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Summary;  It Is shown that functional equations 
of the form f(p) • Max Tk(f(p)) which occur In 

the theory of optimal Inventory and optimal 
allocation may be solved by very simple iterative 
processes under certain conditions. 

ftl 

ON THE COMPUTATIONAL SOLUTION  OF  SOME FUNCTIONAL EQUATIONS 
IN THE THEORY OF DYNAMIC  PROGRAMMING 

Richard Bellman 

Introduction 

The  theory of dynamic  programming gives rise  to a general 

class of functional equations having the   form 

II 

f(p) - W~  Tlc(f(p)) (1.1) 

where T^ Is a transformation.  In general, these equations cannot 

be resolved explicitly, and iterative techniques must be used to 

determine the solution. 

Since the numerical evaluation of the maximum over k is, 

in general, quite onerous, it is desirable to have an alternative 

method of computation of successive approximation to the solutions. 

We shall show how an alternative method can be obtained for 

two important classes of functional equations, those occurring 

in multi-stage allocation processes, an example of which is 

f(x) - Max  CgCy) + h(x-y) + f(ay ♦ b(x-y))3    (1.2) 
0<y<x 
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and those occurring In optimal Inventory theory, an example of 

which Is 

I 

f(x) - Hin fvU.y) + ^Cf(0)(1-h(y)) + S  f(y-e)h'(s)ds31 1 
v^x i- o -J 

do) 
y^x 

J2.  Optimal Allocation 

It is known (see [l] , [^"J ) that If 

a. 0 < a, b < 1 

b. g(0) - h(0) - 0 

c. g(x) and h(x) are continuous  In  [p 

(2.1) 

& 

then the unique continuous  solution to (1.2)   In   [0,0}  which Is 

zero at x • 0 Is obtained by starting with an arbitrary contlnut- 

ous function f0(x)  zero at x - 0,  and iterating 

fi  - T(f0) 

f« - T(f») 
(2.2) 

and so on,  with f(x) - lim      fn. 
u—> oo 

Let us now assume that  in  (1.2)  the BJaximum is taken  inside 

the interval  C0»x3   for a11 x > 0»  an(1>  ln< 

matIon in  (2.2) above. 

Then we have 

eed,   for each approxi— 
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fn+l(x)   " S^n*  * h(x-5rn)  +  fn(ayn * b(x-yn)) (2'5) 

where yn - yn(x)   Is determined by  the equation 

0 - g'(y)  - h«(x-y)  +   (a-b)f;(ay + b(x-y)) (2.4) 

Returning to  (2.5),  we obtain 

ClW   -  ^,(yn) " hlCW„)  +  (a-*)f;(ayn + ^^-yn))3   -^ 

♦ h«(x-yn)  + bf^ay^ b(x-yn)) 

(2.5) 

- h«(x-yn)  + fn^^n + b(x-yn^ 

Prom  (2.4)  we  see  that  ^(x)  determines y0(x),  while   (2.5) 

shows  that y0(x)  and  f^x)  determine  fi(x),  and so dn,   recurrcntiy. 

From this  it  is clear that  the  Important  sequence  is actually 

j fn^xM * which may now be computed recurrently in very simple 

fashion. 

Actually,  we obain more.     If f0(x)  agrees with the actual 

solution f(x)  in ••me interval  IP,c] ,  f i (x) will agree in a larger 

interval,   f«(x)  in a  still  larger interval, and so on.     Thus 

the actual  solution may be  obtained by recurrence. 

^3.     Optimal Inventory 

It is known   (see   Q3 »   W)   that lf 

I 
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a.     0 < A <  I 

..     h'(8) ^0,    J    h* (s)d8 -  1 
(5.1) 

c.    vfay)   ls  continuous  In any finite  Interval 0 < y < c, 

the  solution of   (1.3) may be  obtained by Iteration using the 

sequence 

^1 - T<fn) 
(5.2) 

Then 

Let us assume again that the minimum Is always taken Inside. 

fn+1(x) - v(x,yn) + ;M:fn(0)(l-*(yn)) * J fn(yn-B)^(B)dO 

(5-5) 

where yn Is determined by the equation 

-^- (x,yn) +  J < (y-8)h' (8)ds - 0 
dy     "     o 

(5^) 

I 

Returning to (3.5), w« obtain 

Ll<«) - *" (x'yn) n+l 

(5.5) 
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This again furnishes a very simple computational algorithm 

for determining y given f* and then f{ given yn and f', and so on. 

_54.  How to Obtain Internal Extrema 

To insure that the minimum In (3.2) is attained inside, we 

replace g(y—x) by g(y—x) — £^y—x (or some similar function) 

where £, Is small.  Then the derivative at y - x Is —oo, showing 

that the minimum cannot be at y « x. 

Similarly in (2.2), we replace g(y) by g(y) + £^y"and 

h(x~y) by h(x~y}+ E^x-y. 

It is easily seen that for small S   these changes affect 

the solution by a small quantity proportional to i, and consequently 

have no material influence. 
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