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ABSTRACT

Various methods for synthesizing servomechanisms are reviemed,
and it is pointed out that, in general, criteria for determining an
optimum solution to the synthesis problem are vague. Stability
criteria, frequency, and root locus methods reduce to conditions
on the transfer function constants which may be made mathematically
specific following W'hiteley's suggestion of "standard forms".

Eight mathen.atical criteria for optimum transient responses
are critically examined, and the clear superioritr of the minimum
integral of tinfe multiplied absolute value of error (J'tle•ldt
is demonstrated.

Tables of "standard forms" for optimum zero-displacement error
systems are presented through the eighth order, and standard forms
for zero-velocity and zero-acceleration-error systems are presented
throujh the sixth order. Applications to the design of duplicator
servomechanisms, pulse amplifiers, and servo systems operating on
noisy inputs are pointed out.

An Appendix contains a discussion of computer techniques in-
cluding the absolute value unit and the geeration of error responses
by an extension of Beck's method.
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INTRODUCTION

Transient behavior is an attribute of many measurement, control, and
communication devices. Engineering design of such physical systems often
involves the choice of design variables which will insure optimum transient
behavior. IYathematical techniques applicable to this engineering design
problem have been rapidly developed and extended during the past ten years.
The lack of a practical mathematical definition of optimum transient be-
havior, however, has forced empiricism into the design procedures, and the
procedures themselves, for the most part, are esoteric and laborious. Develop-
ment of a unitary figure of merit for transient behavior and tabulation of
optimum system characteristics would be a boon to the designer.

The mathematical methods applied to the problem of optimizing the transient
behavior of physical systems depend uniformly on the conception of the response
of a transfer system. 1 A transfer system which is characterized by an input and
a related otput -is illustrated in Figure 1. The physical system, which might
be an electric circuit, a mechanical device, a vehicle, or a process, is shown
in a block connecting the input to the output. This block may be conceived of
as an operator which metemorphoses a given input, r(t), to produce a unique

output, c(t). The output is said to be the response of the system to.the given
input. The most fundamental relationship which gives the dependence of the out-
put (effect) on the input (cause) is usually the differential equation which
describes the physical system. In the case in which the differential equation
is linear with constant coefficients, there-are several possible mathematical
descriptions, based on operational methods. 'e A linear transfer system may
be defined a lternatively by an explicit differential equation, a transfer
function £S, a ,Teightinj fanction, w(t), a frequency response function ,

or by its poles and zeros. All of these mathematical forms are equivalent in

the sense that each represents the physical system, and it is possible to ob-
tain one representation from another by mathematical operations.

A simple positioning servomechanism, its linear second order equation, and
its transfer function are illustrated in Figure 2. The weighting function,
which is the unit impulse response, its integral4 the step function response,
and the response to a sinusoid are also shown. The response to a sinusoid at
a number of frequencies is the frequency response function. The denominator
polynomial of the transfer function, eouated to zero, is called the characteristic
equation of the system. The roots of the characteristic equation are called the

le of the system, and the roots of the numerator polynomial, equated to zero,
are called the zeros of the system.

Transfer functions of the linear systems considered in this paper can always
be reduced to the normalized form

Sp Sm+.... + p3 2+ p,+p (1)
sflsq = l14.. .iqese+q,$+ I

The procedure for deriving the norimlized transfer function from the system
differential equation is outlined in Appendix TI.

WZADC-TP-53-66 1



SYNTHESIS METHODS

Three distinct problems occur in the application of differential equations
and operational mathematics to physical systems. These problems have been named
the analysis, instrument, and synthesis problems. The analysis problem is: given
the input and the mathematical description of the system, find the output. The
instrument problem is: given the output and the mathematical description, find
the input. Synthesis of a linear transfer system has been defined as the fol-
lowing problem: given the input and the desired output, determine the mathemati-
cal description.

It is clear that the synthesis problem is intimately related to engineering
design. Typical inputs are often known and the "desired" output is often subject
to specification. The mathematical description of the required system is a pre-
liminary to its physical realization. The realization of the physical system is
excluded fron consideration in this paper, however, and attention will be confined
to what Bubbt has termed the "mathematical attorney" of the system.

Attention will be further confined to the class of linear transfer systems
called "duplicators"., i.e., those systems in which the shape of the output approxi-
mately duplicates the shape of the input. This class, however, is very broad and
covers many open and closed loop control systems, servomechanisms, regulators,
filters, amplifiers, and instruments.

The synthesis of duplicators has suffered, generally, from an inadequate
definition of "desired output". The desired output of a duplicator usually is
perfect reproduction of the shape of the input, but this is physically impracti-
cal. The desired output is, therefore, often formulated rather loosely on a
frequency response basis in terms of gain margin and phase margin, or on a transient
basis in terms of intuitive concepts of rise time and overshoot.

The first and most obvious condition on the output is stability. The output
of a duplicator is unequivocally desired to be stable. Fortunately stability can
be precisely defined, and conditions for stability can be rather easily calculated.
The characteristic equation of a linear transfer system completely determines its
stability. In fact, a necessary and sufficient condition which precludes in-
stability is that the real roots and the real parts of the complex roots of the
system characteristic equation are not positive. The roots of the characteristic
equation depend on the coefficients of the equation. There are, therefore, cer-
tain conditions on the coefficients of the characteristic equation which must be
satisfied in order to insure that the system is stable.

Consider the normalized characteristic equation

s+ bsn- cs - .. + po +qs+s 0 (2)

None of the coefficients, b, c, . .. , may be zero and all of them, including
the initial and final unit coefficients, must have the same sign in order for
the system to be stable. In addition, the functional relations between the coeffi-
cients defined by the Routh-Hurwitz criterion must hold true. These latter test
functions are tabulated for the various orders of non-dimensional characteristic
equations through the eighth order in Table 1. Theoretically, n-1 test functions
have to be applied to each characteristic equation. It has been shown, however,

WADC-TR-53-66 2



by Frazer and Duncan 5 that the conditions tabulated are practically all that
are necessary since they will first indicate the change in the character of the
roots on going from a stable to an oscillatorily divergent system. The change
on going from a stable system to an aperiodically divergent one is first in-
dicated by a change in the sign of the last coefficient.

In addition it may be noted that in an equation of order "n", such as
equation 2, the negative sum of all the real roots and the real parts of the
complex roots is the coefficient "b" of the n-l power of the variable and
the product of all the roots is the constant times (_ 1 )n. This is the basis
of some approximate factorization methods, and further illustrates the fact
that conditions on the roots may be considered to be conditions on the coeffi-
cients.

A method much in vogue among aerodynamicists for the approximate synthesis
of airplane dynamics involves plotting the Routh-Hurwitz test function, equated
to zero, as a function of two design variables with all others held fixed. This
gives a graphical representation, called a stability diagram, of the boundary
between stable and unstable combinations 6of the two selected variables. An
extension of this method due to W. Brown enables one, at the cost of consider-
able labor, to superimpose lines of constant oscillatory period and lines of
constant logarithmic decrement (damping) on such a plot. The degree of stability
provided by a selected combination may be determined in this fashion. Stability
diagrams for third and fourth order systems are shown in Figures 3 and 4. Figure
3 may be used for the solution of the cubic equation since the real and imaginary
parts of the complex pair of roots are available directly, and the third root is
the negative inverse of O44-t3.

In the case of closed loop systems, such as servomechanisms and feedbick
amplifiers, the Nyquist Criterion is often applied to determine stability.' The
complete and mathematically rigorous statement of the criterion simply expresses
the fact that, with a sinusoidal input, the signal which is fed back must not
arrive at the input end of the transfer system with an in-phase component larger
than unity. If it does, the feedback signal will augment the input signal and
the output of the system will diverge. For transfer systems which are stable
under open loop conditions, the Nyjulst Criterion may be applied by plotting the
open loop frequency response, , on a polar diagram. Whether or not the -1

+ jO point is encircled by the •lexy frequency response function as the fre-
quency is varied from zero to infinity determines the stability of the system.

As in the case of stability diagrams, it is possible to extend the technique
of mapping the complex frequency function to the determination of the degree
of stability; in particular, to the determination of logarithmic decrements and
damping ratios.

The shape of the complex frequency response function

R(j'Co) + -TR-536 3=iO
WADC-TR-535-66 3



is, of course, dependent on the various coefficients of the numerator and
denominator polynomials. It appears that, as in the case of the Routh-Hurwitz
Criterion, the stability and degree of stability of the system depend on
certain relations between the coefficients of the transfer function.

The synthesis of servomechanisms is more often carried out using the
logarithmic plots developed by Bode°. Since the phase angle of the frequency
response function was shown by him to be related to the rate of change of the
amplitude function, it is often possible to accomplish much of the synthesis
procedure graphically using straight line asymtotic approximations. In combina-
tion with Nichols' method for obtaining the closed loop response of a servo-
mechanism, this analysis method is a simple and powerful one. 2 The synthesis
process is carried out by analyzing the effects first on the open, then on the
closed loop frequency response, of various possible system changes which might
give an acceptable overall performance. The rules governing maximum amplitude
ratio, gain margin, phase margin, and the length of asymptotes between break
points, if applied with care, may result in a system with adequate transient per-
formance. The outcome of the analysis, however, is not necessarily the optimum
system, and the result indicates only approximately the changes in the system
which would bring about improved transient performance. All this is in decided
contrast to the situtation usually facing an amplifier or filter designer, to
whom the frequency response is all important and is susceptible to precise
specifi cat ion.

The root locus method developed by Evans 9 ' 1 0 is also useful in the synthesis
of closed loop systems. In this method the varying position of the poles and
zeros of the system transfer function are plotted in the complex plane as a
function of one loop gain. Both the frequency and transient responses of the
system may be inferred from such a plot. There are, however, no generally known
specifications for the optimum location of the poles and zeros beyond the bare
specification of stability or degree of stability (damping ratio, time to damp).
The methods for locating the poles so as to achieve suitable values of these
quantities have been developed in an unpublished work by J.R. Moore. If it were
possible to specify the optimum location of the poles and zeros, that would
amount to the specification of the form and the coefficients of the system trans-
fer function.

In the design of filters (or servoTechanisms) operating on noisy inputs, the
elegant mathematical methods of Wiener± may be applied. It is assumed that the
power spectral densities of the signal input and noise are known. The desired
output is precisely defined as the output which follows or anticipates the input
but rejects the noise in such a way that the root mean square value of the error
is the least. The result is an explicit mathematical statement of the desired
weighting function for the system. Phillips has simplified the application of
this method to the synthesis of duplicator servomechanisms by assuming a form
for the system transfer function and leaving only one parameter open to adjust-
ment so as to obtain the minimum root mean square error.

For a few cases, the direct synthesis of transient response is possible.
Charts showing the transient responses as functions of non-dimensional system
parameters are given by G. Brownl3, Draper and Schliestettl 2 , Bretoil4, and
others for first and some second and third order systems. In very special cases,
as in the synthesis of pulse amplifier interstage circuits, Wallmanlý has pre-
sented such charts for transient responses of higher ordered systems.

WADC-TR-53-66 4



The calculation of transient responses is a tedious procedure. Fortunately,
in recent years, there have been put into operation many differential analyzers
of various types. These devices take most of the labor out of the calculation
of transient responses of physical systems, but in a system with a large number
of parameters, the correct combination for good, stable performance may be dif-
ficult to find by cut and try methods.

Manger 2 has commented on the analogy between low pass filter characteristics
and the characteristics of duplicator servomechanisms, and has pointed out that
a system with a wide low pass band is likely to have a good transient response.
In particular, he has illustrated the transient response of the so-called "ideal
low pass filter". Further investigation has been made into the desirable and
realizable transient responses of pulse amplifier interstage filters.16,17,18
If the exact form of a known transient response is deemed suitable, neW filters
or servomechanisms mVy be synthesized by analogy to the physical system which has
been analyzed. Note that this method of specifying the exact form of the transient
response is the equivalent to the specification of a desired system transfer
function.

Whiteley 1 9 has taken the latter step and has tabulated the coefficients of
the polynomial denominators of system transfer functions for systems of various
orders, and with three different kinds of numerators. He has named these explicit
numerical functions for the polynomial denominators standard forms. Dynamic
systems which are synthesized in accordance with the standard forms will have an
output response to an input step as illustrated in the charts which accompany the
standard forms. This is the desired output. The criteria which Whiteley used to
judge the t"goodness" of desired outputs were, in one case, a maximally flat fre-
quency response, and in others, the magnitude of the peak overshoot.

Some of the other criteria of "goodness" for transient responses which have
been applied by the authors of transient response charts and by users of such
charts and of differential analyzers are: delay time, solution time, time to
first zero, peak ratio, and overshoot. While suitable values for all these or
other applicable quantities may be known in general, this knowledge usually does
not give much insight into the most favorable adjustments to make to the system.
In many cases where several figures of merit are applied, it is possible to "trade"
some of one for a better value of another. The direct synthesis of transient re-
sponses, whether from charts, from Whiteley's standard forms or by means of a dif-
ferential analyzer, is subject to the objection that the desired output has not
been defined precisely enough.

Table II summarizes the various methods of synthesizing servomechanisms (and
other dynamic systems) which have been discussed above, illustrates the criteriA
which are applied, and offers some comment on each method. 2 0 , 2 1

WADC-TR-55-66 5



CRITEREA FOR TRANSFER SYSTEM RESPONSE

The choice of specific design variables in the synthesis of duplicators
depends completely on the criteria which are applied in judging how well the
output follows the input. Speed and stability of response are desirable.
These qualities may be indicated nunerically by defining equivalent time con-
stant, solution time, time to first zero, overshoot., or peak ratio, and so
forth. A more fruitful approach to the problem, however, would be to develop
a unitary figure of merit or criterion of goodness for the transient response
which would take all or most of its characteristics into account.

Ideally, such a criterion should have three basic attributes: reliability,
ready applicability, and selectivity. It should be reliable for a given class
of systems, so that the user can apply it with confidence to any transfer system
within the class, including those about which he has little a priori information.
The criterion should be easy to apply. A graphical construcfion., an analytic
expression, or the analog of a mathematical expression might be acceptable forms
of a criterion. Finally, the criterion should be selective; that is, it should
indicate a discernible difference between good systems and those which are not
quite as good,

This paper is concerned with the transient performance (step function re-
sponse) of servomechanisms or similar transfer systems. Only those systems which
have a steady state displacement error of zero when subjected to an input step
function are considered. An example of such a system would be a simple linear
second order system which has the normalized transfer function

C(S) = 1 (4)
R(S) SE+ ars + I

Figure 5(a) shows the error responses e(t) = r(t c(t) for this system
for various values of T., when r(t) is a unit step function. A perfect response
would be an output step function identical to the input with no error at any
time. The actual responses of Figure 5(a) differ from this perfect response in
various ways. In particular, certain characteristics of the responses provide
a measure of the degree to which the responses approximate the ideal response.
Three commonly used characteristics are (1) the time for the error (difference
between input and output) to reach its first zero, (2) the amount of the first
overshoot, expressed as a percentage of the initial error, and (3) the solution
time (time for the error to reach and remain within 5% of its initial value).
These three quantities are plotted in Figure 6 as functions of the damping ratio,
I . It is clear that the percent overshoot and the time to first zero are con-
flicting characteristics 0 in the sense that their minimum values occur at dif-
ferent damping ratios. If these two characteristics of the simple second order
responses were used as criteria, the design problem would consist of selecting
that value of which affords the best compromise between small overshoot and fast
rise time. On the other hand, the solution time can be used alone as a criterion
of performance, since it combines,, in a sense the properties of the other two
characteristics. The solution time is a minimum for a damping ratio of about
0-7 in a simple second order system. Its applicability is not restricted to
linear second order systems, for it may be applied to higher order and non-linear
systems as well.

WADC-TR-53-66
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The solution time criterion, applied to a linear second order system,
appears to have some of the characteristics of an ideal criterion. It is
reliable, in that it selects a damping ratio of about 0,7, a value which is
commonly considered to be optimum. It is fairly easy to apply, given the time
responses of a system. It is also selective, in that the difference between
the optimum value and other values is easy to distinguish. It gives an exag-
gerated picture, however, of the difference between the "goodness" of a system
with a damping ratio slightly less than the "optimum" and one with a damping
ratio slightly greater than "optimum".

Several other criteria have been used for evaluating the transient perform-
ance of zero displacement error transfer qystems wh~qh are subjected to input
step functions. Oldenbourg and Sartorius2 and Nims" have suggested a criterion

.based on the minimization of the integral

I, edt (5)

This criterion, called the control area, appears to be satisfactory for system
responses which do not overshoot. For systems which have a characteristically
underdamped response, however, the control area gives an erroneous indication
of merit, since overshoots decrease rather than increase the value of the integral.

Curve A of Figure 7 shows the value of the criterion Il as a function of the

parameter If, for a system with the transfer function of equation 4 subjected to
a unit step function of input. It can be seen that the minimum value of II occurs

at the damping ratiof= 0. Such a system could hardly be described as optimum.
The failure of this criterion to select a reasonable linear second order system
is sufficient grounds for its rejection from further consideration.

A modification of this criterion to provide for weighting of the error with
time was proposed by Nims. This modified criterion is defined by the integral

f= ftedt (6)

The weighted control area, 12, provides an increasingly heavy penalty for a
sustained error, and, as before, that system is considered optimum which produces
a minimum value of 12. Curve B of Figure 7 is a plot of the value of this criterion
applied to the second order system. It can be noted that the minimum value of
the weighted control area occurs at the damping ratio T= 0. Therefore, this
criterion fails in the same way as the control area.

Hall 2 2 has suggested the integral

Is= f e dt (7)

as a figure of merit. In this case either positive errors or negative errors due
to overshoots will produce positive contributions to the value of the integral.
If this criterion is applied to the step function responses of the simple linear

WADC-TR-53-66 7



second order transfer system, Curve C of Figure 9 is the result. The minimum
criterion value occurs at f- 0.5, which is not an unreasonable damping ratio.
Furthermore, the criterion can be handled analytically or mechanized with relative
ease on a differential analyzer. It also exhibits limited selectivity.

Another figure of merit which has been investigated is giren by the integral

14 = fJ"el dt (8)

Curve D of Figure 9 shows the results of testing this criterion in connection
with the transient response of the simple linear second order transfer system.
The minimum value of the criterion occurs at about j= 0.7. It is moderately
selective, and although it is not analytic, it is easily mechanized on an
analog computer.

If time weighting is introduced, this criterion is modified to

is= Jtieldt (9)

This function is known as the integral of time-multiplied absolute-value of
error (itae) criterion. If, as before, it is tested on the simple second-order
system, curve E of Figure 7 is the result. The minimum occurs at T- 0.7. The
itae criterion is selective and easy to mechanize on an analog computer. Ap-
plications to other systems to test its reliability will be discussed below.

Still other figures of merit can be formed with more complex combinations
of error and time weighting. Three such criteria are

f tezdt (10)

Ir= f teeedt (11)
t8=f ele (12)

The values of these criteria as functions of ffor the step function responses of
the simple second order system are presented in Figure 8. Although these criteria
show promise with respect to reliability and selectivity, they are excluded from
further consideration because they are difficult to handle either analytically
or on the analog computer.

Of the several criteria mentioned above, only those defined by equations
(7), (8), and (9) are considered worthy of further investigation. In order to
test the general applicability of these three criteria, they are applied to a
second order linear zero-velocity-error system, which has the normalized transfer
function

C(s) _ Z'fS+ 1 (13)
R(s) - s2+a-s+ I

This transfer function describes a second order servomechanism in which all
of the damping is mathematically pure error rate damping. The responses of such
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a system to a unit step function of input displacement are shown in Figure 9
for various values of the damping ratio T. It is interesting to note that, as
the damping ratio is increased above one, the response continues to improve.

The values of the three criteria are plotted as functions of the damping
ratio, T, in Figure 10. All three criteria indicate improvement in performance
as the damping ratio is increased. The itae criterion indicates the greatest
over-all selectivity.

As a further test of the general applicability of the criteria defined
by equations (7), (8), and (9), they have been applied to linear third order
systems characterized by the transfer function

C(S) = 1 14
R(s) s-bS 2+c3 + I

The responses of such a system to a unit step function of input displacement
are shown in Figure 11 for various combinations of the parameters b and c. The
results of the integral of error squared and integral of absolute value of error
criteria as applied to this system are presented in Figure 17. It is clear that
these criteria fail in the selection of the optimum system parameters. Additional
tests indicate that these criteria become even less selective for higher order
systems, and it is doubtful that they are sui table for evaluating the transient
performance of general transfer systems.

The itae criterion, on the other hand, retains good selectivity for the
third order system, as is evidenced by Figure 13. the minimum value of the
criterion occurs for the third order system which has the parameters b - 1.75
and c - 2.15. It is gratifying to note that the step function response of a
system with these parameters appears qualitatively to have excellent character-
istics of fast rise time and small overshoot.

A number of proposals for non-linear modifications of the basic second order
linear servomec anism to improve the transient performance have appeared in the
literature. 2 3 , 2i The step function responses of three such non-linear systems,
together with the corresponding values of the itae criterion, are shown in
Figure lh. A decreasing value of the criterion corresponds to a general improve-
ment in the transient response characteristics.

WADC-TR-53-66 9



FILTER RESPONSPS AND STANDARD FORMS

As noted in the section on synthesis methods, a low pass filter is a
duplicator, and other duplicators, including servomechanisms, may be designed
by analogy to filters. The so-called "ideal" low pass filter whose frequency
response is flat in amplitude to the cut-off frequency and then drops suddenly
to zero, and whose phase angle is linear with frequency, has a step function
response which is

c~)= + 9.s~~,t~ (15)

This function is shown, along with the frequency response function of the
"ideal" low pass filter, in Figure 15, which is adapted from reference 2.
Wallman has shown, however, that it is not possible to realize physically a
filter whose anplitude response drops to zero. The step function response
of the "ideal" filter shows a non-physical characteristic in that the response
begins before the step function is applied. Nevertheless, the transient is in
many respects typical of duplicator responses. Note in particular the delay time
and the residual oscillation. In general, transfer systems with good low pass
filter characteristics have correspondingly good transient responses.

One of the simplest possible low pass filters which is physically realizable
is an n-stage I-coupled pulse amplifier in which the interstage couplings are
identical. Since the transfer function of each individual stage is of the form

EjS= ,R (16)

the algebra of block diagrams leads to the result that the transfer function of
the whole amplifier is, in normalized form

E.) K (17)S(S +I)n

The characteristic equation of such a system is the binomial expansion of an
appropriate order. The roots of this characteristic equation are identical
real negative numbers, and the response of a physical system with such a
characteristic equation is composed of equa~y and critically damped modes.
Such a response has been suggested by Imlayl' as an optimum in connection with
the response of an aircraft under the control of an automatic pilot, and by
Oldenbourg and Sartorius in connection with regulators and servomechanisms.

The precise definition of desired output afforded by the requirement that
all modes of the response be equally and critically damped leads readily and
explicitly to the required system transfer function. Since the characteristic
function of such a system is the product of equal factors, the coefficients of
these characteristic functions are the binomial coefficients. The polynomial
characteristic functions with binomial coefficients are tabulated in Table III.
They might be considered to be a set of standard forms for the synthesis of
duplicators. In fact, lacking more suitable forms, Whiteley has suggested the
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binomial coefficients for certain higher order system transfer functions. The
step function responses of the binomial filters are shown in Figure 16, and the
corresponding frequency response functions in Figure 17. It has been noted
that, in the language of operational mathematics, these methods of describing
the response are equivalent. Therefore, the adjustment of a linear transfer
system' s parameters resulting in a transfer function with a unit numerator and
a characteristic equation with binomial coefficients guarantees the responses
indicated.

The transient responses of the binomial filters are not optimum for many
applications in the sense that they are relatively slow. The frequency response
characteristics show a corresponding attenuation of even the relatively low
frequencies.

Another rather simple configuration for the ipterstage couplings of a
pulse amplifier has been suggested by Butterworth2o. These interstage circuits
are designed so that the poles of the normalized system transfer function are
evenly distributed on the unit circle in the left half of the complex plane.
Such a location of the poles (roots of the characteristic equation) is illustrated
for systems of orders one through eight in Figure 18. The corresponding step
function and frequency responses are shown in Figures 19 and 20.

Interestingly enough, Whiteley, in compiling his table of standard forms
for unit numerator transfer functions, used the characteristic equations of the
Butterworth filters for the first four orders. The frequency response character-
istics may be seen to fulfill the condition which he stated as a criterion -
approximately unit amplitude ratio to 0.9 of the natural frequency. In fact,
the designation "maximally flat" is given to the Butterworth configuration in
filter design theory.

The standard forms (transfer function coefficients) for the Butterworth
filters are shown through the eighth order in Table IV. It would be possible
to extend this table by analysis since the definition of the distribution of the
poles implies the definition of the characteristic function. This has not been
done, however, due to the computational labor involved.

Note that the standard forms for the Butterworth filters are similar to those
for the binomial filters in that the coefficients are symmetrical. This phenomenon
is indeed typical of all characteristic equations whose roots lie on the unit circle
in the complex plane. (The binomial characteristic equations are special cases
whose roots all lie at the minus one point.)

The step function responses of the Butterworth filters are, by comparison
with the responses of the binomial filters, faster, and not surprisingly, more
oscillatory. Nevertheless, for many purposes, they represent a close approach
to intuitive concepts of optimum duplicator responses. They served, in each
case, as the starting point for the iterative experimental determination of the
"optimum" unit numerator transfer functions by the application of the minimum
integral of time-multiplied absolute-value of error (itae) criterion.

When the minimum itae criterion is applied to the determination of the opti-
mum unit numerator transfer functions of various orders, the standard forms of
Table V are obtained. The corresponding pole locations, step function responses,

WADC-TR-55-66 U1



and frequency responses are shown in Figures 21, 22, and 23. With regard to
these various mathematical equivalents, it can be seen that the application of
this arbitrary criterion has not resulted in the selection of a family of
systems with similar and progressive characteristics as the order of the system
is increased, This is, in a way, a disappointing result, for it had been hoped
that it would be possible to extrapolate the experimental results to the selec-
tion of standard forms for systems of still higher orders than it was possible
to investigate.

Just as the responses of the optimum Tystems are not greatly different from
those of the Butterworth filters, the standard forms are not greatly different
either. The greatest difference is in the fifth order standard form. This cor-
responds to the greatest difference in the time response. In general, the
standard forms defined here have coefficients which are slightly higher for the
low orders of the complex variable and slightly lower for the higher orders of
the complex variable than the corresponding Butterworth standard forms. No in-
terferences on this basis, however, seem warranted.

The criterion has selected responses which are much faster than those of the
binomial filters but which are less oscillatory than those of the Butterworth
filters. The "goodness" of the selected responses might be classed as a fortunate
phenomenon of engineering science. Presumably, the value of the congruent standard
forms is correspondingly high.

In the case of linear transfer systems with unit numerator transfer functions
(also called zero-displacement-error systems) the itae criterion may be represented
as a surface in a multidimensional space which has the dimensions of the transfer
function coefficients. The surface (line), its shape and minimum point have al-
ready been illustrated for the second and third order cases in Figures 7 and 13.
The multidimensional surface itself cannot be graphically represented for systems
of order higher than the third. Instead Figures 24 and 25 show sections through
the surface for the fourth and fifth order systems. These sections are obtained
by adjusting all but one of the coefficients of the system transfer function to
their optimum values. This one coefficient is then varied throughout a range on
either side of its optimum value and the corresponding variation in the value of
the itae criterion is plotted. In Figures 24 and 25 the curves denoted by the
letters "b", "'c", etc. are the sections through the multidimensional surface
obtained by varying the indicated coefficients in this manner. Several step
function responses which result from the non-optimum adjustment of a transfer
function constant are illustrated adjacent to the corresponding non-minimum value
of the criterion function. It may be seen, from these figures, that the adjust-
ment of the coefficients of the lowest powers of the complex variable in the
standard form is the most critical both with respect to the character of the step
function response and with respect to the value of the criterion. The same situa-
tion obtained throughout the investigation, although the higher ordered cases are
not illustrated in this way.
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ZERO-VELOCITY AND ZERO-ACCELERATION-ER•RO SYSTEMS

The class of linear duplicators with unit numerator transfer functions,
while basic, represents only a small fraction of the possible linear systems.
The numerators of possible system transfer functions are almost infinitely
variable. By confining attention, however, to duplicators with no steady state
displacement error, the normalized transfer function nunmrator polynomials are
limited to those which include a constant term of unit magnitude. This would
still leave open for consideration a large number of polynomial numerators, of
an order equal to or less than the corresponding denominator, if an arbitrary
choice of polynomial coefficients were allowed. In servomechanism design practice,
however, there are two limiting cases, the zero-velocity-error and zero-acceleration-
error systems.

The steady state error of a servomechanism may be shown to be

e(t)•..=Cor+C, dr+ .d2 r.a ...... .(Io)

In terms of the generalized transfer function constants shown in the transfer
function

C(A) PA+Pm,.,-A+...+- P2 A- , A+ ' (19)R(X) Q, An + Qn-, X.1 , .... -+. QzAZ.÷ QA +Q0

displacement error coefficient Co = 0 when P0 - Qo

velocity error coefficient Cl 6 0 when Pi 1 Q,

acceleration error coefficient 02 - 0 when P2 - Q2

Therefore, in considering the zero-velocity and zero-acceleration-error systems
as limiting cases from among all the possible systems with polynomial numerator
transfer functions, only two different numerators for each order of the denominator
will be selected. The optimum transfer functions (standard forms) for systems
with normalized transfer functions

C(s5) - 1 (20)•(s) Sn + C n -,S"+...+ ÷clSe+ q 13 +

have already been found. The possibilities of finding standard forms for zero-
velocity-error systems characterized by the transfer function

C(s) = ,C1+
R(s) Sn -- -n ... +C z(2 q1S +

and zero-acceleration-error systems with the transfer function

,C(5) = 's+ q,6+I (22)
R(S) sn + qn-, "+.... + * qz sor- ql i

will now be examined in turn.

WADC-TR-53-66 13



It may be noted that CI =Je dt and C2 te dt for the error response to

aunit step input, and that low (or zero) values of these integrals have already
been rejected as suitable criteria for optimum response. On an experimental basis,
at least, no suitable combination of system parameters could be found which would
give displacement step function responses in accord with intuitive concepts of
a good response for many of the zero-velocity and zero-acceleration-error systems.
This is by no means to say, however, that the itae criterion may not be applied
to select the "tbest" possible response.

Figures 9 and 10 have already been presented to show the possible responses
of second order zero-velocity-error systems and the corresponding values of the
itae criterion. An arbitrary selection of the damping parameter T. 1.6, as
optimum, may be made on the basis that further increases in the damping parameter
result in a negligible improvement in the response.

Very much the same situation obtains with regard to the third order zero-
velocity-error system with the transfer function

C(S) - CS + 1 (23)
R(s) ..s 3 +bS2 +CS+ I

For arq given value of "fb" the step function response will improve indefinitely
as the parameter "c" is increased. The value b - 1.75 is optimum according to
the itae criterion, and the value c - 3.25 may be selected as marking the onset
of diminishing returns.

The standard forms corresponding to the minimum value of the itae criterion
for the zero-velocity-error systems through the sixth order are shown in Table VI.
The corresponding responses to step functions of input displacement are illus-
trated in Figure 26. Large peak overshoots and rapid accelerations are a con-
comitant of zero-velocity error. The alternatives suggested by Whiteley, who
used peak overshoot as a criterion, tend to have a persistent error which the
itae criterion will not tolerate. A compromise which may have some merit in this
case is afforded by the zero-velocity-error systems which have transfer function
denominators identical to those of the binomial filters (Table lTI). The step
function responses of these systems are presented in Figure 27. Note that while
the responses exhibit less overshoot and less rapid accelerations than the optimum
responses of Figure 26, they are, at the same time, appreciably slower.

The case of the third order zero-acceleration-error transfer system is simi-
lar to the third order zero-velocity-error system in that the itae criterion
diminishes in value indefinitely as the value of the "b" parameter is increased.
The value c = 4.9 is optimum and the value b - 3.0 marks the point where little
improvement in response results from further increases in this parameter.

Other standard forms for the zero-acceleration-error systems through the
sixth order are shown in Table VII, and the corresponding step function responses
appear in Figure 29. As in the case of the zero-velocity-error systems the step
function responses, while "best" according to the itae criterion, may still leave
something to be desired with respect to peak overshoot. The systems defined by
Whiteley' s standard forms suffer from the same defect as before; that is, they
tend to have a persistent error. The binomial zero-acceleration-error systems,
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therefore, may again prove to be a suitable compromise. The step function re-
sponses of the binomial zero-acceleration-error systems are shown in Figure 29.

It is worth reiterating that while these responses are relatively slow,
they may, theoretically at least, be reproduced to an arbitrary time scale.
The itae criterion lays heavy emphasis on a rapid response in non-dimensional
time, and the overshoots, undershoots, and rapid accelerations are an inevitable
feature if rapid responses of zero-acceleration-error systems are required.
Another criterion, such as ftei dt, would penalize the first overshoot more

heavily, but it is dubious that this criterion would select a zero-acceleration-
error system response clearly superior to the one selected by the ;tae criterion
(fo"t I e I dt).

None of the higher ordered zero-velocity or zero-acceleration-error systems
have good responses as adjudged by intuition. It may be that the procedure of
optimizing the response to a step function of input displacement for zero-velocity
and zero-acceleration-error systems is misleading. Optimizing the responses to
velocity and acceleration inputs, however, would lead to not greatly different
standard forms, and the responses to step functions of input displacement would
still be relatively poor. Design compromises are indicated. Systems with good
responses to step functions of input displacement and small but finite velocity
and acceleration errors probably represent an over-all optimum. Standard forms
for such systems remain to be discovered.
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SUGGESTED APPLICATION OF THE CRITERION AND OF STANDARD FORMS TO DESIGN

If a standard form is available for the type of transfer function
involved in a particular design problem, its use represents a simple,
powerful and accurate synthesis procedure. The elementary steps involved
would be:

1. Write the differential equations of the system.

2. Develop the system transfer function, leaving in literal form
the constants which may be adjusted by design.

3. Normalize the transfer function (equivalent to a time scale change
in the time domain).

4. Solve algebraically for the values of the design variables which
will make the transfer function denominator conform numerically to the
appropriate standard form.

5. If it is a matter of choice, the real time scale of the response
may be adjusted by the selection of suitable design variables.

6. The system will have the desired response.

Mathematical operations involved comprise the simplest algebra and
the direct LaPlace transformation (usually accomplished by inspection).
The use of standard forms does not involve solving for the roots of
equations, plots or graphical constructions, integration, or inverse
LaPlace transformations. It is a true synthesis method in that it leads
directly and unequivocally to a description of the required system in
terms of its design parameters.

The standard forms for the zero-displacement-error systems appear
to have immediate application to the design of the many servomechanisms,
regulators, and instruments which have transfer functions with unit
numerators. They further give rise to a new class of multistage pulse
amplifiers with a novel and unique adjustment for optimum step function
response.

In those cases where standard forms are unavailable for the exact
type of transfer function involved, the use of the most nearly approxi-
mate standard form will lead to a very rapid estimate of suitable system
adjustments. This estimate may then be refined by other methods. Of
course, it may be hoped that standard forms will eventually be developed
for all cases of practical interest to the designer of linear systems.

Initially, in the experimental synthesis of dynamic systems with
parasitic non-linearities, an approximate linear mathematical synthesis
is often carried out as a guide. The rapidity and ease with which this
might be done by standard forms would seem to recommend them for this
purpose.
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If analog computation is employed in the study of linear or non-
linear systems for which no standard forms are available, the itae
criterion nay still be used as a unitary figure of merit for the rapid
evaluation of a large number of configurations.

In the case of systems with multiple outputs, such as an aircraft
under automatic control, the criterion, suitably weighted, could be
applied to the several outputs simultaneously and the sum of the weighted
itae criterion values would be an over-all figure of merit for the system.

Finally, since the application of the criterion requires an origin
in time, it may appear that the standard forms developed from it are not
suitable for the optimum synthesis of servomechanisms operating on con-
tinuous signals in the presence of statistical noise. The fundamental
concept of linear filter theory, however, is discrimination against the
noise on a frequency basis. Phillips, as has been pointed out above,
suggests the selection of a form for the servomechanism system transfer
function and subsequent adjustment of a design parameter to minimize the
root mean square error in the presence of given spectra of signal and
noise. There is no reason why the form which is selected should not be
one of the standard forms defined by application of the itae criterion.
The design parameter which is reserved for the optimizing process is the
time scale of the standard form response. This is the equivalent of
saying that the natural frequency of the system is placed between the
signal frequencies and the noise frequencies in a way which gives the
least root mean square error in following the signal and rejecting the
noise.
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CONCLUSION

Standard forms can provide a quick and easy method for the synthesis
of optimum dynamic response in a variety of applications. Where, as in
very high ordered linear, non-linear, or multiple output systems, the
available standard forms themselves are not applicable, the itae criterion
still has exceptional merit of its own, and permits the rapid and unequiv-
ocal experimental selection of optimum system adjustments. There does not,
however, appear to be any theoretical limit to the number of standard forms
which may be developed for both general and special applications to linear
systems. Eventually a table of standard forms similar to a complete table
of LaPlace transforms should be available for all cases of interest. At
that time the synthesis of linear systems to have optimum transient re-
sponse will become a simple, straightforward matter of algebra instead of
the involved and often baffling problem which it has been in the past.
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APPERDIX I. DEFINITION OF SYMBOLS

r(t) a input to a transfer system
c(t) U output, or response, of a transfer system
e(t) = r(t) - c(t) - transfer system error
E(s) = R(s) - C(s) = LaPlace transform of error
w(t) = transfer system weighting function
W(s) U C(s)/R(s) = transfer function of a linear

system
WOJW) a frequency response function
iV-1
0 a angular frequency

- natural angular frequency
A = LaPlace complex variable
s = A/Wo = normalized LaPlace variable
t = time
Pi,Qi a transfer function coefficients
piqi = normalized transfer function coefficients
ai,b,c,d,... a normalized transfer function coefficients
T W= damping ratio
0C =j Z a root of a transfer system characteristic

equation
leo = phase angle at the frequency Wo
Ci a error coefficient
Si(x) = sine integral function
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APPENDIX II. DERIVATION OF THE NORMALIZED ThANSF7R FUICTION

In general, linear transfer systems of the class known as duplicators
may be described by an explicit differential equation of the form

+• Q,_ n-(Q t + (24)

in which Pi and Qi are constants and m!n. The corresponding transfer

function is

QA p, ... + fAZ +',PA + (25)
R(A) Q4n+... *+ QAZ +÷QPA + Qo0

Equation 25 may be put in a more convenient form for some purposes by
a normalized process, which is accomplished as follows:

1. Define a constant 01such that

n~ (26)

2. Define new coefficients for the denominator terms in equation 25 by

qj n-.Q (27)

and new coefficients for the numerator tenrs by

pi: = ,,. Q 0~o , 2.. M (28)

3. Divide the numerator and denominator of equation 25 by Qn and apply
the definitions of 26, 27, and 29. The transfer function then becomes

C(A-_ P n•"n m- W_
Rc) An1 M.~.& O~l'-. (29)

1ý. Introduce a new complex variable s such thit

s= _L (30)
Coo
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APPENDIX II. DERIVATION OF THE NORMALIZED TRANSFER FUNCTION (contd)

Then the transfer function reduces finally to the normalized form

C ( presto) . + Pi P mPo (31)
R ('S) ý 5 n -i"4 4 - +nqsnSz... q2,-- 5,+ |

Equation 30 is equivalent to the substitution of a new independent
variable in the original differential equation, where V = - ot. It is
important to note that the transfer function of the system has been
reduced to a form in which the coefficients of the first and last terms
of the denominator are unity.
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APPENDIX III. ANALOG COMPUTER TECHNIQUES

The development of the standard forms outlined in this paper depended
on the availability of the transient responses associated with a very
large number of combinations' of transfer function coefficients. The com-
putational labor necessary to obtain these responses by conventional
operational methods would have been prohibitive, especially for the higher-
order systems. An electronic analog computer afforded the only practical
means for obtaining the transient responses and the corresponding criterion
values.

Figure 30 shows the basic computer circuit diagram for obtaining the
response of a second-order zero-displacement-error system which has the
normalized transfer function

C(s)) = I (32)
R(s) - s+bs

If r(t) is a unit step function applied at t = 0, then R(s) l/s, and
the transform of the output response is

C(S)- 1 (33)
s(.s2 +bs+ 1)

The transform of the error response is given by

E s) - R(s)-C(s)
S••+1 •÷! (34)

... (sz. bs+) 0
SCZ+ bs+

s(s 2-- bz-o 0)
(62+ b.S)C,(5) 28

It is possible, with the aid of a computer technique developed by Beck
to extract the ebror response simultaneously from the basic computer
circuit which is used to generate the output response. The required
connections are indicated in Figure 30.

The LaPlace transforms of the output response and error response of
a second-order zero-velocity-error system are given by

C(s) = bs + I (35)
s(s2+ bs+ I)

and

E(s) = 32 (36)s(:sz+ bs + 0
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APPENDIX III. ANALOG COMPUTER TECHNIQUES (contd)

for an input step function. Beck's method may be applied to extract
these responses from the basic computer circuit of Figure 30, although
the required connections are not shown.

In a similar manner, the output and error responses of zero-dis-

placement-, zero-velocity-, and zero-acceleration-error systems of higher
order may be developed without using differentiators, only one basic com-
puter circuit being required for each order.

It is possible to use an electronic analog computer to obtain the
values of most of the criteria discussed in this paper. Criteria values
are produced simultaneously with the associated responses. The computer
circuit diagrams for eight different criteria are illustrated in Figure 31.

The multipliers which were used by the authors in this study were of
the servo type. The absolute value unit consisted of a high-gain amplifier,
a limiter, double-throw relay, and three computer amplifiers, arranged as in
the circuit diagram of Figure 32. The high gain amplifier and limiter com-
bine to deliver an output of zero volts when the voltage x is negative, and
-25 volts when x is positive. The driver amplifier performs an inversion,
and closes the relay whenever x is positive. The routing of the x signal
through the relaycontacts and the inverting and summing amplifiers is such
that the sign of the x output is always positive.
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TA 'LP I Tllr TC1TTH-HV-t?7T'PZ STATILTTY CRITERBION

Cha racteristic riquation Criterion

s
2
+bs+l - 0 b>O0

s
3
+bs

2
+cs+l - o bc-l- 0

s84+hs3+cs2+ds~l - 0 bcd-d2-b
2 
>0

a5 +bsý+*cs3+ds2+es+l = 0 bcd+b-d 2 -b 2, >0

s6 +bs5+cs4+ds3+cs2+fs+l .0 (bc5+hf-d 2 _b 2 e)e+b2 c-bd
-be f-if 2 +bfe+cdf >0

s7+bs
6
+cs5+dsL+es3+fs2+Cs+l _ a (bcd+bf-d

2
_b
2
e) e+b

2
cg-bdg

-bc~f-f
2
-bc+d~bfe+cdf >0

sB~s7ca
6
ds+ek~f5+s2hs~l - 0 (bcde+ 

2
g~bef-bdg-b e _be~

.-d
2 
e-f-bcch+dh~bfe4-cdf f

+b
2
cfg+bc

2
dh-b ceh-bcd g

g-b~g cd+b e+b2ed .b~ghbd

-b 2 f-bdf Ig-cd 2 h+cdf'd 3
g

+b 2 gh-bfdg-bh 2 +d fh >0

TABLE I! Y~FIH0DS OF SFRVOYTHANISY SYNTti;3ST

Yethod Author Assumed Input Criterion Rema rks

Stability Routh-Murwitz Nune necessary Stability Det'ý,.ines stabilityr only.
Diagram B rown Brown shows how t-.e degree of

stability ray be determined.

Frequency Nyquist Constant amplitude Stability, maximum tMost widely used mrethod. Depends
Response Bode sinusoids of all gain, stability on rules of thumb for shaping the

Nichols frequencies margins frequency response. Essentially
a cut and try method.

Root Locus 'Ivans None necessary Stability and dpegreo Criteria are not explicit. A
Voore of stabilityf. Tran- graphical method easy to apply.

sient and frequency Only one gain may be adjusted
response may be in- at a time.
ferred a.nd suitable
criteria applied

T~i--Frror iener Inpuat and noise must Yinimum root mean A powerful method, but difficult
Phillips he stationary tir' anusre error, to apply. Leads explicitly to
Bubb series. Power spec- required transfer characteristic.

tral density Trust be
knoan.

Transient. Draper et al. Step function or Speed of response, Charts available for first, second
Response Drown-Hlall other simple type overshoot, minimum and third order systems. Higher

Cldenhourg- fe , error coeffi- ordered systems must be cut and
Sa rto riuis cients tried. Analog computers a great
B re toi help.
Others

Standard h;h teley Step function Maximally flat The standard form essentially is
Forms frequency response, the desired transfer character-

or a given peak istic. Very easy to apply. The
overshoot, criteria may be questioned.

Table III

THE BINOMIAL STANDARD FORMS

s '+3W0 s '+34 s+W'0

s4 +4t~bs '+6w,'s'+4w~s+W4

s'+5wos¾10w's '+lOW'SS2+Bw's+,A

5'+6We s5+15U'S4+20w,,s'+l5w'es'+6ws+w6
s'+70 0
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Table IV

THE BUTTERWORTH STANDARD FORMS

s2 +2. O.ja
2 +2. OW2S+WS

s' +2. 6w s' +3. 4Wc.2S2 +2. 6w' )sa+w'

s' +3. 24w (s'+5. 24 2,s' +5. 24IS2 +3. 24(ý,S+(

s'+4.5woae'+1O.12,so +14. 6(2+1.6 +1O.1W5+45~+

OS +21.84w5a2 +13.14W s+5.12w~s+w.)

Table V

THE MINIMUM ITAE STANDARD FORMS
ZERO DISPLACEMENT ERROR SYSTEMS

s 3+1. 75(,b S
2 +2. 15w, s+(

s'+2.lwois 2+3.44 S 2 +2. 7ws+(b4

s'0 +2. 8% s'+5 .04S3+5.54S
2 +3.4t.~a+wig

s'+3. 25c., s'+5. aJ~s4 +8. 60 2 a 2 +7.45W4S2 +3*95c.'s+wg

s8 +5. 21Dt,)s 7 +12.8C)W S 
6 +21. 6Ows 6 +25. 75w's'+22. JW*ýS2+l8.3DWIS 2 +5. 15w~s+Wig

Table VI Table VII

THE MINIMUM ITAE STANDARD FORMS THE MINIMUM ITAE STANDARD FORMS

ZERO VELOCITY ERROR SYSTEMS ZERO ACCELERATION ERROR SYSTEMS

S
2
+3 .2tw s~w( s2+2.9?70 S

2+4.94.i's+w'

s2+1. 75w. S2 +.254t.s+(4 a4 +2. 7Lj0 a +7*88w0
2s +5.92&~s+w'

s*24ws4 F5.+4w ~sa 4 +9.94w a '+l2. 44 2 
2+7.36wo's+a'

s 5 +2. 0 s'+3.93wos%+1l 68 4 1 56 02 19 s+8.R 0 s+wgl

so+6. 12(.a 5 +6. 71(4S4 +8.5&.),a 2+7.07c gS 2 +6. 764s+wg,
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r(t) TRANSFER c(t)
SYSTEM

INPUT OUTPUT

(RESPONSE)

C (t)= (!') w (t -'r)d'r

C (s)= R (s)W (s)

FIGURE I. A TRANSFER SYSTEM

AMPLIFIER MOTOR

R I(S ) I C(s)
K JSt +BS+ (s

INPUT ERROR OUTPUT

(b)

FIGURE 2. A LINEAR POSITIONING SERVO-MECHANISM DEFINED BY
THE DIFFERENTIAL EQUATION

J d.c + Bdc + K, =Kr
dt' dt

AND THE TRANSFER FUNCTION

c(s) K
R(s) Js'+Bs +K

TYPICAL RESPONSES ILLUSTRATED ARE:
(a) THE IMPULSE RESPONSE, OR WEIGHTING FUNCTION

(b) THE STEP FUNCTION RESPONSE

(c) THE SINUSOIDAL RESPONSE
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3 aa " k1.0

.40 ld M Uc-I.0

2 O(.(F o •j .8

8-
z

UNTBE STABL a< m.6

U

0

0 I_3

COEFFICIENT C

FIGURE 3. STABILITY DIAGRAM FOR THIRD ORDER SYSTEMS
DEFINED BY THE TRANSFER FUNCTION

c(s__. = I =I
R(-s1 s3+ bs2-t-cs+lI (s+-I- = ).s +K•)p+.82

Oc I2 3(

SHOWING CONTOURS OF CONSTANT LOGARITHMIC DECREMENT, 0(

AND UNDAMPENED FREQUENCY SQUARED, ,62.
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FIGURE 4. STABILITY DIAGRAM FOR FOURTH ORDER SYSTEMS.
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4
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02 
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-I0 0 .2 .4 .6 .8I .D 1 4 16 I 0 2 -

DAMPING RATIO,

FIGURE 7. CRITERIA FOR THE STEP CURVE A, INTEGRAL OF ERROR, THE CONTROL AREA.

FUNCTION RESPONSES OF SECOND CURVE B, INTEGRAL OF TIME-MULTIPLIED ERROR,

ORDER SYSTEMS THE WEIGHTED CONTROL AREA.

CURVE C, INTEGRAL OF SQUARED ERROR.

CURVE D, INTEGRAL OF ABSOLUTE VALUE OF ERROR.C(S) i

R(s) = s+21fs+- CURVE E, INTEGRAL OF TIME-MULTIPLIED ABSOLUTE
VALUE OF ERROR.

7-

6

w

'J 4
> lb

z, 3_0

-I

jov

01

0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

DAMPING RATIO, T

FIGURE 8. THREE ADDITIONAL CRITERIA FOR INTEGRAL OF TIME-MULTIPLIED SQUARED ERROR,

THE STEP FUNCTION RESPONSES OF SECOND INTEGRAL OF TIME-SQUARED ERROR-SQUARED,

ORDER SYSTEMS. AND INTEGRAL OF TIME-SQUARED ABSOLUTE

VALUE OF ERROR.
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FIGURE II. STEP FUNCTION RESPONSES OF
THIRD ORDER SYSTEMS WITH THE TRANSFER

FUNCTION C(s) I

R(s) s 3+bs 2 +cs + I

6

w
M b= 2 edt

- 2.0 1.__1.25

o• 1.50, 1.250-2.0- co

0 1.5 2.0 2.5 3.0
COEFFICIENT c

FIGURE 12. INTEGRAL OF SQUARED ERROR

AND INTEGRAL OF ABSOLUTE VALUE OF
ERROR CRITERIA APPLIED TO THE STEP
FUNCTION RESPONSES OF THIRD ORDER
SYSTEMS.
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LINEAR 1=0.7
1.0/"" ITAE =2.O

LINEAR 1=1.0
ITAE r.3.0

NONLINEAR (A)
ITAE= 1.9

tu -NONLINEA (B)
ITAE= 1.45

0 -NONLINEAR (C)
a. I TAE a 0.55

cir

a0

5 10 15
NONDIMENSIONAL TIME

FIGURE 14. STEP FUNCTION RESPONSES
OF LINEAR AND NON-LINEAR SECOND

ORDER SERVOMECHANISMS.

SERVO A -!-o--I- 2 de +e~o
dt 2  I+4(e+_e_) dt

dt

k=O; e+- -e kO

SERVO B d+ke-Ie= 0
dt 2  dt k=2; e+ de =0

dt
k=l1; 2e+, de 14

SERVO C -•de +k=O I" >0
dt 2  k=-I; 2e+ de-t -- < 0
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FIGURE 15. STEP FUNCTION RESPONSE
OF THE IDEAL LOW PASS FILTER.
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w
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001
NONDIMENSIONAL TIME

FIGURE 16. STEP FUNCTION RESPONSE

OF "BINOMIAL" FILTERS, DEFINED BY
THE TRANSFER FUNCTIONS

R(s)= (s+ I)n n =1,2, ..... 8
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-40 4500

NONDIMENSIONAL FREQUENCY

FIGURE 17 FREQUENCY RESPONSE FUNCTIONS

OF THE BINOMIAL FILTERS,

R(Jw) OJ+)w l~, .

I ST ORDER +j ?ND + j 3RD +j 4TH+j

O0 0 -00

5TH ORDE +j 6TH +j 7TH +j 8 TH +

o0 0 -0 0

FIGURE 18. POLE LOCATIONS OF THE BUTTER-
WORTH FILTERS, FIRST TO EIGHTH ORDERS.
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FIGURE 19. STEP FUNCTION RESPONSES OF THE

BUTTERWORTH FILTERS, SECOND TO EIGHTH
ORDERS.
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PHASE <

0 n

-500.5 0 2-0 00

NONDIMENSIONAL
FREQUENCY

FIGURE 20. FREQUENCY RESPONSE FUNCTIONS

(AMPLITUDE AND PHASE) OF THE BUTTER -

WORTH FILTERS, SECOND TO EIGHTH ORDERS.
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2ND ORDER+j 3RD 0 +j' 4TH 5TH +J

0 0

0 0 0 0

o 0

-j 0 j ,j

1 0 0 0

6TH 0 ODR7TH 0 REjP TH 0oNE00
0 0

0o 0 0

0o 70

0 0 0

FIGURE 21. POLE LOCATIONS OF THE OPTIMUM
UNIT-NUMERATOR TRANSFER SYSTEMS, SECOND
TO EIGHTH ORDERS.

1.06

w

05
(L'

NONDIMENSIONAL TIME

FIGURE 22. STEP FUNCTION RESPONSES OF THE
OPTIMUM UNIT- NUMERATOR TRANSFER SYSTEMS,
SECOND TO EIGHTH ORDERS. THESE RESPONSES
HAVE A MINIMUM INTEGRAL OF TIME -MULTIPLIEt

ABSOLUTE VALUE OF ERROR.
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FIGURE 23. FREQUENCY RESPONSE FUNCTIONS

OF THE OPTIMUM UNIT-NUMERATOR TRANS-

FER SYSTEMS, SECOND TO EIGHTH ORDERS.
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COEFFICIENT

FIGURE 24. SECTIONS THROUGH THE MINIMUM

POINT OF THE ITAE SURFACE , FOURTH ORDER
UNIT- NUMERATOR SYSTEM.
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FIGURE 25. SECTIONS THROUGH THE MINIMUM

POINT OF THE ITAE SURFACE, FIFTH ORDER

UNIT-NUMERATOR SYSTEM.
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FIGURE 26. STEP FUNCTION RESPONSES OF THE

OPTIMUM ZERO-VELOCITY -ERROR SYSTEMS,

SECOND TO SIXTH ORDERS.
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FIGURE 29. STEP FUNCTION RESPONSES OF THE

BINOMIAL ZERO- ACCELERATION -ERROR SYSTEMS,

THIRD TO SIXTH ORDERS.

-S2C(s) sc(s)

RS=

FIGURE 30. ANALOG COMPUTER CIRCUIT FOR

OBTAINING THE RESPONSES OF A SECOND

ORDER TRANSFER SYSTEM.
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e e SM
fdt fe' dt

t t

e- SMfed e -SM SMfed

e AV e-A:
fiei dt fed

SM= Servo Multiplier AV= Absolute Value Unit

FIGURE 31. CIRCUITS FOR MECHANIZING PER-
FORMANCE CRITERIA ON AN ELECTRONIC

ANALOG COMPUTER.

x l t ) ,R 
L A

D. G3. LIMITER DRIVEF-R EA

AMPLIFIER

FIGURE 32. THE ABSOLUTE VALUE DEVICE.
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