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AN INTERMEDIATE THEORY OF LONGITUDINAL 

STRESS WAVES IN BARS 

G.  W.   Sutton 

California Institute of Technology 
Pasadena,  California 

ABSTRACT 

The expressions for kinetic and strain energy for longitudinal stress 

waves in a bar are considered,   first in a one-dimensional model in which 

cross sections are assumed to remain plane, and stresses in the radial and 

circumferential direction are assumed to be zero.    From this,  an equation 

of motion is derived which is used to determine the  speed of longitudinal 

sinusoidal stress waves as a function of wave length.    Secondly,  a simpli- 

fied three -dimensional model is considered where the axial motion is a 

parabolic function of the radius,   from which the speed of sinusoidal stress 

waves is derived.   The derived expressions are compared with previously 

published solutions. 

INTRODUCTION 

l In the simplest theory of longiiudinal stress waves in bars,   in which 

only axial stress and strain is considered,   the following equation is ob- 

tained: 

_ a u _    a u 
ox a t 

(i) 

Rayleigh    considers a correction to take into account the kinetic energy of 

lateral motion,   which he  states as; 

L      a 
ffPI        I       v    dxr dr (2) 
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i 
He then assumes that 

9"a   . 
V   3^   r 

This is true if   <r   = ir„ = 0,    for then from Hooke's law, 
r       9       * 

-     ' 

m • •« 
 -•• 

and 

U X 

*x =   Sx- =  TT 

3v x Qu 

which,   by  assuming   that   3u/dx   is not a function of   r   (i.e.  plane waves), 

integrates to: 

3u   . v   =    - v r -5— + c .    . 
ox 1 

But when   r = 0,    v = 0   and therefore    Cj = 0.    Thus we obtain expression 

(3).    Differentiating (3) with respect to   t   we get: 

3v 3 u 
=        m   \> T 

3t 3t 3x 

If we substitute. (4) into (2), 

.L-    ..a 

T 
c 

'o     ~o 
-»pj j ^(£k) r dr d x   , 

We next integrate with respect to   r 

T     = 

I 

^o 

!_•     ,    •     /      -    * 
v   a      I    3 u 

4       \5F3"x dx   . 

2 2 2 
For a round bar,    ir a    = A,    and   a    = 2k ,    then: 

A    2. 2 
l2 ' 1 

r32u 
t3t 3x 

dx . 

(4) 

(5) 
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The correction factor for the frequency of natural vibrations leads to 

the following expression for the wave speed   c   of a longitudinal sinusoidal 

stress wave when   a/y\ ^ 1 : 

•flTO-*^- (6) 

Love   used the same energy correction for lateral inertia (5) to obtain 

a differential equation of motion for longitudinal compression waves in bars: 

IT  9 u   - rr - 3x 

a4u 
ox   dt 

\ 
(7) 

From Love's equation,   it may be deduced that for longitudinal sinusoidal 
4 wave s, 

f   P    1 +2»avZ(i] 
(8) 

This is plotted as curve II of Fig.   1.    When   a/^/   (  1,   (8) reduces to (6). 

Thus,  Love's equation predicts that the  shorter the wave length,   the lower 
5 

the  speed,   which is not in accordance with observed data,    nor with the 
4 

Pochhammer exact solution,    which is plotted as curve I of Fig.   1.    The exact 

dependence of wave speed   c   on wave length «s uot in closed form,   so that 

numerical results are not easy to obtain,, nor is the  solution in a form for 

solving problems of impact,   etc. 

It will be  shown,   that with the Rayleigh assumptions,  we may add to 

the expression of strain energy a term representing the  shear sirain energy 

of the bar which will give an improved estimate for the velocity of propaga- 

tion of longitudinal sinusoidal stress waves. 

THE ENERGY EXPRESSION FOR THE ONE-DIMENSIONAL THEORY 

We utilize the method that Love used to derive (7); that is,  obtain 

complete expressions for   T   and   V   that are consistent with the assumptions, 

and vary   (T-V)   to obtain the differential equation of axial motion.    We make 

the  same assumptions that Rayleigh made;   that   a    = crQ = 0,    and plane 

sections remain plane,   or 

-.. I-II V 

':• f3» 
: 
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(a)       vm    .»,  |H   , (b)       u  =   u(x, t)   . (9) 

Now, 

Y =    ^1  +   3u 
Tx r  *"    9x      "ST 

But   du/dr = 0   from 9(b),   and using 9(a)   , 

Y       =   - v r 'x r 
a2u 

9x 

The strain energy of shear in a small volume    dp   is then 

G   „2 

If we integrate over the entire bar, 

(10) 

-        — "^ *    7    v "y    A. /    *?    \ 
G    2  2/dul,        .     .        Girv   a"    [     / d"u 

"O      "O 

or: 

v        G   .,2  2 
V2  = 1  Ak  v f fe) dx 

The  strain energy of longitudinal compression is: 

vi  • i i       K£x+%Wr)d^ J   Id*; 
dx 

dx , 

(11) 

(12) 

The kinetic energy of longitudinal motion is: 

JL     _a L 

1 • i I ••(«/ r rf r rl 

'o      vo 
J   ' =r (If)   d* 

I • 
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i or 

• *' ]>) dx (13) 

The variational equation of motion is 

'I" 6     dt(T-V)   =  0 , 

or 

v 

fdt(T1+T2-VrV2) =   0 (14) 

By substituting expressions (5),  (11).  (12),  and (13) into (14), we obtain: 

L fulfil? A       2,.2^d^u  \       EA /3u 

/    2 GA  .2  2/ 3   u V- o , 

and integrating the terms in (15) by parts, 

/•(*)" " 2 1 d fc :: 2    1   3T TF d l * z a T6U1   "2    [&6udt 
•Jo ~b 

(15) 

j^...t (15a) 

e 
*   Jo   \?tax; 

dtdx =   2 

=   2 

f   r"   2 a u   a"Ou   ,. , 
oT*x araiz dtdx 

•i   J0 

f  a2u   asul   .     ,   f   V_a\  3 5u 

*x> o o     o 

dt dx 

• 

,i, 

»^~ . . —   .- -~ -J.la»»»,..r,» iMMi„»wi. 
< 

1 •-3 £* £-5$r\ 

• 
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Ife   «• 

J       3 ,L t      L 

f V-a.   di + i   f   f -4fj«ud 
J    3t    3x vVjotox 

tdx 

o      o 

t       L 

=   2 r r _A 
J   J   d?T, 

Cud tdx • (15b) 

"o    -o 

6 
3u 

\2 r
L TL L     2 

xj J   ax ax ax    J J    ^T ax = 

L   2 
,   r a u »  , 

Jo   8x 

6 
f   /a2u\ ^ ,      f     32u 3ZCu     . ,     f     34u    R 

J'   i?) I ^^~ 1 U* dx . 

(15c) 

(15d) 

fc 

If we make the indicated substitutions into (15) and equate the coeffi- 

cient of    Ou   to zero,  we obtain the differential equation of axial motion: 

3   u   ,        2. 2     du        ,  _  d  u        ,; , 2   2  3  u _ 
p    =-   +   p V    K      —a j    +  E    y      -  G K    V        -r    =     0    • 

at 3t    3x 3x 3x 
(16) 

ANALYSIS OF ONE-DIMENSIONAL SINUSOIDAL STRESS WAVES 

To find the relationship between the phase speed   c   on the wave length 

TV i    consider a sinusoidal wave; 

u =  Dcos(—x- cot) 

and substitute (17) in (16) to obtain: 

2 .        2, 2   »4       r co2       -..22M4 n p 00     +  p v   k      —y    -  E —y    - Gk   V      —r    =    0 
c c^ c 

(17) 

-   .: ••- »•-- 

-    •• 

• 

, 
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-:--. W*& •:"•:•    - -^ 



or; 

P    •    P    VV    tty 
c 

-7- 

Gk  v     —£ 
c 

=    0 

Now,   substituting       «   = 2irc/yy    infco(l7a): 

2,2   4 IT2      E _ ,2  2   4tt2 

Since 

we obtain 

2(l+v) 

=   0 

KZA    2 _ ,2   2,   2 _/,,vk4T7x E    /. , k v   2w  \ 

~A7 A 
7        y 

Finally,   for a round bar,    k    = a   /Z 9    therefore 

(17a) 

(17b) 

(17c) 

2  2/     \2 

c 1 + v   \ A I 
E7? ,   ,/_»2 

1   + 2 2  2/a\ 

"(I 

(18) 

Curve III of Fig.   1 is a plot of expression (18) for    v = 0. 29. 

With Eq.  (18),   the asymptotic value of   c   as     a/.A.-*-co   is 

* . 

which is the wave speed of distortional waves in isotropic media,   but it 

should be the speed of Rayleigh surface waves,    which,  for    v = 0.29,   is 

=   0.9258   ^1T s   0.575   tf!T 

I 
f 

The lack of fit of the Love-Rayleigh carve li to the Pochhammer curve 

I is due to the lack of consideration of shear strain; while the lack of fit of 

the derived curve III is due to the inaccuracy of the two assumptions by which 

(18) was obtained.    It is obvious that assumption (9a) is inaccurate because 

•V."   ' .'.VJV^U     •"•1*^- 

>•: / Si 

. _— JC- 

i-*' '    '.      'it-    *M 

:-.'•    ••  . ••' 
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the radial and circumferential stresses are not zero for short wave lengths} 

and (9b) is inaccurate because the axial displacements of waves of short 

wave length are larger near the surface,  but the latter assumption requires 

plane sections to remain plane, 
7 

Mindlin and Herrmann    have obtained an expression for   c   that con- 

siders the effect of shear strain for a one-dimensional theory,   and this is 

plotted as curve IV in Fig.   1.    They obtained their results by expressing 

Newton's law in the radial and longitudinal direction in terms of   u   and   v. 

By assuming (i)   v   is proportional to   r   and   (ii)   plane sections remain 

plane,   and then integrating the expressions over   r,    two coupled equations 

are obtained in terms of   u   and which arc: 

»2 K2      3 Vl a    K   u 
ax 

^- 8K1
2(X + (x)-4aK2x|^   =    p a2 v 1 

2 ,,.._L +   a
2(X+2F)^ 

9x 

av, 
dx =    p a    u 

(ZO) 

I 
I 
I 

X.   and   u   are Lame's constants;   K   and   K,    are abitrary constants intro- 

duced to improve the fit of curve IV; and   v  = (a/r)v .    Then   v.  is eliminated 

from the two expressions to obtain the following equation,   containing only   u : 

E   d2u 

dx at' 

2 
a. P 

2 „2 a    K    u 

8K2(\ + u) 

SK^X+JJ)   at [J 

a 
ax' 

X.+ 2u   a u 

b 
ax 

afu 
ax2 

a 
a^ 

(21) 

=    0 

The discrepancy between the Mindlin and Herrmann curve IV   and 

curve I   can be attributed to the assumption that plane  sections remain plane, 

and to an inaccuracy in satisfying the boundary conditions.    If expression (17) 

is substituted into the second of Eqs.   (20) we find that: 

:.- 

"P* 
.'  '•'•   "'• 

.. 
'•Jy 4v 



\ 

Since 

•9- 

v =   £_HD (1 + 2^;PC  )   sin   41    (x-ct) 
A h A 

r v r       dr       dx' r 3r 

by substitution we obtain 

(22) 

vr*  (6,,-2pc2 + 4^2PC )  J'Dsin^ (x-ct) (23) 

or 

a    =£•(— » c  )   <r   D sin -r- (x - c 0 (24) 

Thus   rr     is not zero on the lateral surfaces of the bar; nor is   1 r r x 

Mindlin and Herrmann state that if the Rayleigh assumption (9a) is put 

into (21),   it reduces to (7).    Equations (20) also include (16) if condition (9a) 

is substituted.    From (9a) 

9u r v   =   - v r •£—   =   •- v. dx a      1 

so that 
3u 

Vl  =   "va 51E 
(25) 

If we  substitute (25) into (20) and indicate derivatives by dots and primes, 

• - a    K. 
m 2    r    / v 1   ' 3"' 

fivu    + 4K. a  \.(2 v - 1) + 2 v|i ju   =  vpa   u 

a2(-2X.v + \+2u)u" 
2« pa   u (26) 

Now 

^ 't        i\j.t> vE(Zv - 1)        .     2vE _    - M2v-l) + 2vu= j—^-^   +rnT^   -   0 (27) 

and 

2Kv+X+2u = X(l-2v) + 2^=Tf|i^I)  + 77^  = (28) 

li„.   m.-  » ..«.-»*. . •*Tm^^^l,********v*y0    • ,J 

*:,'   y^ 
• 

v.'.  •• 3 
: --   • *• 



ii«Wi ••^•lll—P* 

I 

• 

I 

V 

10- 

If we substitute (27) and (28) into (26) we get 

2 m 

K   u w u v pu 

E u    =   p u . 
(29) 

The second of these is Eq.  (1).    If the first of these equations is multiplied 

by   vk ,    then differentiated with respect to   x,    and added to the second 

equation;  we obtain 

2   2 •«» » 2       2   2   m . -pu+pv   k   u    + Eu   - iTuk   v   u     =0. (30) 

Now,  if   K   is set equal to unity,  (30) reduces to Eq.  (16). 

SECOND APPROXIMATION 

The assumption that cross sections remain plane as longitudinal stress 

waves pass is physically unrealistic,  for Eq.  (10)    gives a finite value of 

shear strain and stress at the surface of the bar.    To eliminate these shear 

strains,   it is necessary that the axial displacement be a function of the 

radius as well as of   x   and   t.    Let 

u =  ujx.tKl.f)^) (31) 

| 
1 

and assume   tr     to be zero.    This determines   v   since r 

o-     =   X.(c   +c   + c   ) + 2ue 
r x  x      r      9' r   i 

(32) 

-v I 
S' 

Then 

0     =  V 
\OX wi 

Now substitute fur   u   from (31), 

0     =   V I-5— + <s— + — J + 2u 3— • 

\   v J Br      r dx     V        a    / 

(33) 

(34) 

*:/**•<»*.(»*•'«"»'-^^"A*' »  "W^y.     *••    - 

'>*•- 
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Solving (34) for   v. 

1-v 

Bu  o 
9x 3-2v    ~2 a 9 (35) 

Since    v=0   when   r = 0,    A,=0.    To determine   p,    we use the condition 

that the shear strain at the surface is zero: 

Y      3r      a* P^  ° ax ?     \       (3-2v)a7 
(36) 

I 
rl    • 0 • 
Jr=a 

*2 a2,, 
2 6 v   d Uo     . •   vBa 9 % 
a    °    a   3x2      l3-—)   ax15 

Hence 

va 

P  = 

a2 , 3  u 2 o 

IT" 
2u 

2    a"2" v a       o Up 
o" 1^2^-97- 

(37) 

(38) 

For sinusoidal stress wave3 , (17),   the value of   p   is: 

P  = iM 
4 v      / it a 2 + 7^7 I X/ 

TF   * (39) 

at 

The strain energy of compression is 

Vl  = 7   J    ('x-x+'r'r + 'oV^ 

where 

(40) 

   —y-~,y.i, •f.a.wiMn,;,^^ 
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au    duo   /. 
2 

\     a I 
1 

3   3v 
:r   *    dr 

3u 
v  ^    I  1   "    t" 5 x     V (3-2v)aZ 

Now 

«Q    ~ 

A = 

v_ 
r 

du o 
dx 

JLL 
(3-2v)a' 

x        r        0 
^o r142v+   prz   (6v.3)i 
**     L (3-2v)a* J 

(41) 

(42) 

For 
a     =   X.A+ 2p. e     5 

X x 

(43) 

when   v = 0. 29 

£ 

; 

<T       =    E x ax 
!^°-    (l + 1.0539 ^J- 

Then 
( *ir 

ffx£x = E\"aT (l. 1.0539 e4)(l-?4) 

(44) 

+ 1.0539 P^-r   -(45) J). "7 
a   / 

Similarly, 

-E^£ ^o'e " E\^T 
0.0539 p-^   - 0.02227 p    -^ iV 

a-/ 
(46) 

Since   <r   * 0,    °"r €r c   = 0.    Hence 

L     -a     '»«of 
•»Ii- dx 

o     wo 

2 ,    4 
! . 2p^j   + 1.0316 p^^j  J  2irrdrdx 

a &   / 

(47) 

• ~- — • • f id   -. 



* 

-13- 

We next integrate over   r   and substitute (31) to get 

v        EA    I Zvf   .    ~2     f      .   2/2TTV .*  . V,   = —rt-    I — |    +,  D        J     sin   I ~r- |(x - c t) d x   . 
\Aj    «        Jo \Aj 

where 

(48) 

^  =   1 - p + 0.3439 p' (49) 

The strain energy of shear is 

L      a 

rdrdx    • 

'o    wo 

Vfil'!!' (50) 

Since 

3v      du 
V 3x + dr hMiU-i^y Dcos ^-?  (x-ct), (51) 

V,  -  G 

where 

/       \4      7 L 

GAv2/il]    ^   tzD2       f cos    -r-   (x-ct)dx   i 
A 

i      4 p 
+ 2  =   1_ T   (3-2v)   + ^-A   ft 2(3 - 2 v) VIT (•-In^j) 

* 7^ I* 4u   n      \ 

/.\4 

(52) 

(53) 

The kinetic energy of longitudinal motion,  using (13),  is 

T,    a 

Integrating with respect to r, 

V2 L 

T, ''=iftf)  Ae,D2    1     "'"'j <"-">"*   ' 

2 w r d r dx 

(54) 

(55) 

-.-?•- 

3. • 

...... rr_ I 
. 

. 
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where 

5j  =  i - p+ ^p2 (56) 

; 

The kinetic energy of lateral motion,   using (2) is 

L.        a /   2     \2    / 
2 2 o 

- TT^TT)P 

4 «2 6\ 

2    ^_7..\^ r*/ (3-2v)*   a" 

T,   =   pv 

If we integrate and substitute (31) 

t4 , L 
2 ' 

2 
' -o 

where 

e p2 

3   ^^   +    2(3-2v)Z 

(\4 L 
2ir|      2 A   *      „   -.2      I 2  Zir  , .x   . 
TI "T *2 )    cos    "T  *x" c   '    x ' 

F      -    1        4 
c.2   -    1   -   ^ 

We perform the variation on   T 

/2-n c f  A^D+pv2/^ 

Vj   ^nd obtain 

A/T)  **D 
IA » "A h  «2D"E 

,....  .     2 / 2 TT \    a    .    _. - GAv    /-j    -^D =   0 

from which 

2 c •i+ ?rfc) (i) 
£./p -   .,    2    2 /a\* ,. 

2ir r dr dx 

(57) 

(58) 

(59) 

(60) 

(61) 

which has the same form as Eq.   (18).    Expression (61) has been plotted as 

Curve V in Fig.   1,  where it is seen that it fits the exact curve I most closely: 

The discrepancy between I and V is due to the inaccuracies of assuming a 

parabolic variation of   u   with   r,    and assuming   <r   = 0.    Figure 2 is a 

comparison of expression (31),   the axial displacement,  with the exact solu- 
4 / tion as found by Davies    for   a/«      = 0. 196.    The radial stress of the exact 

liitin***  •* °  2tl*ark  r*^/"*ti2^. SGlHtl 

MMUggy .i 

Rj«Wt*U'<««^j *-*!>•• -v- :y**+tm*; 

• . 
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CONCLUSION 

The derived one-dimensional theory of axial motion, expression (16), 

may he useful in a qualitative way say for determining the dispersion of 

stress waves; but since this equation is based on the assumption that there 

is no radial stress and that cross sections remain plane,  for greater ac- 

curacy the induced curvature of the cross sections should be taken into 

consideration. 
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SUMMARY OF SYMBOLS 

a - radius of bar 

A - cross-sectional area of bar 

c - phase velocity of longitudinal stress waves 

D - amplitude of axial displacement 

E - Young's modulus 

e - elongation 

G - shear rigidity,  = E/2(l + v) 

k - polar radius of gyration 

K, K. - arbitrary constants in Mindlin and Herrmann equation 

L. 

r 

t 

T 

T. 
i 

T. 
I 

U 

V 

V, 

- length of bar 

- radial coordinate 

- time 

- kinetic energy 

- kinetic energy of longitudinal motion 

- kinetic energy of lateral motion 

- displacement in   x   (longitudinal) direction 

- displacement in   r   (radial) direction 

- strain energy of longitudinal strain 
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