UNCLASSIFIED

AD NUMBER

AD035972

CLASSIFICATION CHANGES

TO:

unclassified

FROM:

confidential

LIMITATION CHANGES

TO:

Approved for public release, distribution unlimited

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; DEC 1953. Other requests shall be referred to Department of the Army, Attn: Public Affairs Office, Washington, DC 20310.

AUTHORITY

ARRADCOM ltr, 19 Nov 1979; ARRADCOM ltr, 19 Nov 1979

THIS PAGE IS UNCLASSIFIED

THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC PELEASE UNDER DOD DIRECTIVE 5200,20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE,

DISTRIBUTION STATEMENT A

APPROVED FOR BUBLIC RELEASES DISTRIBUTION UNLIMITED.

UNCLASSIFIED

AD 35 972

CLASSIFICATION CHANGED TO: UNCLASSIFIED FROM: CONFIDENTIAL AUTHORITY: ARRADCOM 1+r 19 NOV 79

UNCLASSIFIED

Initial distribution has been made of this report in accordance with the distribution list contained herein. Additional distribution without recourse to the Office, Chief of Ordnance, may be made to United States military organizations, and to such of their contractors as are certified to be cleared to receive this report and to need it in the furtherance of a military contract.

NOTICE: THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 and 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

·· . .

ு கிகிக்கப்பட்டிய பிரியில் பிழுதியில் பிரியில் பிரியில் பிரியில் பிரியில் குறைய பிரியில் குறையும் குறையும் பிர பிரிக்கப்பட்டிய பிரியில் பிரியில் குறியில் குறியில் பிரியில் பிரியில் பிரியில் குறியில் குறையும் குறையும் பிரிய

. . . .

REPORT R-117/

PENETRATION PERFORMANCE VS PROJECTILE NOSE HARDNESS

PROJECT TAI-5002

Prepared by

H. E. FATZINGER Physicist

J. R. KYMER Physicis*

Reviewed by

Approved by

For

H. W. EUKER Research Advisor

G. C. WHITE Acting Chief Physics & Mathematics Division

W. J. KROEGER Director Physics Research Laboratory

C. C. FAWCETT Director Pitmen-Dunn Laboratories

THOMAS J. KANE Colonel, Ord Corps Commanding

TABLE OF CONTENTS

																		<u> </u>
INTRODUCTION		•	•	• •					•			•		•				1
MATERIALS AND	ME	тно	DS.															1
Projecti	:e :	Гур	e i	ind	с	om	po	s i	ti	or.								1
Hest Tree																		3
Plate																		
Firing.		•							•		•							3
Evaluatio	on.	•	• •		•	•	•			•	•		·	•	•			3
RESULTS AND DI	ISCI	JSS	101	Ι.														6
Shatter (Бар						•					•						14
CONCLUSIONS	•		• .															14
FUTURE NOPK	•							•			•							15
APPENDIX							•						•					17
Distribution .																		.19

111

:5.

G

÷

Ø

OBJECT

To investigate the effect of projectile nose hardness upon penetration performance.

SUMMARY

Projectile penetration performance was investigated as a function of projectile nose hardness. Th: 20 mm model of the 90 mm AP M318 (T33) monobloc steel anot was tested for four different Rockwell C hardnesses (63 to 64, 61 to 62, 56 and 49). These hardnesses were obtained by tempering at 250°, 350°, 550°, and 860° F, respectively. Targets investigated included: 3/4 inch (0.95 caliber) plate at 55° and 60° obliquities, 7/8 inch (1.11 caliber) plate at 20°, 30° and 55° obliquities and 1 1/8 inch (1.43 caliber) plate at 20° and 30° obliquities. Protection ballistic limits of each one of these homogeneous armor targets were compared for the four shot hardnesses.

For shattering projectiles in the hardness range of 56 to 64 Rockwell C there were no significant differences among the various ballistic limits. The main effect of hardness was to alter the velocity at which shatter occurred, which made softer shot less effective against certain targets. Hard shot provided a low and a high ballistic limit for certain low obliquity targets, whereas soft shot provided only the high ballistic limit. The softer intact shot in the 56 to 64 Rc range were slightly inferior to the hardest intact shot presumably because the softer shot deformed more and required more energy to defeat the same targets. Shot as soft as 49 Rockwell C generally were quite inferior to the harder shot against overmatching targets at low and high obliquitie. Shot hardness was more critical for overmatching low obliquity targets than for matching high obliquity targets.

AUTHORIZATION

00 400.112/22325, ORDTA, FA 471.1/1557-1, 10 Dec 45

INTRODUCTION

Since World War II, conventional armor piercing shot developed for attack of tank armor have generally been as hard as reasonably possible (60 to 64 Rc). Shot of hig' hardness are more resistant to deformation and shatter than soft shot and fetter for the defeat of overmatching armor plate at low and intermediate obliquities. However, some of the current tank targets, which consist of matching and undermatching armor at high (55° to 70°) obliquities, have on occasion been defeated as easily and sometimes even more easily with soft (55 Rc) shot than with very hard shot. For these condition: of attack it is more desirable for the shot to deform and shatter early in the penetration process than to remain intact and tend to ricochet. By shattering, the shot proch through the armor and eject plugs. In order to investigate this situation more thoroughly, the subject firings were conducted.

MATERIALS AND METHODS Projectile Type and Composition

The 20 mm model of the 90 mm monobloc AP M318 (T33) shot was used in three firings. A picture and drawing of this shot are included in Figures 1 and 2. All shot (Lot 2165) were machined from 13/16 inch diameter bar slock of one heat of manganese molybdenum (MnMo, Fed Spec 57-107-33) steel. Each shot weighed approximately 1800 grains. The composition is listed in Table I.

Neg. #24423-1 R-1177

Figure 1. 20 mm model of 90 inm AP M318 (T33) shot

Figure 2. Detail drawing of 20 mm model of 90 mun AP M319 (T33) shot

Neg. #24423-2 R-1177

Heat Treatment

All whot were ausignitized in sait at 1550° F and quenched into brine. After dividing them into four groups, one group was tempered at 250° F, one at 350° F, one at 550° F and one at 800° F. All shot were then base tempered by induction. These treatments produced tempered martensitic structures. K redness patterns for the various tempering temperatures are included in Figure 3.

Place

All firings were conducted against rolled homegeneous armor. The various riste thicknesses, hardnesses and obliquities are included in summary Trble II. Plates of different hardnesses were chosen for the 3/4 inch- and 7/8 inch-plate firings at high obliquity to investigate the effect of shot hardness more thoroughly.

Firing

A 20 mm Mann type barrel chambered for the T20 (.60/20 mm) case was used for all firings. For valocities in excess of 3000 fps a special chamber extension was screwed onto the above barrel to accommodate a two piece, double length case. The distance from the muzzle to the plate was 215 feet. Velocities were measured on counter chronographs extuated by three pairs of solenoids, the base line centers of which were 32, 87 and 132 feet som the plate. Three pairs of solenoids were used in order to correct the measured velocities to actual striking velocities.

Evaluation

Protection ballistic limits were used as a criterion for comparing the panetraxion performance of the various shot groups. Most of the limits were obtained by averaging the velocities of the highest partial and lowest complete penetrations of each group of firings. For firings where a zone of mixed partial and complete penetrations occurred the ballistic limit was obtained by averaging the velocities in the zone. Limited firings were conducted for some text conditions so that were conditions could be

3

Neg. #24423-3 R-1177

<u>250• 7</u>	<u>)50+ F</u>	<u>590• 7</u>	1000 T		
63.5	61.5	56.0	46.0		
6). 5	61.5	55.3	16°6	/ · \	
63.8	61.7	56.0	19.0	$ \cdot $	
63.9	61.3	54.0	10.8		
63.8	61.5	55.9	79*6	· · · · ·	
63.9	61.0	50.2	18.8	· · ·	
63.8	61.5	55.8	16.P		1
6).8	61.5	56.0	19.2	/ +	N
53.5	61.5	56.0	49.0		j
63.0	61.?	56.0	19.0	•	
62.8	61.5	56.0	49.0	•	
63.1	61.7	56.0	49.0	•	
6:.,	6.4	56.0	49.0		i
63.3	60 . 5	55.0	49.0	•	i
62.8	61.0	\$6.2	49.2	*	
62.8	61.0	55.0	18.8	1977 -	
61.3	61.0	56.1	19.2	•	
59.9	60.2	56.0	49.0	•	
58.0	59.0	56.1	49.2	*	
55.8	57.1	56.1	49.2		
53.1	54.9	55.A	49.2	۲ ۲	ſ
51:	52.8	53.0	48.9		
50.2	50.9	50.1	17.8	ر •	Ч
47.0	49.0	£8.0	Lö.?	.	,
46.0	47-3	47.2	11 . .8) ,	(
45.2	46.5	64.0	ш.0	,	أر

Figure 3. Rockwell C hardness patterns at carter of shot for various tempering temperature.

4

Table II. Summary - Protection Ballistic Limit Variation with Projectile Noss Hardness of 20 mm AP T33 (Lot 2165)

H. 18. 4

$(\overline{u},)$ (\overline{cal})	(Bhn)	(deb)	(Temp at 250° F)	(Temp at 350° F)	(Temp at 550° F)	(Temp a 800'F)
3/4 0.95	5 352-356	60	2915*(Sh)	3025*(Sh)	2790*(Sh)	2 996 (Sh)
3/4 0.95	5 293-372	55	2980 (Sh)	>2980 (Sh)	2965 (Sh)	3020 (Sh)
7/8 1.11	1 23	55	3355 (Sh)	3309 (Sh)	3275 (Sh)	3620 (Shi)
7/8 1.11	1 293-302	R	2165*(Fr) 2670 (Sh)	2260*(I) 2640 (Sh)	2635 (Sh)	2740 (Sh)
7/8 1.11	1 293-302	20	1930 (I) (CP to 2800)	2055 (1)	2185 (I) 2515*(Sh)	2610 (Sh)
1 1/8 1.4	1.43 321-331	30	3335 (Sh)	3320 (Sh)	326 0 (Sh)	>3565 (Sh)
1 1/8 1.43	3 321-331	9 2	2405(I) 3050(Sh)	2505 (I) 3225 (Sh)	3000 (Sh)	3450) (Sh)

CONFIDENTIAL

ASSETSIENCE PROTECTION DEFILIENCE INM Greet than Sme Appendix for abbrevia ions

έ**π**α,

ß

j

r o d

(

d Shii a: ol pa hi th ol hi ar pl

at

th ;/1 be **s**o ta

investigated. For the majority of ballistic limits the velocity difference between the highest partial and the lowest complete penetrations was less than 50 feet per second. All projectiles were recovered in plywood and were examined for the extent of deformation and failure. A description of the recovered projectile for each round is included in the Appendix.

RESULTS and DISCUSSION

Table II summarizes the projection ballistic limits for each projectile hordness group and for each target condition investigated. The condition of the recovered projectile at each ballistic limit velocity is also included. Figures 4 to 10, inclusive, represent plots of all rounds fired for the four tempering temperatures as a function of striking velocity. The protection ballistic limit for each target condition is indicated between the partial and complete penetration velocities mlong with the condition (intact or shattered) of each recovered shot.

It may be noted that for shattered shot, generally, there were no significant differences in ballistic limits for sho' in the hardness range of 56 to 64 Rockwell C. Some of the results seem to indicate that the softer shot were slightly superior to the hardest shot for conditions where both shattered in defeating the plate. For the 3/4 inch (0.95 caliber) plate firings the softest (49 Rc) shot were practically as efficient as the hardest (63 to 64 kc) shot. Since conventional shot shatter in defeating high obliquity matching and slightly undermatching plates which usually fail by means of punching or plugging, these targets are not particularly sensitive to shot contour and hardness. However, for the thicker, overmatching plates at high and low obliquities, the softest shot were much inferior to the harder ones. Furthermore, ballistic limits obtained with intact soft shot were slightly higher than those obtained with intact hard shot because the softer ones presumably deformed more and required more velocity and energy to defeat the same targets. To defeat these targets the shot must push the plate material as '' during most of the penetration.

The differences among the ballistic limits of the harder 3/4- and 7/8-inch plates at 60° and 55° obliquities generally were no greater for the various nose hardnesses that there of plates of lower hardness. Furthermore, the limits of the hard 3/4-inch plate at 60° obliquity were practically equal to those of the softer plate at 55° because punchings or plugs were ejected more easily from the hard plate than from the softer plate. Ordinarily, for plates of the same thickness and hardness, 60° oblicuity targets are more difficult to defeat with conventional slot than 55° is gets.

6

5

1

a,

.

STRATEGIAL ONTEREST

Ŷ.

, **'**•

. .

0

1,4

15

CON' IDENTIAL

8

Neg. #24423-6 R-1177

1.1

.

e e	2
•	8
• • • • • • • • • • • • • • • • • • • •	····
	+
	X
	· · · · · · · · · · · · · · · · · · ·
	k
	NŽ
i i ta santita isan	
· · · · · · · · · · · · · · · · · · ·	··· • • • • • • • • • • • • • • • • • •
	8
	PA 2
· · · · · · · · · · · · · · · · · · ·	- <u>+</u> ::::::::::::::::::::::::::::::::::::
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	B
· · · · · · · · · · · · · · · · · · ·	6 ⁵
· · · · · · · · · · · · · · · · · · ·	· · 2
	· io
	R
· · · · · · · · · · · · · · · · · · ·	the second se
	· · · · · · · · · · · · · · · ·
······································	· · · · · · · · · · · · · · · · · · ·
	R
······································	
* • • • • • • • • • • • • • • • • • • •	
· · · · · · · · · · · · · · · · · · ·	
┿╍┿ ╌┿╂ ┯╶┈┿┇╴╴╼╊╼╄┿╇┿╇	in the second
71	

SEMINERAL CREEKEE

CONFIDENTIAL

9

10

CONFIDENTIAL

Ċ,

ADDITION TRADUCTION

11

CONFIDENTIAL

3 1

F

Ŷ

٠.

•

12

CONFIDENTIAL

Č

13

CONFIDENTIAL

.

•

•••

.

Shatter Gap

It may be noted in Table II and Figures 7.8 and 10 that two ballistic limits, one with intact and one with shattered shot, were obtained for some of the overmatching low obliquity firings. In these cases a shatter gap resulted in which plate performtion could be obtained above and below but not within a certain velocity interval. Perforation below this velocity range was obtained with intact shot and above the range with shattered shot. Within the range the shot shattered and did not have enough energy to perforate the plate.

Shatter gaps were not observed for the harder (61 to 64 Rc) shot fired against 7/8 inch (1.11 culiber) place at 20° obliquity but a shatter pap was observed for the softer (56 Rc) shot. The softest (49 Rc) shut also did not demonstrate a shatter gap and only provided the high ballistic limit. This performance was in marked constrant to the behavior with toollyster shot which did not exhibit a sharter gap because it was able to remain effective in defining the farget at all velocities glove that of the low limit. In addition, against 7/8-inch plate at 30° obliquity and 1.1/8-inch plate at 20° obliquity, only the harder shot could perforate both in an intact and a shattered condition, whereas the softer shot could perforate only in a shattered condition. This shows that shot hardness is critical for the overmatching low obliquity targets. Also, conventional monobloc shot should not be softer than approximately 55 Rockwell C in order to be able to defeat overmatching targets similar to those of this investigation.

CONCLUSIONS

1. When all conventional shot remain intact or when all shot shatter in defeating a target, there is little difference in their penetration performance due to shot hardness in the range of Rockwell C 56 to 64. The main effect of herdness is to alter the velocity at which shatter occurs, which may make softer shot less effective against some targets.

2. Hard shot provide a low and a high Gallistic limit for certain low obliquity targets, whereas soft shot provide only the high ballistic limit,

3. Shot approximately to noft as Rockwell C SU generally are inferior to harder. Not

4. Soft sint, remaining intact during perstation, require alightly more everyy, to defeas a target than harder shot which remain intact and deform less.

5. Shot hardness is more critical for overwater or 'w obliquity plate targets than for matching high obliquity plate targets.

FUTURE WORK

Additional tests are being planned to investigat, the effect of shot nose hardness on penetration performance against thinner, undermatching plate. Investigations also will be conducted to determine further the effect of steel composition and microstructure upon shot penetration performance. The results of these tests at the 20 mm scalewill be compared with those obtained at full scale.

15

0

APP END : X

.

CONFIDENTIAL

1

•

ABBREVIATIONS AND NOTES USED IN FIRING TABLES

PP	-	Partial penetration
CP(A)	-	Complete penetration - Army criteriun*
CP(P)	-	Complete penetration - Protection criterion*
CP(NI)	-	Complete penetration - Navy criterion, shot intact*
CP(NF)	٠	Complete penetration - Navy criterion, shot fractured*
CP(NS)	-	Complete penetration - Navy criterion, shot shottered*
SB	-	Small buige
MB	•	Medium bulge
LB	-	Large bulge
Ck		Crack
NCk	•	No grack
PO	-	Plug out
POS	-	Plug out started
BS	-	Back spall
BSS	•	Back spall started
BP	-	Back petals
FP	-	Face petals
NI**	•	Nose intact
BI***	-	Pase intact
Sh	-	Shatter
Fr	-	Fracture
LS	-	Local shear
BIP	-	Base (projectile) in plate
BNR	-	Base (projectile) not recovered
QCk	-	Shot cracked during quenching
SI	-	Shot intact
1-15	•	Shot intact in plate
NIIP	-	Nose intact in plate
VSB	•	Very small bulge
NShIP	•	Nose shatter in plate

* sefined according to Ordrance Department Bulletin No. 24-46.

" fractions following NI indicate approximate ratio of muse fragment to total length of shot body.

*** Fractions following BI indicate approximate ratio of here fragment to teral langeb of shot body. _ Approximate value for protection ballistic limit.

19

b Bracketing velocities used to obtain pretection ballistic limit.

c Velocities in cone of mixed results averaged to obtain production ballistic limit.

d Plate scor extent in inches.

FIRING RECORD

I. Firing with 20 mm AP T33 Shot (Lot 2155) against CO-inch Thick Homogeneous Armor at 60° Oliquity

Striking Velocity	Plate	Penstration Results Shot	Scoop
	A. 250° F Temper vs	Plate No. 70 (352 to 356 Bhn)
3190	CP(NS)-PO	BI 2/5-Sh-Fr-LS	(2.0×1.1)
3098	CP(ABP)-PO	BI 1/4-Sh-Fr-LS	(1.8×1.1)
2950b	CP(AMP)-PO	BI 1/4-Sh-Fr-LS	(1.9 x 1.1)
2873b	PP-SB-NCk	BI 1/4-Sh-Fr-LS	(2.1×1.1)
	PB.	L 🖞 2915 fps	
	B. 350°F Temper vs	Place No. 70 (352 to 356 Bhn)
5175	CP(AAP)-PO	BI 1/4-Sh-Fr-LS	(2.2 x 1.1)
3104c	CP(A&P)-PO	BI 1/4-Sh-Fr-LS	(2.0×1.3)
3028c	PP-MB-Ck	BI 1/5-Sh-Fr-LS	(2.0 x i.i)
2984c	PP-LB-Ck	BI 1/5-Sh-Fr-LS	(2.1×1.1)
2978c	CF(ASP)-PO	BI 1/5-Sh-Fr-LS	$(1 \ 8 \times 1.1)$
2782	PP-LB-Ck	BI 1/4-Sh-Fr-LS	(2.2×0.9)
	P9	L # 3025 fps	
	C. 550°F Temper vs	Plate No. 70 (352 to 356 Bhm)
2949	CP(ASP)-PO	Sh-Fr-LS	(2.1×1.2)
2840b	CP(AMP)-PO	Sh-Fr-LS	(1.9×1.1)
2745b	PP-SB-NCk	BI 1/4-Sh-Fr-LS	(2.9 - 1.0)
2720	P-SB-NCk	BI 1/4-Sh-Fr-iS	(2.0×1.1)
271 5	PP-SB-NCk	Sh-r-LS	(1.9 x 1.0)
	Teri ta	ඩ ዛ 2790 fps	
	D. 800°F lemos va	: Plate No. 70 (352 to 356 Bhr	1)
3115	CP(ANP) - PO	BI 1/3-Sh-LS	(2.1 ± 1.0)
3045	CP(ABP)-PO	BI 1/3 Sh-LS	(2.1×1.0)
3016b	CP(AMP)-PO	BI 1/3-Sh-L ^c	(2.1×1.6)
2972b	PP-MB-NCk	BI 7/5-Sh-LS	(2.2×1.0)
2930	PP-MB-NCk	BI 2/5-Sh-68	(2.0 x 1.0)
	Pi	BL = 2995 fps	

20

II. Firing with 20 mm 40 Te3 Shot (Lot 2165) against 3/4-inch Thick Homogeneous Armor at 55° Obliquity

Striking Velocity	Plate	Peretration Result Shot	Scoop ^d
<u></u>	A. 250° F Temper vs	Plate No. 38 (293 to 302 Bhr)	
3115	CP(AMP)-P∪	BI 1/4-Sh-Fr-LS	(1.8 x 1.4)
2985b	PP-LB-Ck	BI 1/4-Sh-Fr-LS	(2.0 ± 1.3)
2975Ь	CP(NS)-PO	BIP-Sh-LS	(1.7×1.2)
2910	PP-LE-POS	BI 1/3-Sh-Fr-LS	(1.9×1.0)
2870	PP-LB-NCk	ENR-Sh-Fr-LS	(1.9×1.1)
2820	PP-LB-Ck	BI 1/3-Sh-LS	(1.9×1.2)
	PBL	, = 2980 fps	

B. 350° F Temper vs Plate No. 38 (293 to 302 Bhn)

	-		
2850	FP-LB-Ck	BI 1/4-Sh-Fr-LS	(2.0 x 1.3)
2980	CP(A)-POS	BI 2/3-Sh-Fr-LS	(2.5 x 1.1)

PBL > 2980 fps

C. 550° F Temper vs Plate No. 38 (293 to 302 Bhn)

3040	CP(ASP)-PO	BIP-Sh-LS	(2.0×1.0)
29851	CP(A&P)-PO	Sh-Fr-LS	(1.9 x 1.2)
2940b	PP-L3-POS	Sh-Fr-LS	(2.0×1.3)
2895	CP(A)-POS	EI 1/3-Sh-Fr-LS	(1.9 x 1.3)

PBL = 2965 ft.s

D. 800° F Temper vs Plate No. 38 (293 to 302 Bhn)

3196	CP(ANP)-PO	BI 1/3-Sh-LS	(2.1×1.1)
3038b	CP(Attr: PO	BIP-Sh-LS	(1.9 x 1.0)
295.85	PF-POS	BI 1/3-Sh-LS	(1.9 x 1.1)
2920	PP-LE-NCk	BI 1/3 Sh-LS	(2.2×1.2)

PBL = 3020 fps

21

III. Firing with 20 nm AP T33 Shot (Lot 2165) against 7/8-inch Thick Homogeneous Armor at 55° Obliquity

Striking Velocity	Plate	Penetrarion Results <u>Stat</u>	Scoopd
	A. 250° F Tempe	r vs Plate No 29 (429 Bi.n.)	
3442	CP(A&P)-BS	BI 1/4-Sh-Fr-LS	(1.8 x 1.4)
336 2 Ь	CP(A&P)-PO	Sh-Fr-LS	(1.7×1.2)
3353b	PP-LB-BSS	Sh-Fr-LS	(1.8×1.3)
3160	PP-SB-NCk	Sh-Fr-LS	(2.5×1.2)
	PE	L = 3355 fps	
	B. 350°FTempe	r vs Plate No. 29 (429 Bbr)	
3390	CP(A&P)-PO	Sh-Fr-LS	(1.6 x 1.3)
3315b	CP(ABP)-PO	Sh-Fr-LS	(1.5 x 1 [^])
3282Ъ	PP-LB-POS	BI 1/5-Sh-Fr-LS	(1.6×1.3)
3185	PP-LB-Ck	Sh-Fr-LS	(1.7×1.2)
	PB	L = 3300 fps	
	C. 550°F Tempe	r vs Plate No. 29 (429 Bhn)	
3305Ъ	CP(A&P)-PO	Sh-Fr-LS	(1.5×1.3)
3250Ь	CP(A)-POS	Sh-Fr-LS	(1.6×1.3)
3166	PP-LB-Ck	Sh-F:-LS	(1.6×1.1)
2900	PP-SB-NCk	Sh-Fr-LS	(1.4×1.1)
	[15	L = 3275 fps	
	D. 200°F Tempe	: vs Plate No. 29 (429 Bhn)	
3685	CP(A&P) BS	BI 1/3-Sh-LS	(1.8×1.2)
26.251	OD (AST)		

	PB	L = 3620 fps	
3280	PP-SB-MCk	BI 1/3-SE-Fr-LS	(1.5×1.2)
3505	PP-MB-Ch	BI 1/3-Sh-LS	(1 8 x 1.2)
3600b	PP-M9-855	Sh-Fr-LS	(1.8 ± 1.3)
36351	CP(A&P)-50	BI 1/3-Sh-LS	(1.8 x 1.3)
3000	Cr(Mar)~65	BI 1/3-50-LS	(1.8×1.2)

22

CUNI DENTIAL

Striking Velocity	Plate	Penetration Results Shot	Scoupd
	A. 250° Flamper vs	= Plate No. 49 (293 to 302 Bhm	
2833	CP(NS)-PO	BI 1/4-Sh-LS	(1.5 x 1.5
2737	CP(NS)-PO	Sh-1S	(1.6 x 1.3
2687	CT(NF)-BS	BI 1/3 Fr	(1.7 x 1.1
2679c	CP(A)-POS	Sh-Fr-LS	(1.5 = 1.2
2676c	CP(A&P)-PO	Sh-Fr-LS	(1.5 x 1.4
2670c	CP(A&P)	BI 1/4-Sh-Fr-LS	(1.4 - 1.4)
2660c	FP-POS	Sh-Fr-LS	(1.5 x 1.3
2600	CF(NI)-PO	SI	(1.5 x 1.)
2590	CP(NF)-PO	NI 2/3-BI 1/2 FI	(1.€ x 1.2
2443	CP(NF)-PO	Bl 1/3-Fr	(1.7×1.2)
2205Ь	CP(A&P)-PO	BI 1/3-Fr	(1.8 x 1.2
2130b	PP-LB-Ck	BI 3/5-Fr	(2×1.1)
2097	PP-LB-Ck	SI	(2×1.2)
	PBL § 216	5 (Fr); = 2670 (S ¹ i)	, , , , , , , , , , , , , , , , , , ,
	B. 350° F Temper vs	Plate No. 49 (293 to 302 Bhn)
2682	CP(A&P)-PO	Sh-Fr-LS-BLP	(1.7 x 1.4
2663b	CP(A&P)-PO	Sh-Fr-LS	(1.5 x 1.4
2615Ь	PP-LB-POS	Sh-Fr-LS	(1.7 x 1.3
2610	PP-LB-Ck	BI 1/3-Sh-Fr-LS	(1.7 x 1.3
2540	CP(NI)-PO	SI	(1.8 × 1.3
2333	CP(NF)-PO	NL 2/3-Fr	(1.8 × 1.2
23 02b	CP(NF)-PO	N) 2/3-BI 1/3-Fr	(1.9 x 1.2
2215ь	PP-LB-Ck	SI	(2.2 x i.4
2172	PP-LB-Ck	SI-Ck	(2.0×1.2)
	PBL # 226	0 (I); - 2640 (Sh)	
	C. 550 P Temper vs	Plate No. 49 (293 to 302 Bhn	•)
2688	CP(ANP)-PO	BI 1/3-Sh-Fr-LS	(1.6 x 1.4
2660b	CP(*&P)-P0	BL 1/3-Sh-Fr-LS	(1.6 x 1.3
2514b	PP-LB-Ck	BNR-oh-LS	(1.5 x 1.4
2551	PP-LB-Ck	BI 1/3-Sh-FLS	(1.4 x 1.4
2233	PP-SB-NCk	Sh 2 * 12	(1.5 x 1.3
	PE	L = 2635 iu.	
		23	

IV. Firing with 20 mm AP T33 Shot (Lot 2165) against 7/8-inch Thick Homogeneous Armor at 30° Obliquity

CONFIDENTIAL

1

Striking Velocity	Plate	Penetration Results Shot	5000pd
	D. 800°FTempervs	Plate No. 50 (302 to 311 Bhn)	
2779	CP(ASP)-PO	BI 1/3-Sh-Fr-LS	(1.1×1.5)
27 4 90	CP(A&P)-PO	BI 2/5-Sh-Fr-LS	(1.6×1.4)
2 726 b	CP(A)-POS	BI 1/3-Sh-Fr-LS	(1.5×1.4)
2650	PP-LB-Ck	BI 2/5-Sh-Ft-LS	(1.4×1.4)
2597	PP-LB-NCk	BI 2/5-Sh-Fr-LS	(1.5×1.4)
	PEL	. = 2740 fps	

IV. Firing with 20 mm AP T33 Shot (Lot 2105) against 7/9-inch Thick Homogeneous Armor at 30° Obliquity (Cont'd)

V. Firing with 20 mm AP T33 Shot (Lot 2165) against 7/8-inch Homogeneous Armor at 20° Oblightity

A. 250° F Temper vs Plate No. 49 (293 to 302 Bhn)

1860	PP-LB-Ck	SI	(1.3×1.1)
1865	PP-LB-Ck	SI	(1.3×1.2)
1905b	CP(A)-POS	SI	(1.3×1.1)
1952Ъ	CP(A&P)-PO	SIIP	(1.3×1.1)
2025	CP(A&P)-P0	BI 1/3-Fr	(1.2×1.1)
2224	CP(NI)-PŪ	SI	(1.4×1.1)
2510	CP(NI)-BP	SI-Ck	(1.4×1.1)
2644	CP(NF)-PO	BI 1/3-Fr	(1.3×1.2)
2835	CP(NF)-PO	BI 1/3-Fr	(1.3×1.2)

PBL = 1930 fps

B. 350° F Temper vs Plate No. 50 (302 to 311 Bhn)

2700	CP(A&P)-BS	SI	(5.4×1.2)
2453	CP(NF)-BS	BJ 1/4-Fr	(1.3×1.2)
2253	CP(NI)-PO	51	(1.3×1.2)
2120	CP(NF)-BS	NI 2/3-BI 1/3-Fr	(1.1×1.0)
2087b	CP(NI)-BS	SI	(1.3 x 1.2)
2026b	CP(A)-POS	NI 2/3 BI 1/5 Fr	(1.3 - 1.0)
1943	CP(A)-POS	5∡	(1.3×1.2)

PBL + 2055 fps

24

V. Firing with 20 mm AP T33 Shot (Lot 2165) against 7/8-inch Homogeneous Armor at 20° Obliquity (Cont'd)

		Penetration Results	
Striking Velocity	Plate	Shot	Scoopd
	C. 550° F Temper vs	Plate No. +9 (293 to 302 Bhn)	
2657	CP(NS) PO	BI 1/3-Sh-Fr-IS	(1.5×1.4)
	CP(NS)-20	Sh-Fr-LS	(1.5×1.3)
2560h	CP(A)-POS	BI 1/3-Sh-Fr-LS	(1.7×1.2)
2470 b		NY 1/4-BT 1/2-Sh-Fr-LS	(1.7×1.2)
2312	PP-LB-Ck	NI 1/3-BI 1/4-Fr IS	(1.7 x 1.3)
2263	PP-LB-Ck		(1.5×1.1)
2225	CP(NI)-PO	SI-Ck	(1.5×1.2)
22106	CP(A&P)-PO	NIIP-BI 1/3-Fr	(1.6×1.2)
21575	PT-LB-Ck	NI 2/3-BI 1/3-Fr	-
2105	7-LE-CK	NI 2/3-BI 1/3-Fr	(1×1.1)
-	LP(A) -LB-Ck	SI	(1.5×1.2)
2085	-	5 (I); \$ 2515 (Sh)	

D. 800° F Temper vs Plate No. 50 (302 to 311 Bhn)

	DA 300 - 1		(1.6×1.3)
2658	CP(NS)-PO	BI 2/5-Sh-Fr-LS	•
2628b	CP(AMP)-PO	BI 2/5-Sh-Fr-LS	(1.6×1.3)
	PP-LB-Ck	BI 2/5-Sh-Fr-LS	(1.5 x 1.4)
25986	PP-1.8-Ck	BI 2/5 Sh-Fr-LS	(1,5 x 1.3)
2516		BI 2/5-Sh-Fr-LS	(1.3×1.2)
1969	PP-VSB-NCk		(1.3×1.3)
1948	PP-VSB-NCk	BI 2/5-Sh-Fr-LS	(

PBL = 2610 fps

VI. Firing with 20 mm AP T33 Shot (Lot 2165) against 1 1/8-inch llomogeneous Armor at 36° Obliquity

A. 250° F Troper us Flate No. 16 (321 to 331 Bhn)

3370	CP(NS)-PO	NSh IP-LS	(1.6×1.8)
	(P(A*)-P0	NSh 1P-LS	(1.8 x 1.7)
1361b	PP-Lis Ck	BI 1/3-Sh-Fr-LS	(1.8×1.7)
- Jointe		Sh-Fr-15	(1.7×1.7)
230	PP-LB-NCk	SI 1/3-Sh-Fr-LS	(1.5 x 1.5)
2655	PP-MB-NCk		(1.5 x 1.5)
2615	PP-NB-NCk	Sh-F LS	(2.4×1.3)
2490	PP-SB-NCk	BI 2/5-Fr	(2.5×1.4)
2255	PP-SH-NCk	81 1/3-Fr	14.1 5 4.77
	P	RE - 3335 tps	

25

Striking Velocity	Plate	Penetration Results SPC(Scoopt
	B. J50°F Temper va	ו Plate No. 16 (321 נט 331 Bir	n)
3405	CP(NS)-PO	BI 1/4-Sh-Fr-LS	(1.5×1.6)
33 49 b	CP(NS)-PO	Sh-Fr-LS	(1. / × 1.8)
32875	CP(A)-POS	Sh-Fr-LS	(1.8 x 1.7)
3260	PP-LB-NCk	Sh-Fr-LS	(1.6 × 1.7)
	PE	SL = 3320 fps	
	C. 550°F Temper vs	Blate No. 15 (321 to 331 Bhr	n)
3375	CP(NL)-PO	NShI'-Fr-LS	(1.6×1.7)
3274h	CP(NS)-PO	NShIP-FLS	(1 8 7 1.7)
3248b	PP-LB-Ck	Sh Fr-LS	(1.7 × 1.6
3210	Pi'-LB-Ck	BI 2/5-Sh-Fr-LS	(1.8×1.6)
	۲E	SL - 32 60 fps	
	D. 800°F Temper vs	Flate Ne. 15 (321 to 331 Bhr	n)
3563	CP(A)-POS	BI 1/3-ShIP	(1.7×1.6)
3498	PP-LB-Ck	BI 1/3-ShIP	(1.8 × 1.7)
	PE	3L ≥ 3565 fps	

VI. Firing with 20 mm AP T33 Shot (Lot 2165) against 1 1/8-inch Homogeneous Armor at 30° Obliquity (Cont'd)

Homogeneous Armor at 20° Obliquity A. 250°F Temper vs Flate No. 16 (321 to 331 Bhm)

			,
3168	CP(NS)-PO	BI 1/3-Sh-Fr-LS	(1.7 x 1.7)
3096	PP-LB-Ck	81 1/3 Shofr-LS	(1.7×1.5)
3073Ъ	C₽(NS\-F)	BI 1/3-Sh-Fr-LS	(1.6×1.5)
30205	PP-LB-POS	Sh-Fr-LS	(1.7 x 1.7)
291.3	PP - LEI - Ck	BI 1/4-Sh-Fr-LS	(1.7×1.5)
2904	PP LB POS	BI 1/2 Sh Fr LS	(1.6 + 1.5)
2498	CP(A&P)+PC	BI 1/4-Sh-Fr-LS	(1.3 + 1, 3)
2412b	CP(AbP)-P)	NI 2'3-D' 1 3-T.	(1.6×1.2)
2403b	PP-LD-Ck	NI 3/5-BI 2 5-Fr	(1.6 x 1.2)
23+4	PP-LR-NCk	SI	(1.5×1.2)
	PBL - 24 0	95 (I); = 3050 (S ^c)	

26

Striking		Penetration Results	
Velocity	Plate	Shot	Scoopd
	B. 350°F Temper vs	Plate No. 15 (21 to 331 Bhn)	
3321	CP(A&P)-P0	BI 2/3-Sh-Fr-LS	(1.6×1.6)
3259b	CP(NS)-PO	BI 1/3-Sh-Fr-LS	(1.6 x 1.6)
3191Ь	PP-LB-POS	BI 1/4-ShIP	(1.6×1.6)
2996	PP-LB-Ck	BI 1/4-ShIP	(1.6 × 1.7)
2606	CP(AMP)-PO	STIP	(* 4 + 1 2)
2528b	CP(A&P)-P0	SIIP	(1.4×1.3)
2487b	CP(A)-POS	SIIP	(1. x 1.3)
2388	(P(n)-POS	SICk	(1.4×1.1)
	PBL - 25 0	05 (I); = 3225 (Sh)	
	C. 550°F Temper ve	s Plate No. 16 (321 to 331 Bhn)
3084	CP(NS)-PO	BI 1/3-Sh-Fr-LS	(1.7 x 1.6)
3080	CP(NS)-PO	BI 1/3-Sh-Fr-LS	(1.7 × 1.6)
30205	CP(A&P)-P0	BI 1/2-Sh-Fr-LS	(1.7×1.5)
2977ь	PP-LB-Ck	BI 1/3-Sh Fr-LS	(1.6×1.5)
2910	PP-LB-NCk	Sh-Fr-LS	(1.7 x 1.5)
2390	PP-SB-NCk	BI 1/2-Sh-Fr-LS	(1.5×1.3)
2170	PP-VSB-NCk	BI 1/3 Sh-Fr-LS	(1.7 x 1.2)
	PE	E 3000 fps	
	D. 800°F Temper vs	: Plate No. 15 (321 to 331 Phn)
3605	CP(ABP)-BS	31 1/3-Sh-LS	(1.8 x 1.7)
3589	CP(NS)-BS	Sh-LS	(1.7×1.6)
3538	$CP(\Lambda)$ -POS	Sh-LS	(1.8 x 1.7)
35 i Se	CP(AMP)-BS	BT 1/3-Sh-LS	(1.7 x 1.7)
34399	(P(A)-9 -8	BI 1 3-Sh-LS	(1.8 x 1.0)
3455c	CP(Allur) BS	61 1 3 Sh-LS	(1.8 x 1.7)
3360	PP-LE-POS	BT 1/3 Sh+LS	(1.7 x 1.6)
3205	PP-L3-P06	BI ' 3 Sh LS	(1.7×1.7)
3060	TP-LB POS	BI 1/3 Sh-LS	(1.7 ± 1.7)
	1. And	0 + 3490 fps	

VII. Firing with 20 mm AP T33 Shot (Lot 2165) against 1 1/8-inch Homogeneous Armor at 20° Obliquity (Cont'd)

27

CONFIDENTIAL

3.

Distribution

- 1 Chief of Ordmance Department Army Washington 25, D. C. Attn: ORDTX-AR
- 1 Attn: ORDTA
- 1 Attn: 1.375
- 1 = Attn: ORDIM
- 1 Commanding Officer Springfield Armory Optimefield 1, Mass. Attn: Eng Dept
- 1 Commanding Officer Picatinny Arsenal Dover, New Jersey Attn: Tech Group
- 1 Commanding Officer Rock Island Arsenal Rock Island, Il!. Attn: Laboratory
- 1 Commanding Officer Watertom: Arsenal Watertom: 72, Mass. Attn: Tech Group

1

1

- 1 Commanding General Aberdeen Proving Ground Maryland Attn: Ball Res Lab
- 1 Attn: D & PS Ammunition Br
- 1 Attn: D& PS Armor Bren
- 1 Commandant Ordnance School Aberdeen Proving Ground Maryland Attn: Tech Intell Br
- 1 Attn: ORDHS-RC
- 5 Armed Services Technical Information Agency Document Service Center Knott Building Dayton 2, Ohio Attn: DSC-SD (Code 3)
- Commanding Officer Office of Ordnance Research Box CM, Duke Station Durham, N. C.
- 1 Dr. C. W. Curtis Physics Dept Lehigh University Bethlearm, Ca.
- 1 Commanyiant Navel Proving Ground Dahlgren 36, Va Attn: A & P Laboratory

29