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THE DEVELOPMENT OF FUNCTIONS AS:;OCIATED WITH
SURFACE WAVES OVER AN INCLINED BOTTOM
By

Hans Lewy

Intrcduction.

The problem of surface waves over an inclined bottom can be formuicted
thus: construct the harmonic functions @P(x,y), the velocity potential
of the flow, which on the surface y = 0, x > O, satisfy the boundary con-
dition g—%}= @ , while on the "bottom” x =y cot a4 T, y < O the ncrmal
derivative of ¢ vanishes., Here it is appropriate to admit for o€ any
number between O and 1, and even the limit case & =1 in order to in-
clude the so~-called dock problem, The domain of regularity of <P is the
sector included between the two rays formed by surface and bottom.

If instead of @ the analytic function £(z) of the complex variable,
z = X + iy, is considered whose real part is ((x,y) and a proper choize
is made of the arbitrary additive constant, the function f(z) becomes
solution of the difference-differential equation in a ssctor of double angle
2T

(B)  (a/dz) (£(z) - £(e2)) + 4(£(z) » £(e2)) =0, £=o°""",

and this equation permits the analytic extension of f into the logarithmic
Rismann surface., The relationship of f and ¢ is rot reversible, the
class of real parts of such functioms f being larger than that of functions
Cp as defined above., Nevertheless, the versatility provided by the theory
of regular functions of a complex variable justifies, even in the considera-

tion of surface waves, the concentration of interest on the solution of (E).
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The first problem, and the one first solved, was that of the construc-

tion of the standing wave in the infinite sector 0 > arg z > = 7/ whose
assocjiated velocity remains bounded throughout the sector [1], [3], [5]. The
corresponding complex function Io(z) has been the subject of closer study
in [2]. The reason is that from it other solutions of (E) can be derived
by simple integral formulae, and that the manifold of these is wide enough to
provide a basis for all solutions of (E) which remain regular and continu-
ous in the neighborhood [z <« r for bounded |arg z| , no matter how
small r > O. This is one of the main results of [2) (Theorem 12,1), &
T question now arises as to solutions of (E) which tend to zero as
z-»o in the sector 0 » arg z > -2 wa.. Indeed we may compare the situa-
tion with that arising in the case of analytic functions rogular and single
valued in the whoie plane excepting possibly 2z =0 and 2z = o . Here
the Laurent series development yields the dissection of such functions into
a sum of two, the first continuous at the origin, the second tending to zero
at oo, But this Laurent decomposition exists rnot only for the indicated
ciass of functions, but for functions which need be regular cnly in a 2ir-
cular ring, and indeed only exist on a single circumference with origin as center.
For then the Laurent series is the Fourier decomposition of the functior on
this circumference. Now there reigns a perfect analogy in the class of
.functione, solutions of (E), and this paper is devoted to its estabiishment,

Throughout this paper repeated use is made of the results of [2] znd

for this rcason we have adhered to the same notations as in [27.

1. Nctationg and recgll of basic facts.
Dencte by I_ (z) Isaacson's function (1]

I(2) = iy P([) *te(Z) (Zs1)tag
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where g(;) is the analytic function defined in the right half plane by

(see [3], p. 91)

QO

1/ 2
1 t t7 -1

and where the path P(z) comes from e-ﬂr, goes counterclockwise

around the origin outside the unit circle and out to et , if Re 2 > O.

According to [1], g({) is regular in the wedge defined by
5 =re®T r>0,-2-2x +d<0os<Feok -4

with arbitrary small 8> U and tends there to 1 as lél tends to o
Furthermore at the origin

1 b

2L T T

e(Z) =¢ 1+ Y(Z)

where K( g) is repular in Z and continuous in ; and « in
0 <e<1, (&< g | with a fixed g  independent of X. I (z) is
a bounded solution of the surface wave problem for angle Tl between sur-

face and bottom. As z—=> 1in a sector J > arg z > - AT » g with

0 < 0 <& we have the estimate

=i - -1/
(1.1) IO(Z)=Ae*ZOBz1/2°Q+o(z l’20()
where A and B are continucus runctions of oL whose exact values do not

matter except for A # O .

-1 + i
For 2 onaray z =32 eln.d TT1/2

2
- -é-TTi + ik
comirg from w e on a ray through the origin, avoiding and

, we choose for P(z) a path

surrounding the unit circle in the positive sense and rcturning back on the

same ray to e i ¢ Ti/2 . For the computation of Io(z) we may

replace the portion of the path P(z) traveled twice in opposite directisn

. i
) o Ti(eK + %)
outside the unit circle by the same path “raveled simply to m e =
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but with the integrand g(Z) replaced by the intzgrand g(g) - g(é’e-2 Trl) .

¥mploying the sameltechnique as in (1] we find for {Z|>1 on
Ti(X +
121

i

' 4
2

1
2|sin /(20021 %% (12 1» VY2212 + 2 cos il 1)/2

COZ0- 0 Vg YA, 0y V2017 2% | 5 cos(m/oe ) 20 1) V2

by approximation of o through rationals eof form p/(2a) . Hence

1 ,
I5(2) = 71 / % riZ) ;cfid;
P(z)

"

£1(2) + £,(2)

® CTrl (o( + %)

where f,(z) = (273)"" % (e(g) - &g 3547,

Z1

ZeWi(aC " %)

and 1©,(z) is a regular functicn of 2z and continuous in o« and 2z .
S

Hence
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witli K 2 constant independent of ¢X . Thus it foliows that the function
Io(z) is of bounded variation on a segment of a ray of angle (-o(+ 1/2)TT ,
extending from the origin to any finite distance r , and that this total

variation is uniformly bounded by some M(r) Ior any closed set of




e v o

-5..

0 <A 5 1. Since Io(z) is real on the ray of angle = T, the total
variation of Io(z) is bounded by the same bound on the ray of angle
(=cC =1/2)77. By familiar reasoning, the total variation of Io(z) is hence
also uniformly bounded on any ray of angle 78 in -a- 1/2 <98 g-da * 1/2.
From the functional equation satisfied by Io(z) follows the extension of
this result to an arbitrary fixed interval for the angle 7@ of the ray,
and finally nct only for rays through the origin, but likewise for circles
through the origin whose radii are equal to a fixed numher r,

The functions Jk(z) introduced by R. S. Lehman [21, p. 104, for
k=1, 2, *** can be extended to the value k = 0 by setting

Q0 7.
(1.2) 3 () j (1) (wt)F L, k=0,1, "
[0

with the path of integration determined by requiring it to leave 2z <o
the right if arg 2z = O, The integral is no longer absolutely convergent
for k = O but its convergence follows from the asymptotic estimate (1.1)

of Io(z). Computation yields

3 (z) = A fo o1t ety Lar s 0(1), A=xid ,
)
(1.3)
prif2 -1 -iz
=271 e I @) he  +o(1)
as z-—>om in 0> arg z > -g7. On the other nand, if J> O is small,
then,
(1.4) IJk(z)' < const, /z}"k/d', as |z |>o, -~ J>argz2-27T.

In view of (1.3) we introduce the functions I'_k-(z) defined by

(1.5) L) = T°@+wa) 3 (- YEO T eem) 5 (2); k1,2,




They satisfy the relations
-1-(k=-1)4C

o 1
(1.6) | I_k(z)l < const |z} (e=1)/C , {I_k(z)| 5 const.|z|
as |z|—® in 0> arg z 2 -2,
For positive k the functions Ik(z) are defined ([2], p. 100), as the

fractional integrals of Io(z),
z
L) LG = [ T @ e T ), k2
)
The functions Ik" Jk sre continuous functions of z and & for

z # 0, 0 < € 5 1., Furthermore

IO(O) = 1; Ik(O) =0, k > 03 Jo(z) = log z + const *+ o(1)

as 2z —0,
Of great consequence is the formula

-27Ti)

(1.8) Jo(z) - Jo(ze =429 iIo(Z)

which is a dirsct consequence of the definition of Jo(z).

2. Bilinesr Igvariant.
For two solutions f and g of (E) we form the invariant (see [2],
p. 109)
Qle',gl = 2 j:; £'(t) glt) at » (£ (t) » £(t€)) (g(ve) - g(t)).

Q 1is independent of the choice of 2z and

(2.1) Qle',g) = -Qlg', 1.
Evaluating the invariant for 2z—+0, we find in particular

Q[I;, I 1= -Q[J;, 1) = -4TiaC,
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Furthermcre Q[I;, Jol =0,k=1,2, °°, and Q[J;, Jo] =0, For <1,
we have Q[Ji, J°] = 0 since by {1.2), for |z| large, O > arg z > =27,
certainly }Ji (z)| s 1zj-1AL const and [Jo(z), remains bounded, so
that the invariant, evaluated for z-—o tends to 0, Consequently

Q[Ji, Jc] = 0 s&lso for A= 1, since the invariant may be formed for

|z = i, and on [2z]| = 1, J, and Ji are continuous in z and o .

Thus we find

1

I, 1,1=0,

and by a similar, even simpler argument

Q[J;, I 1=0, k=1,2, **°,
Furthermore alsc by (1.6) and (2.1)

Q[I:j, I,1=0 o k=1, 2, °°°,

The essential usefulness of the functions Ink is based on the formula of

(2] Lemma 11,3 which states that for k> 4 >0

k=DM
QlIy, 1,1 = olEmvIni/ Qlay,1, ]

- e(k-l))‘ﬂi/?.oc Aﬂ'id,r-l (L +x/d).

Hence, by (1.5),
QfI:k, I, =0 for k > ¢.

Horecver

Qlr!,, L1 = 4mic,




-

since by (2] Lemma 11.1, QLJ,, I)] =0 for ¥> k. Likemise
Q[I_'k,IV]= 0, 2 > ke
Setl for brevity's sake

Qle',gl / 4mia = (£,g].

Then we have proven

(2.1) {f,g] = -[g,f]
and

[Ik,Ij] =0, k=3#0 ork=j=0,
(2.2) 1, k* J =0, k<],

-1, k*+ j=0, k> j,

and

[Ik,JO]

3. Eurther properties of I_,.
As pointed out in [2], p. 100, the Ik(z) are the successive

fractional integrals of Io(z), i.e. for k> 1,
5 k
- & _ -1
I (z) =D % 1 () = ke ) jz (z- %" 7 1_(%) at.
)

A similar relation holds for the I-k with negative index, But the
definition of the operator D7§ for functions which become infinite

at z = 0 must be changed, Observe that if F(z) satisfies the estimate
|F(z)| < const |z|-é where A > O, then the definition (with pesitive

integral j)

J
pZ r(z) - T"7Y (3 ) fm (2-2)3% 1 §(2) az
Z
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converges for O < JA <A . Now let O < t < z. Ozlculation gives
(3.1) 0 () AT (LAY =T (A= 32 )(s - )

a formula first valid for t < z and then for arbitrary t,z by analytic

extension. Hence
D-jh 71+ k/x) I () = T7(1+ (k=-3)/a) Jk_j(z), 0<j<k,

and consequently by (1.5)

(3.2) v ) - e lsjsk-1

{4, r-solutions,

The equation

u'(z) - u'(g2) +i(u(z) + ulez)) =0

heretofore was always interpreted as a relati-n affecting functions of a
complex variable, regular within some two-dimensional domain of the
variable 2z, But if we fix attention on a single circumference, say

lz| = r, it still makes sense to talk of a solution u of the equation,
defined only on | z| = r, regardless of whether or not u can be extended
into a neighborhood as a regular function. Such solution will be called
an r-solution.

If the values of an r-solution u(z) are known only on O > arg z > =2 T
and have a continuous derivative there, then the equation permits to define
u(z) as r-solution on the are =27 > arg z > -4, so that u(z) remains
continuous at =2 W«, and its derivative is continuous in =27{ > arg z > =47d,

although it may have different limit values upon approach to 2z = =27¢

from the inside of the two arcs meeting there, This process can be re-
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peated 50 as to yield, starting with an arbitrary function on |z|=r,

0> arg z > =2 T« of class C', en r-solution u(z) defined on the infinitely

often wound circumference |z} = r of the logarithmic Riemans surface; and

u(z) will have a derivative continuous on every partial arec 2T¥{>arg z >2M(V-1)4,

Y =°°",-1,0,1, ***., It is our purpose to show the developability of

r-solutions 1in series of Jo(z) and I\c(z), k=0,%+1, %2, °°°,

5. Ihe rational case.

Assume now that A equals a reduced fraction p/(2q) with even
denominator, O <& = p/(2q) < 1. Let F(z) be vn r-solution, continucus
on |z| = r, and with derivatives up to the order q continuous within each
arc 2T arg z s 2T (V + 1)L . Since by (E)

(D+ 1) ®{z) = (D - 1) Fle z), g = o Tip/a

we find (ses also [3]) with

q-1 2
P@) = T (D« 1g7)
¥ =0

since g* = -1, that

Q-1 .
- T @7 1) Flea)

Q
P(D) F(z) = 1] (0 + i€") Flez)
V=1 V=0

- @ (0! Flez).

Bence
[P(Di-l) Fle z) = = P(De2) F(gzz), -

and finally
@(D) F(z) = D) F(ze*%) = P(D) F(ze 2"IP),

Hence the difference J(z) = F(z) - F(ze'zﬂip) satisfies
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?(D) s{z) =0
and JKz) is a continuous r-solution, We find accordingly
q-1 5
Jlz) =2 n, &FF

and substitution in {E) yields the further information

hy = h,_ (~187=1) / (-16¥s1), V=1, eee, g=1

which shows J(z) to be detz2rmined but for a constant factor.
In particular consider the differeuce Jo(z) - Jo(z e-2TT1p). By
(1.8) we see that

g(z) = 3 _(2) = 3 (2 MP) = 277 5(1 (2) + I (2 & 2M) & oo+ I (ze™2™ (P7)y)

and here right hand is not equal tc the constant zero as it tends to

271 p as z—0, It follows that we msy subtract from our r-sclution
F{z) a multiple ¢ Jo(z) of Jo(z) 30 that F(z) - ¢ Jo(z) is periodic
as arg % 1is replaced by arg 2z + 21p. It thus appears that for the pur-

pose of developability of F in terms of Jo and Ik we may sssunme that
(5.1) F(z) = F(z & 2"P),

Accordingly, with F(z) on |z] =r is associated the Laurent~power

series

a0
(5.2) F(z) ~S fvzv/p
=

with the ccofficiants

S -9/p -1
= 331p F(z) z dz

where the integral is extended over the circumference weund p times,
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The familiar theory of Fourier series asserts that any function F(z)

with (5.1) which has piecewise continuous derivatives possesses a convergent
Laurent power series and equals it, Thus a periodic r-solution u(z) equals
its convergent Laurent-power seriss. The equation {E) translates into a re-

iation between the coetficients ﬂv of u
-Ti(Ve+ A -
(5.3) fﬂ*p(l - e i p)/q)(0+p) + ipfy, (1 + e Wiv/q) = 0,

Suppose an index P+ p to be an even multiple 2n q of gq. Then

I, = onq-p = 0, and furthermore f2nq—2p 2 f2nq-3p = = f2nq~(q—l)p = 0.
Accordingly there are solutions of the form

2

. nQ/P pn(z)’ n =0, : 1, eee

where pn(z) is a polynomial of degree q, and u(z) is a sum of such
specisl solutions,
Observation.

fe have seen that for an r-solution c¢o with continuous derivatives
of order g on each arc 2Tayg arg z 5 2T (V1) ,¥=0, * 1, * 2, «..
there is a suitable constent ¢ such that a)-cJo satisfies the period-
ieity condition (5.1 It is easily established that c¢ depends on co
in a continuous way, Now consider an r-solution wu possessing only a con-
tinuous first derivative on every arc defined above., Let us approximate
u and u' on the arc 0 > arg z > =2 by functions cu and ¢’ where
G possessas continuous derivatives up to order q on this arc. (This
is possible by Weicrstrass! Theorem,) We extend ¢w into r-solutions by
the equation (E), Observe that the smallness of [u -cof and |u' - |
on one src implies smallness on an adjacent arc for the same quantities,

The periodic r-solutions <= ¢ Jo have as limits evidently a periodic




- 13 -

r-solution u - 'im ¢ Jo'

Extension of Lehman's theorem [2], 12,1,

We shall now give a generalization of the developability of solutions
which are regular near the origin and continuous at z = 0 to solutions
G(z) which are regular near the origin and which tend to o less than
a negative power of 2z as z2—0, lie need only a special form here;
greater generality will follow from our general development theorem.

Lemma 1; Let @ = p/(2q). Let G{z) be a soluticn of (E), regular for
z # 0, and ‘G(z)\s [z] -méﬁconst. for some integer m > O for bounded

| arg 2| . Then G(z) can be developed in a series
®
6(2) = 7 3,(3) * & oy T2

which converges absolutely and uniformly in every circle [z < R.
Proof: If G(z) - c Jo(z) is developed in a Laurent-power series in
zl/p, it must become of the form ;gi a’)zzi‘)q/p pﬁ(z). Now by [23, (10.9),
Jk(z), k > 1 and consequently I ?2) start with the nonvanishing term
of highest order z-klt. Accordingly coefficients E s and c' can be
assigned so that the Laurent-power series of G(z) - c_ I_m(z) - c'Jo(z)
starts With terms of order no higher than z("m*l)ézi

Thus continuing we arrive at successive coefficients cy for negative
Y , such that G(z) - c_mI"m(z) ~eee-c I, (z) is certainly
o(z-2q/p) near 2z = 0, If we subtract further a suitable multiplie of
Jo(z) then the result will be periodic of period 21Tp in arg z, and

equal a power series without negative powers of zl/b, thus be developable

according to Lehman's Theorem. The lemma nor follows.
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Lemma 2: Let V 2 (p*l1)/2 . Define as T _  the finite power sum

= - /
2 sz/pp_y(z) - - P(W/N2 Y2P 4 |, which is that solution which

by [2], (10.9) is generated by the term of highest order of infinity in
I_v(z) « (Note that‘\T_v contains only negative powers.) There are

(p-1)/2 constants al""’a(p-l)/2 » independent of ) , and such that

(54 AT_y =L y*alyu® e ®anya Lye(p1)z

Proof: By Lemma 1, we have

I

.._v= -!jOalI

T —ys1 t e T A R ) 2 !

o)
+cJ + b, In(2) .
& -y +(p*1)/2 Vala
Now, since in 0 > arg z > -2 WAk the functions I_ for k > 0 are for

an

large |z{ bounded by \zlk/oc const , we must have

[IO,-“-_v] = [Il,TT )’] s [Iv_(p+l)2,1r_v] =0 ’

or ¢ < b__l

o~V 20/p*a

o0 0 = = O * r
b—U‘(p‘l)/z For 1T _ Y is at ® of order

, IV—(p‘l)/2(z) of order z(*)}-(p‘l)/2).2q/p , So that
,a-(Pl)a/p _ -a/p

» hence vanishes,

[I*v-(p*l)/2 ’ﬂ"v] is of order
Likewise [JO,‘“’_V] =0 whence b =0 . On the other hand,

[I_n,“_v] =0 for n>1 since at o , the I are o(1) . Hence
bn =0 for n>0. That the a/( are independent of 3 follows from

the fact that for V> (p*1)/2 we may apply to both sides of (5.4) the

operator D"'“l/p . Right hand thereby goes into th: expression (see
(3.2))




- 15 -

+ «e0 t 4

(p-1)/2%- y+l+(p-1)/2

hence into a solution of (E). Thus left hand goes into a solution, and

oy * 4l e

since each power of z goes necessarily into another power of 2z with

exponent larger by 2q/p s T _ Y+l is necessarily generated from I‘V*l
as from I .
TT -v ..v zyq/
A similar lemma holds for the solution z“*¥P p, (2) *Trk with which
the development at the origin of Ik(z) begins, for k >0 .

L= 4

Lemma 3¢ For k > 0 , we have

(5.5) Trk=Ik+a'I + eee + a

1%k+1 (p+l)/2 I}:+(p+1)/2 g

where the coefficients a;, are independent of k .
Procf: By Lehman's theorem [2] 12.1,

Mo =T, * 8T + eor -
Now the highest degree occurring in ¥T _is q . Hence [I-(p+3)/2’1To] =0
since this expression, by (1.6), is of order lzl-(lw:l')";/p+q = 2| "YP s
z—>® . Similarly [I_V,‘\To] =0 for VY > (p+3)/2 . Thus all coefficients
a'v vanish for Y > (p+l1)/2 . Application of the operater D-'?Q/p changes
rrk into T, ., if k>0, and I, into I ., , a.e.d.

For the solutions Tr-(p-l)/Z""’-‘T-l we do not give a more precise
development, except for remarking that they admit of the general development
of Lerma 1.

The question now arises whether the given Laurent~power development
e?T\’ip)

of an r-solution u(z) with u(z) = u(z can be rewritten as a con-

vergent development in the functions Jo and Ik s k=0, +1,+2, ..




First of all, if the Laurent-power series of u converges absolutely, a
reordering permits us to write

a
u=cJo + ch'n;/

-0

where the ¢y and the coefficients fv of u are related by

-1 . _ -
eyl Qv d/a) =2,y =1, , y2o0

-cyl"(-v'/o()=f2v =f)'), Y <o.

q
Hence
2 ¢
4 1
u-c¢] - e, T, = 7 e (Iy) + 2y I, 4.uet a 1 )
° T2 VY & VIV T 1tya ()2, pil

-(p*zl%/c
+ cv(Iv *ay Iy’+1 Tesot a(p-l)/? I

1)
Now it will be seen that on Jz| = r
(6.2) |Iv' fnr-ip'l(l + V/), Y >0,
Y
(6:1) Iy} <Mr®P- ), V< -3.
Thus

[00] 0] W

Zojcvrvl <<M Zliﬂy,\'r ol

[v o] Cvx). ]

Z|°ylv+jl «<u [je] VIR ng Ly ntla, +V)/X)
[o] [o]

23]
(o}
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and
-(p+l)/2 -(pr1)/2
- lchvl << M -; r\)/owf'vl,
-(p*1)/2 -(pri)/2 Dk Y J
s + i -1l,- -yY+j
‘_L:-olcylyﬁ) S E} r |f1/“-' (:(—)P(—OTQ)
-(p+1)/2
<« M Z (Y 3B Veyl s 1< < (p-1)/2.
~®
-1

Furthermore the finite sum TTD is a solution regular in the whole

[
-(p-1)/2 Y

plane for z # 0, hence can itself be developed into an absolutely convergent
series in Jo and Ik by our Lemma 1.

Thus if the r-solutien u(z) has an absolutely convergent Laurent-
power series then it also admits of an absolutely convergent development into

a series in J0 and Ik .

It is desirable to state sufficient conditions relating to the tehavior
of u onone arc, say O > arg z > -21T g , which insure the absolute and
uniform convergence cf the Laurent-power series of the r-solution u - cJo .

It follows from familiar facts that existence ard boundedness of the second

convergence of the corresponding Laurent-power Series, ue€iice also of ithe
development of u 1in a series in J0 and T
Definition: An admissible r-soluticn u is a continuous r-solution with

bounded second derivatives in O > arg z > 2Tk
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6. General o .
The estimate (6.2) follows from the definition (1.7) of I, for
k>0 with M an upper bound for the module of Io(z) in |z} <r , and

0 > arg 2 > =2TTe\ - The estimate (6.1) is obtained in several steps:

First observe that the definition of Jk(z) permits us to write for kx> 2,

I (2) = - & L %%/P (z - £) k& I, (t)dt .

Now on any circle of radius r passing through the origin and of center r

J |J.0(t)ii dt] remains uniformly bounded for of o < & <1 by a number M(r)
independent of &K . If 0 > arg z > -2 , one of the semicircles starting
at the origin will have distance r from 2z on |z} =r ; hence, the last
integral over the semicircle is absolutely no more than the bound

*-k/“!{(r) .

on the remainder of the path of integration, \I;(t)] remains

=k/o

o)
bounded; by (1.1), hence again, , f ' <r M(r) , with suitable M(r) .
2r

Thus for k > 2 , ‘Jk(z)l f%r-k'ék M(r) , jz] =r ,0>argz>-2TT&
and, by (1.5), for k < -3

| 1) < PO ) « DD un
or

(6.1)  |1,] < N uix) , on e

[
8}
o

v
5

[0s]
o
v

b

Ny
®
-

Returning to the case A = p/(29) , let u be an admissible r-solution

whence u equals the uniform limit on |z| =r , 0 > arg 2z > -2TTA ,

T AT ot g



@
u(z) = cJo(z) + Z cka(z) g
-®

Forming the invariant [Ik,u] on the circle )z| = r , we obtain therefore

(6.3) c, = [I_k,u] 3 k>1
c, = -[Ik,u] 5 k<1
c, = [Jo,u] and ¢ = -[Io,u] i

We now restrict oA to a fixed interval 0 <A s & <1 and estimate the

magnitude of the coefficients as | kKI— o .

For k = -j <0
r
LTTicke, = lmieg[u,zé] =2 [e u'(t)lj(t)dt * ((2) +u(rg )T (cE) - I,(r))
= 2u' (r) f Ij(t)dt + (u(r) + u(rE))(IJ(I‘&) = IJ(I‘))
re
I " pt t !
-2 ) w(t)at ) 1.(t'yat' .
rg re J
Now

P N

I;(r) - T(re) = MH/) f Lo NO T b e -3 T e

Ir
il foh =1 . . e ire
[ (j/o()f (r-t)J/o‘ *(IO(O) - I (g t))dt
[o]

"

I
[o]

Thus
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|1, - Lee)| T+ 3o ue)

since Io(z) depends continuously on o . Next l

z z t :
[ nmae=f an [ - )% (6ae' T /)
r Y ré °
z t t 1 5
=~ [ at [ (¢ -t ehat' T . )
TE []
, 2 AN 'i/d 1 ./fx_ $ . - 5 ]
RCET S R aREIIL S oty VAR IR VS B
Therefore,
; faN\ -1 J/°<
[ I_i\u,dt <T (2~ 3/ M(r)r ’
since ‘é,?, dIo(t),l depends continuously on o€ and 2z for o <o¢<1l .

Hence for k = -j <0

le t < T2 + 3/ ) iy + v+ ")

) 1]
where U , U , U are, respectively, max|u| , ma.x[u'l ; ma.x[u"[ in

0>arg z > -2TX ., Accordingly, by (6.1),

BRGS0 1¢)
(6.5) CRNFELNLAD. 1) R

Now for k> 2,




1
= T n YT ——

= 20

-Lmid e = =[I_ou) = oo, ]

r
=) 1(0a s )+ ureNa_(re) - 1_,(r)
L

-2f u (t)dtf I_ (t )dt 5

re
(oo @
Jk(r) = dyir £) -f (r t) k/d 1 I (t)dt - f (r& k/ lI (t)dt
o o

- i
k

|Jk(r) - J {re)j :M(r)%_ ko_( VS ,

@) - L] <™ N R ), ks s

Moreover

k

f Jk(L)dt = + i f Io(t)((Z = t)-k/O( - (rE, _ t)-k/ok )dt
o
and as above,

Ife J, (t)dt’ <+ & %rkﬂ M(r) ,
r

l,f I_k(t)dtl r'(_- 1 rER ey
r

"

|c|<r'(—-l)r N(r)(U*U +U) .
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O

Thus 7 c.I. converges absolutely and uniformly for all o = gc';' in
Suote=——) Ny AN

0 <O(o < &K< 1 and all admissible r-solutions wu with the same upper

bounds U, U', y" for lul, juw " Iu"l in the respective arcs
0>argz>-2TTA\ of lz] = r . It is easily seen that the convergence

is absolute and uniform toward u(z) for ali 2z with bocunded Jarg z| ,
Izl = r , since the coefficients are cbtained as 1nvariants of two solutions
independently of r, and the estimates of an r-solution can be appropriately
transferred to adjacent arcs. Let now O be an arbitrary number in

O<ok <1. Weenclose it in an interval o o <K <1, 0(0 >0 . Let
there be given, in 0 > arg 2 > «2T& ¢n |z| =r ; a funcrion u(z) con=-
tinuwous with its first derivative and with a bounded second derivative of
the respective bownds U, U'/2, U"/Z . We approximate oL from below by a
sequence of oﬁ/ of form p/(2qQ) , and for each of these we transfer the
given function u from its arc to the arc C > arg 2 3,-2Trogj by subjecting

the transferred function uij(z) to the rule

9 " ! ",
Then u,(2z) has on its arc the bownds U, U , U  Tor [uyl, |ul,i, fuy, .
Each uy) as well as u generates an r-soluticn belonging to the angles
ZTTb%) and 27N ; respectively, and we have u(z) = 1im uy (2) . Further-

more the developments of u))(z) in series of J_ and I_ have by (A.4)
and (6.5) the same majorization by an absolutely convergent series, while

o




w‘_ — o A A T T .

= 23 =

the terms individually converge as &\ — o , since both ¢ and I

Y k k
converge. It follows that the given wu(z) can be developed in a series
in Jo and Ik belonging to the oL associated with u , with the coefficients
given by (6.3). Hence the
Theorems A continuous r-solution u(z) with bounded second derivatives
on 0> argz 2'~21T2K can be developed 1n an absolutely and uniformly
convergent series in Iy and Ik or |z] =r for bounded |arg z| .

The two most important special cases are Lehman's theorem in which are
considered regular seluntiong in Ezi < R , and continuous at the origin, and
the case of solutions regular for |z| >r , which in 0 > arg 2z > =277\
tend tc zero as z—=&. In Lekman’'s case Jo and Ik with regative k are
absent from the develepment, in thc other case the functions Jo and Ik
for k >0 . The connection between our Theorem and these two special rases
is made by placing circles |z| =r into the domain of regularity, applying
the theorem and observing that the coefiicients, being invariants of two
solutions, cannot depend on r . There is an important difference in the iwo
results, however. In Lehlman!s case, the convergence is uniform for bounded

| arg z| and | zj <& . In the other case;, however, all that can be asserted

is that the convergence is uniform on every ring domain R < |z} f.R' <
with bounded |arg z].

The essential difference between the two cases is appreciated when it
is noted that a solution regular for small |z| and continucus as z— 0
in some sector is continuous at the origin in any sector. On the other
hand, the function Jo(z) dces not tend to zero as z—>om and argz =0 ,

but does tend to zero as |z| —>® and ~2Te\ > arg z > LTt 5, if A

is sufficiently small.
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In order to see that for regular solutions u(z) tending to 0O as

z—>c0 in 0 > arg 2z > -2TA&, , the coefficients of Ik>0 andof J

[ - -
are all zero observe that \.Jo(z) - 2T e iz\ < const |z} . as z—>m®

] -
in 0> arg = > - T/2 ang ‘Jo; 2 1 constam elsewhere. Hence

1 h

[J.,ul =0 . For k>1, (1.6) yields [I_ ,u] = 0. Furthermore, the

k
coefficient of Jo must be zero since u—> 0 as z— +w obut Jo+> 0
while all Ik s k<0 ; do.

A corrollary of the development theorem is the "completeness" relation.

Let u and GO be admissible r-solutions, their coefficients ¢, Cy and

Y .Y, » respectively. Then

o®
fa,] =¢ ]"o ~c. ¥ +§l:(c~k7fk - ck}‘ -k) :

For the proof, assume first that all but finitely many of the ¢, are zero.
Then the relation is trivial. Thus if we put

n
un=cJ + chlk 9

-Nn

we find

fu,w] = = [WL,u] ~lim (&) ,un]

n—>o

n
e 2 'S
1im ¥ v Lo+ (-F_ c *Y.c
A5 o) o 1 -k 'k k =k
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