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SUMMvARY

The propagtion of continuous plane progressive sound waves

whose pressure variation is of the order of one tenth of the averge

pressure is discussed. It is shown that regardless of the initial wave

form shocks will develop at the leading front of each wave after sev-

eral wave lengths of propagation. Assuming the resulting stable wave

form to be saw-tooth in character the attenuation of these repeated

nhoks Is derived from shuck wave theory. Writing %/P I 1 4

where p2 -p p is the pressure discontinuity at the shock, it is shown

that

S=' A

where i Is the value of S at the distance, X equal t. X, • A /

is the ratio of speaLflc heats and A, is the wave length of the sound.

This result is discussed and compared with previously published studies

of the attenuation of single N waves and found to be compatible, Also

It is shown that Fay's solution of the hydrodynamic equations includIng

the effects of viscosity, which shows the ntable wave form to be a saw-

tooth, may be extended to yield the attenuation rate derived here.
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The Attanuat,.on of Ve_ High Amplitude Sound Waves

L Introduction

The problem of concern here is the attenuation experienced

by a very tdgh amplitude prog-ressive, plane sound wave - one whose

peak to trough pressure variation is of the order of one tenth of the

mean pressure. Consider then a wave whoae pressure variation tnt-

tially can be descrlbed by a sine function. As is weU known, the

wave will be distorted as it propagates since the peaks travel at a

higher velocity than the troughs and consequently there will be a ten-

dency for the gradient to Increase on the leading front of each wave

2and decrease on the trailing front. Fay has shown that a limiting

form of the wave when one includes viscosity as an attenuative process

is 6aw-tooth with the leading front approaching a vertical slope. !t

would bc posasible, by means of an Integration of the hydrodpraW4 -

equations to trace out in detail the process of this deformation up

to the development of the shock front, but, for the purposes of our

discussion, all that is needed is a treatment which will yield the ap-

proximate distance of propagation necessary for this deformation to

become complete. To obtain this It is necessary to recognize that

the instantaneoas velocity nf propagation of a given part of the wave is

equal to the sum of the sound velocity at the given phase of the wave,

*See, e. g., pp. 30-41 of lRef. 1.
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S
c, and the local p.article velocity, u. Th!is, in Figure'. (1),

A

F ±.

which represents a sine wave, the point marked A will travel taster

than B because the temperature at A is elevated and consequently

c > c , and because the particle velocity, y. in the direction of prop-
A B

agatlon is greater than that at B. For an adiabatic wave,

where i s the rp.tio of specific heats.

A sufficient approximation (for the present purposes) will be
to assume that the relation between 2' and u is that which obtains for

blfinitesi.mal sound waves, and that u at the peak rerr.nans constant as

it distorts. VWith Lhts approximation It is possible to calculate the

distance of propagation necessary before poirnt A overt.akes point B,

If c is the sound velocity at point B, ', the density of gas at point

B, then this distance, X, will be given by
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Co

where the relation ha" beon used.

y 4C

ThJ.u., ___- =- '

Using C = where p is the pressu.re at point
01.

B, one obtains /
i- '

Thfor ._

It Ls thus clear that for excess pressure amplitudes, p',equal

to 0. 05 of tho ambient atmopheric pressure, it is reaaonable to expect

shock wave character, at the very most, several wave-lengths from

the sourcet, and, moreover, thiz result is correct as to order of mag-

nitude regardless of the form of the inItiatly produced wave. Conse-

quently, of prime Importance in considoring the attenuation of very

high amplitude sound waves is the attenuation of repeated shock waves,

and it is to this problem which attention will be restricted.

There are two ways of approaching the problem. The more

fundamental approach is typified by the work of Fay2 , and involves a
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solution of the hydrodynamical equatIons including the attenuative pro-

cess of viscosity which, as poLntcd out, limit., the maximum pressure

gradient. (Without such attenuation one is led to multiple valued

solutions after the wave crest o'ertakes the trough.) In this fashion

Fay was able to show that a "stable" wave form is approached which

is saw-tooth. A second procedure (one developed in detail in this

paper) which has proved to be lucrative, can be used and is charac-

terized by the application of the Rankine-Hugoniot shock relations.

One starts out by assuming the wave has a saw-tooth character and

the leading edge is characterized by a discontinuity in pressure, den-

sity, particle velocity and temperature. Application of the shock re-

lations leads to the result that there is an entropy increase across

the discontinuity, or shock, and this entropy increase can be inter-

preted as a. space rat.e of decrease of amplitude. It is to be noted

that this procedure leads to a calculation of attenuation rates without

specifically mentioning any attenuative processes. (The substitute for

an explicit formulation of these processes is cintainsd in the assump-

tion of the presence and stability of the discontinuity.) It will be

shown in a later section of this paper that the attenuation obtained by

application of the shock relations may also be obtained from a result

given by Fay".

The development given here will be a first order theory in
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the Rense that all but the lowest orders of significant terms will be

dropped. Also the waves, it will be assi•,ed, are exclusively plasn

progressive waves.

II. Theory

A. Propagation of a Discontinuity.

The results which will be obtained in this section A can be

found in many tet. (see e. g., Refs. (3) and (5)) but, for the sake

of completeness, a brief outline of the proceduxe will be given.

Consider a plane discontinuity moving to the right with a

velocity U. The subscript 2 refers to the mndiuum to the loft of the

Sdiscontinuity and I to the medium to the right of the discontinuity.

Pn, P . pressure

(2 -~ density

Z2 1 spet1fic entropy

u2 , U1 - particle velocity

T2, T, = temperature

S, ; el specific infernal energy

It will be assumed that the gas through which the discon-

tinuity moves is a polytropic gas, i. e. , p/,p = RT and e = C T, wherev

C i1 thue zpocific hieat at constzat volume.
V

i• suppose a velocity of flow, -- U, is superosed on the whole
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gas. Then the discontinuity will rematn fixed; gas wUl enter the dis-

continuity from the right with a velocity v ,-ý, T) -. and leave with a

The three shock relations assert that (1) mass, (2) momen-

tum, and (3) energy are conserved for the motioL They lead respec-

tively to the three relations,

,,f ., ••u-,(1)

- (2)

-V C . ),, . can be eliminated from these equations In

the following way: Using the polytropic character of the V.8 and the

defLiltion of / /-•v R/cv , .q. (3) can be written in the

form,

From (1) ani d),

((5)

S=-: _ - , ('when'ce -,'- y'.7 /t~
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Now for a polytropic gas,
CL

(7)

Write(8

where I Is of the order of 0.1.

Substituting (6) and (8) Into (7) and expanding it in a power

series, it is found that the lowest order non-zero term in - S1

of the third order in 6 and is given by

S L t L. j¢

- - K '/ (9)

B. Attenuation of a Relvated Shock Wave,

Consider now a vibrating piston in a semi-infinite tube (see

Figure (3)). Assuxno it to be vibrating for a sufficiently long time so

p,•• • *- -- -----

thrat thce var~at~o• cf W~rodvnarni-a] and thcrmodynarnmcal qu;antities

at any, given point In the tube is truly perlodlc and that for all points

the average mass flow is 7ero a-id the average temperature is uniform.

Thon, if thn ampiltulJ. of thc piston Is sich as to rvn.eratb- -,laves whose

*See, e. g., p. 41 of Ref. 5.
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pressure variation is of the order of one-tenth of the averago pressure,

after traveling a few wave lengths from the 14ston the fronts will have

developed shocks, Assume that the pressure wave form at this dis-

tance Is saw-tooth and can be pictured at a given time as in Figure 4.

The amplitude of the discontinuity will decrease with X.

-A /
A_1x

Figure (4)

At a given point, say X X , the variation In pressure with

time is indicated in Figure 5.

CL.

tNb

Figure (5)

Assume that the transltion from a to b is Leentropic - a

completely reasonable assuwption if the period is very much greater

than the .mean tUma between molecular collisions. On the other hand,
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the change from b to c Involves an Increase in entropy as calculated

in the previous section. For unit cross section of the wave the in-

stantaneous rate at which entropy increases as a wave passes X can0

be obtained from (9) and is given by

But -

Tt'
dit

and-hence, 7 /63• (i

where E is the mechanical energy of vibration per wave length per

unit cross section and p is the average pressure. In writing (10),
a

the velocity of the wave is taken as c , where c Is 'he sound ve-
0 0

locity at the mean temperature of the gas. This can be justified if

it is noted that U is just equal to the mean value of u + c on both

sides of the shock to within first order terms.

The energy E per wave length per unit cross- section is

- P o ) 2. (1 2~)

With the assumption about the shape of the wave,

*See, e. g., p. 159 of Eef. 3.
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and -() -AY

Thus, using (11) and (13),

F__ -.- y A (1.4)

and from this ._ - I / F (1.5)

In terms of the rate of change of J
•- - - ---

-- y A (16)

If (16) is Integrated an Interesting relation ensues, namely,

/ / Yt/I )-Xo
~yf X - I --To A. ,(•

C. Discussion.

It Is seen from (17) that a- plot of against the number

of wave lengths, , yields a straight line whose slope is whrnlly

determined by Y/ . It •s to be noted, as hne would expect from the

nature of the Initial assumptions, that the attenuntion rate is Independ-

ent of the 9.ttenuat've process or the constants which characterize It.

The crltical assumption Is tat the wave form becomes ,and remains

aaw-tooth in character. Thus, any attenuatlvp process which results

in the presence and stability of the saw-tootn wave form will lead to
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-n attenuatior, whch Is Independent of the constants of the attenustive

procens.

It Is worth emphasizing that the only entropy change which

occurs in a wave length is associated with the shock itself, and that

no entropy change occurs on the gradually sloping part of each wave.

Consequently for waves which de,-j.rt slightly from the assumed saw-

tooth form (but which nevertheless possess a shock front and a gmd-

,aelly sloping part) of complete importance ,,i lcalating the rate of

energy loss is the magnitude of the discontinuity. The nature of the

gradually sloping part of the wave is involved only In the determina-

I tion of the fraction of the wave energy the aforementioned power loss

represents.

D. Compnlson of Results with Related Theoretical Work.

In this section the results, equations (15), (16), and (17),

will be discussed in the light of earlier related work by Dumond,

Cohen, Panofsky and Deeds4 , and Fa.
4

Dumond et al. derive the attenuation rate for the N wave

pictured in Figure (6),

F -6)x

Figure (6)
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where -

They find that

E- -AY= A

This result could also be obtained by the same methods

used here. Applying (11) to the propagation of the two shock fronts

of the N wave, one obtains by adding the two equal loss rates,

and since Z = a ) it is seen that Eq. (18) follows.

As pointed out by Dumond et al., the propagation of the N

wave is w pmnompined by a lengthening of the, wave. TI•t this Is so

is clear from the fact that tine velocity, U, of the forward shock Is

given by the average of u ÷ c on the two sides of the shock. It is

thus equal to Ca- - . Similarly, the velocity of the rear

shock is U4. . Thus,

c/ A _ -/* . -

where the reLation u = ,••/° C.. has been used. For the re-

pete shc •,.,e ~e hnth eocty of consecutive fronts

• is the same to within terms of thw first order in c4  , and consequently

____________ - - ____________________ -- ___________________ ____________
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the .'.ve length is constant.

It !s worth ,vhile showing that the alternate hydrodynamic

method Dumond et al. use to dprive Eq. (18) may be very nicely ap-

plied to the repeated shock and yields Equations (15) and (16). Con-

sider a linear pressure gradient in a sound wave represented by AB.

Then, if 0 represents the point at which the particle velocity Is zero,

3B X ~/5

St I L 17

A 1 7.
every given point on the line AB propagates away from this point with

Pa velocity (7' 1/.)41 , whore u is the particle velocity at the given

point in trhe wave. (The point 0 propagates v\.th the velocity of sound,

o.) his is % result of solving the fundamental hydrodvnamica.i

equations. Thus, after a time Interval, dt, the pressure curve would

be described with respect to the displaced coordinmte, x -t C. t

Howevr, if there arc_ shoc1 rro.,ots DE and T,7, so that (7D5-: r:presents

1-. one wave of a repeated shock of the typý, being discussed, then DE will

propagate vrith a velocity which is the mean value of c + u on both
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sidez of hQ 'h,',c ,hich IQ qual to c. Thus, a wave wh'ih satis-0

fles b-th roqulrcnients io onc whose typical wave lenjth is represented by

LK1•J. (1'J Is the half height of the discortithuity.) Now DJ =SoA.-•

a ~ -d D ~ 134) F'ron-, the qgeomctry

- - -- - - -,,, ei ctf

(16) is derived.

FRys2 result, Eq. (14), can be used to derive (16) of this

paper. To show this, his equation is recast in terms of the variables

used here.

.- < 777 2L& _;___,,,.,___<o_._) (
A~ .&Z4

= -kinernatih confficient of viscosity

W :2.7T-~

As an example, determine the value of oIf , , it the

Note that the factor 8 in Eq, (14) of Ref. 2 should be 2.
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fundamental of the wave is to have a maximum. value of u -'"5-
'~ ~ 0 4.•// -- .- 1,, .••l

V- ;oCrr , 7-A y 0

It is found that L.ý.,k oý c,"ý3 • -

Thus, for < , the hyperbolic s91no can be replaccd by its

argument and the amplitude of the harmonics is inversely proportional

to the order of the harmonic, all harmonics being in phase. More-

over, since c.4 = O,cft,1 O I o., <X for K <. 4 meters. With

conventional measuring instruments the wave will appear to retain its

saw-tooth character for many wave lengths of travel. For example,

if a microphone's response drops off seriously above 10 kc (the 100th

harmonic of the 100 c. p. s. wave), the calculation indicates that the

distance of prop;rgatton before a significant departure from saw-tooth

character would be observed Is approximaLely 15, 000 meters (assuming,

of course, plane wave propagation).

To continue ,with the original ,pur-.ose, siippose

Then -_6€,, "- TT --

%.here 5 Is r•wr, hy F7q. (8).
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'.'hici cheCoks Eq. (A6).

It is perhaps worth emphastlzAnc a point which has been made

by Fay .- if one adopts the approach, which inos;t people in acoaztics

think of nmturally, of reducing a wave to its Fourier components, then

the attenution of a saw-tooth wave occurs principally in its high fre-

quency components. The procedure by which a saw-tooth wave main-

tains its form is by the low frequency components feeding energy into

the higher harmonics and the higher harmonics losing vibrational en-

ergy through the action of viscosity. Thus, in Eq. (19) the term

y lA In the nomrerator 4x associated with attenuation, and a large

v.lue of .y*nK (e. .1, n^ >>» ID" In the example taken) is evidence

of _ large r..te of ,.ttenuatlon.

Another way of looking 4t this Is to calculate the rate of

enermj loss of a sav.-tooth wave, whIch ma rntairu its shape, by as-

stirninr, that the totl r,'te 1f enercT" loss Is the suin of those Itie to

the harmonics, issuming each harmonic is attenuated at a fractional

rate which is glven by lInfn.tes•.mal amplitude acoustics. Let F be

,r-. ",.br.tionm a m :,,, densit., associ.fted w!th the nt' harr,•onIc; a nd

7 be the total energy density. Then
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,)r sa saw-tooth v: nvlý I-,L -

With our assumption,
•.• = =,o 4-

.lere c' 1,Is the value of a< (dcfincd below Eq. (19)) for the funda-

mental.

S4•__ -\_ _ __ _._ _

The sumn•ation MI' the nuenerttor doos not converge. Or, the other

hand, If the nssunption Is made that the ha.rnonlcs Sf order gr.ater

.than r'y N" ar j absenrt, then,

- -
Et

Icor Is ma nu iet t,,- .S dr nber J 0ar-

inonics NI w~hich is noccssa-ry to g.ive the rette of attenuation given by

-F'or a runjamreiital of L00 c. p. s. and ~0. 03,
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Since there ara more than ten times as m,.ny harnmoiuc. between 1 and

13 meacycles as belo'L,, I me•ganycle, this caiuulatton wo,11d indicate

thlat mnost of the energy lost by viscous •,,ction cccurs for components

-bove I megacycle. While the details of this calculation cannot be

uorrect, this last conclusion is correct wtll better than Ord.r of =ag-

nitude accuracy.
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