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THE DEVELOPMENT OF FUNCTIONS ASSOCIATED WITH 

SURFACE WAVES OVER AN  INCLINED BOTTOM 

By 

Hans Lewy 

Introduction. 

The problem of surface waves over an inclined bottom can be formulated 

thus:  construct the harmonic functions   (f(x,y),  the velocity potential 

of the flow, which on the surface y - 0, x > 0, satisfy the boundary con- 

dition 2& = d) ,  while on the "bottom" x = y cot OC IT.  y < 0 the normal 

derivative of tf  vanishes. Here it is appropriate to admit for ec any 

number between 0 and 1, and even the limit case  CC = 1 in order to in- 

clude the so-called dock problem. The domain of regularity of <^ is the 

sector included between the two rays formed by surface and bottom. 

If instead of <?   the analytic function f(z) of the complex variable., 

z = x • iy, is considered whose real part is Cp(x9y)    and a proper choice 

is made of the arbitrary additive constant, the function f(z) becomes 

solution of the difference-differential equation in a sector of double angle 

2TT.X 

(E)   (d/dz) (f(z) - f(£ a)) *  i(f(z) • f(£ »)) - 0,   £ = e'2 TMoC , 

and this equation permits the analytic extension of f into the logarithmic 

Riamann surface. The relationship of f and (p   i.*>  not reversible, the 

class of real parts of such functions f being larger than that of function," 

'r as defined above. Nevertheless, the versatility provided by the theory 

of regular functions of a complex variable justifies, even in the conjitera- 

tion of surface waves, the concentration of interest on the solution of. (E) . 
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The first problem, and the one first solved, was that of the construc- 

tion of the standing nave in the infinite sector 0 > arg z > - "jf^ whose 

associated velocity remains bounded throughout the sector [l], [3l$ C5l« The 

corresponding complex function I (z) has been the subject of closer study 

in [2], The reason is that from it other solutions of (E) can be derived 

by simple integral formulae, and that the manifold of these is wide enough to 

provide a basis for all solutions of (E) which remain regular and continu- 

ous in the neighborhood \z\   < r for bounded Iarg z | , no matter how 

small r > 0.  This is one of the main results of [2] (Theorem 12.l)„ A 

similar question now arises as to solutions of (E) which tend to zero as 

z->-aD  in the sector 0 > arg z > -2 tree.  Indeed we may compare the situa- 

tion with that arising in the case of analytic functions regular and single 

valued in the whole plane excepting possibly  z = 0 and z - oo .  Here 

the Laurent series development yields the dissection of such functions into 

a sum of two, the first continuous at the origin, the second tending to zero 

at co. But this Laurent decomposition exists not only for the indicated 

class of functions, but for functions which need be regular only in a cir- 

cular ring, and indeed only exist on a single circumference with origin as center. 

For then the Laurent series is the Fourier decomposition of the function on 

this circumference. Now there reigns a perfect analogy in the class of 

-functions, solutions of (E), and this paper is devoted to its establishment„ 

Throughout this paper repeated use is made of the results of [2] and 

for this reason we have adhered to the same notations as in [2], 

1. Notations and recall of basic facts. 

Denote by I (z)  Isaacson's function [ll 

P(z) 
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where    g(£)    is the analytic function defined in the right half plane by 

(see  [3],  p. 91) 

tr. ( l f    ,      ,   t1/cc   t2 - l N  £ g(r)=expJ— log  ( -yj- 5— ) -7—2- 
•^     J t1/bc-l   t2      t2 • 

o 
7T dt 

; 

and where the path P(z) comes from co e~  , goes counterclockwise 

around the origin outside the unit circle and out to  co e   , if Re z >  0. 

According to [l], g(£) is regular in the wedge defined by 

£ = re±Q1r  , r > 0 , - -^ - 2* <• S <Q <^ + 20{  - S 

with arbitrary small o >  0 and tends there to 1 as | 7 | tends to  co 

Furthermore at the origin 

g($)=<2<<     (l*tf<?» 

where    y( 2T)     is regular in £ and continuous  in £ and </. in 

0 <</.< 1  ,  (£|<   l£   j      with a fixed    £      independent of oC.     I  (z)  is 

a bounded solution of the surface wave  problem for angle  TToc between sur- 

face and bottom.    As z->oo    in a sector o > arg » > - <*F> o    with 

0 < d < <*TT -we have the estimate 

I (z)  = A e • B z    ' + o(z ) 
o 

where A    and    B    are continuous functions of o<. whose exact values do not 

matter except for    A / 0  . 

-IfTot.*  TTi/2 . , _,   . 
For    z    on a ray    z = z    e , we choose  for    P(z)    a  path 

- ~TTi • TTi oC 
coming from     co 8 on a ray through the origin,  avoiding and 

surrounding the unit circle in the  positive sense and returning back on the 

same ray to     oo    e .    For the  computation of    I  (z) we may 

replace the  portion of the path    P(z)    traveled twice in opposite direction 
TTi(<* * i) 

outside the unit circle bv the same  path ".raveled simolv to     oo e 

(1.1) 
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but with the integrand    g( Z )     replaced by the intsgrand    g( £ )  - g( t e~        )   , 

Employing the same technique as in  [1] we find for    (£/ > 1    on 

|g($>  - g(£e-"2Tri)i 
1.  _ x 

« 2|sinTT/(2oO||$| TtL       ( |£ | + l)l/2(l£|2 + 2 ccs>To<|£l* i)1/2 

• (I?:- D" 1/2(l£l 1/oC+ D" 1/2(l£l 2/<7C* 2 coS(n-/ot)i?|*i)- 1/2 

by approximation of  cC through rationals of form    p/(2q)   .    Hence 

= _1   . /'    „=*..• n   _4 i«(z) = ~^      /   ezST;r) -^d£ o 2TTi J ''   ^       7 •! 
P(z) 

55 f^z)  -•  i"2(z) 

where    f (z)  = (21Ti)-1    / e
Z * (g( / )  -  g( ? e"2 ri) _fr d Z,     , 

and    IT(Z)    is a regular function of    z    and continuous in  oC and    z  . 
J. 

Hence 

y*jf2(t)||dt| <    fZI   it    r     e'^K^^d^ 

co - i - l - i 

with    K    a constant independent of   c< .    Thus it follows that the function 

I  (z)    is of bounded variation on a segment of a ray of angle    {-ot+ l/2)TT 

extending from the origin to any finite distance    r ,  and that this total 

variation is uniformly bounded by some    M(r)    Tor any closed set of 
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0 < jf i 1, Since I (z) is real on the ray of angle - 77"<JC, the total 

variation of I (z) is bounded by the same bound on the ray of angle 

(-CC -l/2)Tf. By familiar reasoning, the total variation of I (z) ia hence 

also uniformly bounded on any ray of angle TTQ    in -<%.-  l/2 <, Q  •$ -cC *  l/2. 

From the functional equation satisfied by I (z) follows the extension of 

this result to an arbitrary fixed interval for the angle irQ    of the ray, 

and finally net only for rays through the origin, but likewise for circles 

through the origin whose radii are equal to a fixed number r. 

The functions Jj.(z) introduced by R. S. Lehman [21, p. 10/V, for 

k = 1, 2, ••* can be extended to the value k = 0 by setting 

(1.2)    Jk(z) = J  IQ(t)  (z»t)"
k/^ "1 dt,        k - 0, 1, — 

with the path of integration determined by requiring it to leave z to 

the right if arg z = 0. The integral is no longer absolutely convergent 

for k = 0 but its convergence follows from the asymptotic estimate (l.l) 

of I (z). Computation yields 

J,(z) - A j   e-it (z-t)"^"1 dt • o(l),   /*- k/cC , 

(1.3) 
/hi/2      -1        -iz 

= 2TTi e     )    (1+/ ) A e    • o(l) 

as z—>oo in 0 > arg z •> -cClf*    On the other nand, if J"> 0 is small, 

then, 

(1.4.) |Jk^z^i    - const* lz I"      * as   ) z / ->oo , - ^ ^ arg z > -2 7f. 

In view of  (1.3)  we introduce the functions    I . (z)    defined by 

(1.5)      I_k(z) =   Pd • VflC ) JkU) - eirl/(20t) r(l*0*-D/fc) Jk_l(z)? k=1»2»---. 



- 6 - 

They satisfy the relations 

(1.6) | I_k(z) | * const | z| "O^D/fc , |l[k(z)| * const.^"
1'^"1^ 

as | z | -+oo in 0 > arg z > -2 If. 

For positive k the functions \(*)    are defined ([2], p. 100), as the 

fractional integrals of I (z), 

(1.7) Ik(z) = J  IQ(t) (z-t)k/& _1 dt • F"1 (k/tfO),      k > 1. 
o 

The functions L, J,  are continuous functions of z and (XL,   for 

z / 0, 0 < <£  JS 1. Furthermore 

I (0) - 1;  I (0) = 0, k > 0;  JQ(Z) » log z • const • o(l) 

as z —»0. 

Of great consequence is the formula 

(1.8) J (z) - J  (ze"2TTi) = • 2-/Til (z) o o o 

which is a direct consequence of the definition of J (z). 
o 

2. Bilinear Invariant. 

For two solutions f and g of (E) we form the invariant (see [2], 

p. 109) 

Q[f',gl = 2 J  f'(t) g{t) dt • (f (t) • f(tfc)) (g(t£) - g(t)). 
JzS 

Q is independent of the choice of z and 

(2.1) Q[f*,g] - -Q[g',f]. 

Evaluating the invariant for    z-y0, we find in particular 

Q[l', J  1 - -Q[J',  I  ] = -WnioC. o      o o      o 
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Furthermore   Q[l£, J] = 0, k = 1, 2,   ••%  and    Q[J^,  JQ] - 0.    For    oC < 1, 

we have    Q[J-,, J 1    * 0    since by (1.2), for    \z\ large, 0 ^ arg z > -27TcC, 

certainly   ) jJ   (z) |     ^ |z) const    and JJ (z) j     remains bounded, so 

that, the invariant,  evaluated for    z-+co      tends to 0.    Consequently 

Q[J-i, J ] = 0    also for   <sC° 1, since the invariant may be formed for 

| z I = 1, and on    | z | » 1, J.     and    J,     are continuous in    z    and    ^C • 

Thus we find 

QCJo>  ^l1 = °» 

and by a similar, even simpler argument 

Q[Jo' ^k1 = °»      k = 1, 2, •-. 

Furthermore also by (1.6) and (2.l) 

WL-y  ^k1 " °      j, k - 1, 2, —. 

The essential usefulness of the functions I .  is based on the formula of 

[2] Lemma 11.3 which states that for k > V > 0 

Q[J«, I„] = e^W2**   Q[j;,Ik] 

. eMW2^wrl(ln/(C)# 

Hence, by (1.5), 

Q[i;k, IJ  = 0 for k > v> . 

QCl-k' V = W*' 
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since by [2] Lenuna  11.1,  Q[Jfc>  lyO = 0    for V > k.    Likewise 

Q[3£ktly]-0f >J>k. 

Set for brevity's sake 

Q[f',g] / UTti.CC   - [f,g]. 

Then we have proven 

(2.1) [f,g] - -Cg,fl 

and 

Clk,Ij] -TO, k - j / 0        or k = j = 0, 

(2.2) J    1,  k *  j - 0,      k <  j, 

1-1,  k *  j  = 0,       k > j, 

and 

[W 

3.    Further  properties of    I_k> 

As pointed out in [2], p. 100, the    1|JZ)    are the successive 

fractional integrals of    T.  (z), i.e. for    k > 1, 

Ik(z) - D'* IQ(z) = r-\±/(L )  jZ (• - t)*A "      IQ(t) 

A similar relation holds for the I ,  with negative index. But the 

definition of the operator D *  for functions which become infinite 

at z = 0 mu3t be changed. Observe that if F(z) satisfies the estimate 

I F(Z)\ ^ con3t | 2:1 , where  A> 0, then the definition (with positive 

integral j) 

D"£ F(Z) - r_1 {i/oC ) f°° (s-Z)3/& '1 F(z) dz 

dt. 
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converges for    0 < j/6c   < A •    Now let    0 ^ t < z.    Calculation gives 

(3.i) D-tk (z-trAr(i +/U -r(A- j/^)(a - trA*J/ct- 

a formula first valid for t < z and then for arbitrary t,z by analytic 

extension. Hence 

D-jA r(1 + k/cC) yz) - r a • (ic-j)/«c) -k„j(z)*   ° < J < k» 

and consequently by (1.5) 

(3.2)       B"^ I_k(z) « I.^jU), 1 < j ^ k - 1 

4.. r-solutions. 

The equation 

u' (z) - u'(£z) + i(u(z) • u(fcz)) = 0 

heretofore was always interpreted as a relation affecting functions of a 

complex variable, regular within some two-dimensional domain of the 

variable z. But if we fix attention on a single circumference, say 

}z| = r, it still makes sense to talk of a solution u of the equation, 

defined only on { z| = r, regardless of whether or not u can be extended 

into a neighborhood as a regular function. Such solution will be called 

an r-solution. 

If the values of an r-solution u(z) are known only on 0 > arg z > -2 7T0C 

and have a continuous derivative there, then the equation permits to define 

u(z) as r-solution on the arc -21J&.2 arg z > -A-Tti,  so that u(z) remains 

continuous at -2Tf<£,  and its derivative is continuous in -27fdC> arg z > -UlJoC, 

although it may have different limit values upon approach to z = -2 Tf<C 

from the inside of the two arcs meeting there. This process can be re= 
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peatsd so as to yield,  starting with an arbitrary function on  jz| = r, 

0 £ arg z > -2TTof   of class    C  , an r-solution    u(z)    defined on the infinitely 

often wound circumference    I z I • r    of the logarithmic Riemann surface} and 

u(z)    will have a derivative continuous on every partial arc    2TV<Ci arg z >2TT(V-l)ar, 

V = '**, -1, 0,1,***.    It is our purpose to show the developability of 

r-solutlons in series of    J (z)    and    I^U), k - 0, • 1, • 2,  •••. 

5.    The rational case. 

Assume now that   OC   equals a reduced fraction    p/(2q)    with even 

denominator,    0 < CC = p/(2q)  < 1.    Let    F(z)    be en r-solution,  continuous 

on   j z| = r, and with derivatives up to the order    q continuous within each 

arc Zlftils arg z ^ 2?T(V+ l)«5C.    Since by  (E) 

(D •  i)  F(z)  -  (D -  i)  F(£ z), E = e^1^ 

we find  (see also [3D with 

q-1 -, 
<p(D) =    If   (D ••  iO 

q 
since    g    = -1,    that 

C *l 

<P(D) F(z) -   Tf  (D • i£V) Ffez) = -   77    (De*1 • i£V) Ffez) 
l)= 1 i)-0 

= - ^(D6_1) Ffez). 

Hence 

f(DrX) F(fcz) =-f(D£'2) ?(E2
Z); 

and finally 

f(D) F(z)  = flD) F(z£
2ci) =   f(D)  F(ze_27Iip). 

Hence the difference  J~(z) = F(z) - F(ze"*^ P)  satisfies 
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f(B)£(z) = 0 

and J(z) is a continuous r-solution. We find accordingly 

J(z) -L*    h„ e"i£ z 

and substitution in (E) yields the further information 

which shows <j~(z) to be determined but for a constant factor. 

In particular consider the difference J (z) - J (z e    "). By 

(1.8) we see that 

J(a) - Jo(z) - JQ(z e'
2"1*) = 27riC0(z) * IQ(z e'2lJi)  • ... • I^ze"2"1 (p_1))) 

and here right hand is not equal to the constant zero as it tends to 

27fi p as z-*0. It follows that we may subtract from our r-solution 

F(z) a multiple c JQ(z) of J (z) 30 that F(z) - c J (z)  is periodic 

as arg a is replaced by arg z • 27jpv It thus appears that for the pur- 

pose of developability of F in terms of J  and I,  we may assume that 

(5.1) F(z) = F(z e_27TiP). 

Accordingly, with F(z) on \z\   -  r is associated the Laurent-power 

series 

(5.2) F(Z) ~y fvz
v/p 

-co 

with the cceffieiants 

<v •  *fe f'M ."*' -1 a. 'IP 

where the integral is extended over the circumference wound p times. 
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The familiar theory of Fourier series asserts that any function F(z) 

with (5.l) which has piecewise continuous derivatives possesses a convergent 

Laurent poorer series and equals it. Thus a periodic r-solution u(z) equals 

its convergent Laurent-power series. The equation (E) translates into a re- 

lation between the coefficients fy of u 

(5.3)  fv+p(l - e-^'P^XVp) • ipf, (1 • e-7^) = 0. 

Suppose an index   V + p    to be an even multiple    2n q    of q.    Then 

f.  = f~ =0,  and furthermore    f„      0    = f„       ,    = #,*= f_       /    ..v    = 0. v        2nq-p        ' 2nq-2p        2nq-3p 2nq-(q-l)p 

Accordingly there are solutions of the form 

z2nq/p   pn(z), n-0,11,  ... 

where p (z)  is a polynomial of degree q, and u(z) is a sum of such 

special solutions. 

Observation. 

T7e have seen that for an r-solution   co  with continuous derivatives 

of order    q    on each arc    2Tfo(.\>£ arg z 3 21f  (v^l)^ ,V* = 0, * 1, * 2,   ••• 

there is a  suitable constant    c    such that   co-cJ      satisfies  the period- 
o 

icity condition (5.1). It is easily established that c depends on co 

in a continuous way. Now consider an r-solution u possessing only a con- 

tinuous first derivative on every arc defined above. Let us approximate 

u and u* on the arc 0 > arg z > -2iT<£ by functions co  and co'shere 

CO    possesses continuous derivatives up to order q on this arc. (This 

is possible by TVeierstrass' Theorem.) We extend co   into r-solutions by 

the equation (E). Observe that the smallness of / u - COJ   and ju' - co'j 

on one arc implies smallness on an adjacent arc for the same quantities. 

The periodic r-solutions co -  c J  have as limits evidently a periodic 
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r- solution u - "Mm o J . 
o 

Extension of Lehman's theorem [2], 12.1. 

We shall now give a generalization of the developability of solutions 

which are regular near the origin and continuous at z = 0 to solutions 

G(z) which are regular near the origin and which tend to co  less than 

a negative power of  z  as z—»-0. We need only a special form here; 

greater generality v»ill follow from our general development theorem. 

Lemma Is Let oC =  p/(2q). Let G(z) be a solution of (E), regular for 

z /0, and I G(z)\^ |z| ~m^'const. for some integer m > 0 for bounded 

| arg z | . Then G(z)  can be developed in a series 

co 

G(z) = ^J0(z) • ZL    ck 
J
k(
B) 

-m 

which converges  absolutely arid uniformly in every circle / z |    § R» 

Proof:    If    G(z) - C J (Z)    is developed in a Laurent-power series in 

z /P,     it must become of the form    JJP7 a^z^ ^ P R^Cz).    Now by  [2],   (10.9), 

J, (z),  k > 1    at;d consequently    I ,    (z)     start with the nonvanishing term 

-k/fe i of highest order    z    ^*.    Accordingly coefficients    c        and    c      can be 

assigned so that the Laurent-power series of    G(z)  - C      I    (z)  - c J  (z) 
-m -m       o 

starts with terms of order no higher than z^~  '', 

Thus continuing we arrive at successive coefficients c^ for negative 

i>    , such that G(z) - c I (z) - ••>• - c , I n (z) is certainlv 
-m -m -i -± 

o(z '"/p) near z = 0. If we subtract further a suitable multiple of 

J (z) then the result will be periodic of period 27fp in arg z, and 

equal a power series without negative powers of z  , thus be developable 

according to Lehman's Theorem. The lemma noT. follows. 
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Lemma 2: Let V * (p*l)/2 . Define as 7T_  the finite power sum 

z~ 2q'pp_^(z) = - P(i>>AA)z  2q'P • ... which is that solution which 

by [2], (10.9) is generated by the term of highest order of infinity in 

I_.(z) . (Note thatfp_  contains only negative powers.) There are 

(p-l)/2 constants a ,...,af    ., w~ ,  independent of V , and such that 

(5.*)   7T_V - 1^* «il-y*i* ••• • a(p-l)/2 X-^*(p-l)/2 • 

Proof: By Lemma 1, we have 

ir- v = Z-P * "l^yi * •*• * a(p-i)/2I-V'*(p-i)/2+ 

CD 

Now, since in 0 > arg z > -2TTo< the functions L^ for k > 0 are for 

large \?.\     bounded by |z| '  const , we must have 

CV"% ] = ^l^-y1 * - = [IV-(p+l)2^- v
]" ° • 

or c = b^  = ... = b_\i«.(D*i)/2 
= ° • ForfT^ . is at <D  of order 

z-V/.2q/P*a t  Iy_(p+1)/2(Z) of order .OMP^WP , so that 

'-]>y-(p+l)/2 'IT- j"' is of order zq"tp* ^p = z_q/p , hence vanishes. 

Likewise [J0»TT_ ] = 0 whence bQ = 0 . On the other hand, 

[I_n>TT_ .] = 0 for n > 1 since at OD , the I   are o(l) . Hence 

b = 0 for n >  0 .  That the a n    are independent of V follows from 

the fact that for V > (p*l)/2 we may apply to both sides of (5.U)  the 

operator D ^p  . Right hand thereby goes into the* expression (see 

(3.2)) 
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^VKL * "l^y^ + **• + a(p-l)/2I~ v*l+(p-l)/2 

hence into a solution of (E). Thus left hand goes into a solution, and 

since each power of z goes necessaiily into another power of z    with 

exponent larger by 2q/p , TT _ .j+i *s necessarily generated from I  . , 

as TT    from I  . . 

" 2 / A similar lemma holds for the solution z "^^  p^.(z) "TT.  with which 

the development at the origin of I (z) begins, for k > 0 . 

Lemma 3s For k > 0 , we have 

(5.5) TT.   = I.   • a'l 
i 

k " Ik + ¥k+l * "•   * a(p*l)/2 Xk+(p+l)/2    » 

i 
where the coefficients    &y   are independent of    k . 

Proofs    Ey Lehman's theorem [2] 12.1, 

TT    * I    + a'l..   +o,, " o        o 11 

Now the highest degree occurring in "\J     is    q .    Hence     [I   .       , ,„,"tT ]  = 0 

since this  expression, by  (1.6),  is of order   |z|~^    /-VP ^ =  |z|_q/P    as 

z—>co  .    Similarly     [I    ,1f ] = 0    for \) > (p+3)/2  .    Thus  all coefficients 

a^   vanish for "))> (p+l)/2  .    Application of the operator    D~ ^^    changes 

TT".     into TTk -.     if    k > 0 ,  and    I,     into    I.   _   ,  q. e.d. 

For the  solutions   f|"   ,    .. v /_,..., *rr-        we do not  give a more precise 

development,  except for remarking that they admit of the general development 

of Lemma 1. 

The question now arises whether the given Laurent-power development 

of an r-solution    u(z)    with    u(z)  • u(ze        •)     can be rewritten as a con- 

vergent development in the functions    J      and    I,   ,k=0,+l,+2,... 
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First of all, if the Laurent-power series of u converges absolutely, a 

reordering permits us to write 

oo 
U = CJ0 

+ I- cv"n"v -00      * 

where the cy and the coefficients fy of u are related by 

«vp-i(i* »/o0 - f2Vq - fj,  ,    V>o 

Hence 

-1 oo 

u - cj      -        7 c.TT..    i)c    (T      t.'T .       .     • _ x 

°    -CP-T)/2 " »     V vl v    ai^*i+*-+a(P+i)/2I
y+Eji) 

-(P+J0/2 
+ C

<L»(IVI  + a, I _<„     •V^V + aiiv+i+--+a(p-i)/2\1   p-i) 

Now it will  be seen that on  Jz|  = r 

£     1 (6.2) |lv|   <Mr°tp-1(l^   V/oO,     V>0, 

(6.1) |ly|   <Mr^P(->^),      V<-3. 

Thus 

^o oo 

^2. oo 

00 

o     r 
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and 

-(p*l)/2 -(P-D/2 

-00 - CD 

-(P+i)/2 -(p*l)/2 

-<P*D/2 

M       XT      r^^U'J     ,    l<J<(p-l)/2. « 
do 

-1 

Furthermore the finite sum       2—       C..TT. i     is a solution regular in the whole 
-(p-l)/2 »    V 

plane for z / 0, hence can itself be developed into an absolutely convergent 

series in J  and I,  by our Lemma 1. 
o      k J 

Thus if the r-solution u(z) has an absolutely convergent Laurent- 

power series then it also admits of an absolutely convergent development into 

a series in J  and I, . 
o      k 

It is desirable to state sufficient conditions relating to the behavior 

of u on one arc, say 0 > arg z > -2TTo^ * which insure the absolute and 

uniform convergence cf the Laurent-power series of the r-solution u - cJ . 

It follows from familiar facts that existence and boundedness of the second 

" r derivative    u (z)  on | z|   • r,  0 > arg z > -27/0^, yield absolute and uniform 

convergence cf the corresponding Laurent-power series,  hence disu of  the 

development of    u    in a series in    J      and    I.   . 

Definitions    An admissible r-soluticn    u    is a continuous r-solution with 

bounded second derivatives in    0 > arg z > -2Tfok • 
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6.    General oC. 

The estimate (6.2)  follows from the definition (1*7)  of    I      for 

k > 0    with   M    an upper bound for the module of    I0(z)    in    \z\ < r ,  and 

0 > arg z > -2TTd^  •    The estimate  (6.1)  is obtained in several stepss 

First observe that the definition of    Jk(z)     permits us to write for    k > 2  , 

jk(Z) - - £ z~k/« - < f (z - trk/* i;(t)dt. 
o 

f 

Now on any circle of radius r passing through the origin and of center r 

I jl (t)jj dtj  remains uniformly bounded for o^      < X < 1 by a number M(r) 

independent of OC . If 0 > arg z > -2"TT , one of the semicircles starting 

at the origin will have distance r from z on |z| = r j hence, the last 

integral over the semicircle is absolutely no more than the bound 

r~   K(r) . On the remainder of the path of integration, jl (t)|  remains 

bounded, by (1.1), hence again,  J   < r~   M(r) , with suitable M(r) . 
2r 

Thus for k > 2  ,      | Jk(z)|   < ^ r"k^   M(r)   ,     \ z|   - r ,  0 > arg z > - 2 TTOC 

and, by (1.5),  for k < =3 

\lk<«)|  < P(^)r-k/^M(r)   +P(±ll)r-k^K(r)   , 

or 

(6.1) )lk(z)| < P (±)r"k/o< M(r)   ,    on  \z\  = r  ,  0 > arg z > -2TT* , 

k < -3 . 

Returning to the case    o\ = p/(2q)   ,  let    u    be an admissible r-solution 

whence    u    equals  the uniform limit on  |z|   = r ,  0 > arg z > -27Tc^ , 
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u(z)  = CJQ(Z)  +   2L ckXk^   * 
-CO 

Fbrming the invariant     [I, ,u]    on the circle   )z|   = r , we obtain therefore 

(6.3) ck -  [I_k,u]  , k > i 

ck * ~[Vu]  ' k< 1 

c    =  [J  ,u]    and    c = -[I  ,u] 

We now restrict   o^   to a fixed interval    0 < ok     < X. < 1    and  estimate the 
o — 

magnitude of the coefficients as jk| >  oo  . 

For k = -j < 0 

r 

UTTWk = lHTio^[u,Ij]  = 2 jf  u'(t)i.(t)dt  *  (U(r)   + u(r£ ))(l.(r£)  - i4(r)) 
rt ° J 3 

= 2u »'(r) J J    I  (t)dt  +  (u(r)   • u(r£))(l (r£)  - I  (r)) 
re    J J 3 

- 2 J    u (t)dt J    i.(t  )dt     . 
r£ r£    J 

Now 

/ r£ 
D'''-" '     \•& -«/ X   (t)dt) u u0 ov   '     ' 

r 

-  P^U/oO^     (r-t)^"1^-)  -Io(fct))dt 

• -iP~l(jM*l)/   (r-t)^ (lQ(t)  + I (£.t»dt . 

Thus 
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|I (r) - I^rC)) 5r_1(2 * j/*)rj/*M(r) , J 

since Irt(z) depends continuously on oC  .  Next o 

,z z t 
/ i (t.)dt - /   dt r (t -1' )j/oC -1 io(t*)dt'r _1ciM) 
"r      J r£ t> 

z t t 

f dt r (t -1 )J* ^(t'jdt'r-^i * j/«<) 
r£ o 

* ((r€)Jj - zJ' )f     (2  t j/oc)     . 

Therefore, 

| / Ij(t)dtJ < T'\2 + i/aC )M(r)rj/o<      , 

since  j   j dl (t)/ depends continuously on o< and z for o< < c* < 1 
"6        ° o -    - 

Hence for    k = -j < 0 

Ickl<^_1(2  * j/^)Pj/°^K(r)(U  + U'   + u") 

where    U  , U    ,  U      are,  respectively,     maxfuf   ,  max/u /    , max/u /     in 

0 > arg z > -2TT<X .    Accordingly,   by  (6.1), 

(6.5) I c I   I <  (U t U*   * u")M(r)       k < _. 

Now for    k > 2 , 
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- km* ck = -[i_k,u] = *fu,i_kj 

**\r)J     I    (t)dt <• (u(r)  + u(rf))(i    (r£)  . j    (r)) 
r£ 

I_k(t')dt'  ; !j    u"'(t)dtj   "     '•'*-' 
rfc re 

V> " '„('« -X (' " "^ _1 !„(*)« -   Ar£ - «-** -a, (t)dt 0 U    Q 0 

- j[ (r - t)"^ (io(t)   • io(£ t))dt ^1 , 

lJ-kW  - I.k(r£ )|   < r"k^   H(r) P (-1 • k/<*   )  ,      k > 3 

Moreover 

/ Jk(t)dt = • 4.  f Io(t,((, . t)"^   .  (r£  _ t)-^)dt 

and as above, 

z 

I J    ,k(t)dt| < . ^-   j^L. P-**C  „(r)  , 

I     z 

li    iH'-C'r')'"*   M(r)  , 

l=kl <  P(^ - 1) r-"M «(,)(„•„•,„•) 



»-"»»itHMWffCT 

- 22 - 

-k/oC 
(6.10 |ckIk|<(U.u'   +n")«gj4-r    , k>3 

co 

Thus  /   c. I.     converges absolutely and uniformly for all     cK. " fc-   in 

0 < oC.    <  o<^< 1 and all admissible r-solutions    u    with the  same upper 

1 B 1 M 
bounds U, U , U  for |uls (u| ., |u |  in the respective arcs 

0 > arg z > -2lTcK   of lz| - r . It is easily seen that the convergence 

is absolute and uniform toward u(z) for all z with bounded )arg z| , 

|z | = r _„ since the coefficients are obtained as invariants of two solutions 

independently of r, and the estimates of an r-solution can be appropriately 

transferred to adjacent arcs. Let now oC be an arbitrary number in 

0 < c*. < 1 . We enclose it in an interval  oC  •< cX. < 1.  oC >0. Let — o     — '      c 

there be given, in 0 > arg ?,  > -2 TTo<. on  |z| ~ r „  a function u(z) con- 

tinxious with its first derivative and with a bounded second derivative of 

the respective bounds u\ U /2f  U /2 . We approximate c< from below by a 

sequence of OC. of form p/(2q) _, and for each of these we transfer the 

given function u from its arc to the arc 0 > arg z > -2TTo<.. by subjecting 

the transferred function u.\(z)  to the rule 

i(arg z) oC /<*o 
UjJ (z)  • u(re )   . 

I « i !     , II    . 
Then    uv(z)    has on its arc the bounds    U, U  ., U      for     IU^IJ  |u^j ,  ju^t . 

Each    u^>   as well as    u    generates an r-solutian belonging to the angles 

2TTc4.      and    2TToC   ,  respectively.,  and we have    u(z)   ~ lim u-jj (z)   .     Further- 

more the developments of    u.)(z)    in series of    J      and    I      have by (6.M 

and  (6o£)  the same majorization bv an absolutely convergent series.,  while 
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the terms individually converge as os  > oC >  since both c,  and I, 

converge. It follows that the given u(z)  can be developed in a series 

in J  and I.  belonging to the OC associated with u , with the coefficients 

given by (6.3). Hence the 

Theorems:    A continuous r-solution    u(z)    with bounded second derivatives 

on    0 > arg z > -2TTcA  can be developed xn an absolutely and uniformly 

convergent series in    J      and    I      on    |z|   = r    for bounded    | arg z |  . 

The two  most important special cases are Lehman's theorem in which are 

considered regular solutions in    \z\ < R ,  and continuous  at the origin,  and 

the case of solutions regular for     |z|   > r , which in    0 > arg z > -2"TTo^ 

tend to zero as z-=>oo.    In Lehman's case    J      and    I      with negative    k    are 
O K 

absent from the development, in the other case the functions J  and 1, 
ok 

for    k > 0  .    The connection between our Theorem and these two special  case"; 

is made by placing circles     | z |  = r    into the domain c-f regularity,  applying 

the theorem and observing that  the coefficients,  being invariants of two 

solutions,  cannot depend on    r  .    There is an important difference in the  two 

results,  however.    In Lehman's case,  the convergence is uniform for bounded 

j arg zj     and    j zj  < R  .    In the other case,  however,,  all that can be asserted 
i 

is that the convergence is uniform on every ring domain R < \%\  < R < oo 

with bounded | arg z |. 

The essential difference between the two cases is appreciated when it 

is noted that a solution regular for small | z | and continuous as z —> 0 

in some sector is continuous at the origin in any sector. On the other 

hand, the function J (z) dees not tend to zero as z —>oo and arg z = 0 , 

but does tend to zero as |z| —>oo and  ^"TToC > arg z > -U'TT^. , if ^ 

is sufficiently small. 
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In order to  see that  for regular solutions    u(z)     tending to    0    as 

z —>co in    0 > arg z > -21H*-   ,   the coefficients of    I. ,k > 0    and of    J -      &     — k'     — c 

are all zero observe that    ) J  (z)  - 2TT Ae       I < const  |z|"      as •oo 

-1 in    0 > arg ?. > -   ^TT/2    and    j J j  <  j z|   x constant  elsewhere.    Hence 

[J^,u] = 0  .     For k > 1 ,   (1.6) yields     [I     ,u] = 0.     Furthermore,  the 

coefficient of    J      must be zero  since    u —> 0    as    z—*• -roo but    J   •/ > 0 o o 

while all    I,   ,  k < 0  , do. k '      — 

A corrollary of the development theorem is the "completeness" relation. 

k 
Let u and CO be admissible r-solutions., their coefficients c, c,_ and 

t  » Tu- *  respectively. Then 

oo 

[u^]^cT0-coY^I(c^k-cky.k) . 

For the proof,  assume  first that all but finitely many of the    c,     are zeroc 

Then the relation is trivial.    Thus  if we put 

n 

*n      w"       Z- ~k"k -n 

we find 

[u,o;>]  = -   [G0,u]  •    -lim     [GJ,u  ] 
n —>oo 

'I u_  = cJ  +   /    c,_I,_  , 

r 
n—*-oo i L1,.   ^=TntTvL(-r.kvAc.kn- 
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