponent on the left is + 1 if g is a linear function of
J, so that if varies along the cylinder generators; it is - 1 if g-1 is a linear
function of J, so that .1' varies along the cylinder generators; it is 0 in the
case of spherical or plane waves. Simpler forms result if we recall that

(20a)

Then the foregoing equations (20) can be rewritten, after a logarithmic
differentiation in which it must be remembered that k' =/4s' and k2 =

- lgip', in the form

(2b ( In ) =/2 (1 _- ' - l (1 +4 o)

These results lead to

THEOREM 4. The phase difference function V(9) in Theorem 1 must satisfy
the integro-differential equations (20), or the differential equations (20a, b).

The application of Lemma 3 in the proof of Theorem 3 may also be
formalized by

THEOREM 5. A necessary and sufficient condition that the functions of,
"r, p of Theorem 1 exist is that the line element in physical (Euclidean) space

1,
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is expressible either in one o/ the two forms {3)'

(i) ds2 = dg + jfd*2 + d"2

(for cylindrical waves with the electric vector parallel to the generalors) and (3)"
(ii) dS2 = f2'dd 2 + dlA* + d0

(for cylindrical waves with the magnetic vector parallel to the generators) or in
the form (3)

(iii) ds' = p2(e,.-f)(mf + n)2(dd2 + dJY2) + dJ'
(for spherical and plane waves) where J1 is given by (17), p satisfies (4), and
m =0 for plane waves, or m 0 0 for spherical ones.

As we shall see, this last theorem suggests a convenient method for
writing down or generating various classes of solutions of Maxwell's equa-
tions for spherical and plane waves.

§5. The foregoing theorems bring out several points of physical and
mathematical interest. If, for simplicity one fixes attention on the usual
plane wave solutions, in which the phase difference ip is a constant, then it
can be seen that such solutions correspond to a singular solution of the non-
linear integro-differential equation in (20) with the exponent 0, namely

(21) V 2

where
c = - arg [e(co + iat) - ia],

(22) d = arg u(to + iz0 )].

The interesting question then arises: if the phase difference of a solution
differs slightly from (21) for some particular 9-value, will the perturbation
decay or grow as one proceeds in the direction of propagation toward
decreasing 9 -values? Put in other terms, is the phase difference of the usual
plane wave solutions in stable or unstable equilibrium?

An elementary investigation shows that the latter alternative is the case
in ordinary conducting media. For simplicity let us take a, s, # as real and
ao = 0. Then d = 0 and c = tan-' a/we. Now if n is a small deviation of jp
from the value c/2, ar must satisfy the differential equation

(23) a" + 4n' tan - + 4n 1 + tan2  0.

Since p' increases negatively in the direction of propagation, x is an oscillating
increasing function in this direction, and the singular solution is unstable.
This peculiar behaviour of the phase difference between the E and H vectors
is to be investigated in considerably more detail in another paper, in which
the physical consequences are discussed. We merely point out here: 1) the
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restriction to plane waves is not essential to the above argument, 2) the
form of the vectors E0 and H0. indicates that the amplitudes of these waves
also depend in a curious way on the phase, and 3) the phase difference
behaves differently for cylindrical waves as compared to the other types. In
particular, for cylindrical waves of our type no solution for which V = con-
stant seems to exist.

The next point of interest is that in the case of spherical or plane waves,
the curves e - const and Ye = const form an isometric orthogonal net on
surfaces of constant phase 9, but are otherwise rather general. Moreover if
one pair of functions (9', dr), and a solution p (9', .A) of 4 are known all
other such pairs and solutions may be determined by the use of harmonic
functions [5]. For, let w be any harmonic function of = ' + i*O. Then a
new pair (4", .$') is determined by

(24) 4"+ i' = w(' +iA)

and the function

(25) ',= -Y) I dw/dC 1-1

is also a solution of an equation of the form (4), written in terms of " and
A ". This is easily checked by direct substitution. For any such solution
p(', .') of (4), the magnitudes of the gradients of d' and Af' are of course
given by

(26) e V'J = I +I np-)(4',.)(m ± + ) -1

where .f(x, y, z) = constant is a suitable sphere or, if m 0, a plane. In
addition, if , and ijr are unit vectors in the directions of the old electric and
magnetic vectors respectively, and we write dw/dC = Idw/d~l exp {i77},
then for the new solution, the corresponding new directions are given by

ig' = ig cos n - i r sin j,
(27) = r0 sin + l r cos n.

Thus we see that the factors Vd' and VY0 appearing in the solution (13) of
Maxwell's equations are determinable for our spherical and plane wave cases
by the methods of conformal mapping. For the cylindrical wave case we
obtain only solutions for which essentially

(28) either IVel = J'-, IV.,' = 1
or IV.I = -f-1, I4' -- 1.=

In order to calculate explicitly the exponential factors in (13), a solution
t(ip) of equations (20) must be found, and then op must be determined in
terms of J by inversion of (17).

i'
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§6. We conclude with several elementary illustrative solutions of
Maxwell's equations in the form (13). In these examples we shall not con-
cern outselves with a general determination of 4p(x, y, z), leaving this for a
later paper, but will consider only solutions for which V = constant. This
automatically excludes the case of cylindrical waves. In such cases we may
take, with 9)0 = 9',

(29) 'V= /k 1k2If + 9 o

so that

(30) E0 = Ve exp {- l k2/kI f}, Ho = V.9 exp {-l, I /k21Ij.f

where 1,, 12, k , k2 are all constant. Hence we need to determine only the
explicit forms of 0, Vt, and V.9%.

As a first example consider a cylindrical coordinate system (Q, 0, z),
in which

(31) ds 2 = dL2 + O2 d02 + dz2 .

Rewrite this as

(32) ds2 = e2 [(d In ) 2 + dO2] + dz2 .

Apparently we may take m = 0, n = 1, p e and

d= In ,
.,= 0,

Z.

Then the electric and magnetic vectors, by formulas (26) and (30), are pro-
portional respectively to

Vd, 1

and the waves travel along the z-axis. This corresponds to the well-known
solution for plane waves travelling along a wire conductor coincident with
the z-axis.

As the second example, consider a spherical coordinate system (r, 0, A)
in which the line element may be written as[d 2

ds2 = dr2 + r' sin2 A (dO)2 + (-)]

Then we may take m 1, n = 0, p = sin A and

f =n tan

.9, 0.
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so that the waves are travelling radially and the electric and magnetic vec-
tors are both proportional to 1/r sin A, but point in the polar and azimuthal
directions respectively. Imagine a perfectly conducting surface, in the shape
of an infinite right circular cone, to be placed with apex at the origin, and
axis along the z-axis. Also suppose a perfectly conducting wire to coincide
with the cone axis. Then our solution corresponds to electromagnetic waves
traveling along the wire in the space between it and the cone surface.

In this example, as in the previous one, the direction of either of the
two symmetric isometric coordinates might have been used to correspond
to the direction of the electric vector, the other to the magnetic vector, with
a corresponding change in interpretation of boundary conditions.

§7. The authors wish to express their appreciation to Professors
W. Magnus and F. Reiche for carefully reading and checking the results
contained herein and for giving them many useful suggestions.
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On the Non-Existence of

Continuous Transonic Flows Past Profiles 1*

CATHLEEN S. MORAWETZ

In this paper we shall show that the perturbation problem belonging to
a two-dimensional steady transonic flow past an obstacle is not correctly
posed. This theorem has been proposed in various forms' [1, 2, 3, 4] as an
explanation for the breakdown of continuous transonic flow. No rigorous
proof has been given before. The statement of the theorem may be found
as Conjectured Theorem C in [1]. The basic plausibility arguments were
developed by Busemann [2], Frankl [3] and Guderley [4].

The perturbation problem may be described roughly as follows. Sup-
pose for some Mach number at infinity, M. < 1, there is a steady conti-
nuous symmetric transonic flow, past a profile given by y = 4 Y(x), with
continuously differentiable potential q and stream function V. Analytic
expressions describing such flows are known, see for example the work of
Lighthill, Cragg and Goldstein, or Tomatika and Tamada. T and V form a
solution of a boundary value problem for a pair of nonlinear elliptic-hyper-
bolic equations of first order and V vanishes on y = - Y(x).

Consider any neighboring profile P+ bPgiven byy = ± (Y(x) + 6Y(z)).
If the boundary value problem described above is properly set there should
exist, for general variations of the profile 6Y(z), a flow with stream function
V + 6V and potential T + 69, having the same Mach number and flow
direction at infinity, satisfying V + 6V = 0 on y = ± (Y(x) + 6Y(x)) and
for which &p, &T and their derivatives are small of the order of 6Y. Such is
the case if the original flow is everywhere subsonic provided 8Y is sufficiently
smooth. For mixed flows we know that we cannot vary the profile by putting
a concave piece into the supersonic region, see for example [5, p. 294]. Nor
can we have a flat piece [6] or a piece with zero curvature [7] in the super-
sonic profile. These conditions limit the admissible functions 6Y(x) but we
shall show that much more is true.

We shall prove within the framework of the perturbation theory that

*The results of this paper were obtained under the sponsorship ot the U.S. Army,

Office of Ordnance Research, Contract DA-30-069-ORD-835 and were announced in Abstract
433, Bulletin of the American Mathematical Society, Volume 60, No. 4, July 1954.

'See [1] for a more complete bibliography.
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46 CATHLEEN S. MORAWETZ

for convex symmetric bodies' the variation of the profile can be prescribed at
most outside some finite arc containing the point of maximum velocity. Except
for an arbitrary constant 6Y(x) on the arc is determined by the variation
6Y(x) outside the arc.

The proof is based on a uniqueness theorem. 6p and 6iv satisfy a pair of
mixed elliptic-hyperbolic equations of first order. If terms of order greater
than one in 69, 64 , 6V,, 6%v are neglected, these equations are linear with
coefficients depending only on op, 92,. Furthermore 6q., 64p, vanish at
infinity and the value of 6V is determined on the profile by 6Y(x). We prove
that, except for two constants, 6T and 6V are uniquely determined every-
where by the value of 6Y(x) on part of the profile, so that bY(x) is deter-
mined on the rest of the profile.

We would have a rigorous proof that continuous transonic flows past
profiles do not exist in general if the same uniqueness theorem could be prov-
ed without neglecting the higher order terms in 6p0 and 6V, see Conjectured
Theorem A [1].

In what follows we formulate the problem not in terms of the variations
69 and 6V' but, completely equivalently, by considering a set of flows, with
the same Mach number and flow direction at infinity, past profiles depending
differentiably on a parameter r and also on an arbitrary function. The
equivalent non-existence theorem is that the velocities can not depend

differentiably on r except for a particular choice of the arbitrary function.
This demonstrates that there do not exist continuous transonic flows with
the smoothness properties one might have expected from a study of the
behavior of subsonic flows.

I am very much indebted to L. Bers for his valuable criticism and many
suggestions. In particular, the treatment of the point at infinity is due to him.

1. Formulation of the Problem

Consider a given smooth, two-dimensional, steady, irrotational, com-
pressible flow F., with potential q (z, y), stream function p (x, y), and com-
plex velocity u - iv, past a smooth convex profile PO. The free stream Mach
number MO is less than 1 but there is a finite supersonic region next to the
profile. The flow .F- will be referred to as the unperturbed flow. The profile
and flow are symmetric and we shall consider only the upper half of the
x, y-plane. The flow -o is subsonic except in some finite neighborhood of the

2Manwell [8] has shown for mixed flow around a cylinder with zero velocity at infinity
that there are infinitely many variations of the cylinder which admit continuous solutions of
the perturbation problem. But they are such that this boundary value problem is also badly
set.
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profile where it is supersonic. The curve dividing the subsonic and the super-
sonic region is called the sonic curve. It intersects the profile at X 1 and X,.
Let S be the segment of the profile cut out by two Mach lines, C1 and C2,
issuing from a point X on the sonic curve (see Figure 1). S contains the point
of maximum velocity on the profile. The end points of S are denoted by
X 3 and X 4 .

Figure 1.

Let ,(x, yir) and Pg(x, y, r) be the velocity potential and stream
function of a family of irrotational steady symmetric continuous flows .9,

depending di//erentiably on r, with the same free stream Mach number as .F,
around a set of profiles P(r) that coincide with P0 except on S. For r = 0

the flow is Yo. The functions to(x, y) = (z, y, -r) j and w*(x, y)
a

- y Y, jT o are the perturbation potential and stream function,

respectively, and are defined in the domain of(P) exterior to P0 . It is
assumed that 0., 0, V, Vf, are differentiable with respect to r and that
z-differentiation commutes with differentiation in the x and y directions.

The potential 0 and stream function V' are related by the equations

(1) - T" = A.,

The density 0 is a given function of velocity, e = e(fw1
2 ),jwj2 = 02 + 2.

The functions o and w'* satisfy (1) differentiated with respect to r at
T=-0; that is, in o(P),

(2) -0,* = e(w. + 2mV.(9,co. + 9,o.)),
o,, = e(co, + 2mp.(qpw. +%co.)),

where m =- (de/d Iw!1) 1,-o and e = e(IwI') 12.

The function m- is given by Bernoulli's equation, qdq + e-1c de - 0,
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where q is the velocity of the unperturbed flow, that is,
1

(3)

and c is the speed of sound. We assume that
dm 1

(4) d = 2c= dC/d Iw4 l < 0

which is true for all gases whose pressure-density relation satisfies d2p/de2
>0.

The boundary condition is IF = 0 on P .and for y = 0, and hence

(5) *= 0, =0,

on P0 - S and on the x-axis.
On the remainder of the profile we set y = Y(x, r) = Y 0(x) + rY1 (x)

+ . where Yl(x) is a function that vanishes at the end points of S, X 3
and X.. The boundary condition on S is W(x, y, ,r) = 0. Differentiating
this condition with respect to r at r = 0 yields

(6) Co* + VY1 = 0 on S.

The potential 99 of the unperturbed flow F.o is assumed to be smooth:
First the third derivatives of 92 all exist in 4'(P) and the second derivatives
are HSlder continuous on the boundary except at the nose and trailing
edge. Secondly, the upper half of the domain outside P is mapped, con-
tinuously differentiably except at the nose, the tail and at oo, in a one-to-
one way into the u, v-plane where u = q,(x, y), v = i,(x, y) and the
Jacobian

(7) xy, - xy, = 0 except at oo.

We also assume that on the profile in the supersonic region

(8) -- is monotonic,. q2 > c2.

dO

The functions p corresponding to transonic flows computed by the
hodograph method have these properties.

At infinity we have

(9) 0. - iqv - q. > 0

where q. is the speed at infinity.
Since q. is assumed to be independent of r, we have

(10) a - io, - 0 at oo.

Under these conditions, we can prove the following lemma.
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LEMMA 1. I co and wo* satisly (2), (5), (10) in S (P) and have continuous
derivatives /or X2 + y2 > R 2 then

(11) (1 - M)-o. - ito, = b(u - q. - iv)- (1 + o(1))

where b is a constant.
If we assume that the flow is incompressible for speeds close to q.

Lemma 1 is easily proved. First 0. - iO, - q. is analytic in x + iy for
large x2 + y2 . Therefore, by the condition of symmetry and the single-
valuedness of the stream function we find

(2 . oa° (r) I1+ a
l ( T ) 

+;(12) - - -qT0= a0 +'" ")(t

(X +1Y)2 +

where ao , a,, are differentiable with respect to T. Differentiating (12)
at -r = 0, which is easily justified, we have

(13) a- a(0) ( + O((x + iy)-').(13)to - it. =(x + iy)2(

Inverting (12) for r 0 and differentiating with respect to u = iv - q®,
we find )d(x + iy) _ a 1(0)

d(u - iv - q.) - 2(u - iv - q)'/'"

Therefore
cou i~" - ao,(0)a°yl (0) (1 + o(1)).

S - =2(u - iv - q®)Y2

This yields (11) since M. = 0.
For general compressible flow Lemma 1 is established in Appendix 1,

by using the corresponding knowledge for compressible flows given by Bers
in [11].

The flows .- , are assumed to have continuous velocities and piecewise
continuous accelerations, except at X0 , X x and X2 , which are differentiable
with respect to T at T = 0; that is,

(14) (o has continuous derivatives and piecewise continuous second
derivatives in d(P) - X0 - X 1 - X2.

It follows from (14) and (2) that the same condition holds for (o*. It
is natural to require that the perturbation velocities (o. , wv, remain bounded
at X 0 , X 1 and X 2 , but actually our argument holds if we merely assume

(15) o. and (o, are o(d-') where d is distance from X 0 , X1 or X.. x is
1 for X 0 and 1/8 for X 1 and X.
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It has been conjectured that the perturbation problem might be cor-
rectly posed if a sufficiently strong singularity were permitted at X 1 or X2.
Condition (10) indicates what least order of singularity is necessary.

Let us call a pair of functions (o, o*) a solution of Problem I if they
satisfy (2), (5), (6), (10), (14), (15). From Lemma 1, o also satisfies (11).
The statement that the perturbation problem is not correctly posed means
that there does not exist a solution of Problem I except for particular choices
of the functions Y, (x). We shall prove in fact the following theorem.

THEOREM I. There is, except for a constant factor, at most one function
Y,(x) such that a solution of Problem I exists.

The function o will be called a solution of Problem II if it satisfies
(2), (5), (14), (15) and
(13)* o -i(o' = 0( (u - q. - iv)- y2) as X2 + y2 _* 00.

Note that no boundary condition is imposed on S.

We shall prove:

THEOREM3 II. The only solution of Problem 11 is o -=_ constant, o* 0.
Theorem II implies Theorem I.
In fact, suppose Problem I has two solutions corresponding to

Y11 = Y 11(x), Y1 = Y 12(x). Let the two solutions be ( , o*) and
(o 2 , oa*) respectively and let the constants b in (11) be b1 and b2 respec-
tively. We may assume that ot = %09= Oat oo. If b1 orb 2 is zero, then
(wh, o*) or (% , o*) is a solution of Problem II. If b, and b2 are different
from zero, consider the pair of functions (b2o1 - bl%2, b2o* - bao*). They
satisfy (2), (5), (14) and (15) and also (13)* at oo. Hence they form a
solution of Problem II. By Theorem II, b2co* = b1o* and by (6), b2Yt-
b1Y12.

The main theorem, Theorem II, is a uniqueness theorem for a system
of equations (2) of mixed type with a homogeneous boundary condition (5).

2. Problem II in a Modified Hodograph Plane

Theorem II is proved in the 0, a-plane where 0 and a are certain simple
functions of the unperturbed velocities.

(a) Trans/ormation of the differential equations.
First we consider Problem II in the hodograph plane of #-o. We

introduce the unperturbed velocities

(16) u = (x, y),
v = 9 ,(x, y),

$The relation between Theorem II and the non-existence statement was pointed out
by L. Bers.
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as independent variables. Equations (2) become

- o - '9', = ea.((1 + 2mue)qp= + 2muvwp,)

(17) + e °a,((1 + 2mu 2 )p,, + 2muvq9,,),

0. 9. + , = ew,,( (1 +- 2+MV2)T + 2muVrk)

+ eo,((1 + 2mv2)q, + 2muvrp,,)

or, by solving for ctand o,,

(q= q,- q,.) = ew [V',,{ (1 + 2mu2)q,.+ 2muvq., + (1 + 2mv2) ,.}

+ 2muvq99y9,] + eo, [ 9,q,{4muv92,,+ (1 + 2mv2) 9q}
+ ( + 2mu)v ,

(18)
(91,,v,-,) o0* = - .[T,{ (1 + 2mu)qT,,- - 4muv9,,}.- (1-- 2mV2)e,]

- e [q,{ (1 + 2mu)T.+ 2muvg?,, + (1 + 2mv2)q,,}

+ 2muvTp,,j.

But for r = 0 we have from (1) differentiated with respect to x at -r 0,

(1 + 2mu2) ,. + 4muv9, + (1 + 2mv2 )9"1, = 0.

Equation (18) reduces to

(9.-" 992,)o. = (9=,,9v - 99' )[2muvwu,, - (I + 2MU2)(O,,], ,
- .) .e o=..- L)(a+ 2MV2)oW, 2muvcoj.,:

Since the Jacobian 929?- _y - uv. does not vanish except at
co by (7) we find using (3)

(19) Q-.IC2(0* = - ._o. - (C2 - U2)01,
(-eco2* = (c2 - v2)0,. + uvo_,.

If we introduce as independent variables the angle

V
(20) 0 = tan-' -

U

and the speed q - V'u + vl, equations (19) can be reduced to

(21) c2qo4 -* e(C2 - q 2 )WO,

o* = - o.

These equations have been derived by Manwell in [8].
Note that the equations satisfied by the perturbation stream function

6
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and potential are very similar to the equations for the stream function yj
and potential 99 as functions of 0 and q:

cqTqq = e-1(c2 - q')Vo ,

9'o = - -lqV.,

The perturbation stream function replaces the potential, the perturba-
tion potential replaces the stream function and e-1 replaces e.

Next we set
f - f exp d

(22) ( q q -
= 2  

= - exp - 2 fQ dq
K~~)e oC2  2

0

where c* is the value of q for which q = 0. We assume without loss of
generality that the stagnation density is 1. Note that for small q,

- log q.
Equations (21) then reduce to

(23) *

Note that K(a) has the properties

aK(a) 0

dK
(24) ->0 for a 0.

da

which we shall need later. For, by (22), a and K(a) vanish only for q c*.
Also

dK _2q 
2 ( 1 q2 - c 2  qd exp - 2 f q d q

and
dc2  dc2

-"° < 0 by (4)dq2  d(IwI)1 .0
and

(c2 - q2)/K > 0 by (22).

From (23) differentiated with respect to 0 we obtain an equation for (o,

(25) Kowee + w,, = 0.

The differentiation can be easily justified from our assumptions.
(b) Transformation of the boundary condition.
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From (5) and (23) we have

(26) - do* = Koiuda - o ,,dO = 0

on P0 - S and the x-axis and hence also on H - E and A, the images of
P0 - S and the x-axis in the 0, a-plane.

Note that the function o satisfies an equation of mixed type similar to
the Tricomi equation, with a homogeneous boundary condition on an open
arc.

Alternatively from (23), wo* is a solution of the equation
1 dKo*

(27) Ko* + (A) K W = 000 aa K da

and the boundary condition (5) reduces to

(28) O* = 0 on H-- E and A.

The uniqueness of solutions of (23) which are constant on such open
arcs as H - E has been studied in [9, 10] but the uniqueness theorem for
(23) and (26) or (27) and (28) has not been investigated.

(c) The mapping in the 0, a-plane.

The image of the exterior of half of the profile P0 , e(Po), and the
x-axis in the 0, a-plane is indicated in Figure 2. It consists of (a) Q which

[I N  I"T

A

n3 114

Figure 2.

is bounded by 1, the image of P 0 - S and A the image of the x-axis, and
the images Yi and y2 of C, and C2 . (b) Q* which is bounded by E, the image
of S and and

*1
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The nose and the trailing edge of the profile Po are stagnation points
and therefore correspond to a -+ oo. Suppose the half angle at the nose
is eN and at the trailing edge 8T" Since the profile is convex the domain

+ Q* lies between O = TII and 0 =- - eN. We denote by UT the
point a = + oo, 0 :5 0 : 8T and by HIN the point a = + oo, - etN O 0.
The point H. , O = 0, a = a. = a(q.) is the image of the point at infinity
in the physical plane. The a-axis for a > a. corresponds to the x-axis
outside Po. The axis a - 0 is the sonic curve. The points X 0 , X1 ,X 2 ,
X 3 , X 4 are mapped into lo, 11, H 2 , H3, IH4 .

The arc 1 satisfies the important condition

(29) Kda2 + dO2 > 0.

This expression can be negative only for a < 0. But by (5), if Kda2 + dO2

vanishes on 11, then Ki + P2 also vanishes, hence by the Chaplygin
equations and equation (22),

a(x, y) a(9, V,) a(o, a) a (9, V)
XU~l~~,yY y =(u, v) - =(O, a) a (u, v)/ a(x, y)

'( + -1 0, a)SIa(u, V)

since a(O, a)/a(u, v) is bounded. But this violates condition (7).
Since yi and Y2 are characteristics the slopes of yx and y. are given by

the equations

(30) dO = VK da on y1,

dO = - v-K da on Y 2.

Since the profile is convex we have dO > 0 on ff - E.

(d) Behavior of derivatives.

By (9) the derivatives o, and co, are continuous in d'(P) except at
X 0 , X , X 2 and at infinity and therefore as functions of 0, a they are con-
tinuous except at f., 1112, h N, H7T and ff. . The functions x., x.,
yo, y, are also continuous except at //N, HT and 1. since the mappings
(x, y) -> (u, v) -* (0, a) are continuously differentiable except at these
points. We have then

(31) co, and co, are continuous except at ITO, H1 , H 2 , IN , HT and // . V.
We shall need a condition on w,, at HO, H3 and 114. By (15) w. and co,

are o(d",) where d is the distance from X 0 , X1 and X. respectively. The
functions x,,, x , y., y, are boundedat these points. H ence co, and co, and
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therefore, by (20) and (22), to, and cu, are o(d"). Since the mappings (x, y)
(u, v) -_ (0, a) are differentiable at X 0 , X 1 , and X2 it follows that

(32) oo, co, are o((a 2 + (0 - 0,)2)- 'iI2 ) where x = 1,
0j = 00 at H0, mi = 1/8, 0 = 01 , 02 at ff,, H 2 .

We next determine the behavior of the derivatives o, and o,, at H N

and HT. These two points correspond to the nose and the trailing edge where
the velocity is always zero. (By the convexity condition on P0 the angle at
the trailing edge is finite). It can be shown by the use of the asymptotic
expansions at the nose and tail for subsonic flow given in [11] (see Appendix 1
for details) that

(33) %~e, woe0 are bounded.

We verify (33) here, assuming for simplicity that the flow is incom-
pressible near zero velocity. Let z = x + iy and ZT be the value of z at the
trailing edge and En the half-angle there. Map a neighborhood of the
trailing edge onto a vertical half disc, M e C > 0, < 1 in such a way that
the trailing edge goes into the origin, and a part of the profile into the
imaginary axis. Then , const. (z - ZT)"' - ) . As a function of C = + ii,

+ iY is analytic at = 0 and + iP = a'(,r)(1 + a(,r)C + .. ). It f
may be easily justified that we may differentiate with respect to r and
obtain o + io* = ao,(0))(1 + O(C)). Differentiating with respect to z we
obtain

(34) co" - iaoy ,. const. (z - ZT)' / ( '

and from the expression for 0 + i~!' at -r 0,

(35) 9. - igw = u - iv , const. (z - ZT).El (1- E.

Furthermore differentiating (35) we find that x, x, y. y, are
O((u - iv)(- 2 )). Thus w. and o, are O((u -iv)(-)e). By (20) and (22) it
follows that as a -+ oo, (33) holds for HT since 8 =< . Similarly we can
establish (33) for HN.

The behavior of W and o, at H. is derived from (13*) and (22),

(36) OO, w, are o(10 + i(a - a®) -'A) at H..

Problem II has been transformed into Problem III in the 0, a-plane;
a function o(O, a) is a solution of Problem III if it satisfies (25), (26), (31),
(32), (33), (36) in the domain Q + *. Theorem II is then equivalent to
showing that any solution of Problem III is constant in Q + Q*. This
follows from Theorems III and IV.
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THEOREM III. The solution o/ Problem III is constant in Q.

THEOREM IV. Suppose co satisfies (25), (31) and (32) in a domain R
bounded by four characteristics Yi , Y21 Y, y. where V, and yg correspond to
greater values of a. I/ co is prescribed on y, 2 then a) is uniquely determined
in R. Or equivalently if o = 0 on Y1+ 72, W 0 in R.

Theorem IV which is a slight generalization of a standard theorem is
proved in Appendix 2. The domain R is taken to be the domain bounded
by yi, y. and the characteristics through their end points. Then W) = 0
in D + R D D + Q2*.

3. Proof of Theorem III

Theorem III is proved by the A BC-method of Friedrichs. Let co be a
solution of Problem III and consider the integral

(37) 16 = ff (Baoo + Co).) (Ka66 + o0 ) dOda = 0

where D., is a subdomain of Q and B and C are functions of 0 and a to be
chosen later. The domain D6 is bounded by the curve 9. which consists of
the two characteristics yj and y2 and the boundary curves H - Z and A,
except in the neighborhood of Ho, /1k, 1 2 and H. where it consists of four
curves Roo, R16 , R2 and R3 which exclude H, H1 , H 2 and ff. and whose
length shrinks to zero as 6 -> 0, see Figure 3. RM, R16, R2 and R3 will be

11N [InT

R 8  - 0 R

Figure 3.

chosen more specifically later. We denote the portion of 9, which coincides
with H- E, yi, y2, by H6, yli yu, respectively.

We shall show how to choose B and C in such a way that unless w) is
constant
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lim I, > 0.

This contradiction will prove the theorem.
First B and C are to be chosen so that we may integrate (37) by parts

and obtain

1 JJ j KBO + (KG)0 )- co^ (B, +KCO)

1 2

+ 0o(B9 - C) dOda
(38)2

+ B (Kg wda - 'eodO - ow dcr)

C
+ - (KoOdO + 2Kcowada - cojdO)

2
or

(39) 1 =---/ + IW+ 36 + IM

where I, Iw, I6, I, are the area and line integrals over the elliptic and
hyperbolic regions respectively. Thus,

I,,= f f {-o(--KB,+(KC),)-o 0o(B.+KC)+-I0 (B--C)dOda,

(40) D an obtain

I24 -2 (Kay2d°- 2wcooodO-,da) + -2 (K°o°dO+2K o°.oda- dO)".

By (26) we replace codO by Kcooda in the first parenthesis and Kowoda by
o)odO in the second, and obtain

1.= -!(K)2oo+o02)(CdO- Bda) + - (Kcoda-2o~coodO -wdo)
(41) H6, o_;o Ria

C
+ - (K OdO + 2Ko)o, da - ,GdO).

The integrals in the hyperbolic region are,

I== f f J-o -}(-KBo+ (KC).) -wow 0 (B0 ±K )+ -w2(B.-C,)}dOda,
2 2

(42) Da, a;o
I B (Kco2da-2%owdO--o2da) +C (KoeO+ Koda-OAC 2

(K1d-26,dOwdr -a;9;±20o~ao~O
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which, by (26) and (30), may be written as

146= f -drCO 1c 0 VZo)2 +(-Bda-CdO) c- -Ko)

(43) + -)1+K 2(CdO-Bda) + B (Kw2da
f 2 (dO f 2

H4,0O Rod+R1d+R 26 , a00

C
- 2woco odO- o2dO ) + - (Kco2odO + 2Ko)ocooda- w)dO).

d2

We note that 1 + K ) > 0 by (29).

By (31), the integrals will exist for all 6 =A 0 if B and C are continuous
in the closure of Dd and are bounded at HN and HT by (33).

We shall show that functions B and C exist such that Id and I. are
positive and bounded waay from zero uniformly in 6 and such that lir I

and lim I, are non-negative. It follows then that a) --- o -= 0 in Q. This

will prove Theorem III.
The integrals I1d and I2 are positive definite and lim I,, lim I1, are

non-negative if -70 T-0

-KB O + (KC)) > 0 in D, a =A 0,
B, + KCo = 0,

(44) BO - C, > 0 in Q, a =A 0,
K(CdO - Bda) > 0 on H. + A,
- CdO - Bda > 0 on y, and Y2,

and if
(45) lim +i = lim 'id,= 0

where I+ ,', I- are the line integrals along Rid for a> 0, i =0, 1, 2, 3,
and a 0 respectively, i = 0, 1,.2.

In the lower half plane, a < 0, we set

B =B(O, 0), a < 0,
(46) 

C =0.

Then conditions (44) for a < 0 will be satisfied if

B(O,0)>0 on 010 02,

(47) B(O, 0) > 0 for 0o 0 < 02,
B(0,0) !0 for 01 0  00 ,

where 0, = O(11 ), i = 0, 1, 2.
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For the purpose of constructing B and C for a > 0 we introduce an
auxiliary plane4 into which we map Q, a 0. We set

(48) ,s= f 0V -k(a) d a.

Then the upper half of the 0, a-plane is mapped smoothly into the
upper half of the A-plane where A =0 + ils. Let 1 1 o , Hi, H 2 , HT, HN,

H.® be mapped into Hf*, ff* , 1,* H* , //*, -* . Let R,,, 1H6, D6, A
andHff- E for a 0 be mapped into R*, 11,,, Q8 , //*. Note that since
on Hf- E, dO>0 for 0 : Owe have -4

(49) dO > 0 on H*, 000.

Using Privaloff's theorem on conjugate functions it is easy to show
that there exists a function I(A) =/1(0, ,u) + i/ 2(0, t) which is analytic in
A = 0 + i/i in the interior of Q*, continuous in the closure of Q* except at
1* H l J* *fl/, 1 / * /1 , , 2/* , and satisfies the boundary conditions:

/2 = 0 on A*,
/2 = ig on H*

where cos j = dOlds, sin i = du /ds on 11* and by (49) we may take
-or

2 < i r/2, g is a given very smooth, say infinitely differentiable,
function satisfying

(51) 0 g < 1,
g = 0 near -/* , H-*, /-/,/* where Odt > 0.

From the assumption that the second derivatives of 4 are Holder continuous
it can be easily shown that ig is Holder continuous. On s = 0,

/2=+ for 01 <00 0 ,
(52)

/2=---- for 0o _  < 02 .
2

At H* and H* where A = 0i, i = 1, 2, it can be shown that

(52) / = - log (A - 0 ) + continuous function.

At H/* where A = 00,

(53) / = log(A - 09) + continuous function.

At H/*, H/* were -+ o,

(54) / is bounded.

4In the variables (0,,u), equation (25) takes on the normal form.
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The functions B and C are chosen for a > 0 as

(55) VRC - iB = exp {/(A(0, u))}.

We must show now (a) that B and C are continuous at a =0 and all the
integrals 1, , 6, '6, exist and (b) that the conditions (44) and (45) are
satisfied.

From the properties of /(,) we see that ef is a regular analytic function
of the complex variable A in Q* with a square root singularity at/7" and 1*,

and vanishes to first order at 7"* by (52) and (53). As /u -- oo at TI* and
f7*, e is bounded by (54). Also Me e =0 on Jm A =0.

By (50), (51) and (52) we have 1/21 < max (n/2, I'l) on the boundary
and by (49), [l[< ;r/2. Therefore 1/21 < 7r/2 and VkC > 0 almost
everywhere in Q* since by (50), (51) and (52) it is not a constant. Further-
more by (52), VKC = 0 on/I = 0 and therefore since VKC - iB is analytic
up to It = 0, by the reflection principle, we have

Vkc=o on I= 0,
(56) Vkc> o in Q*,

(VRC), > 0 on ,u= 0.

We next check (a) and (b).
(a) By (56) VKC vanishes at least like /Z on It= 0. Therefore C

vanishes like a on a = 0 by (48) and (24). By (47) then B and C are conti-
nuous on a = 0 in Q, .

Plainly the integrals Ii, , 1
2,6 ,, 14, converge absolutcly for all 6 # 0

since B and C are bounded and continuous in Q,, 6 =A 0.
(b) To check (45) we must fix Ri,. For a > 0, R6, i = 0, 1, 2, is the

image in the 0, a-plane of a semi-circle R* of radius 6 in the 0, z-plane. For
a < 0, R, consists of the segments cut out by the lines a = - 6, 10 - 04I
= 6, see Figure 3. R3. is a circle of radius 6.

First we consider the line integral at 11.

rB C2K ,0I (KwOda - 2C)cod0 - 0)0 + ' (KcoedO + 2Kco~oowda - odO).

By (36), co, and co,, are o(6-). The coefficients B and C are bounded.
Therefore lim IR_ = 0.

For I+,, i 0, 1, 2, we use the 0,/I-plane:
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C B
=+R 'a 2 (Ko)oda - 2co,dO - o,,da)J B -R 2 6 , ,rO -2

+ C (K(2 do + 2co~owda - odO)

= R2 ( wwd0=o L

+ 1kc (VkoA~dO + 2oooA.d - dO).

Now from (52), (53) and (55) we have

VKC - iB = 0(A - 0,); ,

where _, = 1, 0= 00 atHo and -- 0 = 01, 02 at 1 and/1 2 .
From (24), dK/da > 0, we see that K - K'(O)a and by (48), y-

-(K'(0))'I'a'/, K , (_1)'I3(.K'(O)) 2I/32/-. Hence since co., co, are, by (32),
o( ((0 - 0,) 2 -- a2) I) they are o(62 ,/3) on R*. We set tan v = y/(O -O)

on R*, then v/K - ( )"(K'(0))36'/ sin v on R* and thus

I +R =o(i= +  [f3sin- vdv+fodv] -o(6

Substituting the values of Xi from above and xi from (32)

I +', o(1).

Hence

lim I + = 0.-- Rid

For the integrals in the hyperbolic region we have, using (46),

R = f,, B (0, 0) (Ko 2oda - w dO - codO).

By (52), (53) and (55), IB(o, 0) = O((0 - O,),) and IB(O, 0),
const. V, on 0 - Oi = . By (32), koo. and Io,,1 are o(6-") on all of
R-1. Hence

I7ia = o(6-1'3i+1) + o(6-ki) o O,- Ol' , A = o(6-,+f,+1),

and by (32), lir R- = 0. Condition (45) has been proved.
T_-- 

d

It remains only to establish the inequalities (44) and (47). We trans-
form (44) and (47) to the 0, i-plane and show that
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1 dK c

(57) -K(B o - (VkC),) + -I - Vkc > 0 in Q*,

(58) B, + (v/KC)o = o,
1 dK

(59) B 0 - (/KC),J +2 d VK > 0 in Q*,

(60) VKCdO - Bdu > 0 on H, A,

(61) B 0 > 0 on It 0,

(62) B <0 ony =0, 01 0 00,
B 0 on y =0, 00 0 02.

Since VkC - iB is analytic in A = 0 + ipu, (57), (58) and (59) hold by
virtue of the Cauchy-Riemann equations, (56) and (24). Using (55) and
(50), on H,

V\IkCdo - Bds = exp {e/} cos ( 4 - Jm/)
= exp (Me/} cos (1(1 - g)).

Now j(1 - g)j jj by (51) and by (49), - n/2 j 1 ;r/ 2, so that
cos j(1- g) >0. On A, dO = 0, B= 0. Hence (60) holds.

(61) follows from (56) since (V/KC), - B0 . Finally by (55), B =

- exp {.We /} sin Jm / and condition (62) follows from (52).
The proof of Theorem III is now complete.

Appendix 1

Behavior at Infinity and at the Nose and Trailing Edge

In this appendix the references labelled B are to Bers [11].
At inlinity. Proo/ o/ Lemma 1. First we shall need the asymptotic

behavior of the unperturbed velocity at infinity. We use the notations of
B Lemma 8a. The distorted velocity w* for the flow _Fo is an analytic func-
tion of C = + i where 4 is a mapping of a neighborhood of z = oo onto
a neighborhood of C = oo, conformal to the flow metric. The distorted velo-
city w* is defined in the subsonic region in terms of the velocity w = 9 -
iqT, see B (7.7). For C oo it follows that

(Al) W* * +-7- 
+ 

W 2 +

We may assume the mappings z C 4 are symmetric with respect to the
horizontal axes. Then w*, w2*., are all real.
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As w -* q® w. > 0 in the notation of Bers (11), we find by expand-

ing B (7.7), for z - oo

(A2) IW* I-*I = A(l - 1w. 1)(1 + o(1))

where A is a positive constant. Hence from (Al)

(A3) jwI - Iw.1 (1 +o(1)) w * W + + IA + - - - "woo

Expanding arg w = arg w* in powers of C from (Al) and combining
with (A3) we obtain

(A4) w - w. = w* ( + o(1)) Me C-1 + - JM + 0(¢-2)1 A w*
cc

The mapping from the physical plane into the C-plane is conformal with
respect to the flow metric:

(A5) d 2 + da2 = (c2 - u2 ) dx 2 + 2uv dx dy + (c2 - v2 ) dy2 .

Therefore as C - o, u -* w., v -- 0 we may choose the mapping so that

(A6) Y , y,- 1, x, --> x, -> 0 as z coW-7,14
and thus

(A7) M2. (x--iVl -M ®y)(1 +o(1)).

Substituting (A7) in (A4) we have
(1 - fM(X+iVj.-My)-1
(AAWM
A w-w -w e(+iVl-my)-+

+ o(( +ivI-m-..Y)-')) y (+)-2) !

Now

V f pvx- eudy =-Jm fe wdz

is single-valued since V = 0 on the profile P0 . Thus Jm Qwdz =0

where the path of integration may be taken as the ellipse x2+ (1 -M"2)y 2 
-

R 2. For R -+ oo, we find by direct computation that

SA 0 and therefore w*= 0. Thus5 from (A8),

,cf. [12].

I
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(A9) w - = 0((x + iV1 - MIy)

and in (A1),
, *(AlO) w* = w ++0(C- 3).

Secondly, we must derive estimates for x,x, , y., y, at oo which we

shall need to estimate to. - io,, ,we differentiate (AlO) with respect to C

and find d /dw*; differentiate B(7.7) with respect to u and v and use (A6).

This shows that x, , x, , y. , y, are 0(1w - q 1- 3/) or by (20), (22) and (48),

x, x" I ye, y, are 0(JA - A.I-"/) where
A= 0 + ip, A.= iyt.)

Since to, - iwv -* 0 it follows that

(All) (o0 - io), = 0(A-

Finally, to derive (11), we use the fact that oe - iw,, is a pseudo-analy-
tic function of the first kind. For, since co and wo* satisfy (2), they satisfy

(23) and therefore o satisfies

dK
(A12) W00 +~ W)1,, + Kd/OP =0

where y f 0 VK(o) da, (48). It follows by the similarity principle, see [13],

that in the neighborhood of (0, /u.)

(A13) OO - = exp {s(O., a)} W(I - A.).

Here s is H61der continuous, real on 0 - 0 and vanishes at (0, It), and W

is analytic. Since co* satisfies (5) ony 0 we have by (26), we = 0 on 0 = 0,

t>_It.. Introducing A*= (- i(A - A.)) = + ilA* we see that

Me W vanishes on fm A* = 0 and by reflecting about fm ,A* = 0 that W is

a singlevalued function of A*, 0 < IA*I < JA: I . Therefore by (All)

(A14) We - itop = es aA*n.
-2

Since s is continuous and vanishes at (0, ,),

(A15) oo - i--, - a_,A*-a(l + o(l)) + a-iA*-1(l + o(1)).

From (23) and (26) we have

dco* = - =mIV(OJ. - io,) (dO + U) 0
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where the path of integration is a circle of radius a about (0, )
Letting --> 0 we obtain by (A15), Jm 2nia_, = 0. By (26) and

Jm s = 0 on 0 = 0 we have Jm a 2 = 0. Hence a -  0.
Therefore

(A16) (O-iM = a,1 A*-l(1 + o(1)).

By (48), (22), (20) and (9),

(OA -- q;'(1 -= M®)"'(1 + o(1)) + o0o(1),
7co = q.(1 + o(i)) + % (ol)).

Equations (A17) yield (11).

At the Nose and Trailing Edge. Derivation of (33). For a compressible
flow i- I = 1wi const 1z - ZT I'(1- where eff is the half angle
of the trailing edge, z = x + iy and ZT is the value of z at the trailing
edge. This relation is determined in B p. 478.

To estimate x., x,, y., y, we use the method of B §8. We can derive
a representation of the form B(8.7) for the distorted velocity

w*(C) e(C(1

Here C is again a mapping conformal to the flow metric, say, of the whole
subsonic domain onto the exterior of the unit circle. The point C 1 cor-
responds to the trailing edge and the function G(C) is analytic and H6lder
continuous at C = 1. The last remark implies that the derivatives of G(C)
are 0(1 - 111-) for some o > 0. Hence by differentiating w*(C) we
estimate dw*/dC or dC/dw*. From B (7.7) differentiated we find dw*/dw.
From the flow metric we determine x,, x,,, y,, y,7. We find that x., x.,
y., y, are O(IWI1(e-2)).

Since w. - ia,--> 0 at the stagnation points we have o.- io,

o(w 2) or, by (13) and (15), co and co, are o (exp - (0 + ia) .

Since e < j it follows that wo~e, co/ are bounded, (33).
The leading edge may be treated in the same way.

Appendix 2. Proof of Theorem IV

Let o vanish on V, + y. and co* vanish at some point on yi + 72 . We

again apply the ABC-method but to the function W = 0,0 W*da + o) dO.

It is not difficult to show by (23) that W is single-valued, vanishes on yi
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and y, and satisfies (25). Let the intersection of y, and y. be at (0o, a.) and
that of y. and y, be at (0o, a) where ao, a, : 0. From (25), as in (38), we
have for any subdomain Rd of R, bounded by G8

0 = ff CWo(KW. + W.o)dOda
Rd

(A18) = KW,2dO + 2W9 Woda - W dO)

+ Jf{ W2(KC)a - We W. KCO - 2 C0} dOda.
Rd

We take R. as the domain bounded by yl, y, Y31 A and the segment So
cut out by a = ao - & Then substituting W. = o*, W0 = wt, yields

CdO - do = (%/-Kw + K2+ ±- - Kco -) 2
Y+v2 J2,+v4  2

(A19) ± (Ko'd0 + 2Koo*da - w* 2d0)

+ ffJ{ ()KC)o - owow*KC# - o*2C}dOda
Rd

where y, and 7. have positive slope V- K and y. and y, have negative
slope - -/K, see (30).

We take C = 11K. The integrals along S, are arbitrarily small as 6 -+ 0.
For, da = 0, co and co* are easily shown to be bounded by (32), and thus the
integral is bounded,

ACso dO 2 - o* ) < const. Ad
s K -- K(6) J so

But the length of So is

f do = 0 (2 f.VR do) = 0

since dK/da 9 0. Hence the integral along So is 0(61s) and has limit zero.
On yi and y. the line integrals vanish since W = 0. On y2 and y, the line

integrals are non-negative since C < 0, dO > 0. The area integral reduces to

+ K' 0)*2dOda :5 0.f f 2K'
Rd

But it is positive unless co* 0 o 0 in R.
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Appendix 3. Flow with Weak Shocks

We shall show that we cannot lift the continuity restrictions (14)
on co, or co in the supersonic region of a continuous flow and obtain a per-
turbation solution representing a flow with a weak shock.

Let us suppose that the perturbation velocities o., cow have some
discontinuities in the supersonic region, that is for a < 0. For a weak shock
we may neglect changes of entropy and vorticity, see [5], §117, and derive
the shock conditions by integrating the equations of motion. This yields

dy dx
AQU - , = ,

(A22) ds ds

dx dy
Au - + Av .-= 0

As ds
where A indicates the jump across the shock and the derivatives are along
the shock path. Equations (A22) may be written as

(A23) A ds = A 0=.
ds s

Since the unperturbed flow J-o is shockless and thus 9 and ,V have con-
tinuous derivatives it follows that o) and co* satisfy

ar '_o a1-'0
do) do*

(A24) A -is = A- _= 0.ds as

In terms of 0 and a, these equations may be rewritten as
dO dai

0 = Aw, d + Ao, d '

(A25) ds ds

o=A od + A -o* d
ds ds

and using (23) we obtain
O dO da

(A26) dO d

O=Aco. -- KAco,-do
ds ds

Since Aw and Awo are not both zero it follows that

(A27) dO2 + Kdai = o,

that is, the shock path is characteristic and furthermore the derivative of
w along the characteristic is continuous.

Suppose there exist several weak shock in the flows J" and that F'0 has
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no shocks, see §1. Then co will be a solution of Problem III except that
either (14) holds or (A26) and (A27).

Let D. be the domain in the 0, o-plane described in §3 but slit along the
shock paths. Consider the integral

ff(Bo. + Co.) (Kojw + co..) dOda

and integrate by parts. Equations (38) and (39) will be changed only by the
addition of the line integrals I. along both sides of the shock. By the
characteristic condition (A27) this integral may be written as

1, = (-B da - C dO)(o A/:_K e)

C do 2 / (da\2-(-B da - CdO) \ds I d]

where the integral is taken around the slit. Since by (A24), do)lds is conti-
nuous across the shock it follows that I = 0. Therefore equations (38) and
(39) hold and again o0 -= w, -=_ 0 or w* 0 in Q. The same argument also
yields the same result for the domain Q*. This means that the perturbation
problem is still incorrectly posed even if weak shocks are admitted.
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On the Motion of Small Particles in a Potential
Field of Flow

ABRAHAM ROBINSON
University of Toronto

1. Introduction

The analysis of the motion of small particles which are suspended in a
moving fluid is of importance for the problems of aircraft icing, and it may also
assist in the understanding of the silting up of rivers and estuaries. There
exists a considerable body of work on this subject, both published and
unpublished (see the list of references at the end of the paper). There are
individual differences as to the equations by which the motion of the par-
ticles is supposed to be governed, but all the papers on this problem which
are known to the writer involve the computation, for the most part step-by-
step, of the trajectories of the individual particles.

In the present paper, we assume that the equation of motion of a particle.
is given by Stokes' law, or more generally, that the fluid exerts on the par-
ticle a drag force which is proportional to the vector difference between the
velocity of the particle and the fluid velocity (compare [1, 2]). However,
instead of confining ourselves to the trajectory of an individual particle,
we consider the (virtual) field of flow which would be produced by a conti-
nuous distribution of small particles of given size each governed by the speci-
fied equation of motion. We derive various general properties of this virtual
field of flow, including a counterpart of Kelvin's theorem on circulation.
Moreover, we obtain a compact formula for the total mass of the particles
deposited on a slender obstacle or on a low elevation in a plane wall.

2. General Analysis

Let

00 = 0(x, Y, z, t)
be the velocity potential of the field of flow F0 of a compressible or incom-
pressible fluid, where x, y, z, denote the space coordinates and t denotes
the time. Let

qo(z, y, z, t) = ( o  , w0 ) = grad ko

be the corresponding velocity vector.

69

I



70 ABRAHAM ROBINSON

Let m be the mass and r = (x, y, z) the position vector of a small
particle which moves in the given field of flow, F0. We assume that, owing
to its smallness, the particle does not interfere with the field of flow of the
fluid, and that its equation of motion is given by

d'r
(2.1) M = - k(q - q0)dt2

where
dr

q = (u, v, w) = d I

is the velocity of the particle and k is a constant. In particular, if the particle

has the shape of a sphere of radius R, then according to Stokes' law

(2.2) k = 6;sR

where # is the coefficient of viscosity of the fluid.
(2.1) represents a system of three ordinary differential equations of the

second order for the quantities x, y, z regarded as functions of t. Thus, the
solution of (2.1) is made determinate by the specification of the six quan-
tities I

dx dy dz
(2.3) X, Y1, Z, - V= - W, w - d

for a given time t = t1 .
Now suppose that the functions

(2.4) U, = u1(x, y, z), v, = v1(x, Y, z) wI w1(XY, z)

are specified in some region of space. We may then regard x, y, z, v. , v1 , w,
as a set of initial values (2.3) for arbitrary but fixed t = t, so that (2.1)
determines x, y, z, u, v, w for subsequent times t. Hence q = (u, v, w) may
be regarded as the velocity vector of a (virtual) fluid, where in particular
q= h= (u,,vj,w1) for t=t.

Also, in this sense, we may replace (2.1) by

Dq
(2.5) - = - k(q - q0)

where Dq/Dt denotes differentiation following the motion of the virtual
fluid. In scalar notation

Du = (au au au au\
(2.6) m =m-+u-+v-+w-I =-k(u - u), etc.

We shall denote the field of flow of the virtual fluid by F.
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Now let C be a closed curve in the field F, and let P and r. be the cir-
culation round C of the velocity vectors q and q0o

r= fc qds f udx + vdy + wdz,

F0 = f cqods f{ u0dx + vdy + w0dz.

We consider the rate of change of F in time as C moves with the field
F (i.e., with the virtual fluid). Then

dr = f qds= f Dq +fd (DS) 
d- =t c tds+ (T .

Now, by (2.5)

Dq ds - (q - qo)ds  k- (F -'O)

while'
Ds .

qd jd fd(ql) =0.

Hence
d.P k

(2 .7 ) = _F )

Moreover, we shall assume that To is a constant, and hence we can replace
(2.7) by

d k
(- TO) =--(P- o),

(2.8) r = ro + ye-kt/tI

where y is a constant which may depend on C. By the theorems of Stokes
and Kelvin, (2.8) holds provided only the field F0 is irrotational in the region
swept by C during the time under consideration. More particularly, if the
field F0 possesses a one-valued velocity potential 00 , then '0 - 0 and there-
fore

(2.9) T'= ,e-ht /m

It follows that if the circulation F round the given curve C equals zero at
any time then 1 = 0 always.

If we are given initially only the conditions (2.3) for a single particle
at time t = t1, then we can always assume F = 0 at time t = t1, and hence
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at all subsequent times by defining that the velocities be equal to the con-
stants u, v, w specified by (2.3) everywhere in the field F at time t = ta .
More generally, we have shown that if the virtual field of flow F is irrota-
tional at any one time, then it is always irrotational, and hence, possesses a
velocity potential 0. It will be assumed from now on, that this condition is
indeed satisfied. Thus

(2.10) curl q = 0, q = - grad 4.

It follows that we may replace (2.6) by

a 20_ au av aw\
(2.11) ,,+ + L k(u - u)

axat ax ax ax!
with two similar equations. Integrating, we obtain the following counter-
part of Bernoulli's equation:

(2.12)m -- + -1+1 -a 2+ Iaz I - k( - 4) + H(t).1 at _Ax ay) -aJ k(,4 0 )+z)
Conversely, it is not difficult to verify that if 4 is a solution of (2.12),

for specified 40 , then q = -grad 4 is a solution of (2.5).
For steady conditions, we obtain(3.,3>(_)2+ (off, ( _)2)
(2.13) +  a! am = k(4 - 0) + H

where H may now be taken to be independent of the time.

3. Flow Past an Obstacle

Equation (2.13) may also be written as

(3.1) Im(u2 + v2 + W'2) = k(4 - 40) + H.

Put

ax'4'=4-4o, u'=u-u o =  0 'etc.,

then (3.1) yields

(3.2) m(jqo + jq'" + uou' + vov' + wow') = k4' + H

where

q0 = Vu/-, + v0 + 0 q'- u'2 + v + w'2 .

We shall now suppose that q' is small compared with q0 . This amounts
to the assumption that the difference between the velocity of the particle
and the velocity of the fluid is of the nature of a (first order) correction to the
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fluid velocity. For example, this assumption will be satisfied, generally
speaking, in the case of uniform fluid flow past a slender obstacle, provided
the particle is at rest relative to the fluid initially. The assumption breaks
down in the close neighborhood of a stagnation point but, as in thin aerofoil
theory, the overall results may still be expected to be valid.

Omitting q12 in (3.2) we obtain for the steady case,

(3.3) m(uou' + vv' + wow') = k#' + H - 4" i

Now the equations of a streamline in the field F0 are

dx uo dy vo  dz wo
ds q0  ds qo ds q0

where s measures the arc of the streamline. Also, differentiating o with
respect to s, we obtain

do
ds q

Hence, along the given streamline

dx u0  dy v0  dz wo
d o ' 0o q0' # q0

Accordingly, we may modify the left hand side of (3.3) in the following
way:

( dx ao' dy a¢' dz a' 2 ',,(,,o-' + ,,o,' + WOW') = ffo o + a~ y+  =mq°

Inserting this in (3.3), we obtain

(3.4) m o o - k#' + H - Jmqo

which is an ordinary linear differential equation of the first order for 4'
as a function of 4 along any given streamline. The general integral of (3.4) is

(3.5) 4' -exp if #o}J [(J -H ) exp {- fo}] do.

Now for the case of uniform fluid flow past a slender obstacle, with main
stream velocity U in the direction of the x-axis, we may write

00o= - U=+0o, U0 =U - a0-,

a0'o a0'o
V0 y az
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L00o a0'o 40o
The induced velocities - I -- y -T are small compared

with U (except near a stagnation point) and therefore

(3.6) 2U= U o) + + U

where we have omitted terms of the second order of smallness compared
with U2. Also, if the particle is at rest relative to the fluid far upstream
of the obstacle, then

u=U, v=w=o, €'=#- o=O

in that region, and so, applying (3.1),

mU2 = H.
Hence

H 1  1  U2 - 1

mq 0\U2 2- 9 (Wa0Ua

Accordingly, (3.5) becomes approximately

#'--exp IfJ J [j0exp I -J f 'I] do°

The constant in the integral f(k/mU 2) do is at our disposal, and so we
may choose

MU2

where A k/mU2. Then

(3.7) U e+#. f o) eO- doo

since
U~ + -

8x 8 4

To insert the appropriate limits of integration in (3.7), we bear in mind that
as x tends to -o, 0- oo and 0'-0. Hence

(3.8) 0' = u + U!

where we have used #o to distinguish the variable of integration, or
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(3.9) 0= 0 -U0, )

1 U\
Once again, we may simplify the analysis by taking into account that

the streamlines of F0 are nearly parallel to the z-axis and that, in the first
approximation,

40o
0 0 = U X , -- = -U .

Hence

(3.10) = o - U + m o e/uA( dX,

where we use X to indicate the variable of integration. However, this addi-
tional simplification will not be required for the analysis of the next section.

4. Incompressible Flow in Two Dimensions

Let us now assume that the fluid flow is two-dimensional and incom-
pressible, and takes place in planes parallel to the x, y-plane. We may then

use z to denote the complex variable x + iy. Also, 0o now is the real part of
a complex potential wo,

Wo = 0o + iVo
and we may write

Wo = 10 + iWo

where To is the variable of integration in (3.9). But the integration in (3.9)
is performed along a streamline, and so Wo = const = Vo, throughout.
Also

where dwo/dz is an analytic function of z, and hence of wo . Thus

U +( a0 _e'(0-4) Mo= R~e U + d'0o eA(wswo) dW0J +ax f dz

and therefore

(4.1) It = eIw --I U +--O z ,dW°) e-(Wo-') dW°}

If the upper limit of the integral in (4.1) were a fixed finite complex
number, it would follow immediately that the expression within the curly
brackets is an analytic function of wo, and some reflection shows that this
is true even in the present case. Hence 4 is the real part of a complex po-
tential w, where
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fd ' (U + d dW°) e- W ,
(4.2) w = O- dWo
orUJ\ dJ

fzo (U + dWo' dWoeaowoo) .

(4.3) w(z°) = w°(z°) + + -. 0 -A(wo-oz(-)) dz.
U f:~U z )dz

The lower limit of the integral in (4.3), - oo, indicates that the integral
is to be taken from a point far upstream of the obstacle. Apart from this,
the complex representation has the advantage that the path of integration
may now be deformed at will in any finite region of the field F0 .

5. The Mass Flow of Particles

Assume now that particles of equal size (i.e. of equal m and k) are
distributed uniformly and densely in the region far upstream of the obstacle.
We may then define the density e of our virtual fluid as the average total
mass of particles per unit volume. The variation of e following the motion
of the fluid is given, as usual, by the equation of continuity

1 De
(5.1) .... _ clvq.

0Dt di q.

But under the conditions of the preceding section, 0 is the real part of
a complex analytic function and, therefore, satisfies Laplace's equation

A' = - div q -0.
Hence

De
(5.2) Dt 0,

showing that the virtual fluid is incompressible.
Equation (5.2) is only approximately true. It can be proved more

rigorously that if the real fluid is irrotational and incompressible, and if the
virtual fluid is at rest initially (at time t = 0, say) then

(5.3) div q ; 0.

This shows that 0 is a subharmonic function,

(5.4) A =-div q _ 0.

In order to establish (5.3), we apply the operator div to (2.5). This
yields, on the right hand side

(5.5) -k div (q -- q0 ) = - kdiv q,

*1



MOTION OF PARTICLES IN A FIELD OF FLOW 77

while on the left hand side

(5.6) mdiv( - =m (-divq+A )

where

(au 2  aVu a wU 8W U a av (aV) 2 + w a v a uV avU ajaVW w\ 23=-+ 7 -+TZgg N = +N +- Tx+ 5z- + xax) + T y+T z y x yaLU 8 axz 8~ y 8yz z Tx8~ z
( \2 + '8u + aW! +  a) 2 + (a 2 + '8-\2 + (I +  8 \ 2

ax 1l-') IIy )+
Thus, A can be represented by a sum of squares and therefore

AI> 0.

In deriving this relation, we have made use of the fact that curl q = 0,
by (2.9). Combining (5.5) and (5.6), we obtain

D k

(5.7) D div q + divq mA.

This is an ordinary differential equation for div q, following the motion
of the virtual fluid, and since the virtual fluid is supposed to be at rest for
t = 0, we have the initial condition

divq=0 for t=0.

With this condition, the solution of (5.7) ist o
(5.8) div q - me "t/ Jehtl"mdt.

Thus,
div q 0

as asserted by (5.3). It then follows from (5.1) that

(5.9) Dt > 0Dr-

which shows that the density of the virtual fluid is a non-decreasing function
of the time, following the motion of the fluid. However, in the sequel we
shall adopt the approximate conclusion (5.2) according to which Q is actually
constant. Then the mass flow of particles across a curve connecting two
points A and B, in unit time, is given by the product of the density Q and
of the difference VA - B, where V = fm(w) is the stream function of
the field F,

(5.10) M = - ' .fm(wB WA).
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However, this formula becomes inapplicable if any of the streamlines
of F which cross the curve connecting A and B have already crossed the
solid boundary of the obstacle further upstream. Excluding this case, we
assume more particularly, that A and B are situated on the same streamline
of the field F0 . Then

-fM (WO (ZB) - WO (ZA)) = 0

where zA, zB are the complex numbers corresponding to A, B. Inserting
(4.3) in (5.10), we have

B dW
M: ~fr~ AWO (Z'B) $ W0 e- o dz

(5.11)/

- eAWO(SA) XA( +d dW 0  caw d wdZ
f -00 dZ! dz

and modifying (5.11) slightly

M:= - I __fm --wo(ZB) ewo(XA) (

(5.12)
X~om)JB (U + dWO) dW0 6Aw.d

twoXB) XAdz dz B Z

We now consider flow without circulation round a symmetric obstacle
at zero incidence; we take A as the front stagnation point and B as a point
on the top surface of the obstacle. We may choose A as origin of coordinates,
then the negative x-axis is a streamline; we may assume fm(w) = tPo = 0
along that line. It follows that ip0 = 0 also on the top surface of the obstacle,
more particularly between A and B. Also dWo/dz is real on the negative
x-axis and so the first term within the curly brackets of (5.12) is real.
Accordingly, the expression for M reduces to

M=~.m~~w~i)f ( U+~ d z -AWO dZ}

(5.13) e )f XU _ "* .M U + dW I d w ' d
sinU dS o wd -  Wo d

0 dz dz
since

dW0  MVd cw W
dz ..

is real along the top surface of the obstacle. But

dz ay
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and, since the obstacle is slender, we have the linearized boundary condition

V0 = Ul'(x)

where y =/(x) is the equation of the top surface. Hence (5.13) may be
replaced by

(5.14) M = - 1!(x)e-wIV , ,,--dz.
0 dz ,

Finally, replacing W o - wo(zB) and (dWo/dz) dz by the first approximations

- U(X - XE) and - Udx, and bearing in mind that A = k/mU 2 we obtain

(5.15) M = oUfII'(x)e-k( B- X)IMUdx6d0

where XB = Re (zn). This is a compact formula for the total mass of the
particles which strike the top surface of the obstacle between A and B, in
unit time. This formula applies equally to an unstaggered cascade of geo-
metrically similar symmetric obstacles at zero incidence, and to an elevation
in a straight wall (e.g. river bottom) which is parallel to the main stream.

Using (3.10) we might have arrived at the final formula (5.15) also by
a less careful analysis.

6. Examples

Write

= XlXZ, r = f(XB)/IB, g() =1(XB$)/(XB).

Then

1'(=) /'(l(XB)/B =rg'($).

Substituting in (5.15), we obtain

M eur, , g'($)e-- 4
(6.1) f0

= etU(x6) fo (1) dt
where a is the non-dimensional parameter kxBlmU. As la tends to zero,
M tends to

(6.2) M. = eUf(x.) J'g'($) d$ = eUf(x).

This is in agreement with the fact that for vanishingly small viscosity
the particles retain the main stream velocity, so that M becomes equal to
the product of density, main stream velocity, and frontal area. Accordingly,
it is appropriate to restate the general result in terms of the coefficient

*
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(6.3) V = .o

Suppose first that the front portion of the obstacle has the shape of a wedge,

(X) = cx, c > o.

The shape of the rear portion of the obstacle is irrelevant, but we may
assume, for example, that we are dealing with a double-wedge aerofoil. Then

I(XB) = CXB, g(e) =CXeBICXB e

and hence

(6.4)' 17 f e 1" ) de = e- e (1 -e').0 a 0 a
f

Next, consider the case of an obstacle of elliptic shape which is given
by the equation

(x -a)' y2

(6.5) a2  
+- 2 1.

Then

Y~ ~ 1 /_)= y (x - a)2

a
2

and the front stagnation point is located at the origin, as required. We
choose XB at the midchord of the obstacle, XB = a, so that I(XB) =b. Then

(ae - i
g(e) b I~ -b = 1-v(1 -) ,

g' ($) I

(6.6) 17 = fe -p ( - ) df --- d/.o V/1 -- 1 -(- e)2 o 1_-

It is not difficult to verify that along the entire segment A B of the con-
tour of the obstacle, the streamlines of F cross into the obstacle from up-
stream so that we are dealing with a real case. The integral in (6.6) can be
evaluated in terms of standard transcendental functions (see [6] p. 136,
No. 28)

(6.7) = 1 - - (I(a)

In this formula, I(a) is a modified Bessel function of the first kind,
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+i) (n + l)P(n + 2)

and L,(a) is a modified Struve function,

=".o r(n + +2 -PnT1)

Table 1 shows values of 71 for various values of a, for wedge and ellipse.
For a spherical particle, k is given by (2.2), according to Stokes' law, while
m = (4/3)7r'R 3, where e' is the density of the particle. Hence

k xE 99xB

M U 2@'R 2 U

If the particle is a water droplet, and the surrounding medium is air,
then we may take p' = 1, /s - 1.7 X 10-4 in c.g.s. units. Typical values
for XE, R, U are, in the same units,

xB- 3 X 10 2 , R=3 x 10-3 , U =1.5 x 104 ,

for the aircraft icing problem. This yields a 1.7.

TABLE I

t (wedge) 7 (ellipse)

0.0 1.000 1.000
0.2 0.906 0.855
0.4 0.824 0.734
0.6 0.752 0.630
0.8 0.688 0.543
1.0 0.632 0.468

2.0 0.432 0.310

Although no direct comparison is possible, our results appear to be con-
sistent with [2]. The fact that our approximations break down in the
neighborhood of the front stagnation point does not invalidate these results.
To see this, we shift the point A a short way upstream, and remove the path

of integration A B from the neighborhood of the front stagnation point.
Then our approximations may be assumed to hold uniformly on, and up-
stream of, the modifed A B. However, the actual flow across A B is the
same as before, by continuity, and the mathematical result, given e.g. by
(5.13), has not changed, by Cauchy's theorem. This argument shows that
our overall results may be expected to hold in spite of the breakdown of our
assumptions near the front stagnation point.



82 ABRAHAM ROBINSON

7. The Influence of Gravity

The influence of gravity has been excluded from our considerations so
far. Suppose now that a conservative body force, which is given by the
potential D, acts on the particle. Then (2.1) and (2.5) have to be replaced by

d2r
(7.1) M = - k(q - q0) - m grad D

and
Dq

(7.2) m- = -- k(q- q0 ) -- m grad D,
Dt

respectively. Now

fc grad Qds = 0

when the integral is taken round a closed curve C, for one-valued D. Hence
(2.8) and its general consequences still hold. In place of (2.12) and (2.13)
we obtain

(7.3) m a + Oyl +  ax) k

and

(7.4) +m( +) () () - k(o - #0 ) - mD+ H.

Moreover, if Q is a harmonic potential,
AD = div grad D --- 0,

then, by applying the operation div to (7.2), we may still deduce (5.3) under
the conditions stated in Section 5.

Let us now consider the particular case of flow past an obstacle under
two-dimensional conditions, as in Section 4. We suppose that the coriser-
vative body force is the force of gravity acting in a direction perpendicular
to the free stream. Then
(7.5) D2 = gy

provided we can neglect the buoyancy of the particle. If we wish to take the
buoyancy into account, we only have to replace g in (7.5) by

g' I

where m is the mass of the particle, as before, and m' is the mass of the fluid
displaced by it. We then obtain from (7.4)
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(7.6) -m + k(4 - 4) - mg'y + H

for steady conditions. If no obstacle is present, 00 = - Ux, and (7.6) is
satisfied by

(7.7) = - ux+ - g'v

which corresponds to the steady fall of the particles with ,,terminal velocity"
(7.8) V= - g'= -- gr'.

kk

The corresponding value of H is

(7.9) H = JM(U 2 + V2)

and this must also be the value of H for steady flow past an obstacle, as can
be seen by considering conditions far upstream. For that case, we write

t=-Ux +-g'y + =-Ux + Vy +

so that
U= U 4 -T) V= - -a'

ax 'T

Then (7.6) becomes

Then(7.1)2 ecos

(7.11) 2U a_ a 2= k(-' - 00)'

where 0 is the induced velocity potential of the fluid flow, 00o = 00 + Ux.
We now assume that the terminal velocity V is small compared with the

free stream velocity U and we may suppose that the same applies to the

induced velocities in the field F, - a' and - 0f'
ax ay"

Then (7.10) becomes

(7.11) MU -L + ko' = k o.
ax

The solution of this differential equation is, with the appropriate limits of
integration,

(7.12) A = U Aex f: 000e A x dX.

In this formula, A = k/mU', as before, and we have used 0o in order to
indicate that the function depends on the variable of integration X. The
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lower limit of integration has been chosen so as to ensure that 4' vanishes far
upstream, as required.

Integrating by parts in (7.12),
e-uAs [i -eUAX] f_40 euvcdX

=00 - f ax
But

, a0' u Lo--
#=- Ux + V + 4', 0 = -Ux + 4, -=

and thus

(7.13) = + 0 eUA(-X)dX ± Vy.

Comparing (7.13) with (3.1), we see that, within the stated approxi-
mations, the velocity field due to gravity is additive to the field calculated
previously. The result still represents the field of flow of an incompressible
fluid. Thus, in order to obtain the total mass of the particles which strike a
segment AB of the contour of the obstacle, we only have to add to (5.15)
the mass which would strike the obstacle in unit time if it were at rest. For
the examples calculated in Section 6, this quantity is given by eVxB.
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On a Generalization of the Normal Basis in
Abelian Algebraic Number Fields*

M. NEWMAN AND OLGA TAUSSKY
National Bureau ol Standards

It is known [1, 2] that in certain normal algebraic number fields a
so-called ,,normal" basis can be chosen for the integers which consists of
the conjugates of one number. Let F be the field in question, and assume
that it is of degree n and that ots, i = 1, 2, , n, is a normal basis for F,
where the S, are the elements of the Galois group of F.

With any integral basis otl, oP, , an one considers the matrix
D = (,(t) ) , i, k = 1, 2, . . -, n. Since the square of the determinant of D
is the discriminant of F we call D a discriminant matrix. Consider this
matrix for a normal basis. We then have A

D =(tSisk)) i, k = 1, 2, ".,n.

This special D is symmetric if and only if the field is abelian. For complex
matrices symmetry is here used in the ordinary sense, not in the hermitian.

It will be shown in § 1 that for an abelian field this special D is always
normal.1

The main question (which is considered in §3) is whether there is any
other possibility for the discriminant matrix to be normal.2 It is shown
that for cyclic fields there is no other possibility.

In §2 the uniqueness of the normal basis is studied. It is shown that
for n = 2, 3, 4, 6 the normal basis is unique apart from permutations, and
that for all other n the normal basis is not unique.

In the general case the problem studied here leads to the study of group
matrices; for, the discriminant matrix derived from a normal basis is a
permutation of a groudp matrix. In the case of cyclic fields we are led to
circulants.

§1. THEOREM 1. Let F be an abelian field of degree n with a normal
basis ac(s) and D the discriminant matrix corresponding to this basis. Then
D is normal.

*This work was supported (in part) by the Office of Naval Research.

'A matrix A is called normal if AA* = A *A where A* - A', the transposed conjugate
of A. A complex matrix A with A A' is in general not normal.

'See [3].
85
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Proof: As mentioned in the introduction, it is clear that D is symmetric
for abelian fields. It remains to show that D is normal even if F is a complex
field. The (i, k) element of DD* is

r-1i

The corresponding element of D*D is the conjugate complex value. It will
now be shown that the element is real. Let oc(ssr) -(ss,) be complex for some
value of r. We will see that the sum also contains its conjugate. Among

S2 = 4the Si there is a substitution S. with such that (s) for all ein F. We then have by virtue of the commutativity of the Galois group of F

L(SiSr) 0(SSr) - X(SSiS) o(SwSSk s)

oc(SS 7z) -(SS,)

where Sl = S. S, . This proves the theorem.
§2. Any integral basis is obtained from the given normal basis by

means of a substitution (ai) where alk are rational integers and I - ±-1.
When searching for an integral basis with normal discriminant matrix A
we may simply find a permutation of the given normal basis or another J
normal basis.

THEOREM 2. Let F be a cyclic field of degree n with normal basis M(sd)*
I n- 2, 3, 4, 6, the normal basis is unique. For all other n the normal basis
is not unique.

Proof: Assume that Si = S' where S is a generator of the cyclic Galois
group of F. Consider a unimodular matrix (ai,) of rational integers such that
(aik) (t(s')) is again a normal basis.

We prove first the following lemma:

LEMMA 1. Let (alk) be a unimodular matrix of rational integers and a(si)
a normal basis in a cyclic field. In order for (agt) (oc(s )) to be a normal basis also
it is necessary and sufficient that (aik) be the product of a circulant matrix and
a permutation matrix.

Proof: A circulant3 matrix is usually assumed of the form
ajL a2 - a.

a, • •., a,) = a a, a.,

a•. a. a, ..

In the cyclic case the discriminant matrix of a normal basis multiplied
on the left by a suitable permutation matrix becomes a circulant. Converse-

3For a detailed study of circulants see e.g. [4].

JI
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ly, if the discriminant matrix is a permutation of a circulant then the
basis from which it is derived is normal.

Assume then that the discriminant matrix, multiplied by a suitable
permutation matrix is the circulant (,(sf-k)). Use now the fact that the
product of circulants and the inverse of a circulant is again a circulant. It
follows that (aik) (a(s')) will be again a normal basis if and only if (afk) is a
permutation of a circulant.

From Lemma 1 it follows that the non-uniqueness of the normal basis
depends on the existence of a non-trivial unimodular circulant of rational
integers. (A circulant is called trivial if it has only one non-zero entry in
each row). Theorem 2 is therefore a consequence of

THEOREM 2'. An n x n circulant of rational integers cannot be unimodular
for n = 2, 3, 4, 6 unless it is trivial. For all other values o/ n there are non-
trivial unimodular circulants.4

Proof: A circulant (a,, a2 , • , a,) is unimodular if and only if a1 +
a2 c + +.. • a, C- 1 is a unit in the field generated by the n-th roots of 1,
for each of the n values of C such that C' . 1. Since for n = 2, 3, 4, 6 the
field of the n-th roots of unity does not contain any units of infinite order it
follows that for these degrees all a, but one are zero.

Suppose now that n = 2-nl, where n1 is odd and > 5. Then there is
an odd k with (k, n-) = 1 such that 3 - k- n. For this k, it is easily

shown that e = (1 + .2-u)/(1 + C2u) is a unit in the field of the n-th roots
of 1, for each of the n values of C such that Cn = 1. Thus the circulant based
on E is unimodular and non-trivial. This leaves only the n's of the form
2-, 3 . 2-' for consideration. In view of the fact that if a,+ a + + a,n - 1

is a unit in the field of the n-th roots of 1 for each of the n values of C such
that Cn = 1 then a,+ a2 (Ck)k + + a. (C)1 -(n1) is a unit in the field of
the nk-th roots of 1 for each of the nk values of C11" such that (C1/k)n = 1,
it is only necessary to exhibit a non-trivial unimodular circulant for n = 8
and n = 12. For n = 8, the circulant (1, 1, 0, - 1, - 2, - 1, 0, 1) is uni-

modular and non-trivial. It is derived from the unit (1 + v/2)2. For n = 12,
the circulant (3, 2, 1, 0, - 1, - 2, - 2, - 2, - 1, 0, 1, 2) is unimodular and

non-trivial. It is derived from the unit (2 + /-)2.

§3. We now deal with the main question. Denote the symmetric
discriminant matrix of the fixed normal basis of an abelian field by D and put
(aik)D = A. The problem is to find a unimodular matrix (aik) of rational
integers such that AA * = A *A. We prove

4We are indebted to Dr. S. Gorn for turning our attention to the problem of the unique-
ness of the normal basis. Recently H. P. F. Swinnerton-Dyer found another proof of Theorem 2'.
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THEOREM 3. Let F be an abelian field of degree n with a normal basis,
In order for the discriminant matrix A = (a,,)D to be normal it is necessary and
sufficient that (aa)'(aa) be a group matrix corresponding to the Galois group
of F.

Proof5 : The equation AA* = A*A leads to

(a)DD*(a_)' = D*(a,)'(a-)D.

We next note that DD* is a matrix consisting of rational numbers. For,
let (s,) be the normal basis from which D is derived. Then DD* -

(,(Ss))(,(sEs))', i.e. the (i, k)-element of DD* is o(ss,)-(ss:,). If we now

replace a by a(s) where S is any one of the S, we obtain in virtue of the
commutativity of the S,

¢(s s,) -(ss)

r-i1

which coincides with the previous expression since SS, runs through all
elements of the Galois group with S, Thus DD* is rational.

Hence it follows that also the right side D*(ash)'(ajt)D is unaltered if
at in D is replaced by a(s) where S is any of the elements of the Galois group of
F. However, replacing ac in D by a(s) effects a permutation of the rows of
D, i.e. can be written in the form PsD, where Ps is a permutation matrix.
We thus obtain

(*) Psa,) (ak) PS ==- (ait)'(aik)

where the Ps are n x n permutation matrices which form a representation
of the Galois group of F. In the case that F is cyclic the P s can be taken as
the powers of

o 1 o ... 0
oo o... I

0 0 0 ... I
1 o o ... o

It is then known that the previous relation implies that (afk)'(aQ) is a circu-
lant. In the general abelian case it can be concluded that (ast)'(an) is a
group matrix with respect to the Galois group of F. For, let Ps be the

permutation 2 n. Then (*) implies that the matrix obtained from
\SIS 2 . . .

(a,)'(ash) by permuting the rows according to Ps is equal to the matrix
obtained from (ajk)'(ask) by permuting the columns according to A s'. It

8K. Goldberg had previously found a different proof in the case of cyclic fields.
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follows that the s-th row of (aa)'(a.) is. obtained by applying the per-
mutation Ps to the first row. Since the Galois group is transitive, every
row of (aik)'(aik) is obtained from its first row in this manner.

We will now discuss the case of cyclic fields only.
It was shown in §2 that for n = 2, 3, 4, 6 only trivial circulants exist,

hence for these values of n the circulant (ai)'(aik) being symmetric is the
unit matrix. This implies that (aik) is an orthogonal matrix; thus each row
contains only one element (which is +1 ) different from 0 in our case of
rational integral elements. Such a matrix will be called a generalized
permutation matrix. We now show

THEOREM 4. Let F be a cyclic field with normal basis. There exists no
basis with normal discriminant matrix unless it is a normal basis or a
generalized permutation of a normal basis.

Theorem 4 follows from

THEOREM 4'. A unimodular circulant of the form AA' where A is a matrix
of rational integers, is equal to CC' where C is again a unimodular circulant of
rational integers.

Proof: We find it convenient to prove the following lemma first:

LEMMA 2. Let n be a positive integer, and suppose that M is a generalized
n-cycle with det M = det P. Then M and P are similar elements of the group
of generalized permutation matrices.

Proof: We show first that the generalized n-cycle
o I.

0 0c 2 '''0

K ..... ......
o. 0 0 ...

is similar to P, if ja2 " . a,, = 1 (this is the necessary and sufficient condition
that det K = det P). Put E = diag (el, 2, • • ,,,) where e - 1 and the
exact values of s, are to be determined later. Then

0 eJe3  0.. 0
0 0 8263. 0

E- 1PE EPE ...................

00 0 e,,_e,
8e,1 0 0. 0

We seek E, such that

ii
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82-n an ,

Since ja2 =... or, 1, these equations have the solution

Si = d l1 ,

S---- ala01,

.........~

We conclude therefore that E-iPE K, so that K and P are similar
elements of the group of generalized permutation matrices.

Suppose now that M is a generalized 1-cycle with det M = det P.
We can write M = HM., where H is a diagonal matrix of ± l's and M.
is an n-cycle in the usual sense. Hence there is a permutation matrix Q such
that M. = Q'PQ, and so M = HQ'PQ. Since Q' is a permutation matrix
and H is a diagonal matrix of ± l's there is some other diagonal matrix
H0 of l's such that HQ' = Q'H 0 . Thus M = Q'HoPQ, which implies
det H0  1, since det M = det P. Hence det HOP = det P, and so H0 P
and P are similar elements of the group of generalized permutation matrices.

The same is therefore true for M and P, and Lemma 2 is proved.
We return now to Theorem 4'. Let A be a unimodular matrix of rational

integers of order n such that AA' is a circulant. Then AA' commutes with
P, so that (PA) (PA)' = AA'. Thus the matrix A-PA is orthogonal, and
since A and P have rational integral elements and are unimodular, A-IPA
is a generalized permutation matrix. Put A -'PA = M, so that PA AM.
We remark first that M is of period n, since M is similar to P. Furthermore,
write A as the matrix of its row vectors

a,

a.

Then PA AM implies that

a2 = aM,

a n .=a2M,

a, = anM.
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These in turn imply that
a,

A alM2

We now show that M is a generalized n-cycle. For, assume that M is
the product of at least two disjoint cycles. We shall show that this implies
det A is even, which is a contradiction since A is unimodular. In order
to show this, it suffices to consider A modulo 2. We can then regard M as a
permutation matrix. Number the elements so that the cycles are (1 2... i. )
and (i -+ 1 x + 2 • .. i2). The first of the cycles affects only the first /
columns of A, the elements in each row of this submatrix being a permuta-
tion of all , 412 , " , a,1 . The determinant of A therefore is divisible by

Ox = a. + a12 + • • ' + a,,, , modulo 2. Applying the same argument to the
second cycle shows that det A is divisible by a2 = a,,+l + a1 t1+2 ± " + a,

modulo 2, and applying the argument to the product of the cycles, we find I
that det A is also divisible by a1 + a2 , modulo 2. At least one of the numbers
a,, a2 , a, + a2 is even. This implies that A is singular modulo 2, so that M
can not be the product of more than one disjoint cycle.

Since M and P are of equal determinant, Lemma 2 tells us that there is
a generalized permutation matrix Q such that M Q'PQ. Hence

a1Q'Q c

A- a1Q'PQ - c1P Q CQ,

a.Qpn-,Q c1 Pnl

with cl a1Q'.
This concludes the proof of Theorem 4'.
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Singular Perturbations of Boundary Value
Problems for Nonlinear Differential Equations

of the Second Order *

WOLFGANG WASOW

University of California at Los Angeles

1. Introduction

This article is concerned with the asymptotic calculation of the solutions
of boundary problems for nonlinear differential equations of the second
order depending in a singular manner on a small parameter e. More precisely,
we shall study real differential equations of the type

(1.1) By" = F(x, y, y', e)

together with boundary conditions of the form

(1.2) y(0) = l, y(fl) = 12,

where o, fl, 11, 12 are constants independent of e. The precise assumptions
on F(x, y, y', s) will be found below. The most restrictive one is that
F(x, y, y', e) must be linear in y', i.e. that

(1.3) F(x, y, y', -) = F(x, y, e)y' + F(x, y, s).

If the "reduced" differential equation F(x, y, y', 0) = 0 possesses a
solution yo(x) satisfying one of the two boundary conditions (1.2) it is natural
to ask whether the full problem has a solution y(x, s) that tends to y0 (x) as
e -+ 0 and to attempt a construction of y(x, s) by means of some perturba-
tion scheme.

The questions concerning the existence, uniqueness and convergence,
as e --* 0, of solutions of (1.1) and (1.2) have been dealt with by E. Codding-
ton and N. Levinson [1] and, in an earlier but less complete paper, by
R. von Mises [2]. N. I. Brish [3] using a result of M. Nagumo [4] has proved
somewhat more general results when F is of the form F(x, y, y', E)=
F(x, y)y' + F,(x, y, y') with F2 (z, y, y') bounded for all y'. As pointed out

*The preparation of this paper was sponsored in part by the Office of Naval Research,
United States Navy.
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in [1] the boundary value problem cannot be expected to possess a solution
when F is more strongly nonlinear in y'.

The present paper differs from these investigations in that it contains a
constructional scheme for the representation of the solution by means of converg-
ent and asymptotic series which reveal its analytic structure. The calculation
of the terms of these series can be effected by quadratures. No use is made
of the results of [1], so that our results furnish as a side product a new
existence proof. The construction of our series requires analyticity of
F(x, y, y', s) with respect to y, which is more restrictive than the hypotheses
of [1] and [3], as far as y is concerned. On the other hand, it is assumed in
[1] and [3] that F is independent of s. It is not difficult to extend our proof
to the case that o,. #, ll, 12 are analytic functions of e. Generalizations to
certain higher order differential equations are very likely possible.

As in most perturbation problems in which a small parameter multiplies
the highest derivative, there occurs, near one endpoint of the interval a
phenomenon of non-uniform convergence, as e -* 0, which is frequently
called a boundary layer phenomenon, because the boundary layers of viscous
flows are the best known physical applications of such mathematical
occurrences. Usually, two analytic representations are needed in such prob-
lems, one valid in the boundary layer, the other one outside, and to calculate
the correct transition from one region to the other is then an involved and
difficult task. For linear ordinary differential equations asymptotic expres-
sions valid umformly in the whole closed interval under consideration have
been calculated before [5]. But the author is not aware of such representa-
tions for nonlinear equations. There exists, however, a literature on the
asymptotic representation of solutions of initial value problems for non-
linear differential equations without a parameter, which uses methods re-
lated to those of the present paper. See, for instance, the articles [6], [7],
[8] by Trjitzinsky and by Malmquist. There are also points of contact with
the investigations of I. M. Volk [9].

2. Statement of the Problem

To fix the ideas let us assume thats > 0. The modifications for e < 0
are obvious. Our perturbation method is then based on the following as-
sumptions.

ASSUMPTION A. The "reduced differemial equation"

(2.1) Fl(x, y, O)y' + F(x, y, 0) = 0

possesses a solution

(2.2) y = y0(X)



SINGULAR PERTURBATIONS OF BOUNDARY PROBLEMS 95

/or which

(2.3) yo(fl) = 1l and Fl(x, yo(x), 0) < 0, 0C X

If the solution yo(x) satisfies the conditions

yo(a) =1 1 and Fl(x, yo(x),O)>O,

instead of (2.3), the transformation x* - x, y* = - y changes the given
problem into one for which Assumption A is true.

ASSUMPTION B. The functions F, (x, y, e), j 1, 2, are regular analytic
with respect to y and e and of class C(2 ) with respect to x in a region R of the
x, y, e-space that contains in its interior all points y = yo (x), 0C ! x fl, 8 = 0.

The assumption of analyticity with respect to e can be replaced, without
additional complications by the milder one that the F, (x, y, E) admit asymp-
totic expansions in powers of e.

Without loss of generality we may assume

(2.4) o = 0, fl =1,

(2.5) Y0(X) = 0,

and

(2.6) F(x, 0, y', 0) = -y '. i'
For, the transformation of the variables x, y, e into x*, y*, e* by means

of the equations

(2.7) x f f IF,(t, yo(t), 0) dt fF (t, yo(t), 0) dt,

(2.8) !* = y - 0 (),

(2.9) F* = -8 f' F1 (t, yo(t), 0)dt,

reduces the given problem to one having these properties, as can be seen
by direct verification.

With these assumptions the differential equation (1.1) can be written
in the form

(2.10) ey" + p(x, e)y' + q(x, e) y
= sa(x, 8) + f(x, Y, e)Yy' -+ g(Z, , 1)',

where all coefficients in R are regular analytic with respect to y and e and

in class C(2) with respect to x. Moreover,

(2.11) p(X, 0) = 1.

Our aim is to construct a solution of the differential equation (2.10) that
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assumes the prescribed boundary values

(2.12) Y(0, e) = Y(1, 0) = 0

and tends to zero in 0 < x 1, as s -k 0.

3. A Preliminary Transformation

Our construction of the required solution consists of two parts. In the
first part we calculate a particular solution y,(x, s) of the differential equa-
tion (2.10) that passes through the right endpoint x = 1, y = 0, but not
generally through the left endpoint x = 0, y = yO, and which has the pro-
perty of being in the whole closed interval 0 x ! 1 asymptotically re-
presentable by an ordinary power series in s. This solution has no "boundary
layer" for small s at x = 0. In the second part KL is shown that the required
solution, which passes also through x = 0, y = yO, differs from y(x, e) by a
convergent series that is asymptotically zero except in an infinitesimal inter-
val near x = 0.

In the present section the differential equation will be subjected to a
preparatory transformation consisting in the subtraction of a certain
function Ys* (x, e) which will later be shown to be asymptotically equal to

!/(X, 8).
We start from the observation that (2.10) can be formally satisfied by

a series of the form
(3.1) (XSr

since insertion of this series into (2.10) followed by expansion and identifica-
tion of like powers of s leads to recursion formulas of the form

(3.2) v' + q(x, O)v, = a(x, 0),

(3.3) v, - q(x, 0)v. = - v" I'' + k,.(x, vi, •, v,,_1 , V, v,..-,.), r > 1,

which can be solved successively. We can-and will-even impose the
boundary condition

(3.4) v,.(1) = 0, r= 1,2,"-.

The series so determined is in general divergent but by virtue of a
theorem, a proof of which can e.g. be found in [10], there exists a function
y* (x, e)-in fact, infinitely many such functions-analytic in e and of class
C2) with respect to x, in 0 : x : 1, 0 < E e 8 (s, a constant), that satisfies
the asymptotic relation

(3.5) y (x,a) ,.(x)a, O x ) O a e1 .
9.--
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Also, this asymptotic relation may be twice term-wise differentiated
with respect to x. (The proof in [10] deals only with asymptotic series with
constant coefficients. But the additional facts concerning the differentiable
dependence on x require only a simple corollary.) Because of (3.4) and the
construction in [10] we have also

(3.6) y (1, ) ( - 0.

The function y* (x, s) is in general not a solution of the differential
equation (2.10), but with its help we shall be able to show the existence of
a true solution yi(x, a) for which
(3.7) yl (X, 0), y1(* , ), 0 X l, 0 :58 5 8,,

and

(3.8) Y(1 ) 0.

In order to achieve this we introduce

(3.9) z = y - Y(X, 8)

as new dependent variable into (2.10) and show that the resulting differential
equation for z possesses a solution with
(3 .1 0 ) z (X , ) O , O ! -'X : l, 0 : . 8 ! 1 ,

(3.11) z(1, ) =0.

The transformation results in a differential equation of the form

(3.12) ez" + p(x, a)z' + q(x, s)z = a(x, s) + h(x, z, z', 8)

where

(3.13) at(x, a) =/(x, y4', e) ysy' + g(x, yj*, s)y*' + za(z, e)

- {ay," + p(x, ,)y*' + q(x, e)y*}
and

(3.14) h(x, z, z', a) =f(x, y+z, a)(y*+z)(y,*'+z') + g(z, y +z, e)(y*+z)I

-f(x, *', ) y* 4*' - g(X, y*, ) y*".

Since y4 (z, e) has the asymptotic expansion v,(x)a7 which satisfies

(2.10) formally, it follows that

(3.15) (x,a)v -0, 0 6 <e.

Expanding the right member of (3.14) with respect to powers of z and

V
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considering that e can be factored from the right hand side of (3.5), we see
that

(3.16) h(X, z, z', e) = (n(X, 8)z' + Q(X, S)Z) + h*(X, z, z', 8)

with

(3.17) h*(x, z, z', 8) = f*(x, z, B)zz' + g*(x, z, B)z2.

Here a, e, /* and g* have asymptotic power series expansions in a and
are in class C(2) with respect to x. Moreover, /* and g* are analytic in z at
z 0. Combination of (3.16) and (3.17) with (3.12) leads to the form

(3.18) ez" + P* (x, e)z' + q*(x, s)z = a(x, s) + h*(x, z, z', e)

for our differential equation, which is the basis of our further analysis. We
observe that

(3.19) p*(x, 0) = p(x, 0) 1, q*(x, 0) = q(x, 0),

because of the factor s in the right member of (3.16).
Our subsequent arguments are based on the asymptotic properties of

linear differential equations whose homogeneous part is the left member of
(3.18). We therefore collect in the next section some lemmas concerning
such equations.

4. Lemmas on Linear Equations

In the following the symbol [i(x)] will be used to designate functions
of the form

[1(x)] =/(x) + aE(x, e),

where E(x, s) and its first derivative with respect to x are bounded in
0 x 1, 0 :< 1 .

The first lemma below is a direct application of the standard asymptotic
theory for linear differential equations (see [11] and [5]).

LEmmA 4.4. The "variational differential equation"

(4.1) EV" + p*(x, e)V' + q*(x, e)V 0

possesses two solutions of the form

(4.2) VI(x, E) = e'[v*()], V2(x, a) = [v(x)]

where

(4.3) a = e-1,

(4.4) v(x) = exp {f: q*(t, 0) dt},
and

v*(x) = v-(x) exp{- f7 (t, O)dt}.
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COROLLARY. In terms ot its boundary values V (0, a), V(1, e) every solution
V(x, E) of (4.1) can be written in the form

V(x, a) A1(e)V,(x, a) ± A,(a)V,(, &,,
where

A1 (s) V(O, s)[1] - V(1, E)[v(1)-'],

A2(8) - V(O, ,)e-°[v*(1)/v(1)] + V(1, E)[v()-'].

LEMMA 4.2. The solution W, (x, a) of the differential equation

(4.5) aW" + p*(x, )W' + q*(x, s)w - q(x, a)

,with

(4.6) W.(X 0 , a) = Wo(x o , 8) = 0

is of the /orm

(4.7) w,(X, a) = f K(x, t, e)p(t, e) dt

with 
X

(4.8) K (x, t, a) . r - *- [,, v ()1]Lv (t) -L*()_
I I -

Proof: An application of the method of variation of parameters shows
that

(x,a(t, )v(x, a) - V(, )V(t, (t a) dt.
w.,( ) V(t, a)v;(t, a) - v(t, 6) V2 (t, a)

From this formula the statement of the lemma is obtained by substitution

of (4.2) followed by some elementary manipulation.

LEMMA 4.3. The solution of the differential equation

(4.9) aW" + p*(x, e)W' + q*(x, s)W = e-",(x, a)

for which

(4.10) W(o, ) = W(1, ) = 0

is of the form

(4.11) W(x, e) se-"o(x, a)

with

(4.12) [o')(x, C) [< c sup JP(x,a), V 0, 1.

The constant c is independent of p(x, a) and e.

I
*,
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Proof: The solution V(x, e) of (4.1) that assumes the boundary values

(4.13) V(0, 6) = 1, V(1, e) =0

is of the form

(4.14) V(x, e) = e-{[v*() - e(x-1)[v*(1)v(x)/v(1)]}.

This follows directly from the corollary to Lemma 4.1. Now,

(4.15) W(x, 8) = W1 (x, 8) - W,(0, 8)V(X, 8),

and, by Lemma 4.2,

(4.16) W1 (x, s) -Le- L "fS v(x)]e-L(t) e 9 (t, ) di.

Lemma 4.3 is a simple consequence of the last three formulas.

5. A Particular Solution without Boundary Layer

From Lemmas 4.1 and 4.2 it follows that, if the non-linear integral
equation

z(X, C) = f: K (x, t, e) {x(t, e) + h*(t, z(t, e), z'(t e), e) }dt
(5.1) (1 oK(1, t, e) {a(t, e) + h*(t, z(t, e), z'(t, e), a)}dt" Vj"(1, e) V2 (x, e)

possesses a solution, then it is also a solution of the differential equation
(3.18). Moreover,

(5.2) z(1, e) = 0.

We shall now construct such a solution by Picard's iteration method
and show that it is asymptotically equal to zero.

Let

(5.3) Zo(x, 0) = 0,

and define z,,+,(x, e), n = 0, 1,.. •, as the value of the right member of
(5.1) when z and z' are replaced by z. and z', respectively. Because of

(3.15) and (3.17) we have from (5.1) that

(5.4) Zi( X, e) ,O, V,0, 1, O -19Z !9l, 0 :!9e 1.

4;
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Generally,

z"1'+1(x, a) - zT)x e)

JK(') (x, t, e) {h* (t, Z' (t, e) , z.t8), a) - h* (t, z'. 1(t a) ..1(,a) )dt

fJK(1, t, E) {h* (t, z7.(t, ' (I, s), E)

-h* (t, z,_. 1 (t, a), 1 ... (t, s), E) }dt V j1(I, e) V2(")(x, e), V 0, 1.

The inequalities

(5.6) Iz( X, E)~ I ! Me, V 0, 1 0 : x :!E 1, 0 < 8 1

where N is an arbitrary positive integer and M a constant depending on N
and al1 , are certainly true for r = 1, in view of (5.4). Let us assume, for a
proof by induction, that they have been proved for 7 !! n. It follows then
from (3.17) that-at least for a1 so small that z,(x, a) and z'(x, a) lie' in the
domain of regularity of h* (t, z, z', a) -

Z'(t z(t, a), Z"(t, a), a) - h*(t, z7 .(t, a), z... 1 (t, a), a

(5.7) M _ Ai(z,(t, a) - z,-,.(t, aI+ Iz(t, as) - z.(t,e),

r < " 0 t 1, 0 aa 1

(The factor a might even be replaced by aN.) MIL depends on M. For abbre-
viation we introduce the notation

(5.8) =sup ( 1z'(t, a) - Z_1 (t, 6) 1 + 1z" (t, a) - ~(t, E))

Insertion of (5.7) and (4.8) into (5.5) followed by summation over v leads to

(5.9) CrirMar r<.; , 0 a,

with another constant M. , and hence to

Iz%(,) -(, Z'( X, a) - z~(r- X, a) 5 (M28), C,
(5.10 -1 r_1

( 5 .1 0) :!9 Sv = 0 , 1 , 0 x 5 1 , 0 e:a!9

But
C, !! WMa',

by virtue of (5.3) and (5.5); and (5.10) becomes, therefore,

Zft) (Z' E) lM2 MEN, V=0, 1 0 x 1, 0!!9eel.

n+1 _.s
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The constants M, M2 depend on e1 , but they are bounded if el is small.
For e1 sufficiently small, therefore, 4EM2/ (1 - Ms) is less than unity, and
(5.6) is proved for r = n + 1 also, i.e. it must be generally true.

For this value of 8 the factor Me in (5.9) is less than unity as well.
From this fact the convergence of the sequence z,, (x, 8) to a solution z(x, e) of
the integral equation follows by the usual argument of Picard's iteration
method. At the same time one proves, that z' (x, e) tends to z' (x, 6). Finally,
letting r tend to infinity in (5.6) we see that, since N is arbitrarily large,

51)z() (X, 8) -,0, V= 0, 1, 0 -<l:5, 0 8 1. i

The second derivative z" (x, s) is then also asymptotically zero, in con-
sequence of the differential equation itself. By repeated differentiation of the
differential equation the formula (5.11) can be extended to as many deriva-
tives as exist and are continuous.

The theorem below summarizes these results.

THEOREM 1. The differential equation

6y" + p(x, e)y' + q(x, e)y = 8a(x, 8) + I(x, y, s)yy' + g(x, y, E)ys,

with p(x, 0) = 1, possesses, for 0 8 , 8, solutions that admit in 0 5 x 1
a uniformly valid asymptotic representation by a series in powers of E, as
8 ---> + 0. Among these solutions there is one y,(x, e), with y,(1, e) = 0. The
asymptotic series may be twice termwise differentiated with respect to x.

We shall see later that y,(x, 8) is not the only such solution, but it is
clear that all solutions that are asymptotically represented by a power series
in 0 < x < 1 and vanish at x = 1 can at most differ by functions that are
asymptotically zero, since the coefficients of the power series must satisfy
the differential equations (3.2), (3.3).

6. Construction of the Boundary Layer Correction

In Section 3 the function y* (x, e) could have been any function satis-

fying the asymptotic relation (3.5). We may now take as yl*(z, s) in the
transformation (3.9) the particular solution yl(x, 8) constructed in the pre-
ceding section. The transformation

z = y - yl(x, 8)

leads then, as before, to the differential equation (3.18). Since y1 (x, 8) is a
true solution of the differential equation (2.10) we see from (3.13) that we
now have

(6.1) (x, 8) -0

instead of the weaker asymptotic relation (3.15). To the required solution of

j
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(2.10) with boundary values (0, yo) and (1, 0) there corresponds a solution
of (3.18) with

(6.2) z(0, a) = yo _ y/(O, 8), z(1, 8) = 0.

The existence and analytic structure of z(x, e) could probably be in-
vestigated by Picard's method making use of Green's function. This method
would have the advantage of being applicable even when the differential
equation is not analytic in y. But since the necessary calculations seem to be
rather involved, and since we are aiming at an analytic expression in series
form we shall find the solution instead in the form of a power series in its
initial value z(0, B) and prove the convergence by the method of dominating
series.

Let us set, for abbreviation,

(6.3) y - y(0, / t

and insert for z in (3.18) formally the series

(6.4) z I 4ur,
r-1

where u = u,(x, s) are functions to be determined. By identification of like
powers of IA and by using (6.1), we obtain the recursive differential equations

(6.5) 8u'' + p*(x, a)-' + q*(x, e)u1 = 0,

(6.6) cu" + p*(x, a)u' + q*(x, s)u, = hr(x, It . _ ,u , ., , ),
r>1,

where the functions h, have the following properties:
1) h, is a polynomial in the u, and u' , " = 1, • •., r - 1, linear in the

u' combined and without constant or linear terms in the u, and u' combined.
2) The coefficients of this polynomial possess asymptotic power series

in a each term of which is a function of x of class C2).
If the ur are determined from these differential equations, and if the

resulting series (6.4), as well as its termwise derivative with respect to x
converge uniformly and absolutely in 0 x < 1, then it represents there a
solution of the differential equation (3.18) with at(x, a) = 0. In fact, if we
multiply the equations (6.5) and (6.6) by 1A and It, respectively, and sum
over r, the right member is, in view of (6.4), precisely the function
h* (x, z (x, s), z'(z, a), a), and the last two terms in the left member become

OD It

p* (x, a)z' + q* (x, e)z. The first term of the left member, i.e. a 1 ur u , must

therefore also be uniformly convergent and, hence, equals Ez".



104 WOLFGANG WASOW

The boundary conditions (6.2) are satisfied if we require that

(6.7) U1(o, a) 1, U1(1, 8) = 0,

(6.8) U'(0, e) = u.(1, a) = 0, r > 1.

7. Convergence Proof

The asymptotic form of ul(x, E) is immediately determined from (6.5)
and (6.7) with the help of (4.13) and (4.14). We find

u1(x, a) = e- {[v*(x)] - e'( - )[v*(1)v(x)/v(1)]}(7.1) 
0 !9 !9 8

where

(7.2) In].v)(x, S)i " v 0,1,

, being a constant independent of a.
The convergence of the series (6.4) will be proved by constructing a

dominating series : u, with constant positive coefficients. As a first step

we construct a function h (z, z') which dominates h* (x, z, z', s). Let the
constants zI > 0 and a1 be so small that the two series

(7.3) /*(x, z, a) 1 Y 8(x, )z, g*(x, z, a) - ¢(Z, B)zI
S-0 -0

for the functions in (3.17) converge uniformly and absolutely for

(7.4) O x 1, IzI z1 ,0 a 1E.- .

If C is a constant such that

(7.5) I/*(x,z, ) I C, g*(x, z,a ) P C

in that domain, then both functions are dominated by the series

which represents the function

Hence

(7.6) (z,z') = C 1 -- f- 1 (zz' + z2)

dominates h* (x, z, z', s), in the sense that every term in the series for h*
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in powers of z and z' has a coefficient whose absolute value in 0 x 1 1,
0 s a1 has the corresponding coefficient in the expansion of h as upper
bound.

Next, functions h, dominating the functions h, introduced in (6.6) are
00 G

defined as follows: Insert into k(z, z') the formal series I Ivg, I ,/," for
r-1 ,-1

z and z', respectively, and rearrange according to powers of y. The coefficient
of je, which will be denoted by 4,(1, , -1; v, , - - ) is a poly-
nomial in the indicated arguments, linear in the i' with positive coefficients
that are upper bounds, in 0 x 1, 0 < s !! e,, for the moduli of the
corresponding coefficients of the polynomial h, (x, z1, ... , z,
Zr-1 ,)

We now proceed to define a sequence 12, that dominates u. It has
already been proved-cf. (7.1), (7.2)-that

(7.7) lu(x, e) e e 'i , 114(x, s) 1 ae 004 0 x 1 0 e el.

We shall now show generally that

(7.8) <u,(, o _ e u (xe)I5c 4, 0 _ x 1, o <: <

where the 4, are determined from the recursive relation
(7.9) lir = (,.... 4,.

Ug Cr, " -1,U,"", -1 , ¥ 2, 3, "

Consider first h2 (x, u, ul, e). This function is a polynomial in u and
u without constant or linear terms and linear in u'. Hence, we obtain from
(7.7) and the definition of h 2 (', Vl) the inequality

and therefore, by virtue of Lemma 4.3 and equations (7.9),

(7.10) [U2)(x, 6) . 7e-"l~2(41 , a y) 'e--2.

The completion of the inductive proof of the formulas (7.8) is straight-
forward and is therefore omitted.

If we can show the convergence of the series 4 , the uniform and

absolute convergence of the series (6.4) will follow. Now, the equations

(7.9) are also obtained, if the series 4 r is inserted for into the equation
r-1

(7.11) -ch(, ) -P, = 0

and the coefficients of /," are set equal to zero. The equation (7.11) is
satisfied for = = 0, and the partial derivative of the left member with



106 WOLFGANG WASOW

respect to is different from zero at e =/ = 0. Therefore (7.11) defines
as a regular analxtic function of a in a neighborhood of -= 0. The series

®u,, represents this function, hence it converges for sufficiently small

Ijul, say Lyj yo. 00 O

The derived series u,(x, e)gs' is dominated by 4 t,ap. The series
f r-1 -- i

I eu,(x, )pr is therefore also uniformly convergent in the same interval.
7-1

It then follows, from the differential equation (1.1) itself and from the

formal construction of the u,(x, e) that the series I 62u','(x, 8)'jr converges
r-:2

uniformly as well. (The factors 8 and 82 in these series are necessary, if we
wish our statements to hold for x = 0 in the closed interval 0 ! a E Ea.
The value of au'(x, a) at s = 0 is of course to be defined by lim 6u'(x, ).)

8--*0

Because of the factor e- " in (7.8) the values of the series u t' (x, -)g,

v = 0, 1, tend exponentially to zero, in every interval 0 < xi x 1.
In the theorem below these results are summarized in terms of the

original differential equation (1.1). For convenience the notation has been
changed in a few points.

THEOREM 2. If the differential equation

ay" = F,(x, y, 8)y' + F2(x, y, a), 6 > 0

satisfies Assumptions A and B of Section 2, then there exist constants 8 > 0,
y 1 > 0 such that the differential equation possesses, for 0 < e < 8,

1 - y(0) __ , in o x f a solution satisfying the boundary condition

Y(a, 8) =A 6,, y ) = 12

This solution is representable by a uniformly and absolutely convergent
series of the form

(7.12) y(X, ) = u (x, ,)Iu.
r-O

The convergence is uniform with respect to E, u and x for 0 :!9s ei ,

The terms of this series have the following properties:
1) uo(x, 0) is the given solution yo(x) of the reduced equation which satis-

fies the right hand boundary condition u,(#, 0) = .
2) u,(z, E) has an asymptotic series expansion in powers of s. This series

lI

[I
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is a formal solution of the differential equation and satisfies the right hand bound-
ary condition.

3) jz = l1 - u(oc, ).
4) The junctions u7(x, e), r > 0 are of the form

(7.13) Ur(Z, s) = exp{ -a f Fl(t, y.(t), 0) dt co,(x, e)

where co)(x, e) is bounded.
The series (7.12) may be twice termwise differentiated with respect to x,

/or 0 < 8 81. The series Ie'u ') (x, E)tsr, v = 0, 1, 2 converge uniformly in
the full range 0 s 5 el 1, jl - yo(a)j I< , x f .

REMARKS.

1) The boundary layer. When y= 0 then y() (x, s) tends to yo') (x)
uniformly in the whole interval 0 < x 1, for v = 0, 1, 2, . • •, n, where
n - 2 is the order of differentiability of F(x, y, y', 8) with respect to x.
In other words, there is then no boundary layer phenomenon. This is a little
surprising, for one often hears the remark that the boundary layer occurs,
because the solutions of the reduced first order equation cannot satisfy both
prescribed boundary conditions. From this view point one would expect the
boundary layer to disappear when the solution yo(x) = uo(x, 0) of the re-
duced equation happens to pass through the left boundary point as well,
i.e. when/1 - uo(a, 0) = 0. However, I = 0 means that 1 - uo(oc, 8) = 0
or 1 - uo(cx, 0) = O(e). Thus, when both boundary conditions are satisfied
by yo(x), Theorem 2 shows that

y (x, 8) y(x) + 0 (e) + exp{ -afFI(t, yo (t), 0) dt}10()

Therefore, there is no boundary layer in y(x, e) itself, but-unless, excep-
tionally, the 0(e) in the third term is 0(2)-it is still true that

lim y (m, 6) 0 Yo (a).

2) The leading perturbation terms. The calculation of the series (7.12) re-
quires the successive solution of sequences of linear differential equations
provided yo(x) is given. The terms of the asymptotic series for uo(x, a) can
be determined by quadratures. In view of formula (7.1) the same is true of
u (x, 0) 6". We give the leading terms explicitly: Let

p1(x) = F,(x, yo(x), yo (x), 0),
p2(X) = F1 (x, yo(x), 0),

a(x) = F.(x, yo(x), yo (x), 0),

vi(W = exp {J" dt}a dt
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(The subscripts y, s indicate partial differentiations.) Then the solution of
(1.1) satisfying (1.2) is approximately equal to

yo(X) + 6v-l(x) + (11 - yo(ac) - evi (ot)) exp{ f: (ap + php1) dt}.

We omit the straightforward calculation that leads to this formula.
The error is 0(62) in every fixed subinterval 0 <x, ; x 1. In the whole
interval 0 x 1 the error is 0((A - yo(a)) 2 + e).

3) The higher perturbation terms. If the asymptotic series for uo(x, e) has
been calculated to within terms of order 0 (8N) -which, by virtue of the for-
mulas (3.2), (3.3) and (3.4), requires only quadratures, no matter how large
N-then the coefficients of the differential equations (6.5), (6.6) can also
be determined with the same accuracy. Solution of these linear differential
equations yields the functions wo,(x, e) of (7.13) to within terms of the same
order. If F(x, y, y', e) is analytic in x, then the functions [v*(x)] and [v(x)]
of (4.2) possess asymptotic power series in s, [12], and the approximate
solution of (6.5) and (6.6) to any desired accuracy can also be performed by
quadratures.

8. Reordering of the Series

If F(x, y, y', s) is analytic in x also, our results can be made more explicit

on the basis of the following lemma.

LEMMA 8.1. Let p (z, 8) be a function for which, as e-* + 0 an asymptotic
expansion of the form

q(z, a) erg 8~(Z)

r-O

is uniformly valid and indefinitely termwise differentiable with respect to z, in
0<z 1; then

(8.1) fXem0( )p(t, a) dt = st(z, s) -

where ip(z, 6) also possesses an asymptotic expansion, whose leading term is
po(z). Moreover, X(e) - io(0, e).

Proof: By means of n + 1 integrations by parts one finds that

f: e=0(t-X)99(t, 6)dt

(8)2 aei x1 0$-1 /
(8.) -z, m e e -(1m (0, e)

+ 1 n(- f' -- ,+,(t, e)dt.

+ (_ ).+xm! a
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One more integration by parts shows that the last term of the right
member is 0(8n+2), uniformly in 0 z < 1. Now, by assumption,

(8.3) T ()(z, s) = i a'4)(z) + ae+E )(z, a),
r-O

where each E(s (z, e) is uniformly bounded in 0 5 e < el, 0 x 1. In-
serting (8.3) into (8.2) and rearranging according to powers of e we obtain
a relation of the form

n n

(8.4) Je,('s)(t, e) dt = e Z p,(Z) - 8e-I I e V,(0) + o(a +),
f "V-0 V-0

with p0 (z) = 90 (z). Let V(z, s) denote some function for which

(8.5) (Z, ) E ,(z),
V-0

uniformly in 0 _ z 1. The existence of such a function is assured by the
theorem already used in formula (3.5). Since the sums in the right member
of (8.4) differ from v(z, e) or v(0, a) by terms of the order O(Eu+ 1) and n is
arbitrary, the proof of the lemma is at hand.

With the help of this lemma and those of Section 4 the analytic form
of the functions u,(x, e) can be studied more explicitly. The reasoning con-
sists in a rather simple elaboration of the previous discussion of these
functions. We content ourselves with the statement of the resulting formula

Vr

(8.6) U,(X, a) = ,.(, )e ,
a-.0

(provided f' Fl(t, yo(t), O)dt = z) in which all 9,,(x, a) possess asymptotic

power series in e. In particular it turns out that

(8.7) .(z ,* ) 0, ,> 0.

The formula (8.6) suggests a rearrangement of the series I u7 (x, )'Ur
c r-O

according to powers of e". This is permissible, if the series Xu,* (z, e)/ ' with
r-0

Ur(x a) 19,,., 7 (x, aIe-'
8-O

converges. That this is so requires again only a somewhat detailed retracing

of the convergence proof for I u7(x, s)yr, which will be omitted.
r_0

The rearrangement leads to a series of the form

a.( ,L

At
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Because of (8.7) we have
ao(Z, 8, 11) -, U(X, 8).

The functions a,(x, s, l4) are of the form

a.(x, l) = (4 - uo(, x))'Qm(, )
8-rn

with coefficients Q. (x, e) analytic in x and possessing asymptotic series in E.
Analogous arguments can be applied to the series r u (x, )14',

r=l

(v = 1, 2). The theorem below states these results in the notation of the
general case.

THEOREM 3. I/ F,(x, y, e)y + F 2(x, y, 8) is analytic in x, in 0 _- x < 1,
in addition to satisfying Assumptions A and B, then the solution (7.12) of the
boundary value problem formulated in Theorem 2 is of the form

(8.8) y(x,)=Ic.(x,l ) exp m J F(t,yo(t),0)dt}.
m-O

The series converges uniformly and absolutely for 0 x 1, 0 s E1 ,
yo - Y(x) I < pl. The functions cm(x, 11, 8) are there regular analytic in x and

in 4 and possess asymptotic series in powers of 8. Moreover
Co (X, It, 8) , Uo (X, 8),

and
c . (X , 1 , 8) = (1 - U 0(0 , 6 )) ,,c *(X, , ) ;

where c* (x, 1 , s) has the same regularity properties as c, (x, 1 , 8).
The series

(8.9) 18T (, 1 ) exp ma f -,(t, yo(t), 0) d , v = 1, 2,

converge uniformly in the same range.

9. Stretching of the Boundary Layer

Although the series representations in Theorems 2 and 3 are valid in the
whole interval a x < fl, they have certain disadvantages for the approxi-
mate calculation of the solution inside the boundary layer. The approximate
formula derived in Remark 2 of Section 7, for instance, is satisfactory only,
if/l -y (at) is small, more precisely, if it is of the order 0(8). In the hydro-
dynamic applications, where such a condition is usually not satisfied, approx-
imate solutions in the boundary layer are in general obtained by a ,,stretch-
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ing" of the independent variable. In our example a natural stretching trans-

formation consists in setting

(9.1) X = a + z, y(, )= (c + z, 8) = w(z,e ).

This changes the given differential equation into

d2w dw I dw
(9.2) az-- = F o(m, w, 0) - +-aG Z, W, .

dw
If F(x, y, y', e) is analytic in all variables, then G z, wd /) is also. The

boundary conditions (1.2) are changed into

WA0,8)= , w((# - 00a, 6)l.

It is plausible, but not obvious, that w(z, e) can be approximated, at
least for bounded z intervals, by some solution wo(z) of the differential equa-
tion
(9.3) d2w° = F(., wo, 0) dw .

dz2  dz

Another, even less self-evident, plausibility consideration leads to the bound-
ary conditions

(9.4) Wo(0) = '1, wo(Oc) = yo(o)

for this approximate solution.
We shall now confirm these conjectures with the help of Theorems 2

and 3. The series (8.8) for the full solution y(x, e) becomes, after the trans-
formation (9.1),

(9.5) w(z, a) = I c.(o + sz, , e) expI mf F(o + er, yo(a + er), 0) dr.

According to Theorem 3 this series is convergent, uniformly with respect to
z and to e in the range

0 z <(- )a, 0 < : eJ.

For s 0 it defines, therefore, in particular, the function

(9.6) w(z, 0) = ( c,,( , l1, 0) exp {mz F(a, yo(a), 0)).

Since

w(0, 0) = ._c(, , 0) = lim y(0,e) - 11,{

w(z, 0) has the initial value

(9.7) w(0, 0) 4.
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As z-- oo, we have, thanks to the condition (2.3),

w (o, 0) = co(, , , 0).
But by Theorem 3,

co(c', l , 0) = uo(o, 0),
and by Theorem 2,

u0(0, 0) = y0 (a).

Hence,

(9.8) w(co, 0) = yo(a),

Thus w(z, 0) satisfies the two boundary conditions for wo(z) in (9.4).
The series (8.9) becomes, after setting x = a + ze,

d' c.(ez + ,l e) exp Im fF(+er, yo(o + e),0)dr v=l, 2.
0a-0 a

This is the termwise derivative of the series (9.5); it is uniformly convergent,
with respect to z, in any fixed interval 0 z :5 z, . It therefore represents
d'w(z, s)/dz'. Since the convergence is uniform with respect to e also, for
0 _ e _ el , and as each term is continuous in e at a 0, we have

lmd'w (z, )__d'w (z, 0)
(9.9) lim d'~,e= -dwz )v =1, 2,

e-+ o dz' dz
for 0 <z < z1 .

Observe that the formally analogous relation

(9.10) lim y"(X, 6) - y(, (x, 0)

is not true at x = a. The reason is, of course, that each term of the series
(8.9) is discontinuous in e and x combined at e = 0, x = ac. In (9.10) the
value of x is held fixed independently of e, whereas in (9.9) the variable x
approaches a in accordance with the relation z = m + ez. Thus we are
dealing with two entirely different passages to the limit.

From (9.2) and (9.9) we conclude that w(z, 0) satisfies the differential
equation (9.3). We have therefore proved

THEOREM 4. If y(z, e) is thei solution (7.12) of the given differential
equation with the boundary values (1.2), then

lim y(a + ez, 8) = Wo(Z),
6--+ +0

uni/ormly for 0 5 z S z, (z, arbitrary but independent of e), where we(z)
satisfies the differential equation (9.3) and the boundary conditions (9.4).
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