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SUMMARY

The problem of investigating the turbulent
properties of a flow in curved passages has received
very littie attertion in the past years. The lack of
attention is8 mainly due to the additional complication
brought into the problem by the curvature of the flow
field, This work attempts to analyze analytically as
well as experirientally the turbulent properties cf a
fully developed two-dimens.onal flow of air ir a curved
channel with constant radiue cf curvature. The results
are compared with those of a two-dimensional fully
developed flow i a straight parallel channel at the same
Reynolds Number. Althoagh the investigation was carried
out in a channel with one value of radius of curvature,

- ‘tempts are made for predictions cf flow behaviours in

charnels with different radii of curvaiure.
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i.1ST OF SYMBOLS

Stra@t Parallel Channel, Cartesian Coordinates:

X
¥
z
ui, V', w:
Uvw

~ e~
» V. W

Longitudinal coc¢rdinate in the direction of flow.
The origin ie at the entrance of the astraight chaanel.

Lateral coordinate in the direction perpendicular
to the walls. The origin is thc inner wall.

Coordinate perpendicular to x-y plane.

Instantaneous fluctuating velocity componcnts res-
pectively in ine x, v, and z direntions.

Time mean velc-ities re_pec.ively in the x, 7,and
z directions.

Root-mean-squaie of the fluztuating velocity
cornponent in thke x, y, and z directicns.

Curved Parallel Channel, Cylindrical coordinates:

P

Angular coordinate in the directior of flow. The
origin is at the exit of the straight channel or the
inlet of the curved channel.

R:idial coordinate measured from the inner wail.

Radial distance measured from the center of the
circles described by the two curved walls.

Coordinate perpendicular to the r-¢ plane.

Instantaneous fluctuating velocity components
respectively in the Y , r and z Qirections.
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vl%,r, >
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i
-. u,v,w The time mean velocity components respectively
= in the ¢ , r and z directions.
L, v, W Root-mean-square of the fluctuating velocity
component in the ¢, r and z directions.
General Symbols:
'
P Local static pressure F *+P
4
§ & Density of the air
P Time mean value of static pressure
p' Instantaneous fluctuating component of static
8 pressure
’ U Space mean velocity at the particular station
‘;; -
g F*t Total pressure
£
¥ % Kinematic viscosity of the air

s ey
o

e L L
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o

Time coordinate

M Time constant of the wire

Um The maximuni mean velocity at a giver x or Q.
! T \t

Ux Friction velocity  { y? )

Reynolds Number based on maximum niean
velocity and half width of channel

d Width of chaanel, 3.0 inches

A The microscale of turbulerice
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The integral scale of turbulence
Component frequency o turbulence
Wave number 27%tn/U

Shear stress al the wall

Fracticn of turbirlent energy associated with
band width dn

Turbulent energy associated with barnd width
dk

Mean voltage across the wire
Fluctuating voltage across the wire

Space-Correlation Coefficient

Associated with x-direction

1" " y Ul

1" " 3 "

i no9 o

1" 1 r U

' " straight channel
n " inner wall

= tl outer wali
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Associated with

u's ut ut Turbulent energy in the
direction of mean. flow
v 2 " Turbulent energy in the
lateral or radial direction
r1 1" "

The point where the total
shear stress is zero

Appendix I has a separate List of Symbols




% :
-t List of Symbols in Appendix I
%- D Diameter of cylinder
; c Specific heat of the air
e densgity of air
3
T, Temperature of a.r
e t Time
= u x component of velocity = U 4+ u'
i y component of velocity = V &+ v!
w z componant of velocity = W 4+ w!'
&
Z‘ P& Thermal conductivity of air
_‘;.:lf >
¥ _ "D
§ Nu 7
3 8
¢ e ]
A ; ———  peUD
: Pe Re x Pr = =
3 WoC
;. Y Euler constant, .57721
5 q' Heat flow per unit time per unit length
13

Heat flow per unit time per unit area
TemEgerature oi plate
Temperature of fluid

Temperature of wire when heated




H I Current through wire

; R Resistance of wire

: R, Resistance of wire at air teinperature
Ry Resistance of wire when heated

: [ Length of wire
X Temperature resistance coefficient
A £ (King's Equation)
B {\ZxacpUD

x,y,2z,§,¥ Coordinates
u U(x,y,z) +u'{x,y, z,t)same treatment
applies to other componenis

o Angle hetween the wire axis and perpendicular
to the mean flow U

E Mean veltage <i wire (DC)
e' Fluctuating part of voltage of the wire (AC)
e! rms value ofe'
u' rms value of u'(same treatment pertains to other
components
. a Overheat ratio = Fh - 35
D
AN o
2 . .2
. b I 1o
-2
]
o
c Per cent degeneracy from constant current case
-vi-
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INTRODUCTION

The problem under considaraticn is one of turbulent flow
in curved channels. This sentence as it stands has & very
broad meaning and since today's knowledge of turbulence alone
is not sufficient to develop a generzl thecry of turbulence, the
author, like all cther investigators of iurbulent flew problemas,
must regretfully confine his efforta to a iimited phase of the
general problem itszlf,

We know very little about the inechanism of turbulszce. We
call it today a nasty problem of complex nature. Indeed it is one
or ati ieast it seems so because sisier aciences like molecular
theory of fluids and rnathemastical theory of statistica do not yet

supply the necessary knowledge to help forrmiulaie a plausible

solution and clear understanding of the mechanism of turbuience.

If the generai theory «f turbulence cscapes our comprehension,
it is then because of the complexity of the mechanism of turbu.-
lence. Furthermore, the general problem of fluid flow brings
with it non-iinearities in the equations describing the motion of
the fluid. Although to 2 perfectionist this situation might look

desperate, it is contrary to the logic of a scientist to ait back
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and wait for the missing clues that are to guide us io the general
solution of the problem. The purist, who desires to draw con-
clusions from rurely deductive reasoning, will devote his efforta
tc diminish the lack of knowledge in molecular theory and math-
ematics which are so badly needed for a ciearer understanding of
the problem. The artisan or the engineer or in general the iabora-
tory man will contribute his share by investigating the actual flow
in simple configurations which demand only a part of the ovverall
kncwledge needed to solve the special problem he has chosen. It
is hopedthat the ssluticn of that comearatively aimple problem will
show the way to the solution of a broader one. The surist will
supply informnation to the engineer and the engineer to the purist
and, hoping that the process is favourably convergent, we will
someday arrive at the general solution for the problem of turbulent
flow.

In this investigation, the aim of the author is to study the
special problerm he has chosen. It is one of the study of the mechanism
of turbulent motion in a two dimensional curved channel after the

incompressible turbulent flow has reached a so-called fully dcveloped
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stauge. The flow entering the curved section iz two-dimensional
and fully developed in a straight channel of parallel walls. The
initial conditions of the flow before entering the curved channel
have already been investigated by Laufer (1) for three different
Reynolds Numbers. Wattendorf (2) showed the need of a similar
investigation in a curved gzssage. Wattendorf's studies on a

flow around a curved channel contained only investigaticns of the
time mean velocity and pressure. Studies of the effect of curva-
ture on turbulent intensities, shear, turbulence energies and other
characteristic turbulent parameters will be presented in this in-

vestigation, as weil as the mean velocities,
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The Wind Tunnel

The wind tunnel was designed for maximum velocities in

T Y ST T

the neighborhood of 100 ft. /sec. Two banks of two biowers in
series per bank were necessary to supply the air in the wind tunnel.
Each blower has a maximum rating of 4000 c.f.m. and 3 inches of
water static head. The fans are driven with 110 volts DC motors
at a speed of 1750 r. p.m. The speeds of the motors were coxn-
trolled with rheostats in series with the‘armature of the motars. The

blowers discharged the air inio a plenum chamber 60 inches high and

¥
[}
4

C 67 inches wide, (Figure 1). The interior of the plenum chamber is
equipped with three screens with diiferent solidity. A fourth screen
of low solidity was located at the discharge of the biswsars,

A vertical and a lateral contraction followed the plenum cham-
ber to meet the dimsensions of the test section. The dimensions of
the straight approach section are 3 inches wide, 46 1/2 inches high
and 16 feet long. The width and the height of the channel remains
constant up to the air exit. An aspect ratio of 15.5 to 1 ‘wae chosen

in order to insure two-dimensionality in the major middle portion of

the channel. Half way downstream of the inlet of the straight parallel

Ao b,
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section, 1 by 3 inch slots are purposely located on the channel
ceiling and floor in order to evacuate the boundary layer al-
ready developzd on top and hottorn. This bleeding helps to
establish two-dimensicnal flow in the curved section of the
channel.

The walls in the straight parallel section are made of
1/2 inch plywood with a plastic surface finish. 1In order to
establish a fully developed fiow at the end of the straight parallel
section, it was necessary to make the walls 16 ft. long or 64 duct
widths.

The curved section has the same heighth and width as
the apprcach seciion. The walls are made of rolled sheet metal

#16 gage. In order to accomodaie more than 360° of an arc in

of the outer wall in the first quadrant 36 inchee and thai of the
remaining curved portion 30 inches. For the investigatior. pre-
sented here, it was necessary to have only 300* of curved wall
bzcause the fully developed stage occurred about the end of the

second quadrant. As compared with the original design shown in

e e St BN
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Figure 1 , this simplificd many problems associated with

the proper discharge of air. The ratio of the channel width

T g TR

to the outside radius of curvature is % = "/IO in the equilibrium
]

section of the curved channel,

I

The maximum time mean velocity at the end of the

QT gy

strzight parallel section is 98. 36 ft. /sec. and the Reynolds

Number based on the half width of the channel is 74, 200.

The Hot- Wire Anemometer Equipment

It is always a two sided argument to choose between

1

& . platinum or tungsten wires for measurements of turbulent fluc-
;:l

E

b tuating quantities. The proper choice of wire was discussed

previously in (6). For the investigations presented here tung-
sten wires 0. 00030 in diameter werz uscd. Two methods of
attaching the tungsten wire tc the probe needles were employed

depending upon the location where the measurements were being

. taken and the type of measurements. In the region where the
length of the wire was not important the wire was welded on to
tungsten needles placed approximately 1/8 of an inch apart. For
meaasurements close to the wall and for turbulent scale measures-

ments, the wire was coppe: plated leaving ar ancoated iength in

ot b e
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the middle of about 1/16 of an inch, The welding was done

in an argon atmosphere and the copper plating in ar eleciro-
lytic bath of CuS04 with a current density of about 20 amps/
ftz of exposed suriace. (Fig, 2).

The hot-wire instrument and its integral parts were
designed and built for measurements in this work tc handle
tungsten wires with time constant up to 2 msec. The hot

wire anemometer set contains two serarate bridges and two

separate compensating amplifiers. This eliminates signal
coupling when two wires are used at ths same time. The

DC heating source was taken from batteries and the DC B+
voltage from a regulated power aupply. The description of
the electronic equipment is inserisd in Appendix II.

An adding and subtracting circuit similar to the one
used by Kovasznay (7) was used.

Time derivatives of the fiuctuating quantitics were
taken with an eiectronic differentiator built for the purposs.
Using 2n approximately 1 msec. wire in the actual flow con-
ditions, the cverali frequency response is flat from 10 to 5000
cycles per second. The irequency response of the compen-

sating amplifier ie shown in the Appendix IL.




The mean-square values of the turbulent fluctuating
quantities were measured through a thermocouple unit. Th
compcnsation was adjusted with the square wave input to the
wire., This method was compared by feeding a pure white
noigse toc the wire and analyzing the output with the wave ana-
lyzer. The results showed that the square wave compensation
and ihe square wave generator gave gatisfactory compensation
for the thermal lag of the wire.

The frequency analyzis of the turbulent fluctuating
quantities was made with a Hewiett-Packard wave analyzer.

In order to obtain mean-square valuesg of the voltage associated

with a band width at a given frequency the output circuit of the

wave analyzer was altered. The output was fed into a thermo-

couple by-passing the rectifier at the output of the wave analyzer.
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ANALYTICAL CONSIDERATIONS

The problem to be investigated was discussed in the
introduction as a two-diinensional, incompressible, fully
developed flow in a curved channel with constant raciia of
curvature. The initial conditions of the flow before it enters
the curved channel wers chosen to be fully developed in a

straight parallel channel. The reason for this choice is that

the initial conditions of the flow are fairly well investigated (1)

and especially since the iaitial characier of the flow is fully
developed, it will require smaller length of curve channel for
the flow to assume a fully developed character again.

Analysis for Straight Channel

The three components of the Reynolds Equation for a

general incompressible flow in cartesean coordinates are:

v, 3 2y ; )

3t Ué_ ax( )+Vay ay(uv)+waz 5 )’-l L

BV 3V .29 ') = 1P

SrUS RV *Vay ay(_a*wa% SOW)= ay+vVV - (1)

+an 3 ¢ ,') v, 3 (5lo)s Waw 3 ). L3P upiy

3x Tax ( 3y ay T Poz™

e A S . ST . 5T
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and the continuity equations for the mean and turbulent

velocities
U 4 oV W _ and W, 3v’, Jw’_
9x+ay+az' ax+ay+92"o

where U, V, and W are functions of x, y, z in steady state

conditions and the turbulent velocity components are functions
of x, y, z and also of ¢,

The three component equations of the turbulent energy can also

be derived:

N\
QWm0 o, [mrav, Tmau, v |
LI oL A >3 VYA Sl fnyral N ’.;_U
25t e YRV YR |t “ax*“”ay*“‘”azJ
") 7 7
Vit auv’ Jwdw’ I 43P / ’
Zi& Y 5yt e ] Sl o A
) = — -1
[T I R NWE Vi B Bl e L vy
2 c*z[uax Va,v*‘Wa—-;J'*[ EVRME T AR
}(?\
Lo, dvt  dvtw | /9P v ? !
- | =2 PR LAY
+2[ X Y aa_;l e )
Dy o™ [ owk jewt | awt = W
LowW 1| ow T ow ow Ww N | SN | oW
Z25x 13 v X+Vay+waz + S \rwey+w 5%
U SR viogm S | S
+_' M+B_vw+bi - L oot +\)w'V1w"
2| ox 3y 9z e a2 )
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2 3 2
where the operator Vz - 2 + = 4 3_
axt oY o
i When all three components of equation 2 are added one
£
§ obtains the total rate of turbulent energy interchanged in
I
% the flow
: o _ <
: 12 29, v qt '23\, e
: 25t *2 [Uaxq *Vsy *Watx‘1 [ax sy S J
}':
f TR TV TN | g U g2V, pi W ey
W w2 L uw' N Ly v + W wiw'oYy
5 +_ x ' ax+ BT y+ Sy ?’\/+ 3t
k_v (3 4
£ \ (%
E«,' s {\=—1
& ——, 3V W o T7. 3 Toral i
= . W W | z- [ S Pw+2 PV + 2 W
YR & e ox P 67? o2 P
r rm? N Tend 1
+ Vv LuVu +v Vv +wVw

where q'2 =u'?y vté + we

The first term in equation } is the rate of change
of the rmean-square of turbulent kinetic energy in an unsteady
flow. The first bracket is the convection of turbulent energy
by the mean flow. The esecond bracket i2 small acale con-

vection or diffusion of turbulent energy by turbulent motion.
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12.

The production of terbulent encrgy by the mean velocity
gradient is expressed in the third bracket. The work due

to the fluctuating pressure gradient is represented in the

fourth bracket. Finally the last bracket contains the trans-

fer of work by viscous action and the dissipation function. To

be more explicit the last term can be rewritten in the forr of

the two groupings mentioned above

) !_; Vs TAVETA Sup , 9 ou: ) (za)
s [e] Ly ) - e — it
P Laﬁj)\ x~) (axj XL/ BYj )

where the cartesian tensor notatior implies summation.

Fully Developed Flow In The Straight Channel:

When the flow is in o steady state this implies that
any mean quantity is not a function of time, A two-dimen-
sional channel fiow implies that there are no variations of
time mean guantities with one cocrdinate (in this case z) and
that there is only one preferrcd dirsction for the mean motion
{in this case is x ). 7The third restriction iz fully developed.
This implies that the flow has reached the stage where the time
mean quantities no longer change in the direction of the mean
“motion. Ma‘hematically this means that:

38 _ 38 a8

¥ = W =0 and that for any mean quantity g: = == - < _0.
’ 4 q HY8) 5t az"axo
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except that P is a function of x, If those conditions are
applied to the Reynolds, turbulent energy and the contimuity

equations we get:

> (W) o L3P, 3 ‘
S/“ = §§§+ TE

d (w'? v 9P . \
a—y("’) Y - (4
S (75) = o©

QY(J ) y,

but v'w'= 0 because the flow cannot sustain shear in the y-z

fiane (8). The turbulent energy squation beccmies:

3t ;7:+ (3__.;,)(&\1.;) /éd;+a_u;;>e_ul (5)

! T3k Jlax; ) T\3K Taw Jax;
-

;;uv

-

'3
-63—7’
The measurements taken in this work will give um
an idea of each term in the energy esgquation except the diffusion
and the work due to the gradient of fluctuating pressure. The
disgipation can be estimated from turbulence scale ineasured.

A separate discussion on ithe ccmputed energy terms will appear

later.
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Analysis for (he Curved Channel:

The three components of the Reynolds Equations for

the general incompressible flow in cylindrical coordinates axe:

Tt LA AR .

Qv AV 3V W3V U aP Y TN 3T 3T
LA, — = = oY = v
at+ Uzanp* oL 3 1 Ran a'z.(- ) ()5l W)

f (6)

W W _ _19P 3 —\_ 23,1
ikl i - u'w uw') - 2
3t V *-wp* 3z ~ "Paz am( )- v( d Sz(w)
_v_’w + \)V-'W J
T

The continuity equations for the mean and tarbulent velocities

are:
sv IS(V’L)+ V.6 ond M lé_(fjf'){, aﬂlzo
wy T LT o2 WY T Jn 32
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The three component equations of the turbulent
energy in the curved channel can also be expressed in cy-

lindircal coordinates

Q)

IB'J'I i
- — =

25t T2|lroe T
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Adding the three component equations of the turbulent
energy, the rate of turbulent energy interchanged is: a fiow

passing through curved channels :is:

- _ — . e
1997 11,8 g7y et 4 1|2 uety 2ug Y 3 v
550 ¢ 2|Use? tVmd tW3m :l *2|;a«p 1 famq*a%’+ch

+ F‘-QU +u’u'3\" +uw’3N+v' 3V+u~r'9_!.2 +vw”~‘m ww' oY

3¢ WY nJY an on 39t
Rrow- e > TR ol I SN Fire )
? o2 v (A = lr_z,atp'

The terms in the energy equation for flow in a curved
channel are grouped in the same manner as those in the straight

parallel section (equation 3) for easier comparison. The viscous
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terms in the energy equation could be separated again into
transfer of work by viscous action and the mean dissipation

function

—

i .
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where xi, X, and xk are respectively rdp , r and z. This
notation also implies summation.

Fully Daveloned Flcw in the Curved Channel:

The flow in this section is also steady which eliminates
any time derivative of a time averaged quantity. The sare defi-
nition of two-dimensicral fully deveioped channel flow appiies

here, therefcre:
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The third equation implies that v'w'=Cr but the
constant must be zero becausz2 the fully developed two di-
menaional flow cannot sustain shear in the U-Z plane.

And the turbulent energy equation in the fully

S 31‘1.?. lg;"i \ fl:-;-+—,?-) + 2 V3 v (\O)
Yz tanTe Tasew

The meagurementis in this channel zllow usg to
compute the first term which is the production of turbulent
energy in equation 10. The first bracket in the viscous
term which is part of the viscous work can also be computed.
Finally through the scalea of turbulence which have been
estirnated from measurements approximation of the mean

dissipation function can be obtained.
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The Mean Velocity Measaureinents:

The time mean iotal pressure distributions across
the channel were measured with a boundary layer Pitot tube

of small aperture. The closest point near the wall that could

be measured with this probe was 0,020 in. Wattendorf (2)

from simple radial equilibrium of the mean motion has cal-

il S

. culated the static pressure distribution across the fully deve-
loped section of the curved channel. Neglecting the turbulent
termse in the radiai Reynolds equations he has compared the .-
calculated values with the measured values at the walls.
Wattendorf states that '""As a check, the measured value of the
outer wall pressure was in gocd accordance with our calcula-
tions.'" Yeh (5) maintaining the turbulent terms in the radial
Reynolds equation 9b, derives an exacti radial equilibriuin
relationship for fully developed two dimensional flew in curved

channela including all the fluctuating terms:
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where P is the mean static pressure at a given radius r;
P. is the static pressure at the inner wall and P, is the

1

tcial pressure at 2 given radius r. [t is easily seen that if
the turbulent terms in the equation above are neglected then
simple radial equalibrium dP/dr = PUZ/'r is satisfied.
Measureau static pressures at the fully developed section are
compared wiih the calculated values from the total head in-
cluding and neglecting the turbulence terms (figure 4}, The
turbulence terms become important only in a region zear the
wall,

The dimensionless velocity distribution U/U,, at

the fully developed curved section is in good accordance with

that measursd by Wattendorf (2). A comparison of the dimen-

sionless velocity distributions as they proceed around the curve

gection are plotted in figure 5. The symmetrical profile la-
beled (initial 0°) corresponds tc the fully developed straight
gection and the profile closest to the top of the sheet repre-
sents the velocity distribution at three consecutive stations

in the curved channel, namely 172°, 204°, and 236°. The
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experimental data show ti:at the flow in the curved chanpel

has reached equilibrium at 172°. The turbulence intensity

DTS RIRNEY o Y W

shows the samec evidence and thiz fact is discussed separately
later in this paper. Velocity measurements were made at
three vertical stations in order to ascertain the fact that two-

dimensionality in the mezn velociiy existed. The results

|
¥
E:

were very favourable., The center part of the velocity dis-
tribution in the fully developed curved section approaches that
of a free vortex. The slope of the veiocity OU/Or is steeper
near the outer wall than tkat of the inner wall. This fact
together with the fact that the turbuizut shear stre sses are
higher at the outer wail will bring higher turbulent energy
production rates rear the outer wall. The characteristic
velocity Ux at the outer wall iz 1. 335 times larger than that
at the inner wall. The ratio of the shear stresses at the
walls will be the square of the ratio of the characteristic
velocities. For further evidence of two-dimensionality, the
space iean velocity at the mid-heighi of the straight fully
developed section and at 172° and 236° were found to be res-

pectively 89. 75 f.p.8.,89.32 f.p. s. and 89.20 f.p. s. which

e |
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is in good agreement, The velocity and turbulence level
distributions at the twe fully developed sections arc shown
in figures 6 and 7.

Looking at the distributions presented in figure
6 and 7, the location of thie nul peint of the vorticity no
longer coincides with the nul point of the laminasr nor tur-
bulent shear stresscs. In the curved fully developed region,
the nul value of the vorticity, laminar shear and turbulent
shear assume separate locations. In the straight channel,
all three nul points are in the same location and this deter-
mines the edge of the houndary-layer or free-stream. iiowever
in the curved channel it becomes difficult to locate the so-called
point uvi free-stream or the point where the t;vo boundary-layers
meet. In other words the location of the point where the in-
fluence of the boundary layer at one wall ends and the influence
of the other wall begins is not easily seen ag in the case of the

straight channel, These difficulties wili be discussed again in

the mean velocity similarity considerations.
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The Static Pressure Drop Along the Length of the Channel:

The distribution of the wall static pressure drop in
the direction of the mean flow i8 represented in Figare 3.
The level of the static pressure is arbitrarily considered to
be zero at the beginning of the straight "approach'' section
and the drop is expressed as a ratio of dynamic head “ased
on the space mean velocity at the fully developed straight
gection., In the part of the paper des cribing the wind tunnel
it was pointed out that the boundary layers growing on the
ceiling and floor of the straight channel were evacuated thrcugh
bleeding slots in order to prevent secondary motion in the
curved channel. The effect of this bleeding can be seen in the
static pressure drop a little atter the mid-length of the straight
channel. The enirance to the curved channel begins at x/d =60.
At this point, due to centrifugal forces in the curved section the
static pressure drop divides into two separate curves. The
upper one belongs to the ouiter wall and the lower one to the inner
wall. The absacissa in the curved region represents actual arc
lengths rdy of each wall. The pressure drop with angle 9p/0¢

is the same on both walls. This fact was already established by
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Wattenderf (2). The static pressure drop in the first quadrant
of the curved channel is not smooth. The msasured points
deviate at about + 0. 05 of the dynamic head. @ When the metal
walls were rolled, a seam had to be made 45° after the en-
trance to the curved channesl and iz addition as it was explained
in the description of the wind tunnel that the first quadrant was
of 2 differcnt curvature than the rest of the curved section. As
showr. in Durand (3) if the surface of the wall is8 wavy with an
approximate contour cf a sine wave and if the maximum amplitude
of the wave is in the order of 1/16 inch and the wave length 2bout
18 inches then the variation of the static pressure as z ratio of
the dynamic head 18 calculated and found to be + 0. 05. The
waves on the walls of the first quadrant are certainiy within the
figures gquoted above.

The Intensity of Turbulence:

The local root-mean square of the iniensities of turbulence
in the straight and curved portions of ths channel were measured
with hot-wiresg 0. 0003 in. in diameter. The needles holding the

wire and the wire itself were made of tungsten. A new technique

of spot welding the wire in an argon atmosphere was developed and
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discussed in (4). In an inert atmosphere the wire can be
brought to an incandescent bright giow withcut burning the
wire. This turned oui io be aleo a satisfactory method of
melting the impurities on the wire after a run. The welding
was done with just a 1.5 volt dry-cell battery,

The calibration constants of the wire were deter-
mined in a calibration duct of low turbulence designed for the
purpose. It was found from experience that a tungsten wire
maintainz a more constant calibration over 2 period of runs
than a platinum wire cf the same dimensicns,

In order tc insure the existence of two-dimensicnality
in the channel, measurements cf intensity of turbulence were
taken at three vertical stations in the fully developed straight
section and the fully developed curved secticn. The results
showed an abeence of secondary flow in those regions. In
osrder to establish that the flow was fully developed as far as
intensity of iturbulence was concerned in the curved channel,
measurements were taken at three peripheral stations 172°,
204°, and 236°. The results were compared and variatians

werenat more than the experimental accuracy. Evidence of
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this work shows that the flow settles down to a fully developed
pattern in an arc of 172°. This was also certified by Wattendorf
{(2) basing his reasoning on mean vzlocity profiles.

Wattendorf's second channei of srmaller radius of cur-
vature d,/'bo = 1/5 which is half the value of the present channel
still showed the same arc length necessary for the flow t1» become

fully developed. For straight channel flow of a given width it

takes the flow a certain number cf widths {generally for favour-
able pressure gradicni about 40 widths) until it reaches equili-

. brium. This reasoning leads us to believe that the eguilibrium
region in a curved channel cannot be a function of the angle alone

because for very small radii of curvature the flow hag to undergo

a tremendous change in a small distance and this is not believed

to be possible. From this discussion one can see the need of

o dsaie MLV

further investigations in channels with smaller radii of curvature,
The local turbulence intensity levels were measured in
the fuliy developed regions and in addition in the curved transition
region. The comparison of the distributions in Figure 8 show
that the local level of turbulence u'/U enters the curved section

with a symmetric pattern and undergces a considerable change in

T bt DO il




e o1l

27.

the first 26°., The local intensity level is increased orn the
outer wail by a considerable production and the intensity

near the inner wall is suppressed. As the ilow proceeds in
the transition region of the curved channei, an attempt to
restore the original distribution can be noticed. At the fully
deveivped .urved sectioz, the vzlues of the local turbulent
intcnsities in the major half of the inner wall side remain
smaller than those in the straight section and the values in
the vicinity of the outer wall are higher than those in the
straight section,

The analysis of the flow in the curved transition
region is beyond the scope of this investig~ation although very
interesting effects are taking place there.

The local turbulent intensity level ir the lateral
direction for the straight section and the radial direction for
the curved fully developed section Vv/U were measured with
an X-meter with tungsten wires 0,0003 inch in diameter. The
wires were approximaiely perpendicular and they were placed
45° to the direction ot the mean flow., Figure 9 shows that
curvature haa a gimilar effect on v'/ U as that on “’/U

mentioned in the previous paragraph.

I s s e PG

pe




T L T T P R N T M I T T Y R T L

28.

The maximurn correlation coefficient u_'\'/-_' ie plotted
T
in Figure 10. A comparison is made with the values ob-
tained by Laufer in a pipe flow at Rex50, 000.
Measurements of w' were not carried out in this
investigation; Since the root-mean square value of w' is very
close to that of v'. In the analysis of this work they will be

asgsumed L0 be the same.

Shear Stresses in the Straight Parallel Fully Developed

Section:

Denoting in the conventional way the turbulent shear
T iy b th : /t U
stress’lg = - Qu'v and the laminar shear stress L) = ‘16—‘7 ;
taking the first Reynolds equation in equation 4 and integrating

with respect to y across the channel an expression for the

Yy

total shear stress as a function of y can ke obtained. Remer

bering that the pressure drop in x-direction is not a function
of y.
L = ('t (11)

T, +T, = (oui{l - —Zle

which is a straight line with negative slopc passing through

zero in the middle of the channel. The term QU*Z is the
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shear stress at the wall, In the fully developed strzight
section, the shear stress at both walls has the same absolute
value, The shear stress at the wall calculated irom the

pressure drop is:

The total shear atress diatribution is plotted in
Figure 11 together with the measured turbulent shear stress
across the chanael, The laminar shear atress is very small
in the major porticn of the channel, It becomes of importance
saly in a region very close to the wall. To be exact its value
drops to Z20% oi the total shear at a friction diatance parameter
of yl% = 20. This corresponds to a distance from the wall of
approximately twice the thickness of the sublayer. Turbulent
shear stress measurements in this section were only taken up
to a value of y/d = 0.05. The experimental points depart sorne-
what irom the valies of shear stresses predicted by the pressure
drop. The author believes that the values of shear stresses
derived from the pressure drop are accurate and that the dis-

vicpancy lies in the measured values. It inight be important
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to note that by the same coincidence Laufer (1) in his shear

stress measurements in the channel flow obtained excellent
correlation between his measured quantities and the ones
calculated from the pressure dreop at the two lower Reynclds
Numbers. For its highest Reynolds Number of 61, 600 the
measured shear stresses were at most 30% lower than the
calculated values from the pressure drop. At the present
moment the author does not know of any explanation except
of a Reynolds Number effect based on the wire diameter.

The turbulent shear stresses vere measured with
an X-meter and independently wiihh a wire allowed io roiate
in the air strearn. The wires made oi tungsten were 0, 0003
inch in diameter and copper plated leaving a bare length
approximately 1/8 inch.

The measured shear stress was obtained by taking

the difference of the mean square of the a-c components of

the voltages of the two wires.

%
T (3 - OF Ny g 6 260,
e = (~3p ¢ uaev> and € i

%

2 "'xau UrY:)

The shear stress coefficient at the wall is T—Wl =.001735,
PUm
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Shear Stresses in the Fully Developed Curved Section:

The tangential component of the Reynoclds equation

(9) can alao be written in the form:

P 3 2av) = vl ?
=R G LG

Keeping again in mind that the pressuire drop OP /3Y is not
a function of r, the equation above can be integrated with

respect to r:

(1

1 oP = = PN ok tm,.?’ (‘_J_},-.Q_ o
2 9y f ant\L/ {12)

The integration brings a constant { tc be determined
by the vanishing value of the shear stress in the channel. The
total shear stress is made out of two parts. The turbulent

shear stress = - eu'v' and the laminar shear streas

If r is denoted to be the radial distance where the
shear 3tress vanishes ingide the channel, the integration con-
gtant is determined and the total shear stress as a function of

the radius and the pressure drop is found to be:

("" )2- [ (13)
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The value of r, is determined from the experimental
measurements and the total shear stress distribution plotted
as a function of R/d in Figure 12. The shear stress at the
inner wall is smaller than that at the outer waii. The values
of the shear stress coefficients are:

at the inner wall ;E‘:‘—J-z = 0. 00139; at the outer

m

~—

wali teo = 0.00248

N

TUm
These values were used {or the universal velocity

distribution U/Ux versus RUx/y and they are seen tc be
satisfactory when compared with those of the straight channel.
This comparison is made in Figure 25. The experimental
turbulent shear stress measurements shocw the same consis-
tent tendency that their abasclute vaiue isiess than ihe calcu-
lated shear stress. This discrepancy has already been
discussed for the straight parallel s=ction. Wattendorf (2)
attempted through the miging length theory to predict the

vanishing point of the total shear stress in the curved channel.

He fvuad thzt neither of the assumptions:

2
- _ U U\ 273UV 7]
= el ) e T=i{’“§1+z>

gave satisfactory answers.
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Here £ is the apparent coefficient of kinematic

viscosity and { the mixing length. The total shear stress
daes not vanish where the lamirar shear is zero nor where

the vorticity vanishes(as in a straight channel flow. JEvidence
from Wattendorf's work also shows the independence of the
total shear stress, the laminar shear and the vorticity. The
locaiior: of the nul shear stress pcint will be discussed in more
detail in the next section,

Location of the Nul Shear Siress in Curved Channels:

In the discussion of ttie total shear stress in the fully
developed section of the curved channel, equation 13 was de-
rived for the distribution of the shear stress as a function of
the peripheral pressure drop, the radius wheres the gshear stress
assumes a nul value and the radius where the shear stress is

to be computed.
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At the walls of the curved channel the values of the

shear stress are

NP ’—‘n e 7]
= o i
=38 () - outer wa
2 ¢ _‘ -0/ =4
= 2 -
3P| r1
"i o el (_"‘. - | inner wall
T2\ )

Using the definition for Ux and dividing the absolute value
of the two wall shear stresses, an expression can be found
for the location of the nul shear stress in the channel as a
function of the ratic of the U, values at both walls and the

ratio of the width of the channel to the inner radius of

curvature: =
2 d) (i .
( &1) _ 2(£)+ (%)

\\ + vl l a (14)

(%‘Y (' ¥ 'L;)z+ (

L

Here P.n i8 the distance of the nul value of the shear
stress from the inner wall, d is the width of the channel
and r; is the inner radius of curvature. A family of curves

1

for various ratios of Ui _/Ux; which is a function of
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Reynolds number and roughness of walls is plotted in
Figure 13. The ratio of 'U*o/U*i in this work is 1. 33 and
the ratio of the channel width to the inner radius is 0,111 .
The two values given above correspond to a ratic
Rn/ri = 3,035 or to an actual distance from the innzr wall
of 0.945 inch and a ratio R/d = 0.135 which i8 the exact
location on the shear strese distribution in Figure 12.
Wattendorf (2) in his second channel had a Uy ratio of
1.195 and a vaiue of d/r; = 0.25 . This corresponds to
Rn/ri = 0. 08 and since his inner wall had a radius of
curvature of 20 cm., the nul! shear stress occurs at 1. 6
cm. from the inner wall. The limit of equation 14 as r;
approaches infinity reduces to U*o/u*i = 1, 0 which is the
value for the fully developed straight channel.

Refering to Figure 13, in the region below the dot-
ted line, the nul point is rearer the inner wall and in the

upper region the nul point is nearer the outer wall,
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The Spectrum of thc Velocity Fluctuations:

The energy spectra of the turbulent velocity compo-

nente u' and v' have been measured and are shown in figures

14, 15, 16, and 17

N . an 7. The figures are pletted in such a2 way that

the integrated curves represent the kinetic energy associated
with the velocity compmment analyzed. A Hewletﬁ‘ﬂ.Packard
wave analyzer was used for the pr.rpose. A filter half band
width of 30 cycles per second was used for all the measure-
ments. The output of the analyzer which is properticnal to
the ordinates of the curves is the portion of the total sig-

nal intercepted within the band width of the analyzer at the
particuiar funing frequencv. The wave number k is used for

abcissa in preference of the fregquency because it is associa-

m

ied with the size of the eddy. It must be made clear that
these curves represent a so~cailed '"one dimensional spec-
trum'' and that the conc2pt of kinetic energy of a fluid parti-
cle associated with its size cannot be drown from them.
Figures 14 and 16 represent the spectra associated with u'
in the straight and curved channel. The influence oi cur-

vature is slightly noticed in the low values of wave number
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or low frequenciea. The next two figures 15 and 17 which
are the spectra of the v' component show a marked effect
of curvature. The larger roticns of the fluid clciments
are more affected by the curvature than the smaller ones.
With smaller radii of curvature the influence should be
felt in eddies of smalier sizes. Curves of the second
moment of the spectra are also shown in.- Figures 18, 19,
20 and 21. Actually, the area under the second moment
of the three-dimeneional power spectrum is a measure

of the turbulent energy dissipation and they are inversely
nroportional to the square of the microscale of turbulence.

The Microscale of Turbulence:

The microscale of turbulence is a length asso-
ciated with the turbulent dissipation and originated from
the statistical treatiment of trubulence. Since it has been
shcwn that at large enough Reynolds nurnoers the smaller
size eddies coniribute to the main dissipation cf turbulent
energy intc heat, roughly speaking, the microscale of

turbulence, A , is an average linear dimension
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of the smaller size eddies contiributing to the dissipation.
A discussion on the average size of the eddies will he a
different topic of discussion, In his work on the statis-
tical theory of turbulcacz, G. I. Taylor has shown that
the microscale can be related to the Eulerian space cor-

relation. It can be shown that

/

3" Ry, 0
Xt fzo A
3 (R‘;' .2
N |y Ay

where R stands for the space correlation coefficient of
the turbulent velocities. G. I. Taylor has also shown the
relationship between the space correlation coefficient and
the one dimensional trubulent encrgy spectrum. It fol-
lowed from Tavylor's work that the space correlation co-
efficient is the cosine transform of the one dimensional

ener gy spectrum function (9)
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Using the relations stated above one gets the microscale

in terms of the energy spectrum. One dimensional energy
spectra for the u’ and v' velocity components were mea-
sured with a Hewlett-Packard wave analyzer., Space cor-
relations were not included in this work, and therefore ail

microsacale calculations wtil be based on the spectrum

functions.

A 1 ‘( > Fo,(n)dn
2 l

?\K U )C:

_ e

2 - 47| p* F..(n) dn
2 T ¢
N Ut )

—

Where F‘I,z {n) is the fractior of the turbulent energy u'l
associated with a band width dn at a frequency n. Since

w! measurements have not been taken, A z will

be assumed to have the same magnitude as X\/ or A .
Furthermore for small turbulence ievels, Tayior has made
the hypothesis that in the direction of the mean flow the
fime relationships could be interchanged wiih space rela-
tionships through the velocity at the point. Experimental

evidence nas shown that the time and space correlation
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coefficient in the direction of the mean flow are essen-
tially ti.z zarme if the mean velocity is constant. The
rate of turbulence energy dissipation can be expressed

in the form

(a—u;)?. = ,z and _'.(eu')z: u®
ax = 2 S A

and since the space derivative dx in the direction of the

l

[~

P
(o

mean flow can be interchanged with Udt then a second

method of measuring }‘x or )\q: can be obtained

L[y wt
u? (ét) A
The time derivative of u' was measured with an elec-
tronic differentiator. Distributions of the second
moment of the power spectra néF(n) are shown in fig-
ures 18, 19, 20, and 21,

In isotropic turbulence it is necessary that the
three components of the microscale*be equal. In fully
developed channel flow o zhear flcw this condition is

no longer satisfied. At a point in the chanr=: flow

* As defined in the first equation of this page.
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variations of the three component microscales will take

place as well as variations of each component across the
channel. Figures 22 and 23 show disiribution of the cal-
culated micrcascales in the fully deveioped etraight and

curved sections. The +#o independent methods of ob-

taining Ax and A, show gocd correspondence, The essen-

tial importance that can be drawn from the distribution of
the rnicroscales is that of the influence of the curvature.

It is apparent from the distributions shown in Figures 22

and 23 tha* the microscale in the direction of flow de..

crcases in the portion of the inner wall of the fully de-

veloped curved section and increases in the outer portion.

The radial coinponent micrcscale in the curved section
is larger than '{7 in the straight section for the major
portion of the channel width except near the inner wall
where they arce equal, This does not necessarily imply
that the energy dissipatzd near the outer wall is smaller
than that at the inner wall because although the micro-

scales are iarger the turbulent kinetic energies are

iarger too. As compared with Laufer‘s channel flow
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at the highest Reynold's number, the levels of the microscale
are higher in this channel although the meamn velocity is
larger than that of Laufer., As mentioned at the beginning

of this paragraph two independent checks of the microscale
measunrements were made and the measurements are con-
sistent with each other. The values of A/d are approxi-
raately three times larger than those of Laufer at a Reynolds
number of 61, 600. The average ratio of L/d is exactly the

w—

o~ o no ¢k
Cariiv a0 i

of the microscale the Reynolds number of the turhuience
E';\/su are also high, It is customary in isotropic turbu-
lence behind grids to give the proportionality factor be-
tween the ratio of the scales and the reciprocal of the
Reynolds number of turbulence. The proportionality fac-
tor was found to be fairly constant across the channel in the

straight and curved channel. The values of the proportion-

ality factor ranged from 15 to 20. for this channel.
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The Integral Scale of Turbulence:

In the definition ot the microscaie it was staied
that the integral scale denoted by L. can be considered as
the average size of the eddies in turbulence. This length
is mathematically related to the space integration of the

Eulerian space correlation coefficient:

LX - jqx dx
Y SAF N

L-/ _.J ‘t\yd\/
L; :J&@Zdz-

In order to obtain L., Ly and L, two ihdependent hot
wires must by used where one is generally maintained
fixed and the other moved in the direction of x, y or z.
The average of the product of the wire signals divided
by the product of the individual rcot-mean square values
of the signals determines the correlation coefficient.

€iinace the correlations of velccities were not measurcd

in this work, an alternate and gsimrpler approximate
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method depending on the compensated and uncompen-
sated values of the hot-wire signal was used.(l). This
method can only be valid for the determination of L in

the direction of flow, In order iG have « general idea

of the variations of L. across the chanrel, the same
method was used. Although the results of raaial in-
tegral scale are not exact, they give a good idea of the
trend across the channel. Figures 22 and 23 show the
distribution of the integral scales across the channel
and the effect of curvature on the eddy size. This
effect is exactly the same as that experienced by the
microscale. A second independent method of esti-
mating the integral scale was accomplished by finding
the extrapolated values of the power spesctrum at zero
irequency. The values obtained in this manner are
not repregented here but their magnitude and trend are q
consistent with those shown in Figuies 22 and 23. The

magnitude of the integral scale as a ratio of the width

of the channel compares very well with those of other

experimenters,
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From the stability criterion for laminar boundary laver
flow in curved channels firet explained by Rayleigh (23) and

then by Prandtl {24), it can be deduced that any perturbation

near the outer wall will be unstable. The same perturbation
near the inner wall will show to be stable. If a particie near

the outer wall is moved towards the outer wall it will find it-

self in a surrounding with less pressure gradient and therefore

will continue to move in the same direction. If the particle is
moved away iroin the outer wall it will find itself in a surround-

ing with larger radial pressure gradieni and therefore will con-
tinue moving away from the outer wall. This implies instahility
because the disturbance grows in the direction it originated. The
opposite takes place near the inner wall, any perturbation brings

a restoring force which brings the particle back to where it started.
Near the inner wall, :1: is negative which means if the perturbation
is such that AU or u' is positive then v' must be negative or visa
versa. This consideration shows Lthe same stabilizing effect near
the inner wall and unstabilizing effect near the outer wall. As a

conclusion the outer wail can be called an ""agitated region' and

the inner wall a '""damped region'.
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Similarity Considerationc:

The question of finding similarity in all propes -
ties of fully developed flows in general is still an open
~rne. There is enough evidence that in a fully developed
straight parallel channel the mean velocity as a ratio of
U, is a function only of yU,/v near the wall regardless
of the Reynolds number. The turbulent properties of
the flow in geometrically similar fully developed flows
show a larger variations from a so-called universal law.
This departure is even larger in geometrically non-
similar flows. The turbulence measurements of a fully
developed flow in a diffuser or in a curved channel (Fig-
ure 24) show this departure very well, There is enough
evidence that the mean velocity in the vicinity of the wall
even for geometrically non similar flows shows a definite
dependency on the dimensionless parameter yUg/v . The
velocity measurements in the two walls of the curved
channel together with those of the straight channel are
shown iu Figure 25. In the largest portion of the bound-

ary layer it is generally assurncd that the dependence of
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the mean velocity is on y/d rather than yU*/\’ . This
dependence has been shown to be fairly true for straight
channels with favorable pressure gradients, The symbol

d stands generally for the half width of the channel where
the shear stress and the vorticity are nul at that point. The
similarity of the mean velocity in the major center portion

cf the channel is expressed in the form
Un - U _ ‘Y‘ <1>
- d

where U_, is the maximum velocity or the frees-stream
velocity which also occurs at the center of the channel for
fully developed straight channel or pipe flow, In a curved
channel, the point of nul vorticity is wherc the product Ur
assumes a maximum or in other words where d(Ul)/dr is
zero. On the other hand the point where the laminar shear
etress is zeroc does not correspond to the same nul point

of the vorticity. The nul value of the laminar shear occurs
where 2/U/r)/dr is zero. The major difficulty that arises

from this is that of determining where one boundary layer
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ends and the other begins. Wattendorf (2) assumed that
the free-stream point occurred where the free-vortex
velocity distribution was tangent to the actual distribu-
tion or in other words where the vorticity was nul. Taking
the difference between the potential velocity of the free
vortex and the actual measnred velocity at each r and
dividing by the corresponding U, at each wall he plotted
his points as a function of R/k, The width b was the so-
called thickness of the layer which 18 the distance from
the wall to the location of the ..ui vorticity. Distributions
(Up = I.D/U* versus R/b were not satisfactory. The inner
wall values, the outer wall values and the values of the
straight channel lined-up on three entirely different curves.
The results of the present work show exactly the same be-
havior. Firally by rearrangement of the variables
Wattendorf succeeded in collapsing the dimensiorless
mean velocity distributions at the inner and outer wall (o
a single curve but this treatment did not agree with the
distribution in the straight parallel channel. Another

consideration that was brought ir: was that in a straight
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channel the free stream corresponds to U, = const and
for the curved channel Ur = const. It was decided then
to try

(U )max = (U) _ 6 /_R_‘)
/\U:.’L)o . T(D
This consideration did not show any better results than
the others. The author for lack of better ideas leaves
this particular phase oi the problem where Wattendorf

left it,

In Figure 25, the velocities in the boundary

layers near the wails are plotted together with Wattendorf's

measurements in channel II which corresponds to O = -;—

To

or twice the value ad compared to that investigated by

this author. It is apparent that in the region near the

walls, the straight wall and thc two curved walls show

govd similaritly in the mmean velocity up to a distance from
the wall where they branch out. The branching points for

both channels do show that they are not essentially a func-

tion of The author followed Clauser's suggestic,

yUx
v




-~

i ila

i el

TR
¥

Pt o S8 Vo

50.

that the points in the neighborhood of the inner wall should

for the outer wall,

be more sensitive to R /r or
when the boundary layers at both curved walls in

Wattendorf's channel and the present one were plntted as

d-R

>
i

the branching points fail at

a function of R /r or
approximately the same value of the abcissa, but unfor-

tunately the values of the ordinates did not correspond.

‘TJ—*
This implies very clearly that the distance from the wall
divided by the radius of curvature at that distance is an
essential parameter in curved flows. A similar influence
of the radius of curvature canr also he attributed to the
turbulence and one can see clearly from the spectral dis-
tributions in the curved channel that not all sizes of
eddies are influenced the same amount by the curvature.
A similar parameter 4 can ve said to be an essential

kr

one in the turbulent raotion in curved channels.
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Prcduction of Turbulent Enerm

>

From the turbulent energy equation 5, the turbu-

lent energy produced per unit time and per unit volume in
a two dimensional fuily developed flow in a parallel straight
channel is u'v' O U/dy. For a two-dimensional fully
developed flow in a curved channel the production term in

. .. . . . ., ——- 13U U
cylindrical coordinates in equation 10 is u'v’ | — - —
L o8 R |
In the limit, when the radius of curvaturc r appreaches in-
finity; the two expressions above become identical. It has
been established that most of the turbulent energy is pro-
duced in a region very ciose to the walls. The maximum
rates occur at the edge cf the la.ainar sub-layer which
corresgponds generally to a friction distance parameter
yU, :
— = 10. The rate of energy production drops by a
factor of ten when the friction distance parameter is
100. (corresponding approximately to 0. 050 inch from the

wall in this channel). In the distance where 25¢ .YTU* < 100

the variations of the turbulent shear stress pu'v' are neg-
1
ulvl
is

ligable and the dimensionless shear stress

u 2
ok

nearly censtant and equal to 1. 0. The space derivative of

A BT WO T
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the mean velocity changes considerably in this region and
it i8 necessary to have accurate vaiues of these derivatives
to abtain reliable values of the turbulent energy production.
In the sub-iayer, the cpposite situation occurs namely

that the mean velocity space derivative is constant and

the turbulent shear stress varies from its maximum to a
value of zero at the wall, For the determination of the
mean velocity space derivative graphical differentiation

is not genera:ly very adeguate.

Let us attempt at this point to formulate similarity
conditions for the production of turbulent energy. In a
fully developed flow in a region close tc the wall including
the laminar sublayer (where the production is significant),

it has been shown that:

yu Wy’ yUg\
%; = F(T*) and that U: - S(T,"}

From these two expressions a dimensionless production
term can be obtained by differecntiating the first expression

and multiplying by the second.

EL L ((th)g (1) ()
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This implies that the dimensionless rate of production of
turbulence energy is universal near the wall, i.e., it is
only dependent on L\g’-“ the friction distance parameter,
Away from the wall it is found that the dependency of the
mean velocity and the turbulent shear streas is of a dif-

ferent nature.

Away from the wall in the center portion of the channel
the dimensionless production rate of turbulent energy is
only a function of y/d. To verify the validity of the
analysis shown above, the author will compare the ex-
perimental values obtained in this channel and those
measured by Laufer (10) in the pipe flow.

It is well establisked ihat the dimensioniess mean
velocity distribution near the wall outside the laminar sub-

layer of a fully developsd [low obeys the universal
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logarighmic law:

u _ Y Ue
U* - A +B£Og'o ”

where A and B are constants. This law holds well in the
siraight fully developed approach section for values

U
28 ¢ %*( 2000 and for the fully developed curved sec-

U
tion of this wind tunnel 25 4)%* <200 (Figure 25). In

the laminar sublayer region — = ’7* . By differen-
Uk

tiating the lcgarithmic equation the derivative of the mean

: v du_ 4343 By :
velecity can be found to be: U: dy = Vs Since

1 v pr—— a o d U o
B and U¥_ are constants the derivative —— in the

dy

region where the law applies is given as a function of y.
In the laminar sublayer the space derivative of the velocity

is U*Z/\) . The turbulent shear streas distribution in a

fully developed straight channel from equation 1l is:

T . 2 Y
= i- =
U2 3

This expression is valid from anywhere in the channel up

to the buffer zone. In the region near the wall the term

1/y>> 2/d.

T it it— s e .




The turbulent energy production 1n a dimensionless

form can be expressed as previously

vuv’ du
B, = Y4V
%* 04 dy

and this quantity outside the buffer region becomes:

B, . -4343Bv |

i ?;
o c43e3Bvi 12
DR s

and in the laminar sublayer:

fopt

u v
B, =
Us

If one plots these two equations as a function of yU*/y ¢

they agree extremely well with Laufer's (10) measured

data and the data obtained in this investigation for the

th

gtraight channel and also for the boundary layers in the
inner and outer walls of the curved fully developed sec-
tion. (Figure 26) The full line represents the analytic
values calculated from Laufer's value of B and U_. The

equations depart from the e¢xperimental points only in
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the immediate vicinity of the edge of the sub-layer. This

could be overcome if e «F(LU_*) iz more accurately
U, \Y
approximated at the edge cf the sub-layers.

The mere fact that the dimensionless production
curves of the inner and outer walls of the curved channel
and of the straight section and also of the values measured
by Laufer (10) ceincide so well, suggests that the turbulent
production is only dependent on yU*/\) near the wall. Then
il becomes apparent that the absoiute value of the turbulent

4 or to the

energy production is simnply proportional to U,
square of the shearing stress at the wall. The values of
U, for thie investigation are as follows: U, = 4.08 f{t/sec.
for the straight channel, U, = 3.57 ft/sec. for the inner
wall and U* = 4.77 ft/sec. for the outer wall. The rela-
tive comparison of the rates of energy production near

the walis of ihis channel are plotted in Figure 27. In

this figure the maximum production value for the straight
channel has been made aribirarily equal to 1. C. These
results substantiate very well the fact that the turbulent

intensity on the side of the outer wall is higher than that

measured near the inner wall.
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The Dissipation of Turbulent energy:

In the analytical consideraticns the dissipation

function was fully represented in tensor notation in eq-
duj ou;
ax; SXJ'

pression when expanded contains twelve mean derivative

uaticns 3a and 8a as @ /.1 [au This ex-

terms and their sum specifies the mean rate of turbulent

energy dissipation at a2 given point in the flow:

—_— N2

B = 25l (3
AR Ca |

The author does not know of any du-ect way of measuring

the space derivative terms in the expression shown above.
Generally an alternate approximate method is used to
estimate each term in the dissipation function. Through
Taylor's hypothesis for small intensities of turbuience,

: : . . i A )
the space derivatives in the direction of thie mean flow (ﬁ)
ie always related to the time derivative and the mean
velocity Ua_at . With an electronic differentiator the voltage

fluctuaiions of the hot-wire can ve differentiated. The other

space derivatives can also be estimated through Taylor's (13)

g TR T [ p—



Eat T U

w0 { T2

58.

expansion of the space correlation coefficient into the

space derivatives of the turbulent velocities

du'\2 Y 3 u 7'_
(37) ' '-T(éy

From the above expression it follows that the curvaturc

ﬂl~<

=
-

of the# correlation coefficient RY curve at the origin 1s

a measure of (‘iu )
"2 — - S 2
(éf_) S XT (' 2@7): ‘“: (17)

A similar analysis can be done for the remaining space
derivatives except of course that thc grcduct of derivatives
in equation 16 bring special difficulties.

If the turbulence is statistically isotropic the miean

rate of turbulent energy dissipated reduces to
L;;__) = |5("~ — (18)

Laufer in his channel flow measurements has found that
for his work the use of ’\y in the isotropic relation shown

in equation 18 gave him a closer estimate of the dissipation
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than any other microscale. In the present work, it was
mentioned that the values of the microsdcale measured
were suprisingly high compared with other experimenters.
It can be seen from the isotropic reiation given above that
the absolute values of the dissipation across the channec!
will turn out to be smaller as compared with the values

of other experimenters. It is for this reason that the cal-
cuiated values of the dissipation in this channel are made
relative to the value of the dissipation a2t the center of the
curved channel. Figure 28 shows the relative magnitude
of the mean rate of dissipation at the three walls. The
value of the dissipation at the center of the curved channel
was arbitrarily chosen to be 1. 0. The curves in Figure 28
show near the wall the same trend as the production of

turbulent energy shuown in Figure 27.

WP p———
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CONCLUSIONS

Until the tiine of the writing of this paper, the only
experimental investigations on flow in curved channels avaii-

able and known to the author were based only on mean velocity

and mean pressure measurements, ‘The purpose of this napey

ia to bring additional information on the sffect of curvature and

especially on some important turbulent etatistical quantities.

Th e transition problem from straight channel fiow ic curved fully

developed filow is beyond the scope of thie paper. A comparison

iz made here on the effect of curvature on ar initial straight fully
deveioped flow and the final character of the flow as it reaches
equilibrium in the curved chamnnel.

1. The work nerformed in this curved channel is with walls
of comparatively large radius of curvature, it appears
evident that the flow reaches equilibrium in the curved
section at approximately i70° of constant curvature. It
must be kept in mind that the initial conditions of the flow

at the entrance of the curved channel are also fully developed.

The effect of curvature on the mean velocity distribution is

bty

such that the center portion of the flow approaches the velocity

Jate—: R £ £ + -
dls..r\b‘..acn Ci a 1Trse¢ VOTricX,
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The use of simple radial equilibrium neglecting the
turbulent terms in the radial Reynoids equation shows
only a maximum of 1/2% discrepancy when referred to
the dynamic pressure at the point.

The level of turbulence intensity is reduced in the por-
tion of the inner wall and increased towards the outer
wall. This fact agrees well with Rayleigh's stability
criterion.

Depending oun iie Reynolds number of the mean flow and
on the roughmess of the curved walls, an expression is
given for the determination of the location of the nul
shear stress in the curved channel.

The affect of curvature on the scales of turbulence is to
increase them near the outer wall and decrease them near
the inner wall. In different words one may say that the
average size of the eddies magnified near the outer wall

and damped near the inner wall as compared with their

initial size in the straight channel. From the one-dimension-
al power spectra it becomes evident that the energy associated

with the large particles are reduced near the inner wall and

augmented near the outer wall,

e -

e -
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7. As compared with the straight channel, the turbulent
energy produced and dissipated is larger at the
vicinity outer wall and smaller at the inner wall,

8. The logarithmic similarity law for the mean velocity
in the vicinity of the walis applies well for the straight
and curved walls. The turbulent quantities show a
marked distinction when compared with the conventional

straight wall similarity conditions.
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APPENDIX 1

STATIC AND DYNAMIC HEAT TRANSFEE
PROPERTIES OF THE HOT- WIRE ANEMOME TER

Heat Convection Theory of Hot-Wires

The differential equation governing the transfer of
heat by forced convection from a cylinder into an incom-
pressible homogeneous fluid passing over the heated cylinder

is represented in Cartcsian coordinates by:

:Pcr‘ﬂ'+ uﬂ+v§+w?j :3(,‘727 I-I
Lat X oy SF

oc DT

' Dt
The velocity components u, v, and w functions of x,y,z and t
must be separately determined from the Navier-Stukes equa-
tions for the particular case of fluid flow around a cylinder.
When the fluid flow field is determined then by substituting the
three velocity components u, v, and w in eguation I-1, the
temperature ficld may be determined.

Boussinesy first and then King were interested in
obtaining a solution for the temperature distribution of an air
stream paseging over a heated cylinder.

By assuming steady state in a two~-dimensional
frictionless fluid, Boussinesqg {19) succeeded in transforming

the simpilified equation I-1from flow pazzing over a cylinder to
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flow over a flat plate. Then in the new coordinate system

equation I-i becomes:

k3 2 _]

PCU oT - X B_T; + ?_T I-2
od od o¥"

where U in this case is a constant, ¢ is the coordinate along

the plate in Figure (29) and \7 is the ccordinate perpendicular

to the plate.

Boussinesq Solution

b ¢
a

4
-
[Ne)
=]
(8]
ty
£
w

yussinesq made the following assumptions:

(a) for the problem of Fig.(29) mass only flows in the §
direction,

(b) » is a constant, c and fJU are also constants,

(c) the thermal conductivity in the § direction is zero or
T 3T
3¢ T ovt

(d) the initial temperature of the fluid is a constant, T,

-
(]
S~

the temperature Ty of the plate is (3 + T, where the
function £f( & ) should be such that when&<Q, (&) = Q,

{f) the temperature of the plate should be the sarpe as that of
the fluid in contact with the plate; or when ¥ = 0, then
T = 'Tf
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Cn account of the conditions impesed above, the

differential equation I-2 reduced to:

- 2
STENEReC ol - 1-3
2% pe oyt

and thz solution becomes:

>
2
- - 2| ol -9t —ﬂd 1-4
T-To = VEJ (e 4'@1)9 N
#
where M = T‘I_L_‘ and m= 4
I cymy ?‘JC

The tctal heat flow per unit lengih can be found then; taking

To = 0
2D 2D

S, _ . aT _ 4ﬁ 1-5
4 —J 9 (¢)d¢ = - &(B_Q)w:doé —VT_.{:'TP' Pe

[}

and the average Nusselt's number is:

J— ":,,r;’: -
e 126

This soluticn gives a linear relationghip between the
[ o4

Nusselt's number and the square-root of the Péclet number.
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King s Solution

In 1914, L. V. King (20) presented a solution tuv

equation I-Z2. Thia means that contrary to Boussinesq the

thermal conductivity in the § direciicu ic nen-=

Also in this case, on account 2f the transformation

Al W

from fluid flow around a cylinder to fluid flow along a flat plate,
there cxists no flow of fluid in the ¥ direction. The thermal
conductivity U is constant in all directions, and the same
assumption applies to the specific heat and the density. The
fluid is assumed to be non-viscous and potential. The boundary

conditions set by King are as follows:

{a} the rate of heat flow per unit area q'' over the plate is
constant and uniform,

(b) the initial fluid temperature T, is a constant,

(c) the temperature of the fluid Tf is equal to the temperature
of the plate T,, only at the downstream edge. To say that
T = Tf everywhere on the plate will be inconsistent with
conditicn (a).
The solution of the temperature field obtained by King

is the following:
2D
N T ! f"‘ﬂ((ﬁ-e), AT e 1-7
Ty = To = — B(%) e l'\o!n ?*(E'g)( =
‘ J

4]
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Where g'" = |@®(§)ds is the heat flow per unit

o]
arca of the plate zssume as a constant.

The soiution given in equation I-7 was further sim-
plified by King by expanding it into two assymptotic series, one
for low values of P€ and the other for larger values.

The appropriate solution for low P€ (. 067 or Nu<-53

is:
c": LAk N (B—-q’__—"_) ond ﬁﬁ SR S =
(1-7) - Ins 7 (1) - Ins FE 1-8

and that for high values of Pé> . 067 or Nu > .53

q,'i [|:?(. +‘JZK)(_r>CDUT rTP —To] and N_\A = V& I-9

J! 43

Cole =nd Roshko (22) have recently derived a solution
of heat transfer {rom ncated cylinders for Reynolds numbers in
In this regime, diffusions is the dominating

the Oseen regime.

process through whkich heat is transferred near the cyiiader.
The boundary conditions set for this solution ara

(a) The initial fluid temperature for upstream of the cylinder
is constant

(b) The temperature at the surface of the wire is uniform and

consrtant.

g TPt et sty
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The schition of the heat equation for an infinite cylinder in
the Oseen flow regime is
2

’

:/ r\-_.\-|:q P
\Ino ’y'l ' <

Nu =

A comparisca of Boussinesq's, King's and Cole and Roshko's
sclutions is inade in Figure 30. A comparison between King's
equation, and actual experimental values obtained in the iabora-
tory are presented in Fig. 31,

The Use of Heated Wires for Time Mean Velocity Measurements

Referring to equation I-9 one can see that if the
roperties of the air surrounding the wire remain conatant and if
the heated resistance of the wire is kept constant then a linear
relationship ghould exist between the heat input into the wire and
the square-root of the velocity. Fxperimental evidence shows that
Nu is a linear function of v P€ for large enough Péclet numberas.
Although King showed the linear relationstip, the constants in his
solution do not agree with those determined in the laboratory Figure

31. I the heat input is supplied by an electric current, then one

can rewrite equation I-9 1n the foilowing manner:

Ith _ [A + ZS/J_C‘F] [T-,\’To:l 1-10

R s 30 sl D Bt b s

2 G
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Rin - R
%R

write equation I[-10 in the following way:

since Ty - T . it is8 sometimes convenient to

The value of R, i8 determined by the temperature
of the surrvuunding fluid. If one adopts beforehand a value
of(Rh - Ro)/ Ry, called the overheat ratio, then the value of
Ry is indirectly {ixed and for each value cof the overhzat ratio
one obtains linear relationship between I2 and AU at constant
angle between axig of wire and U. Fig. 32 shows a family of
curves for various vaiues of overheat ratios. Tiose curves
are called the calibration curves of the wire for static or mean
velocity response, If the axiz of the wire makes an angle €
with the direction of the mean velocity U then the apparent
heat convecting velocity with respect to the wire 18 U. ccs O.
Equation i-il is still valid and U cos © should be used instead

of U
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The Use of Heated Wires for Instantaneous Velocity
Measurements

In a turbulent flow field, the veiscity vector at
every peint of tke field is a (inciion of time. In most tur-
bulent fluid flow applications, the conception of time dependency
is not a transient one. The time average of the velocity vector
remains constant at the point but the magnitude and direction of
the velocity vector fluctuates as a function of time around the
mean. This means that we can represent the velocity vector
by an average constant quantity and a fluctuating time de pendent
part, vix, v, z, t) =V {(x, v, z) + v' (x,y, ?_')t). In the previous
section we have already discussed measuremenis of the time mean
of the velocity vector, V (x, y, z). The analysis becomes some-
what more involved for measurements of the time dependent part
of the velocity. The compiex wave form of the time dependent
part of the velocity in a turbulent tiow field reveals appreciable
effects produced by minute eddies travelling with frequencies up
to 15, 0000r 20, 000 cycles per second. This fact intrcduces the

probilem of having a heated wire capable of reproducing faithfully

without amplitude or phase distortion signals at high frequencies.
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However small 2 wire can be manufactured, it stiil has a
mass and thermal properties which by themselves will
never be able to communicate undistorted information ac
higher frequencies., This problem is usually remedied by
artificial electronic compensation to make up for the loss of
information at high frequencies. The following analysis will
take for granted that the wire is faithful or made to be so0
electronically, Furthermore, the dynamic response analysis
that will follow will only be valid for small disturkances com-
pared to the magnitude of the average quantity.

Let us consider a two-dimensional channel flow as
shown in Fig. 34 with U the magnitude of the time mean velocity
and u', v' and w' the fluctuating components in the x,y, and z
directions. @ When the 2xis of the heated wire is placed per-

pendicular to U, the wire will be sensitive to u' fluctuations

Since @ = 0 any change of direction of the velocity vector created

lAJ,

+ U’

-1 v

-
byASD) = tan T and A§,= tan v from the point M

Fig 33 will certainly be negligible. However, if the wire would
be placed originaily at say © = 45° then any disturbance created

by v' in the form of(45° +A6‘) and(45° - A, )will be in the same
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order vi nagnitude as those created hy u'. In order to

intercept w' fluctuations the axis of the wire must be in the
x - z plane and making an appreciable angle with U.

Consulting Figure 34 let us place twe wires 1 and
2 with their middle in the same point in space both mzking
equal angles © with the main direction of flow U. Adopting
a poasitive direction of u' and v' as shown in Figure 34 one

obtains the velccity components V, and V;, effective to each

wire.

1 = V(Urw) +vE cos (6-40)
I-12

V. = ’\/I(_L]Tu’)zxw‘z cos(6 +08)
,,J"
U+uw

If one expands the coefficients above into a binomial expansion

where: AB6 = Tan_!

and neglecting second order terms, one obtains:

V. = Ucos® +ucose +v'sme 1-13

Vo = Ucos® + u'cose -vsms
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The term U cos © is constant with time only the
remaining texms are functions of time. Those time dependent
terms will create voltage fluctuations or ac voltage in the wire
above the dc level maintained to keep the wirc heated at a vealo-
city U cos ©. Let E = IRy, be the magnitude of the dc voltage
and e’ (t) be the fluctuating voltage created by the fluctuating
velocity components, Since the dc component of the voltage in
the wire does not go through the compensating amplifier, then
we will congider the time dependent part for the moment.

Since e’ (t) is caused by a fluctuating velocity then

one car: write that:

e (t)

/¢4

-
Flw{t)cose + vit)sine

il
| S|

1-14

8;(_*:) = il Lu’(t)cose-v’(t)sme \

-

: F n be found from circuit analysis (21) to be F =-
Where a is the time average overheat ratio, E is the mean dc
voltage of the wire, b = "2 where I is the mean value

2 . : 2 . SRt
of the current in the wire and I, is the fictitioue peint repre-

senting the square of the current at zero velocity in the static

PN AR O T SN T
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calibration curve. The term E represents a correction factor
for the degeneracy from a constant current condition. This
quantity denends on the heating circuit of the hot-wire ane'-
nometer set and should be computed for the particular set.
Since the rms values of the turbulent fluctuaticns
represent the energy contained in turbulence, it becomes

necessary to take the rms value of equation I-14,

~ o — -]
e/’ = Flu'cos® sv'sine

I-15

— 0 P . ~
e r cne O < INB
1/ ¢) = e = F TS50 - Ylst f

From these equations one can see that if © becomes zero then
both wires are perpendicular to the mean direction of flow and

both equations reduce to:

-2

1.16

~ e s EEDb
G_Fu._—_z_

Cl

Equation I-16 must be used to determine the value of u'. In
order to obtain the energy involved in other turbulent terms
such as v', 1—1-'_\7', w' and u'w' one must square first, add and

subtract equations (15):

N T
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u*
These equations hold true for wire having the same calibration
characteristics at both positions., F{ = F» . If the voltage res-
ponse of both wires is not ithe same, in order to solve Equation
i-15 in the form of I-17 it becomes then necessary to rnatch

. F., and Fz with a voitage divider or a potentiometer. If 2

1

subtracting and adding circuit is available, the operation in

o= Equation I-17 can be done electrically.
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APPENDIX II

THE HOT WIRE ANEMOMETER

Foreword

This type of a hot-wire anemometer was designed
mainly for the purpose of compensating tungsten wires with a
relatively large time constants {(0.52 to 2 msec.). The set
is built with two separate ‘jri:ig";a and two differential com-
pensating amplifiers. The presence of separate bridges and
amplifiers enables to perform direct space correlations mea-
surements and furthermore avnids inter ference of one bridge
on the other when two wires are used concurrently. The design
and wiring was done at the Mechanical Engineering Department
of The Johns Hopkins University under ONR sponsorship. Thisn
instrument was used icr measurements of turbulence intensity,
shear, and turbulent energy spectrum in subsonic turbulent zic
flow in curved channels.

Description of the Hot Wire Anemorneier

This description will contain oniy componenis which
are essential to reproduce correctly the static and dqynamic

information from the turbulent flow. Recording inairuments such

ARSI VAT (X
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as ammetera, voltmeters; voltage adding, subtracting,
multiplying circuits; filters, oscilloscope etc. will not be
" included in this description. The compact unit shown ir
Figure 35 contains the following componeints:

1. The Power Supnly Units:

A The Lambda Regulated Power Supply: This unit is

manufactured by the lL.ambda Electronic Corporation ¢f
Corona N, Y. It is the model 28 with input voltage of 105-
125 volis at 50-40 cps. The DC output voltage is regulated
and may be adjusted trom 200U-325 voits at 0. i0 amperss. The
Bt voltage in this set is adjusted to 300 volts and supplies the
plate voltage to the amplifiers and the square wave generator.

No ground connections are made in the power supply; the B~

is grounded in the individual cnassis of the instrument in order
to prevent circulating ground curyents. The AC vultage is un-
regulated and rates 6.3 ;/0}.ts at 3 amperes. This AC voltage

is fed to the square wave generator tube filaments and also used
for calibrating voltage. The amplifier filaments are heated with

battery DC voltage in order to redvce hum. Figure 35 shows

the Lambda Power Supply at A.

IR R 2555 4 PAASL ) R
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B. DC Power fr¢—m Batteries: Three 6 volte automotive

hatteries are used to supply the heating current to the hot-
wires in the bridges and also to supply the filamert current
te the amplifier tubes. Figure 37 shows the lay-out of the
batteriee where 18 volis are used for supplying the hot-wire
bridge currents and 6 volts for the amplifier tube filaments.
In Figure 35 switch B connects the hatteries to the circuit
and a pilot light C will go on when switch B is turned on. The

C voirmeter D will indicate the vcltage of the batteries. The

o)

output leads of the Lambda supply and the batteries are brought
to a terminal box behind the bridge panel. Puwer to the
bridges, amplifiers, sgquare-wave generator is then distributed
by means of plug-in cables. Thias arrangement was chosen to
facilitate easy removal of a defective unit,

e. Bridge Circuit - Heat Control and Bridge Terminals:

The twin bridges are identigal , as are the two heat con-
irol panels Ej and E;,.  The bridge itself is not an integral part
of the set shown in Figure 35. The set was especially designed
in this fashion so as to give the experimenter the privilege of

chocsing an accurate and non-inductive bridge. The described
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set-up uses a [Leeds and Northrup No. 4725 Wheatstone bridge

because of its accuracy and practically negligible inductance.
Figure 39 shows the bridge connections to the four terminals
in the main chassis. The four bridge terminals are letteresd
S,T,Q and P where P is grounded. Eight alternate binding

posts are provided in the heai control pancl for the following

the first set of two posts S and T the bridge

reasons. Acros
has a leg of 100 ohms resistance. The current in the hot-
wire is measured between these two terminals. The second
pair of posts T and P provide the connections to superimpose
the square wave signal on the DC battery voltage in order to
compensate for time lag of the wire with the RC network in the
compensating ampiifier. The third pair S and P is across the
variable resistance leg of the bridge. The voltage between these
terrninals is used as a differential input to the amnplifier for
accurate compensation. The fourth pair of termihals Qand F

are directly connected across the hot-wire and are used to supply

the fluctuatir.g hot-wire voltage tu the amplifier.
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The heat control circuit which aupplies heating
current to the bridge can be seen in the jayout Figure 38
or in the photograph Figure 35. When switch B is on, the
bridge will be supplied with enough current to measure ihe
cold resistance of the hot-wire on account of the higher
resistor of 3. 3K in the line. When ewitch F ig turned on,
the 2, 3K resistor is by-paased and higher current flows
intc the bridge. The variable resistors G=2502 and H=257
controi the heating current supplied to the bridge. A 50
resistor in series with the variable resistors is introduced
to protect partially the bridge for pcesible migtakes. A DC
milliammeter 1 {0 - 500ma) is located next in series to in-
dicate the current on top of the bridge. A galvanometer K
connected across the bridge beiween S ard Q and a sensitivity
switch J shunting a 51K resistor is used for balancing the
bridge accurately.

3. The Calibrating Voltage:

A standard voltage is necegsary to calibrate and
check instruments. Its use is especially necessary to Jeter-

mine the gain of the amplifier during actual test runa. The

S BT pve Tel
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voltage supply for the calibration of voltage ncéwork comes

‘ from the AC power of the Lambda supply. A switch L closes
the circuit and the current flowing through the line is controlled
by the variable 10K resistor M, A milliammeter N (0 - lma)
indicates the current flowing and a voltage diyider R will give

the desired voltage at the outmt terminals 0. Top circuit of

4. The Compensating Amplifier:

The purpose of the amnlifier in this instrument is to
compensate electronically for the decrement of information

transmitted by the hot-wire due to the thermal lag. Further-

5

l:i more, it serves the purpose of magnifying the small AC voltage
i

&

] fluctuations of the wire created by turbulence. This amplifier
;: uses feed-back around one stage, Figure 40. The compensation
l:'

: ievel from ceiling to floor is 28 db. Figure 42 shows the fre-

€

§»”’ quency response of the uncoinpensated arnplifier as well as the
1S

A response of the amplifier with compensation for 0.5 and 2 maec.

wire. A cathode follower 1s added in the circuit in srder to lower

e

87‘:":

= AT

the output impedence. In this present system, two values of

capacitance C62 0. 005‘“2 and C5=0.02 pﬁn- together with the 100K
i

WP T P00 e %L



L S Bl

&
&

82.

variable resistor R4 will compensate wires between 0.5 and
2msec. The design of this circuit was preferably adopted
for possgitilities of tracking a second stage of compeansation
to the firet, if needed.

The specifications of the amplifier are as icilows:

Maximum gain (Low frequency}. ................ 80 db
Compensgation level (ceiling to floor) ............ 28 "
Common-mode rejectionratio ............. e... 1658

Output volta (. 767 of peak) input shortad when

- amplifier is set to compensate a 1 msec.

wire (hum and noise) .............. S APy S 2.8 mv.
~Compensationrange ....................0.. Figure 42
Output impedence e T R e K e e less than 500 ohms.

When power suppiy and batteries are on. the am-
plifiers and the square wave generators are in operaticen.
Consgulting Figure 35 again, Switch Al has two positions. The

swn position is the usual position for one signal going through
the amplifier. The up positiop is used for subiracting two
signals going through the ampiifier at the same time. The

subtraction is done by a simpie phase shift of the second irput.

- R S T s
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Jack V is for the singie input and jack W is used for the
differential input. The amplifier output is taken across

the binding posts U. Dial C1 is the gain controi of the
amplifier. Dial Z and switch Bl represent the compen-
sation network, The switch Bl has three positions au
follows: The middle position is the uncompensated signail
of the hot-wire, the upper position introduces a 0. 02 }17(
capacitance in the compensating circuit and the lower posi-
tion a capacitance of 0. OOStAf. The variable resistance Z is
us:d together with the ca;pacitors to match the time constant
of the wire. A duplicate amplifier is now located un ihe
other side of the square wave generator. The amplifier and
squars wave generator panei is plaatic, this separates the
ground of this panel from ihe main chassis. The amplifiers
and the square wave generator are built in separaie miniboxes

in order to reduce hum, noise and circulating ground currents.
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SYMBOLS IN FIGURE 35

Power supply on-off switch

Battery power on-off "

Pilot light to indicate batteries on
DC voltmeter - Battery voltage (0-20 volts)
Heat contrsl panel
Heat switch
Coarse heat control pot. (250 ohmas)
Fine i & woo2s W )
Bridge current milliammeter (0-560 ma.)
Sensitivity switch of galvanometer
Galvanometer
Calibration voitage on-off switch
Current control in calibration voltage (10 K)
AC milliammeter in calibration voltage (0-1 ma.)

Calibration voitage output terminals

R i o B VO TR
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P,Q.S, T four terminals of Wheatstone bridge

R Calibration voltage divider (50, 105}, 501)

U Output terminals of amplifier

v Input jack of amplifier

w Second input jack of amplifier

X Output terrninals of square wave generator

Y QCutput terminals of second amplifier

A Resistance control of compensation (100 X)

Al Single or differential input switch of amplifier

Bl Capacitance control of.compensation (0. OOSF{
and O, OZ‘H".)

Cl Gain control of amplifier (1 Meg.)

D1 Frequency control of square wave generator
{0.25 Meg. )

El On-off switch of square wave generator

Fl Amplitude control of square wave generator (100 K)

; i = o

ol
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