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 ABSTRACT

A critical review is given of available information on sound
propagation through the lower atmosphere. The application is to the
prediction of sound fields due to aircraft (in flight or on the ground),
especially, at distances up to & few miles from the aircraft sound
sources. Treatment of the prediction problem requires consideration
of a number of topics including (1) absorption processes in the air,
(2) boundary effects caused by the earth and (3) refraction of sound
due to spatial variations in air temperature and wind. Although a
fair amount of information is now available on these topics a consider-
able amount of research remains to be done before practical solutions
will be avallable.
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INTRODUCTION

Airports and their immediate vicinities are becoming more and
more subject to intense noise as the tendency to use ever more power-
ful aircraft continues. Because of increasing human reaction to this
situation, the neighborhood aircraft noise problem presents itself as
a most serious one, It is evident that in the design and operation
of an airport acoustical planning must henceforth play a highly im-
portant role.

For such planning to be effective it is, of course, necessary
to be able to predict what. sound levels will exist, under given condi-
tions, at various points on and in the neightorhood of an airport. To
do this one must, in the first place, have information on the aircraft
sound sources that will be used. That is, one must know what noise
levels exist in the pear field of the source, both when operated in the
open (either on the ground or in flight) and when modified by enclo-
gsures or other shielding structures.

One would then hope to use these pear field results as a basis
on which to calculate noise levels at large distances from the source,
i.e., in the far fileld. It is, of course, obvious that to do this one
must know how the sound field changes with distance. A study of these
changes constitutes the subject of propagation of sound through the
atmosphere and over the ground. An investigation of sound propagation
problems must include a variety of topics for consideration including
(a) absorption processes in the air, (b) viscous dissipation and con-
densation phenomena if fog is present, (c) effects caused by the earth
as both an absorbing and a reflecting boundary, and (d) refraction of
sound due to spatial variations in air temperature and wind.

It is these problems of sound propagation with which this re-
port is concerned. The principal aim of the report is to give a re-
view of the present state of knowledge of atmospheric acoustics, es-
pecially as related to aircraft noise propagation. The attempt has
been made to include all suitable material available on this subject,
whether in the form of work published in the scientific journals, or
in the form of technical reports, or in some cases, in the form of
private memoranda.

All such material comes ultimately from either of three kinds
of activity, namely, from theory, from lahoratory experiments, or fram
measurements made out-of-doors. In this report each of these three
sources makes its contribution, as discussed briefly below:

(1) There is a rather extensive amount of theory avail-
able on special topics related to atmospheric acoustics.
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In some cases the results are fairly directly
applicable to actual out-of-doors situations.,

In others the theory in its present form is for
conditions too idealized to apply in the field.
The latter kind of theory can be very useful,
however, in suggesting which parameters are likely
to be the important ones, and for use in estimat-
ing the order-of-magnitude of effects.

(2) Further information on particular aspects of atmos-
pheric acoustics problems comes from the results
of laboratory experiments. Some of these results
appear to be rather directly applicable to certain
field situations, but for most of the experiments .
this is not true, the conditions being quite dif-
ferent than those obtaining in typical aircraft
noise problems. The latter experiments are never-
theless of great importance. Theories can often be
tested with comparative ease in the laboratory, where
parameters are more readily varied and controlled than

. ! in out-of~doors. When theories have been examined

’ , critically by means of laboratory tests they can
. ‘ usually be applied to field problems with more con-
g ! fidence and with better: judgement.

. (3) Finally, there is now available a fair amount of
o acoustical data obtained from measurements made out-
K of-dcors. Some of these data were taken by using
£ ._eA . essentially single frequency- s¢und generated by loud-

- . speakers, etc; others were obtained by using noise
E from actual aircraft. It will be realized that, in
- general, it is difficult to separate the effect of
different parameters in out-of-door measurements since,
e.g., the weather is obviously not at the control of the
‘ * experimenter. Nevertheless, in scume cases the experi-
ment was so designed and the conditions so specified .
that the .effect of various parameters could be ascer-
S tained. In others only general or “iypicalt effects
1 could be determined. .

In this report Section I is & review of contributions from theory
and laboratory measurements to our present knowledge on problems in atmos-
pheric acoustics, In this section are presented what are felt to be the
nmore important formulse for dealing with sound propagation in the lower
atmosphere, together with related charts and tables. Ranges of appli-
cability of the formulae are indicated, where possible; this is especially
feasible when data from controlled experiments are available for domparison

with the theory.
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In Section II a review is given of results from measurements
made out-of-doors. Comparison is made between the results of differ-
ent investigators, obtained under quite a variety of different cir-
cumstances. Also, where possible, comparison is made with the pre-
dictions of pertinent theory from Section T.

In Section III special tables and graphs sz given for apply-
ing information reviewed in the previous sectionsj also, recommended
procedures are described for dealing with various practical problems.

Section IV contains detailed discussion of needs for future
research in the areas treated in this report. Important deficiencies
in present-day knowledge are poirnted out, and various methods of ap-
proach examined.

Appeandices I and II contain tables of constants and a chart
for converting units of humidity. Appendix III tabulates theoretical
absorption coefficients for various parts of the United States.
Appendix IV, reviews briefly certain material pertinent to this re-
port, but received too recently to be incorporated into Section II.
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SECTION I
THEORY AND LABORATORY MEASUREMENTS

1.1 INTRODUCTION

1.1.1 Actual sound fields which exist in typical out-of-door situa-
tions are almost prohibitively difficult to describe in detail. The
atmosphere is never homogenecus - there are always variations in tem-
perature and humidity - and it is never quiescent. Thus the medium

for sound transmission is not the ideal one to which most current acous-
tical theory applies. In addition, the boundary conditions are often
much less.simple than those used in most of currently available wave
theory. Thus the terrain may be uneven, both in vegetative covering and
in contour; trees and hills, as well as buildings and other man-made
structures may complicate description of the lower boundary.

Hence, as would be expected, there exists at the present time
no over-all theory which can be used to describe typical out-of-door
sound flelds with sufficient completeness. There are, however, a num-
ber of special theoretical developments which are of much interest.
Each of these idealizes the total problem in order to treat some parti-
cular aspect of it, and thereby gives specific attention to certain
particular parameters. By considering separately these theories for
idealized cases, one can develop insight into the parts different para-
meters play in affecting a sound field. Also, there are a few instances
vhere certain of the idealized theories do apply with fair accuracy to
actual out-of-door situations.

The remaindsr of Saction I will be devoted chiefly to a dis-
cussion of the special theories and experimental results mentioned
above. In order to clarify the organization of this section before
going into details, we list below the separate problems to be taken
up, together with brief descriptions of them. The idealized condi-
tions assumed in each case are stated, as are also the results from
theory and/or experiment as to which parameters appear to be the most
important ones.

In most of the topics to be discussed the problem is to describae
the sound field in a region of atmosphere above a flat earth. More
apecifically, the chosen aim is to state the sound pressure p at any
point P due to a source, whose pertinent properties are assumed known,
locallized near another point Q. Unless otherwise stated, it will be
assumed in Section I that the source is like a point source and has
spherical symmetry. It is realized, however, that directional effects
are very important for aircraft as noise sources and that these must
finally be taken into account. Another important specialization made

-implicitly throughout most of Section I is that nonlinear effects are

ignored, it being assumed that pressure amplitudes are small in com-
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parison to atmospheric pressure, except at points very near the source.
(The situation when the pressure amplitude is not small is treated
briefly in subsection 1.8.)

For describing the position of source and receiver points Q
and P with respect to the earth and each other we use the symbols de-~
fined by the sketch in Fig. 1. Here the plane surface S represents
the earth's surface and is assumed to be-a horizontal plane. The
points 0 and P! are on the surface S and are directly below Q and P,
respectively. The source height OQ is z o 8nd the receiver height PPY.
is z. The actual distance from the source point Q to the receiver
point R is R, while the horizontal camponent OP' of this distance is
r. The four above-defined quantities are related by the equation

RR = 12 4 (zo—z)z. (1)

As indicated on the figure, ¢ measures the angle between the wind
direction and the directed line OP!,

Fig. 1 Geometrical variables for describing sound propagation.
S represents horizontal ground surface; Q and P are
source and receiver pointsj O and P' are projections of
Q and P on S; ¢ measures the angle between OP! and the
wind direction.
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1.1.2 Ve now list and briefly describe the topics to be taken up
in the remainder of Section I,

1,1.2,1 Sound propagation in homogeneous air

This is the simplest possible case. It is assumed that the
hunidity and temperature are everywhere the same, that the air is free
of particles of fog and smoke and that the bounding surface presented
by the earth does not affect the sound field (as if there were no bound-
ing surfaces and the atmosphere were infirite in extent). For typical
conditions to be encountered in practical field situations, the main
parameters besides the sound frequency are the air temperature, the
absolute humidity and the source-receiver distance R, The law giving
the sound pressure amplitude p at any point P is assured to be of the
form:

P = AR_l e aR (2)

where the constant A depends on the source strength and the constant
@ depends on air conditions.

1.1.2.2 Propagation in fog

Here the same conditions hold as in the previous subsection
except that the air is assumed to hold in suspension a distribution
of small spherical particles, either liquid or solid, The new para-
meters which prove to be important here are those describing the dis-
tribution of particle sizes, those characterlizing the material compos-
ing the particles, and those, in addition to temperature and humidity,
needed to specify the properties of the surrounding air. It is assumed
that the sound field is of the form given by Ea. (2), sc that R is the
important geometrical variable,

2+1.2,3 Propagation over the ground

It is assumed here that the air is howogeneous and that the
ground presents a plane uniform surface with known acoustical proper-
tles, The air temperature and humidity are assumed relatively unim-
portant here. Besides the sound frequency and the geometrical quan-
tities z,, r, and z, the lmportant parameters are those describing
the nature of the ground. The general expression for the sound pres-
sure p at any point P is rather complicated. For the spscial case in
which the source and receiver are both very near the ground,it is
found that if the ground is absorbing and r is sufficiently great the
pressure at P 1s given simply by

p=Br?, (3)
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where B is a constant depending particularly on the source strength,
the frequency and the nature of the ground.

1.1.2.4 Propagation in a stratified medium

Here it is assumed (1) that the air is homogeneous except
that the temperature and/or wind velocity varies with height and (2)
that the ground surface is uniform and of known acoustical proper-
ties. The cases of special interest are those where sound shadows
exist; such shadows occur when the effective sound velocity decreases
with height, so that rays from the source are bent upward. Besides
the distances z,, r, and z, and the scuid frequency, the main para-
meters are those which give the rate of change with height of tempera-
ture and wind velocity, and the angle ¢ between the wind direction
and the line OP' (see Fig. 1). The general expression for the sound
field at any point P is fairly involved. If source and recelver are at
the same hgight (i.e., if Zo and z are equal))theory for special cases
indicates that a law of the form

ar

- Ce_ \
p = (4)

holds for points inside the shadow region, where C and @ are constants.,

1.1.2.5 Propagatbion through a randomly inhomogeneous atmosphere

Here the situation is considered where the wind and temperature
vary in space and time, as indeed is always true in the atmosphere.
However, it is assumed that in this case (unlike that treated in the
previous subsection) the time-ayveraged air conditions are the same every-
where. Specifically, it is assumed that (a) the time-averaged wind
velocity is zero at all points, (b) the time-averaged temperature is
the same at all points, and (c¢) each statistical index of wind and
temperature fluctuations, obtained by time-averaging at a point, is the
same at all points in the atmosphere.

The pressure amplitude p at any point P will vary with time in
an apparently random manner, Theory for the fluctuations due to tem-
perature variations indicate that the main parameters, besides the fre-
quency and the distance R, are two statistical indices, one describing
the mean magnitude of the temperature variations and the other the mean
ferain sizet,

For the mean value of p at any distance R from the source there
is, as yet, no adequate general theory. It has been suggested that, at
least, in some cases the lsw may be of the form of Bq. (2), where @
depends essentlially on the frequency and on the same two statistical
indices mentioned above.
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1.1.2.6 Propagation over a wall

Here the classical methods for treating diffraction by a
®wstraight edge", long known in optics, are applied, with sultable
modifications, to the problem of the sound shadow cast by a long
wall or building. The usual approximations of Fresnel diffraction
are made. Though some consideration is given to reflections from
the earth and to refraction by wertical gradients of temperature and
wind it is assumed, in the main, that the atmosphere is homogeneous and
that ground effects are absent., The most important variables are the
sound frequency, the distances z,, r, z, the height of the wall and its
distance from source and receiver.

1.1.2.7 Propagation of high-amplitude sound waves

The .problem treated here is that of sound propagation when the
small-amplitude approximations of ordinary acoustics are not valid.
The more exact form of the basic equations must then be considered, in-
cluding nonlinear terms; solutions of these cannot be superposed as can
those of the linear wave equations. A propagating sound wave, originally
sinuscidal with given single frequency, will suffer distortion as it
travels; harmonics are generated in such a wave at a rate which depends
particularly on the source amplitude, the frequency, and the nature of
the wave (e.g., whether it is plane or spherical).

1.1.3 Before proceeding with detalled discussion of the separate topics
listed. above in subsection l.l.2, we pause briefly to explain certain con-
ventions which will be foltlowed and terminology which will be used.

In describing the 'sound field for a given situation one might
specify the space distribution of any of a number of quantities, such
as pressure amplitude, particle velocity amplitude, etc. As in the
preceding discussion we shall, throughout the report,be usually speaking
of the pressure amplitude (or of some quantity proportional thereto).
The reason for this choice is partly that the pressure, unlike the velo-
city or displacement, is a scalar quantity and hence is comparatively
easy to describe., It is also partly because both laboratory and field
data are likely to be in terms of the pressure amplitude, since micro-
phones in use tend to be essentially pressumwm-indicators.

One may describe any given pressure distribution by (1) stating
the amplitude at some reference point P, and (2) stating the ratio of
the amplitude at any other point P to that at P,. Under the assumption
of linearity the latter ratio will be independent of the amplitude at P,.
In practice,the point P, is often chosen near the source, so that the
pressure amplitude there may be regarded as characteristic of the source
and nearly unaffected by absorption or refraction in the air, and nearly
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independent of the earth below. At the same time, since linearity
is assumed in most of the situations to be considered here, the: re-

ference point P, where the amplitude is to be characteristic of the
source, should also be supposed, sufficiently far from the source; the
field at Py, and at points outward from the source relative to P,

must be weak enough to permit use of the usual acoustical approxima-
tions. (In tie field of very powerful noise sources there may be no
point P, which 1s entirely satisfactory as a reference point. Thus,

in such cases it may be that all points which satisfy the weak-field con-
dition are so far from the source that the field at these points is
strongly affected by refraction in the air or by "ground effects".)

In acoustics, it is often customary to state the pressure ampli-
tude p at any given point P by specifying a quantity, called the sound
pregsure level (or, simply, the level) at P, proportional to the loga-
rithm of p. Specifically, in terms of both neper and decibel (db) units
we have:

Sound level in nepers = 1ln (p/p#) (5a)
Sound level in db = 20 logyy (p/p*), (5b)
whers p¥* is an arbitrary reference amplitude.

Similarly, in stating the ratioc between the amplitudes at any
two points, such as P, and P, it is convenient to specify a quantity
proportional to the logarithm of the ratio., This logarithmic ratio is
referred to as the loss or attenuation in sound level at P relative to
that at P,, or, when appropriate, as the "loss incurred by a sound wave
in traveling from P, to P, or as the transmission loss between P, and
¥, etc, In neper and db units, respectively, we have

Loss in nepers = 1n (py/p) (6a)
Loss in db = 20 logy, (po/P), (6b)

whexo p is the pressure amplitude at P and p, that at P,. One may con-
vert between nepers and db by the following relation

(Loss in db) = 8,68 (Loss in nepers) (7)

In the following discussion, which deals with separate problems, we

shall speak of losses due to a number of different mechanisms. As an
important example, if Eq. (2) holds and @ is essentially zero the loss
incurred between any two points is due only to the gpreading or divergence
of the apherical wave. On the other hand, if @ is not zero we consider
the loss as due to two causes. Using Eq. (2) in Eqs. (6) we may write

for the loss between P, and P:
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Loss in nepers = 1n RRgl e “(R"RO)] (8a)
Toss in db = 20 Lo [regt e 3 Fo)] (8b)

where Ry and R are the distances from the source to P, and P, respec-
tively., The right hand sides of each of the latter equations may be
written as '

Loss in nepers = 1n (RRS]‘) + a (RR,) (9a)
Loss in db = 20 logjy (RRGY) + 8.68 a (R-R,) (9b)

We see that the loss consists of two parts, given by the two terms on
the right hand side of either of Eqs. (9). Choosing either of these
equations for our attention, the first term on the right hand side
gives the loss due to spherical spreading, l.e., the loss which would
occur if @ were gzero. The second term gives the loss assoclated with
@ . The latter loss tends to predominate at large distances from the
source where the divergence loss is relatively small and the spherical
wave propagates essentlially like a plane wave. To facilitate discus-
sion throughout the report we shall give distinguishing names to these
two particular kinds of losses: the first we shall refer to as the
divergence loss or (1/R) loss, and the second the exponential logs.
From Eqs. (9) we have that the exponential loss suffered by a spheri-
cal wave in traveling radially outward from a reference point P, to
another point P is given as follows:

Exponential loss in nepers = a (R-Rg) (10a)
Exponential loss in db = a#* (R-Ry) (10b)

where,from Eq. (7), a* = 8,68 @ and where (R-R,) is the distance from
Py to P« The exponential loss experienced by ar expanding spherical
wave is proportional to the dlstance travelled. The coefficients a
and a* give the loss per unit distance in units of nepers per unit
distance and decibels per unit distance, respectively.

1.2 SQUND_ABSORPTION IN HOMOGENEOUS AIR

1.2.1 Introduction

We treat here the idealized case of small amplitudé¢ sound pro-
pagation from a small source in a large body of homogeneous air, re-
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flections from boundaries (in particular, the earth) being assumed
negligible. Under these conditions Eq. (2) holds, where the con-
stant @ depends on the temperature, pressure and molecular composi-
tion of the air. The exponential loss is in this case said to be

due to absorption and @ (whether in nepers or decibels per unit
distance) is called the absorption coefficient. Well-known theories
exist for calculating the absorption constant @ . Also, experi-
mental data taken in the laboratory under controlled conditions are
avallable against which the theories can be checked. These data

agree with theoretical expectations for some ranges of parameters.
Unfortunately, however, the theory appears to be far from adequate for
certain conditions which are very important for aircraft noise pro-
blems. Thus, for the lower audible frequencies and fairly high abso-
lute humidities, laboratory determinations of @ tend to be much in
excess of present theoretical values., Still more unfortunately, ade-
quate laboratory data do not exist at frequencies below 1000 cycles/sec.
We are thus at a loss to know what values to expect for & at very low
audible and,especially, at sub-audible frequencies.

-t

S0 B 2 S

A )
nne

We give in subsection 1.2 an account of present~day knowledge
about the absorption coefficient @ in air under different conditions.
Formulae resulting from accepted theories are presented in analytical,
tabular, and graphical form; the results of laberatory experiments are
also displayed, and compared with theoretical predictions.

In Section II the results discussed here will be compared with
loss coefficients measured out-of-doors.

In Section IIT additional tables and charts are presented for
convenience in determining a@ for given field conditions. These com-
putational aids are based on the findings to be discussed in the re-
mainder of subscction l.2.

In Appendix III average values of a , computed from the charts
Just mentioned, are tabulated for 80 different stations in the United
States, based on average temperature and humldity data from records of
the U. S, Weather Bureau.

It is customary to regard the absorption coefficient @ as be-

ing composed of a.number of separate parts, each having a different
physical origin. Thus we write

@ = @class * %mols (Ha)

Gelags = Gy + Gc+ Qg+ G, (11p)

where ay, Qq, @3 and ap are, respectively, the sbsorption coeffi-
cient due to viscosity, conduction (of neat), diffusion (of oxygen and
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nitrogen molecules smong each other), and radiation (of heat). The
sum of these is here designated as @g)1545 and 1s called the classical,
absorption coefficient. The term @pyo] is due to intra-molecular
causes, and is usually much largér than @,]1535g5 &t audible frequencies.
It 1s sometimes referred to as the humidity loss factor because of its
strong dependence on the moisture content of the air at any given fre-
quency. We shall discuss @&g]ggs first, in subsection 1l.2.2; @ po]
will then be taken up, in subsection 1.2.3.

l.2,2 Classical Absom)jionl

—

The classical absorption is often negligible for typical condi-
tions in'aircraft aoise propagation problems. We nevertheless shall pre-
sent the main theoretical results for @.j55g5, partly because of their
general interest, and partly in order that the reader may apply them toé
special problems. (For example, if the absorption at either high fre-
quencies or low static pressures is to he considered ag15gg must be
taken into account). The four separate terms that combine to make up

@class, according to Eq. (1lb) are given by the following expressions:

2 o2
oy = & T-04 (12)
3 Poc¢
272 (Y-
ao - AT LYK (13)
poc3cp
V-1 °
a — & gD
84 = =¥ 03“12 ()
.
uf.' 2 coy (15)

The symbols used in Eqs. (12 - 15) have the following meanings:

9 : viscosity of aiv (poise)

f : frequency of the sound (cycles per second)
w: dw?

Po : density of air (gm cm‘3)

¢ : velocity of sound in air (cm sec™t)

~

(cp/cv); ratio of specific heats for air

K : heat conductivity of air (cal cm™? sec“l[OC cm'l] "1)
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cp : specific heat of air at constant pressure (cal gm‘l[?C]"l)

a : molecular constant for air (0,51)
Do : mutual diffusion coefficient of Ny and 0o (cu? sec™l)
H : coefficient of radiation of air < 1073 (cal sec™l gm-1 oc-1)

c, : specific heat of air at constant volume (cal gm™t °C]"l)

Tabular values and empirical formulae for those constants which vary
with temperature are given in Appendix I. Using these in Egs. (12 - 15)
the separate components of @,1,54 can be calculated over a range of
temperature. This has been done in preparing Table 1; here ( a, + dc),
@y and @y are tabulated for temperiiures ranging from -150° to 100°C.
In converting from the units (nepers/cm) of Eqs. (12 - 15) to the units
(db/1000 ft ) of Table 1 use was made of the following conversion ratio:

( @ in db/1000 £t ) = (264,500)( @ in nepers/cm) (16)
TABLE 1

Calculated Values of Classical Absorption Coefficients

(Frequency f in kec; static pressure p¥ in atmospheres; absorption coef-
ficients @y, etc, in db/1000 ft )

Temperature ' (ay + ag) ay a.
~150°C 026 £2/p¥* .0033£2 .0070
~100 .030 £2/p# .0035£° .0058
-50 .033 £2/p" .0037£% L0051

0 036 £2/p" .0038¢2 .0046
50 .038 £2/p* 004012 .00l2
100 .039 £2/p* .00 112 .0039

Suppose that for definiteness we take the figure of 0.1 db/1000 ft
to be the lower limit of absorption losses which are. importsnt in ordi-
nary field problems. On this basis we see from Table 1 that @, is always
negligible, that a4 is negligible for frequencies less than about 5 ke,
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and that at ordinary static pressures the sum (@, + @) is negli-
gible for frequencies less than about 1.5 ke.

Since @y is negligible, the ciassical absorption coefficient
a class, Eq. (11b), at any given temperature can be obtained by adding
(@y + @c) and ag at that temperature, using values given by Table 1.
Fig., 2 shows @clags determined in this way, plotted against frequency
for three different temperatures, the static pressure being assumed
atmospheric,

For frequencies between the abscissal limits of 1 and 10 ke
@ class may be read directly from the graph. Also for frequencies out-
side the latter range the same graph may be readily used, by virtue of
the fact that @;]pss is (omitting @p) proportional to the square of
the frequency. Thus suppose a given frequency f is written in the form

£ = 10" £% (17)

where f* is a number between 1 and 10, and n is an integer. The actual
frequency f is thus 107 times the reference frequency f*, and the classi-
cal absorption coefficient for £ is just 10°0 times that which would ob-
tain for a frequency f*. For a frequency of f* in ke the value of Gclass
may be read directly from the graph in Fig. 2; the latter value is then
only to be multiplied by 1020 o yield Gclags for the given frequency f,
For example, the frequency 730 k¢ may be written as (7.3 x 10%) ke. For
7.3 ke “clﬁss is 2,1 db/1000 ft at 0°C. Hence for 730 ke at 0°C, @¢lass
is 2.1 x 104 ¢b/1000 ft.

If the classical absorption coefficient is to be calculated at
pressures other than atmospheric, Table 1 may be used. (This may, of
courge, be done in any case.) As shown there @, and @, vary inverse-
ly with the pressure, while @4 is pressure-independent, except insofar
as the constants (other than p,) appearing in Eqs. (12 - 14) vary slight-
ly with pressure, '

l.2.3 Molecular absorptioxﬁ

Referring back to Eqs. (11) we now consider the second contribu-
tion to a , namely, the molecular absorption coefficient @p ;. In air
the absorption given by apo]l 1s due to the finite rate at which energy

" is imparted to and rrom internal vibrations of oxygen molecules when a

disturbance, such as a sound wave, passes through air. This time for
interchange is strongly influenced by the presence of water molecules -
hence the importance of humidity in connection with this last mechanism.
Kneser's expression for ap,] may be written

RC4 S fm

¢ C,(Cy+ R) ) £.2 + £2 (18)




b e

o
o

H
o
1

V.

¢
O O
N

\\\

[

08 K. CLASSICAL ABSORFTION

06— 4872 | AT ATMOSPHERIC PRESSURE
05

04

-

t

< .

3 |08°c |
- -]

2 10 50

& 6 Z

S 5 Wi

L 4 /4

Lo 4

3

Q Y

> /ﬁ/

o Y

- /

Q.

& %

1)

fi1]

g

I 125 IS 2 25 3 4 5 6 789010
FREQUENCY IN KILOCYCLES

Fig. 2. Classical absorption coefficient @145 in air ai
-50°, 0° and 100°C for frequencies between 1 and 10 kc. This

graph may also be used conveniently for determination of

@ class at any frequency f outside the indicated range by

carrying out the following steps (see accompanying Text)s

(1) Write £ = 107 £¥, where £ is in ke, n is an integer
and 1<f*<10;

(2) Determine @g1yq4¢ for a frequency £* (4n kc) from the
graph;

(3) Multiply the result of Step (2) by 10%°,
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where the symbols have the following meanings:
£ : sound frequency (cps)

¢ : phase velocity of sound (cm sec™l)

R : molar gas constant (cal)(mole)-1(o¢)~1

Gy & total heat capacity per mfle of air at constant
volume (cal)(mole)™1(°C)”

£ ¢ equal to (k/2® ), where k is Kneser's rate constant

C; : vibrational heat capacity per mole (cal)(mole)fl(OC)-l
Kneser obtained C; from spectroscopic data on energy levels in oxygen
molecules by using the expression
‘ -E/RT
ci=_§§._g_L (19)
RTZ (l—e~E/RT)

in which T is absolute temperature and E the vibrational energy (calories
per mole) for the internal oxygen mode involved.

The quantity fy varies with humidity. According to an empirical
formula by Kneser we have

£, = 1,01 x 10%n%, (20)

where f is in cycles per second and h is in grams per cubic meter. (Several
different kinds of units for specifying h are in common use; conversion
tables and formulae are given in Appendix II.) However, as will be shown
later, data by various workers are not in complete agresment and the cor-
rect relation between f; and h 1s not accurately known. For ease in inter-
pretation and in application to fiseld problems, we recast Eq. (18) in a re-
duced form and convert units of ap) from nepers per centimeter to deci-
bels per thousand feet, obtaining a quantity w given by

wa Smol . __2x (21a)
@Qpax 1+ x?
where
f RC.
@y = 264,500 X —— (21b)
max ’ 2¢ Cy(Cy + R)
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From Eq. (21b) we see that ap,, is proportional to f. The proportion-
ality constant depends mainly on temperature, being nearly independent
of ordinary variations in pressure or humidity. Values of @ ., com-
puted from Eq. (21b) and from tables in Appendix I are plotted versus
frequency for various temperatures in Section III, Fig. 41. A plot of
selected values, for 20°C only, is given by the straight line in Fig. 3.

The ratio w = (@mpol/ @max) depends only on x = (fy/f), and fy, in
turn, depends mainly on absolute humidity. When x = 0o, w = 0; as x in-
creases, W rises to a maximum value of unity when x = 1, then falls to
gero as x approaches inlinity. The value of w for any given x is the
same as that for its reciprocal (1/x). We wish to express the ratio w
in terms of the humidity h. ILet us define a frequency-dependent quan-
tity hp; the latter gives, for any frequency f, the humidity for which
@mol is maximum (i.e., equal to @p,y) &t that frequency. From Eq. (20)
we have

£=101x107 23 (22)
taking the ratio of f; to f we thus obtain

x = (b/by)?. (23)
Substituting the above into Eq. (21a) we obtain

2(/hy)?

W= (24)
1+ (h/hy)"

A plot of Eq. (22) is given by the curve in Fig. 4; the function given
by Eq. (24) is given by the curve in both of Figs. 5 and 6.

One may calculate a,,; at 20°C for a given frequency and abso-
lute humidity h by proceeding as follows:

(1) Obtain @y from Fige 3;

(2) Obtain hy from Eq. (22); form the ratio hm/h;

(3) Using the value of (hy/h) from Step 2, obtain
W= (84017 Bpay) from Eq. (24) or from the

curve of Fig. 5 or 6;

(4) Multiply the results of Steps 1 and 3 to obtain
amol = W ﬁm&x.

In Section III additional graphs and other aids are given to expedite
calculations of @pq).
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Fig. 4. Solid curve gives h, versus frequency from Eq. (22).
Experimental points give humidities at which peak absorption
occurs in laboratory measurements, for various values of the

frequency.
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1.2.4 Laboratory ResultsB'lo

¥}

The total absorption coefficient @ for any specified conditions,

as given by Egs. (11), etc., would be obtained by adding the values of
@ ;lass and @ o1’ the latter being calculated by methods described in
Sections 1l.2.,2 and 1l.2.3, respectively. These theoretical values may be
compared with the results of experimental determinations of @ . The
laboratory value of @ may be defined as the total exponential loss (see’
Section 1.1.3) per unit distance. In the case of experiments where
spherical wave propagation is studied, the experimentally-determined a
may equally well be defined as the constant to be used in Eq. (2) in or-
der to. fit the latter equation to the observed sound field. When plane
wave propagation is used the experimental @ may be defined analogously
as the constant such that the sound field is fitted by the equation:

p =4 exp(- @ax).

Measurements of @ have been made in laboratory air over a wide
range of conditions and with a variety of techniques. Investigators
have used frequencies ranging from 1 to 2000 k¢ and have made determina-
tions in the air for absolute humidities up to about 20 gm/mB, tempers~
tures ranging from 0° to 55°C and pressures down to 0.002 atmospheres.
Under some conditions the observed attenuation agrees rather closely
with the @ predicted by Eqs. (11). Under most conditions the former
is in excess of the theoretical @ ; this excess varies from a few per-
cent up to a factor of five or more. '

The situation is summarized in Fig. 7 for air at atmospheric pres-
sure and at temperatures around 20°C, In the graph, absolute humidity is
plotted along the horizontal and frequency along the vertical axis. The
entry at any given humidity and frequency gives the ratio of the observed
to the theoretical absorption coefficient for these conditions, as found
by the experimenters indicated, For example, at a humidity of 12 gm/m3
and a frequency of 21 kc Rothenberg and Pielemeier’ measired the absorp-
tion coefficient @ in air and found it to be about 1.8 times the theoreti-
cal value given by ( @ jo5q *+ @ po1)

At the highest frequencies represented in Fig., 7 the absorption is
due mainly to 8 1pag’ and at the lowest frequencies mainiy to a o1’ By
extrapolating from ??gs. 2 and 3 one finds that at 20°C the cross-over fre-
quency, where a Just equals a s 1s 210 ke For all frequencies
afove 210 ke a clags 18 therefore necessarily greater than @ .. For
lower frequencies, either term might predominate depending on the humidity;
for humidity conditions usually encountered a ol is greater than @ class
for frequencies less than 10 kc.

In Fig. 7 we see that the observed absorption is rarely, if ever,

less than the theoretical value. (Due to experimental errors the fact
that a few ratios less than unity do appear may not be significant.) We
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also see that the agreement is comparatively good at the higher fre-
quencies; for frequencies above 50 kc most of the indicated ratios
are less than 1.5. Agreement 1s also good in the vicinity of the
dashed curve; the latter gives the frequency for maximum molecular
absorption as a function of humidity, from Eq. (20). Agreement is
generally poor at frequencies of 10 kc or less when the humidity is
greater than about 6 gn/m.

Because our main interest here is in frequencies below 10 ke,
we shall now turn our attention to more detailkd consideration of
measurements in this range. According to theory the absorption under
these conditions should be given mainly by @& pyo1. The most recent
laboratory data for the audible range of frequencies are those of
Delsasso and Leonardé. The latter present experimental plots of a
versus h obtained by measuring sound decay in alr at atmospheric pres-
sure, at six frequencies and at three different temperatures. (Data
are also given for air at pressures less than atmospheric, but these
will not be discussed here.) The a ys h plots exhibit peaks or ten-
dencies toward peaks, as the theory for @mgl shows they should.

The values hy of the numidity at which the peaks occur at dif-
ferent frequencies are plotted as open circles in Fig. 4. These
hp-values tend to be appreciably higher than those given by the solid
curve, the latter being plotted from Eq. (22). For comparison, the
filled circles represent hy-values obtained from similar data by
KnudsenB’h, and the triangles hy-values found by Kn8tzeld to be con-
sistent with his data. Pertinent here also, though beyond the scopse
of Fig. 4, are the results of Rothenberg and Pielemeier!. Using fre-
quencies from 22 to 110 k¢ and pressures down to several cm of Hg,
they found their results consistent with the assumption that hyp is
given by Kneser's empirical formula, Eq. (22),

It is evident that uncertainty exists as to the hmidity value
for which maximum absorption occurs at any given frequency. In future
work thought should be given to means of reducing this uncertainty.
Present theory is of no help on this point. A basic theory for accu-
rately predicting hy,, from basic molecular considerations would re-
quire much more precise knowledge of the mechanism of molecular colli-
sions than is now available.

The-situation is otherwise with respect to the actusl heights
of absorption maxima. Theory for predicting @5y 16 well developed;
Eq. (21b) gives @ pay in terms of rather well-known thermodynamic and
spectroscoplc constants. Also experimental values of o oy (corrected
for the small contribution of @ ;ja09) agree well with each other and
with the theory. In Fig. 3 the solid line is_plotted fram Eq. (21b)
for 20°C; the filled circles are from KnudsenB'“, while the open circles
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are from Delsasso and Lsonard6; the agreement is excellent,

Having examined the present state of knowledge regarding hy,
and @p., We now consider the overall dependence of @on h. In com-
paring experiment with theory it will be convenient to speak of a
quantity a' = (@- @glass) where, as before, @ is the laboratory
value of the absorption coefficlent (i.e., @ is the total exponential
attenuation per unit distance). We shall also refer to a quantity
w! = ( @'/ @'pay) which gives the ratio of a' at a given humldity
and frequency to the maximum value ( "max) of at at that frequency.
If the laboratory value of & is just equal to.the theoretical value
(Bqs. (11)) the quantity a' will be just equal to @p,1; also-w!
will then equal wand will be given by Eq. £R4).

The solid curves in Figs., 5 and 6 are identical plots of
( @pol/ ®max) versus (h/hp), based on Eq. (24). The plotted points
in Fig. 5 give w' values and are from Knudsen's experimentally ob-
tained plots of @ versus h for various frequencies. Reduction of data
for plotting at any given frequency, was accomplished by (1) dividing
each @'-value by the peak value @'ygx for that frequency, and (2)
dividing each h~value by that particular humidity value hy for which
the peak oceurs., The points in Fig, 6 are the data of Delsasso and
leonard, reduced in the same way. We note that the fit is fairly good
near the peak, i.e., for abscissal values ranging from 0.5 to 2, How-
ever, at higher (h/hp) ratios the observed absorption exceeds that pre-
dicted by Eq. (24), frequently by factors of two or three. It is not
presently known how to account for this discrepancy.

In summary, theory for ap,) agrees with laboratory measurements
of @' in some respects, not in others. Absorption peaks do occur
whose heights are predicted rather accurately by Eq. (2lb). However,
it is not known with certainty at what humidity the absorption will be
maximuyn at any given frequency. At the higher humidities absorption
coefficients obtained experimentally greatly exceed those predisted.

1.3 1085 COEFFICIENTS IN FOG AND SMOKE

1.3.1 Introduction

Information 18 available from both theory and experiment rela-

tive to acoustic losses due to propagation through fog. In our dis-
cussion of present knowledge of this subject, the idealized situation
assumed is that of an infinite ocean of air, free of boundaries, in
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which exists a wniform distribution of water droplets. The sound field
is assumed to have either spherical symmetry, in which case Eq. (2)
holds, or plane symmetry, in which case the pressure amplitude along
the direction of propagation varies as exp(-ax). The quantity of in-
terest in either case is the loss coefficient @ .

We shall suppose in the following discussion that the actually
observed @, i.e., the total exponential loss per unit distancs in air
containing fog droplets or other suspended matter is the sum of two
contributions, namely,

Here @ y oy represents the loss coefficient in.homogeneous air; free of
liquid or solid particles; it is this contribution which was discussed
in subsection 1,2. The second contribution @ susp represents the addi-
tional loss per unit distance due to the suspended matter.

According to available theory for acoustic losses due to liquid
droplets we may, in turn, represent @g,q;, 8s due to two rather differ-
ent mechanisms. One of thegse has to do w?th viscous dissipation and
heat conduction which takes place near droplets (or suspended particles
of any kind) in a sound field. Theory for this process has recently
been made available by Epstein and Carhartll, The other loss mechanism
is a relaxation process which takes place when sound passes through air
in whieh liquid droplets are suspended, The relaxation results from a
time lag which exists between the water vapor density in the vicinity of
individual droplets and that in the surrounding air, during the cyclic
pressure variations of a sound field. Theory for the attenuation due to
the latter effects was given by Oswatitschl?; Weild has recently examined
the Oswatitsch theory critically and suggested modifications.

In the following subsection we give the Epstein-Carhart expres-
slons for a@yp, the loss coefficzient due to viscosity and heat conduc-
tion. In subsection l.3.3 the Oswatitsch-Wei results are given for the
loss coefficient @, due to relaxation effects. Certain available lab-
oratory results on transmission losses due to fog are then described
(subsectiun 1.3.4) and finally, brief conslderation is given to the sub-
Ject of acoustic losses in aerosols (subsection l.3.5).

1.3.2 Fromu the Epstein-Carhart theory we have for the loss coefflcient,
in db/1000 ft.,

ayp = (264,500) * 3—5—‘-[»1, v 2(Y-Devy] (26)

In Eq. (26) Yy is a function of z and Yy a function of y, where z and
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y are defined below. In Fig. (8) plots are given of Iy (z) and
Y¢ (y) as functions of their arguments. (In the graphs x represents
z for the Yqplot and y for the Ty plot.) ALl other symbols in Eq.
(26) are defined below.
n = number of droplets per unit volume
€ = radius of droplets
density of air
normal velocity of sound (in homogeneous air)
shear viscosity coefficient for air
ratio of specific heats for air
thermal conductivity coefficient for air
specific heat of air at constant pressure
- (w/20)}/?
(w/2v )2
X/p cq
v=1n/p

Eq. (26) is subject to the restrictions that the radius § of each drop-
let be small with respect to A , the wavelength of sound, and that
neighboring droplets be sufficiently far apart.

Using constants for air at 20°C (see Tables in Appendix I), Eq.
{26) becomes

ayp = 2420 [0.453 Y (z) + 0,157 Yy ()] (27)

2 = 456 € £1/2

In the above equation n is the nuwoer of droplets per ew of radius €

(in cm) and £ is the frequency in cycles per second. In actual fogs the

droplets are not uniform in size; suppose, however, the distribution can

be divided into groups such that ny droplets per unit volume are approxi-
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mately of radius € 1s Dp of radius £ 2y ®tc. Cne may then determine
ayh for each of these groups separately from Eq. (26) or (27) and,
finally, add the group-values to obtain the resultant value of ay
for the distribution.

1.3.3 Theory of Oswatitsch, and modifications by Wei

Theoretical expressions for the loss coelficient g, due to
evaporation processes;are rather involved. Welfs resultsi3 are parti-
cularly so; his general expression takes into account relative motinn
between droplets and the surrounding air and thus contains terms in-
volving the dimensionless quantity ( €2 /w), where € , @ and v, as
before, represent the droplet radius, angular frequency and xinematic
viscosity, respectively. For typical fog droplet sizes and for frequen-
cies of the order of 100 cps -or less we find that (£ w/v ) << 1
and terms involving this quantity may be dropped from Wei's expression,
The remainder of Wel's sxpression has nearly the same formal appearance
as that of Oswatitschl?, We give below the results of QOswatlitsch with
certain modifications by Wei.

The coefficient & 4 is written below in terms of a sequence of
intermediate quantities which are ultimately expressed in terms of ordi-~
nary physical constants. Thus we have, in nepsrs per cm,

2
(A - ‘%mgf
“e = ~ : (28)

2w 2 \
[- e -l - 0 - 0 eyl s (&

c

where w', g'3g, W, and @' are given in terms of new variables, as follows:

2 .
[x- S‘%“] L1 - (7 a5

2
(Y] - — - (29)
o
¢ - @2 ol + 2
330' u [l + ¥Y(N\g - \f)] . .(.)..3.. (30)
830 [1 +Aghg - lfld] 2 Cp ‘
wo»? 1+hg ~Af (1

@ 1+7(hg -Ap)
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w' 1t 7(hg-Np)
@ 1+ Ag wg - Ap Mg

(32)

The expressions in Eqs. (29-32) are given by Wei; in Oswatitsch's re-
sult the term (ApNg) in the denominators of Egs. (30) and (32), and
the term A in the numerator of Eq. (31), do not appear.

. The quantities w¥*, Af, Ag and Mg are defined in terms of
standard physical constants as follows:
w¥ = LwDn (33)
L
PR o (34)
Pocplo
N = pocp DK (35)
Pool dp
o 207 mﬁ)o . (36)

® . Pocppyo dI

The remaining symbols have the following meanings:

¢ : phase velocity in the limit of infinite frequency;
l.e., velocity in dry air.

actual phase veloclty
latent heat of condensation for water

=
-
oe ..

water vapor density
specific heat of liquid water .
specific heat of moist air at constant pressure

©
c0 N
TWw O
.o . ..

specific heat of moist air at constant volume

: cp/cv

number of droplets per cm3

[
~ <

=
..

o
.

coefficient of diffusion of water vapor through air
coefficient of thermal conductivity of air
absolute temperature

L]
23

Q
o

rate of increase of water vapor pressure with
temperature

—
\l./

©
.0
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density of moist air in sound-free conditions

Po :

g3p ¢ ratio of water mass in droplet form, in any
given volume, to the air mass in that same
volume

Pop ¢ vapor pressure

In connection with U and K, Wei notes that for smsll droplets
whose radius is not large compared to the mean free path of air mole-
cules, modified values must be used for these coefficients. Thus
Oswatitsch suggests that D be replaced by a quantity equal to D divided
by the factor (1 + fk / £€) where ¢ k 1s a constant, independent of §.
On the other hand, Iangmuiru*' gives quite a different expression for
the quantity to replace D in diffusion equations for small droplets.

A theoretical result for-a compensated heat conduction coefficient to
be used in describing heat conduction from small droplets has been
given by Howel_l15 « In this report we shall ignore these corrections
and assume'D and X given by their usual values (see Table 2 and
Appendix I).

Calculation of @ from Egs. (28) - (36) for a given set of con-
ditions is facilitated by Tables 2, 3 and Fig. 9. These were prepared
from charts given by Oswatitsch for his equations, which differ little
from Egs. (28) - (36). Fig. 9 shows plots of the dimensionless absorp-
tion constant (2 @,w'/w ') versus the ratio (w/w') at two temperatures
and for two values of g'3p. The absorption constant has its maximum
value in the vicinity of (w/e') = 10 and falls off to zero at both
large and small values of this ratio., The peak is a very broad one.

For g'3p = 0.05 the quantity (2 @gw'!/@?') falls to one-half its peak
value about when (w/ &') = 0.9 at the lower limit and when (w/@!)=250
at the upper limit. For g'30 = 0.10 the upper limit is reduced to about
110, Use of Fig. 9 requires knowledge of @' and w'. By Egs. (29) -
(32) these are expressed in terms of the temperature-dependent quantities
Ar, g, Mg and (1 - wo2/c?), values of which are given in Table 2 for
temperatures from -10° to 30°C,

TABIE 2
Temperature-Dependent Quantities in Oswatitsch Theory

7(°C) D \¢ \s \p 1-wo?/c? A
-10 <195 «0152 316 1.108 075 2,61
~5 «202 0230 467 1,125° 096 2.75
0 «209 +0340 -680 1.143 A8 2.88

5 216 LOLT4 916 1,160 «136 2,99
10 .223 ,0651 1,235 1.175 15 3.12
15 «230 .0882 1.632 1.192 .168 3.22
20 .238 .118 2.13 1.212 «179 3.32
25 246 «157 2.78 1.234 189 3.40
30 o254 206 3.56 1.251 .198 3.50
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The phase velocity w' varies somewhat with both the temperature
and the ratio w/ @', but is practically independent of g'30. In Table
3 values of (w'/c) at 30°C and -5°C, respectively, are given for a series
of values of @/ @', For temperatures less than 30°C the phase velocity

w! in foggy air is always betwsen c and 0.9c. Values of c¢ for different
temperatures are given in Appendix I.

TABLE 3

The Sound Velocity in Poggy Air

@/ wt 0 0.1 0.5 1.0 2.0 10.0 -4
(w/e)300 0490 0.90 0.92 0.95 0.98 1,00 1.00
(wyo)_5o 0.95 0.95 0.96 0.98. 0.99 1.00 1.00

One may determine w' for a given fog, consisting of n particles
per unit volume of radius € at a given temperature by using Egs. (32)
and (33) with values for Mg, etc. from Tables 2 and 3. More convenlent-
ly -one may use the equation

w' = A(T)n , (37)
where the temperature-dependent proportionality constant A is given by

l+ Y(Xs— Xf)

A= ’A'D: (38)
1+ Mg Mg - Ap A

and is tabulated in Table 2.

In summary, one may calculate @ from Fig. 9 and Tables 2 and 3
by the following procedure:

(1) Determine @' for given n, € and T from Eq. (37) and
Table 2.

(2) Form the ratio w/ @', then find (2@ w!'/w') from
Fig. 9.

(3) Estimate w' from Table 3 and Appendix I

(4) Determine @, by multiplying the value of (2 a w'/ w')
obtained from Fig., 9 in Step 2 by ( w@'/w') x 132,200
to obtain units of db/1000 ft.

An example is given in Section III, It should be reoalized that
the Oswatitsch-Wei theory is applicable only to a fog in which the drop-
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lets are of uniform radius € . Application of the result to actual
distributions cannot be done in this case (unlike the Epstein-Carhart
case) by dividing the droplet sizes into groups, determining the loss-~
coefficient separately for each group, then adding these to give the
resultant loss coefficient. Further development of the theory is neces-
sary in order to obtain a result which can be applied to a distribution
of sigzes,

1.3.4 laboratory Measurements.,

Megsurements of loss coefficients in artificial fogs have been
made by Knudsen, Wilson and ﬁndersonlé, mainly in the 500-8000 cps
range, using a reverberation technique. Drop size determinations were
made by photographing droplets deposited on an oil-coated glass slide.
For one set of measurements the observed droplef distribution, divided
into five groups, is glven in Table 4 from Epstein and Carhart. The
total volume of all drops was 2 x 107°. cm” per cm”’ of air,

TABIE 4

Drop Size Distribution,
for Knudsen, Wilson and Anderson Measurements

Group Mean Radius Drops/cm’
1 3.75 x 107%cm 55
2 6.25 x 107 89
3 10,0 x 104 121
A 15.0 x 1074 38
5 21.5 x 1074 21

Experimental values of @ determined by Knudsen, et al for this fog at
the various frequencies are given in Table 5 (from Epstein and Carhart).
Also shown there are corresponding values of @y, calculated by Epstein
and Carhart from their theory, applied to the distribution given in
Table 4.

. The Epstein-Carhart coefficient @ ), which represents losses due to
viscosity and heat conduction, is sufficlent to describe the experi-
mental results given here fairly well at about 500-1000 cps, but is
too small at higher frequencies.

At frequencies less than 500 cps the viscosity and heat conduc-
tion processes treated by Epstein and Carhart plays a reduced role and
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TABIE 5
Loss Coefficients in Artificial Fog

Frequency (Expeariment ) (Th:gtlly)
500 cps L¢3 db/1000 ft. Lok db/1000 ft.
1000 6.1 5.0
2000 8.2 5.5
4000 8.8 6.1
6000 10.7 6.5
8000 1.6 6.7

the evaporation mechanics considered by Oswatitsch and Wel apparently
becomes the predominant one. Knudsen, et gilé, also made preliminary
measurements of the loss coefficient @ in fog at lower frequencies,
namely, from 27.5 to 350 cps; in this range their measured losses were
considerably in excess of those given by > S

More, recently Weill has made measurements in the 30 - 100 cps
range using an impedance tube method. In one of the artificial fogs
he investigated there were 5.4 x 103 droplets/cm of average radius
6.6 x 10~%cm; the ratio of water mass (in droplet form) to air mass
was 6.05 x 10“3. The results are given below in Table 6.

TABLE 6
Measured and Calculated Loss Coefficients in Fog

Frequency yise e
(Expe “imental ) (Theoretical) (Theoretical)

30 7.3 db/1000 ft. 0.2 db/1000 ft. 5.9 db/1000 ft.
35 Tl 0.3

L0 7.8 0.3 5.7

L5 7.5 Ouby

50 7.3 0.4 565

55 7.3 0.5

60 6.6 0.5 5.y

65 6.5 0.7

70 6.5 0.9 5.3

75 6.9 1.1

80 7ol 1.3 5.1

85 7.3 1.6

90 Tely 1.8 49

95 Tols 2.5

100 7.5 2.9 47
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As seen in Table 6, measured values of @ are practically independent
of frequency, averaging about 7 db/1000 ft over the frequency range
given for this (rather heavy) artificial fog.

Shown for comparison is @ igcs the calculated coefficlent due
to viscosity alone, obtained from @y by letting » , and therefore Yy ,
equal zero. (The complete Epstein-Carhart theory was not available
when Wei made his measurements.) Though negligible at 30 cps, the vis-
cous losses increase rapidly with frequency and account for about one-
third of the total exponential loss at 100 cps. Alsc shown in Table 6
is @g, the coefficient due to evaporation processes, calculated from
Eqs, (28) - (36)., (Wei does not explain in detail how theory is applied
when, as here, droplets are not uniform in size., See discussion in sub-~
section 1.3.3.) Evidently @, accounts for most of the observed losses,
being far greater than @.jq. in the 30 cps region, and being about twice
as great as @y jgc in the 100 cps region.

1.3.5 Smoke and dust.

An equivalent analysis to that of Epstein and Carhart for fluid
spheres in air has not yet been made available for small solid bodies.
in air. However, upon examination one finds that @ .n, given by Eq. (26),
does not depend significantly on the viscous or elastic properties of
the inner medium of the tiny spheres, but only on the corresponding den-
sity and heat conductivity. It might therefore be argued that results
for rigid spheres would not differ greatly from those, given by Eq. (26),
for liquid spheres of equivalent density and heat conductivity. To the
extent to which this is true Eq. (26) may be applied to smoke or dust
composed of solid spheres. It is not obvious, however, that Eq. (26)
(or any theory derived for spherical scatterers) would apply to dusts
composed of rough irregularly-shaped particles, as is commonly the case.
Viscous losses near rough surfaces are probably much different from
those occurring at smooth boundaries.

Lok SQUND FROPAGATION OVER A PIANE EARTH

l.4e.1 Introduction

The propagation of sound through a homogeneous, isotropic atmos-
phere from a point source above the ground is strongly dependent upon
the acoustical characteristics assumed for the ground. Irregularities
of the surface (of a size of the order of the sound wavelength or larger),
ground type (sand, hard-packed earth, etc.) and ground cover (bare ground,
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grass, etc.) all play a role in the determination o the intensity
of sound at a distance from the source.

Expressions have been developed for the pressure from & point
source above a plane earth for the casel in which the earth may be
assumed a homogeneous, isotropic "fluid® medium (i.e., no shear ef-
fects are taken into account), and for the casel®s 19 in which the
earth is acoustically representable by a normal-impedance boundary
condition.

The problem of a dipole source above a non-uniform surface?0s 21
has been investigated for the case of electromagnetic waves; however,
the corresponding analysis for acoustic waves has not been developed.

When there is no preferred direction at the surface of the
ground, or in the ground itself, the "fluid"® medium assumption should
be valid; this condition has been found to be an adequate representa-
tion for sand??, However, when the lower medium is porous, and so
constituted that air in the pores moves more readlly in the vertical
than in any other direction, the normal impedance boundary condition
should hold. In practice this situation might be approached if the
earth were covered by long, vertical-stemmed vegetation, such as
meadow grass, and 1f this vegetation were so dense as to essentially
constitute the "lower medium", the ground itself then having no ef-
fect on the sound field.

Let us consider a point source of sound, having a harmonic time
dependence (sound pressure varying as exp( -iwt), at the point (0,0,%,),
and a receiver at (x,y,z); see Fig. 10. We shall use the following
notation for the fluid boundary condition (Case 1) and the normal-
impedance boundary condition (Case 2).

w = angular frequency of source (Case 1 and 2)

. ky = “ propagation constant for air (Case 1 and 2) (39)
b ) Cl
3 ky = g% propagation constant for earth (Case 1 and 2) (40)
: : 1
- Ry = [+ 32+ (2 - 20)2]2 distance from source (0,0,z,)
. to receiver (x,y,z) (Case 1 and 2) (41)
by
3 Ry = [x? + y2 + (2 + zo)2]2 distance from image point
3 (0,0,-2z,) to receiver (x,y,z) (Case 1 and 2) (42)
L ¥ = specular reflection angle from horizontal (angle
. between horizontal and line from image point
- to receiver) (Case 1 and 2)
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1
(22 + y2)2 Z + Zg

CoS ¥ = ————me sinv =
2
Zy = p1cy = ” impedance of air (Case 1 and 2) (44)
1
wpy . €Tt At
Zp = pPocy = ” impedance of "fluid" earth (Case 1) (45)
2
Z
- B gspecific normal impedance of ground (normal (46)

P1°1  impedance of ground divided by impedance of
air) (Case 2)

(1) _ Zp sing 23 [1-(a/kp)? cos® ¥]
P 2, siny +21 [1-(/k)? cos? ¥]

plane wave reflection coefficient in the

specular direction for reflection from a
"fluid® earth (Case 1)

R(Z) _ isin* -1 (1L8)

P [sing + 1

(47)

Nj=] -

plane wave reflection coefficient in the

specular direction for reflection from a
normal-impedance boundary (Case 2)

. R evR g
@ (u) = WIO e v (49)
error function®® (Case' 1 and 2)

l.4.2 Solutions for the General Cagei

The problem of a point source of sound in a homogeneous, iso-
tropic atmosphere above a plane boundary below which lies a homogene-

#The methods used in the acoustical case summarized here are analogous
to methods developed for the problem of a dipole source of electro-

magnetic radiation above a plans conducting earth, The method used by
Rudnickl? and by Lawhead and Rudnickl? is that developed by Sommerfeld,

van der Pol and Norton; the method used by Ingard is based upon the

solution of the electromagnetic problem by Weyl. For a short summary

of these methods, see J. Stratton, Electromagnetic Theory (McGraw-Hill

Book Company, Inc., New York, 1951), p. 573; for a complete analysis of

all work done on the problem, and an extensive bibliography, see A. Banosg, Jr.
and J. P. Wesley, "The Horizontal Electric Dipole in a Conducting Half-
space", Scripps lnstitute of Oceanography (Univ. of Calif.) Reference

53-33 (September, 1953).
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ous, isotropic "fluid" earth has been treated by Rudnickl’, following
the method of Sommerfeld. The incident pressure from the point source,
and the reflected (and transmitted) pressure fields are developed in
terms of Fourier-Bessel integrals; by applying the boundary conditions
at the air-earth interface (continuity of pressure and of normal parti-
cle velocity across the interface) an integral expression for the re-
flected field is found. The integral is then approximated under the
assumption that the earth is a highly absorbing medium; specifically,
it 'is assumed that the distance from the image point to the receiver (Rz)
is large compared with the distance in which the amplitude of a plane
wave traveling in the earth is diminished by a factor of e = 2,72¢4. ,
i.e.y it is assumed that |RoIm(kp)| >> 1. Laboratory tests made by
Lawhead and Rudnick®* show that the theory is valid at audible frequen-
cles over acoustical absorbing materials such as Fiberglas.

The 'problem of a point source of sound in a homogeneous, iso-
troplc atmosphere above a plane earth which may be acoustically charac-
terized by a normal-impedance boundary condition has been treated by
Ingard18 in a manner similar to that of Weyl, and by lawhead and
Rudnickl9, following the method used by Rudnick in the "fluid" earth
case. OSince the method of lawhead and Rudnick yields results very
close to that oi Ingard (the results are the same for {>smsiny ),
their method will not be discussed. Ingard's method 3s to represent
the incident and reflected fields as a (integral) superposition of
plane waves; the boundary condition at the surface is that the total
pressure divided by the particle velocity normal to the surface is
equal to the normal impedance of the surface, In two special cases,
to be discussed in subsection 1l.4.3, the resulting integral may be
evaluated exactly; in the general case the approximation kjRo>> 1
(distance from image point to receiver is large compared with the
wavelength of sound in air) is made.

In both cases (Case 1: "fluid" boundary condition; Case 2:
normal-impedance boundary condition) the sound pressure at the re-
calver is given by

ikjRy ikjRp
p(x,y,z) = 2 Ry * e. Ro [Rp * (l-Rp)F( 4 )] (50)

{Cass 1 and 2)

where the apecular-direction plane wave refleciion coefficient used
is that apprap{%atr to the case under considerstion: RiL}, Eqq (47},
for Case 1 H‘i;w, Eq. (48), for Case 2. The Tunctieon ¥{@) is:

F(p)u—{w)ée“;tl-é(?%z} (51}
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where & 1is the error function, Eq. (49). The "numerical distance",
p appearing as the argument is given in the two cases as¥

(Case 1)

p2)= 1 - ki LE‘(—LmL—llsi; W)z (53)

(Case 2)

Ingard has plotted the magnitude and the phase of F( p) as functions
of the magnitude of the variable p , with the phase of p as a para-
meter; see Figs, 11 and 12,

The Taylor's series and the asymptotic series for F(p ) are
given by Ingard as:

1 1 2 3
F =1 - 2ePl1-2(L)2 (1 - P + PP _ P, ... .
(p)=1-(rpoP -2 - £ B v ]

F(p)a 2 - A3 10355 (55)
2p (2p)R (2p)3

There are three limiting cases of importance for both the fluid
boundary condition and the normal-impedance boundary condition:

(1) As Ry goes to infinity, both p(l) and p<2) go to infinity,
and F( p) goes to zero; the expression for the pressure becomes
ikqRy . elk Ro
Ry R2

p(x,¥,2)n & » Row(Case 1 and 2) (56)

#The following changes from those formulas appear in the references
should be noted: (a) in the numerical distance p( the factor 1/i
replaces Rudnick's factor of i so that Ingard's graphs can be used;
(b) the term 1/cos ¥ in p is a correction for a term left out

of the expansion leading to Rudnick's final result; (c) in the numeri-
cal distance p( ) the factor 1/i, instead of i as given by Ingard,
is a correction to his reported result. The expression of lawhead
and Rudnick for Case 2 is glven by Egs. (50) and (51), with a numeri-
cal distance

pP= :’Z]::{ kKiRy (L siny + 1%/t 20082¢
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This corresponds to the usual result that,.at large distances from
the source, the reflected radiation is that due to an image source
having an amplitude equal to the plane-wave reflection coefficient
in the specular direction.

(2) As the boundary beccmes "3coustically softt ( po +0 for
Case 1, or { -0 for Case 2& kioth p 3.n go to infinity so that

F(p) goes to zero, while R and R go to -1i; the pressure becomes,
as expected,
ikjR1 ikjR2
p(x,5,2) = 2 - & (57)
Ry Ry .

for pressure-release surface (Case 1 and 2)

(3).As the boundary becomes "a oustic%l%y hardht (Pg +® for
Case 1, or { =& for Case 2) both R a.nd R to + 1; the pres-
sure becomes, as expected,

kR, ikiR,

p(x,7,2) = & + & (58)
o7y R) Rp

for hard surface (Case 1 and 2)

1.4.3 Soluticns for Special Cases

Two cases of particular importance occur when the source and
receiver are on the ground, and when the source and the receiver are
in a vertical line.
(1) Source and receiver on ground
For the source at (0,0,0) and the receiver at (x,y,0), we have:
Ry=Rp= (R+y)zr;  w-0; RED- R;()z) - -1 (59)
(Case 1 and 2)

The pressure is given by
ikiv -

P(%,5,2) = 2F(p) 2 (60)
(Case 1 and 2)
where the numerical distances, Egs. (52) and (53), become
pD) - L wr (—)2 [1- (/)] (61)

(Case 1)
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1
p(Z) E; kr -E-é- ~ (Case 2) (62)

For lar %e distances from source to receiver, r goes toc infinity, so

that p 1) and P (2) tend to infinity. Frem Eq. (55), F(P)~»— ,
2p
so
k1r
p®) (a0 21 G2 g (63)
kg [1-Gg/p] 21 2
) ik (Case 1)
p(2) (x,y,z)n,z—i-i{;— 8 r;r y T @ (64)
1 (Case 2)

For a source and receiver at the boundary (or near it) and for a large

distance from scurce to receiver, the pressure amplitude follows an in-

verse-square law with distance (as anticipated in Eq. (3), subsection 1.1).
(2) Source and receiver in a vertical line

For the source at (0,0,z,) and the receiver at (0,0,z), we have:

By =z - 2], By = (2 + 25); ¥ = 90° (65)
) 2 7 (Case 1 and 2)
1), 2-"1
Rp i+ 21 (66)
(Case 1)
n§2>= “—-—i " i (67)
(Case 2)

The numerical distances become:*

oD o @ (68)
(Case 1)

#The numerical distance ,o(z) in Eq. (69) has been taken from Ingard's ap-

proximate solution, Eq. (53). However, Ingard has derived!® an exact solu-
tion for the case of y = 90°; the exact expression for the numerical dis-
tance is p= (1/1)kjRy (1 + 1/L ), just twice the expression in Eq. (69).
For the case of = 1, an exact solution has also been derived for arbi-
trary angle ¥ ; this is p = (1/i)kjRy (1 + sin ¥ ). Since there is given
no approximate solution for angles near W = 90°, or impedance close to
L= 1, vased on the exact solution for these cases, only the gensral ap-
proximation is used here.
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) - L+ 2) (-%i) (69)
* (Case 2)
The pressure is therefore given by -
p(l) (x,7,2) = o1kl |z - qo|+ Zo - 27 eikl(z * %) (70)
fz - 2| Zop + Iy (z + z4)
(Case 1)
ik |z ~ 2 i1 (zvzy)
: 6@ (xyp,0) - 2222l [(t- 0« 2r(p@N]e— )
|z = 20| £+1 (z+24
(Case 2)

1.5 SOQUND PROPAGATION IN A STRATIFIED MEDIUM
l1.5.,1 Introduction

One of the most important effects to be noted in atmospheric
acoustics is the change in sound intensity due to acoustic refraction
by changes in air temperature and wind velocity with height. The ef-
fects of sound refraction are only partially explained by theory, due
to the mathematical difficulties inherent in the calculations, These
effects, although often noticed, have been carefully measured in the
atmosphere in only a few cases; however, the attenuation due to refrac-
tion of sound has been well studied for the case of sound propagation
in the ocean?’. The discussion here will be limited to the case of
sound velocity changes (due to changes in temperature and wind velocity)
in the vertical direction only; changes due to variation of temperature
and wind velocity in the horizontal direction have not yet been analyzed.

Micrometeorological measurements will first be discussed in
order to give background for obtaining a general expression for the
velocity of sound in the presence of the type of wind and temperature
variations most usually found te occur. The analysis of the sound field
by means of ray theory (geometrical acoustics) will then be discussed.
The wave theory of sound attenuation for the cases of a constant sound
velecity gradient, wnd for a linear variation of air temperature with
height, over a sound-absorbing earth make up the next sections. Finally,
a9 -an illustration of the general theory, an approximate sound attenua-
tion formula is derived for the case of the sound velocity varying in a
manner to be expected from the micrometeorological measurements. This

WADC TR 54-602

43

A . _
e el




will be later used to analyze a recent set of measurements of sound
attenuation in the atmosphere (see subsection 2.3.3).

l.5.2 Temperature Distribution nesr the Ground

A number of measurements of the dependence upon height of air
temperature and wind velocity have been made for the first few tens of
meters above the ground2 1“{Only average values will be considered here;
the discussion of fluctuations about the mean value will be left to sub-
section 1.6.

0. G. Sutton?® and E. L. Deacon®? have found that the variation
of alr temperature with height is representable by tie following empiri-
cal formulas for the temperature gradient:

a . -l"--a.z'8 (72)
dz

where T is the temperature, I' is the adiabatic lapse rate, and a and 8
are experimentally determined constants, The adiabatic lapse rate,

1° Centigrade per 100 meters, is the change in atmospheric temperature
with height which must exist if any mass of dry air, moving adiabatically,
is to have the same temperature as its surroundings (i.e., a tempsrature
gradient of -I"is the condition for static adiabatic equilibrium of dry
air).

When the temperature gradient is ~T', that is, when the value of
& is zero, the temperature condition 1s known as an Madisbatic lapse" or
"neutral stability" condition. When a 1s positive, the temperature de-
creases with height at a rate faster than that given by I' ; this is known
as a "super-adiabatic lapse" condition (commonly cglled a M"lapse™ condi-
tion). When a is negative, and T' is less than az™Y the temperature in-
creases with height; this is called an "inversion" condition. The lapse
condition is found during the day, when the ground, heated by the sun, heats
the lower layers of the atmosphere; this gives rise to the decrease in tem-
perature with height. At night, the ground cools off rapidly, leading to

TABLE 7

Typical values of a (°C), derived from Fig., 13, assuming 8 = 1.

Summer (June) Winter (January)
Day 0.5 0.1

Night -0.15 -0.15
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Fig. 13. Diurnal variation of temperature gradients found by
Solid line for temperature difference
Yetween heights of 2.5 and 30.5 cm; dashed line same for heights
(From 0.G. Sutton, Reference 26),

Best at Porton, England.

of 30,5 and 120 cm.

WADC TR 54-602

2

4

§ 8

Lapse
(a) JANUARY

Inversion

i

1 1 1 L
L T N St

Lapse
(db) JUNE

45




a temperature increase with height, or an inversion. Figure 13 show-
ing the diurnal variation of temperature gradients, illustrates these
points. From this figure, one can obtain typical values for the con-
stant a. A few values from Fig. 13 are given in Table 7.

Deacon, using data obtained by A. C. Best, has found that 8 ,
the exponent of z in Eq. (72), is positive and approximately equal to
unity. He obtains values of 8 greater than unity for lapse conditions,
and values less than unity for inversions (typical valuss being 1.15 and
0.80, respectively); near neutral stability, 8a,1.10.

Integration of Eq. (72) leads to:
T=T)~-T(z -2) - i#i[zl‘a _le-a] (73)

where T is the temperature at height z, and Ty the temperature at
height zjy.

1l.5.3 Wind Velocity Distribution near the Ground

Under conditions of neutral stahility, both theory and experimentBo’31
give a variation of mean wind velocity with height of
Uy
u=§~ln(z~),z?f (74)
£
where k is the von Karman constant and is approximately equal to Q.4.
The "friction velocity" wuy: is found to be proportional to the windspeed,

at any given reference height, its value depending upon the roughness of
ground. The "roughness length® f is characteristic of a given surface,

TABLE 8
Representative values of [ and w/uygg for
natural surfaces, where uzpng is the wind
speed at 200 cm above the ground (neutral
stability assumed). From Sutton, Micrometeorology p.233

Type of Surface [ (cm) wr/uogg
Very smooth (mud flats, ice) 0.001 0.032
Lawn, grass up to 1 cm high 0.1 0.052
Meadow, thin grass up to
10 cm high 0.7 0.072
Thick grass, up te 10 cm high 2.3 0.090
Thin grass, up to 50 cm high 5 0.110
Thick grass, up to 50 cm high 9 0.126




and is roughly proportional to the height above the ground of the pro-
tuberances causing the roughness. Table 8 gives representative values
of { and of the ratio ux/usgp, where usgy is the velocity at a height
of 200 em. It is to be noted from Eq. (74) that u = 0 at z = [,

Deacon has found that under more general thermal conditions, the
wind. velocity gradient can be given as:

du _ % -8
d: k[l"ﬁ z (75)

where Uy, k, [ are defined as before, and 8 is a positive constant ef
order unity. This expression gives the neutral stability variation of
wind velocity with height for 8 = 1. Deacon has also determined a re-
lation between 8 and 8 (the corresponding constant for the temperature
gradient) of:

2B - 8 M 0.9 (76)

Since § 21,10 for neutral stability, this gives B = 1 in that case ,
as expected. Integration of Eq. (75) glves:

u ___“LF[‘ZI~B - R L2y (1)

k(1- B
where u is the wind velocity at height z and u = O at a height equal to
the roughness length, z = f.- It is to be noted that z = [ must be taken
as the effective height of the ground.

1.5.4 Sound Velocity as a Function of Helght

The results of the last two subsections may be used to determine .
the variation of the velocity of sound with height expected ta occur natu-
rally. Since the effect on the sound velocity of temperature and wind
changes will be small, Eq. (73) and (77) may be approximated to obtain a
simple expression for the sound velocity.

Neglecting the term -I’(z - 21) in Eq. (73), since its effect will
be small, the sound velocity may be written as a function of height using
the dependence of air temperature upon height of Eq. (73):

1-8 1
c&cl[lum(z -2 1°8)] (78)

where c¢; is the velocity of sound at height %), and Tl is the absolute
temparature there,
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If sound travels in a medium moving with velocity u, the sound
velocity at any point (x,y,z) is given by (for u«<ec):

c{x,7,2) = ¢! (x,7,2) + u(x,y,s) cos¢ (79)

where ¢! is the sound velocity at (x,y,z) in the absence of motion of
the medium, and ¢ is the angle between the wind direction and the path
of the sound ray through (x,y,z), i.e., if wind and sound ray are in the
same direction the sound velocity is increased by the wind. Since it is
assumed that there are no variations in sound velocity in the x and y
directions, the projection of the ray path on the x-y plane will be a
straight line (under the approximation u<<c); the angle ¢ is therefore
taken ag the angle betwsen the wind direction and the horizontal projec-
tion of the line drawn from source to receiver. (See Figure lka,) Using
Eq. (77), Eq. (79) becomes

P . zl‘p - ,(1‘3 cosg, z2f
T s B [ Jees

Using Eq. (78) for ¢!, the velocity of sound in the absence of wind:

= e a__(,1-8 _ 18 + — & cos [ 1-8_ 1-B
) [l 21, (1-8) = i) o k(1-8) -8 (z ]

(80)

Since wind velocities will be small compared with the sound velocity, and
temperature changes will be small compared with the absolute temperature,
the second and third terms in Eq. (80) may be approximated without much
error in the final result. If the velocity of sound at the source (used
as a reference point here) is ¢y = ¢(zy), the velocity of sound at an arbi-
trary point z is:

c(z) ¥ ¢4 [1 (g 1-8 z%~a) s % cos (zl-ﬁ _zg-ﬂ )]
2T1(1-8) cok(1-8) £

az_1-8 e 2, 1-8 .
T n(z & eos® o 2z
xc [1 A WD)« =2 l’“(zo)l

where the approximation is valid for (1 -§) ln(’z%)“ 1, (1 -8) 1n(z/z5)%< 1.
The sound velocity may therefore be written as: °

-3
c(z) = co[l -B [n(:z—)]; z2f; B azgl - (%9)1"3ch (81)
g

2T ook

where c, 1s the velocity of sound at the reference point z,; 8, 8, 8,
[ and ux/k are experimentally determined from micrometeorological informa-

L8
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tion, and ¢ is the angle between the wind direction and the ray path
through the point P(x,y,z). The approximations are valid for B8 and
8 near unity, and z near z, (but, if B and 8 are assumed exactly equal
to unity, z may have any value). As noted in the discussion of the
wind velocity gradient, the "ground® is at height z = f; it is at this
height that the wind velocity becomes zero.

1.5.5 Ray Theory: Shadow Boundary

An important effect due to the variation of sound velocity with
height i1s the formation of shadows in the presence of the ground. In
this subsection, a derivation by means of geometrical acoustics will be
given of the position of the shadow boundary for the sound velocity vary-
ing as in Eq. (81).

A sound ray, in a medium whose sound velocity depends upon height,
travels along a path given by Snell's law:

c(z) cos 8, = ¢, cos 8 (82)

where c(z) is the velocity of sound at a height z, 8 is the angle made
with the horizontal by the tangent to the ray path through the point
(x,7,2), and co and 8¢ are sound velocity and angle made by the ray at
some reference point (in t. s case, the point at which the source of
sound is located); see Fig. 14b. For the case of the sound velocity
decreasing with height (e.g., for B>0 in Eq. (8l), a given ray from
the source will be bent upwards; the presence of the ground causes a
region to be formed into which no rays can penetrate, the 'shadow zone%,
Although ray theory leads to an absence of sound in the shadow zone, an
application of wave theory shows that sound is diffracted across the
shadow boundary, but the sound pressure decreases markedly with distance
into the shadow zone; see subsection l.5.7. Two types of shadow zones
may be formed, one in which a single ray from the source forms the
shadow boundary (a constant velocity gradient forms this type of shadow
zone); and one in which, due to crossing of the rays, the envelope of
many rays form the shadow bcundary (the inverse-z velccity gradient,
treated above, forms this type). These are schematically illustrated
in Fig. 15.

The equation of a ray (r as a function of z, z,, and §,) may be
found from (see Fig. lib)

dz
raf —d2_ 83
-/7: t tan @ (83)

where tan 8§ is found from Eq. (82), z is the height of the ray at r,
and z, is the height of the source. Since a ray can pass through a
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(a)

(b)

Fig. 15. Schematic diagram of tke formation of a
shadow-zone due to a negative sound velocity gradi-
ent: (a) Case for one sound ray forming the shadow
boundary; (b) Case for shadow boundary formed by

the envelope of many rayse
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minimum point (when 8 = 0), the integration is carried out in two parts;
an integration from z, to zp, and from z; to z, where z; is the minimum
height of the ray, i.c., the height for which 8 = 0 (it should be noted
that tan 8= dr/dz changes sign through the minimum). Carrying out the
analysis for the sound velocity dependence of Eq. (81) (and neglecting
terms in BR as being small compared with unity), the equation of a ray
starting from r = 0, 2 = 24, and making an initial angle 8, with the
horizontal, may be written as

Il LR R ORI | Srexo(?) av + [Foexp(+?)av]

Zo

- B [wo + (2/20W] (84)
W= {ln(z/zm}% : Wo = [l_n(zo/zm)]%

where the minimum height of a ray, i.e., that height for which 8 = 0, is:

2y = 2o exp(- élgtanz 90) (85)

As anticipated earlier the rays given by Eq. (84) cross each
other, their envelope forming a shadow boundary (see Fig. 15b). The
shadow boundary for any given value of z is formed by that ray which
has an initial angle giving the maximum radial distance from the source
for that value of z; the shadow-forming rays satisfy:

(dr-) =0 (86)
d90 z=const.

As may be seen from Fig. 15b, the presence of the ground affects the
shadow boundary only slightly; the ray w igh "begins" the shadow bound~

ary at the ground has an initial angle 900 such that 8= 0 at the ground:
c
cos (0 . o (87)
) o(

where 2 = [ is the'ground height* used in the velocity distribution,

Eq. (81)., (For the case of the shadow zone formed by one ray, as in

Fig. 15a, the shadow-forming ray has an initial angle g%vgn by Eq. (87).)
Using Eq. (86) it is found that the initial ray angle 905 which form
the shadow boundary at height 2 is gilven approximately by:

tan? 9(()5) o 2B n(z/24) (88)

(z/zo)2 -1
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This also approximately satisfies Eq. (87) for the shadow boundary at
ground, z = f, provided that the source is not too close to the ground,
i.e., zo»> [

Using Eq. (88) in Eq. (84), the horizontal distance to the shadow
boundary, rg, is therefore:

/2q)
Ts _ F e r2[ Zrei;(vz)dv +[rexp(v2)dv] - -2- [(2/20)2 + lJt‘

Z0
1n(z/20) 3 8
[(Z/ZO) _l] (89)

A graph of these results is given in Fig. 16 for 0.1 < (z/z )< 10; for
this range .of variable, it is found that the second term (containlng the
extra factor of B) is negligible for values of B usually found to occur.
Figure 16 is a plot of [(r /2,) B n'z']vs (2/2o); for any value of B (less
than about 0.1) the distance to the shadow .one may be found from the graph,
subject to the condition that the source height be large compared with the
roughness length (“ground Leight") f.

The relation given by the graph, Fig. 16, may be written as:

Ts /.__._@____
e = Vi Nyoos £(2/z) (90)

since B, from the velocity distribution Eq. (81), is:

a zg Wi 25\ 1-8
Bu —2. - (2 D -M 1
T, cok( 1) cos = ocos ¢ (91)

A polar plot of rg, the distance to ths shadow boundary, vs ¢ , the angle
between the wind direction and the line from source to receiver, may be
made. It may be seen from Eq. (91) and Fig. lia, that the distance to the
shadow boundary forms a closed curve for D»M, (i.e., for the temperature
effect larger than the effect of wind), g0 that the source is everywhere
enclosed by the shadow region. However, if the effect of wind is greater
than that of the temperature variation, so that D€M,, the distance to the
shadow boundary, rg, forms an open curve; this curve gives a shadow zone

in directions against the wind, and goes asymptotically to the lines through
the source given by:

cos @, = }—I:;- (92)

These effects are illustrated in Fig, 17.
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e - DO>M
WIND Source
DIRECTION ‘
a) Temperature effect greater than effect of wind.
Shadow
Zo
/ b= cos"(-%:)
- D <M,
WIND
DIRECTION

b) Effect of wind greater than tempercturs effect.

Fig. 17. Schematic diagram of position of shadow
boundary in the presence of temperature and wind
gradients; see Eq. (91).
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For general use of the graph shown in Fig. 16 let 8nBal (as is
often approximately true) and let Ty be 293°A (20°C); then using k = 0.4
and the value of ¢ given in Appendix I at 20°C (i.e., ¢y = 34,400 cm/sec)
the quantity B may be written
u
B= (171 x 107) [a - 0,002 () wyy cos ] (93)
200

where a is in °C and U200, the wind velocity at a height of 200 cm, is
in cm/sec. The constant a may be obtained from on-site measurements of
the temperatures T, T, at two different heights z, 2z, and using the ex-
pression

,SE:EQZ_ (94)

2 In(z/20)

obtained from integrating Eq. (72} and letting 8 = 1,I'= 0; typlecal values
of a are given in Table 7. Values of (ug/upgg) for various types of sur-
face are given in Table 8.

To determine rg, the horizontal distance to the shadow zone bound-
ary for given z,zo,¢ and for given meteorological and surface conditions
one may proceed as follows:

1. Obtain from Fig. 16 the value of /B & for
the given (z/zg) 2 %

2. Obtain B from Eq. (93) for the given W, P » for
the value of a obtained from field measuremsnts,
using Eq. (94) (see Table 8 and Fig. 13 for orders
of magnitude), and the value of (“*/“200) from
Table 9 for the given surface.

3. Multiply the value obtained in Step 1 by zo(Z/B)é.

1.5.6 Wave Theory of Shadow Zone: Constant Veloeity Gradient

Although the ray theory of the shadow zone predicts that ne sound
rays enter into the shadow region, it is well known that sound does exist
in this region. This may be explained on the basis of wave theory, since
a shadow region is penstrated by sound waves diffracted across the shadow
boundary. The theory of shadow zone penetration has been developed by
Pekeris?? for the case of a constant sound velocity gradient in the ocean.
He found that in the shadow zone formed by the surface of the ocean, in
which the sound velocity was assumed to decrease linearly with depth, the
intensity of sound decreased in an exponential manner along a horizontal
path. His results have been recently extended, by Ingard and Pridmore-arown33,
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to the cases where the ground is acoustically represented by a normal
impedance boundary condition, and either the sound velocity or the air
temperature (sound velocity proportional to the square-root of the tem~
perature) varies linearly with height.

In this subsection the case of the constant velocity gradient
will be examined; this case is found to be solvable exactly. (Since the
work in the succeeding two subsections depends upon this case the method
of solution will be given in some detail.) In subsection 1.5.7, a method
of approximately determining th» high-~frequency attenuation in the shad-
ow zone for an arbitrary sound velocity dependence upon height will be
given, and applied to the case where the sound velocity is proportional
to the square root of the height (constant air temperature gradient).
Since the sound velocity determined by the micrometeorological data given
in subsections 1.5.2 and l.5.3 varies approximately as the logarithm of
the height (see subsection 1.5.4), the high-frequency approximation for
the sound attenuation will be applied also to the sound velocity of Eq. (81).

For analytic simplicity, the case of the constant velocity grad-
ient is best solved in an "inverted" system of coordinates, where z is
positive into the ground; the ground is at z =Y; the source is at r = 0O,
%z = ¢ and the receiver is at P(r,z), see Fig, 18a .

The sound velocity dependence upon height is:
c(z) = gz (95)

where g is the sound velocity gradient. Although the velocity goes to
zero at = = 0, i.e., at a distance ¥ above the ground, this is taken care
of analytically by requiring outgoing waves as z approaches zere. It is
to be noted that the velocity gradient is, in practice, given by the dif-
ference in sound velocities at source and ground, divided by the source-
vo-ground distance, %5 = Y~@ ¢

g = + [clground) - c(source)] (96)
%o

(so that the gradient used here is a positive number). The distance frou
. the ground to the zero-velocity point, z = 0, is therefore

Y= 21&£§2£Q2 (97)

This very large distance, of the order of l.l x 10° feet for a typical
atnospheric gradlent of g = 0.01 sec‘l, is well outside the reglon of
physical interest.

The wave equation for the pressure in the case of linear velocity
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Fig. 18. Geometrical relations for the shadow zone
wave theory; (a) "inverted" coordinate system for
constant velocity gradient case; (b) "normal" co-
ordinate system for constant temperature gradient

cage.
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is

2 p(ese) = 0 | (98)

V2(r,z) +

where the harmonic time dependence of p is exp(iwt). It is assumed
that the ground is acoustically representable by a normal impedance
condition:

= ) (I’,z)
p(r,0) lUP [ D ]zzO (99)

where p.is the density of air. By expressing the pressure as a Fourler-
Bessel integral, solving the resulting z-dependent equation, and perform-
ing a contour integration, the solution may be obtained in terms of a
Fourier-Bessel series

oeye) = 2wp (2t YT B i) Jy(tkge) gy () o0
v w1 ;%) B )+ 32 ()

where D is a constant measuring the strength of the source, r is the radi-

al distance from the source to receiver; (¥-¢ ) is the height of the

source above the ground ( Y- z) is the height of the receiver above the
ground; and ¥ is the distance from the ground to the z = O plane (see Eq. (97)
and Fig. 18a); Hg2) is the zero-order Hankel function of the second kind;

Jin 18 the Bessel function of order in; Jin is its derivative with respect

to its argument; and

i

th

The parameter x; is the w2 solution (m =1, 2, -40es) 0of the equation:

Jm%)*[l 2 o~]‘" (xy) = 05 xq = kY (102)

where p and ¢, are the density and sound velocity (at the ground) of air,
Z is the ground impedancs, Eq. (99), and g is the velocity gradient.

In general, the series solution, Eq. (100), cannot be summed; how-
ever, for large ranges, the dependence of pressure on range can be found
fram the asympt~tic expression for the Hankel function:

H2) (kgr) -;-fi; o~ikar Igr >3 1 (103)
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Since the propagation constant ky, found from Eq. (102), has a negative
imaginary part which increases with increasing m, the terms of the
series depend upon distance into the shadow zone as damped cylindrical:
waves., The attenuation coefficient of each term is given by:

ap = "g Ap "—-lﬁﬁz—/z (104)

where the factor Ay depends upon the ground impedance and (lightly) on
the frequency, and ¢, is the sound velocity at the ground. Choosing a
sound velocity of 1100 ft/sec, the attenuation is

ag = 12:5 Ay 2313 @ /1000 £t (105)

The dimensionless factors Ap are given for two different ground impedances
in Table 9.

TABILE 9

Values of A in Eqs. (104), (105)

m pc-boundary Hard boundary (z =)
1.85 0.53
324 2.57
n 23 223 - 7?2230 - 327

Formulas for obtaining Ay in other c7=u.s are given in Reference 33.

Since the modes higher than the first are more strongly damped than
the first mode, the propagation well into the shadow zone will be charac-
terized by a single damped cylindrical wave of the type in Bq. (103) with
an attenuation given by @y, i.e., Bq. (104), (105), and Table 9 for m = 1.
For the region far enough into the shadow zone so that only the first mode
contributes to the sound field, the intensity at a point P(r,z) may be
written as:

1(p) = 1(8) (F2) ¢ “232(r-ry) (106)
r

where I{B) is the intensity on the shadow boundary at the same height as
the receiver, r, is the distance {rom source to B, r is the source-to-
receiver distance, and ®) is given by Egq. (104).
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As an example, it may be noted that, for.a typical gradient of
= 0,01 sec™L and a 500 cps source the first mode is damped  with an
attenuation factor of 8.3 db/1000 ft for Z = pc, and 2.4 db/1000 ft for

Z'=ma

The theory of Pekeris (who considered the linear velocity case
for a pressure-release surface) has been tested experimentally in under-
-water cases. It has been found that the attenuations predicted by the
theory are greater (by less than a factor of two) than the measured values,
This can be understood, since the effect of scund scattering from the
rough sea surface, and from thermal inhomogeneities in the ocean, have
not been taken into account; these would have the effect of increasing
the sound intensity in the shadow zone. The attenuations found theoreti-
cally are therefore upper limits to the actual attenuations to be found
experimentally, but probably give better than order-of-magnitude results.’

1.5.7 Wave Theory of Shadow Zone: Constant Temperature Gradient

From the results of Pekeris, Ingard and Pridmore-Brown32’33 have
derived an approximate result for the shadow-zone attenuation of sound
propagating over a normal impedance ground when the sound velocity is an
arbitrary function of height; the approximation is valid for high fre-
quenciles.

A regular coordinate system is used (in contrast to the Winvertedh
one of Pekeris): the z-axis is positive upwards; the ground is at z = 0,
the source is at z = z,; and the receiver is at P(r,z) (see Fig. 18b).
Let the sound velocity be ¢(z), and the velocity at the ground be c(o);
form the functions:

o2 2 4% 2 3

Q , ) ")

(@ ¢) - [ 2 (z) cz(r)] (z) kz] (107)
s(z,%) = /: Q(z,v) dz (108)

where T ia a (complex) number to be determined. The equation:

[éﬁgﬁ—}] H](j% [No,t)] i” {L(:,r) H(z)[p.(z,r) }] L (109)

(where 2,® ,p are the normal ground impedance, the angular sound fre-
quency, and the density of air, respectively; H£§) is the Hankel function
of the second kind of order 1/3) will determine an infinite number of
roots Ty,. These will be, in general, dependent upon the sound frequency
and the grourd impedance. The (complex) propagation constant for each
mode (which modes are similar to those of Eq. (100)) are given by:
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ky = w (110)

¢ (rm)

The attenuation factor for each mode is therefore:

n-Imkms-Im[ w

c fm)] (111)

m

Well into the shadow zone only the first mede will be of importance, and
the intensity will be given by Eq. (106). The above results are valid
under the condition
@23 @) -1 -5 (92 (112)
L Q 2Q 36 B

In reference 33, this has been applied to the case of sound pro-
pagation in a medium having & constant temperature gradient, i.e., a

sound velocity of:
c(z) = ¢ /1 -2, (13)
To .

where ¢, is the sound velocity at the ground; T, is the absolute tempera-
ture there; and b = dT/dz is the (constant) temperature gradient.
Eq. (113) gives a sound velocity gradient at the ground of:

_ rd ez ¢ob
BO:-[ d("‘>]z==0 =§%<; (214)

Applying Eqs. (107) and (108):

2
QR w2 (115)
o (1 - B2)
TO
2 , T
® "o --Lg - ._o-_z
pumtan (k) (b )Q (116)

It is found that for sufficiently high frequencies, such that
%/go >>1 (117)

Q and g satisfy the condition Eq. (112). Letting Q, = Q{o,t) and
po Splo,v), Eq. (109) becomes, using Eq. (117):

1P A Qord%) (o) 1)
z - 2
1) o)
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The roots pém) are frequency dependent in general; however, for
the case of hard ground (z = ), they are:

p.gl) = - 0.685; y.(gz) =-3.9 (Z =) (119)

For high frequencies, this gives attenuations of (see Eq. (111))

N IR L -

Far enough into the shadow zone s¢ that only the first mode is of impor-
tance, Eq. (120) for m = 1 may be used in Eq. (106) for the intensity in
the shadow zone.

ILaboratory experiments have been performed in order to check the
theoretical predictions. A small tank was heated in a manner to obtain
a constant temperature gradient (b = 250°C/meter was used); measurements
taken over a frequency range from 2700 c¢ps to 10,400 cps for a hard bound-
ary and for a pc boundary (using glass wool) showed good agreement with
theory. There seems to be little doubt that, under the idealized condi-
tions assumed in subsections (1.5.6) and (1.5.7), the theoretical predic-
tions will be fairly accurate.

1,5.8 Wave Theory of Shadow Zone: lLogarithmic Velocity Dependence

In subsection (1.5.4) an expression for the velocity of sound
(Eq. (81)) in the presence of wind and temperature varying with height
was derived on the basis of the micrometeorclogical data of subsections
1l.5.2 and 1.5.3. The problem of sound propagation in the atmosphere in
the presence of a wind is no longer an isotropic one, and therefore re-
quires the solution of a wave equation differing from the usual form,
Eq. (98). It may be expected, however, that for wind velocities small
compared with the sound velocity, an approximaté solution may be obtained
by using Eq. (81) for the sound veloeity in the ordinary wave egquation;
an attenustion coefficient for sound in the shadow zone can therefore be
derived using the wethods of the previous subsection.

In the sound velocity equation, Eq. (81), the effects of wind and
temperature are mixed; since the equation for the wind velocity variation
‘with height is valid only for distances above the ground greater than f,
an "effective” wind velocity v, will be used in the sound velocity equa-
tion, which will be assumed valid for z & [:

Vo —
B"‘Eg‘:mo' 22 f (121)
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c(z) = co(l - my 1In -z;) : z2f (122)

where c. is the sound velocity at z = f.

o]

From Eqs. (107) and (108)

B a%[ '[[l -1 In(e/0) ] - [1 - mg 1n(v/D)] '2}3" dz (123)

For small m,, the value of g on the ground can be approximated by

o 2l -20l \[og - 2) 1n¥(§) (124)

3¢

where the value of #{z,T) to be used in the boundary condition, Eq. (109),
is its value at the effective ground surface z = . For sufficiently high
frequencies, and m, not too small, it can be seen that v2[; therefore

po-.e-g-‘!l,/z no /2 [/x) (125)
c

(o]

This satisfies the condition for the validity of the approximation method
Eq. (112), for

__Quim »» 1 (126)
Co

The boundary condition, Eq. (107), for determining the roots “t()m) iss

iwp o o M3 0?3 Bafy (o) (127)
Z { c, Hy/3 (}b)
The roots are frequency dependent in general; however, for 2 =g they
are:
p - -o0es ;s plP) o390 (2 ew) (128)
The attenuation, from Eq. (110), (111), and (124) is:
ag * V%[—B aﬂo(m)] 2/3 .2%./3:15.02_1.3_ s B = E*;Eg (129)

where g, is the sound velocity gradient at the surface. This expression
will be compared with data in subsection (2.3.3).

It is to be noted that all of these high-irequency approximations
to the attenuation coefficient, Eq. (104), (120), (129), have the same
depondence upon frequency and sound velocity gradient; however, in view
of some of the results of Pekeris, this should not be considered as a
general result for all frequencies of interest. It may be expected, for
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example, that changes of the velocity-height profile from the simple
models used above, may markedly change the frequency dependence of the
attenuation, especially at the lower frequencies,

1.5.9 Intensity in the Normal Zone; Channelling

In the three previous sections, expressions for the sound pres-
sure due to a point source in a stratified medium were developed by means
of wave theory; the expressions, given in terms of infinite series, were
shown to be useful only inside the shadow zone, where only the first term
of the series is of importance. There has been no such simple solution
found for the "normal zone", i.e., the region between the source and the
shadow boundary.

The ray-theory approximation to the normal zone sound field, valid
for infinitely-high frequency, can be developed for an infinite medium. By
means of appropriste images, the effect of a hard (or soft) boundary should
be obtainable; however, non-infinite (and non-zero) impedance boundaries
present special difficulties, and the problem of boundary effects needs
investigation.

The sound intensity at a point P(r,z) in an infinite stratified
medium, assoclated with the ray making an angle with the horizontal of 90
at the source, see Fig. l4b, (i.e., the power per unit area at P carried
between rays emerging from the source between angles & and 8, + d8, and
reaching P between angles @ and 8+ d8) is given by Reference 343

.. _F cos 8
I(r,z,8) = ~(a/a8,)oind (130)

where I is the source power per unit solid angle; 8 and 8, are connected
by Snell's law, Eq. (82), and r is the horizental distance from the source
{ses Bq., (83)):

... % cos @48
Te T s 8, ‘(de/dz) (131)

For the case of the constant sound velocity gradient (¢ - ag),
using the "inverted" coordinates of Fig. (18a), we obtain:

Feos?@ e
I = —=2 ; r = (sinB, - sin8) for ¢ = az (132)
Lar? cosf, °

where o (= ¢,/a) is the distance from-the source to the 3z = o plane (see
subsecticn 1,5.6). (It is to be noted that, for the intensity at a point
P(r,z), one determines that value of 8, which satisfies the second of
Eqs. (132) and Snell's law, and uses this value of 90 in the first of
Egs. (132).)
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Due to the complexity of the equation of a ray traveling in
a medium where the sound velocity depends logarithmically upon height
(see Eq. (84)), it is doubtful that useful results can be obtained
for this case by the above methods of analysis.

In the case of a sound velocity which increases with height
above the ground (e.g., a temperature inversion), the sound rays are
bent downward after leaving the source, and will all reach the ground
after traveling some dis.u .e from the source; the distance will de-
pend upon the sound velocivy gradient and the angle of emission of the
ray. Upon reflection from the ground, the process will be repeated,
causing the sound rays to be periodically reflected from the ground as
they travel outward from the source. This phenomenon, known as "chan-
nelling®, can bring about a greater sound intensity at large distances
from the source, than would be predicted by a simple inverse-sguare law.
An analysis of this effect for the case of constant sound velocity gradi-
ent based on Pekeris'! work, has been done by HaskellBs, but the results
have not yet been extended to other cases of interest.

1.6 EFFECT OF RANDOM TEMPERATURE AND WIND INHOMOGENEITIES

l.6,1 Introduction

The effects on the propagation of sound of the height dependence
of air temperature and wind velocity were discussed in subsection l.5.
There it was implicitly assumed that this height dependence (almost
logarithmic) was constant in time and space, that is, a given height de-
pendence was assumed to be inde,sndent of time and of horizontal position.
Experimentally, it is found that the average temperature and winrd velocity
(speed and direction) are describable by a simple height dependence, but
that there are variations about these mean values; these variations, or
sound velocity inhomogeneities, are dependent upon time and position
(horizontal and vertical), and lead to sound scattering, and the asso-
cilated phenoumena of intensity variations and fluctuations. An important
characteristic of the inhdmogenemties is their randomness, or irregularity
in'space and time,.

If a sound beam passes through a region .hich contains inhomogene-
ities, i.e., one in which the sound velocity varies randomly about its
mean talue, sound may be scattered out of the beam, causing a decrease in
intensity. Moreover, sownd scattercd from a sound field by inhomogeneities
may cause an increase in intensity, at some points, above what would be ex~
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pected in the sbsence of scattering; it is believed that the scatter-
ing of sound across the shadow boundary is responsible for the observa-
tion that sound intensities in the shadow zone are considerably higher
than predicted by theory.

Since the inhomogeneities are time-dependent, that is, the mag-
nitude of the deviation from the mean sound velocity depends upon time,
the combination of Mdirectly-received" and scattered sound will be time-
dependent; the total received intensity will therefore change with time.
The variations of the intensity may be subdivided into two types: "slow
variations™ or changes in the average intensity taking place over a
period of minutes or more; and "fluctuations™, or changes in intensity
about the (slowly varying) mean value, taking place in a period of sec-
onds, or less. (Obviously these definitions overlap, since they are
two aspects of the same general phenomenon.) This division is useful
from a practical point of view, since the variations in meen sound in-
tensity may be expected to depend upon large-scale changes in sound
conditions, e.g., changes in "Maverage" wind velocity, while the fluctua-
tions will depend upon the small-scale changes, or inhomogeneities, e.g.,
short gusts of wind.,

Exlgting theoretical analyses of the effects of inhomogeneities
usually do not take account of the presence of boundaries (the ground)
or of the dependeunce of the meal. sound velocity with height. It is
often assumed (because of mathematical difficulties) that after the mean
sound pressure is determined by using the mean sound velocity (varying
with height), the effect of inhomogeneities may be given by assuming
an infinite medium with a constant mean sound velocity (independent of
height)., T+ is expected that this should give, in most cases, the order
of magnitude o: the effect, and its dependence upon important parameters,
such as sound frequency. Since the inhomogeneities are random functions
of gspace and time, the effects due to them will also be random, Theo-
retical treatments of tuese effects are therefore designed to give in-
formation about average values, and root-wean-square deviations from average
values.

After a short description of the methods of averaging used, the
types of temperature and wind inhomogensities to be expected in the at-
mosphere near the earth will be discussed; the analysis of specific pro-
blems will then follow.

1.6.2 Averages and Correlation Function336

Consider a random function of space and time, f(x,y,z,t), that
is, a function whose value, at a point in space and at a given time, de-
pends upon the variables (x,y,z) = ¢ and t in such an irregular manner
that the relationship between values at two points (in space and time)
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can be given only statistically. The time average, or mean, value of
f 1s given by:

t0+%T '
T, t,) = %/ £(g, t) at (133)
t

1
o~2r

In general, the average value will depend upon the time at whisch the
average is taken, t,, and upon the sampling length, T, as well as the
position r. This dependence on t, and T will obviously be of importance;
for example, if f(g,t) is a couponent of the wind velocity at a point,
the average value of the wind will depend upon whether t, 1s taken dur-
ing a time of Ystrong" or “weak™ wind, and whether T is large enough to
take account of gross changes in wind speed, or just short gusts.,

The time of averaging and the sampling length are closely con-
nected to the type of changes considered, i,e., "slow variations' or
fluctuations®, It is assumed in the theoretical developments to fol-
low, that the length of time T is sufficiently long to include wmany
short-time changes (fluctuations) in f(g,t), but short enough so that
any long-time changes (slow variations) in f(gz,t) take place in a length
of time much larger than T. .In this case, the average value f(g; T, ty)
will not depend upon T, but only upon the time of averaging; the fluctua-
tions are theu considered as deviations from the slowly varying average
value. Since, in general, the slow variations will be assumed to depend
upon lerge scale changes, they will not be of particular interest here;
in the study of fluctuations, the averaging process may therefore be
taken as though the mean value does not change. This mean value is
therefore:

T
(£g,t)) = Lm0 e(g,t)at (134)
T-» 2?/r
-T
Since the function f(g,t) is assumed to be a random function of
space as well as time, the same considerations hold in the case of a
space average as held for the time average; the average should be taken
over a volume large enough to include many small changes in f(g,t) at
any instant of time, but not so large as to include large-scale changes
6.2+, the average should be over a region of space containing many gusts
of wind, but such that every gust is "traveling' in a wind having the
same velocity as the others):

(£(z,t) )y = Lin ij' £(x,7,2,t) dx dy dz (135)
veo iy

Measurements in acoustics usually involve sound pressure at a
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point in space as a function of time, so that use of the time-averaging
process in theories gives results more closely related to experiment than
use of space averages37. However, since the theoretical developments are
usually based upon "stationary® random variables, that is, variables
whose average does not depend upon the time about which the time average
ig taken or upon the position about which the space average is taken
(statistical homogeneity), both will give the same value for the average,
that is, £ = {fy, and the average does not depend upon position or
time, This may be visualized by considering a wind with many gusts; for
the time average, a stationary recording instrument averages over all the
gusts carried past by the mean wind; for the space average, many record-
ing instruments are used, placed throughout space, and the average taken
by using the readings of all the instruments at one instant of time.

As will be seen in the next section, however, the micrometeoro-
logical variables are not statistically homogeneous, since they depend
upon height above the ground; the time average will probably be the more
useful one in theories using this fact.

The deviation from the mean is defined as:

Brgt) = £(g,t) -{£) (136)

The deviation has a mean value of zero. (When there is no chance of
confusion the subscript will be dropped: A(g,t) = Ar(g,t).)

A measure of the randomness may be found by averaging the pro-
duct of the deviation at a point in space at one time and the deviation
at another point in space at another time:

T
(A@Et) Az +p, b+7))=lin = A(gt)A(g+p, t+w)at  (137)
T @ 2T
-T

where p_is the vector distance between the two points in space, and ¥
is the time interval; the mean-square value of the deviation occurs for

p= 0, v= 0. As noted above, it is usual in the theoretical work to
make the assumption of statistical homogeneity; the average in Eq. (137)
will then depend only upon g and ¥, the interval in space and time be-
tween the points whose deviations are being averaged.

If the function f(g,t) is random, it may be expected that large
values of the average appearing on the left hand side of Eq. (137) occur
for smail values of p and v, since, if A (x,t) has some value,

Az, +p, t + ) will have "almost" the same value for small g, , ¥: if
A(r,t) has one sign (positive or negative), A(r +g., t +v) will

"most probably" have the same sign and the average will be made up of a
series of positive terms. For large p or ¥, the vaelues of A(g_ +p,t+¥)
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should bear little relation to the values of A(z,%): for a given sign
of A(r,t), the sign of A(r +p, t +T) may be positive or negative
with'almost equal probability". The average, for large p or v will
therefore be made up of a series of terms having positive or negative
s8igns with Malmost equal probabllity"; the average therefore tends to
zero for large p orv. (If there is a periodicity in &, the average
will also tend to be periodic; this is, however, excluded from truly
random functions.)

The "correlation function™ is defined by normalizing the average
to a maximum value of unity:

- t+T
R(p,¥) - %ﬁ-ﬁy—l (138)

Since the correlation function is often used for the case v = 0,
the notation R( e_) will be used for R( e,,O). Under the condition of
statistical homogeneity, R(@,¥ ) is a function of the vector distance,
g=(&,m,8) = (xo-xy, y2-y1, 22-21), between the positions at.which
the deviations are taken; for the case of "isotropic homogeneity",
R(e,%) = R(P,¥) is a function of the magnitude of the distance be-
tween the points (p= |P_!), and does not depend upon direction.

Since it is expectsd that the correlation function goes to zero
as either p.or ¥ go to infinity, they may be integrated from zero to in-
finity over either variable. Thus may be defined, for the correlation
function in general, characteristic lengths and a characteristic time.
For the case of isctropic inhomogeneities, the characteristic length is:

[+ <]
Po =/R(p,0)dp (139)

[+]

with corrsesponding definitions for characteristic lengths in the x, y or
z directions for the anisotropic correlation function. The characteristic
time is:

x, - / R(O,v)ar (10)

(¢}

1.6.3 Tempersture Variations and Fluctuations

Although the slow variations in teuperasure are to be considered
as relatively unimportant in the problems of sound scattering (since
these are related Lo the "slowly varying® mean value of the received
sound pressure) s it seems best to discusc variations and fluctuations of
temperature together, since they are the large-scale and small-scale as-
pects of the same problem of temperature changes.
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As noted in subsection 1l.5.2 and Fig. (13) the temperature
gradient changes in size and sign during a 24-hour period, Table 10

TABLE 10

Diurnal temperature variations at various
heights.above the ground (nate that the
heights used are different for the two lo-
cations); from Sutton: Micrometeorology.

Porton, England Leafield, England

Month Height Diurnal Height Diurnal
(meters) Variation (°C) (meters) Variation (°C)

December 0.025 3.7 1.20 3.2
0.30 3.3 12.40 2.2

1.20 3.1 30,50 1.6

7.10 2.7 5740 1.2

17.10 2.4 87.70 0.9

June 0.025 11.8 1.20 10.8
0.30 10,2 12.40 8.8

1.20 9.4 - 30.50 8.1

7.10 8.3 5740 T4

17.10 7.7 87.70 7.0

shows the diurnal variation of the temperature (in °C), at various heights
above the ground, on clear days in Porton (open meadows) and Leafield
(hilly pasture lands), England. As might be expected, the variations are
greatest near the ground; the rate of decrease with height of the diurnal
variation is much greater in summer than in winter. By expressing the tem-
perature deviation from the mean by the first two terms of a Fourier series
in time, the coefficients (which will be functions of the height) may be
found:

AT(z,t) = ¢y sin(15t +¢1) + co sin ('30;. +$2) (141)

In this expression the time, t, is expressed in hours past midnight, and
the argument of the sines are in degrees (l-hour = 15 degrees); the values
of the coefficients, c] and cp and the phase angles ¢ 7 and ¢, are given

i
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as functions of the height for Porton, England, and Ismailia, Egypt
(near desert conditions) in Table 11, The summer conditions at
Porton indicates that the temperature variation there can be repre-
sented, to a good approximation, by a single sinusoidal term in time;
this is not true of the other conditions, however,

TABIE 11

Coefficients and phase angles for first two
terms of a Fourier series representing the
diurnal temperaturs variations at various
heights above the ground (note that the
heights used are different for the two loca-
tions, as well as the type of day used);
from Sutton: Micrometeorology.

Porton, England

Month Height (meters) ¢y(°C ) ¢ 1 ¢o(°C) *2

December 0.025 1.37 244,° 0.84 599

(ali 0,30 1.23 2380 0,72 550

days). 1.20 1,16 233° 0.64 520

7.10 1.03 2250 0.54 450

17.10 0.93 218° Oulib 1L,0°

June 0,025 5,78 21,6° 0.48 108°

(all 0,30 5.1 238° 0.29 107°

days) 1.20 472 235° 0.25 110°

7.10 4410 2280 0.28 107°

17.10 3.76 2230 0.31 103°

Ismailia, Egypt

December 1.10 6440 2280 1.97 61°

(clear 16,20 4406 216° 1.32 42°

days) L6.40 2,49 209° 0.98 2850

61,00 1.94 204,° 0,92 27°

August 1.10 6.56 2250 141 50°

(clear 16.20 5,28 219° 1.30 420

; days) 46440 L.82 2180 1.4) 31°
61,00 4469 219° 1,41 280




There has been little experimental work concerned with the
Muctuations of temperature. Sutton38 reports, fram a single set of
observations at leafield, England, that the magnitude of the tempera-
ture deviation from the mean varies approximately as z-O«k, where z
is the height above ground; however, this should not be considered
as a general result. -

There is some experimental evidence, which has a strong theo-
retical basis, that heat may be transferred by "bubbles"™ of warm air
rising from the ground due to their buoyancy; this would be expected
to take place under conditions of warm clear weather with a low wind,
so that the ground becomes quite hot. The mean temperature field at
any height would be closely related to the time-averaged effect of
these bubbles'! pasgage past a point, Sutton3? estimates, from the
leafield data, that about four bubbles per minute rise from the ground,
having a velocity of about 25 cm/sec at a height of 2 meters; the heat
capacity per bubble, if the latter are assumed as planes, is about
0,05 cal/cm?.

It may be expected that the temperature fluctuations are strong-
1y related to such factors as temperature gradient, solar radiation, and
wind fluctuations; the amount of data, however, is small, and is not in
a form which can be used in the theoretical work (i.e., correlation func-
tions). A statistical analysis of recent data should give useful para-
meters for the acoustical problems.

1.6.4 . Wind Fluctuations

There is somewhat more known about the fluctuations in wind
velocity than about temperature fluctuations, but not much of what is
known is readily applicable to the theories of acoustic scattering. In.
an analysis of turbulence over meadows (by Scrase, quoted by Suttonbo),
‘t has been found that of the total turbulent enargy associated with
wind fluctuations, at least two thirds of the energy is azssociated with
fluctuations lasting, at a point, luvss than five seconds. Fluctuations
lasting for the order of a few minutes are found, as well as variations
of a much larger time scale.

In general, it is found that the fluctuations in wind speed (in
the x, y, and z directions) are approximately proportional to the mean
wind speed, for small temperature-gradient conditions, at heights above
about 20 meters from the ground. Below this height, the average mag-
nitude (without regard to sign) of the fluctuations in the direction of
the wind and across the wind are about equal, but the vertical fluctua-
tion is somewhat smaller than the others; at heights of about 2 meters,
the root-mean-square cross-wind fluctuation is more than two times
greater than the root-mean-square vertical fluctuation.
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The ""gustiness™ may be defined as the average magnitude of
the speed fluctuations, in the x, y, and z directions, divided by
the mean wind speed:

R CIEER V1) Jup (___L (L)
R R @

where u, v, w are the componentr of the instantaneous wind velocity
in the x, y, 2z directi~us, respectively, {u) is the mean wind speed
(taking the x-axis along the mean wind direction, and {v) = (w) =
The gustiness is,therefore, a measure of the speed fluctuations. in the
direction of the mean wind and the fluctuation in mean wind direction
(from gy and g;).

Best4! has evaluated gx for winds over a level field with grass
from 1 to 2 cm high; the averages were computed by taking readings of
the instantaneous wind velocity every ten seconds for a total time of
three minutes. The experiments wers conducted under the following con-
ditions; height above ground varied from 2.5 to 200 cm; mean wind speeds
(at a height of 200 cm) varied from 50 to 800 em/sec; temperature grad-
ients (between 10 and 110 cm height) varied from -0,015 to 0,01°C/cm.
It was found g, varied from 0.1 to 0.2, and was approximately independent
of the mean wind {so that the average magnitude of the deviation is about
10 to 20% of the mean wind). The frequency of occurrence of values of
gx had no well-defined variation with height in the above range; it was
independent of the temperaturs gradient for measurements of' g, between
2.5 and 10 cm above ground, but above 25 cm, g, decreased as the tempera-
ture gradient went from negative to positive.

There is leas information about the lateral (cross-wind) and
vertical gustiness 8y and g;; at 200 cm above grassland the maximum
valuss of gy and gz are nearly independent of mean wind speed for
negative temperature gradients, but increase sharply with increasing
wind speed for positive gradients; for constant mean wind, both 8y and
8z decrease as the temperature gradient goes from negative to positive
values. Under all conditions, at this height the ratios of the maxi-
mum values of gy to g, i: about 1.8, As a function of height, the
ratio of the maximum values of 8y to g, was found to vary from about
2.9 at 25 cm to 1.4 at 506 cm; as noted above, the ratio is about
unity for heights above 20 meters.

Sutton has shown, from data taken at 200 cm above grassland
(grass up to 30 cm high), that the autocorrelation function (correla-
tion between velocity fluctuation affecting a particle at time t and
t + £) may be given by:
R(€) = (

n.

N+(A2)€

(1:3)
N = 100 em/sec, n = 0.15; (AZ2) = 6.51 x 10° cum/sec
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This aubtocorrelation function is approximately related to the previous-
1y defined correlation function, subsection 1.6.2 by R(€ ) % R( (u)€ £€),
since a particle travels a distance (u)€ in time interval § .

1.6.5 Scattering of Sound by Temperature Inhomogeneities

The problem of the scattering of a plane sound wave by tempera-
. ture inhomogeneities has been solved by Pekerishe » and the correspond: g
attenuation of a sound beam due to scattering, by Jacomini.

Congider a medium whose sound velocity has a mean value of cg,
and which has small random variation in space about the mean:

c(x,y,2) = ¢, + Aclx,y,2);

(144)
{c) = co; == Bc e
%
The wave equation for the pressure amplitude is, approximately,
v + K2p= zkz(é&.)p ; k = ;‘% (w5)

The solution for an initial plane wave of sound traveling in the z
direction is (assuming a time dependence of exp [-iwt] ):

L ]

ikz _ k2 /ACKX' NAvAD] p(x'y'z?) eikf dvt (146)
r

2w J Co

p(x,y,z) = e

where (x,y,z) is the observation point, exp(ikz) is the initial plane
wave, and the integral gives the scattered pressure contribution from
the inhomogeneities; (x', y',z') is the position of a scatterer, and
et2 = (xx')? 4 (y=y*)? + (z-z') Since the magnitude of the velocity
changes are assumed small, the pressure amplitude in the integral may
be approximated by the initial plane wave. The power scattered into

an infinitesimal solid angle d& = sin8 d6 d¢ (where (r, @ ,¢) are the
spherical coordinates of the observation point (x,y,z)) at a large dis-
tance from the scattering volume is

W
q L L _ in(2KP) 2
Bl = 3 Iok4 dOv ((ﬁ-‘i)z) fi (p)‘-3 '2‘“ podp ;
(247)

K= k' sin8§/2
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where T, is the ntensity of tne initial piane wave, V is the volume
of tre medium cont~ining the scatterers, and the space~correlation
function is (see Ec. (132) for v= 0)

rR(€,9,8) = a@éﬁ" ([ Ac( x.xco,22 ] [A-c$x+£. ;cf:g. z+§ H’M)
Co '

and statistical isotropy has been assumed:

R(p) =R(EML) ; p- [0’y ]% (149)

The plane wave attenuation coefficient may be found in the following
manner: by integrating Eq. (147) over all angles (assuming that the
angular spread of the initial veam is zero) the total power scattered
by the inhomogeneities in the volume V may be found; the i tensity at-
t~~uation coefficient, 2 @(using @ as the amplitude attenuation coef-
ficient) is- the ratio of the power scattered out of V to the power en-
tering V. For initial intensity I, this is

2@= -+ { E4Q (150)

Using Eq. (147), this becomes:

, 2y foo;
2¢= 2K ((f:’—, ) éx(p) [cos (2kp)-1 ] dp (151)

For a cortelation function:
R(p) « o ¥ /a2 (152)

the intensity attenuation coefficient is;
id - 2 2
2a ofr (DR Y2 a(1 - o757 (253)
Co

This attenuation, increasing approximately as the square of the frequen-

cy, has not been well checked as yet by erverimental work., Under the as-
sumption of the Gaussian correlation function, Eq. (152), the scattered
radiation has a directionality pattern proportional to exp [«azk2 sin2(6/25],
so that its half-power polnt occurs at angles from the incident beam

axis of

0=*%2sin? (‘iﬁ)é radians = t_ii degrees (154)




where (ak) is assumed large (sound wavelength small compared with in-
homogeneity size); for audible frequencies, 8 will usually be no more
than a few degrees. Since the scattering angles, Eq. (154) are so
small, it is to be expected that higher-order scattering would send
sound back into the acoustic beam and hence decrease the effective at-
tenuation. Eq. (153) is therefore, probably, an upper limit to the
attenuation.

A somewhat more general development of plane-wave scattering
theory has been given by Ellison’3 who considers the correlation be-
tween the intensity received at two points in a plane perpendicular
to the direction of the incoming wave. Since there does not seem to
be much application of this theory to the air acoustics problem the
results shall not be given; it should be noted, however, that contri-
butions to the Fourier transform of the intensity correlation func-
tion at a particular wave number comes from the same wave number of
the Fourier transform of the refractive index correlation function.

A ray theory of attenuation due to scattering, arising from the
use of a directional receiver, has been developed by Givensbk, et. al;
in view of the discrepanciesl*éy46 between ray and wave theories for the
general scattering problem, there is some doubt as to whether this method
is applicable quantitatively i. atmospheric accoustics problems.

1.6,6 Fluctuations due to Temperature Inhomogeneities

Since the temperature inhomogeneities (as well as the wind in-
homogeneities) change with time, the received scattered pressure will
also change with time. If a series of sound pulses arc received, the
pressure amplitude of each pulse varies rapidly with time, and the time-
average amplitude varies {rom pulse to pulse in a random manner about a
mean value. A theory has been developed by Mintzer®? for the fluctua-
tion of the mean pulse amplitude from a point source of sound (in an in-
finite medium), and has been compared with underwater weasurements. It
is assumed in the development that the sound velocity at a point varies
slowly enough with tire, so that there is little change in sound velo-
¢ity during the passage of a pulse past the peint; this is found to be
true if the pulse length T is much less than the characteristic period T,
of the inhomogeneity (see Eq. (140), and if the characteristic length a
(Eq. (139)) and period v, are related by a/¥, << cg, where c, is the
mean sound velocity.

The method of analysis is similar to that of the previous sec-
tion, except that the pressure fluctuations considered are those of the
average pressure amplitude of a pulse, p, and an initial spherical wave
is assumed. I1If the coefficient of varistion, V, is defined as the ratio
of the standard deviation from the mean to the mean pressure amplitude
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VR = As-21 2 (155)
21

It is found that (for distances from the source large compared with the
characteristic length)

v = 28 ¢r / ;(E)dﬁ (156)

where r 1s the distance from source to receiver, and

o2R(§) = ([.AQ.Q&%:_Z_;Q] [Acfx +€c, x,z,t)l) (157)

Here x is the coordinate along the line from source to receiver and o
is the rms value of Ac/c,. For a Gaussian correlation function

R(E) = o~6/2° (158)

the coefficient of variation is, for kja»> 1 (wavelength amall com-~
pared with inhouwogeneity size)

Ve [JF k2ot ot (159)

This formuls has been subject to test in the underwater caseL‘S, where
acoustic measuremsnts were made in deep water using 24 ke sound;"*7
measurements have also been made®® of the rms value of Ac/co , and of a,
the correlation distance. The theory and axperiments agree very well,

The above work has been extended®’ to determine the time depand-

ence of the fluctuation in pulse amplitude. Let the correlation function
of the deviation from the mean pulse amplitude at a point in space be

dlt)= SAR(.&“) DAppt e )) (160)
@P(ﬁyt)]2>

and the correlation function of the deviation {~om the mean sound velo-
city be '

R(%) = ([ Ach,xco,z,tz ][ Ac(x,x,z;t + %) ]> (161)

It is found that

LA
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® (t) = R(T) (162)
so that (under the conditions noted in the first paragraph of this sub-
section) a measurement of the correlation of successively received sig-

nals should give the time correlation of the velocity changes.

1.6.7 Scattering of Sound by Wind Inhomogeneities, I

As was noted in subsection 1.5, the interaction of sound waves
with a wind is an anisotropic problem, and is therefore of a consider-
ably more difficult nature than the problem with a variable temperature;
this is reflected in the fact that a single scalar potential for the
particle ‘relocity cannot be used in the case of a wind, but that a vec-
tor potential must be introduced as well. However, ObukhovoC has, by
introduction of a suitably defined scalar "quasipotential", developed
a simple method of taking account of vortical flow for flows of small
Mach number (flow velocity much less than sound velocity). Using this
method, Blokhintzev>® has developed a single scattering approximation
for the attenuation of a plane sound wave due to scattering from a
turbulent region. The power scattered from a plane wave directed along
the z-axis by a volume V of the turbulent medium into an infinitesimal
solid angle 48} becomes:

Q. - '2 I k. ol v L {v)?) / v HE® N (p) s é‘vgvzﬂw(:’)
I
(163)
v w2y (p)]
ik ®

where the vector K is given in terms of the unit vectors in the direc-
tion of the incident wave j, and the scattering direction n {at spheri-
cal coordinate angle 8 from the z-axis):

K=k (n~4) 35 |&] = 2¢ sin(8/2) (164)
and the correletion function of the z-component of the turbulent velo-

city (that is, the turbulent velocity component in the direction of the
" incident wave) is defined as:

() M0 = val) volz2)) (165)

In general,the correlation function depends on the direction, as well as
the magnitude of L. .
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From dimensional considerations, and noting that, to the ap-
proximation (v/c<< 1), used in deriving the above expression, the
flow 1s incompressible, Blockhintzev derives a correlation function

X 5 2
Myz (R) =){’%e‘l<‘i‘8) 0 (1 - i—%—) aqdaydas ((v,2)) 7 (166)

where Y is a constant estimated at about 0.2 (by Obukhov), and the
integration is over values of the turbulent field wave number g
greater than a value q, where

CLAEER (167)
%

(The "constant" Y presumably depends upon wind speed.)

This restriction on the minimum value of the turbulent wave number,

is equivalent to & restriction on the maximum value of the wavelength
associated with the turbulence; i.e.,, the turbulent wavelengths of
interest should be less than a representative length of the scatter-
ing volume (Vl/B); any larger scale turbulence will have an essential-~
ly constant velocity over the scattering region and will not contribute.

Using Eq. (166) in Eq. (163), and determining the intensity at-
tenuation coefficient as in subsection 1.6.5, Eq. (150)

2a-= g. (2w)i/3 p5/3 (%!Zi_ﬁ.ﬁﬁ 'li (168)
C

where pis a dimensionless parameter much greater than unity and A\ is

the sound wavelength. Using data of Sieg's (to be discussed in Section II)
Blokhintzev evaluates m to be equal to 10 (a reasonable value); the weak
frequency dependence (as £1/3) "does not contradict Sieg's experimental
results®l, This result should be the subject of further experiments.

1.6.8 Scattering of Sound by Wind Inhomosgeneities. 11

A more exact formulation than Blockhintzev, of the scattering of
sound by turbulence {i.e., wind inhomogeneities), has been given by
nghthill52 and independently by KraichnanSB, based on the general theory
of the interaction of sound and turbulence by Lighthill,

Lighthill has shown (from the usual equations of a compressible
fluid) that the motion of a compressible fluid may be written as a wave
equation in the fluid density with a "forcing® term depeadent npon the
velocity of the fluid. Neglecting deviations from adiabatic {low in
the turbulence and the effects of viscosity, the equation for the den-
sity of the fluid is
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> ’ 3 (puyuy)

where p is the density, and u]-<, uy are the components of fluid velo-~
city in the xj, x4 direction (x1 = x, X =y, x3 = z). By dividing

the fluid velocity into turbulent and acoustic components, and con-
sidering the turbulent-acoustic interaction term (the acoustic-acoustic
term is negligible from the usual small-amplitude acoustic assumption;

the turbulent-turbulent term gives rise to turbulence-induced sound,
which has a small effect for low Mach numbers), a first approximation

to the scattering can be obtained as in Eq. (146). For high frequency
sound (wavelength small compared to characteristic size of the turbulence,
see Eq. (139)), the power scattered from the turbulent volume into the
solid angle df} is approximately

EdQ % 21, i@ dQV {(v,/c,)?) f c;'4“(0,0,0(15; kg >> 1 (170)
[

where I is the incident intensity, k the sound wave number, the cor-
relation function is

((%)2) Mm(E,n,D = ( v (%,¥,2) vglx +§, 5 +9, 2 4&)) (171)

and.t.o is the characteristic length of turbulence in the z-direction,
given by the integral in Eq. (170) (see Eq. {139)).

For isotropic turbulence, the high-frequency approximation
(k Co:»» 1) is not needed; the scattered power is given for any ratio of
turbulence "size" to wavelength by:

I K2
Edn-.».—‘;—- a0 V cos @ ctn2(8/2) E(2k 8ini6) (172)

when €(K) is the Fourier transform (i.e., the spectrum) of the turbulent
energy per unit mass of the fluid:

€0 -3 [ v@v@)) P g (173)
-0

where the correlation function is a function only of p "le-l » 9ince
isotropic turbulence is assumed. It is to be noted from Eq. (172) above,
that the scattered energy goes to zero at 8= 90° and 8= 180°; for 8- 0°,
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the energy spectrum goes to zero as (2k sink @ )%, sc that there is
a zero in scattered energy at 8 = 0° as well.

For sound wavelengths smaller than the scale of turbulence,
the intensity attenuation due to scattering becomes:

- 2 &8 {4Vz2 bl ,
2e = 8w 02 ((-Czu)) _[Mzz(u,o,i) ad (174)

It is not known, as yet, how well the aboye theory corresponds
to experiment; in view of the good agreement with experiment of Lighthill's
theory of noise generation by turbulence, it seems probably that the
above scattering theory should give results close to experimsntal results.

1.7 DIFFRACTION OVER A WALL

1.7.1 Previous cases treated in Section I represent idealized situa-
tions in that, in each case, the air is assured either unbounded, or
bounded below by an infinite homogeneous plane. In field problems one
is compelled to consider more complex cases. Thus in practice it is
important to know how sound propagates over a hilly terrain or around
obstacles such as trees or buildings. We shall make no attempt to
treat the general problems here, but confine ourselves tc the special
case of propagation over a long wall of given height. In a given field
situation the 'wall" might be an extended hill, a long building, a row
of trees, or, of course, a man-made wall of boards or stone.

1.7.2 Appropriate methods for treating this problem are available from
the classical Fresnel diffraction theory, long used in optios5l*. For
definition of symbols see Fig. 19. '

In Fig. 19 the source of sound is at Q, and P is a point at
which the sound level 1s to be calculated. The point Py is directly
above or below P and on the "line of sight" from Q; i.e., the line
QP, just grazes the "wall", The distances from the wall to Q and Py
are a and b, respectively, while the vertical displacement of P below
Po i8 do; the latter quantity is positive for P below Pg,negative for
P above Pg. In the Fresnel theory it is assumed that a>> A, b>> X,
do<<(a + b) and dy << (b/a)a+b). Define a quantity v such that
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Fig. 17. Geometrical parameters for problem of diffraction over a wall,

Poe

v = dg o {ﬁ] (175)

where N is the acoustic wavelength, Then the sound pressure p at P
is given by

0=A[X2+Y2]%003(ut+ 8) (17¢a)

where w is the angular frequency and

[}
X =/ cos 'fxz dx , (176b)
4 2
' ® 2
Yu/ sin XX dx , (176c)
s 2
0 = tan~1 (Y/X) (176d)

and A depends on a, b and the source strength, but is independent of dge

Table 12 gives X and Y for positive and negative values of v
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ranging from O to 6.95. From these the amplitude and phase of p/A
may be calculated for any given a, b, d, and A . The same results
are given in another form in Fig, 20, Here the Cornu Spiral is
shown, obtained by plotting for each v-value a point whose vertical
displacement with respect to a given point O is X, and whose verti-
cal displacement with respect to the same point is Y. Hence, to de-
termine the relative pressure amplitude and phase at a point P charac-
terized by a given v-value one need only draw a vector from O to the
point corresponding to the v-value in question: the horizontal com-
ponent of this vector thus gives X, its vertical component Y. The
length of the vector is[X2 + Y2]§ and the angle measured counter--
clockwise to the vector from the horizontal gives tan™1 (I/X) and
hence -the angle 8 .

TABLE 12
The Fresnel Integral

v X Y v X Y
6.95 -0.0207  0.0409 5.50 0.0216 -0.,0537
6.90 0.,0268  0.0376 5,45 ~0,0269 -0.0519
6.85 0.0461 -0.0060 5,40  -0.0573 -0.0140
6.80 0.0169 -0.0436 5,35 -0.0490 0.0338
6.75 -0,0302 -0.0362 5,30 -0.0078 0.0595
6.70 -0.0467 0.0085 5425 0.0390 0.0464
6.65 -0.0161  0.,0451 5,20 0.0611 0.0031

0.0310 0.0369 5.15 0.0447 ~0.0427

6.60

6:55 0.0480  -0.0078 5,10 0.0002 -0.062
6.50 0.0184  -0.0454 5,05  -0.0450 -0,00,2
6445 -0.0292  -0.0398 5,00  =0.0637 0.0008
6440 -0.0496  0.0035 4.90  ~0.0002 0.0650
6.35 -0.024,0  0.0440 4.80 0.0662 0.0032
6.30 0.0240  0.0LL5 4,70 0,0086 -0.0672
6.25 0.0507  0.00L6 4L.60  -0.0673 -0.0162
6.20 0.0324, -0.0398 4.50  -0.0261 0.0658
6.15 -0.0L46  -0.0496 - Lo40 0.0617 0.0378
6.10 -0,0495 ~0.0165 4430 0.0506 ~0,08L0
6.05 -0.0424  0.0311 L.20  -0.0418 -0,0633
6.00 0.0005  0.0530 4,10 -0.0738 0.0242
5.95 0.0434  0.0312 4,00 0,0016 0.0796
5.90 0.051, -0.0163 3.90 0.0777 0.0248
5,85 0.0181  -0,0513 3.80 0.0519 -0.0656
5,80 -0.0298  -0,0461 3.70 ~0.0420 -0.0750
5.75 -0,0551  -0.0049 3.60  -0,0880 0.0077
5.70 -0.0385  0.0405 3.50  -0.0326 0.08,8
5.65 0.0074  0.0559 3.40 0.0615 0.0704
5.60 0.0483  0.0300 3.30 0.0942 -0,0192
5,55 0.054, -0.0181 3,20 0.0336 -0.0933
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,:fg Table 12
.fééig (continued)
i . The Fresnel Integral
v X Y ' v X Y
3.10 -0,0616 -0,0818 -1.30 1,1386 1,1863
3.00  -0.1058  0.0037 -1.40 1.0431  1.2135
2.90 -0.,0626  0.0899 -1.50 0.9453 1.1975
2.80 0.0325 0.,1085 -1,60 0.8655 1.1389
2.70 0.1075 0.0471 -1.70 0.8238 1.0492
2,60 0,1110 -0.0500 -1.80 0.8336 0.9508
2,50 0.0426  -0,1192 -1.90 0,894 0.8734
2,40 -0.0550  -0.1197 -2.00 0.9882 0.8434
2.30 -0.1266  -0.0531 -2,10 1.0815 0.8743
2420 -0.1363  0.0443 -2.20 1.1363 0.9557
2,10 -0.0815  -0.1257 -2.30 1.1266 1.0531
2,00 ° -0,0118  0.1566 -2.40 1.0550  1.1197
- 1.90 0.1056  0.1266 -2.50 0.9574  L.1192
1.80 0.1664  0.0492 2,60 0.8890  1,0500
B 1.70 0.1762  -0.0492 -2.70 0.8925 0.9529
g 1.60 0.1345  -0.1389 ~2.80 0.9675  0.8915
g 1.50 0.0547  -0.1975 -2.90 1.0626 0,901
. 140 -0,0431  -0.2135 -3.00 1.1058  0.9963
s 1.30  -0.1386  -0,1863 -3.10  1.0616 1,088
13 ' 1.20 =0.,2154 -0.1234 -3.20 0,966 1.0933
. 1.0 -02638 -0.0365 -3.30 0,9058  1,0192
b | .00 -0.2799  0.0617 ~3.40 0.9385  0.9296
d 0.90 -0,264,8  0.1602 =3.50 1.0326 0.9152
9 0.80 -0,2230  0.2507 -3.60 1.,0880 0.9923
R 0.70 ~0.1597  0.3279 =3.90 1.0420 1.0750
g 0.60  -0,0811  0.3895 ~3.80 0.9481  1.0656
- 0.50 0.0077  0.4353 -3.90 0.9223 0.9752
0.40 0.1025 04606 -4,,00 0.5984 0.9204
0.30 0.3001  0.4958 4410 1.0738 0.9758
- 0.10 0.4000  0.4995 -4.20 1.0418 1.0633
E 0.00  0,5000  0,5000 4,30 0.949h  0.9204
: . -0.10 0, 6000 0.5005 =440 0.9383 0.9622
~0.20 0.6999  0.5042 44450 1.0261  0.9342
-0.30 0.7994  0.514d -4 60 1.0673 1.0162
) ~0.40 0.8975 0.5334 ~4.70 0.991, 1.0672
~0.50 0.9923  0.5647 -4.80 0.9338 0.9968
~0.60 1.0811  0.6150 -4+ 90 1,0002 0.9350
-0.70 1.1597  0.6721 ~5.00 1.0637 0.9992
-0.80 1.2230  0.7493 ~5,05 1.0450 1.0442
-0.90 1.2648  0.8398 -5,10 0.9998 1.0624
~1,00 1.2799 0.9333 _5.15 0.9553 1001027
-1.10 1.2638 1.0365 -5.20 0.9389 0.9969
-1.20 1.2154 1.1234 -5425 0.9610 0.9536

WADC TR 54-602 85




Table 12,
(continued)
The Fresnel Integral

v X Y v X Y
-5.30 1.0078  0.9405 -6.15 1.0146 1.0496
-5.35 1.0490  0,9662 -6.20 0.9676 1,0398
~5.40 1.0573  1.0L40 -6.25 0.9493 0.9954
-5.45 1.0490  0.9662 -6.30 0.9760 0.9555
-5.50 0.9784,  1,0537 -6.35 1,0240 0.9560
-5,55 0.9456  1.0181 ~6.40 1.0496 0.9965
-5.60 0.9517  0.9700 -5 1.0292 1.0398
-5.65 0.9926  0.9441 -6.50 0.9816 1.,0454
-5.70 1,0385  0.9595 -6.55 0.9520 1,0078
-5.75 1.0551 1.0049 -6.60 0.9690 0.9631
-5.80 1.0298  1.0461 -6.65 1.0161 0.9549
-5.85 0.9819  1.0513 -6.70 1.0467 0.9915
~5.90 0.9486  1.0163 -6.75 1.0302 1,0362
~5.95 0.9566  0.9688 -6.80 0.9831 1.0436
-6.00 0.9995  0.9470 ~6.85 0.9539 0.0060
-6.05 1.0424  0.9689 -6.90 0.9372 0.9624
~6.10 1.0495  1.0185 -6,95 1.0207 0.9591

v
We are particularly interested in the loss L in sound level
caused by the wall. Expressed in db, this loss at any point P may
be defined as

L = 20 logyp (p/p') (77)

where p is the pressure amplitude at P, and p' is the pressure amplitude
which would exist there if the wall were absent. To a sufficiertly good
approximation we may take the reference pressure p' to be equal to the
pressure that exista at a point vertically above P, at a point far enough
above the wall so that the latter has negligible effects on the sound
level. Hence in using Eq. (177) to evaluate L, p is determined for a
v-value corresponding to P, while p' is evaluated for v = - . (From
Table 12 or from Fig. 20 we see that X = Y = 1.00 for v = - and hencs
that p' = AV2). Hence L is a function only of the v corresponding to P.
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Fig. 21 shows a plot of L versus v. To use this in a particular
problem one determines the appropriate v from Eq. (175), then ob-
tains L from the graph.

1.7.3 Fehr?? has previously given a graph for calculating the loss
caused by a wall. We shall not reproduce his graph here, since it is
essentially the same as Fig. 21, but shall nevertheless discuss it
briefly for later reference. Fehr's chart plots "wall loss" against
"a quantity N which, like v, depends on a, b, d, and A . The losses so
plotted are, for assumed values of a, b, dy and A\, 6 db less than
those given in Fig. 21, teing referred to the level at the shadow
boundary rather than to a point far above the wall. In terms of the
sketch in Fig. 19 Fehr's theory thus gives the loss at any point P
relative to the sound level at P,. The quantity N given by Fehr is

N = [\/a§+H§—a]—[\/b2+H2—b], (178)

where, referring to Fig. 19, H is the perpendicular distance from the
source-receiver line QP (shown dottod in Fig. 19) to the upper edge of
the wall, and is related to dg by the equation

H/d, = a/(a + b) . (179)

In the important case where both a and b are much greater
than H, Eq. (178) reduces to

N = vef2 (180)

where v is given by Eq. (175). In the latter case one may get from
Fig. 21 the same values for the wall loss as would be determined
from Fehr's chart by the following steps:

(1) Calculate v for given a, b,\and do from Eq. (175).
(2) Determine from Fig. 21 the loss for this v.
(3) Subtract 6 db from the loss given in Step (2).

If either a or b is not large with respect to H in which case
the approximations made in arriving at the plot in Fig. 21 do not hold,
one obtains Fehr's result by the same procedure except that Step (1)
is replaced by Steps (la) and (1b) given below: .
(1a) Calculate N for given a, b, A and d, by Eq. (178).
(1b).Determine v from Eq. (180), using the value of N

from Step (la).

This latter procedure is apparently an empirical one, rather
than one arrived at theoretically.
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o The mosulis glven i cuesectioirs 1,700 and 1,703 ap,.ov only
s - treces of the veound mey e neglected. Let us su.pose instead
that the source pusition Q is at a height z  above a highly reflect-
ing surface such: a3 concrete, The reflected sound may then be re-
garded as coming from an image source, equal in magnitude and phase
to the real source but at a dista.cce 2z, vertically below w, i.e.,
al o distance 2z vslow Lhe surrace. For this case the field at a
~.int P due te loth Jdirect and reflected sound may be cbtained by
'+ uining p from Egs. (176) {either by use of Table 12 or Fig, 20)
" t.'h real and image source, then adding the two convributions,

1

¢ wenboring to take phase intu account as well as amplitude.

if the surface is not highly rellecting, the image concept
. oueer applies generally and the thzcry be.omes much more 1iffi-
' sapply. No useful solution is ..aown for this case.

b

T If a sound velocity gradient exists in the air due, e.g., to
"3, rays traveling over the wall are bent upward or downward with
.3 Juent important changes in sound level. For the idealized case
1 ecunstant gradient one may still use the results given above in
q. 1 176) and Fig. 21, if in the expression for v the distance d, is
replaced by a new quantity d. The latter, as indicated in Fig. 22
gives the vertical distance to the shadow boundary from the point of
ohservation P. If rays are bent upward, we have d > dy and the loss
10 sound level caused by the wall at points P below P, is greater than

i

el

(a) (b)

Fig. 22. Geometrical parameters for problem of
diffraction over a wall in the presence of a
vertical gradient of sound velocity.
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if the rays were straight. If rays are bent downward we have d < d,
and the loss at such points is less. Specifically, it can be shown
that if a constant gradient (dc/dy) of the sound,velocity ¢ exists
(y being assumed measured upwards) then, to an appropriate approxi-
mation, '

d=do_ﬁ%_u.2%/_&1 (181)

In summary, the loss at P due to a wall when a constant vertical
gradient of sound velocity exists may be determined from Fig. 21 by
properly evaluating v; in the expression for v the quantity d, must
be replaced by d, the latter being given by Eq. (181).

1.8 PROPAGATION OF HIGH AMPLITUUE SQUND™

1.8.,1 Introduction

The theory in subsections 1.2 to 1.7 is all based on the usual
linearizing approximations of acoustics, It is assumed there that the
amplitudes of the alternating pressures, velocities, and displacements
in a sound field are all small enough so that the inherently nonlinear
basic hydrodynamic and thermodynamic laws may be simplified by dropping
out certain terms,

It has been found experimentally that the results predicted by
the linearized theory which results from this simplification it many
of tue observed facts very well for the relatively weak sound waves
typically encountered, e.g., in speech and music. In fact, most of the
usual theory of acoustics and ultrasonics is based on this simplifica-
tion, as may be verified by consulting standard text bcoks. Neverthe-
less, there are actions which occur even at fairly ordinary sound levels
which cannot be explained at all by linearized theory. Among these are
the setting up of vortices in a Kundt's tube (which vortices, in tum,
are responsible for the familiar formation of periodically spaced dust
piles), and the steady torque exerted by sound waves on a Rayleigh disc,
To explain these it is necessary to take some account of nonlinear
terms in the hasic equations5 . When sound levels of the order of those

¥The authors wish to ackncwledge the considerable help given by
Professor R. B. Lindsay in the preparation of this subsection.
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existing near powerful modern aircraft are considered, the line-
arized theory can no longer be expected (in general) to be quanti-
tatively applicable. Indeed, phenomena which are hardly noticeable
at ordinary sound levels play a very conspicuous role in intense
sound fields, making the situation appear to be even gualitatively
different from the weak field case.

Unfertunately for practical applications, the problems of
high amplitude acoustics are very difficult; so far only the simplest
of situations have been given detailed attention. There are, at
present, only a few problems for which solutions exist which are suit-
able for application in the field. The need for extensive basic re-

search in this general area is obvious.

The available literature on this general subject includes in-
formation on the following topics:

(1) Changes in wave shape, i.e., generation of
harmonics and formation of shock fronts in
a propagating wave,

(2) Propagation of shock fronts,

(3) Steady forces, i.e,, radiation pressure,
exerted by sound waves on obstacles or
inhomogeneities.

(4) Steady circulatory motions, i.e., acoustic
streaming set up by sound waves upon inter-
acting with boundaries or with each other.

It is beyond the scope of this report to give a detalled review
here of these various subjects. We shall confine ourselves to a very
brief discussion of available information on topics (1) and (2).

1,8.,2 Plane waves

Most of the avallable theory on "finite amplitude" wave propaga-
tion 1s for traveling plane waves. Assuming that absorption processes
(such as were considered in subsections 1.2 and 1.3) are negligible, an
exact equation describing the motion of a disturbance in air along the

x axis is given by
3% _ ¥y ¥% 3z,-7-1
= 1+ %) (182)
3‘b2 Po bxz ! dx

rest position of an element of the medium

»”
7

%z = displacement of an element from its rest
position

\
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t = time

Y = ratio of specific heats

]

Po = ambient pressure of the medium

n

P, = ambient density of the medium

(It may be noted that x is a Lagranglan coord:i.mte57.)

Eq. (182) is nonlinear due to the term containing (dz/dx) on its
right hand side. If the strain is very small, so that &z/0 x<<l,
Eq. (182) reduces to the usual linear wave equation. A harmonic
series solution to Eq. (182, was obtained by F".‘r*ni—Ghironi58; for
points not too far from the (plane) sound sourcs and for source ampli-
tudes that are not too great the displacement is given by

®
z2(x,t) = ag + Z ap 20 L cos nw(t -~ x/c), (183)
n=1

where Z is the displacement amplitude of the source, and the ap are
constants independent of Z and x. According to this solution a sinusoid-
21ly vibrating plane source will generate a disturbance which starts out
(at x = 0) as a simple sinusoidal traveling wave; however, as it travels
away from the source its wave form changes as harmonics appear and grow
in amplitude. That this distortion does occur has been verified experi-
mentally; Thuras, Jenkins and 0'Neill®? found that Eq. (183) describes
rather well the rate at which the second harmonic grows in amplitude
when a plane wave, originally sinusolidal, propagates down a tube.

As stated before, the solution in Eq. (183) is valid only when
x and Z are sufficiently small. Specificaily it can be shown that a
condition for the validity of Eq. (183) is that x showld be small com~
pared with a characteristic distance X given by,

v(7+ 1) X =« Ae/U, (184)
where A is the wavelength of the fundamental, ¢ is the velocity of sound

and U = wZ is the velocity amplitude of the source. Alternatively, we
may write X in terws of the pressure amplitude py at the scurce as

X=A xP(,/ps. ’ (185a)

where the dimensionless constant A is given by

)
CA.
Ao ——Po” (185b)

(Y+ Lwp,
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Evaluating the constants for air at atmospheric pressure (Appendix I),
we obtain

X = 0.133\c/U = 0,184 p /pg (186)

The Mexact" series solution of Fubini-Ghiron (not given here) is, of
course, valid for larger amplitudes and greater distances than is the
approximatioa to it given in Eq. (183). Nevertheless, even the Mexactm
solution breaks down at distances comparable to, or greater than X;

at about this distance the solution becomes multiple-valued and loses
physical significances The difficulty evidently lies witb the start-

ing differential equation, Eq. (182); it is apparently not possible to
describe the propagation at distances comparable to or greater than X
without taking into account sound absorption processes, such as viscosity.

Fay0 used a differential equation, modified from Eq. (182),
in which shear viscosity is taken into acecount. He has given a series
solution vo this equation which, for x comparable to or greater than X,
yields for the peak excess pressure p, in a plane wave at distance x
from a harmonic source of angular frequency w the absolute value:

a6
- sin nk x
'pel A Qv z ginh n av(xo+x) (187)
n=1
in which
A2 4
(Y+l)a
2
g, = £ L
v 3 PoOB

Po» Po» Y 88 in Eq. (182)

k=%
C

1
¢ = small amplitude wave velocity = (po ¥/p,)*

X, = arbitrary constant to be deteruined by
initial conditions.

Specificaliy, the constant x, may be given in terms of the pres-
sure amplitude pg at the source (x = Q) as

b py S
- Y ¥ fpgo

(188a)
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where peo is the value of |pg |at x = 0; letting Poc = ¥p, and
A= c¢/f in the above expression we obtain

X = 1.27 APo/Peo | - (188b)

It will be seen that x, is of the same order of magnitude as the pre-

viously defined X, Eq. (186). Examination discioses that (187).leads
1 to a limiting stable wave shape for sufficiently large values of x, and,
indeed, to one that possesses a saw-tooth character. The pressure am-
plitude pn of the n®l harmonic is just p1/n where py is the amplitude
of the fundamental. The envelope of the maxima of the resultant excess
pressure falls off inversely as 1/(x,+x). As a matter of fact, whether
the sum in (187) is approximated algebraically or by an equivalent in-
tegral, the excess pressure amplitude takes the form

L poe3 1.27 pa A
|Pe] max = 5t T (189)
7wt Xo+tX (&fx)
where f is the actual frequency. It has here been assumed that
‘k'rx >>1 (190)
ay (xo+x)

which turns out to be satisfied in air at frequencies not exceeding one
megacycle, provided x/(xg*x)® 1074, This means x, must not be too large
or the excess pressure amplitude at the source too small. For very small
source intensities the formula (189) breaks down.

If we fit Eq. (189) by an equivalent exponential curve of the
form

I Pe | max = ™ & (292)

it turns out that the equivalent attenuation coefficient @ is given,
in nepers/cu, by

=

' ’ (192)
Xg*X

and 1is therefore a function of x, which indeed may be very slowly vary-
ing if x, is rather large.” For points sufficiently near x = O we may

#It{ has recently been shown by Ruglnick6l that theory for the propagation
of ropoated shock fronts, where the Rankine-Hugoniot relations are ap-
plied, yields an attenuation coefficient identical in form with that
given by Fay's theory, Eq. (192).
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neglect x in the denominator of Eq. (192); using the expression for
Xo given by Eq. (188b), evaluating constants for air at 20°C (Appendix I)
and converting @ to units of db/1000 ft, we obtain

@ = 6.10 fpg/p, » (193)

where the frequency f is in cycles/sec.. If, for example, the frequency
is 100 cps and pgy is O.1 atm, the coefficient @ has the value
61 db/1000 ft, valid for x<< Xg.

1.8.3 Quasi-spherical waves

The results discussed above for plane waves are most useful as
a guide in estimating the order-of-magnitude of effects. However, it
is not to be expected that these results would be quantitatively valid
for fields generated by real sources of finite size and with typical
directivity patterns. So far as is known to t! : authors, there is not
yet available any theory which is directly applicable to such fields
as exist near aircraft.

As a gulde, however, it is worthwhile to consider briefly cer-
tain experimental results obtained in the laboratory, using a piston-
like source. C. H, Allent? made detailed measuremsnts of the sound
pressure in high amplitude flelds generated by a piston 12.2 cm in
diameter moving sinusoidally at a frequency of 1l4.6 kc. Pressure
measurements were made out to distances of 200 en from the scurce.
Though the generated sound wave was sinusoidal near the source, har-
monics were generated as'it traveled, so that with increasing distance
from the source it approached a sawtooth shaps, as in the case of plane
waves.

Allen was able to fit his data for quasi-spherical waves to em-
pirical formulae which show striking analogies to the theoretical re-
sults for plane waves. The laws according to which harmonics are gen-
erated in & traveling wave were found to be very similar for the two
cases., The main difference found was that the harmonics grow more
slowly in a “apherical wave of given amplitude than in a plane one
(this result is perhaps not unreasonable since the amplitude of a
spherical wave is continually decreasing, dus to geometric spreading).
The distance from a source of given amplitude to a pcoint where a stable
sawtooth wave may be said to be eventually fully developed is thus much
greater for the quasi-spherical wave than for a plane one.

Allen found that after the drop in intensity due to spherical
epreading was taken into account there remained for each harmonic an
attenuation which was practically uniform throughout the range of
200 cm fram the source, though increasing with the intensity level at
the source. The latter result is qualitatively predicted by Eq. (189)
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deduced from Fay's plane wave theory, though the former is not strictly
in agreement with (189). However, it is of interest to compare the ac- .
tually observed attenuation for the fundamental with average attenua-
tions over the range O - 200 cm, as predicted by (189). The results are
shown in Table 13, The order of magnitude agreement is rather suggestive
in spite of the obvious inadequacy of the theory.

, TABIE 13
Comparison of theory (Eq. (122)) with
< Allen's experimental results
Source level Experimental Average Attenuation
(x = 3.8 cm) attenuation attenuation near source

from Eq. (189) from Eq. (189)

146 db re threshold 0.0062 db/cn 0.0060 db/cm 0.0064 db/cm
151 0.012 0.010 0.011-
156 0.027 0.017 0.021
161 0.035 0.027 0.036

WADC TR 54~602 9




SECTION II
OUTDOOR MEASUREMENTS
2.1 INTRODUCTION

In this section we review results obtained from acoustic
measurements made in the field, i.e., in actual out-of-door situ-
ations. Here the sound field is often very complex, varying greatly
in both time and space, and cannot be represented by any one of the
idealized situations described in Section I. It is difficult to
completely separate the effects of different factors in outdoor ex-
periments since, e.g., weather parameters are not at the control of
the experimenter, and surface parameters are only partly so. Never-
theless, careful planning of outdoor measurements does permit con-
siderable information to be gained on the relative importance of
different factors. Theory can then sometimes be applied to the pro-
blems with fair success. In the following discussion of various out-
door experiments we present the more pertinent of the experimental
findings in each case, and also describe, whenever possible, how well
these findings agree with the theory described in Section I.

(This review includes only those studies which appear to give suitable
quantitative information on sound propagation losses in the lower
atmosphere. The application assumed is that of sound propagation
from sources to points no greater than a few miles distant. Experimental
studies using explosive sources, where distances up to 100 miles or more
are involved, are not included; the emphasis in thess experiments is
on arvival times of the blast waves. Also, the instrumentation does
not. permit accurate determination of overall losses and, especially,
does not allow frequency analysis of these losses. For articles giving
recent, results, as wg}l as bibliography, see Richardson and KennedyéB,
and Johnson and Hale ™., Likewise excluded from this review are ex-
vurlmental studies carried out without the aid of modern instrumenta-
tion. Discussions and bibliography of early work are given by King65,
Siegd? and Ingard%,)

In much of the work to be discussed below the results consist of
field data on sound levels at various distances R from a sound source,
the sound propagation path being either from air to ground, or else along
a relatively flat ground surface. In reducing these data for presenta-
tion the investigators often assume that Fa. (2) applies; the experimental

results are therefore plotted in such a way as to yield the attenuation
coefficient @ which applies under the given conditions.

In the procedure commonly followed for obtaining @ the sound
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level data are first used to compute losses at various distances R
relative to the level at a given reference distance Ry. Use is then
made of Egs., (9) which show that when Eq. (2) holds the loss at any
point relative to a reference point consists of two parts, a 1/R loss
and exponential loss.- The former can be computed for given R and Ry,
being given by 20 logyp (R/R,); the exponential loss at each point is
then determined by simply subtracting the 1/R loss from the total loss.
Finally, the exponential loss so obtained is plotted versus the distance
(R-Rg) and a straight line is fitted to the data; applying Eq. (10) the
slope of this line (e.g., in units of db/l0.0 ft) yields a, the loss
coefficient for the conditions under investigation.

It is, of course, clear from theoretical considerations (see
Section I) that the sound field cannot always be described by the simple
law given in Eq. (2). This is particularly true when refraction or
ground effects (see subsections 1.4 to l.6) are involved. One therefore
cannot expect to specify the acoustic field in every case by simply stat-
ing a loss coefficient @ . The loss coefficients given below must,there-
fore, in many cases, be regarded as approximate and as applicable only
under the spscial conditions of the experiment.

Studies of sound fields in the out-of-doors, which are useful
for our purposes, date from’'about 1940, Since that time several re-
ports and publications have appeared in which attenuation measurements
are given for sound of well defined frequency, being generated by loud-
speakers, whistles or shock-excited resonant tubes. Several studies
have also been made using sound generated by actual aircraft, either in
flight or on the ground. In this case, the sound consists of a band of
noise; the laws of attenuaticn characteristic of different parts of the
gpectrum are obtained by use of electric filters at the output of the
receiver transducer. In subsectlion 2.2 we review investigations of
.ound propagation in the atmosphere, over an approximately plane earth
surface in which the monochromatic type of sound source is used; in sub-
section 2.3 similar studies are discussed in which the sound consists
of actual aircraft noise, The special subjects of diffraction over a
long building or wall, propagation through wooded areas and transmission
through the earth are taken up in subsections 2.4, 2.5 and 2.6.
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242 PROPAGATION OF SINGLE-FREQUENCY SOQUND

2.2.1 Sieg (1940)%7

The earliest paper containing any appreciable amount of quanti-
tative data on sound attenuation is due to Sieg, The latter made
studies of sound propagation from a loudspeaker mounted 35 feet above
the ground; his frequency range was 200-4000 cps. Sound levels at
various distances out to 1650 ft from the source were measured on a
number of different days with Barkhausen, as well as with Siemens, noise
meters by an observer at ground level, il.e., probably at points about
5 or 6 feet above the ground. (The aim was to study propagation of
speech and music from public address systems.) The sound field on any
given day was assumed described by Eq. (2) and the loss coefficient @
determined in the manner described in subsection 2.l.

TABIE 14

Loss Coefficient in the Out-of-Doors, from Sieg.

Frequency (cps) 250 500 1000 2000 4,000

a (db/1000 ft)
"good conditions" 4.6 5.2 6.7 6.7 1,2

a (db/1000 ft)
"bad conditions" 17.k  19.8  20.1 23.4 33.2

average @ 10.4 1044 11.0 12.8 18.9

(average @y,1) 0.0 0.0 1.2 3.0 8.8

Table 14 summarizes his results. Typical values of @ are given
for "good propagation conditions®™ as well as for "bad propagation condi-
tions". The former are for days described as Wquiet"™, "quiet and cloudy"
or "quiet, with inversion (temperature increasing with height)*. In all
cagses "bad propagation conditions" are for windy days when the wind vec-
tor has a compoiient opposing the direction of sound propagation. Also
given in Table 14 are theoretical values of @py] (subsection 1.2.3) com-
puted by Sieg. (It appears that in Sieg's calculations of @p,1, the lat-~
ter was aasumed to depend only on frequency and relative humidity, inde-
pendent of temperature. As ia evident from the discussion in subsection
1.2,3, this assumption is in error, not only because @4, is temperature-
dependent but, more important, because fp depends mainly on the absolute
humidity h, The latter can be quite different, of course, for situations
where the relative humidity is the same, but for which the temperature is

*
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different.) The classical absorption coefficient @ .jaqs (subsection
1.2,2) was neglected, being small compared to @p,) in the frequency
range considered. Tt is clear that the observed attenuation is al-
ways greatly in excess of @pg], both for fMgood® and "bad® propaga-
tion conditions. .

In the case of the M"bad propagation conditions" much of the
observed loss may have been dugeto shadow effects., To show the like-
lihood of this we refer to the universal shadow boundary curve in
Fig. 16, Assuming the ratio (z/z,) of receiver height to source height
is about 0.15 we obtain from Fig. 16:

(re/30) (B/2)% % 0.5 (194)

To estimate B we refer to Eq. (93). Here one may let (ww/usng)
be approximately 0.07, a value given in Table 8 for low meadow grass;
1000 cm/séc may be chosen as a typical value for (o cos¢ ), since
Sieg quotes wind velocity components of 600 to 1200 cm/sec directed
against the sound for his "bad propagation conditions"; according to
Table 7 the constant a, chavacterizing the temperature gradient, per-
kaps does not exceed 0.1 or 0.2 in magnitude and hence may be neglected
in this case. One therefore obtains Bms 4.9 x 103 fram Eq. (93). Us-
ing this resylt in Eq. (194) we obtain

(rs/zo) ~ 10; (195)

since the source height z5 is abou' | . Jd.stance rg to the shadow
zone 'at the receiver height of 5 ft is 350 ft, or a little over 100
maters. Since Sieg's measurements are over a range up to 500 meters,
or 1650 ft, it would appear from this estimate that under his "bad pro-

. pagatlion conditions" the receiver was usually in the shadow zone. Hence

the high losses observed under these conditions are very likely due (at
least, in part) to wind-produced sound shadows.

In the case of "good propagation conditions" temperature and
wind gradients were (Jjudging from the author's remarks) probably too
small to csuse shadows, and other mechaniams must be sought to account
for the resjdual excess attenuation.

It is natural to wonder whether terrain effects, such as were de-
scribed by theory in subsection l.4, might be involved here. Referring
to Fig, 10 let us consider the situation where the source-receiver dis-
tance Ry is 1000 ft. Since the source height 2z is 35 ft the angle ¥
is about 0,035 radians. '

The sound pressure at any point in the field is given by Eq. (50);

to evaluate the factor F( P ) appearing there we must I‘irstz Setemine the
quantity p . In so doing we choose the expression for p in Eq. (53).
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Turning to Eq. (46), we assume { is the order of unity, as is pre-
sumably reasonable for land covered with vegetation. (Sieg states
that his measurements were made at different times during a year,
and that the vegetative covering therefore varied from one set of
measurements to another.) The quantities siny and §s:‘m$’ can
thus be neglected in Eq. (53) so that the latter reduces to

2) kiR _ Ry
pe T2 T2 (196)

where N\ is the wavelength of the sound in air. At the lowest fre-
quency, 250 cps, used by Sieg A is 4.5 ft so that (wRy/N\) is about
700. Hence, if as assumed earlier, § is of the order of unity the
magnitude of the quantity p(z) will be very much greater than unity
at all frequencies employed by Sieg. Referring to Eq. (55) we see
that we may therefore write F(p) % 1/2P .to a very good approxima-
tion. Using this result in Eq, (50) and carrying through approxima-
tions consistently one obtains

p &G eikHl/Rl » (197)

where

op]

= 1Ry +[28G v 5g) ¢ N B2 < uw 15 a/] (198)

This result is subject to the conditions that { be of the order of
unity, sin ¢y << 1 and kjR)>> 1. Under these conditions G is always
less than 1, and gives the factor by which the pressure amplitude is
reduced due to the ground. When z = O the result given by Eqs. (197)
and (198) reduces to that given by Eq. (44) for points on the earth's
surface. For §=1and 2, 2o, \ and r equal to 5 £, 35 ft, 4.5 ft
and 1000 ft, respectively, we find that G is given approximately by
its last term (-4wi 220/ A Ry) and is equal to about 0.5. The db
loss caused by the ground is (-20 logjy G) or, in this case, 6 db.
For r greater than 1000 ft the loss due to the ground will increase
by 6 db for each doubling of the distance.

For frequencies greater than 250 cps (i.e., for wavelengths
less than 4.5 ft) or for distances less than 1000 ft the loss caused

by th» ground would not be as great and the approximation used in ob-
taining Eq. (198) would be less valid,

We return now to the question of how to interpret the excess
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losses observed by Sieg under "good propagation conditions" (Table 14).
In comparing the @-values given there with the result of the very
rough calculations given above it should be remembered, first of all,
that the ground loss does not vary linearly with distance and hence one
cannot actually calculate a loss per unit distance coefficient in this
case. Also, the calculated loss is subject to uncertainty because of
insufficient information about the ground impedance; i.e., in Sieg's
case § may differ greatly from unity.

Nevertheless, it is of interest to note that the ground loss,
namely, 6 db, calculated at a distance r of 1000 ft from the source is
about “the right magnitude to explain the observed a at 250 cps, assum-
ing the latter to be an averaged quantity. At higher frequencies, how-
ever, the calculated ground loss at 1000 ft is probably much smaller
than the values of @ given in Table 4. It would therefore appear that
a complete accounting for Sieg's a-values for "good propagation condi-
tions® will require consideration of other mechanisms in addition to
ground effects.

It was suggested by Blokhintzev5l that the excess attenuation
observed by Sieg might be due to scattering by turbulence; indeed cal-
culations made of single scattering from a sound beam, using rather
arbitrary, though not unreasonable, assumptions regarding the turbulence
give order-of-magnitude agreement with Sieg's observation. Unfortunately,
rather fundamental questions remained to be answered regarding applica-
tion of scattering theory to propagation from a real source in a real
atmosphere, The mechanism involved in such a situation as Sieg's wili
perhaps not be known until experiments are done in which micrometeoro-
logical conditions (subsections 1.5 and 1.6) are determined in more de-
tail and methods devised to isolate the parts played by different factors.

2.2.2 Schilling, Givens, Nyborg, Pielemeier and Thorpe (1256)68

Propagation of high frequency sound in the out-of-doors was the
subject of fairly detailed investigation by Schilling and co-workers.
Though their frequency range (10-25 kc) is above the range to be empha-
gized in this report, the work is of interest here since the problems
involved are similar. Their sources were small whistles (operated by
air from small pressure tanks); condenser microphones were used as re-
celving trarsducers.

Special tests showed that terrain effects described in subsec-
tion 1.4, were unimportant for their experimental conditions. Acousti-
cal shadow effects were often encountersd and could be identified. It
was found pogsible to predict where shadow regions would exist by ray
calculations based on detailed micrometeorological data. For measur-
ing attenuation coefficients shadow effects were avoided by mounting
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both source and receiver about 5 ft above the ground, source-receiver
separations being seldom greater than 300 ft.

Typical loss coefficlents are given in Fig, 23; the correspond-
ing temperatures ranged from 75° to 88°F, and the relative humidities
from 78 to 100%. In determining these coefficients use was made of
theory which takes into account the effect of scattering on the response
of a directional receiver (i.e., a considerably more elaborate scheme
than that described in subsection 2.1 was used in determining @ ). The
coefficients given in Fig. 23 are those which would presumably have been
obtained, if a nondirectional receiver had been used in taking the meas-
urements, (Had the original data on sound level vs, distance been simp-
ly fitted to Eq. (2), without the above correction, the apparent attenua-
tion coefficients would be greater than those given, by amounts up to
about 50 db/1000 ft.) Shown for comparison are absorption coefficients
(®@olags + @mol) calculated from the theory for classical and molecular
absorption given in subsection 1.2,2 and 1.2.3. The shaded area indi-
cates the range within which the calculated values lie for the given
conditions. The mean observed (corrected) value of @ exceeds the mean
theoretical absorption coefficient by amounts varying from 22 db/1000 ft
at 10 k¢ to 100 db/1000 ft at 30 ke.

2.2.3  Eyring (1946)%9

The work here referred to deals with various aspects of audible
sound (75 - 10,000 cps) propagation through jungle areas in Panama. We
cite here only certain results which pertain to the present topic. For
comparison with findings on transmission through wooded &reas Eyring made
a fow sets of measurements in the open, over different kinds of ground
cover. In these measurements the sound was generated by loudspeakers;
for [requencies up to 4800 cps these were actuated by electrical noise,
while the frequencies 7000 and 10,000 cps were generated by use of single-
froquency signals, in the more usual manner. Sound levels were measured
by means of a high speed recorder actuated by the filtered output of
sultable microphones,

In his determination of sound levels, Eyring was able to isolate
the effects of certain factors, as did Schilling, et al. Shadow zones
were found whose boundaries were sharp enough to recognize at frequen-
cies above 2000 cps, but were blurred at lower frequencies. Losses as-
sociated with shadow zones were found especially (a) near noon on calm
sunny days (i.e., when B, Eq. (93) was large due to a otrong temperature
effect) or (b) when a wind opposed the sound (i.e., when B was large due
to wind gradients), By raising source and receiver sufficiently, or by
chrosing timss when atmospheric conditions were suitable, Eyring was able
to make tranemission weasurements in which shadow zones had no influence.
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In one set of measurements the sound was propagated over
a paved tarvia surface near noon on a sunny day. The relative
humidity was 55 percent and the temperature 80°F, The source was
kept at 5 feet above the ground, but at each receiver positlon the
microphone was elevated sufficiently to move it out of the shadow
and into the beam.
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Fig. 23, Loss coeflicient @ vg frequency from
outdoor measurements of Schilling and co-workers®C,
Theory gives ( @g159g * Gpoy) from Eqs. (11), ete.
Upper limit of shaded area is for assumed conditions
of 75°F, 78% relative humidity; lower limit is for
88°F, 100% relative humidity.

WADC TR 5h-602 105




The data on received sound levels ys sourc2-receiver separa-
tion were fitted to Eq. (2) by the method described in subsection 2.1;
loss coefficients obtained in this way for the different frequencies
or frequency bands are given in the first row of coefficients in
Table 15. Also shown in Table 15 (in the second row) are values of
(@01 + @o1agg) calculated from Egs. (11), etc. for the given condi-
tions of humidity and temperature.

TABLE 1.

Loss Coefficients over Various Kinds of Terrain (from Eyring69)
(A1l loss coefficients are in db/1000 f%)

Frequency 75 150 300 600 1200 2400
(cps) 150 300 00 1200 2400 4800 7000 10,000

Hard surface:
RH=55%, T=800F

Observed @ 0, 0. 10. 0. 15. 1.  20. 45.
(Bpol + ®class) Ol 01 0.l 0.1 0.4 1.7 6.8 13.7

Hard surface:
RE-95%, T=76°F

Observed @ - - - - - - 15, 27.
(@pol + @class) - - - - - - LO 7.9
6-12 in. grass

Observed @ 2.5 6 9 - - - - -

18 in. grass
Obecsved & 2.5 9 30 30 - 30 30 60

k)

Measurements were also made at 7000 and 10,000 cps on a day when
no appreciable wind or temperature gradients existed; there was therefore
no need to elevate the microphone in this case. The resulting attenua-
tion coefficients are shown in the third row of coefficients in Table 15;
in the fourth row calculated values of (@pe] + @.1g94) aTe shown for
the given atmospheric conditions, namely, 95% relative humidity and 76°F.

Measurements were alsc made over grass-covered ground, pains being
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taken to avoid refraction or shadow effects. Loss coefficients com-
puted from these data are shown in tlz fifth and sixth rows of Table
15, Evidently the ground covering plays a very important role in de-
termining sound propagation losses. The temperature and relative
humidity are not given for these latter cases, but are perhaps not
greatly different than those for the experiments over tarvia. It is
evident, particularly at the lower frequencies, that losses in sound
level due to molecular absorption are considerably smaller than those
due to the ground covering.

It is of interest to calculate the loss in 1000 ft expected
due to ground loss, assuming conditions are such that Egs. (197)
and (198) are valid. As will be explained further in Section III
the losses over 6 -~ 12 in. grass are given fairly well by letting
z = 2z, = 5 ft, Ry = 1000 ft and by assuming {~5w. On this
basis one obtains for -20 log,n G at 112 cps, 225 cps and 450 cps,
respectively, the values 1.7, 2.8 and 9.8 db, to be compared with
the values 2.5, 6 and 9 db given in Table 15 for the three lowest
frequency bands. On the other hand, it is not clear how to account
for the large losses obtained over 18 in. grass.

2.,2.4 Delsagsso and Leonard §125§)70

Work has recently been reported on propagation of low frequency
sound (125-1000 cps) over a path length of about 8500 ft at an altitude
of 10,000 ft. The site was in a mountainous region near Bishop, California.
Source and receiver were mounted on towers set up on adjacent mountain
peaks; the source-receiver line thus passsed high over a valley which lay
between the two peaks.

The source of sound was a small oxygen-acetylene cannon fired at
intervals of a few seconds by a timing device, This arrangement pro-
vides a short pulse of sound having frequency components in the desired
range. Appropriate filters in the receiving system selected the parti-
cular frequency to be used on any one test. Received pulses were dis-
played on an.oscilloscope and recorded photographically.

The total loss over a distance of 8400 ft was messured by com-
paring the sound level at the main receiver microphone, which is at a
distance of about 8500 ft from the source, with the level at a reference
microphone, located about 100 ft from the source. By assuming the val-
idity of Eq. (2) the loss coefficient a@ for any glven pulse was deter-
mined from the measured ratio of pressure amplitudes caused at the two
microphones by that pulse.
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The report cited gives the results in tasbular form. For each
set of measurements, consisting of a series of pulses at a given fre~
quency, the tables give the relative humidity, temperature, atmospheric
pressure, wind direction and wind speed, as well as the maximum, mini-
mum and average values of @ observed in the set, Tables 16 - 19 below
and Figs. (24 - 27) give a sumary of their results. In Takles 16 - 19
the various columns give, in order, (1) the set number, (2) wind direc-
tion, (3) wind speed, (4) relative humidity (RH), (5) temperature (T),
(6) the average observed loss coefficient (“Exp) and (7) the theoreti-
cal absorption coefficient (@Theo), given by the sum ( @¢lagss + ®mol)
as in Egs. (11), etc. No entry is made for (@ppe,) when the computed
value is less than 0.1 db/1000 ft. In all cases the direction of sound
propagation was from west to east,

TABIE 16
Loss Cocfficients at High Altitudes: Delsasso and Leonard /0

1000 cycles

No. Wind RH T aExp @ Theo
Dir. Speed(ft/sec) (%) QF db/1000 ft

A2 SE 1 21 6l 2.29 1.64
IN Sw 7 21 61 2.06 1.79
9 E 10 23 68 2,23 1.03
16 SW 5 52 55 1.76 Oelihs
18 S 10 34 52 2,12 1.24
20 0 55 56 1.71 0.37
24 SW 5 s 52 55 2.23 0.2
25 W 7 27 & 2.29 0.94
30 0 31 51 2.53 1obd
33 ENE I 37 L0 1.9 1.94
38 W 12 PIN 58 2.18 Lobds
NN SW 7 25 58 2.06 L.l
42 NW 3 40 7 2,06 1.24
43 NW 2 A 46 2.29 1.1
55 N 3 25 59 1.88 1.34
65 0 73 51 1.88 0.28
67 S 8 24 61 0.83 1.29
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TABIE 16
(continued)
No. Wind RH T Q&g & Theo
Dir. Speed(ft/sec) (%) OF db/1000 ft
. B & W 7 34 46 2.35 1.64
7 ENE A 4O 40 2.18 1,79
'9d NE 6 18 39 2.56 5.8l
- 10 ENE 6 33 41 171 2,44
1 E 8 33 L5 2,29 1.94
12 SE 6 34 52 2.52 0.97
B TABIE 17 .
B /'} ; Loss Coefficients at High Altitudes: Delsasso and Leonard?O
o 500 cycles
- No. Wind RH T a a
E Dir. Speed(ft/sec) (%) oF X /1000 £6 T°
N - Al E 15 21 61, 2.12 0434
R 5 E 5 21 65 2.64 0.39
- 10 E 8 26 66 1.76 0.23
| 1 S 10 40. 50 1,06 0.26
15 SW 7 16 52 1.30 1.31
. 17 SW 7 16 52 1.53 141
21 SE 9 24 R 1.36 0.24
22 W 10 27 & 153 .25
’ 29 E 10 58 59 1.36
31 NE 7 27 &5 2,24 0.23
39 W 5 20 2,35 0.51
L W 6 48 57 1.88 0.11
L7 W 7 48 55 2.06 C0.14
L9 NE 3 26 60 0.715 0.30
50 E 11 15 67 1.48 0.62
53 S 10 17 64 1.88 0.58




TABLE 17

(continued)
No. Wind | RH T a @ Theo
Dir. Opeed(ft/sec) (%) OF db/1000 ft
56 W 7 32 55 2.41 0.29
57 E 3 2L 61 2.29 0.35
61 NE 5 25 59 1.82 0.37
6L, W & 17 61 2.23 0.69
70 SW 10 60 L2 2.23 0.185
1 E 10 17 6l 1.88 0.61
T2 W 8 17 61 1.94 0.55
B é¢ W 7 34 46 0.012
8 NE 7 65 27 2.00 0440
9c NE 6 18 39 1.94 2.11
13 ENE 7 33 41 1.82 0.62
18 E 3 33 36 2.06 0.93
20 S 8 32 48 1.59 0.42
21 N 8 29 50 1.65 0«47
22 SE 5 35 51 1.36 0.31
24 B 8 41 48 1,88 0.30
26 NE 4 23 L7 1.53 1.00
TABLE 18
lnas Coefficients at High Altitudes: Delsasso and I.eonard7o
250 cycles
No. Wind RH T a aThﬂO
Dir. Speed(ft/sec) (%) of db/1000 ft
A3 E 8 27 63 0.947
6 E 5 22 61 1.18 o.11
11 E 7 24 69 0.538
19 S 9 34 52
23 S 8 30 %
28 E L 30 45 0.83 0.4
34 L 9 29 49 0.48 0.13
37 NW 8 12 54 0.538 0.46
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TABIE 18
(continued)
No. Wind RH T ﬂExp aTheo
' Dir. Speed(ft/sec) (%) OF db/1000 ft’
. L5 SW 8 18 53 0.831 0.28
51 SW 5 23 L2 0.715 10.29
52 SW 10 63 41 1.30
’ 54 W 1 56 Sh
58 E 10 18 66 1.2) 0.11
59 SE 2 94 45 0.48
60 W 15 25 56 1.01 0,105
62 NE 5 20 68 0.538
63 E g 45 50 0.596
68 E 8 38 59 0.772
69 W 15 38 54 1.24
B2 SW 5 L5 52 0.537
I 30 45 1.01 eI
éb W 7 34 46 147 0.10
3 9b NE 6 18 39 1.36 0.59
R 7 W 9 29 49 0.362 0,12
Cd 16 sw 5 L5 52 1.30
o 19 NE L 35 39 0.362 0.16
. 23 E 3 37 36 0,947 0.15
oA 25 E 5 21 62 0,713
- TABLE 19
. A Loss Coefficients at High Altitudes: Delsasso and Leonard (0
? 125 cycles
No. Wind RH T L. S Theo
, Dir. Speed(ft/sec) (%) op 1b/1000 £t
A7 E 5 21 61 0.187
. 8 W 3 34 61
12 E 10 27 66
13 E 8 29 61 0.128
32 E 4 24 39 0,187
35 NE 6 26 57
36 NE 5 30 57 0.012
| 46 £ 9 &7 60 0.363
S 48 S 8 IA 51
ST 66 E 8 37 57
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TABLE 19
(continued)
No. Wind RH T a Qo
Dir. Speed(ft/sec) (%) OF Eacgb/ 1000 ft eo
B1 E 2 3k 37 0.129
3 SW 6 59 30 1.30
5 E I 29 39 0421
ba W 7 3L L6 0.012
9a NE 6 18 39 0.129 0.13
15
17 SSE 12 34 50 0.772

In.Figs. (24 - 27) are plotted (as crosses) all values of (@ gxp)
obtained from the above tables; the horizontal coordinate of each plotted
point is the absolute humidity. For comparison the theoretical absorp-
tion coefficients (@qpe,) are also given (as circles). The latter are
calculated for the humidities and temperatures applicable to the different
sets of measurements and, like @ Eyp, are plotted against absolute humidity.

Also shown in sach plot is a smooth theoretical curve giving
(@mol + Oclags) ¥S absolute humidity for a fixed temperature of 60°F,
This curve may be compared with the individual theoretical points, which
show scatter in the vertical direction because of temperature variations
from one set to another,. It is seen that, in spite of this scatter, the
individual points cluster fairly closely about the fixed-temperature theo-
retical curve. (Indeed an advantage of plotting @ against abgolute hum-
idity, as is done in Figs. (24 - 27), is that the theoretical absorption
coefficient is then much less sensitive to variations in temperature than
when relative humidity is the independent variable,

According to Figs. (24 - 27) the values of @ ocbtained experi-
mentally in the out-of-doors show considerable vertical scatter; much
of this scatter probably is due to time-varying temperature and wind
structure in the medium, whose effect is to cause large fluctuations in
the amplitude of transmitted signals (see subsection 1.6). (However, the
authors do not give appropriate data from which the fluctuation amplitudes
can actually be determined.) If we let & (h) be the mean value of the ex-
perimental g-~values in the immediate vicinity of any given mmidity h we
find that @ does not vary greatly with h over the range studied in these
experiments. Measured values of @ tend to be roughly in agreement with
theory at the lower humidities, but to exceed theoretical values by
greater and greater amounts as one goes to higher humidities.
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The cause of the discrepancy at higher humidities is unknown.
It should, of course, be remembered (subsection l.2.4) that data taken
in the laboratory also show excess losses at high humidities. In Fig.
(24) is shown a curve of @ vs h plotted by Delsasso and Leonard, based
on laboratory measurements at 1000 cps. We see that the loss coeffi-
cients given by this curve are even higher than most of the field values.
(The fact that the laboratory curve is for 72°F, while the mean tempera-
-ture for the field data is near 50C0F is probably not of great importance
in explaining the great discrepancies between theory, field data and
laboratory data; according to theory an increase of temperature from
50° to 70°F should increase absorption coefficients by about 25%.)

Horiuchi’l has recently suggested that a considerable part of
the attenuation observed by Delsasso and lLeonard may be due.to scatter-
ing by turbulence (see subsection 1.6). There are certain difficulties
in connection with this explanation, however. One is that the experi-
mental @ does not appear to increase significantly with increasing wind
speed, though such an increase would be expected from the hypothesis
. (since the turbulence increases with wind speed; see subsection 1.6).
Another difficulty is that the sound source of Delsasso and leonasrd is
probably essentially non-directional at 1000 cps and less; hence it is
not clear how one should proceed in calculating losses due to scatter-
ing (see subsection 1l.6).

2,3 PRUPAGATION OF AIRCRAFT NOISE

2.3.1 Regier (1g947)7?

Measurements were made by the above author to determine the sound
level on the ground directly below an airplane in normal flight, as a
function of its altitude. The airplane used was a light trainer having a
2000 rpm, 400 horsepower nine-cylinder engine directly connected to a
two-blade (9 ft diameter) propeller. Horizontal flights were made at ap-
proximately 165 mi/hr at altitudes from 300 to 5000 ft. All measurements
were made on the same day. The sky was clear; there was a slight breeze;
the relative humidity was 4O% and the temperature 720F on the ground.

Regier determined acoustical levels with a General Radio sound
level meter, without filters; the maximum indication of the meter, posi-
tioned at the ground, was noted for each flight, as the plane passed
overhead. The data given are, therefore, of the nature of "total" sound
levels, rather than levels for different discrete frequencies. Regier
states, however, that for the alrplane in question most of the sound
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energy is in the 70 - 300 cps frequency. rangs.

The observed sound levels at the ground are plotted (on semi-
log paper) against airplane altitude R in Fig, 28 . For comparison
& straight line is plotted in the same figure, representing the sound
level variation which would be expected if the (1/R) law were valid, i.e., .
if the pressure amplitude at the ground were given by Eq. (2) with
@= 0, (Since the observed level would then be given by 20 logjy (A/R)
it can be readily shown that in this case the sound level should decrease
by about 6 db for each distance-doubled. (See subsection 3.2.1.))

Since Regiert's data fit the given line rather well a is ap-
parently negligible for the conditions of his experiments. This may
not be surprising, since at such a low frequency as 300 cps and for
the weather conditions noted, computed values of &g15g9q and @,y are
only 0.004 and 0.02 db/1000 ft, respectively. One could nevertheless
not be sure @ is negligible without experimental confirmation; it will
be remembered that Sieg!s measurements made along the ground at fre-
quencies in the same range, viz., 250 cps, yielded a-values from 4.6
to 17.4 db/1000 ft. Also, we shall see that Hayhurst's data, for pro-
pagation along the earth, give large values for a.

It appears that Regier!s case, that of low frequency sound pro-
pagated vertically, is one of the few situations of interest where the
1/R law holds with satisfactory accuracy out-of-doors. However, even
here, the author points cut a small effect which might suggest an attenua-
tion constant @ that is not quite negligible. He states that the sound
output of the plane may be expected to increase with altitude at the rate
of about 0.4 db/1000 ft. Hence the data plotted in Fig. 28 ought, on
this basis, to have been corrected for this, if they are to represent
the facts for a constant source. The fact that a good fit to a straight
line (i.e., to the 1/R law) exists in spite of this suggests that an ex-
ponential loss (see subsection 1.1.3) exists such that the loss coeffi-
cient @ is about equal to 0.4 db/1Q00 ft; as the airplane goes to high-
er altitudes, the increase in source output would then be just cancelled
by increased exponential losses due to a longer propagation path.

2.3.2 Parkin and Scholes (1954)73

Considerably more information on how sound propagates vertically
from airsraft to ground has become available very recently. Parkin and
Scholes measured sound levels at the ground on six different days, in
frequency bands up to 8 k¢, due to a light transport monoplane flying
overhead at various altitudes up to 2000 ft,

The plane was a D.H. 104 Dove made by the DeHavilland Aircraft
Company. It is twin-engined, powered by piston engines rated at about
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350 hp at 4000 ft, and has three-blade propellers 7.5 ft in diameter.

The signal from a condenser microphone mounted 5 ft high in the
center of an airfield was recorded on magnetic tape and subsequently
analyzed through one-third octave filters onte a high speed level re-
corder. The authors note that the recorder indicates something near
the peak level of an input waveform rather than the mean rectified level.
Also, they state that the trace on each record showed rapid fluctuations,
and that mean lines were drawn by eye through these traces. The maxi-
mum values reached by these mean lines were noted; these maxima gave the
levels which, at low frequencies, occurred when the aircraft had just
passed overhead, and which at high frequencies (due to changing direc-
tionality of the source) occurred a short time later. Plots of sound
level in various frequency bands versus distance from the aircraft sound
source were thus made by associating each maximum level, determined in
the manner just discussed, with the assumed distance to the source when
the maximum occurred, The data for any given frequency band, on a given
day, were fitted to Eq. (2), following the procedure described in subsec-
tion 2,1, and the correspondirig loss coefficient @ determined. Results
for the six trials are given in Fig. 29 . Also shown are calculated
values of the absorption coefficient ( @po] + @ ¢159s) based on Eqs. (11),
etc. It is remarkable that loss coefficients observed by Parkin and
Scholes in the out-of-doors are gometimes actually less than those pre-
dicted by Egs. (11) - an unusual occurrence, In general, the Parkin and
Scholes data are in moderately good agreement with Egqs. (11). This sug-
gests that the latter equations may be rather useful in the problem of
predioting noise levels due to aircraft nearly overhead.

2.3.3 Hayhurst (1953)7%

Data has also recently become avallable on propagation of air-
craft nolse over a horizontal path along the ground. Due to the close
bearing of this work on practical field problem, the results will be
described here in some detail., Hayhurst made nineteen sets of measure-
ments, extending over a period of three months. He used a filtered re-
ceiver, covering the audible range of frequencies; sound levels were
measured at a series of points out to 2500 ft from the source.

The Bource of sound was a Bristol Hercules 630 li-cylinder aero-
engine driving, through a reduction gear of O.4l4k:1l, a four-bladed wooden
propeller 13.25 ft in diameter. The engine, mounted in the airframe of a
Vickers Viking aeroplane, was operated at the constant setting of 30 inches
of mercury manifold pressure and 1900 rpm, and at this power setting de-
veloped about 750 hp. Sound pressure levels were measured on a Standard
Telephones and Cables noise meter with electric filters inserted to ana-
lyze the levels in eight octaves between 37.5 and 9600 cps. The micro-
phone was on a tripod 4 ft above the ground.
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In each trial the sound level in each octave band was de-
termined at various distances from the source, and the results fitted
to Eg. (2) by the process described in subsection 2.1. The loss co-
efficients @ so obtained are given in Table 20 (from Hayhurst with
slight modifications). For each set of measurements made on a given
day, the temperature, relative humidity, scalar wind, and vector wind
are given, as well as other coefficients in the different bands. By
scalar wind is meant the wind gpecd, i.e., the magnitude of the wind
velocity. By vector wind is meant the component of wind velocity
directed towards the source from the receiver.

Examining the loss coefficients in any given frequency band,
one finds considerable variation from one set of measurements to an-
other. In exploring causes of these variations, Hayhurst found that,
of the several measured meteorological factors, the vector velocity
gave {by far) the best correlation with the attenuation coefficients,
This is exemplified in Fig. 30 (from Hayhurst) which shows loss co-
efficients for the 300 - 600 cps band plotted against the correspond-
ing vector wind.* It is evident that the component of wind blowing
against the direction of sound propagation has a very great effect on
the attenuation in this frequency band. Similar plots were made for
the other octaves and significant correlations were again found, for
all except the lower two and upper octaves. (Of these exceptional
cases the attenuation due to wind was apparently so small as to be
masked by experimental errors in the lower two bands, while measure-
ments were too few in the upper one.)

From these plots, Hayhurst determined the rate of change of
attenuation with vector wind in the various frequency bands consid-
ered: the results are plotted ys frequency in Fig. 31 (from
Hayhurst), It should be remembered that the rate-values given are
g - statistically significant only for the five octaves covering the fre-
E "_§_= quencty rangs 150 - 4800 cps.

No significant correlation was found to exist between loss co-
afficients and gcalar wind. This suggests that the effects noted are
not due to scatter of sound by turbulence, since this should occur re-~
gardless of wind direotion (see subsection 1.6). Instead the losses
caused by the wind are probably due to acoustical shadows (see subsec-
tion 1.5).

¥The loss coefficients given in Table 20 are, of course, for different
relative humidities. With the hope of reducing scatter due to this
variable, Hayhurst adjusted all coefficients ta 50% relative humidity,
presumably by means of Kneser's theory, and it is these adjusted coef-
ficilents which are plotted in Figs. 30-31, 33 . He states, however,
that the corrections were comparatively small,
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Other data of Hayhurst's support the conclusion that his
results are strongly influenced by the sound shadows due to wind.
Two sets of measurements were made to determine the effect of re-
ceiver height. Sound level determinations were made, as before,
at various distances from the source. At each distance, readings
were taken with the receiver microphone at four different heights,
namely, at O, 10, 20.and 30 feet above the ground.

In one set of measurements there was a wind of 5 knots in
the direction of the sound. Here it was not possible to pick out
any variation of attenuation with height.

g In the other set there was a wind of 7 knots opposed to the
T sound propagation direction; here there was a progressive increase
o of sound level with height. The results, in terms of effective loss
‘ 'gfiﬁl coefficlents at the several heights, are shown in Fig. 32. Since
b this height-effect occurs only for an upwind, it is evidently not due
either to scattering or to terrain influences, It must, therefore,
be due to acoustical shadows caused by wind gradients.

VECTOR WINDIN FT/SEC.
-30 200 O 10 20 30

. 30 pf—fer—r——trd
" ° ;/A/
g % 4
Q
~ il
a (0
[~
z
w O
]

3
={0 shad

«0 -10 O 10 20
VECTOR WIND IN MI./ HR.

Fig. 30 Loss coefficients ys vector wind, i.e.,

component of wind velocity opposed to sound pro-

pagation direction, from Hayhurst b, Dashed curve

is from theory for losses due to sound shadows, Ea. (129).
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FREQUENCY IN CYCLES/ SECOND

Fig. 31 Plot ys frequency of 8, the rate of
change of loss coefficient with vector wind,
in (db/1000 ft) per (mi/br), from Hayhurst
(with modified units); for 300 - 600 cps fre-
quency band. '

Referring back to plots such as Fig. 30, Hayhurst extractea
from these the loss coefficient at zero vector wind for each frequen-
cy band. The results are shown in Fig. 33, the attenuation coeffi-
cients- being corrected for 50% relative humidity as described above.
One cannot, here specifically compare each experimentally-determined
value of @ with the corrgsponding value of (@y,) + @ lgsg)s Since
the data given in Fig. 33 .are for a range of humidities and tempera-
tures. Upper and lower limits c¢an be assigned to the theoretical
values, however. OSince all results given here have been adjusted for
an assumed relative humidity of 50%, the uncertainty in (e,,1 + @:lgzss)
may be assumed due mainly to variations in temperature. Under the con-
ditions of temperature, humidity and frequency which apply here it is
found ratier readily that (@p,1 + @class) is a decreasing function of
temperature, when the relative humidity is assumed fixed. Hence an up-
per limit to the theoretical absorption coefficient would be obtained
by assuming the lowest possible value for the temperature, and a lower
limit by assuming the highest temperature.

In Fig. 33 the indicated points on curve A give upper limits to
(@mol + @clasg) for mid-frequencies of the various octave bands, and
for an assumed relative humidity of 50% and temperature of 439F; those
on curve B give lower limits for the same frequencies, based on an as-
sumed relative humidity of 50% and temperature of 66°F, The shaded band
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Fig. 32 loss coeffic’ents ys f;;ﬁ uency for various
receiver heights, from Hayhurst’®, The numbers attached
to the curves give corresponding receiver heights in feet.
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Fig. 33 Loss coefficients ys frequency at zero vector -
wind, from Hayhurst74, Filled circles are experimental
values. Shaded area gives theoretical absorption coef-
ficients from Eqs. (11). Dashed curve is from theory
for losses due to sound shadows, Eq. (129).

bounded by curves A and B thus represents the possible range of theo-
retical absorption coefficlents as a function of frequency. It is geen
in Fig. 33 that at all except the higher frequencies, the observed @
is considerably in excess of (@mol + @clggs)e For example, the
observed @ for the £C0 - 1200 cps band is about 10 db/1000 ft, whereas
the mean theoretical value (for 900 cps) is about 0.5 db/1000 ft.

These results are in contrast to those of Regier (subsection
2.3.1) and also those of Parkin arnd Scholes (subsection 2.3.2). The lat-
ter usually found losses which were considerably less than reported by
Hayhurst, and which, when not negligible, were comparatively well ac-

WADC TR 54-602 127




counted for by the sum (@pe] + @®glags)e The principal difference -

‘between the two field situations is that in Hayhurst's case the pro-

" pagation is along a path parallel to .the earth, while in the other
cases the propagation is nearly along a vertical path. It seems likely
that the vertical-path propagation should be comparatively unaffected
by ground absorption; since also, the path is parallel to the direction
in which the major changes occur in wind and temperature (i.e., the
z-direction), there should be no refraction effects, such as shadows.

It is of some interest to apply the theoretical results of sub-
sections (1.5.5) and (1.5.8) to Hayhurst's data; it will be seen that
although these results do not give correct absolute values for the losses
due to wind, etc. the predicted variation of the loss with frequency and
wind speed are in rather good agreement with Hayhurst's observations.

. The sound velocity is expected to be from Eq. (81)

c=¢, (L-B fn ZZ—O') (199)

where co is the sound velocity at the scurce, i.e., at helght z,; B is
given by Eq. (93)

B = (171 x 1073) [a - 0,042 (—2) cos (200)
[ Soog) 1200 $]

The factor a comes from the temperature gradient, Eq. (72) or (94);
(u/uggp) may be found from Table 8; uzgp is the wind speed in om/sec,

at 200 om above ground; and ¢ is the angle between the wind direction
and the line from source to receiver. It is difficult to estimate uppg
from Hayhurst's data, since the wind was measured at the London Airport
Moteorologlcal Office, about one mile from the site of the acoustical
measurements; moreover, the presence of bulldings around the site of the
wind measurements will probably cause a different variation of wind speed
with height than that found at the acoustical site. It shall be assumed,
however, that the wind measurements give an approximate measure of the
wind speed at the area of the acoustical measurements,

If it is assumed that the wind measurements were made at a hsight
of 10 meters (30 ft) above the ground (i.e., in a tower), the wind speed
at 200 om would be, using the logarithmic wind speed dependence of Eq. (74)

. 200,

where ujg is the measured wind speed (at the assumed 10 meters height),
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‘and { is the roughness length. Since the measurements were taken in
an area where there were mainly concrete runways, presumably with some
grass areas, it will be assumed that { = 0.1 cm, (uwx/upgg) = 0.0523
Eq. (200) becomes

B= (1.71) x 1073 [a. + 0,08 u.m] , (202)

where uy = -~ ujg cos¢' is the measured vector wind speed in miles

per hour from receiver to source, and ¢'is the angle between the wind
direction and the line from receiver to source (i.e., ¢'= ¥ - ¢ ).

In order to estimate the size of a, the effect of the temperature gradi-
ent, it is to be noted that the loss coefficient in the 300 to 600 cps
band, Fig. 30, falls to zero at about -9 mi/hr; it is assumed (for pur-
poses of rough estimates) that this is that speed at which the wind
gradient just cancels the temperature gradient. For positive wind (i.e.,
directed from receiver to source) or negative winds less than -9 mi/hr

a shadow always exists. At negative wind speeds of magnitude greater
than 9 mi/hr, the sound is assumed refracted in such a manner as to in-

~ crease the sound intensity near the receiver above the simple inverse-

square law (however, there is no quantitative theory of this effect of
"sound channelling"). On the basis of this assumption B = O for a vec-
tor wind of -9 mi/hr; this gives a value of a of 0.72°C.

This value of a is somewhat larger than the representative values
found above grass areas given in Table 7; 1f any effects of attenuation
due to the ground or inhomogeneity scattering (giving a ron-zero loss for
the case of the wind cancelling the temperature effect) were assumed to
exist one would obtain a smaller value for a.

The position of the shadow boundary may be found from Fig. 16;
for zero vector wind (uy = 0 in Eq. (202)) the value of B is

B = (1.71a) x 107 = 1.23 x 1073, (203)

Since the sound source is mounted in an airframe, it will be assumed that
the source of sound 3 about 8 ft above the ground; the receiver helght
is given by Hayhurst to be 4 ft. From Fig. 16 it is found that, for

z/2o = A:

rg = (0.75) 2 = 242 v, (204)

Since the attenuation was computed by Hayhurst from measurements taken
between 100 and 2500 ft, most of the measurements were taken in the
shadow zone; the attenuation is therefore expected to be due to shadow
gone attenuation.

According to the high-frequency approximation to the shadow zone
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attenuation for the sound velocity depending on the logarithm of
the height, subsection (1.5.8), the first mode attenuation for an

infinite impedance (hard) boundary is, from Eq. (129)

ay = Eb (3"0)2/3 %1/3 (1;_)2/3 , (205)

where o is in this case equal to 0.685, and where v, (= ¢, my) is
the "effective' vector wind speed, i.e., & fictitious wind speed which
‘includes the temperature effect. Since the temperature effect in
Hayhurst's results is equivalent to a wind speed of about 9 mi/hr,

the effective wind speed will be taken as

Vo = Uy + 9 (mi/hr) (206)

where u, is Hayhurst's reported vector wind speed. It is to be noted
that the minimum frequency for the validity of this high-frequency ap-
proximation, obtained from Eq. (126), is much greater than the frequen-
cles used in the experiments (f> > 5 x 105 cps); it is only in cases
of larger wind velocity gradients and roughness lengths that it applies.
It is interesting to note, however, that, although the theory gives here
magnitudes of attenuation about 100 times too great, the dependence on wind
speed and frequency are fairly close to the experimental results., If the
attenuation at 450 cps is arbitrarily fitted to Hayhurst's experimental
o attenuation for the 300 - 600 cps band for zero vector wind (using the

- S effective wind speed of Eq. (206)), the attenuation becomes

g

| 0, = 0.225 £/3 (uy + 9022 /1000 24y in mifhr, (207)
.

. The dashed line of Fig. 30 shows the attenuation as a function of wind
s speed for f = 450 cps; addition of the classical and molecular absorp-
tion (between lines A and B of Fig, 33) would give results quite close
to the experimental results. The dashed line of Fig. 33 shows the atten-
g,‘ uation as a function of frequency (using the mid-frequency of each band)
C for zero vector wind; the dashed line of Fig. 31 shows the values of the
| rate of change of @ , with wind speed, for zero wind speed.

The effect of a non-infinite ground impedance is shown in

2 Hayhurst's measurements over grass-covered areas, where the attenuation
. is increased comparatively slightly above the attenuastion found at his
S original site (mainly concrete). It is to be expected that g, will be
. changed from the value used for the infinite-impedance case, and most
probably will be dependent upon frequency (see Eq. (108) etc.), although
no quantitative estimate can be made. Since a basic assumption in the
analysis given in subsection 1.5.8 was that the ground is representable
by a uniform acoustic impedance, it is doubtful that the theoretical re-
sulte will apply to Hayhurst's measurements, which were over non-uniform
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grass and concrete areas.

There does not seem to be any method of quantitatively com-
paring with theory the results on the change ia attenuation with
receiver height, Using Fig. 16, the computed approximate distances
to the shadow boundary are shown in Table 21 for the various receiver
heights (assuming a source height of 8 ft). 1% is to be noted that
for all heights, the receiver was in the shadow region for much of
the range of measurements. As the height of the receiver increases
the shadow boundary occurs farther and farther from the source. The

-Qﬁﬁ’ . experimentally measured attenuation is expected to decrease with re-
- ng ceiver height since the sound then has a shorter distance to pass

_ :?; through the shadow zone to reach the receiver when the latter is, say,
. near the end of the range; this is in qualitative agreement with

RES
Ik Hayhurst ‘s measurements, Fig. 32.

TABIE 21
Computed distance to shadow boundary (rg) for varicus receiver
heights (z) assuming a source height of 8 ft.

z (ft) rg (ft)

0 130
10 370
20 550
30 710

2.3.4  Ingard (1953)7°

In a recent review article, data are given obtained from trans-
nission measurements made over a concrete runway and over sand over-
grown with thin grass not quite two feet high. These data and the
interpretations given them are of much interest here.

' Ingard's results are for aircraft noise, generated by a pro-
peller driven aivplane; the source 1s estimated to be 10 feet above
the ground. The receiving microphone, mounted on a truck, was also
10 feet above the ground, In determining sound levels, vecordings
were made on magnetic tape, then later analyzed with General Radio
Octave Band Filters.

Measurements were made on a windy day, at different angles
with respect to the wind direction; they wore also made on a quiet
evening, when no appreciable steady wind or temperature gradients
existed. Considerable information was derived from the measurements

WADC TR 54-602 131




by proceeding in the steps given below.

1. The data on sound level vs source-receiver separation
over a concrete runway, 200 ft wide, on a quiet even-
ing, were fitted to Eg. (2) and the attenuation coef-
ficient obtained by the method described in subsection
2.1, This latter was assuwuaed to give the loss per unit
distance due to air alone. The results are given by
the dashed curve in Fig. 34.

2. The measurements over the concrete runway and over
grass-covered sand were compared, both having been made
on the same quiet evening, Differences were assumed
due to surface. losses over grass. The loss thus com-
puted at the different frequencies is shown by the
solid curve in Fig. 34. Ingard shows that the frequen-
cy dependence and magnitude of the loss are reasonable
on the basis of the theory presented in subsection l.4.

3« The measurements over sand on a windy day included de-
termination of sound levels at a series of source-re-
ceiver separations and for the angles 0°, 459, 90°, 135°
and 180° between the direction of sound propagation and
the mean wind direction. These sound levels were com-
pared with those measured over sand on a quiet evening.
The actual amount in decibels by which the sound level
at any point on the windy day was exceeded by that at
the same point on the quiet evening was assumed to be
the loss due $¢ wind at that point. (An assumption thus
made is that the losses due to absorption described in
subsection 1l.2., are not significantly different for the
two situations. According to Fig. 34 errors due to this
assumption are likely to be negligible except at the
higher frequencies, since the absorption itself is appre-
ciable only for frequencies above 1000 ops.)

A figure showing typical results may be seen in Ingard's paper.
No wind losses were observed for small gource-receiver distances; this is
to be expected, since then the receiver has, presumably, not yet reached
the shadow zone boundary. Losses begin to appear rather abruptly at
R = 200 £t for ¢ = 180° {sound propagation against the wind), and at
about R = 400 ft for @ = 1350 and $ = 90°, The losses occurring in
the cross-wind case, i.e., ¢ = 90°, and are due to shadows caused by
temperature gradients; those occurring at 1359 and 180° are due to shadows
caused by both wind and temperature gradients. No significant loasses
occur in the cases of propagation at 45° and 09 (with the wind); in these
cases the sound is refracted downwards, and does not form a shadow.
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Fig. 34 Observed losses (in excess to 1/R loss)
in open air experiments over two kinds of verrain,

from Ingard75u Dashed curve gives losses due to

alr alone, as observed over concrete runway. Solid
curve glves losses over grass covered sand, less
those due to-air above., The source-receiver separa-
tion is 1000 ft in each case.

An indication of the magnitude of the losses due to wind is
iiven in Fig. 35. Here are shown the observed shadow zone losses
{computed as indicated above) at a source-receiver separation R of
) L, for the audible range of frequencies and for different.
angles ¢ . Ingard emphasizes that these data should only be re-
garded as typical and not of general validity; the results are very
anch a function of the distance R,

One feature of these curves, remarked on by the suthor, is of
considerable interest. This is that the losass a2t 4 given point 4o
net increase monotonically with frequeney {as mnight have been cxpected
Jrom the theory in subsection 1.5), but instead pass thiough a maximnn,
then lovel off oy Jufreass wish increased freguency. Ingerd suggests
that this i3 doe to stattering of sound into the shadow zone by teuwpura«
ture or wind inhomogeneitles, as was discussed in subseciion 1.6 . As
¥ot, there 1s n¢ complete theoxry fop desling with this very important
problem,
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Fig. 35 losses due to wind for fixed source-
receiver separation of 1000 ft, from Ingard75.
Crcsses, circles and triangles represent angles ¢
(see Fig. 1) of 1809, 135° and 90°, respectively,
between wind direction and sound propagation
direction.,
2ely ACVUSTIC SHIEIDING BY STRUCTURES

2.4.1 Stevens and Bolt76

Measurements have recently been reported on the propagation
of -sound around a long building., A 6F6 Navy aircraft was the noise
generator; the source was effectively about 7 feet above the ground.
Sound levels were determined by making magnetic tape recordings at
various points, then later analyzing these with one-third octave
band filters. A scaled schematic drawing of the arrangement is shown
in Fig. 36. The building around which measurements were made was a
hangar 33 ft high, 200 ft wide and 800 ft long. Surrounding the hangar
was a wide flat area of sand covered with thin grass. In the experi-
ments described the ailrciuft noise source was placed at different points
relative to the hangar and for each source position the sound field
was wapped out by recordings made at various points, especially behind

the hangar.
We shall discuss here only a part of their results, In Fig. 36
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Fig. 36 Scaled drawing of arrangement for

measuring acoustic shielding by hangar,
from Stevens and Bolt76,

the points Sy and 3, show two source positions used; R, and R2 show two
corresponding receiver positions. Both of the source-receiver lines

81 Ry and 3,R; are about 500 feet long; however, the acousticel paths

are significantly different in the two cases. Thus, the hanger is in-
terposed as a barrier between source and receiver when the former is at
51, the latter at Rj. On the other hand, the path 8gR, is fairly well
clear of any obstacle. The actusl amount in decibels by which the sound
level at Ry (when the source is at S;) exceeds that at Ry (when the source
is 81) is called the noise reduction caused by the hangar.

In Fig. 37 are shown typical results obtained at low wind veloc-
ities., Here the observed nolse reduction is given by the solid curve
for frequencies ranging from 50 to 10,000 cps. For comparison, the
dashed curve shows the reduction predicted by Fehr's theory (see sub-
section 1.7.3). Though the order of magnitude of the reduction is given
correctly by this theory, there are obvious discrepancies., From plots
like this for a variety of source and receiver positions, the authors
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were able to identify several features which proved to be characteris-
tic, and also to develop explanations for them. These are reviewed
briefly below.

1. A large peak in the noise reduction occurred at around
120 cps. The authors explain this as due to interference
between sound coming directly from the source and that
reflected from the ground surface (see subsection_l.?.h).
in this case a concrete apron. If the source were on
the ground, or if the ground were a poor reflector, this

. effect should be absent.

2. A dip in the curve occurs, characteristically between
200 and 1000 cps. This is explalned by the authors as
due to the fact that the terrain, especially on the re-
ceiving side of the hangar, does not interact with the
sound field in the same way. when sound propagates along
path 5;R; as when it travels SoRo. In the latter case,
a terrain loss (see subsection 1l.4) may be expected;
the probable magnitude of this loss may be seen in Fig.
34 which is for about the same conditions. From this
figure, we see that the greatest terrain loss is at
around 500 cps.

As indicated in subsection 1,7.. there is at present no
theory, nor ure there direct exper.mental results, for
giving quantitalive estimates of losses incurred along
such a path as S5jR;, due to the terrain between the
hangar and receiver., It is reasonable, however, as ex-
plained by the authors, that the loss here should not be
as great as that along SRy, since, intuitively speaking,
in the latter case the sound grazes the ground while in
the former case the sound travels over the hangar and
hence is less affected by the ground. It is to this
decrease in terrain lods that the dip in the 200-1000
cps range 1ls attributed. If the ground were such that
no terraln loss occurred along SoRy, this effect would
presumably be absent.

3., For frequencies above 3000 cps the noise reduction due
to an acoustical shadow cast by the hangar tends to be
rather less than that predicted by Fehrts theory. This
is believed by the authors to be due to scattering of
sound into the shadow by turbulence in the atmosphere.
Theory (see subsection 1.6) predicts that the amount of
scattering due to turbulence increases with the frequency.
Hence the decrease in noise reduction because of this
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effect should be, as was found experimentally,
especially marked at high frequencies. The amount

of scattering also depends, of course, on the de-
gree of turbulence; the latter, in turn, depends

on the wind velocity. Evidence on the latter point
comes from other results obtained by the authors.

By making measurements on different days, the authors
found that the hangar caused less noise reduction, by
as much as 12 decibels, for frequencies above 200 cps
“when a cross wind of 20 mph was present than when
there was no wind.

The results shown in Fig, 37 do not apply 3if the scurce is
very near to the hangar. In this case,Fehr's graph is found to pre-
dict noise reductions much greater than those observed. This is be-
lieved due to approximations in the diffraction theory (see subsection
1.7) on which his graph is based. An empirical correction is suggested
by the authors for this case, namely, that the expression for N in
Eq. (178) should be multiplied by i?l + (HR/AR) ] -1,

An additional conclusion reached by the authors, on the basis
of a large number of observations, is that the observed losses are in
general greater - on the average, by about 3 db - than would be pre-
dicted by the Fehr chart. (Alternatively, the losses are about 3 db
less than those given directly by Fig. 21.)

2442 Hayhurst §12§3)77

Further data on sound reduction by structures is given by
Hayhurst. The latter describes results obtained in tests of acoustic
shielding by experimental walls of corrugated cement asbestos sheeting
(1/4 in. thick) up to 40 £t high and 50 £t long. It was found that
noise from a Viking aircraft (see subsection 2.3.3), placed 20 ft be-
hind the wall, was reduced by approximately 20 ~ 25 db over the 37.5 -
1G,000 cps frequency range at all points forward of the wall, up to
distances of about one mile, We shall not attempt here to discuss the
results in detail. Bscause of the nature of the data it is rather dif-
ficult to make comparisons with the theory described in subsection 1.7;
however, Stevens and Bolt76 state that the Hayhurst results appear to
be in fair agreemsnt with the predictions of the Fehr chart.
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245 SOUND TRANSMISSION THROUGH FORESTED AREAS

An idea of how much loss is suffered by sound in propagating
through a variety of forests or wooded areas is given by Eyring 9 in
the same paper referred to previously. Such information may be use-
ful in cases where part of the transmission path from source to re-
celver is through a.region populated with leafy trees, with or without
underbrush.

' Eyring and his group made their measurements in the jungles of
Panama; loudspeakers were used as sound sources. Measurements in any
given jungle area were made by operating the source at some point in
the interior of the area, then determining sound levels at various dis-
tances with microphones and recording equipment. In all cases source
and receiver were 5 ft above the ground. Data on sound levels ys
source-receiver separations were fitted to Eqs (2) and determinations
thus made of the loss coefficient @ for different frequencies in the
various jungles,

Fig. 38 gives the Eyring results - in the form of zones or bands,
each representing the range of loss coefficients to be expected in a
given type of jungle, as a function of frequency. The jungles are typed
in terms of (1) the greatest distance at which a moving white object can
be seen, and (2) the estimated density of the foliage. The author warns
that these results are particularly valid for jungles in tropical regions
and may be in error elsewhere. However, Schilling, et al'™ in their work
at higher frequencies, found that Panama jungles are not striking differ-
ent acoustically than forests in Pennsylvania. Hence we might expect
Fig. 38 to be useful for making transmission loss estimates even for
forested areas in the United States,

2.6 PROPAGATION OF SOUND THROUGH THFE GROUND

As has become clear in previous discussion (e.g., subsection l.4)
the sound received at a given point P (see Fig. 1) depends not only on
the nature of the atmosphere, in which both the source point Q and the
receiver point P are immersed, but also on the acoustical properties of
the earth. If the earth is highly absorbing only a shallow surface layer
will have an appr ‘ciable effect on the sound field at Q. This appears
to be the case for porous soils, for which both theory and experiment
indicate very high attenuation coefficients, of the order of 0.5 db/cm
and higher for frequencies above 500 cps22s 79 80, Hence, under these
conditions the sound may be said to travel from Q to P by paths which
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are essentially through air alone and only to a negligible extent
through the ground.

Thé question arises whether there might be special conditions,
say, at low audible frequencies and/or for compacted or water-soaked
soils, where a significant portion of the sound from Q would arrive
at P by way of the earth. In particular, ground-conducted sound might
be expected to be important when the air path from P to Q is poor, e.g.,

:
:
;
:
§

>

500 1000 3000
FREQUENCY N (YCLES/SECOND

Fig. 38 loss coefficients in jungles or forests,
from Eyring. Numbers in zones represent differ-
ant jungles as follows:
(1) Very leafy; one sees a distance d of approxi-
mately 20 ft,
(2) Very leafy; d = 50 ft,
(3) leafy; d = 100 ft.
(&) leafy; d = 200 ft.
{5) Little leafy undergrowth, large bracketed
“trunks; d = 300 £t.
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if Q were in an acoustic shadow, caused either by a wall (subsection 1.7)
or by refraction (subsection 1.5). Unfortunately, there does not exist
suitable field data by means of which the contribution due to ground-

propagated sound can be estimated with satisfactory accuracy. There
are indications, however, that this contribution is not usually highly
important .

For example, seismologists find that earth vibrations caused
* by artificial surface disturbances can be detected only at relatively
ghort ranges; the disturbance due to a 200 1b lead weight dropped from
. a height of 20 ft has been found to be detectable at distances no more
than 300 ft, using a selsmograph (natural frequency about 15 cps) cap-
able of detecting surface movements of the order of several Angstroms”
(L X =108 cm). It is true that by using explosives seismologists
are able to cbtain detectable surface vibrations up to distances of
several miles, but it is important to realize that this is accomplished
only by use of buried chargessz. The general method is to place an ex-
plosive cartridge at the bottom of a drilled hole, typically 25 ft deep,
_then pack the hole firmly with dirt and water before detonation. The
earth vibrations transmitted from an equivalent charge exploded on the
earth surface is very much less, by factors of as much as 50 or 100;
the ineffectiveness of such a surface charge is partly due to the sur-
face ground layer being a poor medium for sound transmissions. By
. contrast to the relatively short ranges of ground waves resulting from
- surface blasts, it is commonly found that the simultaneously generated
air-transmitted sound is detectable at distances of 100 miles or mr:
from the source®3s6h, ‘

Other information on wave propagation in the ground, in this

case over very short ranges, comes from dynamic tests on 5011883,84,
The latter are made by applying an alternating force to a given small
area of the ground, then measuring the vertical ground amplitude at
various distances r from the source. Typical data83 at r = 50 ft for
the 20-30 cps range indicate ground amplitudes of 20-50 X at that dis-
tanceeﬁer kilogram of impressed force at the source, It has been
found“ that the amplitude of vibration varies approximately inversely

. with distance r from the source. Hence the data quoted above may be
expressed in equation form approximately as

) g S 0.078 F/r, (208)
where the vibration amplitude &g is in Angstroms, the amplitude F of
the exciting force is in dynes and r is in centimeters. (Eq. (208)
states that &, will be equal to or less than 50 X at a distance r of
50 £t (1525 cm) whon F is one kilogram (9.8 x 10° dynes))

In the case to which Eq. (208) applies the ground vibrations
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were set up by a heavy plate pressed against the earth, upon which
was impressed an alternating vertical force by mechanical or other
means, For purposes of the present report we are interested in
situations where forces are applied to the ground by such sources
as noisy aircraft which generate sound in air as well as in the
ground. In the absence of experimental data directly applicable

to this problem it is worthwhile to calculate for a somewhat idealized
case the particle amplitude in air expected at a distance r fram the
source due to air-transmitted sound, and compare this with the vi-~
bratory amplitude at the earth's surface due to the ground wave, as
given by Eq. (208).

In making this comparison we assume a volume-type source, i.e.,
one whose action consists of a periodic injection and withdrawal of
air from a given localized region in the atmosphere. Specifically,
we suppose that air is uniformly admitted and withdrawn from a region
consisting of a thin sheet of area A immediately above the ground.
(For example, we might suppose the region to be in the shape of a
cylinder whose lower base, of area A, Is in the plane of the ground
surface and whose height is very small.) Let the total instantaneous
volume rate of influx of air into this region be q, sinwt; the in-
stantaneous vertical velocity of the air in the source region will
then be (qo/A) sinwt., If the horizontal dimensions of the source
are of the order of ( A/2) or less (where A is the sound wavelength

in air) the particle amplitude &, in the air-transmitted wave will be
glven approximately by

€y = o /2 7 cr, (209)

where r is the distance from the source and ¢ the velocity of sound in
air, Eq. (209) may be derived easily from standard theory for sound
propagation from a volume sourceBS, in which theory one neglects the
effects of absorption and refraction processes in the air, such as
were considered in Section I. If one substitutes for ¢ a typical
value for ordinary temperatures (Appendix I) and expresses &4 in )

one obtains
€. 450 qpfr (210)
where q, and r are in cgs units.
From similar theory86 one may estimate thé amplitude F of the
alternating force exerted on the ground over the total source ares.

If, as previously assumed, the horizontal dimensions of the source are

of the order of ( A/2) or smaller, the amplitude F will be of the order
of ( pocqg) or smaller, i.e.,

F £ Potq, (211)
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Combining Eqs. (208) and (211), and evaluating p, and ¢ for air at
a typical temperature (Appendix I) we obtain

eg < 3.5 qo/rs ‘ (212)

where q, and r are in cgs units while fg is in Angstroms. Compar-
ing this expression for. €g with Eq. (210) for Ea we see that the
ground transmitted vibratory amplitude at a given distance r is less
than the air-transmitted particle amplitude at the same distance by
at least a factor of 125, or about 42 db.

In considering the result of this very rough calculation two
points should be kept in mind. First, the experimental data upon which
Egs. (208) and (212) are based cover only a very short range, up to
r = 50 ft; it is not known how accurately Eq. (208) would represent
typical facts for much larger values of r. Second, in obtaining Eqs.
(209) and (210) for Ea the losses due to absorption and refraction
in the air transmissions path were assumed negligible., When the lat-
ter assumption is not valid, as would be particularly the case in a
region of Macoustic shadow", the ratio ( €,/ 53) would be considerably
diminished.
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SECTION III

APPLICATIONS TO PRACTICAL PROBIEMS

3.l INTRODUCTION

In this section are presented special graphical aids and sug-
gested procedures for applying the results of Sections I and II to
actual field situations. In general terms, the overall problem is
assumed to be this: given a spurce of specified properties, located
at a specified site, to predict the sound level distrihution in the
surrounding region, at points up to several miles from the source.

In many commonly-encountered situations an accurate solution
to this problem is far beyond the grasp of present day acoustics. If
the land surrounding the source is rolling, of uneven constitution,
or overlaid irregularly with trees or physical structures the diffi-
culties are obvious; to attempt exact analysis in such a case would
clearly be impractical.

Even if the terrain near the site is flat and uniform, the

" vagaries of the atmosphere often provide an inhomogeneous medium of
such complexity as to present very great analytical difficulties. In
many actual cases the various aspects of the propagation problem,

taken up separately in the subsections of Section I, cannot be isolated
and treated separately, but must be confronted simultaneously. The
task then presents itself of predicting the sound field in & medium
where

(1) viscosity, heat conduction, molecular relaxation
and other basic mechanisms play a part,

(2) fog or smoke is present,

(3) the underlying surface is a reflector, scatterer
and/or absorbver,

(4) random temperature and wind inhomogensities exist,
(5) time-independent gradients of temperature or wind-
speed exists, and ’

(6) phye 1 structures obstruct the sound propagation

pati .

As indicated, there is no solution for this very gensral problem.
However, there is useful information described in Section I and II which
is applicable to certain important special situations., For example, it
appears to be fairly well known how to-calculate sound levels on the
ground due to a source nearly overhead. This is a very important case
since tha results may be applied to calculations of the maximm levels
to which people under a take-off course are exposed. This problem is
taken up later in this section, as are a number of others.
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In what follows, we present in subsection 3.2 a number of
graphs and nomograms for convenience in computing or estimating
acoustic losses due to various causes. In subsection 3.3 typical
problems are discussed which arise in the field; suggested pro-
cedures for handling these are given wherever possible.

3.2 COMPUTATIONAL AIDS

3.2.1 The 1/R law

In some special tases the pressure amplitude p at any point P
(whose distance from the source is R) is given by Eq. (2) with @ equal
to zero; the devendence of p on R in this simple case is then called
the (1/R) law or inverse first power law. As indicated in subsection
1.1, the loss in decibels of the sound level at P relative to that at
a reference point P, (at a distance Ry from the source), is given for
this case by

*(1/R) Loss'= 20 logyy (R/R,) (213)

Fig. 39 shows a plot of the 1/R loss, also at times referred to as the
divergence loss, geometrical losg, etc. (see subsection 1,1.3) versus
the distance ratio (R/Ry). Since semi-log coordinates are used, the
resulting graph is a straight line. The 1/R loss increases by equal
numbers of decibels when the ratio (R/Ro) increases by equal factors;
€.g+, the loss increases by 6 db for each doubling of the distance R
(R, being assumed constant), and by 20 db for each ten-fold incresse
of R, The greatest loss per unit distance occurs, of course, near the
source; the same geometric loss is encountered in traveling the 100 ft
interval frem 100 to 200 ft, as in the 1000 ft interval from 1000 to
2000 f%, etc. "

The graph in Fig. 39 shows the (1/R) loss for ratios (R/R,)
from 1 to 2000, It is easy to take account also of ratics out of this
range; to do this one uses the result that any additional factor of
10" in (R/R,) increases the loss by 20n db, For example, the loss for
(R/Ry) = 65,000 may be obtained by the following steps.

(1) Write the ratio in .he form: 650 x 10° (since
w4500 1ies between 1 and 2000).

(2) Find from Fig. 39 that the (1/R) loss is 56 db
for (R/Ry) = 650,

(3) Note that n = 2; hence 20n = 40 db.
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(L) Add results of Steps 2 and 3. The loss for
(R/Ro) = 65,000 182 56 + 4O = 96 db.

An alternative presentation for use in computing the loss due
to spherical divergence is given in Table 22, Here the (1/R) loss is
given for values of (R/R,) varying from 1.0 to 9.9. The loss for
ratios (R/R,) outside the rangs of the table are obtained, as above,
by remembering that an additional factor of 109 in (R/R,) increases
the loss by 20n db,

3.2.2 The R~L e~ @R 1ay

Returning to Eq. (2) we now consider the more general case when

a is pnot zero; the given equation is then approximately applicable to
a wide variety of situations, as was found in Sections I and II. As
stated in subsection 1l,1l.3 the loss in sound level at any point P re-
lative to that at a reference point P, may then be considered as made
up of two parts: the first is a (1/R) loss, as discussed in the pre-
vious subsection; the second is called an exponential loss and is given
in decibels by

Exponential loss = & (R-Rg), (214)

where @ is in decibels per unit of diatance, the latter unit being
chosen, of course, to agree with those of the distance (R-Ry). Know-
ing a one may cbtain the loss at P relative to Py by the following
gteps:

(1) Obtain the (1/R) loss from Fig. 39 or Table 22.
(2) Calculate the quantity a(R-Ry).
(3) Add the results of Steps (1) and (2).

For example, one proceeds as follows to obtain the loss in
sound level at 2000 ft from a source relative to that at 100 ft for
an assumed loss coefficient of 6.0 db/1000 ft:

(1) From Fig. 39 the 1/R loss for a distance ratio
of 20 is 26,0 db,
(2) The quantity G(R—Ro) is (6.,0)(1900/1000) = 1.4 db.

o Fig. 39 Chart giving (1/R) loss at a distance R from
a source, relative to the level at a distance R,.
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(3) The total attenuation is (26.0 + 11.4) = 37.4 db.

As a more convenient method for obtaining the same result
Fig. 40 may be used. The latter gives plots of the total loss (1/R
loss plus exponential loss) as a function of R for different values
of @ ; Ry is assumed, in all cases, to be 100 ft. As an example of
the use of Figs 40 one may easily verify the cerrectness of the re-
sult obtained by carrying out Steps (1), (2) and (3) above.

For any value of R, greater than 100 ft the total loss in-
curred between Ry and R may be obtained from Fig. 4O by the follow-
ing steps:

(1) Determine the loss from 100 ft to R from Fig. 40.
(2) Determine the loss from 100 ft to Ry from Fig. 40.
(3) Subtract the result of Step (2) from that of Step (1).

As an example, the loss between 800 £t and 2000 ft for
8= 6 db/1000 ft is obtained as follows:

(1) Loss from 100 ft to 2000 £t = 37.5 db.
(2) Loss from 100 ft to 800 ft = 22.5 db.
(3) Loss fram 800 £t to 2000 ft = 15.0 db,

For any value of Ry less than 100 ft the total loss incurred between
R and R may be obtained as follows:

(1) Determine the loss from R, to 100 ft. This will
usually be mainly a (1/R) loss, obtained from.
Fig. 39. (For the frequency range of main interest
losses due to attenuation by the medium would be
usually fairly small for distances less than 100 ft.)
(2) Determine the loss from 100 ft to R, using Fig. 40.
(3) Add the results of Steps (1) and (2).

As an example, the loss between 70 and 2000 ft for @@= 6 db/1000 ft
is obtal:ied as follows:

(1) Loss from 70 to 100 ft = 3 db (the error due to
neglecting the exponential loss here is about 0.2 db).

(2) loss from 100 to 2000 ft = 37.5 db,

(3) Loss from 70 to 2000 ft = 40.5 db.

¢ Fig. 40 Chart giving total loss ({(1/R) loss + exponential
loss) at a distance R from a source relative to the level
8* a distance of 100 ft, for various values of the loss
coefficient a .
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34243 lLoss Coefficients for Homogeneous Air

3+.2.3.1 In order to predict losses when Eq. (2) holds, one must, of
course, know what value to assume for the loss coefficient @, In
making estimates, it is often very helpful to.know the results of
theory (subsections 1.2.2 and 1.2.3) and laboratory experiments
(subsection 1.2.4) on loss coefficients in homogeneous air, For
applying these results to practical problems, we suggest specific
computational procedures below, and also give a number of graphs
or nomograms which present the theoretical and laboratory results
in different ways. For some purposes, a given one of these presenta-
tions will be the most suitable; for other purposes another will
be best.

3.2.3.2 According to theory the attenuation in homogeneous air is
glven by the sum of @class, given by Eq. (11b) etc., and @po1,
given by Eq. (18). The former may be obtained for any frequency

at any given temperature from Fig, 2. The latter may be calculated by
using Figs. 3, 4 and 6, following the steps given in subsection 1.2.3.
One finds that in many cases @;jhgs is negligible with respect to

@ mol for the glven conditions; the theoretical value of @ for homo-
geneous air is then essentially just @pq).

The experimental values of .a@, obtained in the laboratory are
also given in Figs., 3, 4 and 6, To find the laboratory value for
given conditions, one may follow the same four steps given in sub-
section 1,2.3, with the exception that in Sveps {2) and (3) the ex-
perimental results rather than the theoretical curves should be used
for hp and (@& / @yax), respsctively, (Step (1) is unaffected since
experimental results for ap., agree very well with the theory.)

From Fig. 6 we see that the observed values of { @/@pgy) do
not fall off to zero at high humidities, as the theory would predict,
but instead level off at about 0.2; stated differently, the values of

@ for any given frequency level off to about 0.2 times the @ p.y for
that frequency. A rough "rule of thumb™ for recalling the Delsasso
and Leonard laboratory @ at the higher humidities would thus be as
follows:

(1) Determine @,y for the given temperature and
frequency from Fig. 3;
(2) Multiply the result of Step (1) by 0.2.

To determine @gyx for conditions outside the range of Fig. 3 one may
refer to Fig., 41. Here are given plots of @ ax Yersus frequency for
frequencies ranging from 10 cps to 10 ke and for temperatures from

0° to 100°F, To determine @,y for frequencies outside the range of
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the graph one may simply use the fact that @ .. is proportional
to frequency. Thus to determine @y, at 250 kc and LOCF, one
notes from Fig. 41 that @guy is 16 db/1000 £t at 2.5 ke and 4O°F,
‘then multiplies this value by 100 obtaining 1.6 db/ft for the
given frequency.

3.2+3.3 For the specific frequencies of 500, 1000, 2000 and 4000 cps
) the theoretical results uve presented in more convenient form in

Figa. 142 - LI'SO

For definiteness, consider Fig. 42 which is for 500 cps. This -
figure really consiste of two graphs. The lower graph contains a
family of straight lines; these are plots on log-log paper of rela-
tive humidity against absolute humidity h for different temperdtures.
The upper graph contains a family of curves which are plots on log-log
paper of @ ys the absolute humidity h at various temperatures.

To determine @, one effectively obtains the absolute humidity
from the given relative humidity and temperature by using the lower
graph, then finds @ for this h-value and the given temperature from
the upper graph. A typical path to be followed in making a computa-
tion is shown by the broken line 4 B C D; for this example, the rela-
tive humidity is assumed to be 66% and the temperature 42°F.. The de-
tailed procedure is as follows:

(1) Select the relative humidity on the vertical axis
of the lower graph; this determines A,

(2) Extend a horizontal line to the left from A until
it intersects that member of the family of straight
lines, representing relative humidity ys h, which
corresponds to the given temperature. (4s in this
example, the particular family member for the glven
temperature will usually not actually appsar; its
position must be inferred by interpolation.) This
intersection determines the point B.

» (3) Extend a vertical line upward from B until it inter-
sects that (interpolated) member of the family of ‘a
ya h curves which correspond to the given temperature.
This intersection determines the point C.

(L) Extend a horizontal line to the right (or left) from Cj
its intersection D on the vertical axis gives the de-
sired value of dp,y.

For any other temperature and humidity one proceeds
8imilarly, of course; also, the same procedure is to
be used in determining @pp) from Fige. 43,44 and 45
for 1000, 2000 and 4000 cps, respectively.
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3424344 For frequencies other than those to which Figs. 42 - 45
apply one may use Fig., 46. The latter is similar to the former
figures in that plots of relative humidity vs h at different tem-
peratures are given in a lower graph, and plots of @vs h in an
upper one., However, Fig, 46 differs from the previous ones in that
here the @ ys8 h curves are all for the same temperature (60°F) but
are for different frequencies. A final correction for temperature
requires an additional step. The general procedure for using Fig. 46
to calculate @ at any given temperature, humidity and frequency is
as follows:

(1) For given temperature and relative humidity
determine h from the lower graph.

(2) For this h and the given frequency determine
from the upper family of curves the value of
@ a3 it would be for the given absolute humid-
ity if the temperature were 60°F; designate
this value as @gq. '

(3) Maks a final correction for temperature. This
may be done by any of several procedures to be
suggested later.

The line ABCD shows a typical path to be followed in carry-
ing out the first two of the above steps for calculating @g0s it is
agsumed that the temperature, relative humidity and frequency are
839F, 53% and 3250 cps, respectively. The points A and B are deter-
mined from the given relative humldity, and temperature as in Fig. 42.
A vertical line is then extended upward from B until it intersecss
that (interpolated) member of the upper family which corresponds to
the given frequency. This intersection determines the point C. A
hordizontal line is then extended to the right from C; its intersection
DY with the vertical axis gives @gp, in this case equal to 0.73 db/1000 ft.

For carrying out the final step indicated above, namely, to
make a final temperature correction, one may use any one of the alter-
native methods (a), (b) or (c) given below:

(a) From the table shown as an insert in the lower
right hand portion of Fig, 46, find the correc-
tion factor G for the glven temperature. Kulti-
ply G by @gp to obtain a for the given tempera-
ture, relative humidity and frequency. For the
given examrle G is 1.25 and hence @ is
0.91 db/1000 ft.

Fig., 46 Nomogram for calculating @pe) at arbitrary _
freguency, temperature and humidity. See text for >
instruct.ions in use.
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(b) Using scale MN in the upper right hand portion
of the figure mark off (by use of dividers or
other suitable means) the distance from the
point corresponding to 609F to that correspond-
ing to the given temperature; call this distance d.
(As an example, the distance d to be measured
for the case of 83°F is indicated above the scale.)
The scale is such that d is proportional to the
logarithm of the temperature correction factor G.
Returning to the point D' measure the distance d
either upward or downward from D! depending, re-
spectively, on whether the temperature is greater
or less than 60°F, The point E' so arrived at
(i.e., the point a distance d above or below DY)
gives @ for the given temperature, relative
humidity and frequency. It may be verified that
for the given example one uotains by the method
@ = 0.91 db/1000 f%, as before,

(c) Note the intersection D of the horizontal line CD!
with that (interpolated) vertical line, extended
downward from scale MN, which corresponds to the
given temperature. Draw a 450 line (parallel to
the dashed guide lines) from D; the intersection
E of this line with the heavy vertical line which
extends downward from the 600 mark on MN gives the
desired value of @, it being understood that the
scale according to which @ is obtained from E is the
scale on the extreme right of the figure. One may,
in faot, draw a horizontal line to the right from
E and read @ from its intersection E' on that 'scale.
It will be readily seen that this procedure is equi-
valent to that described in alternative (b).

3.2,3.5 5t111 another graphical method of calculating @j,; from Eq. (18)
is afforded by a nomogram originated by Kneser®? and extended by
Pieclemeier88, This nomogram (Fig. 47) gives a,,1 for a wider range

of parameters than Fig. 46, though with less accuracy. A broken

dashed line indicates a typical path followed in making a computation;
the temperature, relative humidity and frequency are assumed to be

15%, 50% and 3000 cps, respectively. To determins @po1 from the
nomogran for the given conditions, one may proceed as follows:

Fig. 47 Nomogram for calculating @,y at arbitrary 3
frequency, temperature and hwndity, from PielemsierS8,

WADC TR 54-602 160




OV | 02 | 0 1 0c m M _ m ! m 7
! /o : !
IIAT. 4..[4 ” . xwl At L. .ﬂlnll\lx*l. ..II;..M,I»I et e - , d L. . m\g
Pt _ A : /
H .G : O_n
P ! I «m A , &§\ \
b e - e —— - —p— 3 ~ - - u - - . - c- P - . g
R A - /]
S =y =t T \l \X \
J.dAN .@._..... o * M\- é,l.r... . S \\ -
fa=04%=y "mmmx O 2w i s \\ \w \ \
O+ e EH W ¥ 2 prie S e fan e A Sun el ahastaty ——FA
A 2 el B S /. A
! { , ' . )
L+ Bo <+ M N.?\ J o 20- P A \\\ VAR N\\ \\ .
My 3 7o 100 1000= "1 25! ={ Yap U)W %00 88 9 0% %P %01
u.ﬂ. i a1aym (@rom autid v §o){0F ~ \ 3
iswe Toe | oor w o \\ =Wy quawai9p Asualul \ \ \ \ 101 ] S
AR AR N S s e 2 i
c vy ¢ Z W I+ - WyB0E ;02 (1]} wm y € 2 1
fapso] @m// N | | el T
i / / . ///11 ! : - , Mu cN“ Lw\
_ N | i i . Jo s . \.
4 /Vm — nw/Vul. ;11]!*%”%1!4&\&« < y: o
{ //ﬁ_ AN WANAN of P 3
/ /r/ /( /r // / .XQQ~ ,,,. m
/ A . 4./ /.r // /.r ) . 1) L n\\m 2
qwﬂ AU AR ANEA B INC OO KA R 7717 RI_uif
LN N NORNINN = 3
7Y ot w_.imno 40 2 p Q ,




(1) Starting at 15°C on the temperature axis in the
lower quadrant, trace left to the 50% curve (by
interpolation).

(2) Trace upward to the middle of the shaded area in
the upper left quadrant.

(3) Trace to the right to the 3 ke curve in the upper
right quadrant.

(4) Trace downwz: ! to the scale marked "log X /(1+ x?“/fz)".

(5) Start again .~ 15°C on the temperature axis in
the lower quadrant; trace to the right to the
curve in the lower right quadrant.

(6) From the latter trace upward to the scale marked
"(log M) + ™, |

(7) Connect by a straight line,the points arrived at
in Steps (4) and (6). The intersection of this
line with the scale marked "my * 10™* gives the
intensity absorption coefficient in units of em~L,

(8) Multiply the number obtained in Step (7) by
1.32 x 10° to obtain @pe] in db/1000 £t for the
given conditions.

Some of the symbols appearing on the nomogram are different
than those 1sed in the body of this report. Thus X corresponds to
the f, in Eq. (18) and M corresponds to (2 Gpyy/f) where @py,.. is
given by Eq. (21b).

For ranges cf parameters where both Fig. 46 and Fig. 47 apply
" the former is capable of higher accuracy, mainly because of the highly
compressed log scale from which my is read in Fig. 47.

3.2.3.6 As shown earlier in this report,there is considerable evidence
from both laboratory and ontdoor experiments that the theoretical ab-
sorption coefficient (@po1 + @class)s a8 given by Eqs, (11) ete.,
does not give the correct result under all conditions. Particularly at
the higher absolute humidities and lower frequencies (see Fig. 7),
observed values of @ are considerably in excess of the theoretical
predictions. Especially for these conditions it would therefore seem
preferable to base one's estimates of @ for given field conditions

on experimental rather than thscretical values.

The most recent laboratory results on @ for homogensous air
are those given by Delsasso and Leonurd., Their results (already dis-
cussed in some detail in subsection 1l.2.4) are presented in Figs. 48
and 49; the plots of @ versus absolute humidity given here are from
the snooth curves fitted by Delsasso and leonard to their data. From
a set of results like these, for six different frequencies and three
temperatures one might hope to be able to estimate @ for any given
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conditions by interpolation or extrapolation. Plots for convert-
ing from relative to absolute humidity are in the lower part of
each figure, to aid in interpolation, etc. The recommended pro-
cedure to follow in estimating @ for given conditions, say 60%
relative humidity (RH) and 80°F, is as followss

(1) Determine the absolute mmidity h corresponding
to 60% RH and 80°F; optain h = 15 gn/m3.

(2) Determine @ at 71.2°F and 94.5°F for the given
absolute humidity, i.e., for h = 15 gm/m3;
interpolate between these a-values,

(This procedure should usually be much more accurate than an alterna-
tive procedure where one determines @ for the given relative humidity,
i.e., 60% at both 71°F and 94.5°F, then interpclates.) Unfortunately
such interpolation cannot be done with accuracy or confidence except
over rather limited ranges of conditions. Data are not given at tem-
peratures which are spaced closely enough to justify linear interpola-
tion. This is especially obvious in the temperature range between

35° and 71°F, since results for these two temperatures are very dif-

ferent from each other.
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3.3 TYPICAL PROPAGATION PROBLEMS

3¢3.1 Propagation Vertically from Aircraft to Ground

For persons living in residential areas at distances of, say
1 to 20 miles from an airport, the greatest disturbances probably oc-
cur at points rather directly under a take-off course. A problem of
great importance, therefore, is that of predicting the sound level
near the ground due to an aircraft nearly overhead, e.g., such that
the line from aircraft to observer makes an angle of less than 45°
with the vertical.

Fortunately, this situation appears to be one for which fairly
reliable predictions can be made. The data of Parkin and Scholes (sub-
section 2.3.2) indicate that the pressure amplitude at the ground varies
approximately inversely with the distance R from an aircraft noise
source to observer for cases when the source 1s nearly overhead at fre-
quencies below 1000 c¢ps. The results of Regier (subsection 2.3.1) for
frequencies around 300 cps are in agreement with this. For frequencies
above 1000 cps, Parkin and Scholes find that Eq. (2) holds, where.a is
no longer negligible but is given moderately well by the theoretical
absorption coefficient (@01 + @class)e

Presumably a distinguishing characteristic of the conditions of
Parkin and Scholes, and of Regler, is that in their cases the propagation
path, being nearly vertical, is little affected by the ground (subsection
1.4) or by sound shadows (subsection l.5). Also in their cases the air
_may be relatively homogeneous so that scattering by turbulence, etc.,
(subsection 1.6) is of reduced importance. From such considerations one
would expect the results of Regier, and of Parkin and Scholes, to agree
with those of Delsasso and Leonard (subsection 2.2.4) taken at high
altitudes between mountain peaks. For under the latter conditions it
might also be expected that terrain losses and refraction effects would
be negligible., Examining the results we find the agreement apparently
not as good as would thus be indicated; in the Delsasso-Leonard experi-
ments the losses are appreciably greater than for a (1/R) law. Their
average loss coefficients @ are about 2.2, 1.6, 0.8, and 0.5 db/lOOO £t
respectively, for the frequencies 1000, 500, 250 and 125 cps.

The cause for this apparent discrepancy is unknown. However, it
should be realized that the results of Parkin and Scholes are based on
measurements at altitudes only up to 2000 ft and those of Regier are for
altitudes only up tc 5000 ft. Hence errors of 2 to 4 db in the sound
level data (not unreasonable for level meacurements on highly fluctuating
signals) could account for the difference between their quoted results
and those of Delsasso and Leonard. It will be realized, too, of cowrse,
that if in the practical problem to be solved one 1s concerned only with
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aireraft at altitudes less than 2000 ft, the discrepancies noted are
not of great significance,

On the basis of what has been said, a recommended procedure
is given below for predicting sound levels on the ground due to an air-
craft nearly overhead. It will be assumed that the pressure amplitude
at any point on a reference sphere surrounding the source is known as
a function of frequency. It will also be supposed that a given flight
path is under consideration. The procedure outlined below is suggested
for predicting the sound level at a ground observer point P due to
noise generated by the aircraft when at a point Q along its flight path.
(It will be realized that this sound level at P due to the source at Q
will not occur when the moving source is at Q, but some time later,
determined by the time for sound to travel from Q to P.)

For convenience in speaking of source specifications, suppose a
special set of rectangular coordinate axes, say (x', y', z'), is fixed
in the aircraft nolse source with origin at the source, ILet the reference
sphere be of radius Ry, centered at the origin; let P, be any point on
this sphere, its directions cosines with respect to (x', y', z') being
({, m, n), respectively. It will be assumed below that the source
specification for a given frequency band consists of data giving the
pressure amplitude py for that band at every point Py (f, m, n) on
the reference sphers.

Recommended Procedurse:

(1) Determine the distance R from the aircraft to
the observer for the assumed points P and Q.

(2) Determine the direction (f, m, n) of the line QF
from the aircraft to observer with respect to
the source axes (x', y', z').

(3) Refer to the source specifications for the re-
ference pressure po at the given frequency f and
at the reference point P, (f, m, n).

(4) Obtain the pressure amplitude p at the observer
point P directly from the equation

A
P/Po = (Ro/R) e -[a(R - Ro)] » (215)

"where p, is the pressure at Py ({, m, n). Alternatively, obtain the
loss in decibels of the sound level at P relative to that at P,. As
given in Eqs. (9), the latter consists partly of a (1/R) loss and

partly of an exponential I1ngs. The former may be determined by re-
ference to Fig. 39 or Ta't - 22 in subsection 3.2.1. The latter may

be computed simply from Eq. (204) if @ is known. Alternatively, if
a is known, the total loss may be obtained by use of Fig. 4O as
described in subsection 3.2.2.
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By any of the methods for carrying out Step 4 it is, of
course, necessary to know the constant @ . According to the results
of Parkin and Scholes one can obtain a fair estimate of @ by deter-
mining the theoretical absorption coefficient

Ctheo = Bclass ¥ Bmol (216)

for the given meteorological conditions, using methods described in
subsection 3.2.3. However, the Parkin and Scheles results are for
rather specialized conditions, since their absolute humidities are
always less than about 6 gms/m’, It is recommended that @ .. be
regarded generally as a lower limit to @, and that experimental re-
sults be consulted, when available for the conditions of interest,
for estimates which may be more nearly correct.

Thus for frequencies of 1000 cps and belew, one may estimate @
on the basis of the outdoor results of Delsasso and Leonard (Figs. 24 -
27 and Tables 16 ~ 19) if the meteorclogical conditions for which these
results are applicable seem to correspond reasonably closely to those
for the problem at hand. It will Le remembered that the observed @ of
Delsasso and Leonard tends to be in excess of @ypgo by & ratio which
increases with increasing absolute humidity.

At frequencies of 1000 cps and above one may refer to the
laboratory data of Delsasso and Leonard (Figs. 48 and 49; subsection
3.2.3) ; bthese are in fair agreement with results previously reported
by Knudsen. It will be remembered that here alsc the observed @ ex-
ceeds @iheo by & ratio which increases with absolute humidity.

3.3.2 Propagation along the Ground

3.3.2,1 Introduction

Another important problem is that of propsgation along the
earth from a source near the ground to a recelver near the ground.
Unfortunately, the situstion here can be very complicated due to re-
fraction phenomena combined with effects due tr interaction with terrain.
Since satisfaclory information about the general problem does not -exist
it is helpful to consider special cases, in each of which given factors
play predominant roles. In subsections 3.3.2.2 to 3.3.2.4 special
situations are taken up, which correspond to certain specified actual
conditions; in each case are described recommended methods for handling
the problem, based on such information as is available.

3e342.2 Hard ground surfacei gquiet cloudy da

If the ground is paved, or is water-soaked earth, one may assume
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that the acoustic impedance is infinite (see subsection l.4); terrain
losses are then negligible, although image effects may enter.. If, in
addition, the atmosphere is relatively free of wind and temperature
gradients and if tie source and receiver heights 2z, and z are small
compared with their horizontal separation r, then the governing equation
for the pressure amplitude is simply, from Eq. (2),

' p=(l/r) e %% A | (217)

The quantity @ in this equation is presumably given by the loss co-
efficient in homogeneous air (subsection 1.2). The recommended method
for calculating losses under the conditions noted is thus as follows:

(1) Determine the loss coefficient for homogeneous
air under the given conditions of temperature
. and hunidity by methods described in subsection
3.2.3;

(2) Calculate the total loss (1/R loss plus exponen~
tial loss) by methods described in subsection
3.2.2,

If r is not large compared to z and %q,the pattern is complicated
by maxima and minima due to interference between direct and reflected
sound. If @ is assumed negligible, the general result for the complex
pressure amplitude for any zo, z and r is given by Eq. (58).

- Unfortunately, there are few or no available experimental data
bearing on the special case treated here.

5¢3.2.3 Barth covered with vertical-stemmed yegetation; quiet cloudy day

We suppose here that the medium which forms the lower boundary
to the air is itself porous and such that ajr moves through it easily
in the vertical direction, but with difficulty in the horizontal direc~
tion. Then one may assume the normal impedance condition holds (sub-

. section i.4, Case 2). For source-receiver distances large enough so
that sinfyeec § << (1/siny ) and kiR »>1 (see subsection 1.4), the
decibel loss at any point relative to that at a reference point ko will

* be given by the 1/R loss plus the quantity

Terrain logs = - 20 logyy G ® 20 logyg (v/r)) (218a)

where

G = 1‘1/1‘ , (218b)

and

Ty Fg—




2= 402 (o n) ¢ (WEZI0 M (218¢)

(The above result comes from Egs. (197) and (198)) Hence to calcu-
late the terrain loss for conditions under which Egs. (218) are valid
one may determine rj fr-m Eq. (218¢), then calculate the loss for any
glven r from Bq. (218:.). (One may use Fig. 39 or Table 22 for decibel
ratios.) The total loss at a distanu point relative to the level at
a nearer point would include the terrain loss, the (1/R) loss, and
other kinds of losses which may be important.

Example:

Calculate the loss in level at a point 1000 ft from a source,
relative to that at a 10 ft distance, taking into account the
(1/R) loss as well as terrain loss. let § =1, z = zo = 10 ft
and A = 2,5 ft.

(1) The (1/R) loss is 20 logyy (1000/10) = 40 db
(see Fig. 39 or Table 22).

(2) The terrain loss at 1000 ft relative to the
lovel at 10 ft (assuming negligible terrain
loss at this latter close distance) is
20 logyp (1000/r1) where rl, as given by
BEq. 218c), is 502 ft. From Fig. 39 or Table 22
the terrain loss is therefore 6.0 db.,

{3) The total loss at 1000 ft is the sum of the
separate losses computed above, or
Total loss = 40 db+ 6.0 db = 46.0 db.

As stated previously, Egs. (218) give the terrain loss accurately
only at wufficiently large distances r from the source. For points near
a glven source the terrain loss is negliglible and the sound level will
follow the law.

Sound level in db = 20 logyy (A/r) , (21%a)

where A is a constant proportional to the source strength; it is assumed
in BEq. (219a) that atmoapheric absorption is negligible., When Eq. (219a)
holds the loss increases by just 6 db per distance-doubling (see subsection
3.2.1). For the same source to which Eq. (219a) applies the sound level
at large distances will be given by

Sound level in db = 20 logyg (Ary/r?) (219b)
The total loss in this caso amounts to 12 db per distance-doubling; one

might say that one-half of this, i.e., 6 db/doubling, is due to 1/R
loss while the other half is terrain loss.
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At r = r- one cbtains the same sound level from both Egs.
(219). (This might be regarc d as =1 accidental happening; neither
of the approx‘mat formulae given by Egs. (219) is a-curately valid
at r = ry.) & graph of these equations may easily be obtained by
plotting sound level vs r on semi-log paper, rs in Fig. 50. Here
Eqs. (21%) are p. ‘tted for the 1se § =1, 2 = zo = 10 ft, N = 2.5 ft
(frequency = 450 .ps) considered in the above example. The straight
line (a) has a 3lope of é db/distance-doubling and thus represents
Eq. (219a). The straight line (b) r-presents Eq. "19b); it therefore
has a slope ¢ 12 db/doubling, and Jo'ns line (a) al r = ry, i.e., at
r = 502 ft.

For comparison with the apprc ximations represented by lines
(a) and (b), Fig. 50 also-shows the results of more accurate aspplica-
tion of the theory for terrain losses (subsection l.4); the curves (c)
«nd (d) are from a report by Franken89., The solid curve (c) glves
+the results for a pure tone of 450 cps; maxima occur at about 50 and
150 ft, and a sharp minimum at 70 ft; these maxima and the minimum
are due to interference between direct and reflected sound. The
dashed curve (d) is for the same condition except that the source now
generates an octave band of noise (300 - 600 ¢ps rather than a pure
tone, For r > 100 ft there is little difference between curves (c)
ar.d (d); however, for r €100 ft the difference i: marked in that
the maximum at 50 ft, and the minimm at 80 ft are much reduced for
the case of the noise band.

1t is to be seen that ‘ine (a), representing iq, (219a), fits
the accurate theory for a band of noise fairly well for r « 100 ft,
and that line (b), representing Eq. (2i9b), represents the facts with
good accuracy for r o 502 ft. Liu the vicinity of 15C - 300 ft the
accurate theory predicts sound levels up to 6 db greater than is given
by Eq. (219a), 1.€., by line (a). The reason for this deviation is
that Eq. (219a) takes no account of reflected sound and hence, of
course, does not predict the maximum at 150 ft, which is due to con-
structive interference between reflected and direct sound. This maxi-
mun is, in general, to be expected at r = rp ® hsz,/N .

Comparisons of Eqs. (219) with more exact theory for other
values of and at other frequencies yield about the same results as
are ssen in Fig. 50, Hence a simplified scheme suggests itself, which
1s gufficiently accurate for many purposes. A recommended procedure
for calculating the terrain loss in a given octave band due to a nolse
source when source and receiver are fairly vear the ground is as follows:

(1) For r 2 ry use Eq. (219b);

(2a) For r & r) use Eq. (219a) if rough cetimates
are sufficient, specifically, if errors up to
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6 db in the vicinity of r = (4z2y/\ ) may be
ignored;
(2b) For more accuracy in the region r & rj use the
general theory for pure tones in subsection l.4,
bearing in mind that minima and maxima will be
smoothed out in the actual case of a band of
nolse;
g (2¢) For highest accuracy follow the method of Franken89
in obtaining results for the case of a noise-band
source.

Unfortunatsly, available experimental data are not sufficiently
extensive to indicate just how closely the above procedure describes
the losses which occur out-of-doors over a real earth., However, the
theory should, at least, prove very useful in order-of- magnitude estimates.

When Eqs. (218) or (219b) are valid, the terrain loss at any
given distance r is determined entirely by the parameter rj. From Eq,.
(218c) wo see that ry is minimum with respect to A , and hence also
with respect to frequency, when A is equal to A, where

Ay =2% fa5/8 (220)
and that the winimum value of ry is
ry, = 280z ¢ zp) (221)

The grestest terrain loss for any r, 2, 2o and { is thus for Ae A
and is given by 20 logyg (r/ryy); the loss decreases monotonically

(1) as X\ increases for A ™ A, and (2) as N decreases for A€ A,
The maximum in loss ys frequency is a rather broad one as may be seen
by considering the expression for rq obtained by letting z = 25 and

A = nd, in Eq. (218c):

o= ey (10 /)@ - a7 22]E (222)

where rip = 428 . When n = 1, Eq. (222) yields ry = ry;; for frequen-
cies an octave above or below the frequency fy corresponding to Ay, (i.e.,
n=2o0ns= ﬁ) one obtains ry = 1.25 vy, for two octaves above or be-
low fy (n = 3 or 1/3) the result is 1.67 rips 8nd at three octaves it

is 2.13 rype Hence for any given z, z,, r and { for which Eq. (222)
applies the terrain loss at frequencles one, two and thres octaves, re-
spectively, from fp will be less by only 1.9, 4.4 and 6.5 db from that

at £,.

Unfortunately for application of these equations, it is not




known what values of § are appropriate for typical kinds of ground.
One might hope that some information might be obtained by fitting
Egs. (218) to given field data; thus if A, were known for given

z and 7y one could determine § from Eq. (220). For example, Eyring's
data (subsection 2.2.3, Table 15) were fitted reasonably well by
assuming Ay = 2 ft, corresponding to a frequency of about 560 cps.

On this basis, letting z = zo = 5 ft, § turned out to be 5% = 15.7.
As another example, the data on terrain loss ys frequency given by
Ingard’? in Fig. 3i appear to be fitted best by assuming § = 4 = 12.6.
On this basis, from Eq. (220), Ny = 5 ft so that the maximum terrain
loss at r = 1000 ft is about 6 db.

3.3+244 Sandy terrain; quiet cloudy day

We now consider the case where the lower medium is porous
and such that air motions in the peores take place with equal ease or
difficulty in all directions. By proceeding from the theory in sub-
saction l.4 it is possible to show that when KR} >> 1 and
siny €€ (Z5/Z13) €< (1/siny), where

a=[1= (g/ip)? costp ]2 2 [1 = (ky/ip)? ] r (223)

one obtains approximate formulas identical with Egs. (218) except that
C i3 replaced by (Zg/zla). Hence the recommended procedure is the sams
as in the previous subsection (3.3.2.3) wich che exception that L is
to be replaced everywhere by{2>/Za).

If the soil is similar to sand and the frequency not too great
one may estimate the ra‘tg’;o (2‘.2/2.’13) by a theory such as that recently
advanced by R. W. Morse“. The latter theory adapts basic equations
presented previously for acoustical porous materials, to the case <f
granulay media. By a reascnable choice of certain psrameters a su. -
prisingly good fit to data on actual porous soil is obtained. Using
results of thia theory and making the assumption that the imaginary
part of the propagation constant in soil is much less than the real
part, one obtains

Z ~1
;,:._?i- x P (cy/en) (224)

where P is the porosity of the soil {volume of air in the soil per
unit volume of soil), ¢, is the velocity of sound in soil and ¢; the
velocity of scund in air. Typical values for P and (cj/ep) = (ka/ky)
are 0.6 and 1.4 respectively. Using these values one obtains

(Zz/Zl&) & 3.3.
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3¢3.3 Propagation through Fog

On a quiet foggy day (so that wind and temperature gradients
are very small) and under conditions (i.e.., sound either traveling
nearly vertically to ground from an overhead source, or traveling
horizontally along an Macoustically hard" boundary) such that terrain
losses are negligible, one may expect the pressure amplitude due to

’ a given source to decrsase with distance according to Eq. (2), where

. @= 8pop + Boc v Boy (225)

In the above equation @p,y, is the loss coefficient a which would
be obtained for homogeneous air, i.e., in the absence of fog (see
subsection 1l.2); @ g and @p-y are, respectively, the coefficients
due to fog given by Epstein and Carhart (subsection 1.3.2) and by
Oswatitsch and Wei (subsection 1.3.3). Graphs for computing @pqn
have already been discussed in detail in subsection 3.2.3; graphs
and tables are given in subsection 1.3 for calculating @ o.c and
@o-w for a uniform fog of specified density and droplet size. Here
we merely glve estimates, by application of the respective theories,
of losses to be expacted for typical fogs.

According to results given by Houghton% the water content
of fogs under his conditions of observation is sometimes as great
as 0.3 go/md but is more usually around 0.1 gn/m3. (A glance at the
conversion chart, ¥Fig. 51, ‘Apperdix II, makes it clear that the watev
content in droplet form is thus much less than the mass of water in
molecular or vapor form for typical tamperatures and humidities.)
Observed droplet diamsters vary from over 1072 cm down to the order
of micronaj; “averages® for different fogs vary from 9 to 75 microns.

Table 23 below gives values of &, , and @,_, computed at
frequencies { of 0.1, 1.0 and 10 ke, respectively, for uniform fogs
of assumad droplet radii € of §, 10 and 25 microns, respectively;

* in each case the water comtent is assumed to be Q.1 gn/m’.

For the frequencies considered i.n Table 23,it is seen that
for a given water content, e.g., in g;n/m » both a,_. and a,_, in-
crease as the droplet size decreases., We also note that for the
given conditions @,_c increases with froquency while a,.,, decreases
with increasing frequency. The latter is evidently important only
at the lower frequencies.

It may be mentioned that @ ,_ . i3 an additive guantity. For
example, the coefficient 4 g_p dus to a fog consisting of two droplet-
groups A and B is just the sum of the coefficients for groups A and B,
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TABIE 23

Computed Loss Coefficients for Fogs

§ £ Qe-c @o-w
(microns) cps (db/1000 ft)
5 100 0.2 0.2
1,000 1.2 2.7 x 1072
10,000 1.7 3.0 x 1074
10 100 .17 2.5 x 1072
1,000 0.35 b7 x 10'2
10,000 0.49 L7 x 107
25 100 0.06 1.9 x 10‘2
1,000 0.07 1.9 x 107
10,000 0.11 1.9 x 10

separately. Use can be made of this principle in determining agq_c
for a realistic fog in which there is a distribution of particle sizes,
In this case the distribution may be divided into groups such that in
Group 1 there are ny pe~ticles per unit volume of approximately uni-
form radius § , in Group 2 there are ny of radius £, etc. The value
of @e-¢ can be determined for each group separately, then added to
give @ g-c for the combination.

On the other hand, @o-yw is not an additive quantity. This is
exemplified by the fact that for a uniform fog a,., is not, in general,
directly proportional to the number ny of droplets per unit volume. In
fact, under some circumstances @, decreases when n, increases. For
the case of a fog in which there is a distribution of droplet sizes the
Oswatitsch-Wel theory is not applicable in its present form; development
is needed to adapt the theory to this general problem.
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SECTION IV
RECOMMENDATIONS FOR FUTURE RESEARCH
Lol INTRODUCTION

It is evident from Sections I and II that considerable gaps
exist in our knowledge of how sound propagates in the lower atmos-
phere. Although, as was shown in Section III, some practical situa-
tions can be treated fairly adequately, there are others where ana-
lytical description of the sound field is subject to much uncertainty,
and still others where such description can hardly be given at all,
Obviously much research remains tc be done before satisfactory solu-
tions can be given of the overall problem to which this report is
devoted, Specifically, this problem is:

Given the characteristics of a cound source, radiating into
the atmosphere, to predict the pressure amplitude at any point in the
surrounding region.

Development of a practical system of procedures for making
such predictions with accuracy requirees a broad program of ressarch.
In planning a program for this purpose,an important consideration is
that useful results are needed as soon as possible; at the same time
it must be realized that some of the guestions to be answered are
rather basic ones which require long range approach. To meet needs
of the.present as well as those of the future, and to do this in a
sound and economical manner, it is necessary that research be carried
on at several different levels. Thus a balanced research program
would include the following:

(1) Theoretical investigations both on basic mechanisms
and on applications of these to practical situations.

(2) laboratory experiments to check existing theories
and to guide new theoretical approaches,

(3) Experimental work under actual field conditions, or
wnder conditions which simulate those which obtain
in practice.

In the following subsections various possibilities for research
are suggested and described; particular attention is given to certain
special topics which the available literature, reviewed in Sections I
and II, shows to be inadequately understood.
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L2 THEQORY AND LABORATORY .EXPERIMENTS

L.2.1 Losses in moist air

As pointed out in subsection 1.2 there is need for improved
theory to account for attenuation of sound in air, especially at
high humidities and at low frequencies. Development of such theory
would, no doubt, call for laboratory experiments specially designed
to check various features of the theory. In addition, it has been
seen in subsection l.2.4 and 3,2,3 that laboratory measurements are
also needed to accomplish the following specific objectives:

(1) Extend the range of measurements to higher
absolute humidities,

(2) Determine, if possible, the cause of uncer-
tainties in present dats, in particular,
unresolved questions as to the correct values
of hy for different frequencies and as to the
shape of @ vs h curves (ses Figs. 4, 5 and 6).

(3) Obtain data at other temperatures than those
(35.6%, 71.6° and 95°F) used by Delsasso and
Leonard, especlally at temperatures between
36° and 72°F. Such additional data would, of
course, improve greatly the accuracy with which
values of @ to be applied at given temperature
and humidity conditions can be cbtained by
interpolation from laboratory data.

L.2.2 losses in Fog

Closely related to the problem of moist air, where the water
content is considered to be in the form of a gas of Hp0 molecules,
is that of a fog or cloud, where scme of the water exists as droplets
(i.e., large aggregations of molecules which are held in suspension).
Though theories now available (subsection 1.3) may be inherently
capable of treating sound propagation in a real fog, the application
to actual out-of-door situations is not possible at present for various
reasons:

(1) Adequate information is not available on densities
and drop-size distributions for fogs occurring in
different parts of the United States. Furthermore,
it is perhaps not possible to carry out a program
of fog measurements, satisfactory for acoustical
purposes, with methods now in use. Both the
Epstein-Carhart and Uswatitsch-Wei theories suggest
the possible acoustical importance of droplets with
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radii of the order of microns or smaller. Develop-
ment of experimental techniques is necessary before
such small dr~vlets can be accurately counted,

(2) The Oswatitsch-Wei theory needs to be generalized
in order to make it applicable to real fogs, where
droplets are not uniform in size.

(3) There are questions, only briefly discussed in sub-
section 1.3, regarding the values of the effective.
heat conductivity coefficient and diffusion coeffi-
cient to be used when the Oswatitsch-Wei theory is
applied to small droplets with radiil of the order of
microns and smaller, These matters, discussed in
Reference 13, should be given further consideration.

L.2.3 Ground Attenuation

By laboratory experiments the theoretical results of subsection
1.4 have been shown to be adequate for the description of sound propaga-
tion over a uniform ground; the theories should now be extended to the
following cases:

(1) Propagation over non-uniform ground, i.e., where
the surface is made up of patches of material
(soil, grass, etc.) having different acoustical
properties,

(2) Propagation over a non-planar ground, i.e., where
the surface is uneven.

In view of recent papers concerning electromagnetic propagation
over the above types of ground, these theoretical advances can probably
be made without great difficulty. The results of these investigations,
and the validity of any approximations which may be necessary, can best
be tested by laboratory experiments using frequencies in the kilocycle
range and, mainly, commercially available acoustical materials.

There is also much need for a systematic study to determine
the acoustic quantities § , Z» and cp applicable to various typical
kinds of ground and ground-covering.

Le2.4 Shadow Zone Problems

Since micrometeorological data indicate that the sound velocity
depends on the logarithm of the height above the ground for both the
temperature and wind velocity gradients, an analysis of sound attenuation
in tho shadow zone formed by this type of gradient should be undertaken.
Since the wind-gradient problem is of a different character from the
temperature-gradient problem, these will probably need to be carried out
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separately, although it seems likely that the results of the simpler
temperature-gradient problem will give a considerable amount of in-
formation useful for the more complicated wind-gradient problem.
These analyses will probably involve a fairly long range program,
since information is necessary concerning low-frequency attenuation
where the usual approximation method (high—frequency approximation)
is probably no longer valid. However, in view of the generality of
the (almost) logarithmic temperature and wind-dependence upon height,
the results would seem to be of considerable importance in out-of-

doors sound propagation problems.

Theoretical investigations should be made of the sound field
in the normal zone, i.e., between the source and the shadow boundary,
as well as the sound field under conditions of 'channelling" (field
due to a positive temperature gradient or field in the downwind direc-
tion from a source in a wind).

It does not seem likely that the results obtainable from the
above theories can be tested in the laboratory; but small-scale out-of-
doors experiments where good micrometeorological information could be
obtained would probably provide an adequate check on this theory.

(See subsection 4e3.3.)

Le2.5 Scattering by Inhomogeneities

In view of the comparatively elementary state of present-day
theories, as well as the lack of experimental data, it would seem ad-
visable to plan a long range program of basic theoretical and experi-
mental research into the problem of the scattering of sound by tempera-
ture and wind inhomogeneities. Some problems to be investigated are:
the validity of the theories of Lighthill and Kraichnan, and their
extension to more realistic types of inhomogeneities, e.g., where the
parameters describing the inhomogenelities depend upon height above the
ground; the (often unstated) approximations involved in Blokhintzev's
theory of sound scattering in the atmosphere; the applicability to the
alr acoustics case of Mintzer's results on underwater sound fluctua-
tionas due to temperature inhomogeneities; the increase in sound level
in the shadow zone due to scattering of sound from the norma. .one.

Many of the above theoretical developments can be tested, as
well as partially directed, by the results of laboratory experiments.

Since a large amount of experimental, as well as theoretical, results
have been obtained on turbulence in wind tunnels, it would seem admir-

able to attempt acoustic measurements on turbulence produced in a wind
tunnel. There tha turbulence parameters are, to a large extent, at the
control of the investigator; specific factors and approximations in the
theories ol scattering by turbulence could then be tested.
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It would also seem feasible to do experimental work on
turbulence scattering by means of small-scale outdoor experiments;

(see subsection 4.3.3).

L.2,6 Propagation of high amplitude sound

The overall propagation problem may involve M"finite amplitude
phenomena when powerful sources are used. In this case the approxima-
tions of linear acoustics (upon which nearly all of the analysis in
Section I of this report depends) are not valid near the source, but
only at distances from it greater than some limiting distance, say,
R¥, Of course, the choice of R* is somewhat arbitrary and would, in
general, vary with direction. For a very powerful source the distance
R#* may be so great that the sound field at this distance is affected
by refraction in the medium, and by terrain effects. The pressure
amplitude at a distance R* is then a fluctuating quantity, and its
mean value 'depends on micromesteorological conditions as well as on the
nature of the ground.

Measurements made to specify an aircraft source must be re-
producible; i.e., the results must depend only on design and opsration
parameters of the aircraft and not on the micrometeorological state of
the atmosphere, or on the terrain. Hence, source-specification measure-
ments should preferably be made near to the source, say, at distances
from it less than some limiting distance R#** which depends on the micro-
meteorological and terrain conditions. When a very powerful source is
used, or when refraction or terrain effects are especially great, the
distance R#** may be less than R*, Hence the problem of predicting the
field surrounding a source, on the basis of given reproducible source
measurements, requires consideration of the region between R¥# and Ri,

A very difficult problem is posed in treating this region; here
one must deal with high amplitude sound propagation through a refracting
msdium, subject to terrain influcnces. At the present time, results on
high amplitude propagation are available only for rather elementary
situations. The general problem can probably be approached only through
a long range program of fundamental research. Phenomena characteristic
of high amplitude sound fields which should receive attention include
(1) wave distortion, generation of harmonics and shock wave formation,
(2) reflection and refraction at oscillating boundaries, and (3) radia-
tion pressure and acoustic streaming.
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L3 EXPERIMENTS OUT-OF-DOORS

Le3.1 Introduction

As was shown in the review of literature in Section II, the
results of theory or laboratory experiments for idealized cases can-
not be assumed to apply out-of-doors except where checked by actual
experiment. According to the findings in Section II the only cases
where results obtained out-of-doors are quantitatively in agreement
with theory are those (subsections 2.3.1 and 2.3.2) dealing with sound
propagation nearly vertically from aircraft to ground. To arrive at
valid prediction methods it is therefore necessary to carry out ex-
tensive experimentation under actual outdoor conditions.

In spite of the inadequacy of theoretical results in their
present form, these nevertheless serve a very useful purpose as guides
in setting up experiments and interpreting the findings. Let us assume
our goal is to obtain prediction methods whereby the pressure amplitude
due to a specified aircraft source is given at any point in terms of a
number of measureable parameters. (When, as is usually true, the pres-
sure amplitude is a fluctuating quantity we should want our prediction
scheme to glve some index of the fluctuation magnitude as well as a
suitable average of the pressure amplitude.) The findings for ideal-
ized cases, discussed in Section I, suggest that the following sets of
parameters are of particular importance.

(1) Geometrical parameters: principally those giving the
source and receiver positions and the source orientation,

(2) Parameters giving the average state of the air; prinei-
pally the mean tewperature and absolute humidity.

(3) Parameters determining acoustic properties of the ground;
for exampls, the acoustic impedance or normal acoustic
impsdance of the ground. To some extent the acoustic
quantities can be expressed in terms of other physical
parameters such as porosity and flew resistance, in the
case of porous soilsg, or such as density and elastic
constants for fluid or solid soils.

(4) Parameters which describe the variation of sound velocity
with height due to wind and temperature gradients. Accord-
ing to present-day micrometeorological formulae {subsections
1.5.2 and 1,5.3) the temperature-height profile can be ex-
pressed in terms of two parameters, which may be determined
empirically frcm a few temperature measurements at different
heights. These two parameters depend, among other things,
on the solar radiation and on the heat capacity, conductivity
and reflectivity of the ground. According to other micro-~
meteorclogical formulae wind-height profiles also depend
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mainly on two parameters, the roughness length f
for the given terrain, and the wind speed at some
reference height. The acoustical effect of wind
depends also, of course, on the angle between the
wind direction and the source-receiver direction.

(5) Parameters describing "random" inhomogeneities in
the atmosphere; correlation coefficients of various
kinds are useful for this purpose (see subsection l.6).

(6) Parameters describing fogs or smokes, if they exist;
principally the particle-size distributions.

(7) Parameters describing irregularity of the terrain if
such exists; such irregularity may be due to a hilly
countryside, to a non-uniform vegetative covering,
or to obstacles such as trees or buildings,

If one is to obtain a prediction formula from outdoor experi-
ments alone, it would appear to be necessary to perform a large number
of experiments under a great variety of conditions. In each experi-
ment all of the parameters listed above should be determined, as well
as the acoustical results. The experiments should be done for a wide
variety of conditions, such that each parameter varies over its entire
range of intersst.

Suppose it were desired to have at lsast one acoustical meas-
urement for each set of significantly different paramster values
likely to be encountered in practice., It is not hard to show that
the undertaking would be a prohibitively long and expensive one. Sup-
pose, for example, that only four parameters A, B, C, D were felt to
be important and that each were assumed to have only five significantly
different ranges of values. (If, for example, parameter A were to stand
for average temperature, the assumption might be that the temperature
for any given experiments is specified well cnough by stating into
which of the following five ranges it falls: 09 - 209; 20° - 400
409 ~ 60°9; 60° - 80°%; 80° - 100°F.) The total number N of combinations
is then {5)* or 625. If the number of parameters is doubled N becomes
(5)8 or about 400,000; if also the number of different ranges of values
for each parameter is doubled N becomes 1081

A comprehensive approach on a purely empirical basis would seem
to be impractical. Several schemes present themselves as alternative
approaches to the problem; these will be discussed in succeeding sub-
sections.

Le3.2 large-scale Qut-of-door Experiments

One important method of obtaining results for use in prediction
is to make measurements under actual field conditions over a long period
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of time. Here one would use an airplane sound source and make
continuous recordings of the instantaneous pressure amplitude at
various points in the region surrounding the source. Observations
would be made with the aircraft on the ground, as well as in the
air following typical flight patterns; data would be taken at all
times of day, under a representative sampling of weather conditions,
at all seasons of the year, and over a period of years. A basic
assumption on which the usefulness of this method depends is that
the frequency of occurrence of various sets of conditions is the
gsame for the selected site and period of measurements as it is,
averaged over a long time period, for other sites of interest. If
this is true, the time-averaged acoustical results of the experiment
may be applied to the new situation which is felt to be comparable
to the one studied,

"
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It is evident that if the time-averages obtained from such
an experiment are to be applicable to the wide variety of circumstances
encountered in practice, the program of measurements must be much more
extensive than any carried out heretofore. For example, Hayhurst's
data are only for approximately horizontal propagation over a parti-
cular kind of terrain, are only for one source height and are (mainly)
for one receiver height. The results of Parkin and Scholes are also
for very restricted conditions, being only for nearly vertical pro-
pagation from aireraft to ground and for fairly low absolute humidities.

An experiment which is to yield results suitable for general
ugse must include a comprehensive set of measuremsnts where the sound
travels obliquely to ground from an aircraft in flight, the source-
receiver line QP thus making arbitrary angles with the verticail. Alsc
a wider range of temperatures and humidity conditions should he in-
vestigated than are cosered by the Parkin and Scholes data. In aduitvion,
different source and receiver heights should be used, various terrains
should be investigated,etc, (See the list, given earlier in the sub-
section, of parameters which theory indicates to be important in pro-
pagation problems.)

large scale experiments of the kind just described are very
likely the best means of obtaining order-of-magnitude results for
immediate and direct application to practical field problems. However,
if the measurements are to be extensive enough to give reliable averages
under a sufficient variety of conditions it is to be expected that the
undertaking will be a large and costly one.

Though the emphasis in such an experiment is on long-timse
averages, the usefulness of the resulis would be increased if as many
as possible of the important meteorological, micrometeorological and
terrain parameters are measured at frequent intervals, and attempts
made to correlate these with acoustical results, It is not to be
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expected, howeve~. that the effects of various factors could be
completely separated from each other since, as indicated above,

a very extensive set of measurements would be needed for this
purpose. This is particularly true since, in a large scale ex-
periment, the ricrometeorological and terrain factors will often
not be uniform throughout the region of interest. Also, some of
the micrometeorological factors may vary rapidly with time; at-
tempts to detect and measure in detail these short-time varistions
in large scale experiments would require prohibitively elaborate
instrumentation.

4e3.3 Small-scale Qut-of-Door Experiments

More detailed information for use in the prediction problem
may be gained from out-of-door experiments designed especially to
isolate and measure the effects of the various separate factors.

Such experiments would probably best be -done on a comparatively small
scale, where source-receiver distances range up to, say, the order of
1000 ft. It is not difficult to find areas where the terrain is fairly
uniform over distances of this magnitude. Also, when the region of
interest is thus limited, it is feasible to set up appropriate instru-
mentation for giving detailed description of the micr wteorological
factors.

Results obtained from small-gscale investigations cannot usually
be directly used in predicting levels at the greater source-receiver
distanges typically of interest in field problems. Nevertheless these
investigations can serve a very useful purpose in determining the relas-~
tive importance of various factors, in checking the adequacy of theories
and in providing suggestive facts on which theories may be based. Speci-
fic questions which might usefully be answered by such experiments are:;,

(1) What is the minimum loss to be expected over ground?
Is it ever true that the field in the region a few
feet above the ground is given by Eq. (2), where a
is glven by the theoretical absorption coefficient
(Eqs. (11)) (as found by Parkin and Scholes for the
case of propagation from aircraft vertically to
ground)? Alternatively, is it more nearly true that
the minimum loss coesfficient is given by the laboratory
value for homogeneous air (subsection 1.2 or Figs. 48
and 49, subsection 3.2.3)? Experiments to answer these
duestions should be done under conditions where shadow
effects (subsection 1.5) and terrain effects (subsection
l.4 are absent. They might be carried out over hard or
water-goaked ground on a quiet cloudy day or night, or
at great sowrce-receiver helghts.
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(2) Are losses caused by fog or smoke important? Experi-
ments to test this factor should be done under quiet

conditions in the absence of terrain and shadow effects.
If possible, comparison should be made between losses with
the fog or smoke present and losses when the air is free
of suspended matter, the temperature and absolute humidity
(i.e., water vapor content) being the same in the two
cases, So that theoretical predictions can be made to
compare with experimental results, the density and parti-
cle-size distributions of suspensions should be measured
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oy | (3) To what extent is the idealized theory for the field of
e a point source above a plane i~undary applicable to

actual situations out-of—doors? TVo test this theory
accurately experiments should be carried out over uni-
form terrain under quiet «onditions, in the absence of
shadow or other refrasction effects. Independent measure-
ments should be made to determine the acoustical impedance
or normil acoustical impedance of the terrain,

(4a) How accurately can the contour of an acoustic shadow
boundary be predicted from micremeteorological data? To
angswer this question ray plots might be made on the basis
of measured wind velocities and temperatures at various
heights; calculations would best be compared with measure-
ments made on relatively high frequency sound, say, 10 ke
or higher, where shadow boundaries would be relatively
sharply defined.

(4b) How accurately can the contour of an acoustic shadow
boundary be predicted from micrometeorological empirical
formulae? Here predictions based on Fig. (16) might be
compared with experimental results obtained by using high
frequcacy sound; the quantity B would have to be deter-
wined on the basis of a few temperature and wind measure-
ments, as described in subsection 1l.5.

(5a) How important are logses due to scattering by turbulence?
Experiments to shed light on this question should be
carried out in the absence of terrain or shadow effects;
perhaps some of the experimental work should be done with
both source and receiver rather high above the ground.
(Possibly existing towers could be used for this purpose.)
Tests should be made with both directional and non-
directional sources. In the case of a highly directional
source, comparison may be made with theory (see subsection
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1.6). Losses due to scattering by turbulence should
increase with wind speed. Detailed micrometeorologi-
cal measursments, including determination of turbulence
parameters, should accompany acoustic measuremenis.

(5b) How important are gains in sound level caused by
scattering? If acoustic energy is conserved in the
scattering process energy scattered from strong parts
of a sound field should appear in the weak parts; in
the case of a directional source, when losses appear
along directions corresponding to maxima in a lobe
pattern gains should appear along directions correspond-
ing to minima. The extent to which this is true (and,
more specifically, the extent to which acoustic energy
is conserved) could be checked experimentally.

(6) To what extent can the sound field in a shadow zone be
accounted for on the basis of diffraction theory (sub-
section 1.5) plus theory for scattering by turbulence
(subsection 1.6)? Detailed acoustical and micrometeoro-
logical measuremsnts would need to be mads here.

L.3.4 Model Experiments

Still another way in which it may be possible to gain inforwa-
tion about complex out-of-door situations is by means of models. By
the latter is meant an arrangement whereby measurements are made on a
very small scale, and the results applied directly tc large scale situa-
tions by use of a simple scaling factor. For example, in aerodynamics
and hydrodynamics much design information is obtained about airplanes
and ships by tests in which small models are used.

There are also certain situations in acoustics where models
may be used, with simple scaling factors. Thus suppose that in a
given situation the sound pressure p varies sinusoidally in time with
angular {requency e , and that p is everywhere a solution of the
usual acoustic wave equation. The time-indepsndent form of the latter
may be written as

62p+32p+321)+k2 = 0 226
02 av 3z ' (226)

where
k= w/c=2%/N , (227)

the constants ¢ and N\ being, as usual, the sound phase velocity and
wavelength. If we define new variables xj, ¥, z, such that
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Xp = kx
Z2y = kz
we find that Eq. 226) reduces to
2 2 2
§.—.R_+.—a—£+_§_2+p=0 H (229)

in these new variables the wave equation is independent. of frequency.

The pressure p for the given situation is a solution of Eq. (229),

and also satisfies certain boundary conditions. The latter may con-

sist of a statement that the normal derivative of p is zero on certain
rigid surfaces (such as the earth surface, walls of buildings, artificial
walls, etc.) and that p goes to zero at infinity. For any given fre-
quency, say, that for which k = k, the equation of the rigid surfaces

may be expressed in terms of x; = (kgx), etc., in the form

¢ [(ox), (7)) (z)] = ¢ (230)

For any other frequency, say, that for which k = k, the solution
p(xy, ¥1» 21) of Eq. (229) which for k = kg satistied boundary condi-
tions on the surfaces described by Eq. (230) will now satisfy boundary
conditions on the new surface

¢ [(ox), () (z) ] =C . (231) -

The new surfaces, described by Eq. (231) are identical in shape with
those described by Eq. (232) but are expanded according to the scaling
factor (kg/kp) = ( Ap/ Xg)s

The application of this result is that the sound fisld to be
expected on a large scale at low frequencies can (under appropriate
circumstances) be determined by experiments on a small model at high
frequencies., Specifically, suppose it is desired to know the sound
field to be expected around a set of bulldings and enclosures due to
a source or set of sources at 200 cps. If the walls and ground sur-
face may bs assumed rigid, and if refraction effects can be assumed
negligible, the desired information can be obtained by investigation
of a model, This model might, for example, be scaled 1:100 so that
all dimensions are reduced by this factor. The frequency of the source
or sgurces (assumed very small), placed on the model in appropriate
positions should then be 20,000 cps; i.e., the wavelength must be re-
duced by the same factor as other dimensions. The pressure amplitude
(and phase, if desired) might then be determined by means of a smsll
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probe microphone.

If the walls or ground are not rigid the boundary condition
will, in general, be dependent on frequency in a manner that may be
unknown and the above procedure will not be valid. Neither will the
method usually be valid if losses in the medium are important, for
then Eq. (226) no longer holds in its original form; the constant ¢
must then be regarded as complex and dependent on frequency in a

" manner that is known only to a limited extent. It is true, however,

that in special cases it may be possible to take account of attenua-
tion of the medium by, e.g., adjusting the humidity, so that the
absorption per wavelength at the high frequency used in the scaled
model will be the same as for the actual low frequency being repre-
sented.

In the case of a refracting medium, as al.ays exists out-of-
doors, the situation can be represented to some extent by Eq. (226)
if the sound velocity ¢ is regarded as a function of space and time.
At any given frequency c may, of course, be expressed in terms of the
non-dimensicnal quantities (xy, ¥y, 21)s

The application of this result is that the field in a large
scale situation in an inhomcgeneous atmosphere at low frequencies
can be determined by study of a small model at high frequencies,
provided that the space scale of inhomogeneities in the medium is
reduced by the same ratio as other geometrical quantities. If, as
in the previous example it is desired to represent an out-of-doors
situation at 20C cps by a 1:100 model, using 20,000 cps, one must
somehow reduce the scale of the atmospherical structure by the same
ratia, For example, if shadow zones are to be studied the wind or
temperature gradients must be increased by a factor of 100; if scat-
tering by turbulence is to be studied the mean size of Meddies" must
be reduced by a factor of 100, etc. Such adjustment of the scale
of inhomogeneities can be accomplished to some extent., It is well
known, for example, that the scale of turbulence in the air can be
varied artificially by passing the air through wire screens, Never-
theless, it is evident that the production of a micro-atmosphere which

is & true model of a real out-of-door atmosphere would be a considerable

research problem in itself.
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