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SUMMARY 

The problem of investigating the turbulent 

properties of a flow in curved passages has received 

very little attention In the past years.      The lack of 

attention is mainly due to the additional complication 

brought into i;he problem by the cxii'vature of the flow 

field.      This work attempts to analyze analytically as 

well as experimentally the turbulent properties cf a 

fully developed two-dimenbional flow of air ir a curved 

channel with constant radius of curvature.      The results 

are coir.pared with those of a two-dimensional fully 

developed flew in a straight parallel channel at the same 

Reynolds Number.     Although the investigation was carried 

out in a channel with one value of radius of curvature, 

' 'tempts are made for predictions of flow behaviours in 

channels with different radii of curvature. 
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LIST OF SYMBOLS 

Straight Parallel Channel, Cartesian Coordinates: 

x Longitudinal coordinate in the direction of flow. 

The origin is at the entrance of the straight channel. 

y Lateral coordinate in the direction perpendicular 
to the walls.      The origin is the inner wall. 

z Coordinate perpendicular to x-y plane. 

u\ v\w: Instantaneous fluctuating velocity componsrtc res- 
pectively in tae x,  y,  and z directions. 

U. V, W Time mean velocities respectively in .he :t, 7, snd 
z directions. 

*+•*      r***       r+* 

u'.v'.w' Root-mean-square of the fluctuating velocity 
component in the x,   y,   and z directiens. 

; 
Curved Parallel Channel, Cylindrical coordinates: 

T Angular coordinate in the direction of flow.     The 
origin is at the exit of the straight channel or the 
inlet of the curved channel. 

R Radial coordinate measured from the inner wail. 

r Radial distance measured from the center of the 
circles described by the two curved walls. 

z Coordinate perpendicular to the r-<f plane. 

u'.v'.w" Instantaneous fluctuating velocity components 
respectively in the   *p    ,   r and z directions. 

<&utft-<"f-"~" 
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u.v, w 

u', v', w1 

The time mean velocity components respectively 
in the    <f   ,  r and z directions. 

Root-mean-square of the fluctuating velocity 
component in the  «f ,   r and z directions. 

General Symbols: 

P 

e 
P 

P' 

U 

Pt 

0 

t 

M 

Um 

U* 

Re 

d 

Local static pressure +P 

Density of the air 

Time mean value of static pressure 

Instantaneous fluctuating component of static 
pressure 

Space mean velocity at the particular station 

Total pressure 

Kinematic viscosity of the air 

Time coordinate 

Time constant of the wire 

The maximum mean velocity at a givfer. x or <p 

Friction velocity      \    /o ) 

Reynolds Number based on maximum mean 
velocity and half width of channel 

width of channel,   3. 0 inches 

The microscale of turbulence 

& 
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F(n) 

F(k) 

e 

Subsc ripts: 

The integral scale of turbulence 

Component frequency of turbulence 

Wave number Jifln/U 

Shear stress at the wall 

Fraction of turbvlent energy associated with 
band width dn 

Turbulent energy associated with band width 
dk 

Mean voltage across the wire 

Fluctuating voltage across the wire 

Space-Correlation Coefficient 

Associated with x-direction 

• 

* 

H> 

"       straight channel 

"       inner wall 

"       outer wall 

M. 
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Associated with 

f u' Turbulent energy in the 
direction of mean, flow 

Turbulent energy in the 
lateral or radial direction 

n The point where the total 
shear stress is zero 

I 
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Appendix I has a separate List of Symbols 
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List of Symbols in Appendix I 

D Diameter of cylinder 

c Specific heat of the air 

p density of air 

T0 Temperature of a'.r 

t Time 

11 x component of velocity = U + u' 

y component of velocity s V -f v' 

w z component of velocity = W + w' 

X. Thermal conductivity of air 

i 

Nu 

Pe7 

r 

q' 

q" 

TP 

Af 

hD 

Re x Pr = 
ecuo 

X. 

Euler constant,   .57721 

Heat flow per unit time per unit length 

Heat flow per unit time per unit area 

Temperature of plate 

Temperature of fluid 

Temperature of wire when heated 
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I Current through wire 

R Resistance of wire 

F0 Resistance of wire at air temperature 

Rjj Resieiance of wire when heated 

Ji Length of wire 

*•* Temperature resistance coefficient 

A £oc   (King's Equation) 

B ^-vte-rcaccpUD       ii 

x, y, z,$,^       Coordinates 

u U(x, y, z) + u1 (x, y, z, t)same treatment 
applies to other components 

© Angle between the wire axis and perpendicular 
to the mean flow U 

E xvlea.r; voltage    cf wire (DC) 

e' Fluctuating part of voltage   of the wire (AC) 

e' rms value of e1 

mm    ' 

u" rms value of u'(same treatment pertains to other 
components 

R R Overheat ratio =     h   -   " o 

*' o 

•2   _       '. 
I lr 

-2 
i 

Per cent degeneracy from constant current case 

-vi- 
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1. 

INTRODUCTION 

The problem under consideration is one of turbulent flow 

in curved channels.      This sentence aa it stands has a very 

broad meaning and since today's knowledge of turbulence alone 

is not sufficient to develop a general theory of turbulence,  the 

author,  like all other investigators of turbulent flow problems, 

must regretfully confine his efforts to a limited phase of the 

general problem itself. 

We know very little about the mechanism of turbulence.   We 

call it today a nasty problem of complex nature.    Indeed it is one 

or at least it seems so because sister sciences like molecular 

theory of fluids and mathematical theory of statistical do not yet 

supply the necessary knowledge to help foriuul«te a plausible 

solution and clear understanding of the mechanism of turbulence. 

If the general theory of turbulence escapes our comprehension, 

it is then because of the complexity of the mechanism of turbu- 

lence.      Furthermore,  the general problem of fluid flow brings 

with it non-linearities in the equations describing the motion of 

the fluid.      Although to z perfectionist this situation might look 

desperate,  it is contrary to the logic of a scientist to ait back 
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and wait for the missing clues that are to guide u* to the general 

solution of the problem.      The purist,  who desires to draw con- 

clusions from purely deductive reasoning,  will devote hia efforts 

to diminish the lack of knowledge in molecular theory and math- 

ematics which are so badly needed for a clearer understanding of 

the problem.      The artisan or the engineer or in general the labora- 

tory man will contribute his share by investigating the actual flow 

in simple configurations which demand only a part of the overall 

knowledge needed to solve the special problem he has- chosen.    It 

i« hoped that the solution of that comparatively stmpie- problem will 

show the way to the solution of a broader one.      The puriirt will 

supply information to the engineer and the engineer to the purist 

and,  hoping that the process is favourably convergent,  we will 

someday arrive at the general solution for the problem of turbulent 

flow. 

In this investigation,   the aim of the author is to study the 

special problem he has chosen.      It is one of the study of the mechanism 

of turbulent motion in a two dimensional curved channel after the 

incompressible turbulent flow ha« reached a so-called fully developed 

SS^aSraSBIIBSlIBgS^aS'SSi 
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stage.      The flow entering the curved section is two-dimensional 

and fully developed in a straight channel of parallel walls.      The 

initial conditions of the flow before entering the curved channel 

have already been investigated by Laufer (1) for three different 

Reynolds Numbers.      Wattendorf (2) showed the need of a similar 

investigation in a curved passage.      Wattendorf s studies on a 

flow around a curved channel contained only investigations of the 

time mean velocity and pressure.      Studies of the effect of curva- 

ture on turbulent intensities,   shear,  turbulence energies and other 

characteristic turbulent parameters will be presented in this in- 

vestigation,   as well as the mean velocities. 

* 

*•• 
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4. 

The Wind Tunnel 
I 

The wind tunnel was designed for maximum velocities in 

the neighborhood of IOC ft. /sec.      Two banks of two blowers in 

series per bank were necessary to supply the air in the wind tunnel. 

Each blower has a maximum rating of 4000 c.f. m.   and 3 inches of 

water static head.      The fans are driven with 110 volts DC motors 

at a speed of 1750 r. p.m.      The speeds of the motors were con- 

trolled with rheostats in series with the armatuv* of the motors. The 

blowers discharged the air into a plenum chamber 60 inches high and 
• 

I      • 67 inches wide;   (Figure 1).      The interior of the plenum chamber is 

equipped with three screens with different solidity.      A fourth screen 

of low solidity was located at the discharge of the blowers. 

A vertical and a lateral contraction followed the plenum cham- 

ber to meet the dimensions of the test section.      The dimensions of 

the straight approach section are 3 inches wide,  46 1/2 inches high 

and 16 feet long.      The width and the height of the channel remains 

constant up to the air exit.      An aspect ratio of 15. 5 to 1 was chosen 

in order to insure two-dimensionality in the major middle portion of 

the channel.      Half way downstream of the inlet of the straight parallel 

a 
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section,   1 by 3 inch slots are purposely located on the channel 

ceiling and floor in order to evacuate the boundary layer al- 

ready developed on top and bottom.      This bleeding helps to 

establish two-dimensional flow in the curved section of the 

channel. 

The walls in the straight parallel section are made of 

1/2 inch plywood with a plastic surface finish.      In order to 

establish a fully developed flow at the end of the straight parallel 

section,  it was necessary to make the walls 16 ft.   long or 64 duct 

widths. 

The curved section has the same heighth and width as 

the approach section.      The walls are made of rolled sheet metal 

#16 gage.      In order to accomodate more than 360s  of an arc in 

the curved section it was necessary to make the radius of curvature 

of the outer wall in the first quadrant 36 inches and that of the 

remaining curved portion 30 inches.      For the investigation pre- 

sented here,  it was necessary to have only 300* of curved wall 

because the ful^y developed stage occurred about the end of the 

second quadrant.      As compared with the original design shown in 

as IMM in""'"'      I' ' 
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Figure      1     ,  this simplified many problems associated with 

the proper discharge of air.      The ratio of the channel "width 

to the outside radius of curvature is  ^k - /.Q     in the equilibrium 

section of the curved channel. 

The maximum time mean velocity at the end of the 

straight parallel section is 98. 36 ft. /sec.  and the Reynolds 

Number based on the half width of the channel is 74, ZOO. 

The Hot-Wire Anemometer Equipment 

It is always a two sided argument to choose between 

platinum or tungsten wires for measurements of turbulent fluc- 

tuating quantities.      The proper choice of wire was discussed 

previously in 1,6).      For the investigations presented here tung- 

sten wires 0. 00030 in diameter were Two methods of 

attaching the tungsten wire to the probe needles were employed 

depending upon the location where the measurements were being 

taken and the type oi measurements.      In the region where the 

length of the wire was not important the wire was welded on to 

tungsten needles placed approximately 1/8 of an inch apart.     For 

measurements close to the wall and lor turbulent scale measure- 

ments,   the wire was copper plated leaving an uncoated length in 

•:.. 4./~- .• 
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the middle of about 1/16 of an inch.      The? welding was done 

in an argon atmosphere and the copper plating in an electro- 

lytic bath of CU.SO4 with a current density of about 20 amps/ 

ft    of exposed surface   (Fig. 2). 

The hot-wi.^e instrument and its integral parts were 

designed and built for measurements in this work to handle 

tungsten wires with time constant up to 2 msec.      The hot 

wire anemometer set contains two separate bridges and two 

separate compensating amplifiers.      This eliminates signal 

coupling when two wires are used at th.» same time.      The 

DC heating source was taken from batteries and the DC B+ 

voltage from a regulated power supply.      The description of 

the electronic equipment is inserted in Appendix II. 

An adding and subtracting circuit similar to the one 

used by Kovasznay (7) was used. 

Time derivatives of the fluctuating quantities were 

taken with an electronic differentiator built for the purpose. 

Using an approximately 1 msec,   wire in the actual flow con- 

ditions,   the overall frequency response is flat from  10 to 5000 

cycles per  second.      The frequency response of the compen- 

sating amplifier ie shown in the Appendix II. 

i 
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The mean-square values o£ the turbulent fluctuating 

quantities were measured through a thermocouple unit.     The 

compensation was adjusted with the square wave input to the 

wire.      This method was compared by feeding a pure white 

noise to the wire and analyzing the output with the wave ana- 

lyzer.      The results showed that the square wave compensation 

and the -square wave generator gave satisfactory compensation 

for the thermal lag of the wire. 

The frequency analysis of the turbulent fluctuating 

quantities was made with a Hewlett-Packard wave analyzer. 

In order to obtain mean-square values of the voltage associated 

with a band width at a given frequency the output circuit of the 

wave analyzer was altered.      The output was fed into a thermo- 

couple by-passing the rectifier at the output of the wave analyzer. 

: 
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I 
ANALYTICAL CONSIDERATIONS 

The problem to be investigated was discussed in the 

introduction as a two-dimensional,  incompressible, fully 

developed flow in a curved channel with constant racius <tt 

curvature.    The initial conditions of the flow before it enters 

the curved channel were chosen to be fully developed in a 

straight parallel channel.     The reason for this choice is that 

the initial conditions of the flow are fairly well investigated (1) 

and especially since the initial character of the flow is fully 

developed,   it will require smaller length of curve channel for 

the flow to assume a fully developed character again. 

Analysis for Straight Channel 

The three components of the Reynolds Equation for a 

general incompressible flow in cartesean coordinates are: 

t?*uJS*fc(^vg+l(^) + w|g+A(aW9S-i^^VU dy   ay a?  a?' p3x 

M*uS*i(^+vg^(^+wfI + ^w')«4|P^7Vl(i) ay   sy a* • dv Pay 

at   ua*  ex*1    >+vay   ayv    ' we*   diK   J     <•> **' 92 

-."J&v-'iw***^^ 
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10. 

and the continuity equations for the mean and turbulent 

velocities 

ay + ^+^_0    aTld du./+d2r'+aw',0 
3x    ay    oz S   »y    3* 

where U, V, and W are functions of x, y, z in steady state 

conditions and the turbulent velocity components are functions 

of x,  y,  z and also of t. 

The three component equations of the turbulent energy can also 

be derived: 

i 

I; 

2 

2 at +2[_ua*      3y4A,^_ ax       ay a* I 

i fai?  au?V jW 
+ l   dx  +    dy    +   a* 

fc) id 
2 at it     2 |/ ax *   ay T     ai j a*     av       a* 

+ 2 I   ox   +   9/   +    a* 

C)_|_^W'"      I 

* St + 2 uax      9/       te 
u,u> 

oy        d*j OX 

+ 2 
auvz  jv-w7 iw_ 
ax   *   ay + at f   3* 

I2 W 

- 
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where the operator     V   - —     + —     +   —- 

When all three components of equation Z are added one 

obtains the total rate of turbulent energy interchanged in 

the flow: 

" *3'\ ! 
Oil   r? I.  ut — 

^vj/f^? > «^i<^5f»J &x 

^        da       dx+     3/       a/        sy        as- 

- l 

"? 
l-pV + i P'v' + l pV 

p 

+    * u'yV + v \7 v + uj V UJ 
L 

i 

where q'2 = u'2 + v'2 +  w'2 

The first term in equation .1 is the rate of change 

of the mean-square of turbulent kinetic energy in an unsteady 

flow.     The first bracket is the convection of turbulent energy 

by the mean flow.      The second bracket ia small scale c*m= 

vection or diffusion of turbulent energy by turbulent motion. 

....•- •.••-iwmnwww 
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The production of turbulent energy by the mean velocity 

gradient is expressed in the third bracket.      The work due 

to the fluctuating pressure gradient is represented in the 

fourth bracket.      Finally the last bracket contains the trans- 

fer of work by viscous action and the dissipation function. To 

be more explicit the last term can be rewritten in the form of 

the two groupings mentioned above 

i'V ^3Xj AdjcJ 
(3Q) 

where the cartesian tensor notation implies summation. 

Fully Developed Flow In The Straight Channel: 

When the flow is in a steady state this implies that 

any mean quantity is not a function of time.     A two-dimen- 

sional channel flow implies that there are no variations of 

time mean quantities with one coordinate (m this case z) and 

that there is only one preferred direction for the mean motion 

fin this case is x ).      The third restriction is fully developed. 

This implies that the flow has reached the stage where the time 

mean quantities no longer change in the direction of the mean 

motion.      Mathematically this means that: 

V - W = 0   and that for any mean quantity   g ; o 
> at ~ $? " 3* 

•VgE&wnmm-nr- - 1 • 
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except that P is a function of x.     If those conditions are 

applied to the Reynolds,  turbulent energy and the continuity 

equations we get: 

y w 
ay '  ? ax        ay1 

1 f^) -id? 
ay ^     ' -   • f ^y 

1 (<3v) -.  o 

but v'w' = 0 because the flow cannot sustain shear in the y-z 

plane (8).    The turbulent energy equation becomes: 

.At'dU 
5Y       2d. 1 ?*y 

(5) 

The measurements taken in this work will give us 

an idea of each term in the energy equation except the diffusion 

and the work due to the gradient of fluctuating pressure.     The 

dissipation can be estimated from turbulence scale measured. 

A separate discussion On the computed energy terms will appear 

later. 

W&> ,-• v'    NNtaM • •/* .-,.*•     • 
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Analyst! for Ihe Curved Channel: 

The three components of the Reynolds Equations for 

the general incompressible flow in cylindrical coordinates are: 

- 2^-%  v> 
*•        X*   g if) 

SRT 1 

y(6) 

in v '    9Ai^       ;     ill        / Idf d% 

The continuity equations for the mean and turbulent velocities 

are: 

ay      • djVl)     dW_Q     ond     a»#    > dCjrW.)    w.0 

^SSBSH"""*""**" 

1 
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The three component equations of the turbulent 

energy in the carved channel can also be expressed in cy- 

lindircal coordinates 

St 

Iff; 

;•;>'• 

a) 

2 dt + 2 

+ I 

iJL 
u\x z^: Jl!       ii1 

a v        u   o *- 

>a,     1 df 
+ uw ^i 

94 

id^    at      3*       ^ t  J <*vi 

2 at    i 1. a>4>       8^       ^ .   1* d«f d^ ^* 

3v'3   H'V     ovr'V    •-'*        "'••"' + _   2U uV 

<V tfv V   - —    —=: -v    — 

<0 

2 at f 2 

+i 

—— + V — + vv — T 7- d<f di/ ob 

t   a^        jt dl 

M7) 

I 

yg&mmw**>r~-< •X8x*ir-*s%mmGm 
1 
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_*    i   V 3l 
t d 

where the operator     y = -, -^ + ~t + £ ^ + - , 

Adding the three component equations of the turbulent 

energy,  the rate oi turbulent energy interchanged u> a flow 

passing through curved channels is: 

,3 

+ I    ia^>      t«jif      idf      ^       at.       ^x        a*- 

Vi 

^ -7—,       pv 
u'V u 4 v'V v'f w'V W 

i'2-       u        ii- 3    - a    + U   + ou 
,7- 

./ 

where       Q 

The t«rm« in the energy equation for flow in a curved 

channel are grouped in the same manner as those in the straight 

parallel section (equation 3) for easier comparison.    The viscous 

«.^^-^»WMw*yw^wCT»j-3»^^j^,%ar^n.'.iM«^^a».a.'-«*fc*t--v-'-'----**«<^tt 
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fef 

terms in the energy equation could be separated again into 

transfer of work by viiico\i« action and the mean dissipation 

function 

•z     .* ^-q--!i -1 +ii $ i' f  fj^ ^^ _/^ ^A^i' 
2       1        n* (8o) 

2ft 

where xj, XJ,  and xfc are respectively rdq? , r and z.      This 

notation also implies summation. 

Fully Developed Flc-w in the Curved Channel: 

The flow in this section is also steady whicb eliminates 

any time derivative of a time averaged quantity.    The same defi- 

nition of two-dimensional fully developed channel flow applies 

here,  therefore: 

EH 

m 

V * W   =0 
3_3 =^_s 
3t       3^ 

r^   = 0 
13f 

except that J^ = f (if) 

Then the Reynolds equations 

-   IUV   I   +               -     -   -    —      4     V 
ao     J        t,          ^ ia^ 

r -j 

" P   3^ 

_  (Vw J   +   —      -  0 
3T>                     1. 

J 

••awKws '3* •—"    " 
. . • •  *nm»^ss M—""^K**<MBffiuuiJ-'«vTfc-.--.ta 

.    k 
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The third equation implies that v'w'aCr but the 

constant must be zero because the fully developed two di- 

mensional flow cannot sustain shear in the X -Z-   plane. 

And the turbulent energy equation in the fully 

developed curved channel flow is: 

i   i 1 w^) =-^i^(fvJ 
2   

1 a_i   + ^!5     » 'uV»'*) + iiil     L  (10) 

The measurements in this channel allow us to 

compute the first term which is the production of turbulent 

energy in equation 10.      The first bracket in the viscous 

term which is part of the viscous work can also be computed. 

Finally through the scales of turbulence which have been 

estimated from measurements approximation of the mean 

dissipation function can be obtained. 

IMBJT"M"Hf— *""*""" 
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EXPERIMENTAL ANALYSIS 

•X- 

The Mean Velocity Measurements: 

The time mean total pressure distributions across 

the channel were measured with a boundary layer Pitot tube 

of small aperture.    The closest point near the wall that could 

be measured with this probe was   0. 020 in.    Wattendorf (2} 

from simple radial equilibrium of the mean motion ha* cal- 

culated the static pressure distribution across the fully deve- 

loped section of the curved channel.     Neglecting the turbulent 

terms in the radial Reynolds   equations he has compared the 

calculated values with the measured values at the walls. 

Wattendorf states that "As a check,  the measured value of the 

outer wall pressure was in good accordance with our calcula- 

tions. "   Yeh (5) maintaining the turbulent terms in the radial 

Reynolds equation 9b,   derives an exact radial equilibrium 

relationship for fully developed two dimensional flow in curved 

channels including all the fluctuating terms: 

M)=1 LA*'2-*'*1 Lx(Pt-Pv)olt - t\u>*i,dv. 

aSKSaWMSSRaasswi. ***tH&*rrrmvulx.z-9iil*amt *•*.*•••: 
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where   P   is the mean static pressure at a given radius   r; 

P.   is the static pressure at the inner wall and   Pt   is the 

total pressure at a given radius   r.    It is easily seen that if 

the turbulent terms in the equation above are neglected then 

simple radial equilibrium   dP/dr   =   pU^/r   is satisfied. 

Measured static pressures at the fully developed section are 

compared with the calculated values from the total head in- 

cluding and neglecting the turbulence terms (figure 4).    The 

turbulence terms become important only in a region :»ear the 

wall. 

The dimensionless velocity distribution   U/Um   at 

the fully developed curved section is in good accordance with 

that measured by Wattendorf (2).    A comparison of the dimen- 

sionless velocity distributions as they proceed around the curve 

section are plotted in figure 5.    The symmetrical profile la- 

beled (initial 0°) corresponds to the fully   developed straight 

section and the profile closest to the top of the sheet repre- 

sents the velocity distribution at three consecutive stations 

in the curved channel,  namely 172°,   204" ,  and 236°.     The 

i 
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I 

experimental data chow that the: flow in the curved channel 

has reached equilibrium at 172°.      The turbulence intensity 

shows the same evidence and this fact is discussed separately 

later in this paper.      Velocity measurements were made at 

three vertical stations in order to ascertain the fact that two- 

dimensionality in the mean velocity existed.      The results 

were very favourable.      The center part of the velocity dis- 

tribution in the fully developed curved section approaches that 

of a free vortex.      The slope of the velocity  dU/dr is steeper 

near the outer wall than that of the inner wall.      This fact 

together with the fact that the turbulent shear stre sses are 

higher at the outer wall will bring higher turbulent energy 

production rates near the outer wall.      The characteristic 

velocity U* at the outer wall is 1. 335 times larger than that 

at the inner wall.        The ratio of the shear stresses at the 

walls will be the square of the ratio of the characteristic 

velocities.      For further evidence of two-dimensionality, the 

space mean velocity at the mid-height of the straight fully 

developed section and at 172°  and Z3h"  were found to be res- 

pectively 39. 75 f. p. s., 89. 32 f. p. s.   and 89. 20 f. p. s.   which 

• 
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is in good agreement.      The velocity and turbulence level 

distributions at the two fully developed sections arc shown 

in figures 6 and 7. 

Looking at the distributions presented in figure 

6 and 7,  the location of the nul point of the vorticity no 

longer coincides with the nul point of the laminar nor tur- 

bulent shear stresses.    In the curved fully developed region, 

the nul value of the vorticity,   laminar shear and turbulent 

shear assume separate locations.    In the straight channel, 

all three Jiul points are in the same location and this deter- 

mines the edge of the boundary-layer or free - stream, iiowever 

in the curved channel it becomes difficult to locate the so-called 

point uf free-stream or the point where the two boundary-layers 

meet.      In other words the location of the point where the in- 

fluence of the boundary layer at one v/all ends and the influence 
; 

of the other wall begins is not easily seen ae in the case of the 

straight channel.      These difficulties wili be discussed again in j 

the mean velocity similarity considerations. 
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The Static Pressure Drop Along the Length of the Channel: 

The distribution of the wall static pressure drop in 

the direction of the mean flow is represented in Figure 3. 

The level of the static pressure is arbitrarily considered to 

be zero at the beginning of the straight "approach" section 

and the drop is expressed as a ratio of dynamic head *>*sed 

on the space mean velocity at the fully developed straight 

section.      In the part of the paper describing the wind tunnel 

it was pointed out that the boundary layers growing on the 

ceiling and floor of the straight channel were evacuated through 

bleeding slots in order to prevent secondary      motion in the 

curved channel.      The effect of this bleeding can be seen in the 

static pressure drop a little after the mid-length of the straight 

channel.      The entrance to the curved channel begins at x/d =60. 

At this point,   due to centrifugal forces in the curved section the 

static pressure drop divides into two separate curves.        The 

upper one belongs to the outer wall and the lower one to the inner 

wall.      The absciasa in the curved region represents actual arc 

lengths rdif    of each wall.      The pressure drop with angle Bp/dip 

is the same on both walls.      This fact was already established by 

• 
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Wattendorf (2).      The static pressure drop in the first quadrant 

of the curved channel is not smooth.      The measured points 

deviate at about + 0. 05 of the dynamic head.      When the metal 

walls were rolled,  a seam had to be made 45" a.fter the en- 

trance to the curved channel and in addition as it was explained 

in the description of the wind tunnel that the first quadrant was 

of a different curvature than the rest of the curved section.    As 

showr. in Durand (3) if the surface of the wall is wavy with an 

approximate contour of a sine wave and if the maximum amplitude 

of the wave is in the order of 1/16 inch and the wave length about 

18 inches then the variation of the static pressure as a ratio af 

, the dynamic head is calculated and found to be +_0. 05.        The 

j waves on the walls of the first quadrant are certainly within the 

figures quoted above. 

The Intensity of Turbulence: 

The local root-mean square of the intensities of turbulence 

in the straight and curved portions of the channel were measured 

with hot-wires 0. 0003 in.  in diameter.      The needles holding the 

jl wire and the wire itself were made of tungsten.      A new technique 

of spot welding the wire in an argon atmosphere was developed and 
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discussed in (4).      In an inert atmosphere the wire can be 

brought to an incandescent bright glow without burning the 

wire.      This turned out to be also a satisfactory method of 

melting the impurities on the wire after a run.     The welding 

was done with just a 1. 5 volt dry-cell battery. 

The calibration constants of the wire were deter- 

mined in a calibration duct of "low turbulence designed for the 

purpose.      It was found from experience that a tungsten wire 

maintains a more constant calibration over a period of runs 

than a platinum wire of the same dimensions. 

In order to insure the existence of t\"P-dimensionality 

in the channel,  measurements of intensity of turbulence were 

taken at three vertical stations in the fully developed straight 

section and the fully developed curved section.      The results 

showed an absence of secondary flow in those regions.      In 

order to establish that the flow was fully developed as far as 

intensity of turbulence was concerned in the curved channel, 

measurements were taken at three peripheral stations 172°, 

204°,   and 236°.      The results were compared and variations 

were net more than the experimental accuracy.    Evidence of 

I 
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this work shows that the flow settles down to a fully developed 

pattern in an arc of 172°.      This was also certified by Wattendorf 

(2) basing his reasoning on mean velocity profiles. 

Wattendorf s second channel of smaller radius of cur- 

vature   Q/^   - 1/5 which is half the value of the present channel 

still showed the same arc length necessary for the flow to become 

fully developed.      For straight channel flow of a given width it 

takes the flow a certain number of widths {generally for favour- 

able pressure gradient about CO widths) until it reaches equili- 

brium.     This reasoning leads us to believe that the equilibrium 

region in a curved channel cannot be a function of the angle alone 

because for very small radii of curvature the flow has to undergo 

a tremendous change in a small distance and this is not believed 

to be possible.      From this discussion one can see the need of 

further investigations in channels with smaller radii of curvature. 

The local turbulence intensity levels were measured in 

the fully developed regions and in addition in the curved transition 

region.      The comparison of the distributions in Figure 8 show 

that the local level of turbulence   u'/U enters the curved section 

with a symmetric pattern and undergces a considerable change in 
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the first 26°.      The local intensity level is increased on the 

outer wail by a considerable production and the intensity 

near the inner wall is suppressed.      As the flow proceeds in 

the transition region of the curved channel,  an attempt to 

restore the original distribution can be noticed.      At the fully 

developed    uived section,   the values of the local turbulent 

intensities in the major half of the inner wall side remain 

smaller than those in the straight section and the values in 

the vicinity of 'the outer wall are higher than those in the 

straight section. 

The analysis of the flow in the curved transition 

region is beyond the scope of this investigation although very 

interesting effects are taking place there. 

The local turbulent intensity level in the lateral 

direction for the straight section and the radial direction for 

the curved fully developed section   V/U were measured with 

an X-meter with tungsten wires 0. 0003 inch in diameter.   The 

wires were approximately perpendicular and they were placed 

45°  to the direction ol the mean flow.      Figure 9 shows that 

curvature has a similar effect on   v1 / U as that     on     **•/ , 

mentioned in the previous paiagraph. 

• 
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The maximum correlation coefficient ——   is plotted 
u'v' 

in Figure 10.     A comparison is made with the values ob- 

tained by Laufer in a pipe flow at Re*50, 000. 

Measurements of w* were not carried out in this 

investigation; Since the root-mean square value of w' is very 

close to that of v\      In the analysis of this work they will be 

assumed to be the same. 

Shear Stresses in the Straight Parallel Fully Developed 
Section: 

Denoting in the conventional way the turbulent shear 

stress 'it = -  pu'v' and the laminar shear stress X\ = u. —:      , 

taking the first Reynolds equation in equation 4 and integrating 

with respect to y across the channel an expression for the 

total shear stress as a function of y can be obtained.      Remem 

bering that the pressure drop in x-direction is not a function 

of y. 
.7. zy 

(ID i = Et • T. = 1-- fu* 

which is a straight line with negative slope pa.ssing through 

zero in the middle of the channel.    The term  pU*      is the 
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shear stress at the wall.      In the fully developed straight 

section,  the shear stress at both walls has the same absolute 

value.      Thft shear stress at the wall calculated from the 

pressure drop is: 

The total shear stress distribution is plotted in 

Figure 11 together with the measured turbulent shear stress 

across the channel.      The laminar shear stress is very small 

in the major portion of the channel.      It becomes of importance 

only in a region very close to the wall.      To be exact its value 

drops to 20% of the total shear at a friction distance parameter 

of ylW. * 20.        This corresponds to a distance from the wall of 

approximately twice the thickness of the sublayer.      Turbulent \ 

shear stress measurements in this section were only taken up i 

to a value of y/d = 0. 05.      The experimental points depart some- 

what from the values of shtar stresses predicted by the pressure 

drop.      The author believes that the values of shear stresses 

derived from the pressure drop are accurate and that the dis- 

txcj-diiLy lies xn the measured values.      It might be important 
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to note that by the same coincidence Laufer (1) in his shear 

stress measurements in the channel flow obtained excellent 

correlation between his measured quantities and the ones 

calculated from the pressure drop at the two lower Reynolds 

Numbers.      For its highest Reynolds Number of 61, 600 the 

measured shear stresses were at most 30% lower than the 

calculated values from the pressure drop.      At the present 

moment the author does not know of any explanation except 

of a Reynolds Number effect based on the wire diameter. 

The turbulent shear stresses v,«re measured with 

an X-meter and independently  with a   vire allowed to rotate 

in the air stream.      The wires made of tungsten were 0. 0003 

inch in diameter and copper plated leaving a bare length 

approximately 1/8 inch. 

The measured shear stress was obtained by taking 

the difference of the mean square of the a-c components of 

the voltages of the two wires. 

T The shear stress coefficient at the wall is     —%-    = .001735. 

• 
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Sht»ar Stresses in the Fully Developed Curved Section: 

The tangential component of the Reynold* equation 

(9) can aJ.ao be written in the form: 

Keeping again in mind that the pressure drop  3P /<3^>   is not 

a function of r,   the equation above can be integrated with 

respect to r: 

2df ( P ^^\^/     tl (12) 

The integration brings a constant C to be determined 

by the vanishing value of the shear stress in the channel.     The 

total shear stress is made out of two parts.      The turbulent: 

shear stress    tt = -  cu'v1     and the laminar shear utreas 

T, = uxtf^) "    r d%.\ii 
If rn is denoted to be the radial distance where the 

shear stress vanishes inside the channel,   the integration con- 

stant is determined and the total shear stress as a function of 

the radius and the pressure drop is found to be: 

2    5<?      \ 1/ 
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The value of rn is determined from the experimental 

measurements and the total shear stress distribution plotted 

as a function of R/d in Figure 12.      The shear stress at the 

inner wall is smaller than that at the outer wail.    The values 

of the shear stress coefficients are: 

at the inner wall   ~-x    - 0. 00139; at the outer 

wall    ~&-x   = 0. 00248 

These values were used for the universal velocity 

distribution U/U* versus RU*/v'    and they are seen to be 

satisfactory when compared with those of the straight channel. 

This comparison is made in Figure 25.      The experimental 

turbulent shear stress measurements show the same consis- 

tent tendency that their absolute value   is less than the calcu- 

lated shear stress.      This discrepancy has already been 

discussed for the straight parallel bsction.      Wattendorf (2) 

attempted through the mixing length theory to predict the 

vanishing point of the total shear stress in the curved channel. 

Ke fuUud that neither of the assumptions: 
2 

T /dU lA ^ Qz/dU l A 1 ~- P£ (ii -- T)   nor    T -- - fl U + V 
gave satisfactory answers. 
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Here   £    is the apparent coefficient of kinematic 

viscosity and   c    the mixing length.      The total shear stress 

does not vanish where the laminar shear is zero nor where 

the vorticity vanishes(as in a straight channel flow. )JDvidence 

from Wattendorf's work also shows the independence of the 

total shear stress,  the laminar shear and the vorticity.     The 

location of the nul shear stress point will be discussed in more 

detail in the next section. 

Location of the Nul Shear Stress in Curved Channels: 

In the discussion of the total shear stress in the fully 

developed section of the curved channel,   equation 13 was de- 

rived for the distribution of the shear stress as a function of 

the peripheral pressure drop,   the radius where the shea?  stress 

assumes a nul value and the radius where the shear stress is 

to be computed. 

T:_,  5P 
2- 3 if V   n   i 
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At the walls of the curved channel the values of the 

shear stress are 

">• 

1   C? i fin) _ 
V   7       / 

*   <-0 ' 
i 

_ 

If- 
_ia? M- i 

outer wall 

inner wall 

Using the definition for U* and dividing the absolute value 

of the two wall shear stresses,  an expression can be found 

for the location of the nul shear stress in the channel as a 

function of the ratio of the U* values at both walls and th* 

ratio of the width of the channel to the inner radius of 

curvature: 

(14) 

Here P.     is the distance of the nul value of the shear n 

stress from the inner wall,   d is the width of the channel 

and Ti is the inner radius of curvature.   A family of curves 

for various ratios of   U+   /U*.^   which is a function of 

-.«*«« >   . .      . 
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Reynolds number and roughness of walls is plotted in 

Figure 13.     The ratio of U*   /U*-    in this work is 1. 33 and 

the ratio of the channel width to the inner radius is 0. Ill . 

The two values given above correspond to a ratio 

Kn/rj - 0. 035 or to an actual distance from the inner wall 

of 0. 945 inch and a ratio R/d = 0. 135 which is the exact 

location on the shear stress  distribution in Figure 12. 

Wattendorf (2) in his second channel had a U+   ratio of 

1.195 and a val'J** of d/r^ = 0. 25 .     This corresponds to 

R   /r. = 0. 08 and since his inner wall had a radius of 

curvature of 20  cm, ,   the nul shear stress occurs at 1. 6 

cm.  from the inner wall.    The limit of equation 14   as r^ 

approaches infinity reduces to U*   /U^. » 1. 0 which is the 

value for the fully developed straight channel. 

Refering to Figure 13,   in the region below the dot- 

ted line, the nul point is nearer the inner wall and in the 

upper region the nul point is nearer the outer wall. 

•/ 
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The Spectrum of the Velocity Fluctuations: 

The energy spectra of the turbulent velocity compo- 

nents u' and v' have been measured and are shown in figures 

14,  15,  16,   and 17.     The figures are plotted in such a way that 

*~t\e integrated curves represent the kinetic energy associated 

with the velocity component analyzed.    A Hewlett-Packard 

wave analyzer was used for the purpose.    A filter half band 

width of 30 cycles per second was used for all the measure- 

ments.    The output of the analyzer which is proportional to 

the ordinates of the curves is the portion of the total sig- 

nal intercepted within the band width of the analyzer at the 

particular tuning frequency.    The wave number k   is used for 

abcissa in preference of the frequency because it is associa- 

ted with the size of the eddy.    It must be made clear that 

these curves represent a so-called "one dimensional spec- 

trum" and that the concept of kinetic energy of a fluid parti- 

cle associated with its size cannot be dri'wn from them. 

Figures 14 and 16 represent the spectra associated with u' 

in the straight and curved channel.    The influence oi cur- 

vature is slightly noticed in the low values of wave number 

-_,/ .I<*JJI*»J 
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or low frequencies.     The next two figures 15 and 17 which 

are the spectra of the v' component show a marked effect 

of curvature.     The U\rger motions of  the   fluid elements 

are more affected by the curvature than the smaller ones. 

With smaller radii of curvature the influence should be 

felt in eddies of smaller sizes.     Curves of  the second 

moment of the spectra are also shown in   Figures 18,   19, 

ZO and 21.     Actually,   the area under the second moment 

of the three-dimensional power  spectrum is a meaaure 

of the turbulent energy dissipation and they are inversely 

proportional to the   square of the microscale of turbulence. 

The Microscale of Turbulence- 

The microticale of turbulence is a length asso- 

ciated with the turbulent dissipation and originated from 

the statistical treatment of trubulence.     Since it has been 

shewn that at large enough Reynolds numbers the  smaller 

size eddies contribute to the main dissipation of turbulent 

energy into heat,   roughly speaking,   the microscale of 

turbulence,   A.    ,   is an average    linear    dimension 

•i 
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of the smaller size eddies contributing to the dissipation. 

A discussion on the average size of the eddie« will be a 

different topic of discussion.    In his work on the statis- 

tical theory of turbulcr.*.c,  G,   I.   Taylor has shown that 

the microscale can be related to the Eulerian space cor- 

relation.     It can be shown that 

a* ft! I 
dx*   x=0 

affcv 
dy« r-° 

K 

where N<  stands for the space correlation coefficient of 

the turbulent velocities.    G.   I.   Taylor has also shown the 

relationship between the space correlation coefficient and 

the one dimensional trubulent energy spectrum.    It fol- 

lowed from Taylor's work that the space correlation co- 

efficient is the cosine transform of the one dimensional 

energy spectrum function (9) 

2 7v.nx 

K -   ^<-n)   u dn 
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Using the relations stated above ope gets tve rmcroscale 

in terms of the energy spectrum.    One dimensional energy 

spectra for the u! and v' velocity components were mea- 

sured wiih a Hewlett-Packard wave analyser.    Space cor- 

relations were not included in this work,   and therefore ail 

rmcroscale calculations wiii be based on the spectrum 

functions. 

ft 

90 

Ul J 

42L*I   n* F- rn^i dn 

Where F.Tft, (n)   is the fractior  of the turbulent energy u'^ 

associated with a band width dn at a frequency n.    Since 

w' measurements have not been taken,        A_ ^ will 

be assumed to have the same magnitude as    Ay   or  A.^   . 

Furthermore for small turbulence levels,   Taylor has made 

the hypothesis that in the direction of the mean flow the 

time relationships could be interchanged with space rela- 

tionships through the velocity at the point.    Experimental 

evidence has shown that the time and space correlation 

....-• 
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coefficient in the direction of the mean flow are essen- 

tially thz same if the mean velocity is constant.    The 

rate of turbulence energy dissipation can be expressed 

in the form 

«nd i   W 
zVav Xf 

and since the space derivative dx in the direction of the 

mean flow can be interchanged with Udt then a second 

method of measuring A^ or  A.^  can be obtained 

u1 Vdt 

/N*- u 

The time derivative of u' was measured with an elec- 

tronic differentiator;    Distributions of the second 

moment of the power spectra   n^F(n)  are shown in fig- 

ures 18,  19,   20,  and 21. 

In isotropic turbulence it is necessary that the 

three components of the microscale*be equal.    In fully 

developed channel flow c-r shear flew this condition is 

no longer satisfied.    At a point in the thanr°; flow 

* As defined in the first equation of this page. 

• 
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variations of the three component microscales will take 

place as well as variations of each component across the 

channel.    Figures 22 and 23 show distribution of the cal- 

culated microscales in the fully developed "t^aight and 

curved sections.     The two independent methods of ob- 

taining AK  and   A.,p show gocd correspondence.    The essen- 

tial importance that can be drawn from the distribution of 

the microscales is that of the influence of the curvature. 

It is apparent from the distributions shown in Figures ZZ 

and 23tha~ the microscale in the direction of flow de- 

creases in the portion of the inner wall of the fully de- 

veloped curved section and increases in the outer portion. 

The radial component micrcscale in the curved section 

is larger than Ay   in the straight section for the major 

portion of the channel width except near the inner wall 

where they arc equal.     This does not necessarily imply 

that the energy dissipated near the outer wall is smaller 

than that at the inner wall because although the micro- 

scales are larger the turbulent kinetic energies are 

larger too.    As compared with Laufer's channel flow 
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at the highest Reynold's number,  the levels of the microscale 

are higher in this channel although the mean velocity is 

larger than that of Laufer.    As mentioned at the beginning 

of this paragraph two independent checks of the microscale 

nr)*»a«"r«ments were made and the measurements are con- 

sistent with each other.     The values of ^-/d   are approxi- 

mately three times larger than thosp. of Laufer at a Reynolds 

number of 61, 600,    The average ratio of L/d is exactly the 

same as that found by L.aufer,    As a result of the high values 

of the microscale the Reynolds number of the turbulence 

q'A/30   are also high.    It is customary in isotropic turbu- 

lence behind grids to give the proportionality factor be- 

tween the ratio of the scales and the reciprocal of the 

Reynolds number of turbulence.     The proportionality fac- 

tor was found to be fairly constant across the channel in the 

straight and curved channel.     The values of the proportion- 

ality factor ranged from  15    to 20. for this channel. 

X 
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The Integral Scale of Turbulence; 

In the definition ol the microscaie it wai stated 

that the integral scale denoted by L. can be connidcred as 

the average size of the eddi.es in turbulence.     This length 

is mathematically related to the space integration of the 

Eulerian space correlation coefficient: 

fx> 

Ls 
J 

%   c/x 

0 

1 

-'o 

L - pM* I 
In order to obtain Lx,   Ly    and Lz two  independent hot 

wires must by used where one is generally maintained 

fixed and the other moved in the direction of x,  y or z. 

The average of the product of the wire signals divided 

by the product of the individual root-mean square values 

of the signals determines the correlation coefficient. 

SLice the correlations of velocities were not measured 

in this work,  an alternate and simpler approximate 

I 
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method depending on the compensated and uncompen- 

sated values of the hot-wire signal was used.(l).     This 

method can only be valid for the determination of L in 

the direction of flow.    In order to have *•. ^iie> U id?* 

of the variations of Lr across the channel,   the aame 

method was used.    Although the results of radial in- 

tegral scale are not exact,  they give a good idea of the 

trend across the channel.    Figures 22 and 23 show the 

distribution of the integral scales across the channel 

and the effect of curvature on the eddy size.    This 

effect is exactly the same as that experienced by the 

microscale.    A second independent method of esti- 

mating the integral scale was accomplished by finding 

the extrapolated values of the power spectrum at zero 

frequency.     The values obtained in this manner are 

not represented here but their magnitude and trend are 

consistent with those shown in Figures 22 and 23.     The 

magnitude of the integral scale as a ratio of the width 

of the channel compares very well with those of other 

experimenter s. 

44 
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From the stability criterion for laminar boundary layer 

flow in curved channels first explained by Rayleigh (23) and 

then by Prandtl (24),   it can be deduced that any perturbation 

near the outer wall will be unstable.      The same perturbation 

near the inner wall will show to be stable.        If a particle near 

the outer wall is moved towards the outer wall it will find it- 

self in a surrounding with less pressure gradient and therefore 

will continue to move in the same direction.      If Lh«? particle is 

moved away irom the outer wall it will find itself in a surround- 

ing with larger radial pressure gradient <md therefore will con- 

tinue moving away from the outer wall.       This implies   instability 

because the disturbance grows in the direction it originated.   The 

opposite takes place near the inner wall,   any perturbation brings 

a restoring force which brings the particle back to where it started. 

Near the inner wall,  u'v   is negative which means if the perturbation 

is such that At)   or u1 is positive then v' must be negative or visa 

versa.      This consideration shows the same stabilizing effect near 

the inner wall and unstabilizing effect near the outer wall.     As a 

conclusion the outer wall can be called an "agitated region" and 

the inner wall a "damped region". 
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Similarity Considerations: 

The question of finding similarity In ctll proper- 

ties of fully developed flows in general is still an open 

^ne.    There is enough evidence that in a fully developed 

straight parallel channel the mean velocity as a ratio of 

U.  is a function only of yU^/g near the wall regardless 

of the Reynolds number.    The turbulent properties of 

the flow in geometrically similar fully developed flows 

show a larger variations from a so-called universal law. 

This departure is even larger in geometrically non- 

similar flows.    The turbulence measurements of a fully 

developed flow in a diffuser or in a curved channel (Fig- 

ure 24) show this departure very well.     There is enough 

evidence that the mean velocity in the vicinity of the wall 

even for geometrically non   similar flows shows a definite 

dependency on the dimensioniess parameter yUj&/t>   .     The 

velocity measurements in the two walls of the curved 

channel together with those of the straight channel are 

shown in Figure 25.    In the largest portion of the bound- 

ary layer it is generally assumed that the dependence of 

"^•.Nmir^wflKiwBmiBWBBBaBiiiwp^KMWBw   - 
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the mean velocity is on y/d rather than yU^A*    .     This 

dependence has been shown to be fairly true for straight 

channels with favorable pressure gradients.    The symbol 

d   stands generally for the half width of the channel where 

the shear stress and the vorticity are nul at that point.    The 

similarity of the mean velocity in the major center portion 

of the channel is expressed in the form 

Um   -   U - Kl) 
where U      is the maximum velocity or the free-stream 

velocity which also occurs at the center of the channel for 

fully developed straight channel or pipe flow.    In a curved 

channel,  the point of nul vorticity is where the product Ur 

assumes a maximum or in other words where   d(UT-)/dr is 

zero.    On the other hand the point where the laminar shear 

etress is zero does not correspond to the same nul point 

of the  vorticity.    The nul value of the laminar shear occurs 

where d'U/r)/dr   is zero.     The major difficulty that arises 

from this is that of determining where one boundary layer 

, • i—J*PSICTMB 
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ends and the other begins.    Wattendorf (Z) assumed that 

the free-stream point occurred where the free-vortex 

velocity distribution was tangent to the actual distribu- 

tion or in other words where the vorticity was nui.     Taking 

the difference between the potential velocity   of the free 

vortex and the actual measured velocity at each r and 

dividing by the corresponding U*  at each wall he plotted 

his points as a function of R/h.     The width b was the so- 

called thickness of the layer which is the distance from 

the wall to the location of the -mi vorticity.    Distributions 

(U    ••• U)/U+ versus R/b   were not satisfactory.      The inner 

wall value8,   the outer wall values and the values of the 

straight channel lined-up on three entirely different curves. 

The results of the present work show exactly the same be- 

havior.     Fiually by rearrangement of the variables 

Wattendorf succeeded in collapsing the dimensionless 

mean velocity distributions at the inner and outer wall Lo 

a single curve but this treatment did not agree with the 

distribution in the straight parallel channel.    Another 

consideration that was brought in was that in a straight 

• 
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channel the free stream corresponds to Um    =   const and 

for the curved channel Ur   =   const.   It was decided then 

to try 

(U^Wtf H 
(U/0 \ O or i. 

This consideration did not show any better results than 

the others.     The author for lack of better ideas leaves 

this particular phase of the problem where Wattendorf 

left it. 

In Figure 25,   the velocities in the boundary 

layers near the wails are plotted together with Wattendorf i 

measurements in channel II which corresponds to   —    = — 
ro       5 

or    twice  the   value   ad   compared to that investigated by 

this author.     It is apparent that in the region near the 

walls,   the straight wall and the two curved walls show 

good similarity  in the mean velocity up to a distance from 

the wall where they branch out.     The branching points for 

both channels do show that they are not essentially a func- 

vU* tion of    -—" .     The author followed Clauser's suggestic. 1, 

• 
.  . 
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that the points in the neighborhood of the inner wall should 

be more sensitive to     R IT   or     for the outer wall, r 

when the boundary layers at both curved walls in 

Wattendorf's channel and the present one were plotted as 

a function of     R /r   or   —-—the branching points fall at 
z 

approximately the same value of the abcissa,  but unfor- 

tunately the values of the ordinates   —     did not correspond. 

This implies very clearly that the distance from the wall 

divided by the radius of curvature at that distance is an 

essential parameter in curved flows.    A similar influence 

of the radius of curvature can also be attributed to the 

turbulence and one can see clearly from the spectral dis- 

tributions in the curved channel that not all sizes of 

eddies are influenced the same amount by the curvature. 

A similar parameter —    can be  said to be an essential 
kr 

one in the turbulent motion in curved channels. 
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Production of Turbulent Energy : 

From the turbulent energy equation 5,   the turbu- 

lent energy produced per unit time and per unit volume in 

a two dimensional fully developed flow in a parallel straight 

channel is     u'v' 3 U/d y.    For a two-dimensional fully 

developed flow in a curved channel the production term in 

— rau  u~| 
cylindrical coordinates in eauation 10 is   u'v" — j 

_ BR     B J 
In the limit,  when the radius of curvature r approaches in- 

finity;   the two expressions above become identical.     It has 

been established that most of the turbulent energy is pro- 

duced in a region very close to the   walls.     The maximum 

rates occur at the edge cf the laujinar sub-layer   which 

corresponds generally to a friction distance parameter 

yu*       =   10.     The rate of energy  production drops by a 

factor of ten when the friction distance parameter is 

100.   (corresponding approximately to 0. 050 inch from the 

wall in this channel).    In the distance where 25 < — * < 100 

the variations of the turbulent shear stress pu'v' are neg- 

uST' 
ligable and the dimensionless shear  stress              is 

TT   2 
nearly constant and equal to 1. 0.     The space derivative of 

• fWillHWi M>~   :wi «*•• ,• 
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the mean velocity changes considerably in this region and 

it is necessary to have accurate values of these derivatives 

to abtain reliable values of the turbulent energy production. 

In the sub-layer,   the opposite situation occurs namely 

that the mean velocity space derivative is constant and 

the turbulent shear stress varies from its maximum to a 

value of zero at the wall.    For the determination of the 

mean velocity space derivative graphical differentiation 

is not generally very adequate. 

Let us attempt at this point to formulate similarity 

conditions for the production of turbulent energy.    In a 

fully developed flow in a region close to the wall including 

the laminar sublayer (where the production is  significant), 

it has been shown that: 

and that U2    "   5W  / 

From these two expressions a dimensionless production 

term can be obtained by differentiating the first expression 

and multiplying by the second. 

Ui   3y   "   I  V v  / s V v> ) - " I  v 
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This implies that the dimensionless   rate of production of 

turbulence energy is universal near the v/all,   i.e.,   it is 

only dependent on   Y-L*   the friction distance parameter. 
V 

Away from the wall it is found that the dependency of the 

mean velocity and the turbulent shear stress is of a dif- 

ferent nature. 

2 -   P(l)    and       V!'   -  m(X\ 

There the dimensionless rate of production is 

US 

Away from the wall in the center portion of the channel 

the dimensionless production rate of turbulent energy is 

only a function of   y/d.     To verify the validity of the 

analysis shown above,   the author will compare the ex- 

perimental values obtained in this channel and thosp 

measured by Laufer (10) in the pipe flow. 

It is well established that the dimensionless mean 

velocity distribution near the wall outside the laminar sub 

layer of a   fully   developed   flow obeys the   universal 

- 



logarighmic law: 

U A      D 9       VU —   =   A + B <oo    — 
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where A and B are constants.     This law holds well in the 

straight fully developed approach section for values 

25 <^< V 
2000   and for the fully developed curved se:c- 

yU* 
tion of this wind tunnel   25 < -rr- < 200   (Figure 25).    In 

U 'U 
the laminar sublayer region  —     =   -—* .    By differen- 

U* V 

tiating the logarithmic equation the derivative of the mean 

v   du _ -4-343 Bv 
velocity can be found to be: TT2 T~ -     v ..  Since 

du B and U .    are constants the derivative in the 
dy 

region where the law applies is given as a function of y. 

In the laminar sublayer the space derivative of the velocity 

is   U     /V  .    The turbulent shear streus distribution in a 

fully developed straight channel from equation 11 is: 

2Y 

This expression is valid from anywhere in the channel up 

to the buffer zone.    In the region near the wall the term 

l/y» 2/d. 

• 
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The turbulent energy production in a  dimensionless 

form can be expressed as previously 

"PL 
v uV dU 

U*    dy 

and this quantity outside the buffer region becomes: 

?r 4343 Bv> ? 

d~ 
(15) 

and in the laminar  sublayer: 

BL 
uV 

U* 
If one   plots these two equations as a function of   yU./y>    , 

they agree extremely well with Laufer's (10) measured 

data and the data obtained in this investigation for the 

straight channel and also for the boundary layers in the 

inner and outer walls of the curved fully developed sec- 

tion.   (Figure 26)    The full line represents the analytic 

values calculated from Laufer's value of B and U%.     The 

equations depart from the experimental points only in 

- . 
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the immediate vicinity of the edge of the sub-layer. This 

could be overcome if — = -f ( Y. * ] is more accurately 

approximated at the edge of the sub-layers. 

The mere fact that the dimensionless production 

curves of the inner and outer walls of the curved channel 

and of the   straight section and also of the values measured 

by Laufer (10) coincide so well,   suggests that the turbulent 

production is only dependent on yU^/V    near the wall.     Then 

ii becomes apparent that the absolute value of the turbulent 

4 
energy production is simply proportional to U+    or to the 

square of the shearing stress at the wall.     The values of 

U    for this investigation are as follows:    U#   =   4.08 ft/sec. 

for the  straight channel,   U+   =   3. 57 ft/sec.  for the inner 

wall and U,    =   4. 77 ft/sec.   for the outer wall.    The rela- 

live comparison of the rates of energy production near 

the wallo of this channel are plotted in Figure 2 7.    In 

this figure the maximum production value for the straight 

channel has been made aribtrarily equal to 1. 0.     These 

results substantiate very well the fact that the turbulent 

intensity on the sids of the outer wall is higher than that 

measured near the inner wall. 

* 
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The Dissipation of Turbulent energy: 

In the analytical considerations the dissipation 

function was fully represented in tensor notation in eq- 

s ex- uaticns 3a and 8a   as   <J> = JU [~— * . ^fi]^   .     Thi 
St?  r[dtj + axijaxj 

pression when expanded contains twelve mean derivative 

terms and their sum specifies the mean rate of turbulent 

energy dissipation at a given point in the flow: 

The author does not know of any direct way of measuring 

the space derivative terms in the expression shown above. 

Generally an alternate approximate method is used to 

estimate each term in the   dissipation function.     Through 

Taylor's hypothesis for small intensities of turbulence, 

the space    derivatives in the   direction of the mean flow   I-??-— w 
is always related to the time   derivative and the mean 

velocity      .     With an electronic differentiator the voltage uat 
fluctuations of the hot-wire can be differentiated.     The other 

space derivatives can also be   estimated through Taylor's (13) 

.* 
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expansion   of the space correlation coefficient into the 

space derivatives of the turbulent velocities 

From the above expression it follows that the curvature 

of th« correlation coefficient t\y curve at the origin is 

a measure of (-1 lay/ 

A similar analysis can be done for the remaining space 

derivatives except of course that the product of derivatives 

in equation 16 bring special difficulties. 

If the turbulence is statistically isotropic the mean 

rate of turbulent energy dissipated reduces to 

Laufer in his   channel flow measurements has found that 

for his work the use of  Av   in the isotropic relation shown 

in equation 18 gave him a closer   estimate of the dissipation 

, 
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than any other microscale.    In the present work,   it was 

mentioned that the values of the microdcale measured 

were suprisingiy high compared with other experimenters. 

It can be seen from the isotropic relation given above that 

the absolute values of the dissipation across the channel 

will turn out to be smaller as compared with the values 

of other experimenters.    It is for this reason that the cal- 

culated values of the dissipation in this channel are made 

relative to the value of the dissipation at the center of the 

curved channel.     Figure 28 shows the relative magnitude 

of the mean rate of dissipation at the three walls.     The 

value of the dissipation at the center of the curved channel 

was arbitrarily chosen to be 1. 0.     The curves in Figure 28 

show near the wall the same trend as the production of 

turbulent energy shown in Figure 27. 

>Mim(>m-—r- 
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CONCLUSIONS 

Until tha time of the writing of this paper,  the only 

experimental investigations on flow in curved channels avail- 

able and known to the author were based only on mean veiocity 

and mean pressure measurements.      The purpose of this pap*v 

is to bring additional information on the effect of curvjiture and 

especially on some important turbulent statistical quantities. 

The transition problem from  straight channel IAOW LO cuived fully 

developed flow is beyond the scope of thie paper.       A comparison 

is made here on the effect of curvature on an initial straight fully 

developed flow and the final character of the flow as it reaches 

equilibrium in the curved channel. 

1. The work performed in this curved channel is with walls 

of comparatively large radius of curvature,   it appears 

evident that the flow reaches equilibrium in the curved 

section at approximately 170'    oi constant curvature.     It 

must be kept in mind that the initial conditions of the flow 

at the entrance of the cuived channel are also fully developed. 

2. The effect of curvature on the mean velocity distribution is 

such that the center portion of the flow approaches the velocity 

VXiC>fc<l     ^U-LUIl     KSX     <X     XXw«3       VV«    *-<~ SI  > 
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The use of simple radial equilibrium neglecting the 

turbulent terms in the radial Reynolds equation shows 

only a maximum of 1/2% discrepancy when referred to 

the dynamic pressure at the point. 

The level of turbulence intensity is reduced in the por- 

tion of the inner wall and increased towards the outer 

wall.      This fact agrees well with Rayleigh's stability 

criterion. 

Depending on the Reynolds number of the mean flew and 

on the roughness of the curved walls,   an expression is 

given for the determination of the location of the nul 

shear stress in the curved channel. 

The effect of curvature on the scales of turbulence is to 

increase them near the outer wall and decrease them near 

the inner wall.      In different words one may say that the 

average size of the eddies magnified near the outer wall 

and damped near the inner wall a« compared with their 

initial size in the straight channel.      From the one-dimension- 

al power  spectra it becomes evident that the energy associated 

with the large particles are reduced near the inner wall and 

augmented near the outer wall. 
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7. As compared with the  straight channel,   the turbulent 

energy produced and dissipated  is larger at the 

vicinity outer wall and smaller at the inner wall. 

8. The logarithmic similarity law for the mean velocity 

in the vicinity of the wails applies well for the straight 

and curved walls.      The turbulent quantities show a 

marked distinction when compared with the conventional 

straight wall similarity conditions. 

. 
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APPENDIX 1 

STATIC AND DYNAMIC HEAT TRANSFER 
PROPERTIES OF THE HOT-WIRE ANEMOMETER 

Heat Convection Theory of Hot-Wirea 

The differential equation governing the transfer of 

heat by forced convection from a cylinder into an incom- 

pressible homogeneous fluid passing over the heated cylinder 

is represented in Cartesian coordinates by: 

s    Dt     r <H dx       by 
- ~acfj I-I 

The velocity components u, v,   and w functions of x, y, z and t 

must be separately determined from the Navier-Stokes equa- 

tions for the particular case of fluid flow around a cylinder. 

When the fluid flow field is determined then by substituting the 

three velocity components u, v,  and w in equation 1-1,   the 

temperature field may be determined, 

Boussinesq first and then King were interested in 

obtaining a solution for the temperature distribution of an air 

stream passing over a heated cylinder. 

By assuming steady state in a two-dimensional 

frictionless fluid, Boussinesq (19) succeeded in transforming 

the simplified equation I-lfrom flow passing over a cylinder to 
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flow over a flat plate.      Then in the new coordinate system 

equation I- i becomes: 

pel) i*I -   *_ 1-2 

where U in this case is a constant,   <$    is the coordinate along 

the plate in Figure (29) and -£   is the coordinate perpendicular 

to the plate. 

Boussinesq Solution 

In 1903 Bousiir.eeq mad** the following assumptions: 

(a) for the problem of Fig. (29) mass only flows in the $ 
direction, 

(b) K is a constant,   c and     p U are also constants, 

(c) the thermal conductivity in the <J>   direction is zero or 
3M-     an 
as1 <<r a*1 

(d) the initial temperature of the fluid is a constant,   T   , 

(e) the temperature  Tf of the plate is ,f(<f ) +  TQ,   where the 
function f( $ ) should be  such that when$<Q>    f( f )  -   0, 

(f) the temperature of the  plate  should be the sa,me as that of 
the fluid in contact with the plate; or when $ = 0,   then 
T   =  Tr 

, — 
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On account of the conditions imposed above,   the 

differential equation 1-2 reduced to: 

Trt 

fjc   a ^x 
1-3 

and the solution becomes: 

2 T-T0    -   ^ 1-4 

4*- 

where   fX ~    —-— ^ and      rn ^ 
1 :ym<£ 

The total heat flow per unit length can be found then; taking 

T0 = 0 

and the average Nii38elt's number is: 

Nu      =    - a* VPe 
7V. •- 

1-6 

This solution gives a linear relationship between the 

Nusselt's number and the  square-root of the Peclet number. 

•   . 
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King's Solution 

In 1914,   L. V. King (20) presented a solution to 

equation 1-2.      This means that contrary to Bouusinesq the 

thermal conductivity in the 3> dire^Usr. is non  zero. 

Also in this case,   on account of the transformation 

from fluid flow around a cylinder to fluid flow along a flat plate, 

there exists no flow of fluid in the   ^    direction.      The thermal 

conductivity   Hl> is constant in all directions,   and the same 

assumption applies to the specific heat and the density.      The 

fluid is assumed to be non-viscous and potential.     The boundary 

conditions set by King are as follows: 

(a) the rate of heat flow per unit area q" over the plate is 
constant and uniform, 

(b) the initial fluid temperature T0 is a constant, 

(c) the temperature of the fluid T£ is equal to the temperature 
of the plate Tp only at the downstream edge.     To say that 
T_- Tf everywhere on the plate will be inconsistent with 
condition (a). 

The solution of the temperature field obtained by King 

is the following: 

T(*>Y) -TO 2XX. 
©00 e kH*M*-?) de 1-7 

•rttmsitixst&mtKm&zs. 
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Where q" =     @(%)d\ i8 the heat flow per unit 
J 
o 

area of the plate assume as a constant. 

The solution given in equation 1-7 was further sim- 

plified by King by expanding it into two assymptotic series, one 

for low values of Pe' and the other for larger values. 

The appropriate solution for low Pe <. 067 or Nu<-53 

is: 

/_     ZK>C(TP-TO) ond    Nur   __2 

0-Y)-!"^' (i-r)-I^Ffe' 1-8 

and that for high values of Pe> . 067 or Nu >   . 53 

<\ X+VzAKpcDu7rTp-T0L,J   Nur^5_L 1-9 

Cole i:nd Roshko (22) have recently derived a solution 

of heat transfer from heated cylinders for Reynolds numbers in 

the Oseen regime.      In this regime,   diffusions is the dominating 

process through which heat is transferred near the cyiiader. 

The boundary conditions set for this solution are 

(a) The initial fluid temperature for upstream of the cylinder 
is constant 

(b) The temperature at the surface of the wire is uniform and 
constant. 

.    •.. ^i^a.<r*;^ir>« - 
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The solution of the heat equation for an infinite cylinder in 

the Oseen flow regime is 

— Z 
Nu = — 

A comparison of Bcussinesq'a ,  King's and Cole and Roshko's 

solutions is made in Figure 30.        A comparison between King's 

equation,   and actual experimental values obtained in the iabora~ 

tory are presented in Fig. 31. 

The Use of Heated Wires for Time Mean Velocity Measurements 

Referring to equation 1-9 one can see that if the 

properties of the air  surrounding the wire remain constant and if 

the heated resistance of the wire is kept constant then a linear 

relationship should exist between the heat input into the wire and 

the square-root of the velocity.       Experimental evidence shows that 

Nu is a linear function of vPe for large enough Peclet numbers. 

Although King showed the linear relationship,   the constants in his 

solution do not agree with thoae determined in the laboratory Figure 

31.      If the heat input is supplied by an electric current,   then one 

can rewrite equation 1-9 ir. the following manner: 

i\ =[A + r->fv] [TK-T; i-ic 

. . I icwnw iiras* 
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R   - R 
since Tv - T^ =  —    ,   it is sometimes convenient to h      °      a0R0 

write equation I-10 in the following way: 

r - TA + BVU" 
"O ^V>  l\« 

1-11 

The value of R0 is determined by the temperature 

of the surrounding fluid,      If one adopts beforehand a value 

of(Rh - «o)/ "o >   called the overheat ratio,   then the value of 

Rh is indirectly fixed and for each value of the overheat ratio 

one obtains linear relationship between I    and */U at constant 

angle between axis of wire and U.   Fig. 32 shows a family of 

curves for various values of overheat ratios.      Those curves 

are called the calibration curves of the wire for static or mean 

velocity response.        If the axis of ihe wire makes an angle 6 

with the direction of the mean velocity   U   then the apparent 

heat convecting velocity with respect to the wire is U. cos 0. 

Equation I-il  is still valid and    U cos ©   should be used instead 

of U 

. • 
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The Uae of Heated Wire a for Instantaneous Velocity- 
Measure ments 

In a turbulent flow field,   the velocity vector at 

every point of the field is a furiciioft of time.      In most tur- 

bulent fluid flow applications,   the conception of time dependency 

is not a transient one.      The time average of the velocity vector 

remains constant at the point but the magnitude and direction of 

the velocity vector fluctuates as a function of time around the 

mean.      This means that we can represent the velocity vector 

by an average constant quantity and a fluctuating time dependent 

part,   v (x,   y,   z,   t) = V (x,   y,   z) + v1 (x,y, z^t).      In the previous 

section we have already discussed measurements of the time mean 

of the velocity vector,   V (x,   y,   z).      The analysis becomes some- 

what more involved for measurements of the time dependent part 

of ibe velocity.      The complex wave form of the time dependent 

part of the velocity in a turbulent ilow field reveals appreciable 

effects produced by minute eddies travelling with frequencies up 

to 15, 000 or 20, 000 cycles per second.      This fact introduces the 

problem of having a heated wire capable of reproducing faithfully 

without amplitude or phase distortion signals at high frequencies. 

•' —*. -M. »»awiB"|Wiiiwr5B' 
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However small a wire ran be manufactured,   it still has i 

mass and thermal properties which by themselves will 

never be able to communicate undistorted information a»; 

higher frequencies.      This problem is usually remedied by 

artificial electronic compensation to make up for the loss of 

information at high frequencies.      The following analysis will 

take for granted that the wire is faithful or made to be so 

electronically.      Furthermore,   the dynamic response analy&is 

that will follow will only be valid for small disturbances com- 

pared to the magnitude of the average quantity. 

Let us consider a two-dimensional channel flow as 

shown in Fig. 34 with U the magnitude of the time mean velocity 

and u', v' and w1 the fluctuating components in the x,y,   and z 

directions.      When the axis of the heated wire is placed per- 

pendicular to U,   the wire will be sensitive to u' fluctuations 

Silica 0=0 any change of direction of the velocity vector created 

byAQl - ten      ,      and  A© = tan - from the point M 

Fig  33 will certainly be negligible.      However,   if the wire would 

be placed originally at say G = 45°  then any disturbance created 

by v* in the form of(45:>  + Ae,)   and(45c   - A©, )will be in the same 

ww*^ 
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Iv- 

or der oi magnitude as those created by u'.      In order to 

intercept w' fluctuations the axis of the wire must be in the 

x - z plane and making an appreciable angle with U. 

Consulting Figure 34 let us place two wires 1 and 

2 with their middle in the same point in space both making 

equal angles © with the main direction of flow U.      Adopting 

a positive direction of u' and v' as shown in Figure 34 one 

obtains the velocity components V,  and V£ effective to each 

wire. 

v,   = V(u+u'f + ^'2-  cos(e-Ae) 

1-12 

Vz  c. V(u + u')+vz co5(e+Ae) 

where:      A6   =    Tan     —-—- 
U + a' 

If one expands the coefficients above into a binomial expansion 

and neglecting second order terms,   one obtains: 

V   s.   Ucos>6 + u-'cos© + v's/ne 1-13 

m V,,   s.   (Jcos8 4 u'cose -"J'sme 

.. - •.  w.vt&tmmutKgsx-m •••• • 
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The term U   cos 0   is constant with time only the 

remaining terms are functions of time.      Those time dependent 

terms will create voltage fluctuations or ac voltage in the wire 

above the dc level maintained to keep the  wire heated at a velo- 

city U cos ©.      Let E =: IRfc be the magnitude of the dc voltage 

and e   (t) be the fluctuating voltage created by the fluctuating 

velocity components.      Since the dc component of the voltage in 

the wire does not go through the compensating amplifier,  then 

we will consider the time dependent part for the moment. 

Since e' (t) is caused by a fluctuating velocity then 

one can write that 

e.'(t) - F ui(t)cose +v,(t)sin& 

1-14 

e2'(t) - Fj u.'(t)cos6-i/(t)4"ie 
L 

5£5fc> 
where F can be found from circuit analysis (21) to be F =- zucose 

Where a   is the time average overheat ratio,   E is the mean dc 

I1- I* voltage of the wire,  b =   —— — where I is the mean value 

2 
of the current in the wire and I0    is the fictitioue point repre- 

senting the square of the current at   zero velocity in the  static 
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calibration curve. The term   6 represents a correction factor 

for the degeneracy from a constant current condition.     Thi« 

quantity depends on the heating circuit of the hot-wire ane- 

mometer set and should be computed for the  particular set. 

Since the rms values of the turbulent fluctuations 

represent the energy contained in turbulence,  it becomes 

necessary to take the rms value of equation 1-14. 

ye  (t) - e/   -   F   ucoiS + v'.sin© 

1-15 

From these equations one can see that if 0 becomes zero then 

both wires are perpendicular to the mean direction of flow and 

both equations reduce to: 

£;  •=,   Fu> -_ -  °Ilh £' i-i6 
*     u 

Equation 1-16 must be used to determine the value of u'.    In 

order to obtain the energy involved in other turbulent terms 

such as v',   u'v',  w' and u'w' one  must square first,  add and 

subtract equations (15): 

_ . -.utt tmti*mvnn   -• 
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a E c b    rXT/f„^c\ 
U' 

uV tan 6 | 
J 

«' t e- , 
*/.* a E6 b u'% v' fan e 

• 17 

These equations hold true for wire having the same calibration 

characteristics at both positions.   T\ = F-j.   .  If the voltage res- 

ponse of both wires is not the same,   in order to solve Equation 

i-15 in the form of 1-17 it becomes then necessary to match 

F.   and F,   with a voltage divider or a potentiometer.   If   a 

subtracting and adding circuit is available,   the operation in 

Equation 1-17 can be done electrically. 

• 
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A 

APPENDIXJI 

THE HOT WIPE ANEMOMETER 

Foreword 

This type of a hot-wire anemometer was designed 

mainly for the purpose of compensating tungsten wires with a 

relatively large time constants (0. 52 to 2 msec. ),       The set 

is built with two separate Krid£~s and two differential com- 

pensating amplifiers.      The presence of separate bridges and 

amplifiers enables to perform direct space correlations mea- 

surements and furthermore avoids interference of one bridge 

on the other when two wires are used concurrently.     The design 

and wiring was done at the Mechanical Engineering Department 

of The Johns Hopkins University under ONR  sponsorship.       This 

instrument was used for measurements of turbulence intensity, 

shear,   and turbulent energy spectrum in subsonic turbulent »Jr 

flow in curved channels. 

Description of the Hot Wire Anemometer 

j§; This description will contain only components which 

are essential to reproduce correctly the static and dynamic 

information from the turbulant flow.      Recording instruments such 

-«» >-»»<--s«i>;>w» 



i 
77. 

I 

as ammeters,  voltmeters; voltage adding,   subtracting, 

multiplying circuits; filters,   oscilloscope etc.   will not be 

included in this description.      The compact unit shown in 

Figure 35 contains the following components: 

1. The Power Supply Units: 

A. The Lambda Regulated Power Supply:   This unit is 

manufactured by the Lambda Electronic Corporation of 

Corona N. Y.    It is the model 28 with input voltage of 105- 

125 volts at 50-CC cps.      The DC output voltage is regulated 

and may be adjusted trom 200-325 voits at 0. iu amperes.   The 

B    voltage in this set is adjusted to 300 volts and supplies the 

plate voltage to the amplifiers and the  square wave generator. 

No ground connections are made in the power supply; the B~ 

is grounded in the individual chassis of the instrument in order 

to prevent circulating ground currents.      The AC voltage is un- 

regulated and rates 6. 3 volts at 3 amperes.      This AC voltage 

is fed to the square wave generator tube filaments and also used 

for calibrating voltage.      The amplifier filaments are heated with 

battery DC voltage in order  to redvee hum.      Figure 35 shows 

the Lambda Power Supply at A. 

• . j«—in': law >aatr... - 
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B. DC Power frc -n Batteries:   Three 6 volts automotive 

batteries are used to supply the heating current to the hot- 

wires in the bridges and also to supply the filament current 

to the amplifier tubes.      Figure 37 shows the lay-out of the 

batteries where  18 volts are used for supplying the hot-wire 

bridge currents and 6 volts for the amplifier tube filaments. 

In Figure 35 switch B connects the batteries to the circuit 

and a pilot light C will go on when switch B is turned on.   The 

DC voltmeter D will indicate the voltage of the batteries.   The 

output leads of the Lambda supply and the batteries are brought 

to a terminal box behind the bridge panel.      Pi *"»r to the 

bridges,   amplifiers,   square-wave generator is then distributed 

by means of plug-in cables.      This arrangement was chosen to 

facilitate easy removal of a defective unit. 

2. Bridge Circuit - Heat Control and Bridge Terminals: 

The twin bridges are identiqal ,   as are the two heat con- 

trol panels Ej and E^.       The bridge itself is not an integral part 

of the set shown in Figure 35.       The set was especially designed 

in this fashion so as to give the experimenter the privilege of 

choosing an accurate and non-inductive bridge.       The described 

• 
...,* 
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set-up uses a Leeds and Northrup No. 4725 Wheatstone bridge 

because of its accuracy and practically negligible inductance. 

Figure 39 shows the bridge connections to the four terminals 

in the main chassis.      The four bridge terminals are lettered 

S, T,Q and P where P is grounded.      Eight alternate binding 

posts are provided in the heat control panel for the following 

reasons.       Across the first set of two posts S and T the bridge 

has a leg of 100 ohms resistance.      The current in the hot- 

wire is measured between these two terminals.     The second 

pair of posts T and P provide the connections to superimpose 

the  square wave signal on the DC battery voltage in order to 

compensate for time lag of the wire with the RC network in the 

compensating amplifier.      The third pair S and P is across the 

variable resistance leg of the bridge.     The voltage between these 

terminals is used as a differential input to the amplifier for 

accurate compensation.      The fourth pair of terminals Q and P 

are directly connected across the hot-wire and are used to supply 

the fluctuating hot-wire voltage to the amplifier. 

I 
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The heat control circuit which supplies heating 

current to the bridge can be seen ir. the payout Figure 38 

or in the photograph Figure 35.      When switch B is on,   the 

bridge will be supplied with enough current to measure the 

cold resistance of the hot-wire on account of the higher 

resistor of 3. 3K in the line.      When switch F is turned on, 

the  3. 3K resistor is by-passed and higher current flows 

into the bridge.      The variable resistors G-25051 and H=25-H. 

control the heating current supplied to the bridge.     A 50-T5- 

resistor  in series with the variable resistors is introduced 

to protect partially the bridge for possible mietakes.      A DC 

milliammeter I {0 - bGOma) is located next in series to in- 

dicate the current on top of the bridge.      A galvanometer K 

connected across the bridge between 5 and Q and a sensitivity 

switch J shunting a 5 IK resistor is used for balancing the 

bridge accurately. 

3. The Calibrating Voltage: 

A standard voltage is necessary to calibrate and 

check instruments.      Its use is especially necessary to deter- 

mine the gain of the amplifier during actual test runs.       The 
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voltage supply for the calibration of voltage network comes 

from the AC power of the Lambda supply.      A switch L closes 

the circuit and the current flowing through the line is controlled 

by the variable 10K resistor  M,    A milliammeter N (0 -  lma) 

indicates the current flowing and a voltage divider R will give 

the desired voltage at the ovtpic terminals 0.      Top circuit of 

Figure 38. 

4. The Compensating Amplifier: 

The purpose of the amplifier in this instrument is to 

compensate electronically for the decrement of information 

transmitted by the hot-wire due to the thermal lag.   Further- 

more,   it serves the purpose of magnifying the small AC voltage 

fluctuations of the wire created by turbulence.     This amplifier 

uses feed-back around one stage,   Figure 40.       The compensation 

level from ceiling to floor is 28 db.   Figure 42 shows the fre- 

quency response of the uncoinpensated amplifier as well as the 

response of the amplifier with compensation for 0. 5 and 2 msec. 

wire.     A cathode follower is added in the circuit in order to lo"wer 
• 

the output impedence.      In this present system,   two values of 

capacitance C6-0. 005|rf  and C5 = 0. 02 M>-   together with the  It 00K 

•<•*. w >im%m i—put y-.^.iswiBHL-^^ 
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variable resistor R4 will compensate wires between 0. 5 and 

2msec.      The design of this circuit was preferably adopted 

for possibilities of tracking a second stage of compensation 

to the first,   if needed. 

The specifications of the amplifier are as follows: 

Maximum gain (Low frequency)       80   db 

Compensation level (ceiling to floor)     28     ,: 

Common-mode rejection ratio  .   165 

Output volte (. 707 of peak) input shortad when 

amplifier is set to compensate a 1 msec. 

wire (hum and noise)    2. 8     mv. 

-Compensation range    . . .    Figure 42 

Output impedence    less than 500 ohms. 

When power supply and batteries are on.  the am- 

plifiers and the square wave generators are in operation. 

Consulting Figure 35 again.   Switch Al has two positions.   The 

down position is the uaual position for one signal going through 

the amplifier.      The up position is used for subtracting two 

signals going through the amplifier at the same time. The 

subtraction is done by a simple phase shift of the second lr.put. 

. . 
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Jack V is for the single input and jack W is used for the 

differential input.      The amplifier output is taken across 

the binding posts U.   Dial Cl is the gain control of the 

amplifier.      Dial Z and switch Bl represent the compen- 

sation network.      The switch Bl has three positions a« 

follows:     The middle position is the uncompensated signal 

of the hot-wire,  the upper position introduces a 0. 02 Uj • 

capacitance in the compensating circuit and the lower posi- 

tion a capacitance of 0. 005u^- The variable resistance Z is 

used together with the capacitors to match the time constant 

of the wire.      A duplicate amplifier  is  no*/   located an the 

other side of the square wave generator.     The amplifier and 

square wave generator panel is plastic,  this separates the 

ground of this panel from Ihe main chassis.     The amplifiers 

and the square wave generator are built in separate miniboxes 

in order to reduce hum,  noise and circulating ground currents. 

m 
• - —  _ wr*jn*>imm\\i*iJ*J -. "*•••- 
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SYMBOLS IN FIGURE 35 

Power supply on-off switch 

Battery power on-off   " 

Pilot light, to indicate batteries on 

DC voltmeter- Battery voltage (0-20 volts) 

Heat control panel 

Heat switch 

Coarse heat control pot.   (25 0 ohms) 

Fine " " "      (25      "      ) 

Bridge current milliammeter (0-500 ma. ) 

Sensitivity switch of galvanometer 

Galvanometer 

Calibration voltage on-off switch 

Current control in calibration voltage (10 K) 

AC milliammeter in calibration voltage (0-1 ma. ) 

Calibration voltage output terminals 

W 

-. •-. •• 
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P, Q. S, T four terminals of Wheatstone bridge 

R Calibration voltage divider (5J1: IOR,  50A) 

U Output terminals of amplifier 

V Input jack of amplifier 

W Second input jack of amplifier 

X Output terminals of square wave generator 

Y Output terminals of second amplifier 

Z Resistance control of compensation (100 X) 

Al Single or differential input switch of amplifier 

Bl Capacitance control of compensation (0. 005UT. 
and 0.02u£) 

Cl Gain control of amplifier (1 Meg. ) 

Dl Frequency control of square wave generator 
(0. 25 Meg. ) 

El On-off switch of square wave generator 

Fl Amplitude control of square wave generator (100 K) 
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Figure 5» Dimensionless mean velocity distributions 

in the straight and curved sections. 
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Figure 7. Mean velocity and turbulence level distributions 

across the fully developed curved section. 
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Figure 8. Distribution of local intensities of turbulence 
in the direction of flow. 
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Figure 11. Shear stress distribution across the fully 

developed straight section. 
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