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AN INTERMEDIATE THEORY OF LONGITUDINAL
STRESS WAVES IN BARS

G. W. Sutton'

California Institute of Technology
Pasadena, California

ABSTRACT

The expressions for kinetic and strain energy for longitudinal stress

waves in a bar are considered, {irst in a one-dimensional model in which

P T O AW IO SR Ry mew* "
Y

cross sections are assumed to remain plane and stresses in the radial and
circumferential direction are assumed to be zero, From this, an equation
of motion is derived which is used to determine the speed of longitudinal

sinusoidal stress waves as a function of wave length, Secondly, a simpli=-

R, .

t

£ fied three~dimensional model is considered where the axial motion is a

? parabolic function of the radius, from which the speed of sinusoidal stress
&

waves is derived, The derived expressions are compared with previously

> published solutions,

GaA,

INTRODUCTION 3

In the simplest theory of longitudinal stress waves in bars, in which

only axial stress and strain is considered, the following equation is ob=

tained:l
E azu = p azu (l)
ax ot

Rayleighz considers a correction to take into account the kinetic energy of

lateral motion, which he states as?
L a
T, = an j v¥dxrdr . (2)
o Jo
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Hie then assumes that

This is true if oL =0y 0, for then from Hooke!s law,

)

X X

<]

and
o

= OV _ _ X
€=é—r-—- VE—

1]
1
<

S M

which, by assuming that du/dx is not a functionof r (i.e. plane waves),

integrates to:
v = vr Qu + ¢
- ox

But when r =0, v =0 and therefore €= 0. Thus we obtain expression

{3). Differentiating (3) with respect to t we get:

2
av . _,, 2
at - "VTatex (4)
If we substitute. (4) into (2),
L _a 2 2
2 2 )
Tz=ﬂp ‘ j vor (ﬁ) rdrdx ,

(o] (o]

We next integrate with respect to r

™

2.2 2 \?
- pAv 'k A u
TZ_ o (8tax) dx. (5)
(o]
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The correciiv. factor for the frequency of natural vibrations leads to
the following expression for the wave speed ¢ of a longitrrdinal sinusoidal
stress wave when a/g { 1:

= 2.2 .2
c:\/—lf_.(l-"—i;;_). (6)

Love3 used the same energy correction for lateral inertia (5) to obtain

a differential equation of motion for longitudinal compre ssion waves in bars:

& a"u = p azu - 222 a4u . (7)
ax ot axz atz

From Love's equation, it may be deduced that for longitudinzl sinusoidal

waves,

E 1
':V... X (8)
p “ZVZE_Z
1 +2 (A)

This is plotted as curve Il of Fig, 1. When a/A< ( 1, (8) reduces to (6).
Thus, Love's equation predicts that the shorter the wave length, the lower

the speed, which is not in accordance with observed data,5 nor with the

Pochhammer exact sol\xtion,4 which is plotted as curve 1 of Fig. 1. The exact

dependence of wave speed ¢ on wave lengih is anot in closed form, so that
numerical results are not easy to obtain, nor is the soluiion in a form for

solving problems of impact, etc,

It will be shown, that with the Rayleigh assumptions, we may add to
the expression of strain energy a term representing the shear sirain energy
of the bar which will give an improved estimate for the velocity of propaga-~

tion of longitudinal sinusoidal stress waves,
)

THE ENERGY EXPRESSION FOR THE ONE-DIMENSIONAL THEORY

We utilize the method that i.ove used tc derive (7); that is, obtain

complete expressions for T and V that are consistent with the assumptions,

and vary (T-V) to obtain the differential equation of axial motion. We make

the same assumptions that Rayleigh made: that G = = 0, and plane

%o
sections remain »lane, or
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(a) v=-vrd2, (b) u = u(xt) . (9)
Now,
_ v du
Yxr = 3x T O

But 3u/dr = 0 from 9(b), and using 9(a) ,

2

o
-

1

1

<

-
Jm

L (10) ’

Q

X

The strain energy of sihear in a small volume df is thea

2 ;
dv_"xr af = G 42 G 22 { 2% !
2- T2 L -2 Txrd¢ = k 342 df %1
¢
If we integrate over the entire bar,
. L a 2 L 2
4 ” / p]
V. = G 2.2 r)zu Erva 3“u 4 ]
2 ° 'Z-Vl‘ —Z' Zﬂrdrdx-—T—- -7 X, 1
P az . ox
o Yo 9 §
3
N
or: -
_ G 2 2 9 u : i
VZ—?AkV 5 ’—z> dx . (ll) 5
ox 2
© g
i
The strain energy of longitudinal compression is: %
v , EA au ¥ gy
= iJ (oxex+¢gegﬂrr:r) df = =5 J -a—> % & (12)
g o
The kinetic energy of longitudinal motion is:
L
2 2
3 f ™A (Em)
¢ -—' 'eh X = — —
J‘ j P 3t rédrdx ) P 3t dx
o
b st N N e P P O R LIPS i g e
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or L
_ A du
§1 T, == p j (ﬁ) dx . (13)
°
The variational equation of motion is
E t
6 [dt(T-V) =
; or
: 6[‘“(T1+T2'V1'Vz)= 0. (i4)
¥ v
By substituting expressions (5), (11), (12), and (13) into (14), we obtain:
g t L 2 2 2 3
H A [3du A Z 2[{3d"u _EA {du
£ ’5'(‘“ 5“"{2"(&)*2" (a—a-) 2| 3%
! ° ()
‘\~ Z
k " 3/82
| -%ﬁkavl—%) =0, (15) :
5 ox
g and integrating the terms in (15) by parts, 3
)}.:5 t t t t 3
:‘ r dt = 2 Qugdu 4y . 2 W4ay| -2 azuéudt A
£ = at ?t - ';z
g Yo () o “o
&
4 3ty
& =-25~Taudt . (15a)
)
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-h=
t a3u L f‘t L a4u
ot” ax o Ot"ox
o] (e} (o] []
L. a4u
= 2 —SY% - Gudtdx. (15b)

2
-2 23 sudx . {15¢)
J ex
(o]
L 2 L L .
2 2 .2 4
5 J avldax=2 j aypdln dx=2j 2% Sudx. (15d)
s ox L dx~ 9x 3 ox

If we make the indicated substitutions into (15) and equate the coeffi-

cient of Ou to zero, we obtain the differential equation of axial motion:

2 4 2 -4
9 u 2.2 9d'u 3 u .2 2 Q@' u

-p +pvTk +E - Gk% = 0 (16)
3tZ 3t ax’ ax’ 3%

ANALYSIS OF ONE-DIMENSIONAL SINUSOIDAL. STRESS WAVES

To find the reiationship between the phase speed c on the wave length

A , consider a sinuscidal wave?
(7))
u = Dcos(; x - @t) (17)
and substitute {17) in (16) to obtain:

2 ot 0’ 2 2

2 2 0
pw +pv k ~E— -Gk'v
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ors 2
P + P Vzk.z a—)z =
[+

w
= - G kzvz
c

2
24. =0 . (17a)
c
Now, substituting « = 2wc/A into (17a):
p +pvzk2 - - -szvz 4ﬂ2 =0 (17b)
Az 2 AZ2

Since

we obtain

2.2, 2 2.2, 2
ﬂu%z‘*_') = .c% (1+-“K"22—"—) . (17¢)

Finally, for a round bar, k° = aZ/Z ., therefore

Vzﬂ’z a 2
g (s) )
E7; =] 2 2 Z q ( )
1 + 2voy (%)

Curve III of Fig. 1 is a plot of expression (18) for v = 0, 29,

With Eq. (18), the asymptotic value of ¢ as a/A-eco is

2 2 |
E v o E 1 G = E
g = V— —Tz—————— =] —_ = V— = 0.6‘1 —’(19)
P 2vey (1+v) p 2(1+v) P P

which is the wave speed of distortional waves in isotropic media, but it

should be the speed of Rayleigh surface waves,6 which, for v = 0,29, is

c = 0.9258 vg =o0.515 VE .
) ?

The lack of fit of the L.ove-Rayieigh curve il to the Pochhammer curve
! i5 due to the lack of consideration of shear strain; while the lack of fit of
the derived curve III is due to the inaccuracy of the two assumptions by which

(18) was obtained. It is obvious that acsumption (9a) is inaccurate because
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the radial and circumferential stresses are not zero for short wave lengths;
and (9b) is inaccurate because the axial displacements of waves of short
wave length are larger near the surface, but the latter assumption requires

plane sections to remain plane,

Mindlin and Herrmann7 have obtained an expressicn for ¢ ihat con-
siders the effect of shear strain for a one-dimensional theory, and this is
plotted as curve IV in Fig, 1. They obtained their results by expressing
Newton's law in the radial and longitudinal direction in terms of u and v,
By assuming (i) v is proportional to r and (ii) plane sections remain
plane, and then integrating the expressions over r, two coupled equations

are obtained in terms of u and v, which are:

2 N
9 Vv p
2! =2 1 25 2, au 2y
a K }L-—I-'BKI \k?p)'4aKl)\3’—‘ = pa Vl
ax I-»o)
- \«
ov 2
S 1 2 2
Zal\-a—x—+ a ()\‘.‘2}.)2—"% = p3a u,

A and p are Lameé!s constants; K and K, are abitrary constants intro-
A

duced to improve the {it of curve 1V; and Vo (a/r)v . Then v is eliminated

from the two expressions to obtain the following equation, containing only u:

E azu - 3Zu
P axt  atl
, _a’p 32 |x+2p 22w a%u| v}
2 2 P 2 -
BKy (Mtp) 3t ax> 3t
Cax?y 2% [aeze ot WA L,
8K, (\+p) ax’ P ke @it

The discrepancy between the Mindlin and Herrmann curve IV and
curve I can be attributed to the assumption that plane sections remain plane,
and to an inaccuracy in satisfying the boundary conditions. If expression (17)

is substituted into the second of Eqs. (20) we find that:
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ve ZEp (1 4+ 2RI gin ZT (x-ct) . (22)
A : A
Since
v o ou v

s X(;—+a+-a—x)+2p.-a—r ’

by substitution we obtain
2, 4p-2pc n 2w .

o = (6p-2pc +—%—;—L)IDsinI {x-ct) (23)
or

crzg(%-cz)%szn?j\H(x ct) (24)
Thus T is not zero on the lateral surfaces of the bar; nor is ‘trx :

Mindlin and Herrmann state that if the Rayleigh assumption (9a) is put
Fquations (20) also include (16) if condition (9a)

into (21), it reduces to (7).

is substituted, From (9a)

®n

Vi

so that

T e B du
1 - 2 3x

(25)

If we substitute (25) into (20) and indicate derivatives by dots and primes,

o szvum+4lilza[k(2v-l)+Zvu]u' = ie
al(-2xav +rt2)u S pEC) - (26)
Now
' M2v-1)+2vp = (‘l'f‘ff(‘l’:—?ﬂ + 22(‘;?” =0 (27)
) and -
-2hv #N+2p = x(l-zv)+zp=ﬁ’—;‘3&1‘—f2‘9‘-’) + T(Elpﬂ) - E. (28)
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If we substitute (27) and (28) into (26) we get

2 . m wt
=K'uvu = vpu

(29)
n L1
Eu = pu,
The second of these is Eq. (1). If the first of these equations is multiplied
by vk?, then differentiated with respect to x, and added to the second

equation, we obtain

Y3 P - ] ] "
-pu +pvPk2R +EY - K2 pkiiu = 0. (30)

Now, if K is set equal to unity, (30) reduces to Eq. {16).

SECOND APPROXIMATION

The assumption that cross sections remain plane as longitudinal stress
waves pass is physically unrealistic, for Eq. (10) gives a finite value of
shear strain and stress at the surface of the bar. To eliminate these shear
strains, it is necessary that the axial displacement be a function of the

radius as well as of x and t, Let
rZ
B3 uo(x, t) (1 -8 —za ) (31)

and assume L to be zero, This determines v since

q
1]

X(¢x+cr+e°)+2p€r . (32)

Then
su 4

-
v

v+ ¥) 42, 20, (33)
t/

~ -

sqw

ENEY

’l

Now substitute fur u from (31),

l=v|0v v
-—v—)ﬁ?*'-;:-—(l' )' (34)
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Solving (34) for v,
£ auo B r3\ 1
v = v TV ox r-= -2V -2 (35)
r a
l-v
Since v=0 when r=0, A, =0. To determine B, we use the condition i

that the shear strain at the surface iz zero:

2
d u 3
du ov r 2 o pr
Y:—-f—-o:-Zﬂ u-tv—-z— r - " (36)
o 9x _a-Z o ax ( (3-Zv)a)
2 2
_ _ -2 v @Y . vPa 9 4, (37
Y S Tl 7 t oo 2 \37)
r=a ; ax ox
Hence
azu
_vaz o
ox
p = — . (38)
2u - va 2] Uo
S o (3-2v) axz

¢
3
E
3
b3 g = v i (39)
E 2+ 3y [ma
: % (4
2
i j’% The strain energy of compression is
> y l .
VvV, =
;E 1 2z 5 (ax € top b tog ‘0) df (40)
where
» PR — e e i} Ews L fjf“’ft?;:;{“ﬁffﬁ“*ﬁﬁ%@aﬁ',f
..d..’L“._;m \";ﬂ-'—e» s b : o . 5 > o Ly ] .
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_ Ou _ du, (l e T
=3 \'"P 3
\ a
du -2
_ ov _ o 3pr
e T ar 0 TV Tx i = - (£L)
(3-2v)a
ou 2
v o pr
€ T == =y 1 -
(] r ox < (3-2v)a /
Now A= e 4+ +¢ -3110 l+2v+-:-§—ri—-z-(6v-3) (42)
x r e ox (3-2v)a
For
o = \NA+ 2pe_ (43)
when v = 0.29
ou 2
v = E — (1+1.0539 = |- (44)
x x g
Then 2
’auo { r2 r2
o’xex—E\—;- \1-1.053961_ l-p-z-
a a
auo & r2 14
= E = 1 - 2.0539 B~y +1.0539 p =7 . (45)
= a a j
Similarly,

2

). o

® "

2
ou rZ
59 €g = E(——) 0.0539 p?_; -0,02227 B
Since ¢ =0, o_¢_=0, Hence
Tr o o

1. a \2

du

& rj o)

V, = = ®l-—

1 P ox
Jo Yo

2 4
2
(1 = zaiz +1.0316 8 -:1-) 2wrdrdx - (47)
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We next integrate over r and substitute (31) to get l

L

v, = E,,A ( l ¥, B r sin’ /-Z,—T-r\(x- ct)ydx (48) |

1 & \JL / 1 . jl I
where l
¥, = 1-p+0.3439 p . (49) l

The strain energy of shear is

) 05 a
2 \ ;
J‘ J Y 2nrdrdx . (50) ;
o Yo

Since
:-a_v. .al'l.-_- =) 2 x LT / ..._.E___—\-I ncos-—- x-ct 5
Ve ax ' 3T ﬁ? (A) \r 3 - Zv)a/ A ( )» (51)
|
4 2 1
Vv, = GAv? /ﬁ 2. 4 D0° [ cos? 2% (ereit) dix 4 (52)
‘ VA o A
where 5 AZ
4 a 2
$2 = 13w Z(;rj?_v)z g (E) (1 -3 (3‘%7))
2 /A)4
- Ay 53
' b (a (53)

The kinetic energy of longitudinal motion, using (i3), is

4
( ) S j (I-Zﬁ—-z-‘l-ﬁ _3' )DzsinZEAI(x-ct)Zwrdrdx.

(54)
Integrating with respect to r,

(53
]

2 L
T, = % (ZIC> AEID2 J sin® -ZIT (x-ct)dx , (55)

o
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where

5, = 1-p+5p%. (56)

The kinetic energy cf lateral tnotion, using (2) is

2

= % lSL C v2 (_azuo (rz - e 5] _r: + z l.6\’21rrdrdx
A e ey
(57)
If we integrate and substitute (31)
4 2 rI_.
2f2x) 2, 2%, 2 22
T, = pv (—A—) c A%gZD ) cos f(x-c.,dx- (58}
o
where
22
Lel-Tpem t T (59)
- 2(3-2v)”
We perform the variationon T - V, znd cbtain
2 4 2
2
p(z;ic) A,1D+pvz(%:-') Al €2D-EA(-;‘T"\) ¢,D
4 .
2w\ a‘ . _
-GAv (-I %-y,D = 0, (60)
from which
V2o a)"
v, + ¥
2 1 ‘('1_+‘)v ][ 2 (61)
= = 2 '

which has the same form as Eq. (18). Expression (61) has been plotted as
Curve V in Fig, 1, where it is seen that it fits the exact curve I most closely.
The discrepancy btetween I and V is due to the inaccuracies of assurning a
parabolic variation of u with r, and assuming ¢ =0. Figure 2isa
comparison of expression (31), the axial displacement, with the exact solu-
tion as found by Davit=c4 for a/A = 0,196, The radial stress of the exact

soluticn ie alan nln*“or‘
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CONCLUSION

The derived one-dimensional theory of axial motion, expression (16},
may be useful in a qualitative way say for determining the dispersion of

stress waves; but since this equation i{s based on the assumption that there

S AT eI

is no radial stress and that cross sections remain plane, for greater ace-

curacy the induced curvature of the cross sections should be taken into

L consideration, .
: ]
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SUMMARY OF SYMBOL.S

- radius of bar :

- cross~-sectional area of bar

- phage velocity of longitudinz! stress waves
amplitude of axial displacement

- Young'!s modulus

- elongation

- shear rigidity, = E/2(1 +v)

polar radius of gyration

Frar-
A
| . 1

g o » W
'

arbitrary constants in Mindlin and Herrmann equation

-
'

length of bar

- radial coordinate
- time

kinetic energy

- kinetic energy of longitudinal motion

s

I B B
1

N

- kinetic energy of lateral motion
- displacement in x (longitudinal) direction

displacement in r (radial) direction

< < &
'

[

- strain energy of longitudinal strain

s
'

strain energy of shear

¢
'

longitudinal coordinate

- shear strain

TN AR THRRD O BTy e

- dilatation = €x+ er+ (O

- coordinate in circumferential direction

vE/(1+v)(1 -'Zv)
G = E/2(1+v)

- Lamé's constant,

¥

A

0

A - wave length of sinusoidal waves
N

n - Lame's constant,

v

- Poisson!s ratio

correction factors in expression (61)

.
WD, 2 slmer R P o

mass density

normal stress

shear stress

volume

correction factors in expression (61)

2n times the freguency
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