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SURVEY 

Even though this is a short Progress Report,  there are a number of interest- 

ing results which have appeared during the period which it covers.    One ot these is 

the calculation of the density of state;, curve for nickel,   which Koster has been carry- 

ing out.    Much use had been made in the past of the density of states curve for this 

element which Knitter and I calculated many years ago.    This curve showed a dip in 

the middle of the  3d band,   which w:s of considerable importance in the theory of ferro- 

magnetism,   electronic specific heat,   and other properties of the transition elements. 
More recent work,   both by the cellular and the tight binding approximation,   had shown 

that the details of the old cellular calculation on which this work of Krutter's and mine 
was based,   were certainly not correct:    the detailed curves of energy versus  k,   which 

now appear to be fairly certain from newer calculations,   are quite different from our 
older ones,   as a result of the small number of spherical harmonics which were used 
in this older cellular calculation.    As mentioned in the preceding Progress Report,   it 

seemed worthwhile to make a new calculation of density of states for nickel,   on the 
basis of the tight binding calculation of Fletcher and Wohlfarth,   which seems to agree 

qualitatively rather well with the new calculations on copper made by Howarth,   by both 

the improved cellular method and the augmented plane wave method.     Fletcher and 
Wohlfarth computed the density of states just at the top of the energy band,   but the 

mathematical problem was too severe for them to wish to carry out the complete cal- 

culation. 
The facilities of Whirlwind make this calculation rather easy,   and consequently 

Koster has carried through this work,   and reports on u in the present Progress Re- 

port.    His result is very interesting,   in that it shows a curve closely resembling the 

old one which Krutter and I had found.    The dip in the center,   which was the basis of 

most of the qualitative deductions from the curve,   remains much as in the earlier cal- 

culations.    Hence we may consider these many deductions from the earlier curve to 

be still valid,  even though the details of the earlier calculations were not.    What has 

happened is that the errors in the earlier calculation become rather well ironed out 
in the process of taking the density of states curve:    we have about as many states as 

before in each energy range,   even though they are located in different parts of the 

Briilouin zone. 
I have just mentioned the calculations of Howarth.    He left to return to Eng- 

land before being able to finish completely his work on copper,   but he obtained the 

essential results required from Whirlwind,   and will shortly be able to finish his cal- 
culations.    The net result was that he found that the augmented plane wave method 
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converges remarkably rapidly,   more so than the cellular method,   and it seems as of 
n^* to be the best method which we have for solving the periodic potential problem. 

The qualitative results on copper resemble those of Fletcher and Wohlfarth for nickel, 
as determined by the light binding method.    The agreement between the results for 

copper by the augmented plane wave method,   and by the cellular method,   is not per- 
fect.    This may be partly a res.ilt of the fact that the calculations were not made for 

exactly the same potential,   for evidence is rapidly increasing that energy bands are 

remarkably sensitive to small changes in potential.    To check this point,   Howarth is 
preparing to repeat the cellular calculation,   for exactly the same potential used for 

the augmented plane wave method,   so as to get a precise comparison of the two methods; 

he finished the necessary calculations for this on Whirlwind before he left.     We shall 

hope to learn more details of the resu'ts later. 
Another calculation which has led to a definite result is that of Kaplan on the 

ammonia molecule.    Just before he left to take a new post at the University of Buffalo, 

he obtained preliminary results,   also by means of Whirlwind,   for the LCAO SCF cal- 

culation for this molecule,   on which he has been working for a long time;   though there 

is still considerably more to be done before the   work is completed.    These preliminary 

results indicated a binding energy about 75 percent of the observed value.    This repre- 

sents one of the most complicated molecules which have been attacked by this method; 

the calculation was entirely non-empirical,   and the values of the three- and four-center 

integrals v/ere calculated,   rather than being estimated. 
McWeeny has also left,   to return to England,   and before leaving he finished 

up the calculations on the water molecule,   which he describes in this Progress Report. 
His aim was to find whether a simple configuration interaction method,   based on the 
VB method,   could lead to results significantly better than the LCAO SCF method.    The 

results are somewhat discouraging:   he was not able to do nearly as well as the LCAO 
SCF method,  as it was applied to this molecule by Ellison and Shull.    Taken together 

with his earlier results on benzene,   and with Kaplan'.s success with ammonia,   it begins 
to be clearer than before that the LCAO SCF method is probably much better fitted to 

a discussion of molecular energies and wave functions than other easily usable methods. 

It is fortunate,   in this connection,  that Meckler's Whirlwind program for the LCAO 
SCF method is available.    This program is proving to be remarkably flexible;   and 

Meckler,   in the present Progress Report,   outlines its uses,   and those of some of the 

other programs which are now being used on Whirlwind. 

Lowdin,   in the last preceding Progress Report,  outlined several interesting 

aspects of the self-consistent field method;   more extended papers on the same subject, 

which he has prepared for publication,  have been accepted by The Physical Review. 

In connection with the "natural orbitals" which he introduced in those papers,   Koster 

examines a simple special case   in the present Progress Report,  which throws some 

-2- 
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doubt on the practical usefulness of these natural orbitals in obtaining rapid conver- 

gence in a configuration interaction problem. 

A number of other problems under consideration are coming along well. 
Schultz is getting well into the problem of the interaction of electrons and lattice vibra- 

tions,   a very involved problem which will probably receive much more attention in the 

future.     White's work on the elastic vibrations and elastic constants of copper is Hear- 

ing completion,   and represents a very interesting piece of work.    Wood's self-consist- 

ent calculation of the iron atom,   using two different potentials for the electrons of plus 

and minus spin,   is practically finished,   and shows that the potentials and charge dis- 

tributions for the two spins are not as different as one might have thought.    Saffrer. is 

coming along with extensions of the augmented plane wave method,   and ilowland is 

starting consideration of the application of this method to a polar crystal,   KC1.    Other 
work is also progressing,   as the items in the Report will indicate. 

I have already stated that Kaplan,   Ilowarth,   and McWeeny have recently left 
the group,   after profitable periods with it.    White expects to leave shortly.    Pratt and 

Kleiner have taken up their duties witli Group 35 at the Lincoln Laboratory,   and while 
we see them frequently,   they no longer belong directly to tins group.    Schweinler, 

after a very profitable summer at the Oak Ridge National Laboratory,   has decided to 
remain there permanently.     We shall shortly add to the group K.   K.   Nesbet,   who took 

his bachelor's degree at Harvard,   and is just finishing his work for the doctorate at 
the University of Cambridge,   where he has been working with Dr.   S.   F.   Boys on prob- 

lems very similar to those which have concerned this group.    During the summer,   we 
have had two visitors:    Dr.   A.   Delgano,   of the University of Belfast,   who has been at 

the Institute m connection with tic Foreign Students' Summer Program;   and Dr.   P. 

Merryman,   a member of Professor Mulliken's group at the University of Chicago, 
who has been here studying the application of Whirlwind to the calculation of molecular 

integrals.     We expect a visit shortly from Dr.   K.   Ruedenberg,   also of the University 

of Chicago,   also in connection with this same problem. 

.1.   C.   Slater 



1.   CALCULATION OF A DENSITY OF STATES CURVE FOR NICKEL 

The calculation of the density of states curve fur nickel which was described 

in the last Progress Report    ' has now been completed.    The density of states curve 

is show?', in Fig.    1-1.    The curve has been normalized to have a total area of five eor- 
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Fig.    1-1 

Density of states curve for nickel 

responding to five states of a given spin.    The method of calculation of this density of 
states curve from the energies of the  d  bands calculated on the  10 degree mesh in the 

first Brillouin zone i.s given in a recent paper by J.   C.   Slater and the author on the 
tight binding method. 

The striking feature of this density of states curve is the dip in the middle. 

This curve can be compared with the density of states curve for the   d  bands in the 

body-centered structure recently calculated       using the same parameters for the 
nearest neighbor interactions used in this calculation.    This curve also showed a pro- 

nounced dip in the center of the distribution.    Thus it seems on the basis of this sim- 
plified tight binding calculation that both the body-centered and the face-centered 

structure show a minimum for the density of states curves at some point near the 

middle of the d bands.    This dip in the density of states curve for a face-centered 

structure was predicted many years ago by Knitter       by using the cellular method 
and it  is interesting to find that the calculation carried out by the tight binding method 

shows a similar dip. 
The purpose of this calculation was to extend the calculation of the density of 

(4) 
states curve given by Fletcher and Wohlfarth       over the entire range of energies for 

-4- 
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the  d bands.    We can therefore compare only a small portion of the density o" states 

curve with that calculated already.    In the figure we show a smooth curve drawn 

through the step-like curve.    This curve extends over the range of energies that Flet- 

cher and Wohlfarth covered in their density of states curve.    This compares quite 

well with the curve published by the aforementioned authors which tends to give us 

confidence in the method of calculating the density of states we have used. 

References 
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2. ENERGY BANDS IN COPPER 

The calculation of the electronic eigenvalues of metallic copper by the aug- 

mented plane wave method has been completed and an account of it will shortly be 
(l) submitted for publication.    The rapid convergence reported previously^     has been 

found in every state considered.    In all cases,   it has been found that combining two 

solutions inside a sphere,  both joined to the same plane wave outside the spnere,   is 

sufficient to give the "best" wave function possible using only one plane wave.    In 

other- words,   two branches of the  E   versus E    curves       are sufficient to give accur- 

ate eigenvalues for the lowest states.    Inclusion of six such terms gives no change in 

the lowest eigenvalues,   and yet does not produce satisfactory convergence in higher 

eigenvalues.    The method would therefore appear to be limited at present to calcula- 

tions of states in the valence and conduction bands,   and to obtain accuracy in these, 

the numerical labor is not excessive. 

In the case of copper,   the inclusion of plane waves corresponding to wave 

vectors in the two innermost Brillouin zones is sufficient to produce convergence. 

This is not surprising since (l) the conduction electrons of copper deviate only slightly 

from the free electron behavior and (2) the wave functions of the  u  electrons are al- 

most entirely confined inside the atomic sphere. 

Some of the results obtained for copper are given in Tables 2-1 and 2-2 below;* 

Table 2-1 

Eigenvalues of conduction band of copper using (a) Hartree and 
(b) Hartree -Fock atomic potentials 

• 

State I. 
1 

X X 
1 

H P 

-.558 -.0519 .0887 .080 .2409 

-. 35-1 .2219 ^63 . 375        . 502 

K s 

-. 147 

.0951 

1 

P 

136 

086 

K   " A 

. 124 

. 361 

Table 2-2 

Eigenvalues of 3d  band of copper 

. 

State: 

State: 

. 155 

L   2 

P 

. 0652 

X 
1 

d ' d 

-.0541 -. 1062 

L ,' K 
d s 

-. 1456 -. 3448 

Xd 

-. 0742 

K 
1 

Xd 

0660 

-> 
K 

P P 

1528        -.0688 

X s 

-. 335 

Kd 

-. 1621 

s 

-. 2756 

A 

-. 2693 

*The notation used is fully described in Ref.   3.    Eigenvalues are quoted in Rydberg 
units. 
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Others are being analyzed at the time of writing.    As an example of the power of the 

method,   a point of no symmetry in k-space has been considered,   the point A, (—, —, —). a     as 
Using two solutions inside the sphere for each plane wave,   and using 7 pi:?.ne waves 

(with wave vectors in the two innermost zones) a secular equation of order 14 was 

solved in this case,   the highest order equation which has occurred in this work.    The 

power of the method may be judged from the results;   in all cases,   the error due to 

truncation of the infinite series of augmented waves is estimated as less than 0. 5 in 
the last figure quoted. 

Comparison of these results with those obtained for copper by the cellular 
method       shows considerable discrepancies,   particularly in the position of the states 

lying in the d-band.    The total width of the d-band remains approximately the same 
(4. 1 c. v.   in thf> present work),   but the top of the band lies at the center of the  Brillouin 
zone,   the base lying at the end of the (110) axis.    The reason for the discrepancy in 

the two sets of results appears to lie in the different potentials used;   a cellular calcu- 
lation of the eigenvalues at the center of the zone in the d-band has been carried out 

using the exact potential used in the present work differing from that used in the ori- 
ginal cellular calculation in that it is a constant outside the atomic sphere.    The agree- 

ment between this calculation and the results of the augmented plane wave method is 
(3   4) 

quite satisfactory.    Hence,   as has oeen observed in other work,     '      the excited 

energy levels in crystals appear to be extremely sensitive to the crystal potential 
used,   and to obtain results of real physical significance,   an attempt at self-consistency 

would seem necessary. 

In concluding this series of reports,   I would like to express my deepest grati- 

tude to Professor J.   C.   Slater for making possible my stay with the Solid-State and 
Molecular  theory Group,   and for his continued advice and encouragement, throughout 

the year.     My thanks are due to the whole group for many stimulating discussions and 

for much helpful advice.    The entire numerical work involved in this project has been 
carried out on the Whirlwind I digital computer,   and I am deeply indebted to all the 

staff there for their help and cooperation.    Availability of the computer at this time 

was made possible by the Office of Naval Research,   to whom thanks are due. 
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3.   AN AUGMENTED PLANE WAVE METHOD AS APPLIED TO SODIUM 

Howarth's program for the augmented plane wave method having been applied 
to copper is now being applied to sodium.    In the meantime I have been attempting to 

modify Howarth's program so that calculations on the energy bands in sodnim can be- 
gin according to a modification of the APW method which I outlined in my last Report. 

The modification requires only that the energy expression used by Howarth be replaced 
by the somewhat more complex expression which is given in my last Report. v  '    I have 

also under-taken to build upon the part of Howarth's program which (in essence) makes 
properly siymmetrized combinations of APW before the APW are allowed to interact in 

the secular equation;   the plan is to simplify the coding of symmetry points in the 

Brillouin zone so as to make more complete the mechanization of the steps of the 
method which utilize the operations of the cubic point group. 

The purpose of the present calculations is to examine the energy bands of 

sodium and also to compare the convergence of the APW scheme with the modified 

scheme. 

(1) 
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Group,   M.I   T. ,   July  IS,   1954,   p.   44. 
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4.   ENERGY BANDS IN POTASSIUM CHLORIDE 

It  is proposed to calculate the energy band structure of potassium chloride 

using the augmented plane wave (APW) method       to obtain the energies for certain 

high symmetry values of the propagation constant k,   and u.3ing the Slater-Koster tight 

binding scheme       for interpolation.    A rigid lattice will be assumed,   and on this as- 

sumption excited levels will be included.    The works of S.   H.   Tibbs       and of W. 
(4) 

Shoekley       provide some preliminary information about alkali halide energy levels 

and functions,   and the recent work of P.   O.   Lowdin       on cohesive energy provides 

tools which will be quite useful in the proposed band calculation.     With the information 

resulting from such a calculation it is hoped that new light may be shed on such prob- 

lems as the importance of lattice interactions in optical transitions and the effect of 

impurities (such as the F-center) on the energy band structure.    There is no present 

work which attempts a complete quantum -mechanical calculation of the desired energy 

levels and functions. 

The present attempt at a complete calculation is made possible by the rapid 

convergence of the new APW method of Slater and Saffren.    The value of the method is 

illustrated by the work of D.   J.   Howarth       on the energy band structure of copper. 

Certain difficulties arise in adapting the method for an ionic crystal,   however.    First, 

the potential which is to be used must be spherical within a sphere about each lattice 

site and constant outside the spheres;   in our case the real potential will probably be 

quite non-spherical and non-constant in these regions.    Secondly,   the computer pro- 

gram for Whirlwind developed by Howarth for the copper calculations must be suffi- 

ciently generalized to take account of the two types of centers in the alkali halide unit 

cell.    As Howarth has already shown,  the generalization of the first part of his pro- 

gram will not be difficult;   that part consists of obtaining the E versus E    curves of 

the APW method and the resultant single APW's.    On the other hand,   the second part, 

solving the secular equation between interacting APW's,   will probably be quite diffi- 

cult due to the fact that the linear combinations of APW's will not be real as they were 

for Howarth.    This problem is presently bein^ studied. 

The first difficulty inherent in the proposed calculation concerns the initial 

crystal potential which is to be used.    The model we are employing is that of a rigid 

lattice with "free ions",  Cl    and K   ,   located at alternate lattice sites.    The electron 

charge density of the crystal is taken as that which would exist if all the electrons 

were located in Hartree-Hartree determined    ' free ion functions centered on the vari- 

ous lattice sites. 

The ground state  <i> of the crystal is written as a single determinant of elec- 

trons in free ion states;  this is possible because the ions K    and Cl    both have closed- 

shell elee'ronic structures,   with eighteen electrons apiece.    The charge density p(r ) 

is obtained by integrating - 4>* + over- the coordinates of all but one electron and sum- 

ming over all spins.    The usual periodic boundary conditions are used,   the periodic 

_q. 
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cell being a cube containing N C'l     ions and N K    ions,    ijj is normalized so that the 

integral of p(r ) over this cube is  -  36 Ne. 

Written out to the first order in overlaps,   the charge density is: 

P.-       (>' ,)   *   P (r,') . Tree     r       'overlap     r (4. 1) 

IU- re p, S1" \> 's ,nat charge density which is obtained by simply summing the charge 
densities - cu* u at r. of the electrons in their free ion functions u, with an appropri- 

ate normalization factor;   and p ,     (r ,) is proportioned to the following sum of 'overlap     1'       '      ' B 

products: 

I*    s(qm|q'm')   f     £     „    <**(!) u     ,4\l)] . ?_     s(qm | c 
qm 

q'm 
spin  1 

Here u     '(1) is the free ion function with quantum numbers m,   centered on lattice site m ' 
q,   and containing electron  1,   s is the overlap integral (including spin summation),   and 

the prime on the summation symbol means (am)   t   (q'm').    All the terms in p , i J i /       i        / 'overlap 
involve  iust two sites and contain all functions   u   as sums of the form   Z,    u    (1( 1)  x 

q, (5) m      ni 

u       (2).     Bv a theorem of Lowdin       (which follows directly from ti:e additional theorerr 
m • 

for spherical harmonics) each such term may be evaluated by taking the vector be- 

tween the two sites as a z-axis for the two ions affected.    On this basis the overlap 

integral:.- calculated by Lowdin for KC1 may be used directly,   and the evaluation of p 

should not be too difficult. 

The Hartree-Fock equation for the one-electron function $(r ) can be written 

in the following form: 

[-£ e V       ,(r*)   -   e V       Ar)   -   E I q>(r )   =  0. coal exciv JTl   ' (4.2) 

The potential which must be evaluated,   then,   is V(r )   =   V        ,(r)   +   V        , (r'l.    The 
coul l/fXC        '        (8) exchange potential V ^     .   may lie approximated by use of Slater's p   '     equation, 

where   p   is calculated as described in the preceding paragraph. 

V       ,(r) is made up of contributions freni both the electron cloud and the coul     ' ' _„ 
nuclei.    By various elementary operations V       ,(r) can be written as follows (in the J J     i coul 

MKS system): 

V       ,(r)   = eoui -®—    fs(r)   +  wT(r )   +  uF(?)l , (4. 3) 
irre   a    L J 

o 
—*• 

where a is the interionic distance,   and  r   is measured in units of a.    The terms on the 

f, 

lO- 
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right of (4. 3) are defined as follows: 

c-ir S(r)   =     X   -i~~ (4.4) 

where R    is a vector to the lattice site q,   q oven being p. Cl    site,   <\rid q odd being a 
+ q 

K    site; 

oo                  r 

T(?)  =    I   /" I ^~ U   (x) dx (4.5) 

where U   (x) is the total radial charge density at a radius  x   in a closed shell ion of the 

type which is located at lattice site q; 

1 
F(r) 

spin  1     R  Ueven    |r " Rq " rl r - R 

1 V      i  

odd        r  - R     - a-*- r . |        lr - R   I 
^~^~) 

Lq'/ 0    mm' 
s(0m Iq'm') u        (r ,, s ,) u    •    (r.  - R   ,,   s,) 11       '    m 1     1     m'    x   1 q'      1 

(4.6) 

•      I      I      s(lm|q'm-)urn
IV1 + aT. s^u^Vj-R  „Sl)   dv,. 

q  f 1   mm' J 

where q = u is ihe origin (a v.""i    site) and q =  1 is the nearest K    site in the -x direc- 

tion;   and 

\l - JL     2'    s2(qm|q'm')l _1 
L
        36N    qm J 

(4.7) 

Physically,   S(r ) (Eq.   4. 4) is the potential at a point r in a cubic lattice of 

unit point charges with alternating sign if one of the negative unit charges is taken as 

an origin.    From symmetry it can be shown that S(x, y, z)  =   - S(l - x,   y, z).    S(r ) is 

oresently being evaluated i.; the central unit cell by expanding S(r ) - —  in a Taylor 
-» a   b   c series about r = 0;   the coefficients of the products x    y    z    take the form of combina- 

(9) 
tions of lattice sums.    The latter are being calculated by Evjen's method.     '   This 

method is not sufficiently accurate for all th*: scrrs involved,   however;   hence a few 

of the sums will be calculated by an extension of the Ewald method.    S(r ) may also 

be checked by direct use of the Ewald method^     ' at specific points in the lattice. 
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(ENERGY BANDS IN POTASSIUM CHLORIDE 

For (a      b + c) odd,   the coefficients of >:    y    z    are of course zero;   it appears that 

satisfactory accuracy is obtained when the expansion is extended to include the tenth 

order terms.    The worst point in the unit cell is (x, y, z)   =   (l/2,   1/2,   l/2),   but this 

point is not included in either of the touching ionic spheres;  the larger sphere (Cl  ) 

intersects the (1, 1, I) direction at (1/3,   l/3,   1/3). 

T(rj ^Eq.   4. .•>) represents the correction to the potential which arises from 

the spatial extension of the electronic: charge.    The contributions of nearest neighbors 

are large,  but those of the further neighbors fall off rapidly with distance from the 

origin. 

F(r)(Eq.   4.6) mostly represents the potential contribution arising from the 

overlap charge density (Eq.   4. !).    Several approximations for this term are presently 

being studied,   but the term has not yet been evaluated.    The terms in F(r ) are all 

such that the Lowdin theorem is applicable,   and the Lowdin overlap integrals can 

again be used directly. 

u(Eq.   4. 7) is the charge normalization factor;   it is easily evaluated from 

Lowdin's overlap integrals.    Of the four terms contributing to the potential,   only S(r ) 

appears without a factor- u>. 

Treating the component terms as indicated above,   V(r ) will be evaluated on 

the surfaces of spheres centered on lattice sites with radii equal to the empirical 

ionic radii.     The deviation from sphericity will be studied.    If it does not seem too un- 

reasonable,  the potential V(r ) will be replaced by its spherical averages within the 

spheres and by an effective constant value outside them.    The APW method will be 

applied using this as an initial potential,   and approximations to  E  and <p  (Eq.   4. 2) 

will be sought. 

KC1 has been chosen as the particular alkali halide to be studied because for 

it the free ion functions       and the overlap integrals       have already been calculated, 

and because the ions Cl    and K    are of comparable size,   thus putting less strain on 

the accuracy of the expansion of S(r ).    More overlap integrals are required than for 

NaCl,   for instance,   but the overlaps are also smaller.    These reasons do not prohibit 

calculation for the other alkali halides,   however,   and future developments may even 

show that calculations for one of them might be preferable. 

Finally,   in anticipation of the results from the APW method,  the tight binding 

interpolation formulas have been developed.     3s,   3p,   and 4s orthogonal,   localized 

functions were assumed for each type of ion.    The 4s functions were included to allow 

consideration of excited levels.    The matrix components of the Hamiltonian between 

Bloch functions were written out with the matrix components between localized func- 

tions appearing as disposable constants.    With second-nearest-neighbor interactions 

considered,  there are thirty-four such constants,   while with only nearest neighbors, 

there are eighteen.    Some of these may be neglected,   however,  on the assumption 

-12- 
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that the orthogonalized functions are about the same as the free ion functions they re- 

place.    The secular equation has been factored at many symmetry points in momentum 

space,   and the roots have been extracted.     When the APW energies arc available at 

these points,  the disposable constants will be determined.    The exact numbers of points 

and constants actually used will of course depend on how much difficulty is encountered 

in carrying out the APW method for KC1. 

2. .1. 

3. S. 

4. w 
5. p. 
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5. ENERGY BANDS IN GRAPHITE 

A tight binding calculation has been made on Graphite (described in the pre- 

vious Report),   but the results were unsatisfactory.    Specifically,   for certain values 

of the reciprocal lattice vector   k,   the overlap matrix,   which should be positive definite, 

was found to have negative eigenvalues.    It is believed that this contradiction arose be- 

cause of the following situation.    In constructing the matrix elements S. .,   the terms 

arising from overlap integrals beyond the third nearest neighbor distance were neg- 

lected;   however,   the overlap integrals used were found by integrating analytically 

over all space.    Thus,   failure to include enough neighbors in the evaluation of the 

overlap matrix elements allows the possibility of negative overlap eigenvalues,   an 

effect analogous to an insufficient number of terms m the Fourier series of a positive 

definite quantity. 

At present,  the calculations are being re-examined with the view of increas- 

ing the number of neighbors considered. 

F.   J.   Corbato 
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6.   A REVIEW OF THE USE OF WHIRLWIND BY THE SOLID-STATE AND 

MOLECULAR  THEORY GROUP 

This report will summarize the use of Whirlwind,   the computing machine, 

by members of this group.    Although special programs have been written for the mach- 

ine,   programs which perform a particular,   formalized set of operations specific to 

one problem,   the emphasis here will be on the description of more general programs: 

either basic mathematical routines which are called for naturally in the calculus of a 

class of physical theories,   or programmed physical theories which are standards 

ready to compute on any structure,   needing only the specification of an atomic number, 

potential,   or a table of integrals.    Whirlwind does have  features that other machines 

do not,   but no program has been written for Whirlwind only;   except that wi'.h the mach- 

ine's high speed and great capacity,   we may be singularly adjusted to such things as 

large order matrices,   highly iterative schemes,   and wide gamuts of parameters. 

The Computer 

Whirlwind 1 is a high-speed electronic digital computed located at M.I.T.   and 

sponsored by the O. N. R.    It was built and is maintained as a prototype for engineers 

and mathematicians in the development of circuitry and logic for digital computers. 

Time has been made available by the M. 1. T.   Committee on Machine Methods of Com- 

putation and Numerical Analysis (Professor P.   M.   Morse,   Chairman),   which super- 

vises the scientific and engineering applications of the machine,  to staff membei s and 

students at M.I.T. 

The direct,   or fast storage elements of the machine are magnetic cores. 

These are grouped into registers each of which can accommodate a word length of 16 

binary digits.    There are 2048 magnetic core registers and it is in these that sections 

of the program in operation are stored along with numbers to be operated upon.    That 

is,   control and arithmetic is done only with the core memory.    As passive storage, 

whose contents when needed must be transferred into the cores at a relatively slow 

rate,  there are reels of magnetic tape and a 22, 528 register magnetic drum.    Another 

drum will be available soon and there is the outside storage of punched paper tape. 

Information is fed into the machine on punched paper tape passed through a photoelec- 

tric reader and the output can be had on automatic typewriter,   punched tape,   magnetic 

tape,   or a photographed cathode-ray tube display. 

The electronic speed of the machine is about 40, 000 operations per second, 

per se.    The bare electronic machine,   however,   is not the easiest to code and needs 

to be polysyllabic in its words.    The basic word length corresponds to about 4 decimal 

digits and necessitates fixed decimal (or binary) point arithmetic.    Therefore,   a pro- 
y 

grammed arithmetic has been written:   numbers occupy two registers in the form xZ 

and the order to multiply,   for example,  transfers control to a slew of operations which 

perform the double-length,   floating point multiplication.    The programmed arithmetic 
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occupies a section of fast storage,   numbers take up twice the space,   and more time is 

spent on an arithmetic operation.    In fact,   programmed arithmetic is about 40 times 

slower than ordinary Whirlwind. 

Associated with the programmed arithmetic is a wonderful system of service 

routines.    These include: 

Automatic conversion of a program written in almost basic 

English to the binary code of the machine. 

The floating address system whereby a program is written 

with addresses referred to only as letters,   algebraic symbols whose 

values are assigned by the machine itself. 

Automatic cycle counters. 

A set of buffer registers,   each three ordinary registers 

long,   to be used in the accumulation of partial sums without the 

intermediate round-off into two registers. 

An elaborate system of program checks and post-mortem 

routines for mistake diagnosis. 
All'this and more leaves the machine with sufficient speed and capacity,   but with a 

logic more malleable. 

The service routines are developed by the staff of mathematicians at Whirl- 

wind.     Programs for calculation are written by the originators of the problems who 

learn coding from the computer staff and who turn to the staff when the malicious mach- 

ine reacts absurdly to the unique and careful logic of their programs.    The staff is 

most capable.    It is always shown that what seems a fundamental incompatability is 

a simple lack of understanding which can be corrected. 

There are two types of programs:   the sub-routine and the production style. 

The sub-routine is a packaged unit ready to be inserted,   to perform a complex opera- 

tion, into any large program.    The external program sets up the data as required by 

the sub-routine,  transfers control to the sub-routine which does what it should and re- 

turns control to the external program,   which goes on from there.    The programmed 

arithmetic is a sub-routine,   and many of the matrical routines to be described are in 

sub-   outine form,   easily assembled into compound programs.    The other type,   a pro- 

duction style routine,   is complete.    As the data is read in,   the program assembles 

it,   has it manipulated through a series of smaller sub-routines,   and then displays the 

output.    Production style routines are not meant to be synthesized into larger routines; 

sub-routines are. 

The Algeoraic Routines 

Miich of matrix algebra has been programmed.    To begin with.,   there is the 

diagonalization of Hermitian matrices.    This method is this:    Let  H  be a reai sym- 
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metric matrix.    It is transformed to diagonal form by a succession of Z  x   2 orthogonal 

transformations.    Let   u  be an orthogonal matrix with unity for every diagonal element 

except the i      and j    ,   and zero for every off-diagonal element except the i, j     and the 

j, i    .    Schematically 

c 0 -s 
0 1 .0 

s 0 

0 

c 

1 

c 0 s 

0 1 0 

-s 0 c 

0 0 

t th th Under the transformation u  llu  =  II',   only the elements in the i      and j      rows and 

columns of  H  are affected. 

i 

H'       =  H mn mn 

H!       =  cH.       +   sll. lm im jm 

H' =   -sH        +   cH jm mi            jm 

H' =  c  H..   t   2scH +   s2H  . 11 "                 '0 .1.) 

Hr. =   s2H      -    2scH.. +   c2H.. 
JJ H                  iJ JJ 

H,' . =  (e2 - s2) II..   + sc(H     - II.) 

m   /   i or j,   n   ^   i or j 

m   f   i or j 

in   /   i or j 

c and s are determined oy the trigonometric identity 

2 2 c     +   s     =   1 

and the condition that H!.   =  0.     Under any orthogonal transformation the sum of the 

squares of all the elements of  II   is unchanged: 

I    (Hmn)2   = Trace  [H2
] 

mn L     J 

which is invariant.    However,   this particular transformation has increased the sum 
2 

of the squares of the diagonal elements by 211.: 

V    (H'       )Z   =  (Tr H')2 Z    H H *-•        mm' ' j        mm     nn 
m m f n 
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(REVIEW OF THE USE OF WHIRLWIND) 

The invariant of the truce and determinant imply 

so that 

Tr 11'   =   Tr II 

IV.. ll\.   -  H   II      -   H 
n    jj 11   j,i ij 

T  (H'      )2  =  (Tr H)2   -       I   II H       +   2rlf *->       mm / mm     nn 11 in m f n J 

=     X   (H        )2  +   2H2 
'-'        mm' I m 

Weight has been shifted to thediagonal and,   if for each 2X2 transformation the lar- 

gest off-diagonal element is made to vanish,   the process will converge.    The total or- 

thogonal transformation is the product of all the 2x2  transformations,   and is calcu- 

lated in parallel with the diagonalization.    After each reduction,   and beginning with a 

unit matrix,    u is multiplied into the orthogonal matrix constructed up to that point, 

affecting only the i      and j     columns.    H is considered diagonal when the absolute lar- 

gest off-diagonal element is less than a prescribed criterion. 

In the machine, the upper half of the symmetric matrix is stored in fast stor- 

age, the orthogonal matrix is kept on the drum. The routine is amazingly fast and ac- 

curate,   and exists as both a sub-routine and a production style program. 

Complex Hermitian matrices have to be handled by enlargement.    Let 

II   =  A   +   iB 

where A   is real symmetric,   B real antisymmetric.    The eigenvalue-eigenvector 

equation reads as 

or 

(A + iB)(x + ly)   =  Mx + ly) 

Ax   -   By  -  \x 

Bx  +   Ay   =  \y 

The last two equations can be written in enlarged matrix form as 

A       -B 

B A 

x x 

=   X 

y y 

-18- 
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so that a real symmetric matrix is to be diagonalized. 

The routine has been called for,   of course,   in those theories which approxi- 

mate a wave function as a linear combination of orthogonal functions.    The configura- 

tion interaction in the oxygen molecule,   considered by the writer,   was analyzed on 

Whirlwind.    Kaplan's treatment of the ammonia molecule will require the solution of 

a 14 x  14 secular equation.     For his tight binding computation,   Koster took the sub- 

routine,   added a program which calculated the matrix elements,   and ran through 220 

independent points in k- space for the body-centered structure,   680 points for the face- 

centered.    It should be realized that the ability to handle large matrices,  once they 

exist,   is not enough.    There is the awful problem of the matrix elements,   as to com- 

putation and transcription.    The program written for Schultz,   to be described in some 

detail,   is lovely in the absolute minimum of input required for the mechanization of 

the theory.* 

The existence of a fast and accurate diagonalization sub-routine makes feas- 

ible manv other matrix computations.    Determinants can be evaluated as the product 

of the eigenvalues.    It seems best to evaluate any invariant of a matrix by first diag- 

Ionalizing the matrix and then forming appropriate products of the eigenvalues.    The 

calculation of the inverse of a matrix (or the square root of the inverse) has been pro- 

grammed in this way.    The matrix is first brought to diagonal form,   the reciprocals 

of the diagonal elements are taken   (or the square roots of the reciprocals),   and then 

this diagonal inverse is brought back to non-diagonal form by the reverse of the or- 

thogonal transformation.    This inversion routine is in sub-routine form and in com- 

plete production style form.    As a sub-routine it was incorporated into the impurity 

level calculation of Koster.    He recognized a Green's function as the inverse matrix 

(H - E)      ,  where  H  is the unperturbed Hamiltonian and  E   is the sought energy level. 

The problem is solved in the space of a finite number of Wannier functions so that  H 

becomes a finite matrix.    For the body-centered structure 16 values oi  E   were in- 

serted for each of the 220 points in k-sapce. 

The square root inversion routine was useful in the orthogonalization of a set 

of functions,   and in the solution of the secular equation arising among a set of non- 

orthogonal functions.    If a trial wave function be expressed as a linear combination of 

non-orthogonal functions 

ut(x)   =     £ v (x) ai; 

j      J 

*The work of the Whirlwind users mentioned here is reported in the Progress Reports 
of this group and in the publications listed at the beginning of these reports 
biannually. 
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the eigenvalue-eigenvector equation reads as 

Z H     a..    =   T S.   a.,   E. 
j      iJ    Jk        j      iJ    Jk    k 

with the side condition 

Za*     S        a   .   =  6. . mi    mn    ni 11 m, n J J 

where   II..   is a mati ix element of the Hamiltonian and S.. is an overlap matrix ele- 

ment 

H.     =    / v *(x) H v (x) dx 

S.      =     /v.*(x) v (x) dx 

In matrix notation the simultaneous equations are 

HA   =  SAE 

ATSA   =   1 

Following a s^gestion of Lowdin (M. I. T.   lectures) define 

U   = S+ X'Z A 

so that 

U*U   =   1 

(S" XIZ H S" 1//2) U  =  UE 

and an ordinary secular equation is to be solved. *   A program which carries out this 

Lowdin scheme has been written.    As a production style routine it was used by McWeeny 

in his valence bond studies,   and as a sub-routine it was used by Howarth in the last 

stage of the augmented plane wave method,   and by Corbato in his tight binding calcula- 

tion on graphite. 

1 / Z t 
*S    *'     is defineable since S =  V  V where V   .   =  v.(x).    S is therefore Hermitian and, 

if the columns of  V are independent,  positive definite. 
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Integrals that are needed in the molecular calculations done here are first 

evaluated among the basic set of atomic orbitals.    The molecular orbitals,   out of 

which are compounded the rnany-electron functions,   are linear combinations of the 

atomic orbitals.    The integrals which appear in matrix elements are integrals among 

the molecular orbitals.     These are derived from the atomic orbital integrals by means 

of a congruent transformation U   A U,   where  A   is a suitably ordered matrix of atomic 

integrals,   and   U  is a matri:; whose elements are quadratic forms in the coefficients 

of the linear combinations.     '  A congruent transformation program exists in produc- 

tion style;   it has been used by McWeeny and by Kaplan.    As a prerequisite to it,   a 

matrix multiplication sub-routine was written. 

Special Programs 

A colossal program to carry out the augmented plane wave method for copper 

was written by Howarth,   and is being further developed by Saffren for application to 

sodium.    From this specific program certain sub-routines can be pulled out for use 

elsewhere:   Simpson's rule,   generation of P. (cos 9),   generation of spherical Bessel 

functions,   and Gauss-Jackson numerical integration. 

The adaptation to Whirlwind of Roothaan's self-consistent L. C. A. O.   method 

is another large and specific program.    It has been used by Kaplan for the ammonia 

molecule and will be used by Allen in his polarization study. 

Finally,   there is the program for the electron-lattice interaction model by 

Schultz.    The model treats one otherwise free electron in interaction with the field of 

two degenerate lattice oscillators.    The wave function of the system is expanded in a 

set of functions each belonging to the same total momentum,   which is a good quantum 

number,   and each distinguished by the number of quanta in the oscillator field.    There 

are three parameters that Schultz wishes to vary independently and widely:   the total 

momentum (T|),   the oscillator momentum (a),   the coupling constant (v).    For each set 

of T], a,   y the convergence of the energy levels is to be followed as states of higher 

occupation numbers are brought in.    The energy matrices,  though large and many, 

can be computed easily hy hand;  there are an enormous number of zero elements and 

not many independent varieties of the non-zero ones.    The matrix which allows up to 

three quanta in the field is shown in Fig.   6-1.    The angle shaped lines are boundaries 

between states of different occupation numbers.    Each occupation number brings in 

that number plus one new states -- the number of ways to distribute the quanta be- 

tween the two oscillators. 

Now,   all these zeros,  which present no computational problem,  nevertheless 

would have to be written down on tape preparation forms,   typed and punched out on 

paper tape,   passed through the photoelectric reader on equal footing with the other 

numbers.    Easy arithmetic though it may involve,  the hand computation,  transcription, 
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typing,   and read in of the matrices,   would be time consuming and greatly susceptible 

to error.    The matrices must be formed in the machine.     Rut is the machine to go along 

through the matrix,   set itself at an i, j position,   ask if the number to be inserted is 

zero,   and if it is not,   is the machine then to refer to a dictionary,   somehow planted in 

storage which will direct it to a set of operations suitable lu that value of i, j?    This 

now rhetorical question was answered with a no.    A block of registers can be cleared 

immediately by the program.    There is no need to insert zero elements or even to pass 

through ihem.     Rather than pick a position and decide what is to be placed there,   pick 

up what is to be placed and decide where.    This is how the program works:    The prob- 

lem has been solved up to a certain number of quanta and now the matrix is to be aug- 

mented by the introduction of states with one more quantum.    Lei  m  be this number 

of quanta plus one.    The order of the matrix 

_  m(m +  1) 
2 

The new off-diagonal elements are all of the form   v k -y . 

k   =   k -   q 
max ' 

where 

k =   m   -   1 
max 

and 

0 $  q «  m  +   2 

Each k  goes into two positions given by 

i=j-q i=j-m Jq       Jo • q        Jq 

j   ' =   i     -   (m -  1)   +   q i   ' = j   •   -   (m +  1) jq JQ / I q Jq / 

where 

j     = n   -   1 Jo 

The gross cycle is the one on m  as it is set to increasing values beginning 

with m   =  2.    (The case of no quanta is a special one whose 1   X   1 matrix is computed 
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immediately. )   Pick an m.    From this find  n  and k        .    Establish i   .    Set up a    q J max Jo K ' 
counter and place the off-diagonal elements.    The diagonal elements are of the form 

t  +  ft, +   (^ -   2q)a]2 

where  t  =  2(m -  1) and 0 $ q •$ -.    The address of the diagonal element is n -  1  - q, 

n  -   1   - q. 

The program input consists of m ,   r|,   a,   v.    m begins at 2   and runs up to 

the m decided on by Schultz.     Because the triangular Hermitian matrix has to be max ' b 

in fast storage,   and because it would be costly timewise to break up the program into 

small bits which are transferred from the drum,   the m cannot exceed 7,   which max 
corresponds to a maximum matrix order of 28. 

The only apology that 1 can offer for going into the pattern of this program is 

that it  was exciting to analyze,   and I hope that the inversion of thought in the matrix 

formation will prove to be good experience for other problems. 

Reference 

1.  This technique is described in the Quarterly Progress Report,  Solid-State and 
Molecular Theory Group,   M.I.T.,   April  15,   1954,   p.   28 and p.   iZ. 

A.   Meckler 
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7.   APPLICATIONS OF WHIRLWIND TO PROBLEMS OF MOLECULAR AND 

SOLID-STATE PHYSICS 

In the following report,   various applications of the Whirlwind I computer to 

problems of molecular and solid-state physics are discussed in an attempt to illustrate 

the high versatility of such a machine.    Inasmuch as the potentialities of high-speed 

computers are still not too well defined,   the numerical techniques are sketched in 

some detail in order to indicate the scope of reasonable coding procedures.    It is 

hoped that in this indirect fashion,   it will be possible to display some of the shifts in 

numerical emphasis allowed by a modern computer. 

Function Generators 

In coding a problem for a digital computer,   there often arises the need of 

knowing the value of a function for a given argument.    There are two usual solutions 

to this problem:    One may either use a table of the function values and an internolation 

scheme if the values of the argument are non-uniform,   or one may use a generation 

subroutine  each  time  to form the function value from the argument.     If the function 

varies rapidly over the range of the argument,   or if many functions are required,   the 

table method will require a great deal of the storage space in the computer.    On the 

other hand,   generation of a complicated function can be a time-consuming process even 

on a high-speed computer.    In any case the problem of reading tables of function 

values into the computer is a serious one,   for the unsatisfying task of proofreading 

is the only easy way to eliminate errors among the entries.    Thus function generators 

are extremely useful in the coding of most problems,   either in direct use or as the 

preliminary generators of tables for interpolation. 

Because of their widespread application,   the ordinary functions such as    /x~, 

sin x,   cos x,   sinh x,   cosh x,   exp x,   and fri x are available in the Whirlwind Subroutine 

Library which has been prepared by the computer staff.    In general,   when coding 

problems,   these relatively simple functions are best obtained by the direct use of the 

generation subroutines. 

In the writer's current work on the energy bands of graphite,   the need arose 

for evaluating various types of two-center integrals involving analytic Slater AO's. 

By the use of prolate spheroidal coordinates,   these integrals were all simple ex- 

pressed in terms of the two sets of functions 

rn        j 
,n    - tx   .. .     v x 
t    e dt   =  n."     > — 

'-' i' 

B   (y) =/     tn e"ty dt   =   - —L_  [e"yC   (y)   +  ey C   (-y)l 
nKJI    J n+ 1   L n n        J 
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(APPLICATIONS OF WHIRLWIND) 

n:0(l)N   (°*** 1- oo < y < 

where x, y, and N are fixed for any particular integral,   Since all ordinary two-center in- 

tegrals of the Slater AO's (except exchange and hybrid integrals) are simply expressed in 

terms of the C    and B   ,   a general subroutine has been programmed for the generation 

of the two sets of functions for given x,   y and N.     Extensive application of this sub- 

routine has been made by the writer and by Dr.   A.   Dalgarno of Queen's University 

Northern Ireland who was visiting M. I.T.   this past summer. 

It is perhaps interesting to examine in some detail the method used in coding 

the above subroutine,   since it is illustrative of the numerical techniques which are 

applicable in a high-speed computer.    The functions C   (x),   being simply polynomials 

in x which is always positive,   are sums with all positive terms,   and thus offer no nu- 

merical cancellation problems.    For greater computational efficiency though it is 

convenient to use the recursion formula 

Cn(x)   =  xn  +   n Cn_ ,(x) 

to form the functions of higher  n successively from C   (x)  =   1.    The functions,   B   (y), 

however,   are considerably more difficult in that for the magnitude of y  approximately 

less thati  n,   the closed form given above has large numerical cancellations.    To 

avoid this the following reformulation was made: 

B (,) = 2(- 1)" £- N i.il    , >i_n-„.      "'    Ui_!_LI 5H 1'oWj    " «- »" "•'     i , (•,.»•?(.*')..)•••• Vj! 

where 

i   (x) s (- (,)    j   (u)   =  spherical Bessel function of the first kind with 
imaginary argument {i.e. "modified spherical 
Bessel function") 

n!.[  =  n(n - 2)(n - 4) . . . (2 or  1) 

Y,   =  sum over:   j even if n  even;  j odd if n odd. 

Because the sign of i (y) is always the same as that of y ,   it follows that the B  (y) are 

expressed as a sum of terms which are all positive or all negative.    Now the power 

series for u,(y) and L,     . (y) converges rapidly when 20 > N > |y| and moreover con- 

tains terms of only one sign.    Furthermore,  the recursion relation, 

,   .       ,2n +  1 
l n_i(x)M£HJLl)in(x)+ in+1(x) 
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(APPLICATIONS OF WHIRLWIND) 

when used downward in n,   does not contain cancellations so that significant figures 

are maintained.    Thus the B  (y) arc determined by numerically accurate methods for 

all  |y|   <: N.     For  |y|    > N,   it was found empirically that the closed form is adequate. 

Finally,  the round-off error propagation was minimized by appropriate use of buffer 

(i. e.   higher accuracy) storage registers.    Spot checks of the generated functions for 

various  x  and y   indicated 6 to 7 significant figure accuracy for N $ 20. 

Inasmuch as it was a relatively simple modification of the preceding subrou- 

tine,   a second subroutine has been developed for generating the set of i  (x) where 

n: 0(1) N.    These modified spherical Bessei functions occur in the expansions often 

used in the evaluation of multicenter integrals and moreover inK. Ru jdenberg's method 

of evaluating two-center exchange integrals of Slater AO's. A general program for 

the latter method is currently being coded for Whirlwind by P.   Merryman and K. 

Ruedenberg as a part of the general two-center integral evaluation program of Mulli- 

ken's group at the University of Chicago. 

One-Electron,   Two-Center Integrals^  ' 

Since a large number of one-eiectron,  two-center integral values were de- 

sired by the writer and because such integrals occur often in other molecular calcu- 

lations,   a general production-style program was written.    This program depends 

primarily on the C    and B    generation subroutine described earlier and allows the r J n n " 
calculation of one-electron integrals involving wave functions which can be expressed 

as a linear combination of an arbitrary number of Is,   2s, and 2p Slater AO's (e. g.   a 

fitted HF wave function).    Furthermore, by expressing potential functions in the form, 

Vr)    i  V     "d" —-— =  -   > c   e r r   *->   l 

the program, ran also be used to evaluate all of Hie potential-type one-electron inte- 

grals.    The program in its final form can be manually modified in a trivial way by 

the computer operators to give any of the possible integral types (i. e.   overlap, kinetic 

energy,   etc. ).    The user gives as input data a listing of the composition of the wave 

functions (and potential,   if required) in terms of the Slater AO parameters and coeffi- 

cients.    The results consist of a printed list containing the integral type, the integral 

value,   and the wave function and potential compositions,   so that identification is com- 

plete and data input mishaps are obvious.    A major advantage of the p-ogram is that 

the lengthy intermediate results are processed without error within the machine and 

need not be brought out of the computer. 
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Fitting of HF Wave Functions    ' 

Another application of Whirlwind has been a partial mechanization of th^ 

process of fitting a KF wave function with exponeiitials.    The technique developed is 

an iterative one and is only suitable for a high-speed computer.    After removing 

radial factors or   r  and node factors, r    •• r,   from the tabulated HF wave function, o 
there remains the exponential-like function,   E(r.).     For an n-expor.ential fit,   n  pairs 

of r.' and r." are chosen from the different regions of r. such that r' > r." > r,1 > 

r2"> > r   ' > r   ".      If we define n n 

E3(r)  = I a,J exp(-b.jr) 

to be the j      approximation to E(r),   then the following prescription of cyclical equa- 

tions can be given where an iteration is comprised of  i  successively assuming the 

values from  1 to n.    Defining 

1 

DJ(r.) = E(rt) 

then 

(1 J\ I    a£+1 exp(-b£+1 r.)  +     Z    a. J exp(- b. J r.) 
k<i k > i 

bJ+1   =   (r ' 
I l 

r.')~ ' in 
I ' 

DJ(r. 

DJ(r.") 

j+l DJ(r.') exp(bJ        r. 
i '       r    l i 

where 

b.     =  0,   0 < K < 1 
l 

Examination of these equations reveals that as  j   increases to a large value, J, the 

coupling factor,   1   - \% approaches unity,   and the cyclical equations express the 2n 

conditions of 

EJ(r. E(r.«) and E^rV')   =  E(r{' 

Thus,   if  \  is not too much smaller than one and  J   is large enough,   the set of a.    and 

b.J will smoothly approach the desired parametric values.    For convenience, after 
1 I      . convergence is attained, the error function,   EMr.)   - E(r-),   is automatically plotted 

and photographed on the oscilloscope camera.    From the shape of the error curve, 

new choices of the fitting points,   r.' and r.",   can be made and with a few re-runs, 
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optimization of the fit can be essentially attained.    Empirically it appears that all HF 

wave functions can be fitted in this manner. 

Generation of Matrix Elements 

In view of the previous remarks concerning function generation,   it is obvious 

that similar conclusions can be drawn concerning the generation of matrix elements 

in secular equation problems.    In particular, when using the tight binding scheme in 

crystal problems,   it is usually possible to cast the matrix elements in the general 

form of 

Hij  =     £  [c^d^Hcos k • K,)   +  Dydfy sin (k • R^J 

In writing a program for a specific crystal structure, one includes the properties of 

the C. (R-) and D   (RJ.    Consequently, one need only specify  k, the Brillouin zone 

vector,   to completely generate the desired matrix to be solved in a secular equation. 

This procedure is found to be especially convenient in the writer's current work on 

graphite since the  S  and   H  matr jes arising in the non-X. type secular equation,   HX = 

SXX,   both have the same generation properties. 
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8.   LIMITED CONFIGURATION INTERACTION TREATMENT OF THE NI^ MOLECULE 

The determination of molecular orbitals for the ammonia molecule as best 

linear combinations of atomic orbitals has been completed for both the equilibrium 

case and the planar case.    Meckler's mechanization   ' of Roothaan's formalism 

was used for this process.    The criterion of self-consistency used was 

E    - E       . . 
_2 "_-_! < lo"4, 

E n 

where E    is the total molecular energy after the n     cycle.    The digital computer 

(Whirlwind) went through approximately forty cycles in order to achieve consistency. 

The results are generally quite gratifying.    For the equilibrium case the 

calculated binding energy,   . 840 a. u. ,   is about 90 percent of the observed value,   . 930 

a. u.   The hump in the curve of molecular energy versus distance of the nitrogen atom 

from the plane of the hydrogens however is wrong by an order of magnitude:    calculated 

. 558 a. u. ,   observed .019 a. u.    Some error in this direction was expected due to the 

fact that the equilibrium N  - H distance was used for the planar calculation.     However, 

such a large error was not foreseen. 

The one-electron functions exhibit the expected behavior.    For each symmetry 

type there is one orbital somewhat concentrated between the nitrogen and the hydrogen 

plane which is occupied,   and one exhibiting a node in this region which is unoccupied. 

For A.  symmetry there is also a function which is primarily directed away from the 

binding region (Lennard-Jones lone pair) and a function consisting almost entirely of 

nitrogen 1  - s. 

The results of the calculation are now being analyzed in more detail.    In addi- 

tion,  preparation is being made to use the molecular orbitals as the basis of a limited 
(3) configuration interaction described earlier. 
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9.   VALENCE BOND THEORY.    SIMPLE SATURATED MOLECULES 

The revised valence bond theory,   developed elsewhere    '       and already ap- 

plied to the ir-electron systems of simple conjugated molecules,        is now being ap- 

plied in non-empirical calculations on simple saturated molecules.    A preliminary 

treatment of the water molecule has been completed and calculations on ammonia are 
(4   5) 

in progress.     Both these molecules have been studied previously,     '       using the ap- 

proximate self-consistent field (SCF) scheme, v      reasonable binding energies being 

obtained.    The present calculations have a different object;   they are concerned with 

the following questions:    (l) Can the valence bond approach lead more directly to re- 

sults comparable with,   or better than,   those of SCF MO theory?    (2) Can the directed 

"hybrid" orbitals,   commonly employed in empirical valence theory,   be used to ad- 

vantage for this purpose?    (3) Is it possible to use a model in which some electrons 

occupy a "closed shell" (composed of atomi? inner shells and "lone pairs") and simply 

provide an effective field for those held responsible for binding? 

The procedure being followed will De illustrated by the case of H,0.    The 

guiding principle upon which the qualitative interpretation of chemical valence and 

stereochemistry is usually based is that of "maximum overlapping" -- crudely put, 

bonds are best described by using those orbitals of the different atoms which overlap 

most strongly,   and this principle is well founded insofar as the use of such orbitals 

provides a simple and direct way of describing an accumulation of electron density 

in the bond regions.    In describing H-O then,   where the bond angle is considerably 

greater than the 90    between 2p orbitals,   we first imagine the oxygen atom "promoted" 

from the    P ground state not to the valence state (2s)    (2p  )    (2p  )    (2p  )    but to 
2        2 11 x y z 

(*•>)    (l4.)    U i)    (t?)    where t., t    are combinations of the 2s and 2p orbitals which 

"point" towards the hydrogen atoms H.  and H, (see Fig.   9-1) so as to procure greater 

overlap with their Is orbitals,   h. a. d h, and t,,   t. are the res- 

idual orbitals,   determined by symmetry and orthogonality,   point- 

ing away from the hydrogens and describing the lone pairs.    We 
"2" '"I 

employ these orbitals in a preliminary treatment not because 

they are necessarily the most suitable,   but because they are 

easily set up and chemically plausible;  their deficiencies can 

I 

Fig    9-1 always be corrected,   if need be,  by configuration interaction. 

Denoting oxygen orbitals by S, S,  X,   Y,   Z,   the following symmetry orbitals 

may be defined 

:.  S,   Z,   <r1(=2_1/2(h1 + h2))   :   Y,   <r2(=2" ^^hj - h2))   : X 

where cr,, <r, are left unnormalized since it is convenient to have them related to h. 12 i 
and h? by a unitary transformation.    This basis of orbitals,  which we shall denote by 

the row matrix (A)   =  (S,S,   Z,   a.,   Y,   a~,  X),   is the one used by Ellison and Shull 
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who computed all the necessary integrals.    We must now transform to the basis (a) 

• s. V V t.,,   t.,   h   ,   h,):    writing (A)   =  (a)(T),   the unitary matrix (T) is very easily 

determined.    The straightforward VB procedure would now he to set up a spin eigen- 

function with orbitals t.,   h    and t,,   h- singly occupied and having "paired" spins -- 

this single "structure" representing the approximation of "perfect pairing":    this course 
(3) is complicated by the lack of orthogonality of the orbitals;   but,   as we have seen,        is 

certainly included in a "VB" treatment where the orthogonalized orbitals t.,   t? -- are 

employed and "polar" structures (in which orbitals may be empty or doubly occupied) 

are admitted and the VB calculation can be carried out without the usual approximations 

of VB theory.     We therefore form,   from (a),   a set of orthonormalized orbitals (a),   by 

the Lowdin method,   i. e. ,   (a)  =  (a)(S  )      '    .    Here (S   ) is the matrix of overlap inte- a a 
grals (metrical matrix) for the (a) basis and is related to that for the (A) basis by (S  )   = 

(T)(S.)(T)t:    since (T) is unitary (S   1    '/2   = =  (T)(SA) "'/Vnt (T) ' and it follows that the 

orthonormalized AO's (directed AO's included) are related to the symmetry orbitals by 

(a) = (A)(n) where (\i) = (S.) ' (T) . All integrals referred to the (a) basis may now 

be expressed in terms of those given by Ellison and Shall. 

The next step in the VB calculation is to set up suitable VB structures in 

terms of the AO's.     First we limit ourselves to those in which S,  t? and t, are doubly 

occupied,   and we deal explicitly only with the electrons occuping 1   ,  i?    h.   and h  ,   us- 

ing an effective one-electron Hamiltonian,  h,   which takes into account the closed shell, 

instead of that for an electron in the field of the bare nuclei (f,   say).    This is a quite 

legitimate reduction (see Ref.   2) so long as we keep to configurations showing a filled 

closed shell and leads effectively to a four-electron problem.    The effective Hamilton- 

ian h may be defined by its matrix elements between two of the valence orbitals,   p and 

q say: 

(pjh|q)   •  (p|f|q)   +   2£(xp|g|xq)   -   £   (xp | g | qx) 
X x 

where  x  is a closed shell orbital and summations are over all orbitals of the closed 

shell (,S , t,, t.). The energy calculated fr 
to a closed shell or "framework" energy 

shell (,S , t,, t.). The energy calculated from the four-electron problem is then relative 

Ef  =  2 £  (x|f|x)  +    £ (xx|g|xx)  +   4 £   (xy|g|xy)   -   2  £   (xy|g|yx) 
xx xy xy 

summations again being over the closed shell (counting distinct pairs xy).    The four- 

electron VB structures employed so far are shown,   with an obvious symbolism,   in 

Fig.   9-2.    The first five are the "obvious" ones which would arise as the dominant 

terms in expansion of the perfect pairing approximation into VB structures,   and which, 

in the charge-hopping interpretation should be capable of describing the two O-H bonds. 
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 ^         +.  *     -* x+   +* »- 

Fig.   9-2 

The remainder correspond to intra-atomic atomic spin pairings and double "excitations" 

but either have low "energies" (diagonal matrix elements) or interact strongly with the 

first five.    Thus,   the "resonance" integral (p|h|q),   is associated with binding in the 

overlap region of p and q containing the interaction energy of the nuclei and a charge 

distribution pq in this region and governs the interaction between structures which show 

a charge shift between p and q.    As anticipated,   it is very large for the strongly over- 

lapping orbitals of the bends,   but is small otherwise (e. g.   when p and q belong to differ- 

ent bonds),   and consequently structures showing intra-atomic charge shifts (Fig.   9-2) 

or crossed links should participate only weakly,   doing little to stabilize the molecule. 

But the doubly polar structures are likely to be important -- though we are still omitting 

those showing a "doubly ionized" oxygen atom,   which lie rather higher in energy. 

This general picture is supported by the actual calculations.    Unfortunately, 

detailed numerical results are not on hand (the writer being at present en route to King's 

College,   Newcastle-on-Tyne,   England) but the following qualitative conclusions are 

worthy of note. 
There is no difficulty in handling the VB calculation by the methods already 

developed.    The only real computational obstacle is the transformation to integrals 

over the AO's,   and this is easily mechanized    ' being performed on Whirlwind in a 

very few minutes once the (28   X   28) matrices have been written down. *   The iterative 

SCF procedure is replaced by the solution of a final secular determinant -- again easily 

mechanized -- and there is little doubt that the accuracy of '.he SCF result could be 

surpassed without too much trouble by adding a few more structures (e. g.  breaking 

into the closed shell).    But the whole object of these calculations was to find a simple 

. 

way of setting up good wave functions,   making use of the basic chemical concepts of 

directed valence and lone pairs and without any appeal to existing knowledge (e. g.  the 

SCF results themselves),   and from this point of view the results are not altogether 

encouraging.    The decrease in total electronic energy,   accompanying molecule forma- 

tion,   is found to be about 95 percent of that predicted using the full SCF method (and 

the wave function might therefore be reasonably good):;   but this decrease is completely 

offset by the increase in internuclear repulsion energy and the last 5 percent is found 

I am indebted to Dr.   Meckler for the use of his machine program for this purpose. 

-33- 

nJfi 



(VALENCE BOND THEORY.    SIMPLE SATURATED MOLECULES) 

to be crucial in getting a binding energy.    This is a familiar situation in binding energy 

calculations -- the electronic energy is good but the binding energy is very poor.    The 

reason for this failure,   however,   does not lie wholly in the inadequacy of the VB struc- 

tures selected,   for at the outsel we msde a somewhat arbitrary choice of orbitals, 

upon which to base the limited configuration interaction calculation.    Indeed,   it is likely 

that the use of differently directed orbitals (describing "bent" or "strained" bonds) 

would have led to an improvement of the required order still within the framework of 

a closed-shell model with a simple chem'cal interpretation (inner shell,   two lone pairs, 

two bonds).    This belief,   that the basic orbitals themselves are considerably at fault, 

was strengthened by making a limited SCF MO calculation,   using one determinant based 

on the configuration  (J)Z,   (t~3)
2,   (t^)2,   (Tj)2,   (T2)2,  where Tj   =  N(tj + Vhj) and T-j  = 

N(t"2 + Xh2). 

The only parameter admitted -- X,   which describes the polarity of the O-H 

bond and upon which the energy is quite strongly dependent -- was directly varied and 

the final minimum value was found to be no better than that reached in the VB calcula- 
tion. 

These results therefore suggest that a simple approach,   in which attention is 

focussed upon the individual bonds,   cannot be quantitatively successful unless the bond 

orbitals (localized MO's) of an MO treatment or the directed orhitals of a VB (or VB) 
treatment are chosen with extreme care.    Unless this can be done (as,   in effect,   it is 

in a full SCF treatment where none of the orbitals are chosen arbitrarily) there seems 

to be no alternative but to employ a "hammer and tongs" approach in which more   .nd 
more configurations are thrown in to correct for an inappropriate choice.    There can 

be no doubt that this procedure is feasible (many more configurations were handled in 
(3) the calculations on benzene    ') and the final results can always be given a simple pic- 

torial interpretation by shifting attention onto the actual charge density (which can be 
(3   7) calculated in many-configuration theories by the methods described elsewhere:  '   ' 

But this is a clum.'iy way of getting a solution and it is to be hoped this procedure can 

be largely obviated by using intuition and previous experience in choosing more satis- 

factory basic orbitals.    Again,  it seems that a semi-empirical development is suitable; 
for binding is primarily associated with a few large integrals and these might well be 
regarded as disposable constants and the basic orbitals themselves would then no 

longer play a crucial part in the calculations. 
The writer would like to take this opportunity of recording his gratitude to 

Professor Slater,  and to members of the Solid-State and Molecular Theory Group,  for 

the hospitality he has enjoyed at the Institute and for the benefit of many discussions 
during a most happy and stimulating year. 
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10.   NATURAL ORBITALS FOR   THE HELIUM ATOM 

In his contribution to the last Quarterly Progress Report,   P.   O.   Lbwdin    ' 

introduces the concept of natural orbitals and discusses some of their interesting 

properties.    He introduces them in the following manner.     We imagine that we are 

trying to approximate the solution of an  n  electron problem with a Hamiltonian con- 

taining the usual kinetic and potential energy terms.    In order to approximate the solu- 

tion to this problem,   we form an![symmetric stat   s formed by taking linear combina- 

tions of Slater determinants each containing  n  one-electron spin orbitals selected 

from   N   spin orbitals,   if •  • • •   +ivr    K we call the wave function described above J(x.  . . 
. . x   ),   a first order density matrix can be defined as n J 

YUJ'IXJ)   =  Nj ^(x,', x2 . . .   xn) $(x,, x2 . ..   xn) dx2 . . .   dxn (10. 1) 

This density matrix can be written in terms of our one-electron spin orbitals in the 

form 

N * 
Y(x1'|x,)=    £  (k,i)*k Uj')^*,) Y& (10.2) 

1 

Here the constants   •y.,   consist of some forms in the constants that multiply the de- 

terminants in the wave function J.    If we go to another basis in the one-electron func- 

tions by a unitary transformation,   we shall induce a unitary transformation on the co- 

efficients   v« •     Let us call the transformed functions 

•k   =   3>>+aUak (l°-3) 

We can now look for the transformed density matrix which is diagonal.    That is we can 

choose our unitary transformation sucli that 

U   yU   -  n  =  diagonal matrix 

V(xI'|xl)  =   £(k) nk<)>k*(x1
1) <J>k(Xl) (10.4) 

We can see that in general the natural spin orbitals will mix the original spin 

orbitals of a  and  (3 spin.    Under the simplifying assumption that our total wave func- 

tion  ijj has Mn (total   z  component of the spin) as a good quantum number this will not 

be the case since the density matrix   y.,   will be blocked off into two parts.    The one 

part we might denote as y.,   and the other part we shall call y., .    The constants y., 

are the coefficients of the products of orbitals with  a  spin in (3. 2) and the y,,   are 

the coefficients of products of orbitals with  p  spin.    There are no cross terms in this 

case.    The reason for this can be seen by considering the origin of any term in the 
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expansion of the density matrix (10. 2).    Any term in the sum in (10.2) will arise from 

the integration of the product of two Slater determinants over n -  1 coordinates.    If 

Jy(x   ') has a spin and $.(x.) has p spin the integration over the coordinates x, . . .   K 

will yield zero since the integral over spins will be the integral of the product of two 

functions,   one having spin Ms +   1/2 and the other having total spin M^ -  l/2.    Since 

our density matrix is blocked off into two parts,   one for a and the other for p spin,   the 

unitary t transformation which diagonalizes this matrix will also be blocked off.     We 

shall thus have no mixing of a  and   p spin orbitals. 

Part of the hope that Lowdin expressed in connection with the natural orbitals 

was that a configuration interaction treatment of the problem of the many-eiectron sys- 

tem would be more rapidly convergent in terms of the natural orbitals.    In order to 

study the natural orbitals in a simple case and to study the convergence of the con- 

figuration interaction in terms of natural orbitals,   it was decided to carry out a simple 

calculation on the helium   atom. 

For one-eiectron orbitals a  Is and a 2s wave function were chosen in the form 

- Z'r u,   =    [2/y4^(Z')3/Z] 

U? = fi/uyry^)] (ZM
3
/
2
 (2 - z« 

Z'r 
2 

(10.5) 

By making all possible    S states for this two-electron problem we arrive at three pos- 

sible configurations:    (Is)   ,   (ls2s), 

expressed as a sum of three terms 

2 2 sible configurations:    (Is)   ,   (ls2s),   (2s)   .    Our many-electron wave function is now 

J(xrx2)   =  Cj(ls)     +   c2(ls2s)   +   c3(2s) (10.6) 

The expectation value of our Hamiltonian was taken with respect to this wave function 

for a given value of the effective charge Z1 and the values of the energy and the c's 

we   e determined. It was found that the best value of Z1 was roughly 28/16 and that 

for this value the c's and the energy were 

E = - 5. 70939 

Cl 
= ,993173 

C2 = - . . 1 15706 

c^ = - 014819 (10. 7) 

Table 10-1 contains a comparison of the energy obtained in this way with the Hartree- 

Fock energy,  the experimental energy and the best possible energy obtainable from a 
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(is)    configuration with the wave function of the type (10. 5) 

Table  10-1 

Energy of the helium atom by various approximations 
(energies in Rydbergs) 

Experimental - 5.80736 

- 5. 75 

(Is)' Z'   -  27/16                                            - 5.6953 

{\s)Z   +   (ls2s)   -t   (2s)2 Z' = 28/16         - 5.709394 

Hartree-Fock 

,2 

Knowing the wave function obtained in this manner it is possible to construct 

a density matrix for this problem. 

Vtxjlx,') = . 993085 11,(1') Q(I') UJ(1) a(l) + . 006914 u^l1) a(l») u2(l) a(l) 

- .080045 u(l') a(l') u2(l) Q(1) - . 080045 u2(l') a(l') u,(l) a(l] 

+   identical terms with all a's replaced by p's. .10. 8) 

Therefore 

+ 
Vll = Y"  = .993085 

"\z = Y21 = *i2 = >zi = - .080045 

^22 
= Y"  = .006914 (10. 9) 

J 

We notice here the factoring of the density matrix into a plus spin part and a minus 

spin part which we mentioned earlier.     We also .lotice that the plus and minus spin 

parts of the density matrix are identical.    This arises from the fact that the state we 

are considering is a singlet and therefore the density matrix must remain unchanged 

if we replace all a's by (3's.    In order to find the natural orbitals all we need r'~> is to 

diagonalize the two by two matrix 

(10.10) 
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We find that if we diagonahze this matrix we get as the diagonal elements in the trans- 

formed matrix 

n = .999541 

nz   =   . 000459 (10. 11) 

The transformation which accomplishes this diagonalization has elements 

Uu   =       .996764 U22   =       .996764 

Uu  =   - .080379 U2,   =  + .080379 (10. 12) 

Therefore our natural orbitals are given by 

U   '   =   .996764 u.    -   . 080379 u2 

u2»  =   . 080379 u     +   . 996764 u2 (10.13) 

The new  Is function therefore has added to it a small amount of 2s and the new 2s func- 

tion has added to it a small amount of Is. 

We are now in a position to determine the convergence of the configuration 

interaction treatment in terms of the l.atural and the original orbitals.    We can con- 

struct from our natural orbitals configurations similar to those which we can construct 

from our original orbitals.    We shall call these (is1)    (ls'2s') and (2s1)".     We can now 

do our configuration interaction in three approximations.    We can compare the ener- 

gies of single (is)    configurations made out of natural and our original orbitals,   we 

can compare the energies we get '"rom solving the two by two connecting the (is)    and 

(ls2s) and we can finally compare the energies that we get from the complete three by- 

three done in both manners.    InTable 10-2, we show the results of this comparison. 

Table 10-2 
Comparison of the energies of the helium atom arrived at 

using natural orbitals and the original orbitals 
(energies in Rydbergs) 

(Is)2 - 5. 707462 - 5.6875 

(is)2   +   (ls2s) - 5.707531 - 5.708464 

(is)2   +   (ls2s)  +   (2s)2 -5.709394 -5.709394 
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We notice from this table that the natural orbitals give a much better energy for a 

single configuration than do the original orbitals.    Adding the next configuration gives 

a very small improvement in the energy in the natural orbital framework.    For two 

configurations,   however,   it would have been advantageous to use the original orbitals. 

For three configurations it makes no difference which one-electron functions we use 

as the basis.     From this simple example it is not clear whether we have improved the 

convergence by using the natural orbitals.    For one configuration it is better to use 

the natural orbitals,   for two configurations it is better to use the original orbitals, 

for three i*. makes no difference which we use since we are doing the complete con- 

figuration interaction which can be carried out using our basic set of one-electron 

orbitals* 
Even the result that the one configuration energy is improved by the use of 

natural orbitals is an uncertain result as we can show by a simple argument.    Imagine 

that we did our configuration interaction problem for  helium using the Hartree-Fock 

Is and 2s functions as our basic set of functions rather than the ones in (3. 5).    In this 

case we would certainly have a three by three configuration interaction problem and 

could once again find the natural orbitals.    In this case the natural orbital would turn 

out to be some mixture of the Is and 2s Hartree-Fock functions.    If we now used the 

natural orbitals formed in this manner to form the (is)    configurations,   we could ask 

if the energy of the singlet state would be improved by the use of the natural orbitals. 

It would certainly not be improved since the original Hartree-Fock functions were 

defined in such a way that they gave the best possible energy which can arise from a 

single determinant.    An admixture of 2s to the Hartree-Fock Is could only have the 

effect of raising the energy. 

From the simple example and the discussions it would seem that it is doubt- 

ful that natural orbitals are going to increase the speed of convergence of a configura- 

tion interaction approach to the many-electron problem. 
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11.   HARTREE-FOCK-SLATER SELF-CONSISTENT FIELD FOR Fe (3d)6 (4s)2 

Solution of the one-electron wave functions for Fe with an unbalanced spin 

configuration,   namely five 3d electrons with spin up,   one 3d electron with spin down, 

and two 4s electrons (one of each spin) has reached self-consistency according to the 

criterion established by Hartree.    The 3d and 4s   functions show the most striking 

variations.    In both cases,  the spin-up function is shifted,  with respect to the spin- 

down function, toward the origin (see Table  11-1).    Both the 3d and 4s electrons spend 

considerable time in regions where the averaged exchange potential is a sizable frac- 

tion of the total potential function appearing in the radial wave equation.    Thus,  the 

two exchange potentials become important in determining the behavior of the radial 

wave functions for 3d and 4s. 

r(M.G. ) 

Table 11-1 

p r 

ls+ . 035 

ls- . 035 

2s+ . 225 

2s- . 225 

2p+ . 180 

2p- . 180 

3s + . 700 

3s- . 705 

3p+ . 705 

3p- . 715 

3d+ .680 

3d- .700 

4s+ 2. 240 

4s- 2. 360 

037 

221 

181 

735 

735 

735 

2.697 

Tile charge density for the other functions (is,   2s,   2p,   3s,   3p) is essentially 

the same with respect +n spin interchange.    The above-mentioned shift is not prominent, 

although still present.    The total potential seen by these electrons is largely made up 

of ordinary 2Z    plus the angular momentum term,   the exchange potentials being here 

less important. 

In Table 11-2 we list the radii of the electronic orbits (.naxima of P  (r)) for 

our final self-consistent functions and for those determined by Manning and Goldberg. 

This table is of limited value,  but it serves to indicate the general trend of our calcu- 

lations.    The exchange has tended to pull the charge distribution in toward the origin 

and to lower the one-electron energies as one might guess.    However,   starting with 
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(HARTREE-FOCK-SLATER SELF-CONSISTENT FIELD FOR Fc (3d)6 (4s)2 

Table  1 1 -2 

Energies (-Rydbergs) 

M.G. Present Calculations Ionization Potentials 

523. 9 

3s       6   973 7-463 ( + ) is     b.vu 6_930   _, 6.9 

3p ^oo r^r-i 

3d       0.7578 1:6636 (-) °' 6° 

4s      0.4836 J.5315^ 

3s in the energy table,   the spin-down functions have a higher energy than do the 

Manning-Goldberg functions. 

The inward shift of the one-electron radial charge densities is more marked 

for the functions starting with 3s,   and the amount of shift seems to follow an argu- 

ment like that given for the differences between the spin-up and spin-down functions; 

one is on less firm ground here,   however,   in view of the self-consistency of the two 

sets of calculations (Manning-Goldberg and present calculations). 

J.   H.   Wood 
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12.   NUCLEAR ELECTRIC QUADRUPOLE INTERACTION IN THE KC1 MOLECULE 

The calculation of polarizability effects in F    is being carried out in the re- 

vised scheme discussed in a previous Progress Report.     '   Unfortunately,   this new 

formulation has rearranged the problem to such an extent that it has been necessary 

to re-evaluate the integrals.    Howeverf   the experipnce gained previously has been 

helpful and work is proceeding rapidly. 

Reference 

1.   L.   C.   Allen,   Quarterly Progress Report,   Solid-State and Molecular Theory Group, 
M.I. T. ,  April 15,   1954,   p.   34. 

L.   C.   Allen 
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13.   ELECTRON-LATTICE INTERACTIONS 

The problem of interaction between conduction electrons or impurity-bou'id 

electrons and lattice vibrations where the interne lions are too strong to be handled by 

perturbation methods (e. g.   ionic crystals) has been approached in a variety of differ- 

ent  ways.    Frohlich, Pelzer, andZienau'     and Gross    ' have worked in a Fock space 

for the phonon assembly introducing cutoffs at one,   two,   or three quanta,   then attempt - 
(3) ing an exact solution of the apprnvimate problem remaining.     Lee, Low, and Pines, 

(4) 
and Gurari       have applied intermediate coupling theory in what amounts to a Hartree- 

Fock approach in the momentum representation of Fock space.     Various Russian 

writers including Bogolyubov,       Tyablikov,       and Pekar      have   worked in an electron- 

lattice configuration space making various approaches to an adiubatic approximation. 

Basic to all these approaches are certain assumptions.    The periodic poten- 

tial of the lattice is taken into account through the introduction of an effective mass. 

The lattice is treated as a harmonically vibrating continuum of polarization charge 
(8) described by a phenomenoiogicai Mamiltonian introduced by Fi iihlich. The analyses 

are restricted to small momenta,   that is slow electrons. 
(9) 

Several quest,ons have been raised:    Haken       in treating a highly specialized 

model has suggested that the effect of the actual periodic potential on the effect of in- 

teraction may be considerable.    Lee and Fines claim to obtain an exact solution in the 

limit of strong coupling,   yet Pekar using a variational method seems to obtain lower 

energies for sufficiently strong coupling.    Lastly,   the Fock-space methods suggest an 

effective mass increasing sharply with momentum,   but these methods are vaiid only 

for small momenta.    Attempts are now being made to resolve these L'^^ertainties. 

First an unsuccessful attempt has been made to investigate higher momenta 

of the electron-lattice system by a variational calculation in the Fock-space momentum 

representation in which the correlation between different phonons was explicitly in- 

cluded in the trial function.    The Frohlich Hamiltonian for an electron described by 

variables q,   p  and a system of traveling-wave oscillators,   the k      having frequency 

w. ,   creation operator a. * and annihilation operator a,   is 

2 
3 

2m 
H   - £-•   Zgkake

lir^  •   gn*ak*e-ik^+    Ih^a^a, 

neglecting zero-point energies.    Introducing  Jf =  V       H U by the unitary operator 

iti /,  k a, * a.   •   q 7^ k      k     M 

n k 

U  =  e , 

one obtains 
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jt =; 
(:7 - h ^kak*ak)2 

2m I 6k
ak P-u* au* +    X h' 'k <V 

in which q  is absent and its conjugate p,   now obviously the total momentum,   is con- 

served.    Restricting ourselves to states of definite total momentum p,   we may con- 

sider the operator p  as a c -number.    If £  (k,  ...   k ;  p ) =   < k,   ...   k    p I U      £> r r n    1 n . 1 n x 

is the probability amplitude that a system in the state   |U       $> has  n  quanta of mo- 

menta tik.,  Tik? hk    respectively and total momentum p,   then 

<i!H-E|i>=   II   Z  ••• X {tn(iri...iTn:p)[^(E-Ziri)
2 + i,IMk .-E] 

n     k       k k     l L ^m   n       .• l        t 

+   v/n+ 1 g(k.) £  *(k. , . . k ; p) t   x , (k, . . . k  k ; p) 

+ > 6n*(iT1... kn; p) g*(kn) &n_ i{iri • • • iTn. l??)} 

SI(E; p) 

The requirement that HJ  =  EJ is equivalent to 6'   =  0 for arbitrary variations sym- 

metric in all k.'s in the infinite set of functions   i?>- f • 

The metnod of FPZ was to set £,     = 0 for all n > m,   m = 1 and to solve the 
(2) " two remaining e:;i« Miens.    Gross    ' attempted an extension to m = 2 and 3 and was led 

to m + 1 coupled integral equations.    This method has the advantage of including cor- 

relations between two or three phonons accurately,   but it is a good approximation only 

if the probability of m^re than m  phonons being excited is very small.    Furthermore, 

for more than one phonon,   the integral equations cannot be solved exactly,   and for 

more than two even the approximate methods become extremely cumbersome.    Lee, 
Low, and Pines and Gurari have specified that 

l  (k. . . . k ; p) an    1 n   K/ 

C- 
P n   f-(k.) 

= i   P    l 

at 

where  C   is a normalization constant, and Lee and Pines have generalized this ap- 

proach somewhat.    Nevertheless,  the wave functions thus derived do not explicitly in- 

clude correlation. 

It was suggested by Ilylleraas's calculations on helium to set up a Fock- 

space momentum representative (4Q(p),   £.(k.;p),   ^(k.,  k2; p' ' ' ' ^ in wnich tne 

form of each function t,  (k    ...   k  ; p ) is specified but depends on a few arbitrary 

parameters.    The functional I(E; p") becomes a function of these parameters with 

respect to which it is minimized.    It was hoped that if a set of functions could be 
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found whose form was suggested by Gross's accurate wave functions for the one- and 

two-quantum cutoffs yet which would lead to tractable integrals,   the minimization 

procedure could be performed by the Whirlwind digital computer for a cutoff of as high 

as 30 quanta.    Functions of the form 

4 \l • z 
w k.     +  ji  L  k. • k. 

2   L"    i • \       jj 
,-   e    *       l 1J 

~n 

have the proper symmetry,   explicitly include the correlation and lead to multi- 

dimensional integrals which can be evaluated analytically,   at least for zero total mo- 

mentum.    Preliminary hard computations indicated that though some improvement 

could be obtained if ji  were allowed to vary from zero (case of no correlation),   never- 

theless the depressions of energy due to the interaction were only about half those 

obtained by oiher methods due to the poor fit of the one quantum trial function to the 

"exact" one quantum function.    Attempts at constructing trial functions better approxi- 

mating the functions found by Gross led to seemingly impossible many-dimensional 

integrals for any significant number of quanta. 

The fundamental difficulty is that one is trying to fit a series of unknown 

functions rather than just one as in the many-electron problem.    If an undetermined 

linear combination of  m  prescribed functions is constructed to approximate each £, 

then tlie matrix to be diagonalized for n-quanta cutoff is roughly  of order m  X   n 

so that  n must be quite small.    If instead,   more complicated single functions are 

used for a better approximation, the integrals become impossible.    The work of Lee 

and Pines has perhaps gone as far as possible by not introducing correlation into the 

trial functions and thus retaining simple integrals regardless of the number of quanta. 

Further attempts along this line have been abandoned,   at least temporarily,   since the 

dependence of energy on the correlation parameter and on the total momentum are 

meaningless if the trial functions at best are poor approximations.    Other methods of 

extrapolating to high momenta are being considered. 

A second investigation now under way is stimulated by the desire to construct 

a model which can be solved with sufficient exactness to serve as a yardstick in de- 

termining the validity of the various adiabatic approaches and the validity of account- 

ing for the periodic potential through an effective mass.    Gross'        has determined 

the exact solutions to the eigenvalue problem arising when a free electron is allowed 

to interact with only one traveling lattice wave and all motion is confined to one dimen- 

sion.    For sufficiently strong coupling he finds the state with minimum energy has 

non-zero momentum.    Since the one-phonon analysis is essentially spatially asym- 

metric,  the problem of an electron with two degenerate modes (right- and left-going) 

ia one dimension has been set up and programmed for Whirlwind by Meckler,   using 

a cutoff of six quanta.    An investigation of the energy-momentum curves for intermedi- 
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ate and $t rong coupling,   the dependence on lattice wave length of the effect of the in- 

teraction,   anci the convergence of the cutoff procedure are being investigated.    It is 

hoped topus'ti the one- or two-cscillator model as far as possible with regard to the 

periodic potential and the validity of the adiabaUe approximation.    The Fock-space 

approaches are not applicable here,   depending as they do on the presence of a large 
number off independent oscillators. 
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.14.  THERMAL VIBRATIONS IN Cu-Zn SYSTEM CRYSTALS 

The work described in the previous report is nearing completion,   and it is 

anticipated that a paper will soon be written on this investigation of the atomic force 

constants in copper,   in addition to a Ph. D thesis.    The expressions for the change in 

conduction electron charge density (Ap) produced by the displacement of an ion core 

have been extensively investigated.    Ap has been calculated at a number of points in 

the lattice as a function of edge-width of the finite lattice used,   both for cubic and 

for parallelopiped macroscopic shapes.    The convergence shown is of the nature of 

damped oscillation about a constant value as asymptote,  and the convergence pattern 

is the same at different points,  except far from the origin,  where spurious structure 

appears.    For two lattices extensive plots of Ap as a function of position in the lattice 

have also been made,   and found in genenl agreement.    A lattice of ten atomic planes' 

width has been settled upon for final calculations,  as the best compromise between 

accuracy and ease of calculation.    The numerical Coulomb integration of Ap to get its 

contribution to the atomic force constants is now underway,   and appropriate tables 

have been constructed for comparison of the results with experimental,  nuclear dipole, 

closed-core interaction,   Thomas-Fermi,   and multipole expansion atomic force con- 

stants. 

H.  C.   White 
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