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The accompanying paper on game theory consists of two parts of a
1*:port which in final version will have four parts. The omitted narts will
vuver d-person theory and tho relation between game theory and various
topics such as statistics, linear programming, etc. I am sending you this
incomplete version because I should like to receive criticisms of the work

as soon as possibdble;: to this end let me cite the nltimate purpose of the
renors.

It is one of a series of reports bdeing written by various people
on mathematical models in the behavioral sciemces. They are exnository in
nature and they are designed primarily for tvo audiences:

1. social scientists with some, but limited, mathematical $~Taining
vho wish to f£ind out some of the structurs and of the conclusions of the
various mathematical models, but who have neither the interest nor the
mathematical sophistication to follow detailed formal proofs;

3. mathematicians interested in mathematical applicntions in the
social sciences who want a quick survey of the area and vho can, if they
Yecome interested, obtain the mathematical details from dooks and articles
referred to in the exposition.

Vhen these renorts are finclly issued sne a tnis, thay will be
accomvanied by a short exposition of scme dasic mathematical concepts and
notations. TYor example, terms like set, function, relation, product space,
etc., and notations 1ike € , U , (), C,etc., wvill be explained. It
was felt that it was bettar to do this in one place rather than to try to
make each report completely self-contained.

I would very much appreciate it 1f you can spare the time to give
tids partial renort a critical reading with thece aims and facts in mind,
and you may de sure that in preparing the final draft I shall put to good
use any (preferabdly detailed) cosments you care to make.

Sincerely,

R. Doncan Luce

Bareau of Applied Social Research
427 W. 117th Street

Yew York 27, New York

Avril, 1952
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Part I

Genera) Inroduction

In all of man's written record there has dbeen a preocccupation
with situations in which there 1s a conflict of interest; possibly only
the subjects of God, love, and inner struggle have received comparable
attention. The scientific study of interest confiict, in contrast to its
description or its use as a dramatic vehicle, comprises a small, but grow-
ing, portion of this literature; as a reflection of this trend we find today
that conflict of interest, both among indivicuals and among institutions,
is one of the more dominant concerns of at least saveril of our academic
departaents: economics, sociology, political sclience, an' other areas to a
lesser degree,

It is not difficult to characterizz in an imprecise way the major
aspects of the .problem of interest conflict: An individual is in a sttuation
from which one of several possible outcomes will result with respect to
which he has certain personal preferences. Howev r, though he may have: some
control ovar the sariables which determine the outcore, he does not have
full contrul. Scmetimes this is In the hand: of s=veral ‘ri’viduslz ho
Like - ip have [rafarences among the possible outcomas; but o in 2ernaral

do not agree in their preferences. In othsr cases, chance events (which are

sometimes known in law as "acts of God"™) as well as other individuals (who
may or may not be affected by the outcome of the situation) may influence

the final outcome. The types of behavior which result from such situations

have long been observed and recorded, and 1t is a challenge to devise theories

to explain the observations and tc formulate principles which should guide
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intelligent action.

The literature on such problems is so vast, so specializaed, and
30 rich in detall that it is utterly hopeless to attempt even a sketch of
it. -However, the attempt to abstract a certain large class of these problenms
into a mathematical system forms only & small po~tion of the total literature;
in fect, aside= from sporzdic forays in economics, where for the most part
attemots have been made to reduce it to a siample optimization problem which
cuan be dealt with by th~ calculusa, or in more sophisticated formulations by
the cilculus of variations; the only mathematical theory so far put forth
is *he theory »of games, our topic here, In some ways the na = 'Game Theory'
is unfortunate, for it suggests that the theory deals witnh only the soclally
unimportant conflict of interest found in parlor games, wherc.s it 13 far more
general than thit. Indeed, von Neumann and Uorgenstern entitled their now
classical book The Ihsory of Games and Economic Behavior, preswmably to
forestall that !nterpretation, although this does not emphasize the even
wicar ap.licability of the theory.

The modern mathematical approach to interest conflict - game
theory - is generally attributed to von Neumann in his papers of 1928 and
1937 [ 1; although recently Frechet has raised a question of priority
»y suggesting that several papers by Borel in the early '20's really laid
the fuundations of game theory., These papers have been translated into
‘rgiish and republished with comments by Frechet and von Neumann [ ].
r1le Sorel gives a clear statement of an lmportant class of game theoretic
pronjems, it is pointed out by von.Neumann that he did not obtain one crucia!

result - the minimax theorem - without which no theory of games can be

siid to exist; In fact, Borel conjectured that the minimax theorem is
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false in zensral, aithough he did prove it is true in certain special cas=zs,
von Newaann proved it true under gencral condtions.

‘i wore interest than a debate on priority is the fact that
neither griup of papers ~ the one in France and the other in Uermany -
attractsr. much attention on punlication. There are almost no other papers
than ‘hose mentioned bafore the publication in 1944 of the book by von “eumann
and '‘orgenstern, and those were confined to the mathematical journals.
Apparently no interest was stimulated in the empirical sciences most con-
c~med with conflict of interest., Fortunately, von Neumann and Morg-nstern
attempted to write their book so that a patient scientist with limited mathe-

mitical training could absorb the motivaticn, the reasoning, and the con-

ciustons of the theory; Jjudging by the acclaim and interest evidenced in
| non-mathematical journals, as well as in the mathematical ones, they were

not without success in this aim. Only a very few scientific volumes as

nathematical as this one have attracted as much attention and admiration, and

yet we know that much of the material had lain dcrmant in the literature

|
|
|
|
) for two decades. OJre can only speculats on the soclological factors zt
!
| w3r¥ tc alter the response, but presumably the recent war may have been one |
|
! of the most imjortant. During that period there developed a considerable
i
interest in a scientific, or at least systematic, approach to problems which
0 previously had been ccnsidered the exclusive ;»-ovince of men with "experlonce.”
These inciude such topics as logistics, submu.rine search, air defense, etc.
: Jame theory certainly fits into this trend, and it is probably the most sophlis-

ticated theoretical structure so far resulting from it. The sustained activity

and interest in game theory is in soms considerable measure atiributable to
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the KAND Corporation; which 1s itself very much a product of the same war
and pnstwar phanomene.

it i3 aiso of interest, though not directly reievant to the tneory
tself, that pane theory is primarily a product of mathematicians and nnt
of sclent{iats from the empirical fields. 1In large part this results from
the fact that the theory was originated by a mathematician and w~as, to aill
intents and puruoses, first presented in book form as a highly formal (though,
for the most part, elementary) structure; thus ilending to make 1t acces:ible
as a research vehicle only to mathematicians. Tndeed, the total impact of
game theory has been greater in mathematics than in the empiriral sciences,
where 1ts technijues, though no longer its results; have czused a not in-
considerable revolution in the formulations of mathematical statistics.

jame theory coes not, and probably no mathematiczl theory couid,
encompass all the diverse problems which are included in our brief character-
izatlon of conflict of interest, In this introduction we shall try to cite
the main features of the theory and to present some substantive problems
included in its framework. The reader wili easily f1l11 in examples not
now in the domain of the theory, and as we discuss our exaples we shall point
out some other important cases which are not ccovered,

Firgt, with respect to the possible outcomes of the given situationg
it is assuied that they are well specified and that each individual is able,
elther dirsctly or indirectly, to assign a numerical utiliny (%o all intents
and purgoses a noney value) to sach of them in such a fash.on that one with
a larger numerical util ity is preferable to one w#ith a oma'ler utility.

Thus, the assumed individual desire for the preferred cutcomes becomes, in

game theory; a maximization problem with respsct to a numerical utility
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defined over all possidble ou'.comes-

SHecond, the wvariables snich conirol the pessible cutcomes era
Also assuma] to S wail sjecifiad, that i3, one can precisecly charscterize
all the varlsties ant all the vaiues ~hich they may assunme, Actually, one
may beat thine -1 these variabies as groupod in nt) classes i{f there are
n individuals in the situmtion, or in the terminology oi' the theory, if it
18 an n-perzon gsme. To each per-on is associated onz of the classes, which
regrenents his domain of choice, and the one left over is within the province
of chancae,

As we said earlier, in this type of conflict situation we are
interested in only some of the resulting beshavior. Actually, our curiosity
may Ancompass ail of 1t - the tensions resulting, sulcide rates or frequency
of nervous disorder, aggressive behavior, withdrawal, changes in personal
or business strat«gy, etc. = but of these, any one theory will, presumably,
deal with only a small subset. At present, game theory deals with the
chuices people may make, or, better, the choices they should make in a
sense to be dafined, in the resulting equilibrium outcomes, and in some
aspects of the communication and collusion which may occur among sets of
players in their attempts to improve their outcomes. Vhile much of what
1s socially, individually, and scientifically interesting is not a part of
the theory, certain important aspects of our social behavior are included,

A theory such as we are diszcuesing cannot come into existence vwithe
out assumptions about the individuals with which it purports to be concerned.
ve have already stated one: each individual strives to maximize his utility.
Care must be taken in interpreting this assumption, for - person's utility

function may not be identical with some niumerical measure given in the game,
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For example, poker is a game with numerical payoffs assigned to each of the
outcomes when it 13 played for money, and one way to play the game is to
maximize one's expected outcome, but there are players who snjoy the thrill
of bluffiny for its own sake and they do so with little or no regard to the
expected payoff. Their utility functions cannot be identi ied with the

game money payments., Indeed, there are those who feel that the maximization
assumption itself 1s tautological, and that the empirical question is whether
or not a nunerical utility exists in a glven case, Assuning maximization

of a numerical utility, it ia quite another question how well the person
knows the functior, 1.e., the numerical utility, he is trying to maximize.
Game theory assumes he knows it in full., This, and the kindred assumptions
about his ability to perceive the game situation, are often subsumed under
the phrase "the theory assumes rational players.®” Though it is not apparent
from some writings, the term "rational™ is far from precise, and it certainly
means different things in the different theories which have been developed,
but loosely, it seems to include any assumption one makes about complete
inowledge on the part of the player in a very complex situation, where it

is knom fi xm experience that any human being would be far more restricted

in his perceptions, The immediate reaction of the empiricist seems to be
that such assumptions are so at variance with known fact that there 1s little
point to the theory, except possibly as & mathematical exercise, ¥e shall
not attempt a refutation so early, though we feel we have given some defense
in the body of the report. Usually added to this criticism is the patient
query: why does the mathematician not use the culled lmowledge of human
beshavior found in psychology and sociology when formulating his assumptions?

The answer is simply that, for the most part, this knowledge is not in a

- e - &
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sufficiently precise form to be incorporated as assumptions in a mathematical
model. Indeed, it 18 to be hoped that the unrealistic assumptions and the
resulting theory will lead to experiments designed in part to improve the
descriptive character of the theory.

In summary, then, one formulation of the game theoretic situation
is the following: There are n players which we may label by the integers
1,2,...4no FEach player i will be required to make one choice, let us call
the ors he makes &4, from a set Si of possible choices, and these cholces
will be made without any knowledge of the choices of the other players.

The set Sy, the domain of possible actions of player i, may include as
elements such things as "playing an ace of spades,” or "to produce tanks
instead of automobiles,™ or, more important, a strategy covering the actions
to be taken in all possible eventualities (see below). Now, given the
choices of each of the players, i.e., the elements (sl,az,...,an) of the
product space Slxszx.”xsn, then there is a certain outcome, utility, for
each of the players. Clearly, the outcome is a function of the element
selected in the product space Slxszxn.xsn and so it may be denoted
Mi(8),82,000,8,), where 1 runs from 1 through n, The function i; is real-
valued and it prescribes the utility to player 1 of the outcome of the
situation., This characterization of the game we shall come to know as the
normalized form of the n-person game. Two other forms -~ the extensive and
the characteristic function form -~ will play important roles in our sub-
sequent discussion; but there is no need to go into that now.

Next we should consider what significant problems of conflict of
interest are included in this formulation. Our brief examination will cover

four areas: econauics, parlor games, military problems, and politics. One




basic econamic situation involves several producers, each attempting to
maximise his profit but each having only a limited control over the variables

which determine it. One producer will not have control over the variables

controlled by another producer, and yet these variadbles may very well in-~
fluence the outcome for the first producer. One may objesct %o treating this
as a game on the grounds that the game model supposes that each producer 1
makes one choice from a domain S; of possible choicez, and that from these
single choices the profits are determined., But it is obvious to all that
this is not the case, else industry would have little need for boards of
directors and the many elaborate executive apparatus. Rather, there is a
series of decisions and modifying decisions which depend on the choices

and the timing of other members of theeconomy. However, in prineciple, it is

possible to imagine that an executive foresees all possible contiagencies

and that he describes in detail the action to be taken in each case instead

of meeting each problem as it arises, By "describe in detail®™ we mean that
the further operation of the plant can be left in the hands of a clerk or a
machine and that no further interference or clarification will be needed from

the executive. For example, in the game tic--tac-toe, it is perfectly easy

to write down all different possible situations which may arise and to specify

what shall be done in each case (and for this reason it is considered by

1‘ adults to be a dull game). Such a detailed specification of actions is

i called a (pure) strategy. There is, of course, no reascn why the domains

of action S4 need be minor decisions; they may have as elements the various

;] pure strategies of the players. Looked at this way, a player chooses a
strategy which covers all possible specific circumstances which may arise.

\} For practical reasons, it is generally not possible to specify sconomic strate-
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gies in full, and as a result a business strategy is usually in practice

only a gulde to action with respect to pricing, production, advertising, hiring,
otc., »hich does not state in detail either the conditions or the actions to

be taken, The game theory notion of strategy is an abstraction of tris

ordinary coucept in which it is supposed that no ambiguity remains with

respect to either the conditions or the actions, and it serves the function
of aliminating the apparent difficulty in applying the game theoretic model
to economic problems. The notion of a pure strategy, and some related concepts,
will receive considerably more discussion in part III,
A more important difficulty obtains in most economic problems which
' . prevents them from being put in game form, except approximately. In general,
it is not possible to specify the spaces Sy, the strategy spaces. This 1s
not merely a practical difficulty, as suggestsd above, but it is in many

cases not even possible in principle, for tomorrow's new invention or sci-

entific discovery may open a whole new range of activities to one producer,
How can such a possibility be imbedded in a theory? One can only hope to
obtain limited prediction when such a possibility exists, using the present
spaces . This seems to be regarded by many social scientists as a ter-

rible inadequacy, and yet it is a common difficulty in all of physical science. |

BN | = R N

It is analogous to a physical prediction based on a physical theory and
A certain boundary conditions, which is surely invalidated if the boundary condi-
! tions are changed, either externally or through the very process which is
- . being predicted. In many ways, soclal scientists seem to want from a mathe-—
natical model more comprehensive predictions of complex social situations

than have ever been possible in applied physics or engineering; it is almost

certain that their desire will never be fulfilled, and so either their aspira-

,_
Y
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tions will be changed or formal deductive systems will be discredited as
far as they are concerned.

To twn from economics, it is well lmown that for parlor gamo:
there is always a clear-cut scoring procedure. JIn some games which are
played for money, such as poke:r, there is a finely graded nimerical scale
assigned to the outcomes. In others, such as chess, the outcome is simply
winning or losing, but one can assign a more or less arbitrary aumeiical
scale, such as O or 1. Very often it ies the aim of the piayer to maximize
his expected gain as described by the numerical scere of the game; but, as
we pointed out earlier, there are cases when this score function cannot be
identified with the person's utility, such as vhen an adult purposely loses
. to a child.

In a parlor game, as in our economic example, each player makes

not one choice but a whole series whose order and nature depend upon the

previous choices both ha and the other players have made, that is, on the
previous play of the game, In exactly the same way as in the economic situ-
ation one is able to show that the strategy notion allows the reduction of
this extensive form to the above-mentioned normal form. In part III we
shall do this in some detail. It should be pointed out here that while .

. A B ——e - B So— - .

parlor games have been characterized in extensive form and while it has
been rigorously shown that any such game can be put in normal form, the cor-

responding statement of the extensive form of an economic situation and its

o ——p

reduction to normal form has not been given. The argument that game theory
) 1 is applicable to such economic situations is therefore by analogy and so 1is

no more than heuristic. Apparently a major difficulty in describing the

extensive economic model is the role played by time and the timing of decisions.
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There is not,as in parlor games, any fixed sequence of decisions; t.ming
in a production situation is often as important as the decision 1.s11f,

Another difference between the parlor game and the econsz.c
problen is of the utmost importance in the theories developed. It .s almont
always a part of the rules, or at least of the social mores, that there shall
be no collusion among the~ players of a parlor game. In economics. the concept
of a coalition, 1.e., of collusion among some of the producers so 1t each
betters his position at the expense of the other producers or the consumer,
is widely recognized in theory, in the law, and in everyday discourse. It
thus behooves a theory of games which purports to have application beyond
parlor games to be concerned with this common phencmenon of conflict situ-
ations.

A mlitary conflict is, by definition, a conflict of int:xest in
which neither side has complete control over the variables determiidng the
outcoms, and in which the outcome is determined through a series ¢!’ battles.
We may naively take the outcome to be wimming or losing, to shich re might
assign the numerical values 1 and O, Mcre subtle interpretations >f the
outcomes are obviously possible, based on, say, the degree of dertruction,
etc. Again we have the same two difficulties as in the economic jroblem:
there 1s actually a series of decisions on each side, the timing ¢! which
is of vital importance, and the domain of cholces for these decisions is
not usually well specified. The first problem can be surmounted :e before
by the notion of & strategy, and indeed the concept of a military strategy
is coimon, even if it 1s not alweys clearly fermulated. The seco 1 prebdlea

is again more profound, and it appsars to provent a game theczeil: anslysis

o e S



of many impr ~;ant military situations; but certainly other important ones
ai® gudlect to the theory., Oune of the simplest 1s the "duel™, which \n its
simplest for» consists of two players 1l ard 2 having pand q "ahot-';
respectivel; . For each player 1 there is a given function py(t) which
glves the pi :bability densiiy that a shot fired at time t will result in
a "hit", le!. us suppose a fatzl hit. We may suppose that the domain of t
is 1limited, us it would be in an alir engagement by fuel supply. The problea
is then to cdatermine when each player best take sach of his shots, arsuming
that he knov:n how many shots his opponent has already taksn, 50 as to maximize
the probabi. ity that he will hit his opponent bsfore being hit. For most
duel situat: ns of interest, pi(t) is a monotone increasing function, as,
for examples , in the classical duel of two men walking towards each other
with guna l::valedo

1+ 48 hardly necessary to labor the point that political situ-
ations invo .ve conflicts of interest. In addition to the difficulties of the
economic ari i military problems with respect to 1ll-defined domesins of action,
we know thni here there is considerable ambiguity as to the outcome, or
payoff, fw: tion even over a known domain of possible actions. This is to
some exteni: true in the other situations we have described, but it is over-
whelmingly sbviocus in the political realm, where, for example, the defea*
of a candid ite has sometimes been attributed (after the fact) to a single

sentense oi ¢ of the thousands he spoke in a campaign. (There i5 a case
of an Amer! :an orstor reading, one supposes for the first time, a speech
] in which 1' 756 came out "one thousand, seven hundred, and seventy-six".)
i *za the above comments we see that there is some hope that the

(]
" ; l normalized rorm of a game includes some socially important phenomena, but it
1

‘ -
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is clear that with respect to many situations there are serious difficulties.
This, however, is not the entire picture. In developing the n-person game
theory, von Neumann transformed the normal form into s mathematically simpler
structure, simpler in that msuch of the detail of the normal form is condensed,
which, 1t appears, will allow a broader application of the theory than the
above discussion suggests. This is more appropriately discussed in part I1I
than here, and we shall content ourselves with remarking that to attain
this application approximate estimates of the "characteristic (mction" will
have to be obtained, presumably by empirical techniques.- This does not
appear to be beyond the scope of some of the techniques under development
in social psychology and sociology, and it is to be hoped that some empiricists
will be attracted to this problem. However, this is conjectural, and we
have the historical fact that many social sclentists have become disillusioned
with game theory. Initially there was a naive bandwagon feeling that game
theory solved innumerable problems of sociology and economics, or that,
at the least, it nade their solution a practical matter of a few years®
work, This has not turned out to be the case.

“hat then is the significance of game theory to the social scientist?
First, because there has not been a plethora of applications in 10 years,
it is not clear that it will not ultimately b~ vital in applied problems.
Judging by phyeics, the time scale for the impact of theoretical develop-
ments to be felt is often measured in decades, Second, while the present
form of the theory may not be totally satisfactory - in part, presumably,
because of its so-cslled normative character -~ this does not necessarily mean
that abandonment by the sccial scientist is the only possible course. Much

of the theory is of very general importance, but some revision may be

- —— et
— e gt e
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required 1or fruitful applications. Attention to the theory is needed; and
not attention from the mathematician slone, as is now the case. Third, game
theory is the first example of an elaborate mathematical development centered
solely in the social sciences. The conception derived from non-physical
problems, and the mathemutics - for the most part elementary in the mathe-
matical sense ~ was developed to deal with that conception. The theory
draws on known mathematics according to need - on set theory, on the theory
of convex bodies, etep furthermore, new mathematics was created when it

was not already available, Most other attempts at mathematization (with the
exception of statistics which plays a special role) have tended to take

over bodily small fragments of the mathematics created to deal with physical
problems. If we can judge from physics, the main developments in the mathe-
matization of the social sciences will come - as in game theory - with the
development of new mathematics, or significantly new uses of old mathematics,
suited to the problem., No one of these theories should be expected to be

a panacea, but their cumulative effect promises to be revolutionary.

It is the singular genius of the von Neumann and 'forgenstern book
that in this, the first major publication on the subject, we find a clearly
formulated abstraction of considerable breadth, drawn from the relatively
vague social sciences, and an elaborate and subtle superstructure daveloped
with masterful scope — a rarity in sclence. The depth of their contribution
can be appreciated, in part, from the fact that today the mzterial still

must be presented according to their outline; there have been additions,

true, but the main conceptions are unchanged.

A word about the organization of this report. The main body 1is

divided into three parts, the first devoted to games having two players,
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the second to general games, and the third to miscellaneous topics in one

[' ' way or another closely related to game theory. The division of the first

two parts is dictated by von Newmann's develoument of the theory, in which
the study of n-person games rests on the already completed study of the
2-person games. In addition, the subsequent contributions to the theory
have in the main continued this dichotomy, and so the material is most easily |
presented in two parts.
We do not in any way intend this report to serve as a text on the
subject, nor as a research reference; rather, we hope to lay bare, with a
minimum of mathematical notation, the main structure of the theory, the
assumptions, and the conclusions, A consequence of this aim was our decision

to omit all proofs. It is a report directed toward the social scientist

who has found the long chains of argument in von Neumann and Morgenstern

too tedious and the crisper style of McKinsey too spare, but who still

would like to inow the principal features of this important theory. Anyone
interested in pursuing research in game theory, or in its applications, will
have to consult at least one of these two books and some of the research

papers referred to, but his task may be simpler -- at least we hope it will

be - for having read this less technical outline.

|
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1. Intreduction

The theory of games would be a very incomplete edifice, both
esthetically snd practically, if it were restricted to the 2-person case.
It is not. In this part of the report we there:'’ore turn to an examination
of the n-person theory, which is, in the main; very different from the 2-
person theory.

Intuitively, it is reasonable to suppose that ths two most signi- '

ficant notions of the 2-person theory - strategies and equilibrium points -

can be extended to games with more than two players. This we shall discuss
in section 3, Were this extension of definitions and the resulting theorems
the totality of n-person theory, we should have presented it in a unified
mamner for all n 2 2, However, it has long been recognized in sociology,
and in practical #ffa:lra, that between two-person situations and those involv-
ing three or more persons thsis is a qualitative difference which is not as
simple as the difference between 2 and 3. Georg Simmel writes, "The easential
point is that within a dyad, there can be nc majority which could ocutvote
the individusl. This majority, however, is made possible by the mere addi-
tion of a third member.” [26, p. 137] And again, "The typical difference
in socioclogical constellation, thus, always 'renins that of two, as over
against three, chief parties.” [26, p. 144] The recognition of this feature -
that of goglitions in the language of von Neumann and Morgenstern [21] - has
resulted in an n-person theory markedly different from 2-person theory.

A major cobstacle to developing a satisfactcry theory cof coalitions

is that in the present formalizations of a game no explicit provisions are




made about communication and collusion among the players. Thus any theory
of collusion, or of coalition formation, has a distinctly ad hoc flavor,
The difficulties in making explicit assumptions about communicstion appear,
at least superficially, to stem from the variety of rules which are found in
empirical situations, Collusion in parlor games is prohibited by social
sanctions and by a sense of sportsmanship; that the rules are well heeded
is, ons supposes, because so little is at stake, Of course, there are known
oxceptions in the history of gambling. In the economy one finds the whole
gamut from no rules at all,through moral sanctions, to elaborate legal codes
< ! as in the anti~trust laws. In international affairs, coalitions and their
disruption bulk large in the history of at least the past 300 yearspy the
rules obeyed have been few,

One point of view which has been presented, and which we shall

discuss in section III.3, is to the effect that non—cooperative games are
theoretically basic, and that cooperative ones can and should be subsumed

under that theory by making communication and bargaining formal moves of
the xion—cooperativa game, This view has never been fully elaborated and

ST SIS SHRE ST AT W e

so criticism is difficult, but McKinsey has pointed cut, "It is extremely

! difficult in practice to introduce into the cooperative games the moves
corresponding to negotiations in a way which will reflect all the infinite
variety permissible in the cooperative game, and to do this without giving

o ——

~

one player an artificial advantage (because of his having the first chance

1 to make an offer, let us say)." [13, Po 359}
! In sddition to the conceptual complications of collusion, there

! 4 ( ’ are inherent practical complications as n gets larger, for the number of pos—
-t
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sibilities increases at a fantectic rate; the difficulty of a detailed
%, analysis of a 2-person game such ar chess is minor compared to a similar

analysis of mcst n-person games., One of the principal features of the
current theory is to by-pass such a detalled anal ysis. That we can success-
fuvlly avoid at the conceptual level the combinatorial problem does not seem
to solve all empirical problems of verification, for an empirical study must
deal with specific games in all their complications, Fortunately, what we
suggest does not seem to cover the iassue entirely, but we must postpone
more discussion to section III.7.

The principal order of our presentation - extensive form of a

game, normalized form, characteristic function, and solutions - is essenti-
x . ally that of von Neuzann and Morgenstern [21]. The work on n-person games
I since the publication of their book has been centered primerily within this
framework, and while therec have been criticisms of this general organization,™

no new approach has been commonly accepted. It must, however, be added that

! the vast majority of the work in the 10 years since the first printing of
their bock hes bsen davoted to the 2-person game and to extensions of it
which are either beyond the scope of this report or are studied in Psart 1IV;

the number of papers on the n-person game is less than a score, Several

. e e - ————— - -

facts may be mentioned which seem relevant to this phenomenon: the relation 1

of the 2-person game to linear programming and to statistics has attracted

-

considerable attention; mathematicians have been intrigued by the current

! 2=person theory because it draws on more advanced mathematics

~

|ieadh . - e -

' * Von Neumsarn and Morgenstern themselves raised objections and questions about
( the organization to which they were forced, and they suggested that when the
theory is more mature we may find it unified for all n 2 2 and find the now
important characteristic function only an unnecessary technicality,
[21, p. 606 - 608, particularly p. 608]
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than does n-person theory; many workers Lave felt dissatisfied with the
present formalization of n—person theory and rather than meeting the con-
ceptual challenge trhay have withdramm to other iacues. Nonetheless, it is
the n-person theory which 1s cf greatest interest in aociology and econocatics,
and it is here, more than in 2-person theory, that game theory as social sclence,
though not as mathematics, will stand or fgll. In two principal ways we shall
try to show that general game theory can be of interest to socianl scientisis,
First, we shall emphasize the independence of the characteristic function
theory from its derivation in terms of the normal form of a game, and we
shall suggest the possibility of an empirical de’ermination of these functions
in real situations where the strategy spaces and the payoffs of the normal
form are difficult or impossible to determine., Second, we shall offer the
view, with examples as support, that it is possible to devise theories based

on the characteristic function which are more reslevant to social science B
than the solution notion, & concept which has rot found wide acceptance out-

side mathematical circles., e must, however, omphasize that the theory is

|
|

}

[}

| in far from final form and tha® the social scientist will find as many dif-
! ficulties unearthed as are sclved in any attempt to make game theory an

i

applied theory.

2. Extensive Form

The mathematical abstraction of s game assumes three forms in the
presentation of von Neumann and Morgenstern [21]. The first — called the

extensive form - is our present topic; 1t io an attempt to capiure the

salient features of a game, such as a parlor game. From this is derived
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another more compact form known as the normal form, which we shall discuss
in section III.3. It is curious that, while the ncrmal form is a special
case of the extensive form (to which every extensive form may bes reduced) »
only the normal form has the apparent or psychological generality to
encorpass many social and economic problems, There are few situations

other than parlor games vhich are games in extensive form, excluding the
case of the normal form., The third stage of their development is the
derivation of a real-valued set function, cailaed the characteristic function,
which represents coalition strengths (section III.4). While in one sense a
characteristic function represents a game, it need not, and so it twms

out that in a very important sense to social science the theory of char-
aoteristic functions 1s more general than the theory of games in extensive
and normal form. The principal mathematical theory is at thas level of |

characteristic functions, and so it could be presented mathematically

without reference to the extensive and normal forms, but it is appropriate
for us to follow the longer development in order that the reasons for the
abstractions should be clear.

Any parlor game is composed of a series of well-specified poves,

A ELEG . o mE e L

where each move is a point of decision for a glven player among a set of
alternatives. The particular choice a player makes at a given choice point
is called a ghojice, but the fact that he must make a choice coupled with the

set of alternatives for the choice is called a gove. A sequence of cholces,

o ——ip—

one following another until the game is terminated, is called a play. Let
us suppose that in one game (at some stage of a play) playsr 1 has to choose

-
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Antegers, will be denoted I,,. In the ex-

anong playing a king of hearts, 2 two of spades, or a jack of diamonds, and
that in another game a player, alsc denoted 1, has to choose among passing,
calling, or betting. In each case the decision is among three alternatives,

which may be abstracted by a drawing as
in Fig. 1. \l/
1

But how can these two examples Fige 1
be considered the same? Certainly it is clear from common experience thst
one does not deal with one three-choice situation in the same way as any
other three—choice situation. One might, were they given out of context,
for there would be no other coneiderations to govern the choice; but in s
game there have been all the choices preceding the particular move, and all
of the potential moves following the one under consideration. That is to say,
we cannot truly isolate and abstract each move separately, for the signifi-
cance of each in the game depends on somes of the other moves. However, if
we abstract all the moves of the game in this feehion and indicate which
choices lead to which moves, then we shall know the abstract relation of
any giver move to all other moves which have affected it, or which it may
affect.

Such an abstraction leads to a drawing of the type shown in
Fig. 2. The numbers associated with the
moves indicate which player is to make the
move, and therefore they run from 1 through
no The set of players, i.,e., the first n

ample of Fig, 2, n = 4, But we have
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denoted the first move O, In addition to moves by players, some games have
chance moves, as, for example, the shuffling of cards prior to a game of
poker, Such moves, which need not be the first move of the game, are
assigned to the "player"™ 0, which stands for chance. For the 0O moves

we must be given a probability distribution, or weighting, of the several
alternative choices,

A drawing such as Fig. 2, when considered abstractly as a mathe-
matical system, is known as a graph. A graph consists of a collection of
points (called nodes) and branches (the lines between some pairs of nodes
drawn in on the figure) between certain pairs of nodes, If there is at
most one branch between any pair of nodes, as in the cass of a game, &
grapl is isomorphic to a symmetric relation over the set of nodes. A
graph may have closed loops of branches, such 4 e
as ab¢ or abdec in Fig. 3. A graph with no
such loops of branches is called a tree. The B
graph of a game is a tree, which is called the -

E2m® ireg. Thiz may not seem reasonable for in Figo 3

such gaass as chess one can srrive at the same arrangement of pieces on ths
board by several different routes, which appears to mean that closed loops
of branches can arise. However, in game theory we choose to distinguish
two moves as different if they have different past histories, even if they
have exactly the same possible future moves and outcomes. In games like
chess this distinction is not really important and to make it appears to

be an arbitrary decision, but in many ways the whole conceptualization and
analysis of games 1s simplified if it is nde. The tree character of a game

e P [N
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is not rmielated to the common sinking feeling one often has after making
= stupid choice in a gams, for, in a sense, each choice is irretrievabdble,

and once it i5 made, there are parts of the total game tree which can
never again be reached,
Z The tree is assumed to be finite, in the sense that a finite
number of nodes, and hence of branches, 1s involved. This is the same
as saying that there is some finite number o such that every possible play

’fj of the game terminates in no more than ¢ steps. This is certainly true
}:' of all parlor gumss, for there is always a "stop" rule to terminate stale-

mates, e.g., as in chess. To say the tree is finite is not to say that it
t" is small and easy to work with., For example, card gamss often begin with

the shuffling of a deck of 52 cards, and 8o the first O move has 521

or appraximately 8.07 x 10°7 branches stemming from it. Clearly, for

such games no one is going to draw the game tree in full detaill

q’v«

At the end of each play of the game certain rewards and punish-

v
.

ments - payoffs - occur. These may be the subjective reward of saying

sy d

*I won" or the monetary punishment of seeing someone else swesp in the
pot ~ a pot which often includes more of your money than it should - or,
as McKinsey says, "the death in Russian Roulette." Each of the end points
in the game tree iz a possible termination point of the game and it com—
pletely characterizes the play of ithe game which led to that point. We
may index these end points and denote a typical one by the symbol .

Now to ezch « and for each player 1 we have a pavofl functiop which we may
denote M;(l), that is, a function which has as its domain the plays ~ or
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snd points = of the game, The range of the functions can vary a great deal,
as we suggested. In some cases the range is the real number system, such

as for monetary payoffs., In Russian roulette the range is a spece having

two elements, one representing death, the other not-death. Thile in principle
it is not necessary to restrict the possible ranges of the functions "1('0’
to make any progress at all in the theory of games it is necessary to assume
that the ranges are part of the real number system, usually a finite part.
Further, it must be possible to form sums such as li(tl) + uj('p) and to be
able to assign some meaning to them., Von Neumann and Morgenstern [21, p. 617,
Appendix | have developed a theory of utility in which they show that certain
assumptions about the ability of people to assign preferences among certain
alterratives make it possible to assign a numerical utility to the wvarious
alternatives., This work is discussed very briefly in section III.7.2. From
this they conclude that the restriction of the ranges to the real nusber systea
is not really such a serious restriction, after all, But more must be assumed
in order to justify forming sums of payoffs. The assumptions are summarised
by saying that utility mmst be both nmmerical and transferable. The need to
form sums will arise later in the thecry of coalitions when we wish to allow
side payments: A player who will receive a certain amount from the play of
the game can be induced by other players to participate in a ccalition by
their offering him added payments other than those provided by the rules of
the game. If the rules of the game provids death for certain players, this
payoff is not transferable, even though a nmmerical value aight be assigned.
Essentially then, we will have to think of the payoffs in terms of soms
infinitely divisible extra-player commodity, which tc &il intents and pur-
poses is money. Without this assumption we would not go far,.
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The final step in the formalisation of a game is to indicate

what each player knows when he makes a choice at any move, It is sssumed

that each player is ocmniscient in that he knows the entire game tree and
all of the payoffs, but there is the possibility that the rules of the
game do not provide him with knowledge on any particular move of all the
choices made prior to that move, This is certainly the situation in
most card games which begin with a chance move, or where certain cards
are chosen bty another player and are placed face down on the table, or
where the cards in one player's hand are not known to the other players.
Indeed, it may be that a player at one move doos not inow what his domain
of choice was at a previous move! The most common example of this is bridge
where the t wo partners must be considered as a single player who inter—
mittently forgets and remsmbers what alternatives he had available on

previous moves (see sections III.3 and IIX.4).

It is possible, in principle, for such a super-intelligent
player to ascertain from all the information imown to him and from the
rules of the game a certain minimum set of moves of which his is one, but

which one he is not certain. Since he knows the game tree in adwance, it
is thus possidble from the rules of the game to characterisze these indis-

. . o e — -

tinguishable moves in advance. Abstractly, there are only two necessary
! features to these sets of moves - which sre known as jnforpatlion sets,
Z Each of the moves in the set must be assigned to the same player, and each

- 3-——r-’

)
"1 1 of the moves must have axactly the sams number of alternatives, For if one
move has r alternatives and another s, where # # r, then he would only need
to count the number of alternatives he actually has in order to eliminate
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the possidbility of being at one move

or at the other. In the graphical prec-
entation of a game, the information sets
mey be indicated by enclosing the nodes
comprising each set by a dotted line, as

in Mg. 4.

Yhen an information set consists of a single move, the player
is totally informed in that he nows exactly where he is on the tres,
“hen all moves are of this type, we say the ganme has perfect information.
Tic-taon-toe and chess are examples of games with perfect information.

In summary, then, the abstraction cf a game which is called the

sxtsnsive forg consists of
i, a finite tree {which describes the relation of each move to

all the other moves),
11, a set of payoff functions X, («) (ome for each player and
defined over the end points — or plays - of the game),
141, a partition of the nodes of the tree into n+1l sets (which
tell which of the n players or chance takes each move),
iv. a probability distribution over the branches of sach O move,
ve & refinement of the player partition into information sets
(which describes the ambiguity each player has when he takes each move).
The original description of a gans in extensive form is due to
von Neumsnn and Morgenstern, but it differs somewhat from and is less com-

pact than this one, which was given by Kuin. [8]

I T —— —— N\ B o




In this extensive description of a game all the subtle differ-
ences between games are apparent. No matter how intuitively similar two
games are, if there is a formal difference as given by the rules it will
show up at this level., At this detailed levul the problems of analysis
seem over-whelming, and certainly to date thore has been very little work
done on the problem of games in extensive form., The principal result in
this area will be presented in the next snection, It is not even clear
how much work is desirable at this level, for while such work might result
in a very adequate theory of parlor games, very few examples from economics
or social science full into the pattern of a tree, that 1s, of well-specified,
temporally ordered moves. Were the theory entirely at this level of abstrace
tion, it ocould be of deep interest only to theorists of perlor gamnes and
gambling. However, any gams in extensive form can always bte put into a speci-
al extensive form, called the normal form, which, as we shall see in the
next section, makes it clear that game theory encompasses problems of more
general interest and depth, It is only at the level of the normal f(rm, and
at an even more abstract level, that game theory seems to have the potential
of far-reaching impect on the social sciences,

So far we have described what we shall mean by a game, but a
theory about games can be developed only as an answer to questions about
them, One general class of problems has been raised: if we assume "rational®™
Players who are omniscient in that they know in full the game iree, the
payoffs, and the information sets, if we assume the payoffs are in a
numerical and transferable utility, and if we assume that each player
wishes to maximisze his expected return (in utility units) from playing

- i .
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N the game, then what happens? This, az we zhall come to see, is not the
precise problem it may seem to be, and we will have to specify further what
we mean. Unfortunately, the further specification appears to take one
beyond the assumed structure of the gams,

3. Norma) Form"

3.1 Strategiqs
OCne way to ascertain the outcome of a game in extensive form is

to let the players play it and observe the outcoms. Indeed, many would

1 . say this is the only way, but they would be wrong, for in principle we
I could cause each player to state in advance what he would do in each
D situationswhich might arise in tle play of the game, From this information
for each of the players, an umpire could carry out the play of the game
without further aid from the players and thereby determine the payoffs.
Such a prescription 6f dscision for each possible situation is mown as
& pure atralegy for a player,

For many gamas tho actual preparation of a pure stratezy in
a form an umpire could use without ambiguity is a hopeless task; howevsr,

b e e A e . e ——— e -

certain simple examples of pure strategies are easily given, though in

¥ general they would be poor ways to play. For example, if we suppose f.hat
| each branch stemming from a move is given a number, 1,2,...,r, ¥here r is
i | +he number of branches, then one pure strategy is always to taks branch 1,
| Another 1s always to take the branch with the largest number. Indeed, if

* The last subsecticn of this section, and of sections IIl.4, III.5, and III.6,
is a brief summary of th> principal concepts of the section. While these sum-
maries are not intender “o0 be intelligible without a first reading of the pre-
ceding sections, they ...y assist some readers to grasp the main line of develop-
ment in the section as it is being read. )
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Player 1 has q different information sets, which we may number 1,2,...,q,
then any pure strategy can be represented by a set of q mmbers, where each
number represents the branch chosen when, and if, the play reaches that
information set. Thus g-tuples of integers, |

Uryo7p000007 |
reprasant pure strategles. For example, the strategy in which branch 1
is alwys taken is represented by

§2,1,...1

But unbylhuuiurmgo only a findte number of integers, since each
move has only a finite mmber of branches, and thers are only a finite
oumber of y's, namely qQ, 80 there are only a finite number of strategies.
Without any loss, we may label the strategies by numbersl,2,...,t, where
t is thes total number of strategies avallable to the player., The nuamber
t is finite, but it need not be small, A game having but 10 information
sets for a player and 10 branches at each set is exceedingly simple, but
there are 10 billion different strategies for that player. )

We let 8, be a variable which has as its domain the awvailable
strategies, or more exactly, the integers which stand for them, of player i.
Now, as we pointed out, when each player has selected & strategy 8,5 then
an umpire is in a position to play the games and to determine the payoffs,
That is to say, froam the given payoffs of the game in extensive fora we
may determine a paycoff function defined over a domain which is the product
space «I the n sets of strategies. First, if there are no chance moves
in the extensive game, then the selection of the strategies ('1"2"”“":1)‘
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determines a play « and 80 we define

W (8),8,500058,) = ().
If, however, there are chance moves, then the selection of the strategies
(ai,lz,...,an) does not uniquely determine a play, but rather there is a
probability distribution p(o() over all possidble plays (of course, the

probability for some plays may be O), Now, as the payoff associated with
the strategies ( '1,32,....%) we take the expected valus” ovsr all the
plays, that 1s,
ui(.l"2"""n) = Zp(-( N ().
' - As we have seen in FPart II, for n = 2 we may always represent the payoff
function as a matrix with the rows representing the strategies of player 1
and the colums the strategiea of player 2. Clearly, for n > 2 a simple
matrix will not do, but we may think of the function as & matrix in n-
dimensions, with the i*® coordinate giving the strategies of player 1.
Observe that by means of the strategy notion every gamse in ex-
tensive form has been reduced to a game of the following form: each playor

has exactly one move (a choice among his several strategies) and he takes
his move in the absence of any knowledge ubout the choices of the other

A e e

players. The payoff to the players is deteramined from the functions W
) and the wvalues of LI This is a reduction of every game to a simple stan-
L dard formvhich is called the pormal form ~f a game,

* Thers has been some misconception that the concept of a numerical utility
is not needed at this point but only when the notion of mixed strategies is
introduced (III.3.2), and that as far as purs rctrategies are concerned we

{ may still deal with orderings of preferences. But in the case where there
are chance moves numerical utility is necessary if we are to assign a payoff
to a selection of strategies, and without such a payoff the devslopment, of

the theory would be blocked.

T ——— e m— - i . .
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What sleight of hand is this? We begar by abstracoting parlor
gamss and arrived at the extensive form of a game, which, in general, led
to an oppressively complex game tree, For games of any ressonsble complex-
ity, the number of possidle trees and of variationz zrising from different
information sets immediately led us to believe that there is little hope
of finding detailed classifications of games in extensive form or of an-
alysing player behavior at that level. Then by introducing the idea of a pure
strategy we have suddenly rsduced all games to a comparatively simple stand-
ard form, That is, the sleight of hand was to trade the conceptual complex~
ity of a game tree for the numerical, but not conceptual, complexity of
listing all available strategies.

The reduction of any specific game, except the simplest, to normal
form is a task defying the patience of man; but, because the normal form of
all possible games is comparatively simple, there is hope that one may
successfully examine mathematically all possible games in norml form. The
study of specific games may be close to impossible, but the classification,
analysis, and determination of features of all games may be now quite feasible,

Assuming the payoff function is in terms of 2 numerical and
transferable utility, we may make the first important classification of
games which will play a role in the following sections. If there exists
soas constant XK such that for every possible choice of the strategies 8y,

:J_;]’.HJ ('l’az.ooo,'n) - K,

then the game is called gopstant-gug. If the value of K is O, then the

YOI -
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game is called gorg-gum. The significance of the latter notion is that as
a result of a play of the game, utility ( or money) is neither created nor
destroyed, it is only exchanged; what one player wins is compensated for by
the loss of others. All parlor games are zero—sum in their money payments,

but not necessarily in a utility measure, Many economic processes, if they
are games, are not zero-sum, for production carried out during the play of
the game (the execution of economic processes) may mean that no player loses,

though some may gain more than othori. Only rarely will they be constant-suam,

for the amount of production will generally vary with the strategies. f
We see that the normal form of the game is exactly the general

problem which was evolved and discussed in Part I: FEach player has some

limited control over the variables which determine what he shall receive

and each of the players wishes to maximire his return. So we have again

feturned to our original problem, but many readers may, at this point, feel |
that a strange psychological trick has been played on them, The extensive

form of the game, while apparently a suitable representation of parlor games,

did not seem adequate for many other situations. The rigid development of

one move following another is not typical of many economic decisions, though

v e e R e - ——— -

it is somewhat analogous. It is not usually possible to state in advancs that
! industry A will make a decision among certain alternatives, and when it does,

| and only then, industry B will make a decision. The economic importance of
timing is too well known to belabor this point, so an econnmic process in

d | extension will not often be an extensive game; thus, one must ask how we can
hope that anything as rigid as a game tree will represent anything other
than parlor games. Then suddenly, by means of the strategy notion, we have

e L e ot e e e .
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reduced all parlo: games to the form of n players, each trying to maximize
a different function of n variables, only one of which is controlled by each

Player.
interesting problems.

It is intuitively clear that this form is suited to socially more

The reduction of a specific economic situation in its "extensive®
for, while not a game in extensive form, will entail the use of what are
comnonly called "strategies®™., Again, actually finding the ai's and the Mg 's
for real situations is a aonumental task, but it can be done in principle for
a great many different situations which in their detailed or "extensive®
structure are not isomorphic, even in some approximate sense, to a parlor
game. These practical difficulties, no more than similar ones in the physi-
cal sciences, do not cancel the power of a theory to study all possible

cases encompassed by the theory.

3.2 Mixed Strategies and Faullidriug Polnte

Cur description above that in the normal form of a game "each player
has exactly one move...and he takes his move in the absence of any knowledge
about the choices of the other players" tends to be misleading. For while
he may have no knowledge of the choices of the other players, it does not
follow that the players have not agreed beforehand to make certain choices.
It simply means that if such an agreement were reached and a double-cross
occurred, none of the other players would know of it when he made his choice.
Thus, we may distinguish situations where commnication can occur among the

players and coalitions can form .prior to the play of the game from those
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in which no communication is allowed. The vast amount of n-person game
1 theory is devoted to the former case and it will be discussed in sections
1114, 111.5, and II1.6, and to some extent in ITI.7.

Certain authors, notadbly Nash, have felt that this is not ths
basic case to study, but rather games in which no communication is aliowed, ]
One cannot but be sympathetic with this view, for the possible restraints
on communication, excluding complete prohibition, at least rival in coaplex-
ity the rules of the gams, and so they afford a problem as complex - Or more
80 — as the cne originally tackled. Nash argues [16 | that whatever communica-

tion is allowable can be introduced as part of the formal structure of the
gane, with the bargaining as formsl moves., This, in the normal form of the
game, simply enlarges the domain of the various strategies and extends the
payoff function, Were it poesible to give an explicit and intuitively ac-

ceptable way of enlarging an extensive game so as to include communication,
the argmment would be more convincing. The difficulty in so doing is not
unrelated to the fact that most economic situations in extensive fora are
not games in extensive form; timing in bargaining can often be of vital
importance. In addition, if one were to treat coalition formution as moves

[ — ST

in an enlarged extensive game, then one would lose the chance of developing
a theory of coalition formation in a game situs“ion, which may be the most

F—

interesting aspect of general gsme theory to the social sciences,

~

But whether or not we accept the belief that all games should be
recast in terms of non—-cooperative games, one part of the theory certainly

..
T ek e e -

should be devoted to non-cooperative gsmes., Presumably it should be a
“natural" extension of the (non-cooperative) 2-person theory. This is not




e e - e Pebt

-

to say that it will not include more phencowna for general n than for n = 2,
but only that the theory for arbitrary n should coincide with that already
developed when n = 2, In actual fact, in its present form, which is due to
Nash, the general theory of non-cooperative games does not have characteristics
different from the 2-person case; Nash's contribution is an appropriate
generalization of an equilibrium point and a proof of the existence of
equilibrium points in games. [18]

Suppose that in a game it is possible to f£ind a strategy for each
Player, say 8),8;,¢¢.,8,, such that if every player except one, say J,
chooses s;, then the resaining player cannot do bettexr than choose 'J' That
is, J's payoff for any other strategy r; will not exceed what he will obtain

by choosing 84 Formally, we require for every j that

IJ(.]_,.:... o.‘n) ; ld(ll....,oj_l,ra,oyl.o -o.'n)o

‘.v tv&ci j)

If this is the case, then we say that (s;,s5,...,5,) is an eguilibrius point
in pure strategies., (It is a point in the n-space of pure strategies,)
Thus, if the players are at an equilibrium point, it does not behoove any
single player to move from it, though if several were to change together
they might all improve their lot., But since no communication is sllowed,

it might be thought that once the players arrived at an equilibrium point
they would be in equilibrium, i.e., there would be no resultant forces
acting to make anyoneo change. However, it 1s not diffiounlt to show that
this concept of equilibrium in purs strategies is the same as that defined
in Part II when n = 2, so &ll the objections and difficulties raised there

apply here without change.
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As for the 2-person case, there 1s no sssurance in general that

an equilibrium point in pure strategies exists. It is imown that a suffioi-
ent condition for games to have equilibrium points in pure strategies is that
they have perfeot information [8] but this is not a necessary condition.
Dalkey [4] has given a necessary condition, but a discussion of this would
take us beyond the scope of this report.

A second way of dealing with the problem is, as in the 2-person case,
to introduce the soncept of a mixed strategy. In eesence, the player does
not tell the umpire which strategy to use, rather his instructions are to
choose a strategy by a chance device according to a given probability dis-
tribution. Thus, a gixed stratecy c‘i for player i is a probability distri-
bution over his set of pure strategies 8. We may denote the distribution
as p(s;). Of course, the given payoffs ll’_(ll,lz,...,-n) are only defined
over pure strategles, but we can extend the function to mixed strategies in
a natural may, for suppose player 1 uses a mixed strategy o‘i, and each of

the others uses pure strategies, then we define

ui( 0-1,.2’00-’.‘) = glp(.l)l’-(.l’.z....’.n)o

In like manner, we may extend the notion of payoff function to the entire
product space of mixed strategies. Of course, the notion of a mixed strategy
has the same psychological peculiarities for n players as it did for 2.

'i'ho above definition of an equilibtcium point in pure strategies
can obviously be taken over with a formal substitution of o: for s A to
yield a definition of an equilibrium point in mixed strategies. Nash's
principal theorem [18] shows that over the domain of mixed strategies every

e e e e
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finite game has at least one equilibrium point, This shows, in effect,
that the definition is acceptable, at least in the sense that every ganme
has such a point, It is a matter of intuitive judgment and empirical veri-
fication whether it really is acceptable in social science; many feel it is

not.

3.3 Porfect Recall snd Behavioral fitrategies
It has probably occurred to the reader that while these notions

of strategies, both pure and mixed, are fine tricks for the mathematical
development of game theory, people almost never pick a strategy on such a
grand scale, The domain of strategies is just too large ever to have been
completely given even for most parlor games; in all the years that chess
has been played and analyzed, only a small fraction of partial strategies
has ever been discussed and listed, though judging by experience they
include most that are really important. Nonetheless, one might wonder g

about a theory of games with a more limited view of the strategy notion.
One of a somewhat special and 1imited nature has been examined and the
results are of interest, for in a certain important class of games they

Justify a theory based on mixed strategies,

C e el e ———— .

Instead of giving a mixed strategy to the umpire, a player might

specify for each of his information sets a probability distribution over
the alternatives at each set., Such a set of distridbutions is known as a

-~

behgvioral strategy for the player. Now, while it is still a monumental
task to list behavioral strategies for moat games, it may be felt that in

..

iy = e ——

effect a player has such a distribution in his mind when he makes decisions
during a play of the game, and by making him play it many times (after learn—
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ing has occurred) and observing his choices we could get experimental esti-
mates of these distributions,

It is reasonably clear -~ and it can be shown -~ that by using mixed
strategies a player can do as well as by using behavioral strztegies, and
examples can be presented where he can do better with mixed strategies,
Therefore, it is of interest to classify those games in which it is possible
for the players to do as well using behavioral strategies as using mixed
strategies. This problem was posed and solved by Kuhn [8].

The appropriate class of games turns out to be that in which each
player remembers everything he did prior to each move, though hs may not
know what choicea the other players made, Such games as bridge are to be
excluded by definition, but most parlor games, if played by rational players,
are included. Formelly, let us supposa that V is any one of the information
sets of some player 1. Let Q denote any move made by 1 which is prior to
the information set V. If there is but one branch from Q which leads to
any of the moves contalned in V, then when player i }a in V he will recall
perfactly what he did on the move Q. If this is the case for every possibdle
1, V, and Q in a gamo, then we say that it is a game having perfect recall.
It will be recalled that if every information
set contains but one move, the game is said
to have perfect information., Since a game
is based on a tree and hence there are no e A
closed circuits of branches, a game with -
perfect information is one with perfect re- .-
call, but the converse is not true, since Fig. 5a




player 1 zay not imow what player j did prior
to some information set U, The games tree of
Fige. 5a has perfect recall but not perfect
information. The only way in which the game
might not have perfect recall is for player 1

to be uncertain on the third move as to what
he did on the first move. This i3 not the Fig. 5b

case. The game in Fig, 5b does not have perfect recall because if player 1
is in the information set marked V on move three, then he cannot determine
which of the two dbranches he selected on the first move.

The expectation of a player using behavioral strategies 1s obtained
froa the original payoff functions, weighted according to the various
probabilities in the behavioral strategy, in much the same way as we obtain-
ed the payoff for mixed strategies from that for pure sirategles, With this
definition it is possible to show that in games with perfect recall there
are behavioral strategies which have the sames expectations as the best mixed
strategies, Thus for games with perfect recall it does not matter, as far
as theories involving maximum expectations are concerned, whether we use
behavioral or mixed strategies.

3.4 Sispalipg Strategies
Given that by using mixed strategiec we can dc as welil as possibls,

and that for games with psrfsct recall the use of behavioral strategies can
be as good as using mixed strategies, the question arises whether anything
more can be said for games without perfect recall., Thompson [28] attacked
this problsm and he has given an intuitively very acceptable solution. In




effect, he shows that mixed strategies are requirsd but only over the
information sets which prevent there being perfect recall; over the other
information sets one may use behavioral strategies,

We want to single out those information sets which presvent a
game from having perfect recall: An information set U associated with

player 1 is called a gignaling inforpation set if one can find an informa-
tion set V of player i which follows U such that there exists a ove Q in

U with a path froa Q to a move of V and another move Q' in U with a path

to a move of V, but the branch from Q which begins the first path does not

: - correspond to the branch from Q! which begins the second path., Thus, when
pPlayer 1 is at the information set V he is unable to know whether he made the
cholce of one branch at Q or of & non-corresponding branch at Q' when he

was at his information set U. As an example, consider Fig. 5b, and let U

be the infcormation sedl consisting of the first move of the game and V the ~
indicated irformation set., If we take either branch at U, then it is easy

to ses that paths to V exist in both cases, so U 1s a signaling information

set,

e - ———— .

The tera 'signaling' used here arises, presumably, from a

consideration of bridge, which must be considered a 2-person gams with

the pairs of partners being single players. The move of one of the part-
ners often serves to signal considerable information to the other partner

»q‘

~

c (and the term 'signal' is part of the vocabulary of bridge), but it is
nearly always the case that when the second partner comes to his next move

| i, 2

he is not fully certain from what domain of possidilities the first part-
ner made his choice. Thus, the player (=the pair) cannot at any point in
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. \; the game have full recall as to what "he" did a 1ittle earlier.
‘? Let 4 be the set of all signaling information sets for player
¢ 1. If A = § ( = the empty set) for all i, then it is not difficult to see
: that the gams has perfect recall, and conversely.
e
;

Earlier we defined the notion of a pure strategy over the set of
all information sets; we can, of course, do the same thing over the set
Aiandncmthiaammmforpllyu'i. Ian 1like

- manner, a probabllity distribution over the pure signaling strategies of
; Player 1 is called a mixed sigpaling strategy. These notions are exactly
the same as those given in section I11I.3,1, except that the domain of defini-

1 Y tion is restricted to the signaling information sets rather than to all
- information sets,

: An associated behgvior gtrategy for player i is a mixed signaling
;: strategy over the set of signaling information sets arnd behavioral strategies

I E over each of the other information sets of player i. That is, over the

' f information sets having perfect recall we continue to use behavior strate-

! E gies, and over all other information sets we use mixed strategies, It is

r; g easy to see that for games with perfect recall associated behavior strate-

gies are the sams as behavioral strategles.

The principal result proved by Thompson [28] 1s that for any finite
game, a player can find an associated behavioral strategy which will result

—

in the same payoff as the best mixed strategy (and of course the converse

holds - he cannot do better using an assocliated behavioral strategy than

e
s,
(i = R m——

a best mixed strategy).

This result is of considerable importance in the examination of
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specific games without perfect recall, Thompson remarks, "This theorem

together with the fact that the normalized form of the game cbsowres

signaling strategies, explains one reason why the normalised fcrm of the

game is not always the best form in which to solve actual gamee.” [28, p. 275]
In another paper, which we cannot go into here, Thompson [29]

ures the notion of signaling strategies to examine a simplified form of

bridge.

3¢5 Summary

For a game 1in extensive form, i,e., described by means of a tree
of moves, information sets, etc,, we pointed out that rather than making
each movas as it arises a player could choose & connected system of choices,
ons for each possible contingency in the game, Such a complete statement
of actions is called a pyurs gtratezy, and to each player i one may associate
the space S; of all his possible strategies, Wien each player has selected
a strategy, the outcome of the game, or, when there are chance moves, a
probability distribution over the possible outcomes, is determined. Thus
we defined the payoff function over strategies as the expected payoff over
ths outcomss arising from the atrategies. By this means, any extensive game
was reduced to the situation where each player i selects an element from the
space S:l of his strategles without any knowledge of the choicez of the other
players. From these choices the payoffs to each of the players are determined
from real-valued functions of the form !li(cl,-z,...,an) where -16 8,
Such a situation is known as a game in pormalized form.

The strategy spaces S1 wore then extended to spaces which inoclude

N\ et i .t T et na BT
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Y all possible probabdility distributions over pure strategies, and the payoff
1 | functions were extended in the natural manner by weighting the payoffs over
pure strategies according to the given probability distribution. An element
of this larger space — a probability distribution over pure strategies - is

called a pixad siratogy.

An n-tuple of mixed strategies (G,, Ogreees c;) is called an

oquilibrius polpt if the payoff to each player i is never increased when 2
selects a mixed strategy different from 0‘1 and all the other players take

| the strategy of the equilibrium point. It can be shown that an equilibrium
point exists in mixed strategies for every n-person game, but this theorem

H y does not hold for equilibrium point restricted to pure strategies, An equi-~

| = librium point might be expected to arise with very conservative "rational"
Players, but as a description of player behavior the equilibrium point is
subject to the criticisms raised in Part 1l of this report,

Following this, the concept of a behavioral strategy was intro- B
duced, It is a set of probability distributions over the alternatives of

each of a player's information sets., It was observed that a player can
[ ™

never do bettsr using,behavioral strategy than using one of the best mixed

strategles, but there are some games in which he can do as well by using a

S = S

behavioral strategy. A class of games, those said to have perfect recall,
was defined; 1t was observed that games of this class have the above pro-

-~ ——ﬁ—

perty. In the final section, the question was raised as to over which informa-

~

I . tion sets it is necessary to use mixed strategies in order to do as well as
1 i using full mixed strategies. This led to introducing pignaling strategies
, ( which consist of mixed strategies over the class of so-called sigpaling

.'-16
o
st . S .
R o NS : r :
SHREEI .
P o o e 2
- e e i | = T s, S e ——— i ————




st amna Bo o 2

rYMGR P

-

Raaun Lo

oy

L
i

PETIN

LSS Ll o

I11-29

Joformaticn gets snd behavioral strategies over the remaining information
sets, and the principal theorem 1is that there is always a signaling strategy
for a player which will result in t he same payoff as one of his best mixed

strategies,

4. Coalitions and the Characterishic Functlop

4.1 The Characterigztic functliopn
The presentation of the previous two sectione has been applicable

to all n 2 2; whereas we argued in the introduction that there were reasons
for separating the case n == 2 from n > 2, for in the latter case collusion
among some of the players might occur. This section and sections II1.5 and
I11.6 are devoted to theories of coalition formation.

Let .us initially restrict our attention to zero-sum games, Sup-
pose S is a subset of the players who have decided to form a coalition in
the sense that as a group they shall decide on individual courses cof acticn
which together cause the group to do as well as possible. How the indivi-
dual payments come out does not, for the moment, matter, as long as the sun-
mation of them over the members of S is, in some sense, as good as possible.
One might object, however, that if it turned out that whenever the coalition
did its best one of the players in the coalition did no better, or even
worse, than he could have alone, then it might indeed be difficult %o per-
suade him to remain in the coalition. As long as the payoff is in some sort
of transferable utility, as we have assumed it is, this is no problem.in
principle, for the cther members of the coalition may extend to him side




r ©
¢
b §
; payments in order to keep him in the coalition. The extent of the side pay-
¢ ment is a difficult problem of prediction, but it presumabdbly depends, in
part, on his contributions to the total strength of the coalition., This
t suggests that it may be sufficient, in developing a theory, to look at the
i
- total payment received by a coalition.
} The worst poasidble situation met by a coalition is for the re-

VP e a g

maining set of players, =S, also to form a coaliticn. The effects of any
other possible conh:inaj;ion of players not in S can be achieved by tho coali-
tion -S, and in genecui. it can achieve some outcomes not in the province
of less unified aarcziim of players. Thus, a characterization of the mini-
mum power of a coalitipn is its expected payoff when the remaining players
also act as a coalition, in other words, when the game is played as a 2-person
game between twno coalitions., This, of course, is the case we have already
examined in Part II and for which there is a unique (conservative) value given
by the minimax theorem. Let this wvalue be denoted by v(S) for the coalition
Se Since this may be computed for each possible coalition, i.e., subset
of players, we therefore have obtained a function v with domain the subsets
of I = {1,2,...,0} and range the real numbers, i.e., a resl-valued set
function. Assuming the normal form of the games is known, the calculations
involved in determining v are generally overwhelming. This, howsver, does
not weaken the power of the theory to study all such functicus. The
function v is not without certain restrictions; it may be shown that in the
uro-m case it satisfies
i. '(In) = 0,
11, w(S) = -v(-S), for all SCI,

5 - N\ Aeb. U - et v
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111, wW§) = o,
iv, if R and S are any two disjoint subsets of pluyers,
v(RUS) 2 w(R) +v(s). .
(Note that given condition i1, conditions 1 and 1ii are ejuivalent.) The
first two conditions simply reflect the zero-sum character of the game,
The third is a formal statement of the obvious fact that the subset involw-
ing no players neither loses nor wins anything. The important tondition
is iv, which, when onz thinks about it, is an extremely reasonsvl: . ne,
It says that the whold does not cbtain less than the sum of its par‘s, or, !
in another way, a coalition composed of the disjoint sets R and S can do
anytting R and S can do separately, and possibly more,
The function v has been named the charascteristic fupction of %
ASIC-8U8 SaRe -
It is interesting and important that any real-valued set functin
v satisfying conditions i through iv is the characteristic function of a

gzero—-sum game. That is, given such a v it 1is possible to construct a (ame
which has as its characteristic function v.

Tt  ——— — - i

The extension of this notion to non-sero~-sum games is not compiete-

1y straightforward, but rather it requires a mathematical trick. Suppose

o e e
L= . eam

we have a non-sero-sum game with n players and to it we add a fictitious
i player who is not truly a free agent in the game but is so circumscribed
that the resulting game on the n+1l players is zero-sum and who does not

LN
e e T

' Play a significant role in coalition formation, It is not‘ completely obvious l
that this can be done, but it can. For the augmented (zero-sum) game one can ’
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obtain a characteristic function, which when restricted to the subsets of the
original n players is called the characteristic fumction of that game, It
has only two properties:

1. ()= o

11, if R and S are any two disjoint subsets of players,

v(rUS) > w(R) + w(s).
If, in addition, the game is constant-sum (not necessarily zero-sum, but
not excluding that case) then
111, v(S) = v(In) -v(=~S), for all SC.Ino
Of course, if ws assume the game is sero-sum, thenv(I,,): O and 1ii becomes
the o0ld condition ii,

Then we use tha term gharpcteristic fupction we shall nean any
real-valued set function satisfying 1 and ii, for it is again true that to
sach such function there is a game (no longer zero-sum) for which it is
the characteristic function.

As in the case of zero-sum games, the first condition reflecte
the strategic inconsequence of the null set, and the second that any coali-
tion 1s at least as potent as any two disjoint sub-coalitione formed from
it. RNow while these conditions have been derived from game considerations,
first, of a game in extensive form, then in normal form, and then using the
2-person theory (with all the difficulties mentioned in Part II), it must
be admitted that were we to think about coalition formation removed from
any epecific theory of games we could not require less., That is, were
we to suppose the potency or strength of a coalition could be measured numer-
ically, then we should, at the very least, require that conditions i and ii
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be met - indeed, we would probably try to specify more. It is surprising
that by restricting our analysis to a game we do not obtain further re-
quirements to be met by characteristic functions, Thus, while we shall
make certain criticisms of the characteristic function as an interpretation
of the structure of a game, the abotract notion, and the resulting theory,
appear to be very generally representative of the power of coalitions in

human situations, Of course, the numerical values cbtained from a game
analysis may well differ from those we might assign by some other consider-
ations. This suggests - and it is easy to confirm - that the study of
characteristic functions, which is completely related to game theory, is
more general in that situations which are not games in normal form can
give riss to such functions; but in conformity to present usage, we shall
refer to a finite set and a characteristic function defined over the subsets
of the given set #s a game, Later, we shall prescent reasons to suppose the
study might be more appropriately called "the theory of finite super-additive
measures®,

Our next step is to divide games into two classes. It is con-
ceivable that there are games in which no coalition of players is more
effec;biva than the several players of the coalition operating alone, in
other words, that for every disjoint B and S, v(RUS) = w(R) + w(S).
Such games are called ipesgential; any gams which is not inessential is
called egpepgtial. It is not difficult to see that a game is inessential

if and only if v(In)-‘- E v({1}). Since there is no value in forming
i=l

coalitions in inessential games, it is clear that we camnot expect any

S T _ \ e
R = e - ———— R L.
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theory of coalition formation in that csse, and so we chall be concerned
only with essential games from now on.

i 4.2 S-Equivalence and Reduced Forme
£ Frequently in mathematics, and in its applications to science,
¥ we define a large class of objects all of which satiafy certain conditions,
as we have done above with the characteristic functions, It is not uncommon
! f that such a class can be partitioned inito a number of non-overlapping sub-
g_ classes, the elements of each subolass being in some sense equivalent., When
i £ this is done, one selects a representative from each class and develops the

g

theory in terms of the representatives, of course always showing that the

»

-

theory is invariant under the equivalence concept which originally allowed
the partitioning, We must turn to this problem for characteristic functions.

The intuitive idea of equivalence that we want to isolate may be called
"strategic equivalance", i,e., we want to consider as equivalent two
characteristic functions which lead to the same strategic considerations

on the part of the players.
Suppose that one characteristic function vV differs from another

st - ——— —— — i

v'! only by a maltiplicative positive constant ¢, i.e.,
vw(S) = ov!(S), for all SC In’

R

then the two charsoteristic functions differ only in the unit whereby we

~

measure the utility. Onn example would be to transform a characteristic

;
{
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function originally in dollars to one in cents, It is clear that such a
change of unit cannot possibly affect the strategic character of the game

to rational players.
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Next, conzider a game with characteristic function v and suppose
that each player 1 is paid (or is caused to pay, depending on the sign) an
anount .1 prior to the play of the game. Certainly these payments cannot
have an effect on the strategies of the game, and yot it is easy to show
that

(s) + %“1' SC1,,
is a characteristic function. We certainly would want to considsr this
function strategically equivalent to v, since we could always effect the

payments a; before the play of the game. Combining these two conditions,
we have the following definition: Two n-person games with characteristic
functions v and v' are S—equiwvalent if it is possible to find n constants
& and a positive constant ¢ such that

v!(S) = ov(S) + :4—'3"1’ for every SCIno_ 5
It may not de obvious at this point that this definition of

equivalence is a suitable one, and that no further grouping is needed;

but the results we shall cite at the end of section III.5,1 show that

it is adequate, at least for the von Neumann-Morgenstern theory of solu-

s e el e e -

tions,
Assuning this is s0, we must now confront the task of selecting

- —— —

one representatizy from each class with which we may deal. Two suggestions
- have been put forward, each of which has certain advantages, primarily

] in the simplicity of stating certain games and certain definitions. The

principle behind both of them is that it is possible to require that part

5N

of the representative characteristic function be the same for all of the
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equivalence classes. Ignoring the (singlc) class of inessential games,
L]
von Neumann and Morgenstern [21]}1"0 shown that there is one, and only

one, characteristic function in each of the equivalence classes which
satiafy _

w{1}) = 2, 1€I, and ¥(I) = O,

This they called the reduced form of & class of characteristic functions;
we shall use the more specific tera -},0 reduced form.

A second reduced form, which we shall call the 0,1 reduced form,
exists, since it readily follows that there is one and only one character-
istic funstion in each equivalence class satisfying

w{1}) = o, 1€X,, and v(In) = 14
We zhall use the v notation for the -1,0 reduced form, but for clarity
it seems appropriate to use a different symbol for the 0,1 reduced form;
we shall use =,

Suppose v' is the characteristic function of an essential game,
then the question arises as to how to find either the 1,0 or the 0,1
reduced form of the gamo, It is not difficult to show that the transforme~

tion

v(s) - 2 v({ah)
1€S8

v(I,) - %V'({i})

The further transformation

a(s) =

yields the 0,1 reduced form.
ws) = m(s) - |s|,
where |S| = number of elements in S, yields the -1,0 reduced form. Thus

N W

!
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we have a sizmple procedure to go from any charactaristic function to
either of the reduced forms,

The following remarks (to section I11.4.3) are essentially paren-
thetical to the main development and so may be omitted if one chooses,

One of the first advantages, and possibly the most important,

BTSSR

of the 0,1 reduced form is the emphasis it places on the relation between
n=person game theory and the concept of a probability measure over the sub—
sets of a finite set. Let us place side by side the conditions a 0,1 re-

¢
i 7 duced form m and & probability measure p over I_ must satisfy
1 F L]
Q.0-reduced form probabllity pessure
b i. = is 2 non-negative real-valued P is a non-negative real-valued
set function set function
ii. -(In) =1 P(In) =1
1u.m(dP)= o P9 = o

if R and S are disjoint subsets

iv, if R and S are disjoint subsets
' of I,, p(RUS) = p(R) + p(5)

of I,, a(RUS) 2 m(R) + a(s)
vo a({1}) = o

vi, if the game is constant-sum,
m(S) = 1 -u(=8), for 211 SCIn

it follows from i1 and iv above that
p(s) = 1 -p(-8), for a11 SC I

The resemblance between m and p is marked, the most important
differences being the inequality in the former and the equality in the
latter for iv, and the lack of a p expression in v. We cannot have p({i})= 0

,%
&
;
|
?
4
i
¢

for all 1, for were this the case then by a repeated application of iv
we cculd conclude p(In) = 0, which contradicts condition ii. We shall
return to this correspondence again when we try to characterise the
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principal prodlem of n—person game theory.

Earliec we suggested that the study of general games Ly means of
characteristic functions might well have been entitled "finite super-additive
measures™. Conditiors i, 1ii, and iv above suggest the name "super-sdditive
measure” and condition ii simply means that we shall deal with normalised
measures, as in the theory of probability. However, condition v, m({1}) = ©
is most unusual in measure theory. It is worth pointing out, at least for
the mathematician, that we may drop this condition when we are studying
theories invariant under S-equivalence, since under the transformstion
a(s) - Z a({1})

n'(S) = At

1)~ (f1
a(I_) 1621'::{})

m' satisfies m'({1}) = O even if m does not.

These remarks serve to place the study of characteristic functions
in a more general mathematical framework, namely, in the study of arbitrary,
finite, normalized, real-valued set functions. If for all disjoint subsets
R and S of a finite set,

a(RUS) - n(R) - a(S)
is equal to sero, then the measure is additive and the theory is that of
disorete probabilities. If the quantity is always less than or oqu:l to
sero then the measure is called sub-additive. Some work has been done on
these functions in conjunction with the theory of additive measures. Now
gaze theory completes the area by introducing a theory of finits super—additive
measures, which has so far resulted in a theory very different from the sub-
additive or additive one; probably this is an inherent difference and not

simply a reflestion of the game terminology and motivation,
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4.3 Imxtatiocns and Distrivations
So far we have dealt with only one ingredient of the n-person

game: the strength of the different coalition possibilities. Distinct froa
this, though presumsbly influenced by it, are the payments the players
finally receive., Since we have assumed a tranJferable numerical utility,
the direct payments and any side pryments resulting from coalition formation
can all be additively combined, so that for each player i a final payment
xy is received. Thus the total set of payments is an n-tuple of real
pumbers, which we may write as X = “:1,::2,...,:““ s

Wother a player is in a coalition or not, it is hard to imagine
that if he is ratiomal he would accept a fingl psyment less than the least
he can expect to receive if he were to play alone against a coalition of
all other players, 8o we impose the condition

1. v({1}) £ x;, for every 1€1 .
Further more, we may suppose that rational players, no matter how they
constitute themselves into coalitions, achieve a distribution of payments
equal to what they would expect to receive if they had formed cne grand
coalition. For suppose éxi < ¥(I.), then each could be made to

gain, » the: t - ’
say, the amoun 1) 1§€In' x|

S0 we have as a second candition

11. Z xi = '(In)'
i€l

Any n-tuple X of real numbers satisfying 1 and 1i is called an igputation
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of the game and it is interpreted as a possible set of payments to the
players,

For much of the characteristi~ function theory it is not truly
necessary to impose condiiica 11, specifically, it is shown in section III.5.6
that the restriction is not necessary for the von Neumamn-Morgenstern theory
of "solutions" (III.5.1).

One game theoretic problem (at this level of abstraction) may be
stated as follows: Given the chatacteristic function of a game, to select
froam the set of all possible imputations and from the set of all possible
arrangements of the players into coalitions those which may reasonably
be expected to occur with rational players. The words "may reasonably
be expected to occur” are not specified either in the extensive or normal
form of the game, and it 1s the more or less arditrary specifications
that must be made which give parts of the theory the gd hog character
mentioned earlier. So far the interpretations have been as of some sort
of stable equilibrium. When this problem is satisfactorily formulated -~
and many people think it is not - then other problems can be ralsed, such
as, what is the path of changing coalitions snd imputations from a non-
equilibrium point to an equilibrium point; but such problems have not
yet been considered.

“We may throw sdded light on this general problem of game theory
if we twrn to the 0,1 reduced form. Note that by substituting the con-
ditions for the 0,1 reduced foram into the conditions for imputations, we
find that
1. x; 2 0, for 1€1,

e i

B o
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11, Z xi =1.
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In other words, the set of imputations corresponding to the 0,1 reduced
form is identical to the set of all probability distributions over the
elements of In. Once again the 9,1 reduced form has thrust us close to
probability theory, and indeed this suggests a way to look at the general
oquilibrium problem of gams theory.

let X = llxl,xz,...,xn " be a probability distribution over
1,3 then the set function

P (8) = Zx

X i€s 1

is easily seen to be a probabllity measure over I, (see smection 1II.4.2)
which simply assigns to each set S the sum of the individual payments to

the members of S, Now we interpreted m(S) as characterizing (in the utility
units of the game) the strength of the coalition S, It is, of course,

by the interplay of coalitions and possible coalitions, by threats to form
coalitions if certain agreements as to payments are not accepted, that

the final payment X must be determined. The aim of the theory is to determine
this outcome by formalising what the threats must be, and it is clear that
if for some S, m(S) is much larger than Px(S) there will be strong forces
for the coalition S to form and to demand a new outcome, say X' such that
PX'(S) is close to m(S5), Thus, the equilibrium problem of game theory

involves finding a probability measure Px which in some sense approximates

the normalized super-additive measure m. The heart of the problem 1s
determining a suitable definition of "in some sense approximates™; the

several attempts to do so are discussed in sections III.5 and III.6.

e s e
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4.4 A Critical Example
Before turning to the theories themselves, we should in fairness

point out that the simplification in passing from the normal form of a

game to the characteristic function form is not without difficulties. It

would indeed be surprising if we were able to make such a radical simplifica-—-

tion of the theory of all n-person games without overlooking somes of the

differences among them. The example discussed in section 1I, , which is

due to McKinsey [13, p. 351] , is sufficient to show that this is the case,

even for the 2-person games. It will be recalled that in this game the

Player 1 has only one strategy and player 2 has two, the payoff matrix being
i (0,-1000) (20,00} .

There is no need to repeat here licKinsey's interpretation nor our discussion

of it, except to remark that in gemeral one must consider the normal form

of this game to bu asymmetrical in the two players. The characteristic

function of the game is

W) = o, w({1}) = «(2hH= o, w({1,2]) =10,

Wnile in general the normal form is asymmetrical, the characteristic function

is always perfectly symmetrical, reflecting no difference between the two

players.
"Nonetheless, the characteristic function does express some of

the aspects of a game, and the example certainly does not invalidate our
earlier comment on the representation of coalition strength by character-
istic functions independent of the extensive or normal form of game theory.
Following a summary we shall turn to exemining the resulting features of the

theol‘yo
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4.5 JumBary
The mein preoccupation of this section was to reduce the general

normalized game to a more tractable mathematical form, the form on which
most of n—-person game theory is bailt. It was cobserved that if coalitions

of players are allowed, then ilie worst thing that can happen to a coalition
S is for the coalition ~S to form and for the game to be played between the
two "players®" S and -S. Using the minimax theorem of 2-person theory, a
real number v(S) was associated with each coalition S which describes the
conservative expected payment to the coalition, It can be shown that the
e function v, which is known as the characteristic fupction of a game,

T satisfies

1. w(9) = o,
and i1, if R and S are disjoint subsets of I,
w(RUS) > w(R) + w(s).
Further, it csn be shown that any real-valued set function satisfying 1

and i1 is the characteristic function of some game, so one cannot in general

s — T S I

derive any further independent properties of characteristic functions. The |

'.'

theory of n~person games is to be based on such functions.
Any game with a characteristic function satisfying
w = Z v({1})
I,) e {1}

is called ingspgentig]l and it was argued that its coalition theory is trivial;

any other game is called espential -
Two characteristic function v and v' (over the same set of n

players) are called S-equivilent if there eoxists a positive constant c

and constants ‘i such that
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v(S) = cv'(S) + th_.
1€S
It was argued that such games are subject to the same strategic considera-

tions since c represents only a change of scale and the payments a, are
independent of the outcome of the game, It was observed that S—equivalence
is technically an equivalence relation and so it divides the set of all
characteristic functions into non-overlapping subsets called equivalence
classes. Any two functions in the same esquivalence class are S-equivalent,
80 the characteristic functions of any one class are all subject to the

same strategic considerations and it is therefore sufficient to develop

any theory in terms of one example for each class., Two possible and closely
related choices were given both of which have the property that part of the
characteristic function is constrained to be the same in each equivalence
class. The first, called the -),0 reduced form, is the unique characteristic
function in each class for which

w({1}) = -1, €I, and I ) = 0.

The second, called the C,) reduced form, is the unique characteristic function
in each equivalence class such that

v({i}) = o, i1€I,, and wI,) = 1.

The characteristic function tan be thought to represent the threat
power of the .varions coalitions and it is hoped that from this it will be
possible to determine what happens in the game. One of these events is that
each of the players will ultimately receive a certain payment, which consists
not only of his payoff as prescribed by the payoff function of the game,
but which must also take into account any side payments he receives or pays
out in order to preserve a certain advantageous coalition arrangement. This

—7




= ¢ el mv e ———— e

|
|

- - - - -
A iy o ™3 Py S TSRS = Ry, W o SRR s rs S o Pl 0. B s ' S

11145

suggested that the final payment to each player could be represented by a
single number x; and it was argued that such n-tuples should satiefy
1. x 2 v({1}) forall 1€I,,
and 11, =v(1).
T =7

Such n-tuples are called jmputations. In the 0,1 reducad form of the game
an imputation is simply a probability distribution over the set of players.

The general problem of n-person zume theory was then stated: +to
find those imputations and those arrangements of the players into coalitions

which are in some sense compatible with the given characteristic function of
the game. The reader was warnsd that in the attempt to make more precise
what we shall mean by ™in some sense compatible®™ (a concept not prescribed
by the formalism of the game) n-person game theory is given an gd hoc
flavor to which some authors object.

5. Selutions

5.1 The vou Neumapp-Morgenstern Definiticn .
In the published literature of n-person games one definition,

based on characteristic functions and imputations, has recelved most atten-
tion; this definition, introduced at length by von Neumann and Morgenstern
[21], was offered as the "solution® to the n-person game - indeed, it was
given the name "solution™., Following their exposition, we may first suggest
the idea by an example, It is not difficult to see that the 1,0 reduced

form of a constant-pum 3-person game is unique, and that it is
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w{1}) = -1, w({s,3}) =1, w({2,2,3)) = o.
Suppose, for the moment, that the coalition {1,2} forms; acoording to the
characteristic function it may command a payment 1, Since both 1 and 2
have symmetric roles in the sense that if we were to change their labeling
80 that 1 were 2 and 2 were 1 the characteristic function would be unchanged,
it is not unreasonable to suppose that they would divide 1 equally, and player
3 would be forced to accept -1, But arguing by symmetry again, there is no
reason to single out the coalition {1,2] as superior to {1,3} or to {2,3] ,
and so any of the three imputations

f2.2,20] ., (2230, N33

seem reasonable outcomes. We call this set of imputations F, Suppose we
consider any other impatation “ X 9%, ,-xl-xz“ » Dot one of the abovs thres,
then at least two of the entries are less than 3, otherwise the sum of the
payments 1is uot'zmo Thus, the imputation in the set of 3 having payments
of 3 for those two players is superior for both of those players, and since
they are in a coalition of two, they may force the better arrangement.
Equally important, no imputation of the set F dominates either of the other
imputations in F in that fashion. Thus, the set F of three imputations
plays a very special stable role in the set of all imputations for the game.
The question arises whef;her the notion can be generalized,

Von Nsumann and Morgenstern proposed the following definitions,
Let a game be given by its characteristic function v. An imputation Y 1is
said to dominate with respect to a coalition T another imputation X if

i. T is a non-empty set of players,

11, v(T) 2 Zy F
ieT 1
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ii. A > x, for every 1€T.
| T is called an gffective sgt for this domination. This is exactly the
oondition met above in the domination of, say,

Hitill v (31,3 1 we tae T = {1,3].

If there is some coalition T such that Y dominates X with respect
to T, then we can simply say that Y dopinates X. It turns out that examples
can be given to show that each of the following cases can arise:

i. Y dominates X, but X does not dominate Y,

ii., Both Y dominates X and X dominates Y,
K ) 111, Neither Y dominates X nor X dominates Y,
- Now, a golntion to a game is any set A of imputations sucl: that
i. for any two imputations X and Y in A neither X dominates Y

nor I dominates X,
ii. and for any imputation Z rot in A there is at least one imputa-

tion X in A which dominates Z.
It should be pointed out immediately that the definition of solu-
tion in no way precludes the existence of imputations not in A which dominate

s . - —— p—— -A.

one, or indeed all, of the members of A. This possibility is implicit in

statement ii following the definition of domination. We shall return to this

point, which is not without complications.

= —

As might be expected, the set F of imputations in the 3-person

sero-sum game is a rolution.

We nentioned earlier that cur theory should be invarizant under
S~equivalence, that is, that two S-equivalent games should lead to the

same results. This has been shown [13, 21] to be the case for the domine-
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tion concepts, and s0 for asolutions. The much more subtle converse, that
if two games bhave imputation spaces which are isomorphic under domination
then the gumes are S-equivalent, has recently been shown by 'icKinsey [14)
t0 hold for sero-sum games.

5.2 Some Bemarks about ihe Definlticn
Before discussing the mathematical results which have been

' obtained -~ and some which have not -~ certain questions about the intuitive

adequacy of the definition of a solution must be considered. The notion

\ . of "dominance with respect to a coalition T® is r'eally the conjunction of ,
two notions: "Y is ‘better' than X with respect to T" is the meaning of

condition 1ii: b > X, for 1€T; and "Y is 'feasible' with respect to T*
is the meaning of condition ii: wT) > Z’i’ Of these two, there
ieT

peeas little reason to question the first under sny condition, while the
latter is open to question., It can be argued that if the theory wv desire
1s normative, then the coalition T can never enfarce more than v(T) since

rational players will certainly form the coalition -T, and so no imputation

Y with w(T) < Z ¥4 1s feasidble. If, however, one 1is concerned with a
descriptive tho:fy'rof games, then it 1s not clear that the feasibility
condition is appropriate, for if the players not in T do not form a singly
coalition, then the membexrs of T may be able to get more than v(T)s Just

o ——— e

~

i how auch more they can get 1s not easy to say, in fact, saying it would
amount to developing a descriptive game theory. It appears that this point
precludes our interprsting the solution concept as a descriptive theory,

for certainly not all economic, military, and social conflict—of-interest

{
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situations reduce to the opposition of two coalitions.

A close corollary of the last remark, and we believe an important
weakness of the solution concept, is that it is concerned only with imputa-
tions and does not give any information about the coalition structure of the
game when it is in the equilibrium state. Again, whether this is really a
suitable objection when a normative theory is desired is not certain, but
it is a wvalid coriticism of solutions as a descriptive theory since the
ocoalition structure is probably the most easily observed fact in any real
situation, certainly one more easily observed than the imputations.

These remarks strongly suggest that there is little hope that
the solution notion can be used in other than a normative way, and this will
be confirmed when we examine the resulting theory. Even were we to try to
use the theory as a descriptive one, it is not at all clear what we shouwld
say the theory asserts to happen. MNcKinsey remarks, *Although a large part
of von Neumann and Morgemstern's book (roughly 400 gut of 600 pages) is
devoted to games with more than two players, mathematicians generally seem
to have been dissatisfied with the theory there developed.® [13, p. 303]
It is not clsar whether hs intended this to apply equally to the character-
istic function development and to the definition of a solution, or only to
the latter., Certainly, there has been warm admiration for the ingenuity
of the solution idea, and it has received considerable study - to which

we now turn.

5.3 Sope Implications of the Definlticg
The first main point we should make is that a solution does not
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genarally consist of a single imputation, dut rather of several. This is

obviocus in the example of the 3-perscn game, and indved, it can be shown
that any game having a solution consisting of but one imputation is ines-
sential, In addition to solutions having a finite number of imputations,
such as the three in F, some solutions consist of an infinity -~ and not
necessarily a countable infinity - of imputations. We shall give an
éxample of this in a moment.

Second, aside from the multiplicity of imputations in a solution,
there are in some games more than one solution, That this is a possibility
was suggested by our sarlier comment that there may be imputations not in
a solution which dominate imputations of that solution, As an example of
the non-uniqueness of solutions, in the zero-sum 3-person game ”5 set of
imputations

Wy omse )
where ¢ is fixed but such that -1 L ¢ < 4 and x + x, = ~c, 1s a solu~
tion. Equally well, the two sets of imputations obtained by moving ¢ to
player 1 and to player 2 are solutions. We shall dencte these solutions
ri(c), 1 = 1,2,3, Since for each possible fixed ¢ in the half-open inter-
val [-1,3) there are solutions, we have a continuum of solutiocns, each
of which contains a continuum of imputations. Indeed, every possible
imputation for the constant-sum 3-person game is included in at least one
solution}! *Therefors in the case of the sssential three-person game we
have an embarrassing richness of solutions." [13, p. 339]

This sbundance is not restricted to the 3-person game.

The question must immediately be raised as to how thess solutions

are to be interpreted., Von Neumann and Morgenstern divide the dlscussion
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into two parts. PFirst, they say that of the several solutioms, the one which
is accepted depends on "standards of behavior® which are moral or conventional
rules imposed by soclety. Thus , they say, if socliety accepts discrimination,
one may find a solution of the type Pi(c) where the position of ¢ in the
range -1 to % is determined by the degres of discrimination tolerated by the
soclety. Assuning c fixed, there is a question how the other two players will
divide -=c, and this they say is a problem in bargaining which depends on the
relative bargaining abilities of the two players. They do not say how it will
be decided which player will be discriminated against, or in the case of the
non-disoriminatory solution F, which imputation will arise., Apparently this
is a chance matter depending on which coalition was first formed, or again,
it may depend on the relative bargaining abilities of the three plaierao It
is such discussion which gives this theory the gd hog character mentioned
earlier (IIL.1). '

They argue at some length that solutions are "steble™, They
point out that while an imputation not in a solution may domirate one in a
solution, and although it is "preferable to an effective set of players,
[2t] wil1 fai1 to ettract them, because it is ‘unsound’™ [21, p. 265). And
“the attitude of the players must be imagined like this: If the solution
[A]... is 'accepted by the players l,...,n, then it must impress upon their
ninds the idea that only the imputations... [in A} are 'sound' ways of die-
tribution.” [21, P 265] And "The above considerations make it even more
clear that only [A] in its entirety is a solution and possesses any kind of
stability - but none of its elements individually. The circular character

ceo makes it plausible also that several solutions [A] may exist for the
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sams game. I.e., several stable standards of behavior may exist for the
same factual situation., Each of these would, of course, be stable and con—
sistent in itself, but in conflict with all others.” [21, p. 266]

The full flavor of their argument is hard to recapturse, and it
can only be recommended that the reader turn to the discussions of solutions
in the book. That some readers have not been complstely persuaded by their
arguments is indicated Ly the comment of McKinsey that "Some people have
felt dissatisfied with the intuitive basis of this notion, however; and the
question has been raised as to whether knowing a solution of a given n-parson

game would enable a person to play it with greater expectation of profit
than if he were quite ignorant of this theory.® [13, ». 332]

5.4 Purther lmplications of the Definition
We have already given solutions to the 3-;pecraon constant-sum game,

and it is mown that these are all of the solutions to that gane,
It is also known that every 4-person constant—-sum game has at least
one solution, and of the triple infinity of 4~person games a few have been

studied in detail., The reader is referred to von Neumann and Morgenstern [21
for the full discussion of these cases,

It is not known whether every game possesses a solution; for examzple,
it i3 not known if every 5-psrscn game has a solution. From the first systema-
tic presentation of n-person game theory to the present, this has been consider-
ed the most important unresolved problem.

A game in 0,1 reduced form is called sigple if m(T) = 1 or O

for every coalition T, Vou Neumann and Morgenstern studied solutions in
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ol s some simple games, particularly for n = 4,5,6,7, but also in certain more

general cases, In additiom, Bott [2] introduced the notion of an (n,k), or
mjority, game defined by

o ir {s{<x
n(5)=

1 i |s| >k
which is simple, and he studied the symmetric solutions of such games.
Gi121ss {5] examined non-symmetric or discriminatory solutions to such games.
In the words of Kuhn and Tucker, "Dropping symmetry, D.B. Gillies exhibits
ece & surprising variety of other solutions of (n,k)-games, all derived from
Bott's symmetric solutions., 01lliss' solutions are obtained by several
methods which may carry over to a more general context: (1) by the addition 1
of ‘'bargaiming curves' (Theory of Games and Ecomowlc Behavior, p. 501),

(2) by inflation to larger games (ibid., p. 298), (3) by ‘discrimination’ J
(1bdd., pp. 288-289) in which the non-discriminated players divide their

take according to any solution to a smaller game, or (4) by gartitioning
the players into fixed subsets, assigning the spoils arbitrarily (i.e.
in all adzissible ways in one sclution) among these subsets, and then dividing
the spoils in any one subset according to the symmetric solution to a smaller
game the players think they are playing."” [10, p. 304}
Another class of gamnes which has been studied is the quota games.

p Shapley [23] calls a game a guota game if it 1s possible to divide v(I )

among the n players, i.e., to find wi with {

V(In) - ‘l&"' wzf ooo'.’%p

f
e = ——— -

i . -

in such a way that
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(1,3 = W + w, forall:andy, 133

"Shapley obtains families of solutions for the entire class of quota games,
a class that contains some three-person games, all constant-sum four-person
games, and a sizeable swath of all games with more than four playsrs. In a
typical imputation in ons of these solutions, all but two or three of the
players receive their 'quotas’ ) .* [10, p. 304-305]

In still another paper, Shapley [25] has presented a class of solu-
tions to a certain simple gams, which, as he says, "...provides st one stroke
a large fund of 'pathological' examples against which conjectures on the
behavior of ... solutions can be tested.” [25, p. 1] The solution is based,
in part, on an arbitrary closed set C of an (n~-3)-dimensional subset of the
space of imputations., "The arbitrariness in the choice of C (for exampie,

C may be a Cantor-type discortinuum) makes it easy to dispose of many con-
Jectures concerning the regular behavior of ... [solutions] " [25, p. 2]

There is little reason to present these results in detail hers,
for they would require considerable space and not a little notational appara-
tus; the interested reader can refer to the original publications, However,
certain summary observations are in order, The wariety and complexity of"
golutions in the games so far studlied are overvhelming; their characteriza-
tion and the corresponding proofs are involved and often subtle. It is
doubtful that a mathematician could be found today holding any hope for
completely general characterization of solutions; the most optimistic hope
1s that it will be possible to divide the class of all games into a number
of subclaases such that solutions in each can be characterized completely.

We may fairly conclude that in addition to the conceptual difficul-




III=-55

ties mentioned in III.5.2, there are also mathematical difficulties, or, at
least, the mathematical problem is difficult, This is going to prove either
80 stimvlating that it will lesd to deep insights or so discouraging that
little more will be discovered about solutions. At this stage it is not
¢lear which will occur,
Assuning that at .least some people will be discouraged, there

appear to be two possibilities: (1) efforts will be made to single out some
of the solutions as more important than others and these will be studied,

and (2) efforts will be made to introduce new concepts more or less in competi-

tion with that of a solution. In the next section we deal with an example of
the first approach, in section 1I1.6 with three examples of the second, Of
these four, two (III.5.5 and II1,6.1) had not yest been published at the

time of writing, so it i1z not possidle to give them a critical analysis
resting on the observations and work of a number of people; therefore, both

mist be treated as somewhat tentative approaches to the problem.

5.5 Strong Solutions™
The principal question to be discussed in this section is whether,

aside from "standards of behavior" there are game theoretical requirements
which impose a greater. stability on one solution than on another. This prab-
lem and the ideas here discussed were raised by Vickrey [30]. With respect

to a specific solution A he calls an imputation of A a conformipng imputation, -
one not in A, pon-conforming. Among the non-conforming imputations some
dominate one or more conforming imputations; these he calls heretical imputs—
tiong, and an effective set for such a domination is called a heretical set.

* Throughout this subsection, whenever we quote Vickrey, we shall replace his
synbols for imputations, coalitions, and scluticns so that the notation is in
conformity with the rest of this report.
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The shift from a conforming imputation to a heretical one is termed a heresy.
He remarks, "...there is nothing in the defimition of a solution as it stands
that makes it dangerous for players to participate in a heretical move., ¥e
can, howsver, observe solutions in which heresies tend to be dangerous to
one or more of the members of the heretic set, as well as solutions in which
heresies may be quite profitable.” [30, p. 7] As an example, consider the
imputation Fy = {4,3,-1] of the sclution F of the 3-person game. Any
non-conforming imputation X which is to dominate F3 with the heretical set
{2,3} mst clearly satiofy

n< 4 x> =3> -1, x4 x £1.

It is not hard to show that such an imputation is dominated by one and only
one member of ¥, namely F, = (|3,-1,3 || with the effective set (1,3} .
Vickrey writes, ®"...in this case the movement to a non-conforming imputation

X requires the cooperation of a player 2, who though he may gain immedi-
ately, finds that although it may have been difficult to move from Fj to X
1t is now much easier for the couple 1,3} to organize a movement to the
conforming imputation F, to the great discomfiture of 2... If 2, finding
himself now in the excluded position, attempts to negotiate with either 1
or 3 to move away from FZ’ not only will 2 have to propose a heresy in whi'cp
he gets less than the % that he started with in F3, but he will find that 1
and 3, having observed what happened to 2, will be very reluctant to join
any such heretical coalition, and in fact may refuse to do so altogether,
Either because the players foresee all this, or bscause after a short time
they come to the conclusion as a result of experience that heresy is in the
long run likely to lead to disaster for at least one of the heretics, they
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S eventually will come to stick to the policy of staying at cne of the approved
1 | imputations...” [30, p. €]
Of course, this cbservation would be idle if all solutions had that
property. Consider the solution of the 3-person game of the form
“x,-x—c,cq, where -1 e % and -2 x { 1<
the set we have called Fj3(c). Let us suppose the players are at one of
these imputations, say
X = “81oxzs°“ .
! If we exclude X = "i,&,—l" » We may assume without loss of generality
that x, < X,. Observe that with respect to Faf_'c), the imputation
S R = || 2,43 .
|- is heretical since 1t dominates X, the effective set being {2,3} . In turn,
it can be shown that any imputation Y of Fa(c) which dominates F; must satis-

| ty .
| !I L =

12>x2and13..c. |

Thus "...even if there was a return to a conforming imputation after a rela-

|
|

! tively brief period of heresy at Fj, the players 2 and 3 responsible for the
d heresy would gain from the excursion, 3 temporarily and 2 more permanently.
!! g [30, Pe 9]
‘L _' Vickrey adds the following paragraph. "Even if a return from Fy

; to a conforming imputation Y is made indirectly... so that it is possible

b A torp]sycrztobeworuotfin!thminl?l,1tilbynom.nscoru1nfron .
i the characteristics of the game that player 2 will not be able to avoid such '
-3 an eventual worsening of his position. And even if after one particular he-
retical excursion player 2 finds his position...worse..., there iz now nothing

to prevent him froz trying another heretical excursion, since player 3 whose
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cooperation he needs has nothing to lose by it in any event and stands to
gain at least tesmporrarily. In effect any player who is willing to engage

in heretical excursions is at an advantage in bargairing for position among
the approved imputations, over a player who eschews such tactics. It thus
appears that in this case it will take a much stronger social sancilon to
compel adherence to the approved staniard of bshavior than where the standard
of behavicr conforms to the symmetrical solutiom...” [20, p. 9]

Vickrey proposes the following two definitions., lLet A be a solu-
tion, X an imputation of A, Y s heretical imputation Cominating X with the
effective set T, and U the set of elements of A which dominate Y, A is said
to be a girong solution if for every such X, Y, and T there is at least one
ol-.utiofrmhthatforevu'yzmﬂ,s,_(x’_. On the other hand, A
is said to be yegk if for every X of A there exists at least one heretical Y
with effective set T such that for all Z of A which dominate I, and all 1
inT, 5, > x, .

For the constant—sum 3-person game we have seen that the symmetric
solution F is strong, and that all discriminatory solutions Fy(c), 1 = 1,2,3,
are weak.

For games with more than 3 players there are solutions which are
neither strong nor weak, but rather there are intermsdiate notions of strength.
Primarily, however, one is interested in the strong solutiocns, for which all
heresies are dangerocus to some member of its effective set,

To examine specific cases cne tist, of course, know the solutions,
80 Vickrey has been restricted to s tudying such cases as some /4~Derson games
and some simple ganes, and, in summary, he finds that "For constant-sum games,
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the concept of the strong solution has thus far appeared to be fairly effect-
ive in narrowing down the number of solutions that have to be accepted.
Vhen it comes to the variable-sum games, unfortunately, it appears that much

of the selectivity of insistence on strong solutions disappears. For one and
two person games, all solutions are already strong, while for three person
games, it appears that insistence that ... solutions be strong offers only

a relatively smell reduction in the range of possidle imputations.® [30,

P. 32]

"lio attempt has as yst been made to try out the effect of insisting
on strong soluticns for variable-sum games of more than three persons, so
there 1s no way of telling whether the ooncept would prove morse restrictive
in such cases ¢ not. The complexities snd variations possible between the
extrzaes of strong and weak solutions already observed for the four-person
constant-sum gase indicate that the analysis of such games may prove to be

extremely difficult. On the basis of the experience with the three-person
gaws, one is inclined to be not toosanguine, The strong solution, that
appears to be such a potent device for the simplification of the results of
oonstant-sum games, may, it appears, be of relatively utuo' value for the
variable-sum games, although this tentative hypothesis is hardly more than
a conjecture.” [30, p. 35]

5.6 Extension of the Selutlon Coocept
In addition to the difficulties we have raised sarlier with respect

to solutions, Shapley has pointed out [24] that even if the general notions
of domination and solution are accepted there is an open prodlem about the
domain of n-tuples over which these notions should be defined., In von Neumann
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and Morgenstern and in our presentation here, the domain is that of imputa-
tions. "The propriety of this restriction to [the set of imputations] may

be challenged on several grounds, In the first place, it is not &t all obviocus
that the notion of groyp rationality, as exemplified by the solution of an
n-person game, =ust necessarily be a refinement of the principle of individua)l
rationality, as embodied in the inequalitiss [ x, > W{1))] . In the second
place, 1t would seem methodologically more correct to study the consequences

of the domination proecess separatcly from Thase of the blocking process,*

One might cven hope thel the formu, apparently the more powerful, might make

T ' CoenT; : L Py t

wendld e endy o Lechnleal coatvonioiie, and wowid no% prajuwdice shoe concuptual
substructure of the theory.) Faiiing this, tho restriction to [imputations]
might bettor be applied (if it is desired to exclude 'irrationsl' solutions)
after stability under domination has been secured.” [24, p. 3]

To begin with, Shapley weakens the conditions on a characteristic
function. He continues to require

wWRUS) & ¥(R) 4 v(S) for disjoint R and S in I
but he dropas the requirement v((?) = 0. Rather, he assigns to é the (negative)
value: the least that the whole group might get minus the . ximum they might
get. That is, v((g!) glves the spread of possible profit from playing the
game. Of course, in a constant sum gams v(?) = 0o While in this section
we shall use this more gemeral definition, in sectionsIII.6 and III.7 the
definition of 1II.4.1l will be saployed.

Three differeat claeses of n-tuples have been isolated:

* By "blocking process® Shapley means the refusal of a player i to accept
a payment less than v({i}).

b AP . 4 d
Wi - e —— R
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G is the set of n-tuples X such that
) + 1) MZIZ x, € A1)

E is the set of n-tuples X such that

Z. x =v(I).

i€ In
I is tha set of n-tuples which are in E and such that

x; 2 v({1]).

We observe, first, that I is the set of imputations, and that
ICECa,

If the resder will turn back to section III.5.1 he will see that
neither the definition of domination nor that of solution directly employs
the fact that we were dealing with imputations; they are concepts defined
for any given set C of n-tuples, and at that time we specified ¢ = I
( = the set of imputations). Shapley introduces the term C-stable for those
sets A of C which satisfy the conditions of a solution, i.e.,

i, no element in A dominates another element in A,
and i1, every slement of C not in A is dominated by some slement of A,

An I-stable set is therefore another way of speaking of a von
Neumann-Norgenstern solution.

Among the theorems proved by Shapley we find that a set A 1s O-
stable if and only if it is E-stable., That 1is to say, if one is concernad
with stabls sets, then it is immateria) whether one chooses G or E as the
set of n-tuples, for no G-stable set. intersects G-E. The relation betwsen
G and I is more complicated, but it is somewhat revealing of the effect of
the added condition. Suppose a set A is a solution, i.,e., it is an I-stable

I e et ——




S I set, then A 1s a G-stable set 1f and only if for each player i it is possible
to find an n-tuple X in A such that X, = v({1}).
The significance of the work of Shapley's is that it shows cleerly
the effect on the von Neumarm-lMorgenstern theory of solutions of restricting |
the olass of possible payments to the set of imputations. The last result
indicates that the restriction to imputations is not redundant in solution
theory, but more than that, it shows what effect the restriction has. His
other results are of a similar nature, and the reader is referred to [24]
f for a full exposition.

5.7 SuEBALY
The topic of this section -~ the solutions of von Neumann and Morgen-

stern - is the major game theoretic superstructure so far constructed upon
the concept of .a characteristic function. Initially it was noted that over

the space of imputations a relation known as “"domination® can be defined.
One imputation X is said to dominate another imputation Y if there exists a
non—empty coslition T such that every member of T prefers X to I, or in

|

|

|

[N symbols, if
;‘! i. for 1€7T, xi-> Y,
]

and Af it is reascnable for the members of T to expect the total payment

'.‘ prescridbed by X, i.e., if
I 1, WS 2 x,.
> 1E€T

A It was noted that the domination relation need not be asymmetric; in other
o ,] words, that for imputationz X and Y it is possible for both ¥ to dominate
! Y and Y to dominate X ( of course, different coalitions are involved in

(L sach case).
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A set A of imputations is called a golutiop if
i. no imputation in A dominates ancther imputation in A,
and 1i, every imputation not in A is domimated by some element of A,

The soclutions of the 3-person constant—sus games were given, and
from these results it is known that there may be a continuum of different
solutions, that any one solution may contain either a finite number or a
continuum of imputations, and that every imputaticn of the 3-person constant-
sum game 1s a member of at least one solution. In contrast to the plethora
! of solutions in that case, it was noted that one of the major unsolved prob-
lems of n—person game theory - some would say the major one - is to prove
: : the existence of at least ocne solution for every n-person game.

Verbal argunents were presented todsfend the point of view that
any solution represents a partioularly "stable® set of imputations and that
rational players will not attempt to deviate from it once it is selected,

The selection of one solution from the meny possible was ascribed to “"stand-
ards of behavior® af society which, in the 3-person case, would dictate
vhether discrixination is allowed and if so0 how much. The determination

of exactly which imputation of a solution will arise in a given situation
was attrib;utod to the "bargaining abilities" of the players and/or chance. {
Doubts exist as to whether such verbai discussions can rsally de considered

s T e S——

s satisfactory resolution of the problem,

Ia addition to the above conceptual points, it was pointed out
that solutions do not generally appear to have wvery regular properties and
that so far it has proved impossible to characterize mathematically all solu-
tions of any broad class of ganss. Their very irregularity and abundance,

e m——
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L = N howaver, are felt by many to be the strength of the theory for they allow
it %o encompass a wide wariety of phenomens. It is argued that this is
necessary since human beings seem to organise in a large variety of ways to
cope with the same situation.

An attempt to give a formal meaning to the notion that solutions
are partioularly stable sets of imputationa led ¢o the concept of a strong
20lution. Priefly, a strong solution is one such that each imputation which
dominates a jeretical one (not in the sclutioa) also actively "punishes"

! at least one of the players participating in the heresy. It appears that
this concept is a very effective restriction on solutions in constant-sum
games (in the 3-person case isolating only one), but there are tentative
- indications that the notion is much less successful for non-constant-sum

ganes,

In the final ssction it was pointed out that the restriction to

imputations is not necessary in order to define the domination relation and (R
to isolate sets of n-tuples analogous to sclutions; these are called C-gtable
i sets, where C is the particular set of n-tuples under consideration. One

of the central results is that the condition

ie In
“ which is required of an imputation, is not essential when solutions are studied.

}
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The condition

)2 e
m

coupled with the properties of the solution concept automatically causes the
equality to be satisfied by the n~tuples in the solution.
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6. Stability, Yalue, and Reasobable Outcomes

6.1 Stabllity of Jepes
Aside from solutions and their ramifications, there appear to be

thres other topics in n-person (characteristic function) game theory which
have receivad attention. Wile two of these (sections III.6.1 and III.6.3)
continue to be concerned with outcomee which might reasonably be expected to
occur in a game, all three differ appreciably from the solution notion.
| For example, one of the salient differences of the definition we shall
present in this section is that it does not deal with imputations or sets
} ) of imputations glone, but, following the suggestion of IIl.4.3, it isolates
pairs consisting of an imputation and a corresponding breakdown of the players
into coalitions.

Following cur familar precedent, we shall use the 3-person constant-

sun game as a source of ideas. Suppose the players were to consider an

imputation X, where, without loss of gemnerality, we may suppose x s X, s x3.
It follows immediately that x5 > ~1, and so xl+ x, < 1. Thur, players 1
and 2 might be expected to form a coalition and tc split the resulting pay-

o R G 8

nent, 1, say by adding half the difference botwomlandxl-i-xzto-kho

amount each would have received according to X. In this arrangement, player
3 receives only -1, and so it behooves him to go to player 1, who is receiving
lese than player 2, and to suggest to him that both of them could improve
their lot by forming the coalition {1,3} . This proposal would be accept-
ables, for 3 can allow 1 to do a 1little better than he would in the ooclitiop

B e ST S

: ’ ( with 2, and at the same time 3 will do better than -1. Of course, this iso-
| }




lates player 2 with an expected payment of -1, but he in turn can approach
player 3 with a similar offer, and 80 on. It might be proposed at some stage
that, to counter this infinite regress, a coalition of two players gives the
thixd player enough so that he would not try to disrupt the coalition; bdut
it can be chown, in the 3-person case, that "enough® to satisfy him would
cause at least one of the other players to lose as a result of joining the
coalition, and so0 it would not be formed. Looked at in this way there appears
to be an inherent instability in the outcome of the 3-person constant-sum
game,

Intuitively it appears that this argument could be applied to any

game and so every game is unstable in this sense, This, if true, means the
analysis must be too gross, for certainly there are some games one simply
does not want to pass off as unstable, What is suggested is that, rather than
an absolute stability-instability dichotomy for games, we define a notion of

degres of stability. Our method of doing this will involve the introduction
of an extra-game parameter, and it is this which gives the present theory
its gd hoc character.

Let us suppose that in one way or another the players have agreed
on a system of coalitions, which we may describe by ' = (T)sTy0000sTy)s

where the T; are coalitions which are non-overlapping and which exhaust the
set of players., Now, theae rational players presumgbly wish to better their
lot, and so we must assume that each of the coalitions '1'1 is contemplating
changes in membership in an attempt to improve its position. In general,

the coalition 'l‘i may contemplate the addition of a set of members, say G,
and also it may decide to expel scxs members, H, (who ars not carrying their
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share of the load, in scme sense). If these changes were made, the net
result would be the coalition ('riUG)—H. It 4s not difficult to see that
if there is no restriction on the choice of G and H, then any possidble
coalition S can be represented ju the form (T{{JG)-H by appropriate choices
of G and H. If, however, we were to restrict the choice of G and H, i.8.,
to restrict the coalitions which T; may consider within its domain of
change, then there may be coalitions S which camnot be written in the
form S = (T4 {JG)-H.

We shall suppose that the limitations on the choice of G and H
are given in the following manner. For each possible system of coalitions
b A ( = partition of the players into non-overlapping subaota) & distinguished
set of coalitions which includes the elements of U is given; this set of
coalitions may be denoted by ['( ). Each of the coalitions in (T )
1s called a ~-gritical coalition of T .

Intuitively, we think ot’*‘ being determined so that if S is
a ﬂk—criticnl coalition of ', then there is a coalition Ty in ‘C* which
is not too different from S, Our usu'nption will be that a change from '1'1
to S can and will be effected by the players if there is some reason to do
so (seec below). One might imagine that this assumpticn would necessitate
tagging each " —criticsl coalition according to which T, of T may change
into it, but for the present equilibrium theory this is not nocguh.ry; a
mere 1listing of all the w\r —critical coslitions of ' is adequats.

Given such a ﬁ}' » however chosen, our next con:ept is concerned
with those imputations and partitions into coalitions such that there are
no "forces" on the players tc change thelir alliances. the degrees of allowable

e —— i
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chmgcboinggimby*. Let X be an imputation of a game and C a
partition of the players into coalitions. The pair (X, L) is called
'+- ~gtable if the following two conditions are met:
1. £ T€'C and if |T| > 1, then x; > W({1}) for 1€T;
11, if S 1s a Yy —critical coalition of ¥ ,

ws) & gs,xi.

The first of these two conditions simply reflects the intuiticn
that to persuade a player to participate in a coelition of two or more
playsrs it is necessary to give him more than he could expect to receive if
he were to play alone. To understand the second condition, suppose that on

the contrary, v(S) > Z' x; for some *-critical coalition S, Then
1€s8

if coalition S is formed there is an assured gain in payment to the coali-
tion S above what was arranged in the imputation X, end each of the players
in S could be made *o profit by giving him, for example,

v(S)-in

i€S

Is{
Since S is a *-critical coalition of ‘D, the change to S is possible by
our assumption, and so, assuming rational players, it would be seriously

X+

oconsidered. VWhether it would be effected depends, presumably, on other com-
peting possible and advantageous changes. In any case, there wculd be
"positive forces" to disrupt the pair (X, 'C' ). If, on the other hand, condi-
tion i1 holds for every '\y-critical coalition of T » then within the limita-
tions on change specified by ’J( there ia no inducement for any changes from
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the pair (X, T ); and so it 1s a point of equilibrium, or, as we have said,
the pair is "/ -stable.

One might raise at this point the question of uniqueness of such
pairs in a game, which, as we have stressed earlier, is of some importance

in a predictive theory. However, this discussion will be easier after we have
presented some results,

The definition of '\y_-ltability of a pair is invarient under
S—-equivalence, and so it is acceptable from the point of view of section
III.4.2, We shall cail a game h‘/-mm if there exists at least ono~
"Y -stable palr, otherwise it is called '\Y ~unatadble.

These definitions, and the following results, are due to one
of the authors of this report. His paper [11] presents definitions and
results for only the first specisl case of '\Y wuich we shall discuss below,
but the modifications indicated here are very 2asily made,

With the function *‘ absolutely unspecified, as it 1s above,
little more can be said. If, howsver, we make certain specific choices
for '+, it is to be expected that certain theorems can be proved. We
shall make two closely related assumptions on the form of '\\I » both of which

~

e g

lead to the same theorems. In effect, the first specification says that a

coalition S is i.n"y if there cxiltla'l‘i in rlucbthntSandTi are not
too different., To be precise, let an integer k between 1 and n-2 be given,
We shall denote the ’\y we are about t. define by vko Any coslition S 1is

mvk('f‘)ifandonlxi.ttheree:d.ctsaTiinrmhthnt

[¢s-1 ) (1,-8) | € k. Put another way, S 1s in V(') if and omly if

there exists a T, in C such that a subset H of T, and a subset 0 of T,

- ‘-—-'——:'—-
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can be found with the properties

s =(1,Ua)# ma |oUn| K
In words, S is 2 Vi~oritical coalition of ‘C' if there is a coalition ‘1'1
of ' which can be modified into S by the addition of players and by the
removal of players, eso long as the number added plus the number expelled
does not exceed k.

Our motivation for this definition is concerned really only with

the cazses k = ]1 or 2, and it is based on the ordinary cbservation that most
ohanges in coalition structures in both the economy and among individuals

o

occur as a sequence of changes, sach one of which involves the addition or
expulsion of cnly on® or two individuals at a time.

It can easily be argued that Vi omits certain important coalitions
from consideration. For example, suppose k = 1, then in V; we consider only
those coalitions which are formed either by the addition or the removal of

one player from the coalitions of ) » but in general such simple coalitions
as {1,3.} are not under consideration as possible changes. For i and j to
oconsider bolting their respective coalitions to form the coalition {1,.1},
if it is profitable to do so, seems a very plausible event, We ars thus
led to define W conlitionSilin'k(t‘) if and only if either

i. S1sm V(T ),
or 4. |8 € k +1.

A third special and important case of " is the one which includes
all possible coalitions for every possible C ; this we shall denote by

EC)e
Observe that for any 1 , '\lf( ') is a set (of coalitions) and

———— = > 5 =
S - = PSS o\ Al Rl
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80 we may speak of one " being included in another. It is easy to see that
the following relations are true .

W CICH(TICHKY)

WolC)= W (C)=KY)

WEICT () 1f kK

w(ICH(T) 1f k & k'

It 1s not hard to show that if (Y ) C’\"ZZ‘)tcrom-y‘C.
then the fact that a game is '\‘f'—ct‘blo implies that it is "} -stable,
and 1f 1t is Y -unsteble, then it is "y -unstable. Thus, ¥ -instability
is, in a sense, absolute instabdility, for no matter how limitsd we make ths
allowable changes in such a gams - provided we allow some in each case -
there are no stable pairs.

It can be shown that any n-person essential constant-sun game
is E-unstable, and so the constant-sum 3—-person game is Vignn-tablo, as
was suggested earlier in this section, If, however, we drop the constant-
sum requirement, an example can be given of an E-stable game.

The essential constant~sum 4-person games in -1,0 reduced form
have the following characteristic functions

o
v(‘l'):{'i when T has {

o

elenents, and

sWHO

{14y = 2y, = -v({2,3})
w({2,4}) = 2y, = -v({1,3})
w{3,4)) = 24 = -v({1,2})
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where the numbers y, msy assume any values in the interval from -1 to +1.
Now, it will be recalled that in section III.5.4 we mentioned that all 4~person
constant-sun gazes are quota games, and one can easily see that the qusta is

| B TR A A P X S X 747, ||
It can be shown that a 4-person constant-sum game is Vk-»mble if and only
if it is Wstable. We may immediately dispose of the case k = 2, for from

our general result about constant-sum games we now that o 4-person constant-

sum game is vz-ctablo. For k = 1, it can be shown that a 4-person constant-
| mn-hvl-ctablctfandauyifthoquot;iaminputation. Foxr thesge

‘ Vi-stable games, the imputation X of any V,-stable pair (X, L ) is always

i i the quota, and one can explicitly state those Y''s for which the pairs sre
g~ stable. We need not do this here.

It will be recalled that a game is called sigple if m(T) = Oor1l .
for every T, where m 1s the 0,1 reduced form. Those coalitions T for which
m(T) = 1 are celled wigning and those for which m(T) = O are called loging.
coalitions. It can be shown that a simple game is Vk-ltablo if and only if

it is ‘lk-ltcbln, and this stability may be characterited as follows: A
simple game is Vk-mmble if and only if the intersection of all winning
coalitions having k -+~ 1 members is the empty set; or, stated positively,
a simple game is V —stable if and only if either .

B S e e W &

k

¢
.L i. there is no winning coalition which has k 4 1 members,
i
Pk 4 or 1i, there is at least one player who is a member of every winning
' coalition which has k < 1 members., For the case k = 1, a full description )

of the Vl-ltablo pairs (X, ‘C\) in both cazes i and i\ can be given; the

reader iz referred to [117].

e i M . N

|
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For the case k = 1, a more detailed result about simple games 1ie
possible, which is of some interest for it indiocates how few simple ganes are
V;—mstable. If a game consists of two independent games on complementary
sets of players, it is said to be decompoasble into the two games. More
precisely, if one can find a set of players T such that

ws) = v(sN 1) + v(s-T)
for every possible coalition S, then the gane is decomposable into games on
T and ~T. In essence, the originsl game is not truly what one intuitively
calls a game; it 1s rather a formal conjunction of two disjoint and non~-

mtmcti'.ng games, The notion is probably not of practical interest, but it
' must be introduced for there is nothing in the definition of a game which

' excludes the possibility. It can be shown that any Vl-unltable simple

ga=e is decomposeble into the 3-person constant-sum game and the (n~3)-person
inessential game. But since the inessential game is trivial in a theory

of coalition formation, the theory of Vj-unstable simple games is identiocal
to the theory of the 3-person constant—sum game. In effect, then, we know
that aside from the 3-person game, there are no other "absolutely unstable”
simple games.

We may now consider the uniqueness of '\y-mblo pairs., First,
it is clear from the abovotyat there are some games which for a particular
cholce of the function A} are A —unstsble, 1.e., no stable pair exists,
The theory predicts no squilibrium behavior for such situstions, e.g., the

-
- e - —————

--—-.-".—. -

Vl-inutabmty of the 3-person corstant—-sum games. For '\y-—ltablo games
i there 1s in general more than one equilibrium point. With A} restricted to
| either Vl or '1’ a constant—-sum 4-person game is either unstable or it has

a unique imputation (the quota) which ocours in all stable pairs. But for
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some of the stable 4-person games there is riore than one system of coalitions
which, combined with the quota, are atable. The theory does not decide which
will ocour in practice. This situation is enalogous to certain physical
problems in which there are several points of equilibrium, There it is found
that the one which will occur depends on theo initial point of the full dynamic
system, and that to predict it a full dynamic theory, not just an equilibrium
theory, is required., Ths analogy seems so close that, at least for the pre-
sent, we shall assign some of the failure of this stability theory to predict
& unique outcome to a lack of a full dynamic theory of coalition format?! n.
However, it arpears that there may be a further ambiguity which will not de
removed by a dynamic theory. Conosider a simple game in which there is only
one 2-element winning coalition, say {1,2} o Then it 1s not difficult to
show that the pair

¢ |5 2-p, 0,.c050 ), [{1,2} ,{3},0..,{n}] )
iz V;-stable, where O < p < 1, The theory does not decide on the wvalue of
P, which presumably rests on the bargeining abilities of the two players.

Certain surmary comments gre in order. Mathematically, the concept
of f\y-ata_bnity for '\}r =V, and W_1s comparatively easy to work with,
mch eazsier, say, thanthe von Neumann-Morgenstern solution. Evidence of
this is the fact that we were ablc to state certain complete stabllity results
fo:r all constant-sum 4~-person games and for all simple game; 1t will be re-
called that only for a limited number of these games has it been possible
to obtain completa sets of solutions., It is also of interest that these
definitions led to r:sults closely tied into other concepts of game theory -

quota games, decomposition of ganes, etc. Thus from the mathematisal point

e T T e




//

III1-75

of view one feels that the definition is justified., From the point of view
of social scisnce, more is needed; the definition must have some intuitive
merit and, possibly, sozme empirical merit. It would appear, to a blased
author, that the stability notion does have some merit conceptually, because
it deals simultaneously with changes in imputations and coalitions, and
empiricelly, because it is often easic>r tc determine the coalition structure
of an existing situaition than the payments in that situation. A comparison
with experimental data will be discussed in section III.7.l.

Nonetheless, at leaat one important criticism can be levelled at
it. The imtroduction of the peculiar function " , a function which is not |
explicit in most real situations, is hard to defend adequately. VWhers thers
are "standards of behavior” which are implicit, or at least wvague, and which -
are not rigidly enforced, it may be possible to esiimate \k » but there is
no assurance — as the theory assumes there is -~ that someone will not violate
it, A possible remedy comes to mind which has not yet been examined. Suppose
that instead of assuming the dichotomy, i.e., that a coslition is either
'y —oritical or not, we assign to each possible coalition S a probability
p(S, C) for sach ‘C , which is to be interpreted as follows: p(S, L) is
the probability that a change to S will be considered when the players are
in the coslition system Y . With these given, the theory can be constructed
as before, except for assartions of the form "(X, ' ) is ~|/-stable,® which
will be replaced by "(X, ') is stable with probability p."

Aside from the above proposal, two problems for futurs resecrch
come to mind, First, it is at least mathematically interesting to kmow

under vhat conditions an imputation X of a Vk-atnblo or a wk-mu. pair

(x, ?) is in a von Neumann-Morgenstern goluticn; this is a real problem,

B — — Ewhd -
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for in section I1I.6.3 we shal. present an example of such an imputation
which is not contained in a solution.
Second, an attempt should be made to devise a dynamic theory which
descridbes the movement from one unstable pair to another pair until a stable
one is finally reached, all changes being made within the limitations prescribed
by a function '\k. The mechanism of a change should, of course, be the exist-
ence of a positive gain for the players participating in the change. The
difficulty in giving such a theory seems to stem primarily from the fact
that from any given (X, ') there may be several different and incompatible r
changes in the coalition structure which are all adaissible and all profit- |
able; bow will it be decided which will occur?

6.2 Yalus

The next topic is not concerned with the outcome of the game, '
but rather with an g§ priorli valuation of the game for each of the players. |
Shapley writes, "In attempting to apply the theory [of gamea] to any field,
one would normally expect to be permitted to include, in the class of 'pros-
pects,' the procpect of having to play a game. The possibility of evaluating I
games is, therefore, of oritical importance. So long as the theory is unable
to assign values to the games typicilly found in applization, only relativsly
simple situations - where games do n-ot depend on other games ~ will be suscept—
ible to analysis and solution." [22, p. 307]

The solution to thiz problem for 2-person games is taken to be the
minimax value, but certainly this is not sultable in n-person gamss where
coalitions are allowed, for the whole point of joining coalitions in essential
garss is to do better than v({i}). Presumably the *value" for any i will
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depend on the values of v{T) for each coaliticn T having 1 as one of its
members. Just what function would be reasonable to select is not, on the
face of 1it, obvious, and certeinly an ad hoc definition would be questioned
and ccantered by other suggestions. Rather than doirg this, Shapley employed

the more elegant procedure of stating certain requirsments as intuitively
necessary properties of any notion of numerical value; he listed three ap-
parently weak ones and then, surprisingly, he was able to show that these
uniquely determine a valus —~ that there can be only one function satisfying
i the three conditions, and that there is one.

Suppose a game 1is given by the characteristic function v, From this
gite we may generate others by permuting the labelling of the players, but
1- abstractly all of the games are the same one. Shapley's first condition 1is:
i, Velue shall be a property of the abatract game, or more formally,

if Y™ i3 a permutaticn of the players resulting in a game which we may denote |

v, and if ¢i(v) denotes the value of the game v for player 1, b

éﬁ(‘ﬁ‘v) = éi(v)o

His next condition is:
ii. The individual values of the game form an additive partition

e . —— —— — n“

of the value of the whole game, i.e., \

> buw = v

i€ In

e

N

Now suppose v is a game on the set of players R and w a game on S, whore R
and S may or may not overlap. We may extend v and w both to the set RU S l

ko e

' by defining [ f

wT) = W(R(\T) and w(T) = w(S(\T), where T(C RUJS.

]
ii
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Suppose we think of these two games &8 being played by the players R{_JS
but played completely independently of one another. This composite game
(which includes the notion of decomposable games defined in section III.6.1)

may be treated as a single game, called the sum of v and w, with the character-

istic function v(T) 4~ w{T). Shapley's last condition is:
111, For two such games v and w,
v+ w) = 4) v) + 4)
¢ v+ w ™ L,
or in words, the valus of a game composed of two independent games is the

sum of the values,

One could hardly ask less of a numarical value; what is surprising
is that one need not -~ dare not - demend more, for these thres conditions
are sufficient to determine d)i uniquely, and indeed, ore can obtain an

explicit formula for it, namely,
b = chIYn(') Lvs) - ws -f2h]
n

vhere s = |S|and Xn(n)= (s-1) n-s) Yn1

As pointed out by Kuhn and Tucker, Shapley's "result can be
interpreted by imagining the rendom formation of a coalition of all of the
players, starting with a si@e member and adding one pl. ver at a time, Each
player is then assigned the advantage accruing to the coalition at the time
of his zdmission., In this process of computing the expected value for an
individual player all coalition formations are considered as equally likoly.“

[109 P~ 303:!

.
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6.3 Reaacnable Qutqomes
Milnor has published a paper [16] in which he takes up the problem
of the outcome of a game, and though his definitions are differoent, the view—

point 1s similar to that of Vickrey, Shapley, and Luce above, The attempt
is to impose rsasonable conditions which isolate a subset of the set G
(section III.5.6) of "outcomes" subject to ",..the point of view that it is
better to have the sst too large rather than too small., Thus it is not
asserted that all points within one of our sets are plausible as outcomes;
but only that points outside these seic are implausible.” [16, p. 2]
Examples of such subsets in order of decreasing size are the set of outcomes
G, the set of efficient outcomes E, the set of imputations I, and the set of
imputations which are in at least one von Neumarm-Morgenstern solution.
Milnor introduces three more conditions, sach having a certain degree of
reasonableness, and he examines some of thelr properties.

First, for any player i one may examine the largest contribution
he makes to any coalition, i.s.,

b(1) = max [+ts) - w(s -{3)]
Milnor defined the set B to be those outcomes X of G such that for every i,
x, < b(4i). He argues that "In any play of the game, player i will wind up
in some coalition S, The players of S - {1} would be foolish to keep i in
their coalition if he tries to get so much that they could do better without

him," [16, Pe 3] This argument seems Guestionable if not irrelevant, for one

can have a geme with the following property: For player i in coalition S there

is no temptation to mowve from coalitiion S to coalition T but if J in S moves
to T then there 1s a profit for i to move from S - {J} to TU {j}. In that
cage, if 1 is importan® tc S, it may behoove the coalition to pay J more




than his incremsntal contribution in cader to keep both 1 and J. As an
exampls, it 1s easy to give siaple games with coalitions S and T = -8 and
playwrs 1, JES euch that 8, 8 - {3}, T U{13 U{3] are winning and
S-{3, 7, TJ{1) , and TU{3] are losing. It is reascnable for S,
1f 1t gets more than 0, %0 pay § more than v(S) ~v(S -{J}) = 0 in order to
keep J and therefore i. Ncnetheless, it may be unreascnable to pay him more
than b(j) dbut Milner's argument is not really directed to this point.

For the 3-perscn constant—-sum game, B contains the set I of imputa—
tions. For the 4-person constant-sum games, B does not contain 2]l of I,

but judging by one example, it does include a sizadle portion of it. In
general, it can be shown that B includes both the Shapley value (III.6.2)
and all vor Nesumarm-Morgenstern solutioms (III.5.1). It is not difficult
to show that the imputations of the 'k-.tablo pairs of any simple game and
of any 4-person constant—-sum game are in B, and it would not de surprising
were this generally true, but it is not. For example, suppose n 2 4 and
o{1})= m({1,3]) = o,
oT) = It/ for |7| 2 3.
The patr ( |} 0,0,...,0,2 Il , [{2},{2)secc,{n]] ) 15 W-stable  aince
a({1,3]) =0 £ + x5 133
Observe that for this game b(i) = 3/n and so for n 2 4,
X, = 1 >3/~ = bn),
that-is, |[0,0,000,0,1 || 4s not in B. Hers, as so often in mathematice,
we find the intuitions of various people in conflict, for both Milnor's condi-
tions and those of W ~stubility have a certain intuitive reasonsbleness, and
yot there are cases - admittedly slightly pathological ones - in which one

o s e ———
\
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or the other must go.

From the above eemple and from the stated result that any imputation
of a von Neumann-dorgenstezm solution is in B, it follows immedistely that
thmmimtiomof'k-lhbhpdﬂiuohdowtbdengtomylolutm.

Next, Milnor introduces a lower bound for payoffs to coalitiocns,

Let us) = ;:}ncs [ns) + «ts .s-)]

and let L be the set of cutcomes (subset of G) such that
| 2:1 = 1(S) foranSCIn.
1€8

) In words, 1(S) is the worst that could happen to the players of S if they
1- split into twe warring factions. If one assumes that the bargaining of the o

game will result in two opposing coalitions, and that in order for a coalition

T to form it must distribtute its payoff in such a fashion “hat every subset [
} T' of T 4s given at lsast v(T'), then the outcome will fall in L. H

I
| It can be shoma that for 3~ and 4~person constant—-sum games L
! is exactly the intersection of B with I. This cannot be generally true,
| ] for we know that the intersection of B and I includes the von Neumamn-iorgen-—
’* ste_:;x‘z solutions and Shapley's value, and an example csn be given bog}' of a
game with a von Neumann-ilorgenstern solution not wholly in L and of one with
the Shapley value not in L. It is not known if L is always non—empty, though
Milnor gives a wide cla3s of games for which L is not the empty set.

The final concept is, at least conceptually, somewhat related
to that of Y -stability. A total payment § to a coalition S is called en

unresgonable demand if there is an outcome X such that
i X is feazible with respect to the opposing coalition, i.e.,

’-éz..s 11 s'('*s)’ i
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and ii. no subset of -S can be induced to join S in such a way that

S receives § , i.e., for every TC -S,
S x > WsUT) -
Y x4y \ S

If we define

da(s) = min max [ v(S') - Xy
S x =vs) s DOs Z
ie-s 8t .S
then it is not difficult to show that § i3 unreasonable if and only if
S > d(S). D is defined to be the set of outcomes X such that for each
subset S, Z: 73 $ d(S). Relatively little is known about the set D,
iesS

but an example can be given where Shapley's value is not a member of D, and
for the 3-person constant-sum game the intersection of D and E is closely
related to the symmetric von Neumann-Morgenstern solution F (it is the aimplex
spanned by the three points F,, F,, F3)o

The principal interest in these definitions resides in the experi-
mental work which was performed in conjunction with them, and which will be
discussed in section II1.7.l. Mathematically it is not easy to judge thea,
for as we have seen, relatively few results are known, and while the intuitive
ocnsiderations which led to the definitions are of vital importance, it is not
until the consequences of the definitions are imown that one can critically

evaluate these intuitions.

6.4 Susmary
In thies section three theories different from the solution construct,

but each based on the characteristic function of a zame, were given. The
first supposes that the end product of coalition formation, after all the

e W re———p————— = R :
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changes in alliances and threats of such changes have been concluded, will
be a pair (X, 'C'), where X is an imputstion describing the peyments agresd
upon and where [ desoribes the partition of the players into coalitions.
The theory attempts to characterite these equilibrium pairs. A function
"{t( C ) 1z assumed to be given which states, for each partition Y of the
Players into-ooclitims, to which coalitions the players may consider changing
from T . rheidubenm'\ynmt changes in alliances are gradually
effected and that only coalitions which are "near” a coalition of [ are
acceptable as possible changes from Y . For a given '\‘/, a pair (X,'C )
is called '\‘r-atuble only if none of the admissible coalitions (according
to fs‘r) can gusrantee a profit to the players in the coalition, 1.e., if
L. for every S € Y( ), ws) s\% x5

and if each of the players in a non-trivial coslition of ' is guaranteed
more than he coufci expect to receive were he to play alone, i.e., if
i1, for every 1€T where TEL and |T| > 1, x, > w{1}).

Using this definition for two specific classes of functicns "Y’
certain theorems about all 4-person constant-sum games and all simple games
were stated,

Objections were raised to introducing the function N since it is
not generally part of the rules of a game and, at least in its present non-
probabilistic form, it 1s not to be expected that it can be observed
empirically. Cne can look at it, however, as ar explicit gd hog assumption
which replaces thes g posteriori verbal discussions necessary with the
solution theory.

In the second subsection the problem was raised as to an g priori




valuation by each of the players of & gams in charscteristic function form.
The prodlem was approeched by stating three condtitions which one feels
intuitively should be met by such a yalue, namely: 1t should be & property
of abstract games and indeperxdent of their partioular representation; it
should be an additiva partition of the total valus of the game, v(In); and
the value to each player of a game which is the "eum™ of two games should be

the zum of his valuss in the two separate gamss. These three conditions

detersine a unique value in terms of the characteristic function. An inter-

pretation was given by supposing that the ocoalition of all players is foramsd

by randomly choosing one player and (with equal likelihood) randomly adding

one player at a time. If each player is assigned the increment he adds to

the coalition at the time he is selected, then the walue to each plsyer is

the expected value of his increment. ;
In the final subsection three different and intuitively plausible 4

restrictions were placed on imputations to isolate classes which are “reason—-

able ocutoomes,” at least in the sense that any imputation not in the class is
considered unreasonable, Some questions were raised as to the arguments

supporting these definitions, but no final decision as to their merit seems
possible at the moment since so few mathematical results are known involving

I the conditions.

g 7. Dmciricsl Study of Gemes l

7.1 4o Bxperisect |
Notably lacking in all of our discussion so far have been data,

or even the mention of data, In part thia msy be attributed to the realisation
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that the theory of games is inadequate as a descr’ptive theory, for human
beings simply do not have the percsption sssumsd by any <f the Shecries,

But two other resasons are actually more important. Assuning that we wish

%o check a coalition theory, it is necessary that we know the characteristic
function; but we have already pointed out the great difficulty of determining
the normal form of any existing game situstion and, even assuning that known,
' the extensive caloulations required to obtain the characteristic function

(III.3.1 and ITI.4.1). Wthout it, we cannot lmow what any of the theories
prediot. In saddition, suppose the characteristic fumction is known, then
what does the principal threccy - von Heumann and liorgenstern's solutions -
predict? In discussing the ocutcome of an experiment rm at RAND, the

authors remark "It is extremely diffioult tc tell whether or not the observed
results corroborate the von Neumann-Morgenstern theory. This is partly '
because it is not quite clear what the theory asserts. According to one

i interpretation a 'solution' represents a stable social structure of the

' players. In order to test this theory adequately, it would probably be

| necessary to keep repeating a game, with a fixed set of players, until there
’ 1 ' savmed to be some stability in the set of cutcomes which occurred. One could
|
i

then msee to what extent the outcomes of this final set dominate each other

T T a——

Lé, p. 23]
L . It appears to us that the most important problem of empirical veri-
fication is to develop a method to determine the characteristic function, Of

l" ' and to what extent other possible imputations are not dominated by them,™
I
|
1

relevance here is our sarlier remark that nothing less than a characteristic
function could represent a nmmerical evaluation of comlition strength, and




that. the charasteristic funotion governing the behavior of individuals may
very well not be the theoretical one cf the game they are playing. Probably
one of the most important immediate contributions social socientists cen

make in this area is practical empirical methods of determining the character-
istic function approximately. In section III.7.2 we shall propose a method

for doing this, one, however, which appears t0 raise as many problems as it

solves. Also, it may not be necessary to determine the entire charccteristio

’ function if scme swch theory as the stability one applies. For suppose there

are restriotions on coalition change and ws wish to determine whether the

! : present state of affairs is in equilitrium, then we nesd only determine the |

- characteristic funotion for the admissible coalitions. '

In the laboratory this problem can be by-passed, at lesst in part,

by describing the game in terms of the characteristic function. This is

! exactly what Kalisch, Milnor, Nash, ani Nering have done at RAND [6] . We
shall report only the main portion of tlheir experiment, which was concerned
with two 4-person constant—-sum games. Each game was presented to the subjects

. in what amounted to a 0,1 reduced form and in an S-equivalent form. For each

i, coaliticn the subjects were told what the coalition would receive. They were

then given 10 minutes to form coalitions and to agree upon payments, which
wer'e 0 be told to an umpire. He reported the agreements back to the group
and 1f there was no dissension he held the players rigidly to the formal agree- R
; ments at the end of the bargaining. The authors point out that there were in
addition numerous informal agreements which were not prosassed through the

umpire and which were kept in good faith.
(\-kx / %o feel that the general qualitative impressions of the authors,




wihile not wvery surprrising, are of sufficient importance to be qucted at
lengtht

"Ihere was 3 proclivity for members of a coalition to split
evenly, particularly among the first members of a coalition., Onoe a nucleus
of a coalition had formed, it felt some security and tried to exact a larger
share from subsequent members of a coaliticni. The tendency for an even
split smong the first members of a coalition was in part due to a feeling
that it was more urgent to get a coalition formed than to arg.e much about
the exact terms,

"Another feature of the bargaining was a tendency to look upon the
coalitions with large positive values as ths only ones wurth considering,
often overlooking the fact that some players could gain (sic) a coalition
with a negative value to their mmutual benefit,..

"Coalitions of more than two persons seZdom formed excsp' by being
built up from smaller coalitions. Further coalition forming was usually also
a matter of bargaining between two rather than more groups.

"A result of these tc;nenoiu was that the coalition most likely
to form was the two-person coalition with the largest value, even though
tials ccalition 4id net always represent the greatest net advantage for the
participants; and in the intersst of speed, this coalition usually split
evenly, Thus it frequanily happened that the player with apparently the
second highest initis) advautage got Lhe most of the bargaining. Ths player
with the spperently highest initial advantage was most likely to get into
a coalition, but he usually did not get the larger share of the proceeds of

the coalition.
'muﬂhthoplqmrammeimlinodtobargdnandnuw
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invite competing affers. And this remained true to socme extent in thoee
games where the situation 4did not appeer to be symmstric, Howewer, later
and in those games which were odviously symmetric, the basic motive was to
avoid being left out of a coalition, Henoce there was little bargaining, and
the tendency was to try to speak as quickly ss possible after the umpire said
'go,! and to conclude some soxrt of deal Ammsdiately. Even in a gams which
was strategically equivalent to a symmetric game, the players did not feel so
] rushed, We would guess that this was because some players felt they were
Mwmtmwomm&mthqgotintocmitm,uhﬂa
. . others felt that they were worse off whether or not they got into coelitions.
|- ' They seemed to pay little attention to the fact that the net gain of the

coalition was the same to all," [6, Pe 15-16]

"Porsonality differences between the rplayers ware everywhere in
evidence. The tendency of a player to get into coalitions seemed to have
a high correlation with talkativensas, Frequently, when a coalitiovn formed,
its most aggressive member took charge of future bargaining for the coalition.
In many cases, agiressivensss played a role even in the first formation of

F = S S,

a coalition; and who yelled first and loudest after the umpire said ‘'go!

made a difference in the outcome.
*In the four-person games, it seemed that the geometrical arrangenent

=

of the players around the tatle had no effect on the result; but in the

.
"w-‘—' }-~ —
~N

five-person game, and especially in the seven-person game, it became quite

important, Thue in the five-perscn game, two players facing each other across
the table were quite ]J.!mly to form a coalition; and in the seven- person
game, all coalitions were between adjacent players or groups of players. In
genaral ..a the number of players increased, the atmosphere became more con-
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fused, more hectic, and less pleasant to the subjects. The plays of the
SOVEn-person gr=s were simply explosions of coalitions formation.

"In spite of an effort to instill a ocompletely selfish and competi-
tive attitude in the playsrs, they frequently took a fairly cooperative at—
titude. Of couwrse, this was quite functional in that it heightened their
chanoes of getting into coalitions, Informal agreements were always honored.
Thus it waz frequantly understood that two players would stick together even
though no cormitment was made. The two-person commitments which were made
were nearly always agreements to forr a coalition with a specified split of
the profits, mless a third player could be attracted, in which case the
payoff was not specified. This left open the possitdility of crgument after
& third party was attracted, but such argument never develcped. In fact, the
split-the-difference principle was always applied in such cases.” [6, p. 16-17]

We have gquoted at such length for throe ressons., First, it is
importart when evaluating the results that the resder have some flavor of the
procedure and of the performance., Seoond, it is interesting that the coalition
changes were effected, in the early stages, one person at a time, and in the
later stages by one small coalition jolining with another. Third, certain
aspects of ths sxperimental procedure seem undesiradble and could easily be
eliminated., Ths geometrical effects, though possibly interesting in some
applications, are not desirable in a study of human responss to characteristic
functicn, To eliminate this one might employ teleprhone communication or a
variant on the Bavelas partitioned table for small group studies [3] . The
latter would require the use of written messages, which Incidentally, would

glve & permanent record of the bargaining. It would have the slowing effect

¢
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that any written communication has, but it is not clear that this would be

s disadvantage in this case., Further, in the small group work it was observed
that a high degree of anocnymity was preserved, and this might allow more
ruthless competition than was obtained at RAND,

Each 4~person game was played eight times, a total of eight sub-
Jects being emploved, Changes in the players were made for each play so
that permanent coalitions would not tend to form. The data presented in
Pigs. 6 and 7 are adapted from [6] in the sense that we have added what W,
stability theory would predict the payments should be. Probably thq most
striking fact in the data 1s the difference between S-equivalent games; it
is clear that the subjects had not gotten to the loglcal base of the matter,
As far as prediction goes, the Shapley value and the quota (which is the
imputation of the W-stable pair) are identical in the symmetric game
(Fig. 7) and nearest to the symmetric (reduced form) presentation of that
game. For the non-symnetric game, the wvalue and quota differ. The latter
is reasonably near the reduced form presentation, but not at all near the
S~equivalent form; the reverse is true of the value,

They also present detz on the coalitiocns which actually formed in
each play of the game, By W, -stability theory one expects {A,B,C}] to form
in the non-symmetric geme; this actually occurred on only two out of eight
triais. It is predicted for the symmetric case that no non-trivial coalitions
will form, or one grand one., This ocourred only once in cight irials, bHut
in three other trials two opposing two-slement coalitions formed and sero-
payments for everyone were agreed upon., Four times a three-element coalition
formad, and the isolated player was given v({i}) and the others divided -v({i})
with considerabls discrimination against the third addition to the coalition,
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except in one cass when the three-element coalition was formed without a
two-element intermediate atage.

A3 we suggested by the quotation presented at the deginning of
this saciion, these authors did not know what the von Neumann-Morgenstern
theory asserts in such an experiment, and so ezsentially no comparison was
possible,.

It will be recalled that Milnor (XII.6.3) defined reasonable bounds
for the payoffs, and the data were compared with these, Only once in the
4-person games did one player get as much as or more than the bound b(i),
but in most of the plays at least one set S recaived more than the upper
bound d(S). It was concluded that "'...f;he function A(S) seems to have no
relatiun with the way the game was actually played."” {6, p. 27] Comparison
with the lower bound 1(S) was not made except in the 7-person game (which
was seriously influenced by the experimental conditions). This game was
constructed so that there was a2 von Neumann-Morgenstern solution giving a
set S less than 1(S), but it was found that in both plays of the game wach
set S actually got at leest 1(S).

Certainly this experiment cannot be considered to be crucial. It
12 clear that the results do not coincide exactly with any present theory,
but it is questicnable how much the outcome was influenced by the experimental
*eshnique. One senses from the report that the time pressure was high,
which seems tc be oprossi Lo th= asswpftion in the theory of almost all-
knowing players. Furthermore, the gecmetricsi shatuciss to corlition forma—
tion are certainly not a p«rt of the theory, though this remerk may pol app:?
to the 4-person games. More significant. snd probably gsnerally true, is

———
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obeervation that the subjects do not always respond to the strategic con—
sequences of ihe charscteristic function alone, but scastimes to its mode
of presentation as well., We shall return to this point in the next section,
These last comments raise the whole problem of what experiments snd
axperimental procedures will be considered acceptable tests of the thccriel.'
Thile it seems impoessible to give an exact prescription of a good experiment
in this or any other science, it is often possidble to assert that one feeln
a certain procedure is not the best possible, and this is what we have dome.
Any deeper comments will lead us into the knotty problem of the relationship
of theory and experiment and this is not the place for such a discussion.

7.2 § Nethod for Empirically Determining Characteristic Functioue
We have pointed out earlier that the two major deterrents to apply-

ing n-person theory to real zituations have been the lack of an sdequats
descriptive theory based on the characteristic function and the practical
impossibility of determining the characteristic function of an existing
situation. The latter difficulty stems from the fact that the only way
nown to obtain the characteristic function is to ascertain the normal form
of the game and then to make elaborate caloulations involving the minimax
theorea, Not only is it next to impossible to find the normal form of a
game 1n an existing situetion, but considering the billions of strategies
avaiiable in any reascnsbly complex situation the minimax theorem calculs—
tions wuld be completely impracticale

One wonders, therefore, whether there are empirical techniques
which can he used to obtain an approximstion to the characteristic functiom
directly, (me suggestion, offered by Adams and one of the present authors [1],
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is based on ths following simple idest A player is required to report his
preferances between pairs of possible ccalitions of players, thess prefer-
ences to be based on his conception of their relative strengths. (The defini-
ticn of preference will be discussed more fully below.) No assumption is made
that he knows the underlying normal form of the game or the game thsory
analysis of it, but rather, his response is besed on his subjective evalua~
tions of coalition strength —~ on the evalustions which presumably govern

his behavicr. If these evaluations satisfy the von Feumsapo-Morgenstern utility
axioms [21] and one other plausible axiom, then there is a family of set
functions which are closely related to the utility f unctions determined by
the von Neumann-lMorgenstern axioms and which satisfy the two conditions of a
characteristic fuaction,

Before presenting the details of this proposal, let us briefly
summrise the von Neumarnn-icrgenstern utility axioms., Let A denote a set of
alternatives. If R, S€EAand if ¢ < of < 1, let <KXR, (1-o()S)
denote the prospect "alternative R with probability o and alternative S with
probability - o .® Starting with A generate all the possible risk alter-
natives of the form <& R,(1-( )S) and call the resulting set K. K is
closed in the sense that, if R,SEK then <X R,(1—« )SDEK, We suppose
that an abstract binary relation =/ is defined over K (whichwe shall ulti-
matsly treat as a preference-or-indifference relation, so that if R= S, 1
whers R,SEK, then the person imposing = on K either prefers S to R or 1is
indifferant betwsen S and R.) If both R=Z S and S = R, then we write
R~ S {and we say R 4s indifferent to S)o If R =/ S and not R ~» S, then
wo write R—{ S (and we say S is strictly preferred to R).

T

= — o - e g ]
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The relation —{ is said to satisfy the von Neumann-Morgenstemn

utllity axicas if it is a simple ordering of K and
1. 4R~ S, then R - < «R,(1-)8>
2, 2R3, thn R < oLR(1-ok)SY
3. 1 R—{ T - S, then there exists sn « such that X R,(1- & )S) T,
4e 1T R P T }—S, then there exists an « such that {x R,(1- o/ )S) T, )
5. <xR, (1-x)SY> v (- « )8, %R
6. {BRR(1-)S ) ,(1- §)SY ~ («‘a Ro(1- s>

, 7. Af R /v S, then for any & and for any T,

| I LR, (- )T D> A & Sy KT

If —{ catiafics these axioms, then it can be shown that there exists a family )

U( — ) of functions from K into the real numbers, called utility functions,
such that each ugeU( —{ ) satisfies the following two conditions for every

Rand SEXand 0 < &« <K 1, |
i. R < S 1if and caly if u{R) < u(s),
and 11, w( <« Ry(l~-X)SD> ) = oXu(R) + (1~ X u(S).
Furthers-te, it can be shown that any two members of U( —{ ) are linearly
re¢lated,
How suppose we have a game situation involving n players and take
A to be the set of all subsets of In’ 1.0., all possible coalitions., K iz
than the set of risk altermatives generanted from A, a typical one being
®"coalition R with probability « and ccalition S with probability )- & ."
An cobserver, possibly one of ihe play:rs of the game, is to report his prefer-
ercss for all possible pairs of ris: situaticns (R,S), where R,SE€K, under , c

Q) the following assumpticus:

S R — N — R L A !
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1. if he chooses "coslition T with probabdllity o * then with
probability X he will receive the total payment that T obtains from the
situstion in which -T forms a cocalition and the gmme is played between T
and ~T; if he chooses §, the expty set, he wili nelther win nor lose.

14, 4f he chocses <X R,(1- of )5 then he has chosen R with
probabllity of and S with probability l—- « , where these expressicms are
defined in 1.

Let ~{ denote the preference relation so induced on K.

Intuitively, it does not seem unreasonable to suppose that a con-
sistent evaluation of coalition strength should cause —{ to satisfy cach of
the von Neumann-Morgenstern axicms, Wile it 1is unreasonable to expect that
people will be so consistent, one may hops that in some cases they will be
approximately consistent, in other words, that our model of a player's subdb-
Jective evaluation of coalition strength is approximately correct,

Furthermore, if R and S are two non-overlapping coalitions in A,

then RUS is at least as strong as R and S separately, hence the alternative

of receiving the proceeds of R{ JS with a probability of # and not parti-
cipating with a probability of % should be no less appealing then the alter-
native of receiving the proceeds of coalition R with a probebility % and
receiving those of S with a probability of #. If this intuition 1s correct,
then we may assume the further axiom

8, If R,SEA and RS = §, then

<, > = {¥rUS), BH)-

The assumption that —| eatisfies axioms 1-7 implies the existence

of the set U( —{ ) of utility funotions. If u€U( — ), thsn define C(\;) to
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30 P . be the set of all set functions of the form

ws) = o [us)-ad)] + Z‘i

i€8
Mcilnpoutincmmmthoti'omw. It can be argued
that&ohmtimﬁthc:lmﬂsi:OhumiulMtimaf f
: the 3irvagth of coalitions as described by the player through the preference
j relation.~{ . MKore than that, the following thecrems™ can easily be proved:
i. if v€C(u), then v is a characterisiic function;
i 11, 1f v€C(u), then v'€C(u) if and only if v und v' are S-equivalent;
111, if u, ' €U(=~{ ), then C(u) = C(u'),

In words, it does not matter which vtility function we use from U(—{ ) for
they all generste the same set of functions, C(u), which set consists exactly
of ons of the equivalence classes of S-cquivalent characteristic functions,

In addition to the intuitive argument that a member of C(u) repre-
sents the obaserver's evalmtion of coalition strength, one can show that if ha
knows the game structure of the situation and if he bases his evaluation on

that knowledge, then the resulting characteristic functions are S-equivalent
to that of the game. Specifically, suppose the game is imown in normal fora
and that the characteristic function v is determined by the method given by
von Neumann and Morgenster [21] . Let v be extended from A to K by the

Tdan e @ ——— — 1

- = AT

following definition
v K B(1-0)8 ) ) = (K WR)+ (1- & )¥(S). T

« It 1s not difficuit to show that wi.a same theorems obtain if the person impos-
ing the relation assumes he will receivs the average valus of the payments to
players in the gealition of his choice provided axiom 8 is replaced by

G e ek e e e U Gl il

(‘.R = pumber of elements in R), and provided the class of characteristic funotions

1 defined by :
wr) = olnl [atr)-ud) fize;.,. F
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Let the observer dstermine — according to the rule

R~ S 1if and only if w(R) < ¥(S).
It 1s easily shown that —{ satisfies axioms 1-8 and so a set C(u) of cher-
acteristic functions is determinsd; v is one of the elements of that set,

This procedure, therefore, gives a possible method of determining
v where either the normal form of a gams is not known or it 1s far too dif- ’

ficult to determine it and to carry out the minimax theorem calculations,

The amount of labor required is sxactly the same as that needed to determine }

the utility function approximately in an empirical case having a comparable l

number of alternatives; see, for example, Mosteller and XNogee [1'7]-
J Thers need be no relation between the actual characteristic function

of a game determined from the ncrmal form and the subjective one determined
by the above procedure using human subjects, for it 1s certainly not obvious,

even for a person aware of the utility functiona over the possible outcomes, v
4o

that he will react to deductions based on them. He may react to his evelu~

ations of the coalition alternatives more or less independently of his

evaluations of the outcomes in normal form. But if this 1s the cass, them

£ — SR S

it is a player's subjective characteristic function, and not the objective
one of the game, which actually determines his behavior, and so it will be

st

needed for predictions of his behavior. It may well be that this would
account for the different resuliis obtained for S-equivalent games at RAND i

(809 1110701)0
- I l A second and more profound problem is that there is little reason

to suppose that two different piayers of the same game will yleld S-equivalent
characteristic functions, If this is the cage then none of ..:& present theories

iz applicable. It is an open problem to devise theoriss for the seemingly
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more realistic assumption that each player acts upon his own subjective

characteristic finction. It seems plausible that a theory similar to

‘\‘I -stability can be developed describing the payments and coalitions which
may be sxpected when there is a different characteristic function associsted
with each player, In addition, it would be desirable to modify the notion
of the normal form of a game in such a way that one can derive from it g
distinct characteristic function for each of the players, Such a theory
should include as & special case the von Neumann and Morgenstern reduction

i o of the normal form to a single characteristic function. One possibility

is to assume that sach of the players hss his own utility function over

the possible outcomes and that he has bellefs as to the utility functions

of the other players, beliefs which in general will be in error. This as-

evmption results in an objective normalized game and for each of the players L
a fictional game which is the one he belioves to exist, Ass..aing each |
player responds only to his beliefs, there is associated with each player
the characteristic function of the fictional game., If each fictional game ;
is identical to the actual game, then the theory reduces to the von Neumann
and Morgenstern ome,
In addition to the above theoretical developments, the proposal
suggests at least two empirical studies, First, & modified version of the
RAND experiment (see III.7.1) should be executed in which the subjective
characteristic functions of the players are determined. Not only would this
be interesting in and of itzelf, but it would provide inexpensive experience
with the techniques of determining such functions, Seccnd, if the first study

e S T —— T ——
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goes well and adequate experience is gained, then the method should be applied
to some existing conflict—af-interest zituation and an attempt should be

made to predict the equilibrium behavior using the various n—-person theories,
Fresumably, the situation chosen should bs comparatively simple and self-
contained.

8. Concluding Remarks

8.1 Summary
Probably the most significant feature of general games is the pos-—

sibility of communication and collusion among the players, and it is the i
attenmpt tc desl with this problem in n-person game theory wmhich makes it such

a rich poseibility, and certainly rich didactically, for the social sciences.,
The most significant features of the theory - or rather of the several thecries
we have pnaoﬁtod - are (1) the equilibrium (and not dynamic) character,

(2) the eimple formalization of coalition strength, (3) the inadequate forme-—

lization of coalition formation, and (4) the sssumption of so-cslled "rational® ,

players.
Essentially three different approaches to coalition format.ion have

veen presented. Nash has treated the problem in which no communication -
and 50 no coalitions —~ can occur, by extending the notion of an equilibrium
point from 2-p§r=cn theory. He has argued, but not completély convineingly, l

that introducing communication and bargaining as formal moves i the gams ’
allows cooperative games to be inciuded within this framework. it is not
clear how this should be done, but even if 1t were clear, it might not be
adequate for social scisnce if no axplicit theory of coalition formation

-
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resulted. Nonetheless, an sdequate theory of non-cooperative games may be
of importance in developing a comprehensive theory of ccelition formation
(see problem no. 9 of II1.8.2).

‘I'hci other two approaches were both based on the characteristic

function form of u game which. as we pointed out, is really much more genera’

e than the normal form. In these theories the strength of coalitions, as give:
by the characteristic function, is used to delimit the set of imputations !
! which may be expected to occur. The topic which has received the most ex-
tensive study is the von Neumann-Morgenstern solution, which is a set of o s
] r imputations "stable" with respsct to the dominance relation., It is character-
i- istic of this theory, and of the work of Milnor, Shapley, and Vickrey along =
| the same lines, that only the payments are prescribed; no explicit indication
of the resulting cocalitions is given., Indeed, the stability of a solution

rests not so rmch on the sxistence of coalitione as on the potenilal of q.

forzing any needed coalition if gn attempt is made to achieve an imputation
not in the solution,

The third approech deals explicitly with the payments and coalitions
which together are in equilibrium, but a significant thecry seems poaaibio

only if restrictions on coalition change are made. Eezentially, the dynamic
model underlying the equilibrium theory assumes that only limited changes in
the coaliticn structure can be mads at any one tims, and it compares the pay- 1

ments already agreed upon with those which can be guaranteed by the coalition
i1f the chaage is made. While we fesl this goneral type of equilibrium may
prove most useful, sericus objections were ralsed tn the present definition
of admiseible soalition changes.

In each of these thres approaches an equilibrium notion is examinad 5
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and, as always, it ir an equilibrium based on contemplated but urexcsvied
changee - of strategles in Nash's work, of 1mput‘atima in von Neumann &k
¥orgenstern's, and of coalition structures in iuce's,

It is frequently said that the theory of games assumes raticqzl.
men as players, but the term "rational" is not further explicsted., Cn= i
led to imagine & fantastic valcedlator who will without emotion examine all
possibilities and always choose the best. Certainly sach theory does assyme
players with a considerable overview of the structure of the gams and an
ability to examine all possible cases; and given =z definition of "best" then
they do choose the best course of action, But in each theory we have - pos-
8ibly implicitly - made assumptions about the exact overview the player has
and exactly what he shall term the best action. The fact that these zssump—-
tions cannot be translated one irto another indicates that the word ‘raticnal’
has a different meaning in each. Nash's player knows all of the strategies
and the payoff function, but when he ccntemplates a change from one strategy
to another he assumes that only he will change., In the von Neumann-Morgenstern
theory he knows the characteristic function and has before him at all times
the dominance relations, In the stabilit: theory he imows the characteristic
function, but presumably cannot see, eflect, or contemplate csrtain coalition
changes; but within the allowable changes the player will always act on an
sssured positive profit, no matter how small,

For generzl game theory to play a vital rcle in social sclence,
two modifications appezr to be necessary. First, a theory should be developed
which is not unlike those presented but with somewhat mora realistic assuap-—
tions -~ for example, the players should he assumed to have more limited
perceptions. It is not essy here to meet the demands of intuition and of

pvg
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walaerticys 2rst; Sesanee the intuition, evii when supoi-ted by pesycholcgial
stutien, iv not Leo jrwolss, and sitcod, becaws? a urlwvmatical theory imp. see
sertein scastdaraticiu of svpliicitye The latter sheirid not be =iaccnai~vixd
“o mien *hsi oS SWtie effests can be considered in a mathemat 1cal theory
(the discussion of contemporary game theory should have dispelled that view),
but rather it i3 a demand that definitions be so chosen that there does not
result a large number of special cases which must be dealt with individually.
It is well to keep in mind that game theory has, so fer, been almost exolu-
sively a mathematical suject, which has received appreciation, but few contri-
butions, from other then mathematical oircles. X
Second, a modification of game theory to include dynamic as well
as equilibriua theories should Le of wide interest and importance. It my
very wsll be that most economic situations are not in equilibrium but in
= proocess of dynamic change. There are dim indications cf such a theory
in both Vickrey's notios of strong and weak solutioms and in Luce's work

on stability.

8.2 Open Prodleme
In the course of our discusaion we have raised or suggested s

number of problems in n-pexrson game theory which at the presemt time are
unsolved or, in many cases, not even adequately formmlated., It may be
appropriate, if redundant, to sumssrise these and to add sevaral new ones
40 the list. Tt is hardly necessary to point ocut that the nature of this
1ist is markedly influenced by the research interests and activities of the
avthors; had we had an active interest in the theory of extensive games or

‘ ) in the study of von Noumann-Morgemstern solutions, for example, there is
1little doubt that mors problems in these areas would e included in the 1-.J.
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Other authors hcve presented lists of problems which more adoguately cover
thess areas; ses the preface of reference 9, chapter 18 of referemce 13,
and refererce 15,

The problems are prt in three classes - mathemstical, concepiual,
and espirical - but they are numbered comsecutively. After each problem
the sectioms of this report which appear to be most relevant are cited.

Nathematicsl
1. Prove the existence of a solution for every n—~person game or

i give a counter example. (III.5)
, ] 2. For scme wide class of games, characterize directly the strong

] solutions without attempting to determine all solutions of the games. (IIX.5.5)
3. Characterise those games which are vl-mta.blo (also those which

are W, -unstable). (III.6.1)

4o Por certain *interesting® functions r\y( C'), characterize those
games which have st least coe " -stable pair for which the players are
partitioned into two opposing coalitions (see 9 below). (III.641)

5. For certain "interesting® functions ~( ), state conditions
under which an imputation of a *-auble pair is a member of a von Neumann—
Morgenstern solution. (III.5, III.6.1, IIL.6.3) ‘

e

“

Cencertugl
6. Present an "extensive® theory in which the temporal crdering

of moves is not specified in advance and which i& a suitable description of
many economic situations, just as the present extensive form is a description

#
Pomee e i m
1

Q ) of parlor games., Such a thecry should have a natural noticn of "stretegy”
which allows a reduction to the conventional normal form of a game, <l there
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should be a natural spocial case in which timing reduses to a specified
temporal ordering and the general extensive form rcduces to the present
axtensive game. (III.2, III.3.1, III.3.2)

7. Devise a suitable redustion of any cocperstive game to a
non~cooperative ons alang the lines suggested b~ M=%, I¢{ may well be that
s solution to either 6 ar 7 will be a solution to the other., (III.” 2)

8. Devise a theory of non-cocperative games vhich is more adequate
than that based on the notion of an equilitrium point. There is a need for
one in which the equilibriuz statas are more in accord with human behavior
than seems to be the cause for the Nash equilibrium points., (III.3.2)

9. In many cases ‘+ -gtability theory predicts equilibrium states
in which the players are divided into three or more coalitions, The theory,
however, is btased on the characteristic function of a game which, it will
s recalled, was derived assuxing that & coalition will always be oppcsed
by the coalition of all the remaining playsrs, snd so the estimate of coali-
tion strength 1s conservaiive when the opposition actually consists of two
or more coalitions. This suggests that a "characteristic function® should be
derived which depends both ca the coalition S and on the arrangement of the
resaining players into coalitions, i.e,, a function of the form (S,A.)
where J\. 1s a partition of the remaining players, -S. It seems plausible to
expect some form of superadditivity to hold again, certainly in the obviour

generalization
T(RU S), [r1’T2’°"°'Tt} ) ) v(R, ['rlorzponottas] )

+ ws, [, TR ]
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In addition, it seems reasonable to suppose that if two of the coslitions
mmnemo,mawmmumwm, . P

iR, [1):T500000T ]) 2 wR, [1eeint, 0T beenst 31,T:q0 0o Ty
ri UTJ ] )o

To derive the properties of such a funotion from the normal form of ‘he game,
it appears necessary to have a solution to problem 8, for the case o' three
or more opposing coalitions is a non-cooperative game with more than two
players ( = coalitions). On the basis of such a modifiud characteri rtic
function, reconstruct ~ -stability theory. (III.4, III.6.1)

10, Devise a dmamic theory of coalition and imputation ciange
which 1s in the spirit of -\ -stabdlity theory and which has as its qui-
librium points the Af-stable pairs. (III.6.1, III.8.1)

1l. Develop an equilibrium theory which predicts both isputations
and coalitions, but instead of having the sharp dichotomy of '{r-munty thecry
as given by the function -y, assume that each coalition S has a certain pro-
bability of being considered as a possible change when the players sre (tenta-
tively) arranged according to . Presumably for most application: one
would assume the probability is smaller the more different the coalition 3
is from the coalitions of T, (III.6.1)

12, Modify the assumptions about the normal form of u guw eo
that each player has imperfect information about the utility functiias of
the other players, and devise a reduction process analogous to the ‘on Neuaaon
and Morgenstern reduction of the normal form to the characteristic /‘'wnction
form, A possible aim in such a generalisation would be a natural rduction
process leading to each player having his own charscteristic funoti m oa the
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basis of which e eveluztes the relative strengths of different ccali®
(111.7.2)

13. Assuming that each player has his o'm characterigtic £¥
dovise equilibs fum theories which predioct imputatins and coalition pe*
and which redw s to known theories when the charac’eristic funotions &
assumed to ba ‘he same, If the program suggested ;mlzdoumtrouni
n characterist!c functions, devise a thecry of paysents and coalitionm [
tions on whate er does result. (II1.7.2)

Emodrical

14. Devise experimental techniques to sstimate the mnbjo;:t:i“w’
characteristic funotions of the different players; among other things
deteruining wh sther the suggestion of section III,.7.2 is sultebie.
(I11.7.2)

15, Cheok the predictions of the various theories bassd om 4
characteristic function for experimental situaticuz similar to the RAIN]
experiment. 7ais program should be very closely tied in with the 20l
of prodlems 1l: and 14, (IIX.5, III.6, III.7.1l)

16, Attempt to meke predictions regarding the equilibrium
behavior in e isting but limited and isolated ecornomic situations. Pxy
lems 13, 14, 1 nd 15 probably should bs carried out first. (IIX.5, IXTIX,
111.7) '




