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This report is concerned with the quantitative analysis of some of 
the factors which determine the strength of cordage strands and plied yarns. 
When integrated with the analyses covered in Technical Report Siiaber 6 on 
this project, a complete picture is given of the eifc-rts of the factors 
considered on translation of the strength of cordage fibers into singles 
yarns, strands or plied yarns and, by direct projection, into cordage ropes. 
The problem is solved by a combined mechanical-statistical analysis similar 
in type to that given in Technical Report Number 6,, assuming simplified 
idealized geometrical forms and a normal distribution of yarn properties„ 
It is shewn that such assumptions produce results which agree, within the 
limits of engineering accuracy, with experiments . results. Experimental 
checks were available for: 9 rope strands of curving twist structure, all 
made of Manila abaca fiber; a small Seasevieria three-ply rope; and small 
size bundles of Manila abaca fiber used as laboratory models to illustrate 
the effect of number of singles in a strand or plied yarn.. 

The factors which are mathematically analyzed for their mechanical 
effects Include: singles yarn twist; strand or plied yam twist* number of 
singles which are stranded; elastic properties of the singles yarns; and uni- 
formity of the mechanical properties of the singles yarns. 

For the strand and rope structures s+udied, tranalatlonal efficien- 
cies of fiber strength of the order of bOf> were observed. It is shown that 
significant losses occur in the translation of the strength of the yarns into 
this strands and ropes, efficiencies u* the order of 75r being theoretically 
calculated and experimentally verified. However, the major cause of the low 
overall h&fc efficiencies of translation of fiber strength to strands end ropes 
resides in the low fiber to yarn translr.ticn of only 55#« The losses from 
yarns to strands are indicated to be the results of both low uniformity of 
yarn elongation to break and also the inclinetion of yarns to the strand and 
rope axes, both effects being equal in magnitude fear most of the structures 
studied. Such equivalence, of course, would not necessarily exist in other 
structures. The coefficients of variation of yarn rupture elongation of a- 
bout 10$ for the yarns examined in this work appear, on the basis of the in- 
herent variability of 20-30$ for their constituent fiber to be the result of 
nonuniformities created by processing. Such levels of yarn nonunlformity do 
not lend themselves, at present, to significant reduction by alterations of 
manufacturing techniques, and thus it appears that improvements in yarn to 
strand or plied yarn translatlonal efficiencies can only be practically 
accomplished by strand and rope twist reductions or by the use of oore exten- 
sible fibers and yarns. 

Aspects of the simplified geometric analyses are checked by comparing 
the results with the results of a more precise geometrical analysis of plied 
structures as developed by Chow (5). The differences between the results of 
the two approaches are shown to be negligible for the practical range of 
twisted structures, hence Justifying the assumptions leading to the simplified 
analyses. C 

! 



-"' SUMtffvKY (continuation) 

The results era presented In a graphical runner over a range of the 
variables far in excess of those- coaooaly found and presently used in cordage 
structures, This is coc3ist<sr.t vith the long-range philosophy of the research* 
vhich is airsed at feseessment of fibers not presently used in cordage structures 
The graphically presented results are icsoediately applicable to the engineer- 
ing calculations of the strength both of cany cordage structures t  and also 
other twisted structures such as tire cord and sewing thread. The limits of 
application are defined by the validity of the siaplifled geometric forms 
assumed. 
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Previous work (1,2) has shown bow the translation of strength froa 
fiber to singles yarn of cordage type can be predicted with considerable 
accuracy from a combination of the effects of inherent fiber properties and 
yarn geometry. This report extends this work to higher order cordage structures 
such as strands, plied yarns, and ropes on the basis of a similar analysis. 
To effect such an analysis, a method has been developed for treating the 
statistically difficult range where the sampling is too small to utilize large 
approximations and yet large enough so that small sample methods are too cum- 
bersome. Such intermediate sample sizes represent the case of plied yarns, 
strands, and rontt*.    The results are presented graphically in a manner which 
is immediately applicable vith engineering accuracy to many cordage structures. 

In Technical Report Number 6 on this project an analysis was made of 
the factors which affect the translation of fibei strength into singles yarns 
on the basis of inherent fiber properties and yarn geometry. The basic load 
equation derived in Technical Report Number 6 is: 

h 
Py - 2 J 7?-b(jL + ey coe2 ©y)cos2 0y n^ r dr  (1) 

where Py Is the load supported by the yarn, a and b are constants found from 
the fiber stress-streiii relationship, ey is the yarn elongation corresponding 
to the yarn load Py, Oy is the helix angle at any point in the yarn cross 
section, nu is the percent of fiber unbroken at an elongation ey cos2©y(3), 
and r is the radial distance from the yarn center. Important assumptions in 
the analysis leading to Equation (l) were: (a) the number of fibers in any 
element of yarn cross sectional area, 27?"rdr, is sufficiently large so that 
nu nay be defined uniquely and continuously as a function of both the strain 
in the fiber and the standard deviation of fiber rupture elongation, under the 
assumption of a normal distribution of fiber rupture elongation; (b.t t'oe fiber 
diameter was sufficiently smaller than the yarn diameter so that Oy might be 
defined continuously as a function of r. Clearly, neither of thtos assumptions 
is valid for a plied yarn consisting of two or three or even seven singles 
yarns, where the singles yarn assumes the role of the fiber and the plied 
yarn that of the singles in the above expression. Nor is It obvious Just how 
many units or what disaster ratios are necessary to make these assumptions 
valid. Thus, while the reasoning used to develop th-? above integral is valid, 
it must be replaced by a summation for the case of plied structures. In addi- 
tion, since the plying operation way in general introdur* excess lengths Into 
the constituent singles yarns, the term eycos^o in the load Equation (1) above 
is not necessarily the true sti-ain on the fiber and must be modified to in- 

W* elude ;rlmp. 
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Th* following analysis ie divided into four parts; 

1.) The geometric effects of ply ar«d yarn twist in various con- 
figurations on strength translation 

2.) The effects or yarn variability on strength translations. 

3o) The combined effects of geometry and variability on strength 
translation and comparison with experiment. 

k.)    J3xamic.ition of assumptions. 
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I. EFFECTS OF PLY TWIST 

A» Determination cf Ply flelix Angle 

The axial load transmitted by a yarn inclined at srt angle 0- tc the 
plied yarn axis is given by the expression: 

? » P„ cos Op   —• — ...... (2) 

where P is the load parallel to the plied yarn axis and Py is the load in the 
inclined yarn. Thus, each yarn in a plied yarn or strand contributes a  support- 
ing load equal to Its own load tines the cosine of its angle of inclination 
with the plied yarn axis. This angle of inclination of the yarn is taken to 
be that ox+ lined frosi the expression (h): 

tan Cp - SfrHpRp  (3) 

where Bp is the turns per unit length of the plied yarn and Rp, the plied yarn 
helix radius, is the distance from the center of the plied yarn to the center 
of oass of the given singles yarn. It will be shown later, when the various 
assumptions are examined, that this definition leads to results that are in 
good agreement with the length - twist relationships that exist in the yarn of 
plied and stranded structures. 

Three specific examples will illustrate the method of determining 
the angles of inclination,, Op. By definition: 

Ry • yarn radius 

Rp » helix radius of plied yarn, the distance from the e<»**ter of the 
plied yarn to the center of mass of the singles yarn in question. 

Q_ m nlled yarn helix angle, the anirie between the axis of the singles 
yarn in question and the plied yarn axis. 

Example 1: A two ply yarn, yarns of circular sect4 on (see Figure 1). 

Rp- *y 

tan 0p » 2^-HpRy 

Example 2: A three ply yarn, yarns of circular section (see Figure 2). 
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FIGURE     I 

TWO   PLY   YARN 
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Rp      -    Ry 

)p   =orcton    2 IT Np R, 

THREE   PLY   YARN 

FIGURE      2 

FIGURE      3 

<# 

FIFTEEN   YARN   STRAND 

(a) 

RD = 0.694 R 

0P = orctan    2 T N p (0.694) R 
* 
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Rp - 2 yfay
5"- (y2 - l.i55Ry 

tan ©„ - 2.310/?N R 
P       P y 

Example 3: A 15 yarn strand consisting of a single core yarn surrounded 
by Ik wedges (see Figure 3) <> 

Since all 15 units ere of about the sane area, each has an area /5*R* . For 

TT 
the circular core the area is 7hcc^  so that: 

and thus; 

rc - 0.258R 

The core yarn obviously is inclined zero degrees to the strand axis. How con- 
eider one of the yarns in the external ring. Its shape and dimensions are as 
shown in Figure (3b). For Ik units in the outer ring, the angle ex « 12.85*» 
By taking moments about the center of the strand, it can be shown that R_, the 
distance between the center of the strand and the center of mass of each of 
the external yarns is: 

Rp - 0.6?kR 

and thus: 

tan 0 - 27MJ (0.69A)R 

• 1.386^HpR 

Similar analyses can be Bade for any structure after the geometric 
configuration has been defined or approximated. Thus fro»i the geometric 
configuration and the turns per unit length of the ply. an angle can be found 
whose cosine is the load transmission factor froc singles yarn to plied yarn. 

While tui* very siaple relationship exists between plied yarn twist, 
helix radius, and load transmission there may, depending on processing, be 
two other important effects of ply twist. These are: a change in singles 
yarn helix angle; and an introduction of excess lengths iuto the yarns o Thew 
factors will now be Investigated on the basis of two assumptions: 

1„) The helix angle of the yarn aB it lies in the ply can be 
determined from: 

tan  Gyp  »  2^-KypP.y 



• 

Page 5 
Case Nuabar 0^7736 

where Hyp is the nuaber o? turns per unit length of the yarn as it liee in 
the ply. That is, the angles between fiber and yarn axes are not effected 
by the fact that the yarn axis is itself helical. As is shown later, this 
assumption Introduces negligible errors into the results of the Mechanical 
analysis. 

2.) Excess fiber lengths are created by a reduction in yarn helix 
angle and can be expressed as the difference between the fiber path length 
required for the initial singles helix angle and the length required for the 
final singles helix angle. 

B. Changes in Helix Angle of Singles Yarns due to Plying 

The helix angle of a singlesyarn has been defined (3) as tan 0 - 
2#*HyRy where Ny is the turns per unit length of the singles yarn and Ry is 
the singles yarn radius. When a yarn is plied it is possible for the helix 
angles to be either increased, decreased, or unchanged, depending entirely 
upon the method of plying. In the case of pure twisting, that is, when the 
group of singles yarns can be considered to be clanped at both ends (see 
Figure l<a), twist can be considered to be inserted into the yarn or a turn 
for turn basis with ply twist. Whether this added twist is positive or 
negative depends upon whether the yarn and ply twists are in the same or the 
opposite sense (8 on S, Z on Z, or S on Z, Z on S). The usual case is for 
twists in the opposite sense, so only this case will be considered. The total 
final equivalent twist in a yarn froza a strand will then be (Byo-Nn) where 
Hyo is the total turns originally in a given length of singles yarn and Bp is 
the total turns in the corresponding length of ply. But since the length of 
a helical path is (length of axis), where 0 is the helix angle, the singles 

cos 0 

yarn length is (ply length). Thus if Up is the nunber of plied yarn turns per 
cos 9~ 

unit length of plied yarn axis, Up   - H-cos 6L turns per unit length of 

^ "« cos "5. 
singles axis are subtracted from the yarn by plying and thus: 

tea Wyp - 2^(Nyo - *p cos 0p) Ry -— (k) 

where Hy0 is the original turns per unit length of the singles yarn- If during 
the plying operation, a twist of Nyi turns per unit length of singles axis 
is added to the singles yarn, then tan Oy * 2 7r(HyC- Npcos Op+Hyi) and the con- 
dition for perfect twist coflspeasation, as shewn in Figure (kb)f  should bet 

Hyl - «p C0B °p " *  <5) 
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This relationship does not seem to hold precisely in practice although it is 
a good general guide. Diucspancies are discussed in more detail later, as 
are the results of Chow's (5) more precise nBtfcenatical analysis of the geo- 
metry of plied yams es it affects Equation h above. 

C. Excess Lengths 

If a singles yarn is partially untwisted by plying, the helix 
angle of any fiber in the yarn cross-section will decrease in a Banner des- 
cribed by Equation'* and consequently so vili the required helical path length 
of each fiber. But unless then is opportunity for the excess lengths to be 
absorbed by a nev geometric coufi^jiration, the final total length of any fiber 
in a given length of yarn untvisttd by plying will be the same as it wa& be- 
fore untvi8ting. Ths per cent difference between the original length of fiber 
and the length required for the nev helical path, baaed on original length; 
will be called the excess length or crimp. C3.e«rly the excess length will 
vary from zero at the center of a yarn, where untwisting has no angular effect, 
to a Maxima at the outside of the yarn. The magnitude of these excess lengths 
in yarns of circular section will now be analyzed. 

Consider a singles yarn with original external helix angle defined 
by tan 0yO • 2#~HyoRy, where Ny0ls the original yarn twist and Ry the yarn 
radius. Then, the tangent of the helix angle at any radius ry, Is equal to 
2 2-Nyory with a corresponding helical path length per unit length of yarn: 

A  _ /TTTmSTT" _ /i ^ ii»-2w 2  „ 2 
(cosO o'r 

Jl + (tan2Q0)r   - /l + k^xfQ rf      (6) 

Row untwist the yarn until the number of turns per unit length is By* The re- 
quired length of the helical path per unit length of yarn is now: 

Jl + l^2Ny2ry
2   — (7) 

and the per cent difference between the two lengths 1st 

Jl • l.j\2r/ -Jl + k7tWz 

-A^W 
x 100   (8) 

Equation (8) defines the excess length, or the amount the fiber path Mist be 
extended before the fiber bears any appreciable tensile load, and thus must be 
included as a part of the fiber extension term in any expression for yarn 
load. 

In deriving the expression given by Equation (l) for yarn load, ef, 
the strain in a fiber, was taken as eyecs2©-, where ev is the ys.rn  strain and 
0y the helix angle for the given fiber. While eycos*0y still expresses the 
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total strain in the direction of the path, it does not define tie part of the 
fiber strain which is load-tiering If any crlnp is present. An expression for 
load-bearing fiber strain is derived as follows: 

Let: 

ly - the singles yarn length 

1+ m  total fiber length in a length 1^ of yarn » ly 

COB Oyo 

9yo m  yarn helix angle before untwisting 

9y • yaiii helix angle after untwisting 

& ly m  yarn extension 

4lf a total fiber path extension due to AL. 

( A If)-, * fiber path extension which is load-bearing. 

ey - yarn strain • al 

h 
(ef)p a load-bearing fiber strain 

From previous work (3): 

A 1 f a AL COS 0y  — — — ——- (9) 

and, it is clear that: 

t Alf }P    "      Alf    *    Vf1 M .    X ,     ] v •'J.cos ¥^„    cos ©VJ  'yO V«»    Wy. - -do) 

where the subtractive expression on the right side of Equation (10) represents 
WK  total criiqp, or excess iengtn created by the untwisting. Equation (10) 
assumes that the lord required to stralghter. a crimped fiber is negligible 
compared to the load required to extend the sane fiber in tension by an equal 
amount, Since: 

<ef)p - (Alf)p        m (u) 

then, by combining (9), (10) y and (11): 



Page 8 
Case !?UBJber 0^7736 

(ej m   &1   co»d - 1 f 1    - 1 

(12) 

£ 

co*9. yo 

(13) 

which after simplification becomes: 

(ef)p - eyco.0yco.0yo^i _ COBO^ 

coSS*"- 

Noting unat In the original expression for yarn load as a function of yarn 
strain, as given by Equation (1), the term eycos20y represents the load-bearing 
fiber strain of a fiber, (e^)p, the above Equation (13) can be substituted for 
Bft  resulting in: 

Py . 11*      » - + e„cos:?„^cosS,, - yoc08Sy " 1 + co»°yo 
COSOy- 

COSOy     XL. 

|+ ef 
b      /(,  1_ \ mjjl*****j*_ 

,/i + k7r\^li + u^^yr2      CFTpJ 
:I 

•(!*) 

(l + VT^r^lOO 
rdr 

Reference to previous work (1,2) which gave general solutions for the SBXJMUM 
value of Py In terns of the several parameters when Hy « Hyo; "ill indicate the 
conqplexity of the problem when Hyo *ad Hy are not equal. Even assuming that an 
analytic solution could be found, an extremely large nuatoer of curves would be 
required to give any sort of generality to the work. Accordingly, no general 
solution was found. Instead, a piecevise eusaaatior. woe used to obtain approximate 
solutions for several specific cordage structures. 

The procedure is as follows; Divide the yarn cross-section into five 
parts by inscribing four circles with radii \\t  2Ry, 3R„, and liRy and assume that 

each one of the rings so for 
midpoint (see Figure 5)c 

d can be characterized by its properties at its 
5- -t 
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FIGURE      5 

DIVISION      OF       YARN      CROSS-SECTION       FOR 
APPROXIMATE        SOLUTION 
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Let: 

p* » Load per unit weight supported at midpoint of the Ith ring. 

e* m  Elongation of nifipoint of thc> itb ring. 

r. • Radiue to midpoint of the ith ring. 

Ar * Half width of any ring. 

0. m Helix angle at midpoint of the ith ring corresponding to the yarn 
twist. Ny 

A^ - Area of ith ring. 

p m Average strength per unit weight of fiber. 

P m Total yarn load. 

Since the weight is proportional to the area, the load in the 1th ring will bej 

Pt - KfejAi 

where K is a constant. Then the total load supported by all the rings will bej 

4 
P     mj>        p^   COB^Ojnu 

i.l iro (15) 

This is entirely analogous to the expression: 

9*2 fat  cos2Q r^ 

But: 

Ai *   ^[fri + Ar)2 " (ri ' AT)?]    m kirrt*v 

and inspection of Figure (5) shows that Ar - rj^ so that: 

Ai " ^'l'i 

and thus: 5 

P - k7rTlK )    p^ cos^i ^  m mmmm  (l6) 

If the etructure were 100$ efficient, the lead would be p, the mean fiber strength 
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per unit veight^  tirces the total area,, or; 

Kp£ Ai       .... „ „ „   (17) 

Thus the per cant efficiency of translation cf strength of the structure can 
be e:cpresse<3. as° 

77     « Py(100)       U^r-jK   /     yiricos2«inu      /       pjr-jCOsSQjUy 

#3      ELj _ . **t .... (18) 

fa *   P^K 
i-l 

By assuming a given value of ey the corresponding vaxue of >? can le found as 
followsi 

a.) Calculation of (ef)p for each ring from Equation (13), utilizing 
the known geometry of the yarn to specify Oyoaod 0y for each ring* 

b.) The determination of appropriate value of P< corresponding to 
f*~' (ef )p *or each ring from the fiber stress-strain curve. 

c.) The calculation of nu for each ring from (ef)p, the mean 
fiber rupture strain e^, and the coefficient of variation of 
fiber rupture elongation V* 

d,) The suaaaticn of Equation (13) for all rings. 

By successively repeating this procedure* for different values of ey, a maximum 
?7 csn be found* 

The values of pi must in generel be found directly from the average 
fiber stress-strain curve, aince vith excesu lengths the range of fiber strains 
for any given jnrn strain is so great as to make the linear appr-oxination used 
and described in Technical Report Humb^r 6 too Inaccurate. 

The stress-strain curva used here differs slightly In type from that 
employed in previous work in vhich a plot of average grass per denier versus 
strain VBB  used* The modification in the p:.-esent vork io to express the stress 
ordinate as average grams per average denier. Both types of curves for a given 
sample of Manila Abaca fiber are plotted in Figure(6). The fact that the curves 
formed by using the average grams per denier does not shov the mean value of 
breaking stress occurring at the mean value of rupture elongation is a matter 
which required a modification factor in theoretical calculation of yarn efficiency 
as described in Technical Report Number 6» 

The reason for using the curve of average grams per average denier 
rather than the average of thee grains per denies will become clear after observing 
the fomstion of c^-ach of these quantities followed by comparison vith the load 
expression in vhich they ere v-sed. 
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In forming a curve of average grsas per denier versus strain, each 
fiber is weighed separately and the grams per denier of the fibers at given 
strains are averaged at enough different strains to delineate a curve. In 
plotting average grams per average denier, all fibers in the sample are 
weighed as a group, and the average loed at various strain is divided by 
the average weight, in der.ier per fiber, cf the whole original fiber sampl* 
to give the average grans per average denier. Sxprassed in analytic form, 
the procedure for finding the average grams per denier givesj 

*i --njjj- (X9) 

while the average grams per average denier is determined from: 

f_   H    r 
g(e) - nfl^Z)+l n<H^J       nv'l-N^J+l pl -%u)^    Xftt/    .n(l-Nfu)    (ao) 

\ " <Hfu> 

A simplification can be made to Equation (19) by realizing that vhen the values 
of p± are fairly symetrlcally distributed, the average value is very nearly/pi 

Therefore: 
n p n 

7_ t*i) ZL  (Pi) 
f(e) - n(T37>1 n(l-I. )•! ftt7"       _ -**--iu' 

a(Ifu) 

n(l-Ifu)+l 

(21) 

(*1> 

What is desired is the total load supported by a bundle of fibers ( Z p«) at any 
given elongation, in terms of the stress-strain curve parameters. From Knu*ii«n 

(zi): 

ilPl - f(e) 1 .  <y± 
nd-N^+1 

) 

and from Equation (20): 

Z>i - «<«> W [Hfu(*0 
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Thus to find / p^ from the f(e) curve it is  necessary to know ?~      \vi) or 
n(l-Nf(>l 

the total weight of the unbroken fibers at any given •train, while use of the 
g(e) curve requires only a knowledge of tie total original weight of the bundle. 

In the case where average filer rodulus is independent of tenacity, 
there would of course be no difference between the two Equations (20) and (21), 
but in the general case, such a dependence can be shovn., 

From Figure (6) it can be seen that the higher tenacity fibers have 
the lower modulus, or in other words ttat ^_n 

rli^nri 

While results of previous calculations compensated with a correction 
factor for the "drooping" characteristic cf curves defined by Equation (21), 
the most recent method is the tore logical procedure in the sense that it pro- 
perly expresses the load-carrying capacity of the aggregate structure. It 
offers the additional advantage that tie average curve so defined has the sane 
appearance as a single typical fiber at res e-strain curve, while the former 
method introduces a distortion such that tie average curve does not resemble 

•'.'       any single given test curve. However, sires experimental efficiencies are based 
on the mean breaking tenacity of tla elements, It may, in some cases, be 
necessary to modify theoretical efficiencies obtained by use of the average 
grams per average denier curve so that thej are consistent with the foregoing 
convention* This is conveniently done by multiplying theoretical efficiencies by 
the factor: 

g(«tt)  
mean rupture tenacity 

where g(eB) is the ordinate to the average grams per average denier curve at 
mean rupture elongation. In general, it has teen experimentally found that for 
cordage fibers and yarns the factor given above is extrsaely close to 1. 
Again, it is emphasized that the expression given above is not an arbitrary 
correction factor, but instead is necessary in order that theoretical and ex- 
perimental efficiencies may be expressed on the same basis, namely, »<*an rupture 
tenacity. 

Thus far a circular yarn cross-Bert ion has been assumed. For singles 
yarns, or yarns removed from strands, tills seems to be a good approximation, 
but examination of strand sections shows tint a yarn lying in the strand has a 
cross-section which may deviate considerably from the circular. An exact theo- 
retical analysis of excess lengths for fches s distorted cases would be extremely 
complex geometrically but not particularly raluable practically because of the 
variety of shapes assumed by the yarns ands? different stranding conditions. 

f Fortunately, the results are not so critically dependent on the exact shape of 
the yarn that certain rough approximations lo not give satisfactory results. 
This aspect, together with deviations !:•». results produced by differences in 
cross-sectional shapes, is covered iu a su":> iequer.t section dealing with comparisons 
between theory and experimental results, 
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II.  VAKTABILTre 

It vaa pointed out In the introduction that variability of  elongation 
to break aiacng singles yarns in n plied yarn cannot in general be treated in 
the aase manner as variability among fibers in a yarn, and thus the magnitude 
of strength translation will be different for tie two cases. A method is pre- 
sented here the results of which make it possible to predict the effects of 
variability on the strength of snail groups of  fibers or yarns. The results 
also define the minimum size of the sample which gives essentially the saw 
results as the large sample approximation developed and utilized in earlier 
vork (1,2). The analysis applies equally to fibers, yarns, strands, or any 
elements which act as units in a large structure. For purposes of this analysis, 
a bundle of units is termed " parallel" if the geometry Is such that all units 
are subjected to equal strains as a result of straining the group. Thus, two 
or three ply yarnu of uniform geometry represent parallel bundles. The ply 
helix angle in this case necessitates the use of a geometric factor for efficiency 
calculations, which factor is independent of the statistical analysis which 
follows. 

Suppose there exists a certain population of units and the results 
of many tensile tests of such units are plotted as a distribution of elongations 
to break. Then, if from the same population tensile tests of bundles of two 
units are aade, consider the distribution of elongations tn break of the first 
break In each group. Sines the lovest elongation unit is the controlling 
factor, a high elongation unit paired with a low one would give no weight to 
the high one in the distribution. Similarly, it is clear that as the number 
of units in the bundle becomes larger, the average elongation at which the first- 
unit breaks becomes lower. A method for obtaining the theoretical distributions 
of first unit breaks for various bundle sizes has bean derived on the basis of 
a normal population of units and is found in Appendix (11). These distributions 
are plotted in Figure (7)» For present purposes,- the only concern will be the 
mean value of each of these distributions, end accordingly a curve of mean 
elongation at which first unit break occurs versus bundle size has been plotted 
i£ Figure (8), with elongation generalized in terms of t, the number of standard 
deviations from the unit population mean. 

A question now arises as to the utility of these mean elongation 
curves with respect to the strength of a bundle or plied structure. It is ob- 
vious that if a bundle of two units is loaded, the total load will seldom 
exceed that reached when the first one breaks, so it can be said with certainty 
that the mean load for the first break in each bundle will also be very nearly 
the mean maxims bundle load. For example, if bundles of two units were tested, 
the mean breaking tenacity for the bundles would for a linear average stress- 
strain curve be that corresponding to an elongation of ejH>.5CT (see Figure 8) 
on the average stress-strain curve for the population, when e^ is the mean 
breaking elongation for the population and <T  is the population standard devi- 
ation of elongation to break. For the general case of non-linear stress-strain 
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FIGURE 7 

DISTRIBUTION      OF 1st     UNIT     RUPTURE 

|\   IN     A     BUNDLE     vs BUNDLE     ELONGATION 
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curves, it would be necessary to find the mean of the distribution curves of 
Figure (7) with the abscissa scale, t, converted to stress in order to obtain 
the oean bundle tenacity. The results of efficiency at first unit rupture are 
plotted as the solid lines of Figure (10). Here U is the nuaber of units in 
the bundle and M « bC" where <T  is the standard deviation of the unit elonga- 
tion to break and b is the slope of the assumed linear average stress -strain 
curve of the units in the region near rupture. 

In attempting to extend this reasoning to larger size bundles, 
another problem is encountered, namely, that maximal load does cot necessarily 
occur when the first unit breahs. In fact, for large nuabers of units a very 
sizeable portion may be broken before maximum bundle load Is attained. This 
case has been discussed in previous vork (1,2), and the results of this pre- 
vious vork bracket the middle-sized groups. Thus the problem Is reduced to the 
specific solution of some examples of middle sized groups in order to extend 
the analysis of the effects of variability crtwc the entire range from single 
units to infinitely large bundles. The Important practical results of these 
calculations vill be both the ability to predict the effects of number of vuaits 
and also to define the minimum size vhich constitutes an "infinite" size for 
tensile strength purposes. 

An elongation is chosen for the first unit to break, and the pro- 
bability of having the maximum bundle strength occur at this point is calculated. 
A number of other elongations for first unit rupture are chosen and similar 
probabilities calculated. The results are plotted as a distribution of proba- 
bility of occurrence of maximum load versus elongation at first unit break. 

Then similar sets of calculations are made for the cases where maximum 
bundle strength is attained vhen the second unit ruptures, third unit ruptures, 
etc. The method is outlined in detail In Appendix (I) and the results for H • 
k , i.e.; a bundle of k  units, and M - BO are plotted in Figure (9). The 
parameter M is a convenient one to describe bundles(6). It is numerically equal 
to b fl" or bejaV where b is the slope of the linear approximation to the average 

unit stress-strain curva near rupture; <r% the standard deviation of elongation 
to rupture; en, the mean rupture elongation; and V, the coefficient of variation 
of elongation to rupture of the units. 

The relative areas under the curves of Figure (9) represent the relative 
frequencies of maximum bundle loads occurring at the first, second, and third 
unit breaks. Clearly, any break beyond the third has a very small probability 
of producing a maximum bundle load and need not be considered. The average 
breaking elongation can be calculated by taking the weighted mean of all of 
the distribution curves, that Is, the sum of each of the Individual means times 
the area under the curve, divided by the sum of the areas. To find the average 
breaking load, the mean breaking load for each configuration must be modified 
by the number of units intact* atrictly speaking, the total area should be 
numerically equal to unity, but since in calculating averages the same normal- 
ization constant appears in both numerator and denominator, formal normalization 
Is unnecessary here. 
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BUNDLE    LOAD     vs    t 
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The BUB procedure was followed fcr other values of H &nA ML 
(Combining this information vlth bath the translatlonai curves lor first 
unit breaks, and also the nagoitude of bundle efficiencies for very large 
groups of units,a useful graphical representation can he wade es follows: 
It is known that the effect of variability on the moan increases vlth increas- 
ing size of group and thus oust asymptotically approach the value found for 
very large sized groups. It la also known that the effect can he no greater 
than that corresponding to the first unit break, since the elongation at 
maximum load can be no less than that where the first unit breaks. Thus, a 
translational efficiency curve for bundles, plotted versus H, the masher of 
elements in the bundle, mist lie or or above the curve giving the efficiencies 
under the assumption that maximum strength is reached when the first unit 
breaks. Then the general shape and position of the translational efficiency 
curves are known and by calculation of only a few Judiciously selected points 
as above a general set of curves showing translational efficiency of the bundle 
versus H, the masher of units in the bundle can be plotted. This has been 
done in Figure (10), where the curves are represented by the dashed lines. 
The solid lines of Figure (10) represent the results for first unit break. 

There are three iaportan* points to note In these curves: 1.) As 
I becomes saaller, the efficiency can be sore nearly characterized directly 
by the curve of efficiency at first unit break. 2.) As I reaches about 15, 
the assymptotic value can be used with very little error or, in other words, 
a very large sample can be assuned. 30 Vlth other factors remaining constant, 
the efficiency of translation is inversely functional with the umber of units 
in the bundle for small numbers of units. These observations must be interpreted 
with caution because they apply only to translation of strength, although they 
are based on elongation. That is, It is proper to say thtit strength-wise a 
bundle of 15 units froa a given population will on the average translate to 
about the sane extent as a bundle of 100, but it is not true that the average 
breaking elongation will be the same for the two cases. This can best be under- 
stood by following the steps of the derivation .riven in Appendix (i). 

The analysis of a plied yarn containing a core differs from the 
analyst a of aiMlar number of units in parallel since in the former case any 
significant ply helix ac£le imposes a different strain on the core yarn than on 
the exterior yarns. The statistical analysis must take this difference in 
strains Into account. This has been done for seven ply yarns, with the procedure 
outlined in Appendix (III), and the results of the analysis given by the efficiency 
curves of Figure (11),   An int*r(Miti«g feature of these curves is tb« relative 
insensitivity of the results to unit variability for any significant ply helix 
angle. This is true only for the range of unit variabilities covered by the 
calculations. The cause of this apparent insensitivity resides in the somewhat 
Improved degree of elongation balance between the core yarns and the exterior 
yarns with a small increase in unit variability. Such an effect would be 
difficult to demonstrate experimentally since the magnitude of the effect Is 
email. In the case of a large number of exterior yarns with a single unit core, 
as indicated later, little error is introduced by assuming all units to be in 
parallel. 
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FIGURE       II 

THEORETICAL       TRANSLATIONAL       EFFICIENCY      OF 
SINGLES      INTO     7-PLY     YARN      vs       SINGLES       RUPTURE 
ELONGATION       VARIABILITY 
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It is of interest to note that the curves of strength translation 
at first unit break can also be Interpreted ao giving the average strength 
of the weakest link in chains conyocec! of n links. Here the work link means 
simply some arbitrary length of fiber, yam, or plied yarn.  In parallel 
type structures all elements are. at a known elongation, so elongation has 
been chosen as e basic parameter.  In series structures, all elements are at 
the sace load, so load oust replace elongation In the statistical calculations. 
The solid curves of Figure (10) vith m replaced by the coefficient of varia- 
tion of breaking load vill give directly the  efficiency of units in series 
where the abscissa is the number of units in series* For example> it should 
be possible to determine the effect of gage length on tensile strength simply 
by knowing the mean strength and standard deviation of strength at some short 
length and assigning to this length an n of 1. The strength at any longer 
gage length could then be calculated from the efficiency curves given in 
Figure (10) if the only effects of gage length were statistical In nature. 
However, differences between specimens in the short gage length tests might 
be due to factors which would not have acted on a single long specimen and 
thus obscure the results, e.g., rat< of loading, Jav penetration effects, etc. 
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III.    CCMPARXSCB 0? THEORY WITH EXPBRIKBiT 
• • ••!       .       ii i • ttmmmumammm.— •     •   n •—www—w ••• 

A. Excess Lsnpcthe In Yarns Removed from Straud. 

It has been shewn theoretically that the length of a fiber In a 
circular yarn should vary according to the inverse cosine of the angle it aakes 
vlth the yarn axis„ or in terns of helical paraaeters: 

Jt  - fy /i • **%V 

where << f ie the length of fiber corresponding to a length M    of yarn,, Hy is 
the number of turns per unit length o* the yarn, and r ia the fiber distance 
from the yarn center. 

lasts have been performed in which a 20 inch length of yarn ia placed 
under s ccnutant tension, completely untwisted, and all non>throughgoing fibers 
removed, men one by one the taut fibers are cut and the Increased length of 
the yarn measured several times during the cutting procedure. The per cant of 
the total fibers cut is plotted versus the per cent increase in length. The 
theoretical form of such a curve can be derived as follows: 

t 
*"" Consider a circular yarn of radius R. Then the per cent of fibers 

included to a radius r la fi2 x 100 - 100 r2, assuming a constant yarn density 
T3$ R5 

from the center outward.    The length of a fiber at a radius r «• Jty /l ;4 7/^Ry2 

and the per cent Increase in length is: 

 £L —3L 1 x 100 -(/l • kV^r2 - l)100 (22) 
^y        

For small values of kTt^By-x^, /l+^^N^r2 can be closely approximated by 
1+P7T Ry2r2r» *° taat the expression for per cent Increase in length becomes 
lc-{l+2>2&Ar2-l) - 200^-21^2^. The plot then becomes a straight line with 
slope 100 r2 This can be expressed in terms of the yarn 

200 ^V S^K/R./ 
:| surface helix angle 0y as 2 ctn2oy. 

If a yarn la partially untvistei by, aay, plying* after having been 

/ 

mnmt$Smmrmn\j, 

HM^MM 
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spun to an initial twist vhlch gives a helix angle 0yo, it Is clear that the 
distribution of absolute fiber lengths should still be the sane as before un- 
twisting. However, the theoretical length distribution for a yarn vith the 
nev lover angle ©y, will nave a steeper slope. The difference in slopes for 
the original and untwisted yarn is a measure of the excess fiber lengths exist- 
ing in the untwisted yarn.. The distribution of these excess lengths vith 
respect to radius has been derived in Section I, C. 

Figure (13) shows a plot of four theoretical distributions of fiber 
length together vith the experiments results for a "soft" twist yarn series. 
A detailed description of the nature of these samples will be given later. How- 
ever j. for convenience in following Figure (12), the symbol IB refers to a yarn 
(T) before plying whose twist was"soft" (S). All three letter symbols refer to 
yarns from strands, the first letter Y representing the fact that the test was 
performed on yarns from strands where the original yarn twist was soft (the 
second letter S), while the strand twist was in turn soft (third letter S), 
medium (third letter M), or hard (third letter H). Thus, as the designation 
of yarns from strands proceeds from YS8 to KH, the required fiber length should 
decrease^ and thvui the excess length should increase" In each case experimental 
lengths of fibers in yarn removed from strands, as veil as theoretical lengths, 
were determined using the singles twist as it lies in the strand. While ex- 
perimental results of fiber length are not dependent upon the manner in which 
the singles yarns were untwisted from the strands, the twists to be used in 
calculating the theoretical lengths are so dependent. 

The results of Figure (12) can be seen to agree with theory quite well 
so far as the trend is concerned. The four experimental curves are all nearly 
identical, Irrespective of final twist, as would be expected for yarns of 
originally the same twist. The theoretical distributions indicate the distribution 
which would be required la order that all the tail leal paths be exactly satisfied 
with no excess lengths, and thus that the excess lengths increase with increas- 
ing twist removal,»chi*ved by Increasing the strand twist. The discrepancy 
between theoretical and experimental curves for the original IB yarn are probably 
due to errors in both experiment and assumption: 1.) experimental - it is 
possible that not enough tensic- vss sxsrtei os ti*» jam when a large percentage 
of the fibers were still intact, so that the increase in length measured was 
too low. For example, at the 60$ ordinate of Figure (12), the length increase 
is about 0.*$ too low. On a 20" gage length this means 0.06", a small amount 
for a rough measuring and tensionlng system; 2.) theoretical - the assumption 
that «1I fibers lie in perfect helices is clearly not true since much darting 
has been observed. While this darting is of little consequence over the short 
lengths involved in yarn rupture, it will have a tendency to equalize fiber 
lengths over the longer lengths used in the investigation of fiber length dis- 
tributions and thus yield a steeper slope than that calculated,  The long tails 
observed in the upper regions of the experimental curves a\*e undoubtedly due to 
the tendency of a very few fibers in. every yarn to be somewhat stray, that is, 
not really tightly bound within the yarn. 

If the above reasoning is true, then the mt.Jor deviation between 
theoretical and experimental results has been explained en the basis of length, 

1 
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a consideration not valid for the short lengths involved in rupture, and thus 
tensile calculations should be based on the more accurate theoretical values 
and not the experimentally obtained curves. 

I. Strength of Tarns Removed From Strands 

i 

In Section II-C, a theoretical analysis was oade of the strength of 
yarns removed from strands on the basis of the creation of excess lengths due 
to untwisting in the stranding operation. 

As part of the study of factors Influencing the translations! ef- 
ficiency of cordage, a series of Abaca fiber cordage strands cf different twists 
made from yarns of different tvlsts were produced at the Boston Bavy Yard. The 
description of pertinent nominal structure of these strands is given in Table I. 
In all cases strands possess a single core yarn surrounded by either 13 or 14 
singles yarns in the exterior shell. For purposes of efficiency calculations of 
yarns removed from strands, there is negligible effect produced by changing the 
numbers of external yarns. Correspondingly, there Is negligible difference in 
residual singles tvist whether a core yarn or external yarn is used, i.e., it 
is Impossible to experimentally detect such differences. 

TABLB I 

TWIST STRUCTURE OF EXPBUMEBTAL ABACA STRANDS 
All yarns 300 ft./3b, nominal weight 

Strand Twist     Singles Tarn Twist 
(turns/ft.)     .s "c Lies In The Strand 
 tcamui (turns/ft.) 

4.38 3.5Z 
5.* 2.9 
6.9 1.7 

3.8 9.0 
4-8 8.4 
6.0             8.0 

3.9 13.^ 
3.9 13.4 
4.3 13-3 

In all casesf the singles twist as it lies in the strand was 
determined by cutting away all but one of the yarns in the strand, followed 
by untwisting of the single remaining yarn* Length growths were added to 
original strand lengths so that the twist per unit length of yarn could be 
determined. The foregoing procedure is obviously equivalent to removing a 

Strand 
Code 

Singles Tarn Twist 
Before Stranding 

(turns/ft.) 

888 
SSM 
8SH 

6,6z 
6.6 
6.6 

8M3 
SMI 
8MB 

11.0 
11.0 
11.0 

BBS 
8HM 
SHB 

15.0 
15.0 
15.0 

JZX 



» 

Page 20 
Ca#e Kumber CVF736 

« 

single yarn froa the strand by "unwrapping". I.e., holding one end of the strand 
rigidly clasped, nod rotating the free end of any yarn about th« strand axis 
but not it's own axis. By this latter technique, aoet  cf the yarns In any 
given length of strand can be used for tvlst determinations. As will be shcvn 
later, the tvlst of yarn determined by either of the two described procedures 
gives helix angles and excess lengths of yarns as they lie la strands sub' 
stantially in agreement vith those which result from the more rigorous analyses 
cf Schwartz (k)  and Chow (5). Yarne removed from the strands described la 
Table I are designated as YSS, ISM, etc., the initial letter Y, for yarn, re- 
placing the initial letter 8, tor strand. 

The results of efficiency calculations for the full series of ttoft, 
medium, and hard twist yarns removed from soft; medium and hard tvlst strands 
together vith the theoretical efficiencies, vith and without consideration of 
excess lengths are tabulated in Table II. These results were calculated by 
the summation procedures derived in Section II-C. The plus and minus values 
represent two standard errors of efficiency calculated using only the variance 
in experimental strand strengths. 

t 
TABLE II 

COMPARISOH OF THEORETICAL AND EXPERMEBTAL EPPICIEHCTE8 
0? 7ABSS FBCK 3TKAKSS ? 

Initial Final Yarn 
Yarn* Yarn Twist Yarn Tvlst Diameter 
Code    (turns/ft)  (turns/ft)  (inches) 

YS8 
YSM 
YSH 

6.6z 
6.6 
6.6 

3.5Z 
a.9 
1.7 

0.125 
0.125 
0.125 

YM3 
YMM 
YMH 

11.0 
11.0 
11.0 

9.0 
8.U 
8.0 

0.125 
0.125 
0.125 

IBS 
YSM 
YHH 

15.0 
15^0 
15.0 

13. h 
13 A 
13.3 

0.100 
Q.IOO 
0.100 

Eiflcienclee, Per cent 
rae oretleal Theorexical"" 
Ho excese     Full 

Lengths Lengths       Experimental 

58.8 
56.8 
58.8 

56.3 
56.3 
56.3 

5^.7 
Cl> T 

5^.7 

5^.0 
53.2 
51.8 

•>9.5 
1*7.0 
i»5.2 

47.8 
I.T a 

53.6t6 
aU.C*5«* 
36.3±5*» 

k6.2ik 
^.2tl 
U.0+3 

te.915 

* First letter indicateu yarn, second letter twist of yarn, third letter tvlst 
of strand. 

** See text for explanation of these values. 

£ The experimental values of efficiency for the YSS, YM3, YJM, and YMH 
yams are all quite close to the theoretical values computed for full excess- 
lengths. In the cas>* of yarns YSM and YSH the theoretical values are too high 

JC 



^1 
• .1 

•t 

Page 21 
Case Mater 047736 
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since the residual yarn twists are sufficiently low that only the throughgolog 
fibers contribute any appreciable aicount to the strength, although the non- 
throughgoing fibers contribute wore load in yarn ISM than in yarn IBH, since 
the residual tvist in the former exceeds that in the latter. While no precise 
quantitative prediction of the strengths of these yarns can he Bade, it Is 
possible to account for most of the discrepancies as follow*i for the gage 
length to fiber length ratio eaployed in the determinfttion of experimental 
efficiencies approximately one-third of th* fibers were not thoroughgoing. Thus, 
considering only those fibers which are throughgolng, the efficiency Of yarn 
YSH would be 2 x 51.2 - 3^.1>« 8cae strength would be anticipated for the non- 

throughgolng fibers in this yarn, but the magnitude would be swell and con- 
tributing to the efficiency in the order of 36.3-3^.1 • 2.2)1. For the IBM 
yarn, where the residual twist is higher, the contribution of the non-throughgoing 
fiber to efficiency is probably of the order of W-.0-2 x 53.2 • 8.5)6, higher 

than the YSH yarn as would be anticipated. However, as these yarns lie in the 
strand, additional cohesive forces are created by the strand twist, and thus 
the low experimental singles strength for yarns IBM and IBB should not be con- 
strued as Indicating that the strands which they cosgtrlse would be weak. 

For the hard twist yarn series, IBS, HM, and IHH the discrepancies 
ere higher than could be accounted for on the basis of experimental strength 
variation, Just slightly in the case of YBB and IHH and considerably in the 
case of IBM. A possible explanation for the discrepancies in the cases of 
yarns IBS and IBB is that the experimental values of initial twist, Xyo# *nd 
final twist, Ny, for these yarns were not sufficiently accurate. From previous 
work it night be concluded that a small variation in twist for moderate helix 
angle yarns would not effect the strength very much, and this is the case where 
twist effects are mostly angular in nature. However, when excess lengths are 
considered, the effect of s small change in twist may by no means be small. 
As an example, the theoretical strength of a yarn removed from strand vith 
excess lengths present has been calculated on the assumption of initial yarn • 
twist of 13-1*, 15, end 17 turns per foot, and a final yarn twist of 13.k turns 
per foot. The 15-13.k combination corresponds to the actual as measured and 
calculated hard tvist series. The results are plotted In Figure (13). Over 
the range covered, it can be seen that the rate of change of efficiency with 
initial twist is about 5$ per turn per foot of twist. The rate vith respect 
to final twist is about the same for this range. Thus tha effects of small 
twist variations are at the order of the discrepancy. 

Ho similar reasoning can explain all of the ver» large difference 
between theoretical and experimental values of efficiency for the IBM yarn, nor 
for the large difference between this yarn aea the other two yarns of the hard 
yarn twist series. On the basis of all parameters considered theoretically, 
as well as their measured structural geometries, the three yams are very nearly 
identical. All that can be said for yarn IBM is that some factor such as fiber 

'»        tenacity, which was not measured for each construction, does not have the value 
ascribed to it on the basis of previous investigations. 
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In a subsequent section on strand efficiency it will be shova thai toe 
foregoing discussion on excess lengths nr.y be largely of academic interest 
since the condition of circular symmetry of the yarn is strongly violated as 
the yarns lie in strands. Thus yarns renewed fron strands do not possess the 
sane characteristics as they do vhen they lie in the strand, although It is 
very probable that sons residue of large excess lengths are present In yarns 
as they lie in strands. 

The physical reason for excess lengths vhich are created by partial 
untwisting of a yarn influencing efficiencies so profoundly 1* that they 
accentuate the degree of unbalance cf elongations amongst fibers In a yarn. 
The exterior fibers, vhich by virtue of the helix angles are under a lesser 
strain than the Interior fibers, can be subjected to non-load-bearing extension 
as a result of the excess lengths. Ctoviously, this non-load^bearing extensibility 
would exert leas effect for a high elongation fiber or for a fiber vhose stress- 
strain curve was flat over a vide range of elongations nesr rupture, i.e., a 
high a/b. The converse of this effect of excess lengths is also of interest. 
For example, it is possible from the theoretical date given in Technical Report 
Number 6 to determine the ircxiraum possible efficiency of a yarn if all of the 
elongation unbalance between fibers were removed. Such a hypothetical structure 
night be visualized, by, say, imagining varying emounts of crinp to be Inserted 
amongst the fibers. The amount of crimp should diminish fron Inside to outside 

W of the yarn. For such a yarn, the efficiency would be determined from: 

?y - ^bundle ln(»*cacs) _  .  (23) 

tan2©. 

whereas ^^^^ is the bundle efficiency for the type of fibers under consider - 

and QB  is the surface helix- angle of the yarn. In general, efficiencies cal- 
culated fron Equation (23) are higher than those given in Technical Report Number 
6, indicating that increases in strength could be achieved by adjusting criaps. 
However, the extent of such improvements are sizeable only for stiff inextenslble 
fibers whose rupture elongation variability is low. A coefficient of variation 
of fiber elongation to rupture of 10$ is sufficiently large to mask the strength 
increase. It is also clear that the extra yarn weight per unit length result- 
ing from the Insertion of crimps as described above vould act to din'' sh the 
efficiency. 

C. Relationship of Initial to Final Tw*at in Yarns Removed Fron Strand 

In Section I-E it was shewn that in the normal stranding procedure the 
relationship between final singles twist tL^ initial singles twist SLQ, strand 
twist N„, and helix angle 9   should be: 

f V Nyo - Ns co« S> — &k) 

Table III gives 5vpas determined from the above equation and also as measured 
directly for the series of y*rn whose efficiencies were compared in Table II. 
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TABLE III 

COMPARISON OF CALCULATED AND EXPER1MSOTAL XARN TWISTS 
FOLLOWUW STRAHDim 

Yarn 
Code Nyo (TPF)* 

6„6z 
6.6 
6.6 

NS(TPF) 

H.3S 

6.9 

Cos Op 

0.931 
0.897 
0.880 

V*y 

0.930 
0.887 
0.858 

Final Yarn Tvist, HjTFF) 
Calculated      Experimental 

TTSS 
TSM 
Y8B 

2.6Z 
1.7 
0.5 

3.52 
2.9 
1.7 

V4M 
11.0 
11.0 
11 = 0 

3.8 
k.6 
6.0 

0.9^5 
0.917 
O.878 

0.9H 
O.918 
o„357 

3.U 
6.6 
5.7 

9.0 
8-4 
8.0 

YHS 

ZBB 

15.0 
15.0 
15.0 

3 = 9 
3-9 
4.3 

0.9^3 
O.9U2 
0.931 

0.934 
O.929 
0,926 

11.3 
11-3 
11.0 

13.4 
13.4 
I3o3 

•TPF » turns per foot of tvist. 

The COIUKOI headed cos 6p given the cosine as calculated by the method 
described in Section I-A* The lg/ly column gives the ratio of the length of the 
strand to the length of the yarn contained in that length. Theoretically 
IQIly m  cos 0_ and agreenent between there tvo quantities i» very good, the 
discrepancy always being less than 3$. Unfortunately, the agreement between 
calculated and theoretical values for Nypis very poor, indicating that Equation 
(24) is not a valid representation of vnat happens to tvist during the strand- 
ing operation. There is no obvioua reason why singles turns are not removed on 
a one-to-one basis with strand tvist, but clearly they are not. For lack of 
concrete evidence to support any quantitutlve explanation, this problem will be 
left for future exploration asking it necessary to determine final yarn tvists 
experimentally. It should be pointed out. here that the use of the more rigorous 
analysis of plied yarn structure as developed by Chov (5) does not produce 
sufficiently different results from Equation (24) to account for the differences 
in Table III. 

• ( 
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D. Strand and Plied Tare Efficiencies 

Theoretical formulation of the factors Involved In the translation 'it 
yarns into higher order structures is sc-evhat complicated by the inability to 
accurately character?ze the properties of yarns as they lie lr> such higher 
order structures. Fortunately, certain approximating assumptions can be made 
which simplify calculation and yet yield results vhlch check e:qperinenta.l valuert 
to within the range of experimental error. 

By utilization of the concepts developed earlier In this report, 
strand or plied yarn efficiency can be calculated from the integration of the 
following data and assumptions: 

1.) Average stress-strain curve o/ yarns as they exist in the strand 
or plied yarn. 

ra \ Variability of elongation to break of yarns as they lie in the 
higher order structure. 

3.) 8trand twist and yarn position. 

he)    The assumption that any yarn supports negligible load after 
attaining maximum load, i.e., that the yam ruptures completely. 

It has been shown that for parallel unite the curvjs of Figure (10) 
may be expected to give the multiplication factor required to account for the 
effects of variability among yarns. To test the accuracy of this assertion, 
consider the case of bundles containing different numbers of fibers as a 
special case of a higher order structure,. For this special case the stress- 
strain curve of the fibers as they lie in the bundle is, clearly, the sane as 
if they were single. Similarly the variability of fiber elongation to break is 
unchanged by the bundle formation. There is no twist, and rapture of the in- 
dividual fibers Is sudden and complete. Thus only 1 and 2 above apply and the 
pertinent data for both are unambiguously defined. Listed below in Table IV 
are the experimental and theoretical results for efficiency of translation of 
bundles each of which contain "small" cumbers of Manila abaca fibers. Theo- 
retical efficiencies are based on the efficiency curves of Figure (10). 

• 
1 
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TABLE IV 

EFFICrEHClBS OF TRANSLATION OF IsANILA ABACA FIBER STREHOTH 
UPTO BUNDLES CCWTAINI1W A EMftLL IJIMESSR OF UNITS 

^fi.clonelea, ft 
umber of Fibers In Bundle .    sti  ;.l jS:;periQental 

2   OQ-   ~1S£WI  
3                 ol 8l.O±5 
7                73 76.018 

15               68 69.8*7.5 

The theoretical values given above vere calculated from pertinent 
fiber data of: b • *S.5, em - 2. Vj*^ and V - S?U#; or n « 25.2: as determined 
frca 75 single fiber tests. The units of b ere percent of seen ultimate fiber 
strength per percent elongation. Experimental results are listed in Table IV 
vith a range of i two standard errors calculated considering only the variance 
in bundle strength. On the basis of the excellent agreement given in Table IV 
there is no reason for not accepting the curves of Figure (10). 

P A twisted structure with all units lying at the sane angle vith respect 
to the structure axis presents no theoretical complexity. Final efficiency for 
this case would be determined by multiplication of bundle efficiency by the 
cosine of the angle of inclination for the component of force and again by a 
cosine of the angle for denier increase due to the twist teJosup. The problem, 
as stated above, is that no yarn parameters are available for the yarn as it 
lies in the strand or plied yarn. These parameters oust be estiaated froa con- 
sideration of single yern properties outside the strand and the assumed effects 
of lying In a strand. 

Probably the two most iaportent effects of stranding on the singles 
other than the change of turns of twist, which change can be measured,, are: 

1.) Increase of cohesive force between fibers, and; 

2.) Distortion of the circular cross-section. 

The increase in cohesive force is of importance principally in low 
twist singles whose twist, if the yarn were removed froa the strand, would be 
below optimum. Distortion of the circular cross-section of the yarn can have 
a very great effect on cancelling some of the adverse effects of beta excess 
fiber lengths and stress concentrations which would exist in a strand whose 
yarns were circular. This letter pointk i.e., stress concentration- is dis- 
cussed later in this report. It was stated earlier herein that a careful 
analysis of the strength of a yarn with excess lengths was largely of academic 

*        interest since such a configuration does not exist within a stranded structure. 
Thus, while the analysis of yarns removed from strands, calculated considering 
the existence of excess fiber jengilis is probably valid, it is of little use 
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in the calculation of strand strengths and efficiencies. 

Before presenting the results of calculations on strand, and plied 
yarn strengths; an analysis of souse of the effects of cross-section distortion 
on reaov&l of excess lengths vill be aade. This analysis vtli help to clarify 
the reasonableness of certain of the assumptions which are made and thus 
Justify them. 

Consider the case of a yarn of circular cross•section containing no 
excess fiber lengths. The yarn vill exhibit a noderately fine hand. How 
visualize a partial untwisting of the yarn.  From the preceeding analysis of 
Section I-C it is known that excess fiber lengths will exist within the yarn 
end clearly the yarn will feel less fin» 

If several of these yarns were twisted together there would ob- 
viously be a tendenc; Tor the circular yarn cross-section to distort, and it 
is veil known that such sections are in general not circular In plied and 
stranded structures. The question nov arises as to vhat effect this distortion 
vill have on the tensile properties of the yarn as it lies In the strand. Two 
possible effects on yarn structure are: 

1.) Changes in the required path length of the fibers and, thus, 
In the excess fiber lengths. 

2.) Changes in inclination of the fibers. 

To see how little yarn cross-sectional shape distortion nay change 
fiber helix angles while having a significant effect on excess fiber lengths, 
consider the case of a yarn of circular section and helix angle of 0C. Bow 
distort the section to a square. Under the assumption of equal packing factors, 
the analysis is as follows: 

Let: 
A *  the cross-sectional area of the yarn, sane for both round or square 

yarn. 

H » turns of twist per unit length. 

r a radius of yarn. 

S m  length of side of square. 

Then: 

A m 7TT* m  82 

S = r^ 

Since the fiber progresses an axial distance o? 1 for every corolete turns on 
U 

one side of the square cylinder it will progress 1 „  (See Figure Ik) 



Page 26a 
Case Number C<*?736 

• 

< 
-J 

o 
o 

Q z 
< 

UJ 

z 
o 
I- o 
UJ 
(A 

UJ 
a: 
< 

O 

UJ en 
a: UJ < x 
3 5 CO £ 

u. 
o 

z 
o 

< a: 

-j 

\   j 
I 



Page 27 
Ca»e Ifcusber C^7736 

The length of fiber In one turn about the circular helix is; 

lc - 1 Jl + k* ^B^r* 
H 

« 1   flL + ta35( 

while about the square cylinder it is: 

Ifl- *J& "3 + (l )• SSB' 

and since S - r jr , this become*: 

lg M 1 Jl 4- 16 JttAr8 

H 

. 1 ./l *• k   tan^ftl 
• '       F 

The psrccitage change in required path length is: 

1 /T+ fc   tan2©- - 1/1 + tanSCL 

100  —i     - ioo| 
l/l + tan2©,. 

100 Vl + 1.277 tan2© 

U 

c    - 1 

-yi + taa2©J 

The fiber helix angle on the surface of the square cylinder is given byr 

tan 0u « 8 * kBr<fir   ~ 7.09E Hr 

Since the fiber helix angle on the surface of the circular cylinder is given by: 

tan ©c - 2^Hr « 6.283 Vr 

then: 

tan Og - 1.129 tan ©c 

Figure (15) above the relationship betveen original helix angle, final angle., 
and decrease in length according to the condition and analysis above. 
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Even for a helix angle of 30*, which is higher than voulu normally 
exiot in a yarn, the change in angle is only about 3*- Reference to the 
curves of translations! efficiency given in Technical Report tFumber 6 win 
show that this in itself will not occasion any very great ci&Qge in efficiency.. 
However, corresponding to this angular change there is a ler^tb takeup of 
about 3*H$, an amount which is sizeable in most considerations of excess 
lengths. For angles as low as 15*, the length takeup is nearly l£. This any 
be quite significant in low elongation to break materials. 

The square section is, of course,, hypothetical. The actual shape of 
the final section will be determined by a number of things, chiefly the number 
of yarns, the strand twist, toe yarn twlbt, and yarn excess lengths. Clearly 
the resistance to distortion would be quite large after the excess lengths had 
been reaoved from any appreciable nun&er of fibers. Thus a yarn with low ex- 
cess lengths would be expected to maintain itself more nearly circular. 

While an analysis of the aany possible distorted shapes is not 
practical, it can be 6aid without reservetica that any appreciable distortion 
from a circular shape will, unless accompanied by a large increase in packing 
factor, cause a takeup of excess fiber length. This distortion will continue 
to the point where enough excess lengths are fully removed to make further 
distortion impossible with the forces available from the plying or stranding 
operation. The distortion is accomplished with little change in angle of 
inclination. While this information is not very definitive, it does make it 
reasonable to assume that yarns with small amounts of excess length will show 
virtually no excess length effects when stranded, and those with large amounts 
of excess lengths will show very much less effect than would be expected on 
the basis of the circular cross-section analysis. 

The general case of an arbitrarily shaped distorted section can be 
handled for the condition that substantially all excess lengths are removed. 
Here, the final helix angle is nearly the same as the helix angle of the yarn 
before plying, since it can be shown that: If •» 1„   for the original yarn, 

cos0o 

and if • l_   for the final yarn, regardless of cross-section shape. The 

eoSSf 
approximation involved will be discussed in a subsequent section when certain 
of the assumptions already made are examined. This cose of complete excess 
length removal is of particular importance because a yarn will in general tend 
to distort until the excess lengths are removed, and while the entire yarn 
cannot be supposed to have reached this state, the deviations from complete 
removal of excess lengths will be largely for those fibers having low angles of 
inclination vbere the situation is not critical. 

Calculation of strand efficiency should then sake use of a yarn 
strength approximately that of the original yarns, or somewhat less for large 
amounts of untwisting in the plying process. Thus one cannot in general com- 
pute the translation cf experimental yarn strength into strands or plied yarns 
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using data on yarn removed froa plietf or stranded structures, but must instead 
rely on the theoretical formulation* 

The differences between ruptvre strength of n yarn aa it lies in a 
strand and a ynrn removed from a strand hsve no*; been partially accounted for^ 
but any differences in the snapes of the stress-strain curve and the variation 
of elongation to break have not. Thus, the factor a « be upon which the effects 
of variability are based, is not determined. Unfortunately there is no une- 
quivocal means of obtaining a value which can be considered accurate. It is 
probable that br the stiffness, increase* slightly from the value obtained for 
yarns removed from strands, but what happens to <r   cannot be- predicted* How- 
ever, the value of b<r for a given set of similar yarns, initially the same 
but with different amounts of twist removed by stranding or plying, does not 
vary very much, so it is reasonable to assume that the value of m for yarns 
in strands is close to the value for yarns removed from strands. Also, 
reference to Figure (10; will show that even a fairly large error in m will 
introduce only a few per cent error In the final efficiency. 

The final point to be cinpiderc.i is the assanption that y^rns support 
negligible load after attaining maximum load. The best proof of a clean-cut 
yarn rupture is obtained by observing a strand break. When a yarn snaps it 
appears to go almost completely. Frci: the analysis given in Appendix I it can 
be seen that unless the broken yam cprried an appreciable load up to an ex- 
tension veil beyond its own breaking extensicn> there would be little effect 
on strand efficiency. 

The first practical case to be conaidered is that of two three-ply 
Sansevieria ropes, one burnished and the ether rough. These are smell size 
ropes, the nominal weight of the singles in each being 380 feet per pound or 
36,000 denier. Pertinent fiber and original yarn data for these structures 
has already been reported in Technical Report Number 6. In order to calculate 
the theoretical efficiency of the three-ply rope, the following data must be 
known: 

1.) External helix angle of original yarn. 

2.) Helix angle of the plied yarn, or rope in this case, initially 
mnA  «• rupture• 

3.) Fiber properties. 

a. e»k me»j?. fiber rupvtre elongation, per cent. 
b. a/a, the ratio of load intercept to slope of the linear 

approximation to the average fiber stress-strain curve,. 
c. V,. the coefficient of varietion of fiber elongation to 

rupture„ 

k.)    b and ff" for the yarn,, theoretically as iL lies in the final 
rope. 
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Using the yara helix angle and the fiber properties^ the singles 
yam efficiency can be found froia the curves given in Technical Report Jfc'niber 
6. The twist taksup of the yarn is found froa the initial helix angle, as 
also given in Technical Report Number 6_- The translational factor,^ , due 
to yarn variability is found froa the curves of Figure (10) using a value of 
m equal to b c~ for the ya-n. The twist taxeup factor for the three-ply rope 
is given by the cosine of the initial ply angle, and the axial component of 
force by the cosine of the ply angle at rupture. Usually the initial and 
rupture ply helix angles vill be sufficiently close BO that there need be no 
differentiation between then^ but in this case the rope diameter decreased 
and length *t«£*>aGed considerably as the specitsan approached rupture so that 
a slightly better value is obtained by taking the change in angle into account. 

In Figure (l6) is given the average ycrn stress-strain curve for 
yarns removed fross the rough rope. The slope b is determined by the best 
straight line through the ragion of tha curve near the average rupture point. 

Table V gives all parameters and the theoretical results for the three- 
ply rough rone compared with erperinental resists.. 

TABLE V 

PARAMETERS ARD EFFICIENCIES FOR THREE-PLY SaHSEVIERJA ROPE, ROUGH 

Yarn Properties 
Single yarn efficiency, <f>  —————— 55.5# 
b m  slope to yarn stress-strain 

curve, £ of ultimate load per 
per cent elongation.———--——— *1.6 

<Ta  standard deviation of 
rupture elongation, $>-- -— 0.30 

• « b<T 12,5 

it -m inirn variability factor.=-= O.9O 

Rope Helix Angles 
cos 0p0 » cosine of original 

helix nngle — . O.898 

cos 0^ • cosine of helix 
angle at rupture. O.929 

Efficiencies of Three-ply Rope 
Theoretical ••——'-'«=.=-... 41.6 % 
Experimental  1*0.8+3% 
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In Table V, ^ is yarn variability factor as given by the curves of Figure (10), 
and cos 9po is the rope twist takeup factor. As can readily be seen, the agree- 
ment between theoretical and experimental efficiencies is excellent, the 
differences being approximately 2$. It la to be noted that tiie combined effects 
of yarn variability and rope helix angles have accounted for an equivalent loei> 
of yarn tenacity of the order of 25$, i.e., the translation of yarn strength 
to rope strength is about 75$. Thus, it is apparent that the najor cause of 
the loss of nearly 60$ of the fiber strength in this rope is the poor efficiency 
of translation of the fiber strength into the yarns. This latter is, as 
already described, the result of both aonuniforsity of rupture extensibility 
ajsong the natural Sanseivieria fibers and also their low average extensibility. 
Ho extensive tests were perforcod on the bum is lied rope, since it was indicated 
by gross scre«*ning that burnishing did not significantly effect the three-ply 
rope efficiencies. Thus, the burnished rope had an experimental efficiency 
of t2.9#*3 versus *i0.9$t3 for the rough, the differences not being statistically 
significant. Experimental efficiencies of yams removed from the three-ply 
ropes were 5^5$ fox the burnished and 53.5$ for the rough ropes. Without 
consideration of excess fiber lengths each of these yarns would have given 
experimental efficiencies of 53-5$' While no formal analysis of excetts lengths 
effects were made here. It was apparent from the method of rope formation that 
the effects would be •mall since In roping a partial compensation was made for 
twist removal, and hence the magnitude of excess lengths are small. In addi- 
tion, the inherent variability of the Sansevierla fiber In these yarns Is 
greater than that of the Manila, ebaca fiber (2) for which excess length effects 
were calculated in Table II. Thus, the higher variability of the Sansevleria 
fiber would mask the effect of excess lengths to below that of the abaca fiber, 
and an excess length effect for the former fiber of approximately the 10$ 
experimentally observed is reasonable. 

The next case to be considered in  thit of the series of Manila abaca 
strands made up of the yarns those twist structure and strengths were considered 
in Tables (I and II)„ The approach is the same as that Just considered for 
the Sansevierla ropes with one exception. It will be noted in the derivation 
of seven-ply yarn strength as given in Appendix III that the statistical effects 
cannot be completely separated from the geometric effects, and thus the exact 
analysis of the problem is rather complex. Strictly speaking anal 'sis similar 
to that of the seven-ply structure applies to any case 5r which the constituent 
elements of the structure <5<"> not «nflergo equal etraiss t  a, result cf a 
structure strain. Nonetheless, it can be shown that ne0xigible error is In- 
troduced in the case of the Ik  or 15 yarn strands if all Ik or 15 units are 
considered to be equally strained instead cf having a more highly strained 
core yarn as is actually the case. 

To show this consider the cane cf the seven-ply yarn in two ways: 

a. efficiencies, A. 1 calculated according to the previous 
rigorous analysis whose results are plotted in figure (11). 

bo efficienciest  ^2 calculated under the assumption of all 
seven units being at the sane angle and thus supporting 
equal strains. 
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Table (VI) below gives the results for several cases. 

TABLE YI 

COMPARISON CT THEORETICAL SEVEB-PLT YABK XFFICIENCIBB 

*/b       «m        V     1l      ^2 

20* 
30c 

-1 3 0 80.5 
75.0 

93.9 
86.6 

20- 
30* 

-1 3 5 79.5 
70.0 

6*. 5 
77.8 

20° 
30° 

-1 3 10 76.5 
66.0 

7*. 9 
69.O 

20" 
30* 

0 any value 0 85.^ 
75.0 

93.9 
66.6 

20* 
30* 

0 any value 5 86.0 
71.3 

87.6 
80.7 

20° 
30° 

0 any value 10 81.0 
70.6 

81.3 
7*. 9 

20* 
30° 

1 3 0 87.6 
75.0 

93.9 
86.6 

20- 

30* 
1 3 5 89.5 

75.0 
89.2 
82.2 

20° 1 3 10 83.1 8U.U 
30' 71.3 77.8 

It  Caii   be   •ecu   wtii<  xCr  ft'rij  appxcCxauxc  jrViiu  VeviriuuiAAuy^   vac  YeLxUS*   of    '{ i 
and /^ 2 for a seven-ply yarn are sufficiently close so that the less 
extreme case of lU or 15 units vith a core would produce negligible differences 
whether considered as a parallel bundle or as a core and sheath configuration0 
The discrepancy is obviously lees at small ply helix angles. In no case was 
a higher ply helix angle than 28° found for the Manila strasads, whose average 
yarn rupture elongation variability u&s of the order of 10$. Clearly, the 
assumption of the strand structure containing all units in parallel would in- 
volve an error considerably less than the errors shewn in Table (VT) for 

I angles between 2uc s.nd 30° and for yarn variability of 10$. Titus, errors in 
efficiency of less than if; would result from this approximation of strand geo- 
metry- 
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Table (VII) sumKarlees all of the pertinent information on structure 

and efficiencies of the abacs etranda. Three values of efficiency are included 
for each strand? a.) theoretical efficiency without considering excess lengths; 
br) theoretical efficiency considering full excess lengths; and c.) experimen- 
tal efficiencies. Singles yarn efficiencies for the no excess length case are 
taken from Technical Report Number 6 and for the full excess length case from 
Table (II) of this report. It would be supposed that the experimental result* 
vould always fall somewhere between the theoretical predictions based on full 
excess and those based on no excess lengths. For small twist differentials, 
i.e., siaall amounts of singles untwisting, there should be a tendency for ex- 
perimental values to approach the no excess length values since there are only 
small excess lengths to takeup. For large twist differentials better agreement 
should occur with the full excess length TSIUSB. The Toll excess length values 
should be most closely approached where the final yarn twist is very small so 
that a great distortion would be necessary to restore the original angle and 
thus remove all excess lengths, 

With the exception of one value, the following Table (VII) demonstrates 
these observations quite closely.  In EJOET. cases, theoretical efficiency cal- 
culated without excess lengths are well within experimental efficiency ranges. 
The only value outside of the experiment?;1 range is that for SMI, and even here 
the error is small, being only 9# or 3.8 units of efficiency from the lower of 
the experimental Units. Ko explanation is apparent for the high experimental 
efficiency of SMK, but in view of the good agreement between experimental and 

»        theoretical values of efficiency for the other cases, it seems probable that 
some uncontrolled factor such as a yarn or fiber not representative of the 
variables considered is responsible. 

Figures (1?)-(20) illustrate the combined effects of fiber character- 
istics, singles twisty and ply twist in a form which may sometimes be useful. 
Bach curve is for a given set of fiber parameters and shows the effect on ef- 
ficiency of varying cn»*> lotions of yarn and ply twist under the assumption of 
no excess lengths and no variation amongst yarns. The convention employed Is 
that all points on a given curve correspond to a constant sum (Up + Hyp)Ry„ 
where H_ Is the ply twist in turns per unit lengthy MLpls the number of turns 
per unit length of the yarn as it liea In the ply, and Ry is the singles yarn 
radiuei. The abscissa is given in terms of NpRy and thus the yarn parameter 
RypRy for any point on the curve is given by the value of (M_+NLp)Ry for the 
given curve minus the value of BpRy- The curves were plotted by converting 
the various NR values to helix angles and using the yarn efficiency curves 
given in Technical Report Number 6. in dealing with the case of yarn where ex- 
cess lengths might be supposed to have been created In the plying process, the 
curves are still applicable if the excess lengths are assumed to have been 
taken up. In this case the HypRy to be chosen is that of the original yarn 
and not the yarn as it lies in the ply. This is in conformity with the pre- 
ceding analysis wherein it was shown that the helix angle of a fiber whose 
excess length has been taken up by distortion must be very nearly equal to the 
angle of the fiber before any excess lengths were introduced, that is, before 
plying. In utlillzing these curves„  the only additional factors to be employed 

i for piled yarn efficiency calculations are; 
a.) Twist takeup of original singles yarns. 
b.) Piled yarn twist takeup,. 
c.) The yarn variability factort^ , as given by the curves of 

Figure (10), 
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xV. DIBCUS8I0N 

A. Geometric Assumptions 

Throughout the foregoing analyse*, several simplifying geometric 
assumptions have been made to facilitate the mathematical solution of the 
problem. She result* so obtained differ negligibly fro* those that would be 
obtained by employing a wore rigorous geometric analysis, for structures which 
are of commercial interest. Portions of the geometrical problem Involved here 
have been analysed quite rigorously by Chew (5). The geometric results of 
Chov*s work are theoretically valid over a range of helix angles in excess of 
that required for the present problem. In the comparison vhlch follows It will 
be shewn that: 

a.) The two approaches yield negligibly different results over the 
practical range of singles, strand, and rope twists, and 

b.) where the results do diverge appreciably, the assumptions In- 
volved in either analysis with respect to cross-sectional 
circularity are strongly violated. 

Thus it is not expected that the acre involved approach would produce more 
useful or realistic results, and the comparison is made only to show the order 
of magnitude of possible errors due to the simplification, and thus Justify 
the exclusion of tortuous twist, as such, from the analysis. 

1.) Comparison of Helix Angles 

In the simplified approach, it has been assumed that the helix 
angle of the path of a fiber in a singles yarn as it lies in a plied yarn or 
strand can be determined from: 

where Oyp i> the fiber helix angle of the singles as it lies in the ply cr 
strand, Ry Is the radius of the singles yarn, and Byp is the turns of twist 
per unit length of the singles as it lies in the ply. According to Chow's 
work: 

I 
*» ** - afr*y («yo • Voag°p)  (25)    ? 

1 - Ry Bln^QpCoe 0 

where: 
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^ia  the angle between the fiber end the singles yarn axes; 
Hy0 is defined as the twist per unit length a singles yarn would have if it 
were removed fron the ply in accordance with the procedure of Figure (fee); 
Hp is the ply tvist per unit length; Rp is the radial distance fron the plied 
yarn center to a singles yarn center; end 0 the position angle which locates 
a fiber in the singles cross-section, equal to cero at the inside of the bend 
of the singles yarn* 

The expression for Oyp can be put into the form of Equation 
(25) by realising that the purs twisting procedure of Figure (4a) will relieve 
Ipcos Op turns per unit length froa the slrgleo. Thus: 

*•" °JP * 2^RF ^Hyo " V°" Qp) m 

The value of & depends slightly on the position angle. 0 , 
but the denominator of Squat ion (25) has EU average value very nearly equal to 
unity, so that the average value of tan ¥   can be taken to bet 

(tan JH" a 2^-Ry (Hyo - HpCOS2«p)    (27) 

^ The tv;o angles ^  and Q._ can also be conveniently expressed as: 

tan O^p • tan 0o - R- tan Op cos Op 

tan Cpl  - (tan J>  ) - tan 0o - R~ tan Op cosSOp (28) 

To show the Magnitude of the difference between 0/p and ~p~ scats 
values for a few different sets of condition have bean compiled in Table VIII. 

TABLB VIII 

CCMPARISCH CT HKT.TY AMBLES ~ AMD Oyp 

e») *y m 1 (2 ply yarn) 

• 

Values of V  for: 

—fc- V^1 
lo' 

0 m  20' wyp " •" ,y§o» 
10 5.1 10 20.2 30 
15 5.5 10.5 20.k 30. k 
£0 6.2 11.1 21.0 30.8 
25 7.2 12.2 22.0 31.7 
30 8.8 13.6 23.3 32.7 
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TABLE VIII (continued) 

CQMPAR2SCM OT HELIX ABOLES • A2© Oyp 

b*' St" x/2 (7 ply yam) 

7al\ies of   yf   for:   

^77—5Z2T^—s^p: 
575               ——                 —— 30.* 

30* 6.8     31.** 

Clearly the difference* between the two Methods are nowhere 

sV 

large, and, In addition, the amxlaua angular differences occur at the low values 
of ft   or Oyn where differences are of smell importance. The differences also 
decrease as dp and By decrease. Ry • 1 is the condition for a two ply yarn, fly decrease. «y 

while By « 1/2 represents the outer leyer of a seven ply yarn. The local value 

of y   is slightly changed by the denominator given in Equation (25). However, 
£        the effect on strength, of such a change would be slight unless 0. were quite 

large i.e., greater than 30°. Ibis is most easily Uuuarstood ir it is recog- 
nized that for aost of the fibers in the entire singles yarn cross•section, 
differences between fJ  and u^ are negligible. 

2.) Comparison of Excess Lengths 

When the helix angle of a yarn la lowered by virtue of partial 
untwisting, the required helical path length is decreased, but the actual fiber 
length remains unchanged, giving zlse to exctss fiber lengths. In this report 
the required path length of a fiber in a pli*d yarn per unit length of the 
plied yarn has been taken to bat 

'« • SS^A + ^TP   <»> 

while Chow*s work yields,, for a 0 interval of ?#"H, where N is any integer, i.e., 
for an integral number of fiber cycles: 

I -g- 

x't -   1    J1 + **» T~   (30) 
coe" 

In either case the original fiber path length is the earnsF being simply that 
length corresponding to the original singles helix angle. In Table (IX) a 
coiiiparison is made of excess lengths for a vide range of singles and piled 
yarn twists as determined from both Equations (29) and (30). 

>1 
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TABLB IX 

C0MPARI80H OF BXCEBS LBHOTHS P    ABD 0* 

**) i- i# ^- 30* 

Original Bisgles 
Helix Aagle, 0Q ftl 

30# 

8.8 
3*8 

h 
21.0* 
13.* 
10.7 

r. 
*5.3# 

30.5 
26.5 

27»2- 

5.0 
0.0 

19-0* 
12.8 
10.5 

b,)i-i. °P - 20° 

te.6- 
27.* 
23.2 
18.9 

30* 
10 
5 
0 

30.8* 
U.l 
6.2 
1.2 

1*.0* 
10.1 
7.9 
*.8 

13.2* 
9.7 
7.7 
*.7 

c.) R_  , 
•p - 15* 

2** 10,5* U* 7*1* 7-0* 

d')^"1' 
S - 10° 

30' 
20 
15 
10 

21.9* 
10.8 
5.0 
0.0 

22.1* 
10.9 
5.0 
0.1 

6.5* 
*.5 
2-9 
1.5 

6.3* 
*.5 
2.9 
1-? 

'p - 15 

2*« 17.6°    17.8*     5.1*     5-1* 
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Over the range of ply end singles helLx angles cover-d, which 
it is believed entoqpasses titoe practical range, it is eloar that differences 
in calculated excess lengths are snail, with Chow's formula always yielding 
the slightly smaller value. 

It should be noted thst calculations of fiber length and strains 
involve an integration over 0 from 0 to 2/F.    This is an impossible procedure 
If Ob « 0, for here a given fiber remains at the same angle ft  throughout its 
length, and thus this situation represents a point of discontinuity in the 
equations relating to length. However, the Better is of no practiad importance 
sines ©o • 0 is equivalent to plying aero twist bundles. It is doubtful 
whether such a procedure could be made to yield a structure whose original 
elements remained separate and distinct, much less clrcvlar, 

3.) Comparison of Fiber Strains 

Fiber strains may be compared on both an average and local basis, 
Just as angles. In the work of this report only the average fiber strain has 
been used and it has been taken to be: 

• 

• m e coe2© cos^Q 
*  P  . p    yp 

(31) 

where ep is the strain along the plied yam axis. Here again the secondsry 
effects of tortusoity have beer neglected end the singles yarn is considered 
to have essentially the same geometric properties as if it were removed from 
the plied yarn and retained its twist as it lay in the ply* 

Based upon Chow's analysis, the following expression for the 
average strain in one complete loop of fiber as it lies In a plied yarn can be 
derived: 

V F tan 0o         Ry U+O ^nQ-  ~ 2 
/(l+ep)2 + tan^ 1+e cos2©       R    (l+e^^'tan^ 

1 + tan2©p 1    r               K , tan©         -,2 

/~5~\ 

In Table (X) the results of Equations (31) and (32) are compared. 
An additional comparison is made in some cases where the simplified formula, 
Equation (31), used in this report 5.s employed, but ^   is substituted for 
©y_. This value of strain i.f  labelled e^". )~ 

aemi* 
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TABLE X 

COMPARLSCH OF STEADS COMPUTED FROM 33UATI0JB 31 AHD 32 

Eo.. (31)   Eq. (32)   E*. (31) vlth Cyp • ^ -^     -^ u  0 0 e Pv» #' 
p o 

30° 0.02 

j 

1 

f 

25' 0.0160 
25 42 0.02 1 0.0134 
25 42 0.10 1 0.067 
15 23 0.02 1 0.0182 
15 36 0.02 1 0.0153 
25 42 0.10 1/2 0.056 
25 34 0.02 1/2 0.0135 
25 34 0.10 1/2 0.068 

0.0156 
0.0125 
o.o64 
0.0181 

0.129 
0,064 

0.0151 
0.052 
0.0131 
0.067 

0.054 
0.0133 
O.067 

The differencesbetween ef and ef• are amall anywhere within 
the range tabulated. It can he »een that the differences tend to become 
larger as Op or Ry increase, but Ry cannot exceed unity. A large part of the 

difference between eg  and ef can be ascribed to the difference between Oyp 
and W , as is evidenced by the relative closeness of ef • and ef1*. 

From Chew's work it is also possible to determine the magnitude 
of the local fiber strain still, of course, under the assumption of circularity 
of yarlf^CTOTs-sections. The results, for an extreme case, are given below in 
Table (XI). 

TABLE XI 

LOCAL FIBER STRAIS3 FOR A PLIED YARN STRUCTURE 

^ - 1, 9p - 30% 0o - 30°, ep - 0.10. 

*P 

r Local Strain, e^, £ 

0 

7r 
Average 
epcoa2wpco820yp 

11.5 

7.0 
4.7 
7.5 
7.5 
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The above Teble (XI) would seem to shew that very great stress 
differentials exist betTveen the various portions of a given fiber, depending 
upon its position angle 0. However, a nurcber of factors tend to adtigite 
the severity of local conditions as shewn by this analysis: 1.) If local 
differences in strain are admitted, then local differences in excess length 
must also be considered, and the high excess length regions occur just when 
high strain would be predicted, i.e., at 0 *  0; 2.) Any freedom of notion of 
fibers whatsoever would tend to equalize strains, and sons freedom of action 
must exist; 3>) It has been demonstrated earlier in the report that any dis- 
tortion of the yarn from circularity will tend to remove excess lengths, and 
by a direct extension of this reasoning it is easy to see that unequal strains 
along the length of a given fiber will cause an equalising distortion  These 
distortions can occur either before or during the loading of the structure or 
at both tines. As stated previously, distortions before loading can occur as 
the result of the presence of excess lengths. Such distortions tend to alter 
the local fiber radii of curvature considerably from that for circular yarns<, 
The local strains given in Table (XI) are critically dependent upon local 
radii of curvature, vhereas the average strains are not so dependent. Examples 
of distortion under loading, for a circular cross-section yarn with no excess 
lengths, would be: (a) local flattening in the region of his* fiber strain; 
(b) higher freedom of fiber relative notion in the region of lev fiber strain 
with the attendant opportunity of fiber length travel to the region of high 
fiber strain. Both mechanisms will equalize fiber strain. Thus differences in 
local strain nay safely be considered negligible and the average values used. 
It is also clear free the experimental strength and rupture elongation results 
that large differences in strains do not exist, since large differences would 
produce such lower strand and rope efficiencies and elongations than those 
observed. 

It is apparent from the foregoing that for circular yarn cross- 
sections, the simplified geometric relations assumed and used in the body or 
this report differ inappreciably In most cases from the average geometric 

ring loc relationships obtained by Chow. The difficulty of comparing local geometric 
and strain discrepancies has already been discussed, and It has been Indicated 
that local strains and stresses nust approach the average when plied yarns are 
stressed: nevertheless, it is also evident that with Increases In ply or strand 
helix angles very greatly In excesa of 30°, Increasing discrepancies arise between 
the average rigorously derived geometry and the simplified memtry used herein. 
These discrepancies are in the direction of lowering the plied yarn strength, 
i.e., lower plied yarn or strand efficiencies would be given using Chow's geome- 
try than those siren by the simplified geometry? While great cross-sectional 
distortion will usually take place for such high ply or strand helix angles, 
it is conceivable that BOOB extreme structures way be encountered which will be 
weaker than the calculatione in the body of this report indicate  For such 
structures, calculations based upon Chov's gacrcietrie analysis would determine 
one limit of efficiency while the other lizait would be determined by the formulae 

-   «£       given herein* Crc3s-eecticnr.l distortion would then produce a final result 
^        somewhere between the two extreme limits. Clearly, the structures studied in 

this report are performing under tension in e. manner consistent with either 

•Assuming no excess lengths. 

„ -4fe 
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Chow's average or the simplified geometry. Since these structures cover as 
broad a'"range of ccwa\*rcial cordage twists as is feasible- it is clear that 
they encompass substantially ell cordage structures of interest. 

Bo Application to Higher Order Structures 

Technical Report Number 6 and the present vork have covered what 
appear to be the most significant factors affecting the translation of strength 
of fibers into practical aingles yarns, plied yarns, and strands, with emphasis 
on cordage materials. It is possible to apply this vork directly to higher 
order structures, such as ropes, simply by interchanging the roles of rope 
and strand, and strand and yarn? Thus the rope is treated ae a strand composed 
of yarns which are in reality strands, and whose properties are known. The 
only additional assumption involved is that strand rupture is complete after 
maximum atrand load la attained. Observations of rope breaks tend to indicate 
this to be reasonable. Unfortunately, complete sets of data on rope, cover- 
ing fiber, yarn, and strand properties and rope breaking strength are not 
available, but from the scanty data which is at hand, it appears that the above 
projection yields good results. 

• 
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APPEHDtX I 

Analysis of Parallel Bundle Ltrength 

A parallel bundle, in this work, 1B used to refer to a group of unite 
each of which ia supporting equal strains aa a result of straining the entire 
group. Thus, a three-ply yarn contains three units (singles yarns) in parallel* 
The equal straiiis would, in the case, of a three-ply yarn, be less than the 
strain applied to the three-ply because of the ply helix angle. However, this 
latter effect is geometrical, and merely requires geometric factors to be applied 
following the analysis of the statistical effect on three yarns in parallel 
with zero ply helix angle. It is the statistical analysis which follows. 

Consider a population of units with normal distribution of elongations 
to break and. a given average load elongation diagram (Figure 21a and 21b). 
The abscissae are normalized to the statistical t, or number of standard devi- 
ations from Jhe mean elongation. 

If there are n of the above units in a bundle, there exist the 
possibilities that maximum load is reached when the first unit breaks, or when 
the second unit breaks, and so on, to the nth unit. Clearly if n •» 2 there is 
a very low probability for ever attaining a higher load than that reached when 
the first unit broke (except in cases of very high variability). Conversely, 
if n is very large, say 100, the maximum bundle load will almost certainly 
not be reached until several unite have ruptured. The factors defining attain- 
ment of anvlHUTB load will now be formulated analytically. 

Assume the first of the u unite to break at an elongation correspond- 
ing to ti and specify that the maximum load shall be attained at this point. 
The load supported by the bundle here is ng(ti). In order that this be the 
maximum bundle load it follows that the load on the bundle when the second unit 
breaks, where there are only (n-1) units intact, shall be less than ng(ti). 
In the limiting case of equal loads at both first and second unit failure, 
(n-1) g(t2) - ng(ti). Similarly for the third unit rupture, when n-2 units are 
intact, (n-2) g(t3) - ng(tx), for maximum load to occur when the first unit 
breaks, etc. Thus the second unit must rupture before the average load per 
unit is g(tp), where g(tP) « n  g(t, )j the third before the avertge load per 

unit la g(t3), etc. The values of ti can be found from the load elongation 
diagram since g(ti) is known from the arbitrarily choeen first break point and 
the above equalities. 

The above limiting equalities also hold when maximum strength is 
reached at other than the first break*  It is necessary only to determine the 
strengths corresponding to the arbitrarily chcsen value of ti. Thus there are 
several distinct cases to solve; distributions of bundle loads which are 
maxima first unit breaks; nsaximc eeconc breaks9  and so on. All cases must 
be calculated which contribute any considerable portion to the total number of 
bundle breaks. 

' V 
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The fonculatiGn of both the separate probabilities for the case of a 
asxiwuia bundle load being reached when the first unit breaks, the second, etc, 
and else the efficiency in terais of ttoe vtriouo influencing pemmeters will 
now be undertaken^ 

The following definitions apply to the analysis: 

$1 m  pi'obahility of any unit breaking at an elongation within the inteival 

'JH-I fW4t "=±= 4-i. 4 

'* 

t^-f , and t^ vhere tu « - e© 

b2   dt 
  . TT 

y&TP (The probability integral in 
terms of t; values of thlE definite integral can be found in tables 
of areas under the normal curve.) 

q± m  exponent of p^ factor in any term of the expansion below. 

h(t). m  relative frequency of occurrence of a Taaxiarat bundle load at % when 
th«J?th unit breaks at t. 

C m  a normalizing constant such that the total probability will equal 
unity. 

It is first desired to plot a curve of relative frequency of Maximum 
bundle load versus t for the case of a maximum occurring vhere the first unit 
breaks, h(t)j, when the second unit breaks, h(t)2, etc. Consider for example, 
the determination of h(t)^. 

It is kaown from probability theory that if the probability of a 
given event occurring is pi, another event p2, etc., that in a total of n events, 
the probabilities of various combinations can be represented by the expansion 
of: 

(Pi + P2 +  Pn)°  I-i 

The tents of this expansion will all be of the form: 

* - o«  - a_ 

vhere A will have a value depending on the terur and: 
n 
2~  qL m n      _  j.2 
l » l 

In each term of the expansion the exponents q±  represent the number of occurrences 
of the event whose probability ie pi, while the whole term, including the coef- 
ficient, represents the probability of the combination of events designated by 
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the Pi's and qii8. It is now tecessery to formulate sone method for rejecting 
all combinationsvfclch do not satisfy the prescribed conditions,, in this case 
that a maximum is always reached when the first unit breaks. It has already 
been established that the second unit oust break before reaching en elongation 
corresponding to t2» the third before to, the fourth before t^, etc. These 
conditions are satisfied,, of course, if the second^ third and fourth units all 
break before t2> or if the second and. third break before t0 and the fourth 
before ty  etc« The expression to be expanded 1st 

(p2 + p3 + .. o.. e. .pn)n-l     1-3 

It is ob-rlous that the relative frequency of first unit breaks which produce 
maximum bundle loads at an elongation t^ is the product of the relative fre- 
quency of any unit breaking at t^ and the probability of the existence of a 
breaking array among the regaining units *uch that the first unit break at 
ti be a maximum.. 
Thus: 

h(t)x « Cf(tx) (pg + p3 + "Pn)10-1 

k^ 
V w> it . 1, k - 2, 3 
1-2 

i 

 0  XJk 

»• •.n 

The exponent Is n-1 rather than n here since the breaking elongation of the 
first unit is arbitrarily specified, and the relative frequency of occurrence of 
this breaking elongation (ti) is f(ti)< The second of Equations I-k specify 
the necessary and sufficient conditions such that each of the terms of the 
expansion 1-3 satisfy the assumption of maximum bundle load being attained at 
first unit break.  It is not obvious before beginning calculations how many 
terms of Equation 1-3 must be considered for numerical accuracy, but clearly 
any very small value for p^ may be omitted from the calculations. Thus, the 
procedure used in determining the h(t)]_ curve Involves: 

e„) The selection of a series of arbitrary values of ti and the 
corresponding values of f(ti). 

b.) For each value of ti, so chosen the determination of the corre- 
sponding limiting values of t2*3 etc.„ from the g(t) equalities 
previously described ,,      J "* 

c.) Thr determination of p2, po etc, for each value of ti and its 
correaoondtner tio. t3£tc»a from the "robafcility int.c;rra.l» 

d») The evaluation of the first of Equations I-k retaining only those 
terms which satisfy the Becond of Equations I-U0 

The curve h(t)^ can be replotted as a curve of strength versus ti4, where strength 
is equal to the product of r., the total number of units in the bundle and the load 
per unj.tj, g^).. Thus, average bundler load of these first unit ruptures which 
produce maximum bundle loads is n g(t£T» 

* 
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In an entirely analogous nanner, 8.11 the values of h(t)^g can be 
formulated with the following results: 

h(t)2 - Cf(tg) (px + p^ + P4 --Vo)11"1 

1-5 

-*i 1| ^ ^ k-2, k a 3,U, 

i(t)3 - cr(t3) (P]L + Pg + pk + P5 PJ""
1 

k 1-6 
<lx \{ 0, q^ + q^ - 2, ^d_h ^ i k~3> k « 4,5...-n 

The results of the above can he replotted es curves of frequency versus bundle 
strength, the strength being given by the product of g(t) and the nua*er of 
units Intact when mexlarura bundle load is attained. For the care where a max- 
imum is reached where the first unit breaks, the number of units intact is n; 
for a maximum when the second unit breaks, it is n-1; for the third, n-2, etc? 
Average maximum bundle loads are then given as n g(t^); (n-1) g(tg)j (n-2) 
8l*3)> etc. 

In previous work (1,2 ) a linear approximation to the stress-strain 
curve proved very useful for computational purposes. Here again, if a linear 
curve is used a great simplification results. Thus using the terminology of 
the previous work, the load supported by a unit can be expressed as a+be, or in 
terms of V, t, and e^ a+ben(l+Vt_)„ which Is g(t). The assumption of a linear 

curve permits simplified analytical calculations rather than graphical, but all 
of the foregoing analysis still applies. 

Once the Beveral curves of frequency versus strength have been ob- 
tained for the various conditions for a maximum, it is necessary only to find 
the mean value of the abscissae of the curves weighted according to the number 
of units intact when maximum Iced is attained cr: 

f     7-    A(t)x [n-tf-l)][a + bejl + Vt )]dt 

it   a -Jtl  h(tk 4t 
1-7 

Let: 
ti a mean value of elongation (in terms of t) of all those parallel 

bundle breaks which attain maximum load when the first unit ruptures. 
^2 a mean value of elongation of all those parallel bundle breaks 

which attain maximum load when the second unit ruptures. 
t3 and tl* are similarly defined. 

For a linear load-elongation curve, the mean value of the loads 
corresponding to each of the above elongations is g(t1)y g(tg) etc. Thus,, 

) 
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the corresponding total bundle loads are obviously: ng(t^)r (n-l) g(tjj), 
(n-2) g(t.) etc. The areas bounded by each of the ourvee, h(t)^„ represent 
the relative number of all bundle breskB which produce maximum load at first 
unit break, second unit break, etc. Thus, the total number of bundle breaks 
1B proportional to the sum of the areas^, (A^ + A2 + Ao +,....,.An)«  <p   An 

n^ar 1 
and the relative frequency of breaks which exhibit maximum load at first unit 
rupture is A^   „ second unit rupture Ag   f  etc. Thus^ the average value of 

LA* n_ 
£~iAn 

maximum bundle loads for all bundle breaks is: 

P E n g^) 

L 
(n-l) g(tg)+ Ar 

(An) £l^> Lfr> 
(1) «(^) 

i lA^n s(\) + AgCn-1) g(tg)+o....An g(tn)~j 1-8 

n»l 

The average bundle efficiency is then determined as the ratio of average maximum 
bundle load at rupture divided by the product of the number of units in the 
bundle, n,, and the average breaking load of the units, a-i-beja. Thus bundle 
efficiency is determined as: 

V* , *!* gftj + Agfn-l) g(tg)+.. ..A^g^) 
B 

nfa+be^) 2_' A 
n=»l 

The values of ti> ^2» etc. are determined by inspection of the individual 
distribution curves, h(t)/;> which are substantially symmetrical,, 

While the foregoing relationships are general, the determination of 
specific values for: tn, An> and thus, efficiency, depends upon the particular 
bundle size, n, and the properties of the units which comprise the bundle. 
a, V, em- The curves given in Figure(lO )are the results of calculations of a 

sufficient number of specific cases to permit simple determinations of bundle 
efficiency for a broad range of the variables. As indicated previouslys the 
parameter m* be^V is used to characterize the properties of the units which 

"IBS 
comprise the bundle, where> in terms of previously defined parameters, m • 

V 

( EeT 1) 
m 
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A simple example will make the method clear: 

Consider the case of a bundle of four units whose population parameters 
are a » 0, and V * 20$. From the above analysis: 

F i 
h(t,)1 , Ct^)  (p2 + p3 + PJ,)3; Z_ q± ^ k-1; k»2,3,

L  1-9 

Assume that the first unit breaks ac tj. - -2.0. Then in order that the second 
break shall not occur at a higher total bundle load: 

n g(tx) fc (n-1) g(t2) or h g(tx) & 3g(t2) 

The curves Ug(t), 3g(t), and 2g(t), are 6hovn in Figure (22). Since a =» 0, 

the plots are straight lines parsing through the origin, and the load per unit 
can be expressed as a fraction of mean load as; 

g(t) -J*+l-*+l 
100     5 

Thus for t,= -2.0S s(tx) - -2 + I « 0,6; ng(ti) » 4(0.6) » 2.40. This condition 
5 

is shown at point A in Figure (22). When the first unit breaks the load drops 
to B on the 3g(t) curve and builds up along it until the second unit breaks. 
To satisfy the condition ttat a maximum be reached when the first unit breaks, 
it follows that the point C must be no higher than the point A or since 
^(tx) - 3g(t2) in the limit, g(t2) » 4 g(tx) « 

k (0.6) - 0.8. But g(t) « 

t + 1, so that t2 - 5g(t)-5 * 5(0.8)-5 « -1. 
5 
Similarly, when the second unit breaks the load drops to the point D and rises 
along the 2g(t) curve. Here, 4g(tj_) * 2g(to) or, g(t3) «. U (0.6) » 1.2 and 

thus t3 « 5(1.2)-5 » 1.0. 
For tk (not illustrated): 

g(tk) - 4 (0.6) « 2A 
T 

tk- 5(2.4)-5 . 7 

In Figure (23) I8 shown a normal frequency distribution corresponding 
to the values Just calculated. By definition pg is the probability that any 
unit rron the population haB a breaking elongation lying between t\ and tg. 
Since ti » -2.0 and t2 • -1.0, this is represented by the shaded area between 
these two points uafer the distribution curve. Similarly the shaded area from 
t • -l.C to t • +1.0 represents p3, and that from 1.0 to 7.0, p^. 

These p's must now be substituted into the expression for h(t)lv 
Equations I-U. The expansion of Equations 1-4 yield: 
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FIGURE        22 
ILLUSTRATION     OF     SUCCESSIVE     RUPTURES       FOR 

LIMITING      CONDITION      FOR      MAXIMUM       BUNDLE      LOADS 

4g(t) 

3g(t) 

•*-** 
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FIGURE       23 

ILLUSTRATION      OF      P:        FOR     n=4,  V=20%,    a/b = 0 

* 
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hft^ r. CfftJ  [p23+p33+p^.3p22p3+3p2ap^+3p32p2+3p3ap^+3p^s+3p^3+6pgp3pj 

q.± 1  k-1; k « 2,3, ** 

i - 2 

—1-10 

I 
I 

* 

Each term of the expression must be examine^ and if it does not fulfill the 
conditions specified in the second of Equations 1-10,, it must be rejected. This 
process eliminates all terms which ere representative of cases vhere a maximum 
value of load is not reached vhen the first unit breaks. The following table 
illustrates the method: 

VALUES 0P2fti FOR: 

TERMS 32 

3 

q.3 *     Olj.            k «s 2 

0          0                   3 

k - 3 

3 

k - k 

3 

ACCEPT REJECT 

P23 S 

P33 0 3          0                 (0) 3 3 y 
P>3 0 0         3               ® ® ^ .* y 

3pg2P3 2 10                   2 3 3 */ 

ypgrW 2 0          1                   2 2 3 y 
3p32p2 

1 2          0                   1 3 3 s 
3p38pk 0 2       1           (3) 2 3 y 

*k% 1 0           2                    1 © 3 y 
3pk2p3 0 12                 Q) ® 3 y 

Conditions 

11                   1 

for Acceptance   0±^ 

2 
2^*2 

3 

1*1*3 
y 

A single circled vBlue in any row is sufficient for rejection. Thus 
the first term, pg3, i8 acceptable. It represents the case where all three 
remaining units break in the region between ti and 1£. The second term P3^ is 
not acceptable. It represents the case vhere no breaks occur between t\  and 
t2 with three breaks between tg and to. aiiis violates the condition that at 
least one must rupture between tj. and t2 in order that the load at ti be a max- 
imum. The other terms can be handled in a similar senner. In each case the 
value of ^Zq* in the k column mutt satisfy the value given at the bottom of the 
column in order to conform to the restrictions imposed by the requirement of 
a maximum bundle load at first unit break. . 

k 
the k m k  column, the restriction imposed is that ?        . - 

i-2 *1* 3* 
Clearly, f-^ q i is always exactly 3 in this example, but the form cf the table 

"*• 

!&!*&*• 
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ie more general and can be used for cases vhere the total number of unite la 
In excess of h»    Thus if n were 6„ It vould hardly be anticipated that there 
would be any appreciable nuri>er of bundle breaks which would have a maximum 
value when the fifth or sixth units broke In this case, there would be no 
need to include the colianns pertaining to t5 and t<5, and the restrictions 
already shown in the table would apply. 

Th« terns remaining in the n • h  case which satisfy the conditions 
of Maximal bundle load occurring at first unit break are* 

p23+3p29p3+3p2^pifr+3p2P3
2-}-6p2p3Pil 

For computational purposes this is most conveniently written as? 

(P2+P3+Pl^ - (p3+p^)3 - 3v^k
s 

All necessary numbers can now be found froa a table listing areas under the 
normal distribution curve, and ordinates to the curve. For this exsu^le where 
t^ * -2.0, tj> " -1»0# "to » 1.0# and t^ » 7> the tables yield? 

f(-2 0) « 0.05399 

-1.0 

E P2 - i= I -t£ dt - 0.1359 

I  
1,° 

p„ • —* /    -t2 dt • 0.6827 

^-i.c e r 

Pl « i— I   '        -t2 dt « 0.1587 

* Wx.o ' r 
and thus: 

hC-2.0^ = 0(0.05399) [ (0.1359+0.6827+0.1587)3-(O.6827+0.1587)3-3(0.1359) 

(O.1587)]- 1.769(10"2)C 

In a like manner values of t^ of -2.5» -1-5* -1.0, -0.5# 0.00, 0*$f 

mruji  1.0 were e^^OLo^ed^ The resultisg curve is "lotted in Figure '2^0 vhich 
is identical with Figure (9) of the tent end is repeated here for ease of 
reference. 

Sfext the case of a sa:-:iiaum at second unit break must be treated., Herat 
k 

h(t)2 - Cf(tg) CPI+P3+PII)
3
; 2L  Z±* k-2, k-3, fcj qj-X  r.u 

i»3 

^        A chart similar to the one used fur the previous case appears on Page xiiic 

\ 

S»ica» 
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FIGURE       24 

RELATIVE      FREQUENCY      OF 

BUNDLE       LOAD      vs     t 

\ n=4,   m=20 

MAXIMUM 

i 

. 

s**i» 
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VALUES OF Z<li FCRt 

TERMS Si 3a     5k 21 k = 3 v „ k 

h3 3 0          0 © © ~®~ 
V 0 3        0 ® 3 3 

P^3 0 0         3 © ® 3 

3Pl2p3 2 1          0 © 1 © 
2 0          1 © ® ffl 

3PXP32 1 2          0 I 2 2 

3*^ 1 0          2 i @ 2 

*3^ 0 2          1 ® 2 3 

3P3PU2 0 1           2 @ 1 3 

6p1P3PJ, 1 1           1 I 1 2 

Conditions for Acceptance ax-i lli*! Z^ * 

ACCEPT   REJSCT 

v/ 

• 
•" 

•"'MS** 

v/ 

A single circled value in any row is sufficient for rejection. 
Clearly, the requirements are more stringent here than in the case 

of first unit rupture and only the terns 3P}P32 and ^p^p^ remain* Them 

h(t)a - Cf(tg) Op^a^PjP^) 

This curve, H(t)g, is plotted in Figure (2k) together with hft)^. For the case 
of s aaxlram being reached where the third unit breaks, a similar table Is made 
and it is found that only the 3Pi2Pii and op^pgpj,. tarns regain, so that; 

h(t)3 - Cf (t3) OPi^ii+^PiPgfflt) 

The values obtained from this expression are so small compared to those from 
hCt)^ and h(t)2 that the h't)^ curve is neglected. Obviously h(t)t will alsc 
be insignificant and thus only the h(t)i and h(t)2 curves need be averaged. 

Once the o(t)^ curves have been plotted, the ordlnate scale is no 
longer of any significance since only the average absciBsa value is required 
when the h(t}^ curves are symmetrical. The process is now very simple. The 
h(t)i curve has a mean elongation occurring at t o -0u8k, as determined by in- 
spection, and an enclosed area of 2k.32 units as determined by a planimeter. 
For the h(t)2 curve, the corresponding figures are -0.13 and J,93 respectively* 
Since, in the example the elongation variability (coefficient of varietion w? 
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£jl      unit elongation to break) is ?0#y and a is zero,, the abscissa can be expressed 
B* 

as per cent of mean unit rupture lead per unit. Thus for the h(t)1 curve the 
result is: 

g(tx) - 100 - 0.84 (20) - 83.2 

and for the h(t)^ curve: 

g(^2) - 100 - 0.13 (20) » 97-4 

In the first case ell four units are intact when the maxima bundle load occurs^ 
but in the second case only three units are intact. Then the efficiency of 
translation which is the average bundle load expressed as a per cent of the 
aean unit rupture load is: 

t 

k  (83.5) (24.52) + 3(97**0 (5.93)  a, ^ 
—* M2U.52 + 5.93T 3 ^'^ 
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APPENDIX II 

Analysis of Strength of Bundle When First Unit Break* 

In Appendix I the case of maximum bundle strength was analyzed. 
Per many purposes, a structure may be considered to have failed when the 
first element hac ruptured. If there are a small number of units in the 
group, and the mechanical Interaction between units is large, then it is 
possible that the elastic recovery of those portions of the broken unit 
to either side of the break can stress the remaining unbroken units, and 
in some cases break them. This "snap-back" effect can be of significance 
when the total number of units is small and the coefficient of variation of 
elongation to break of the unite is small. In a practical sense, there is 
no difficulty in predictability since under the conditions of maximum effect 
of "snap-back", there is only a very small difference between average bundle 
load at first unit break and average maximum bundle load. This does not 
however, deny the very practicol fact in many cases the mechanical utility 
of the structure is destroyed as soon as the first unit breaks^ and thus it 
is of significance to consider the analysis of the problem. The method for 
finding the average load supported by a bundle of parallel units when the 
first unit breaks will row be developed. 

Consider a population of units vith a mean breaking elongation 
em> a normal distribution of elongations to break with a coefficient of 
variation of elongation to break V. Now define the following quantities: 

t " l .f^t(t) at 
p • probability of any unit breaking at an elongation in excess of 

/27rJt 

f(t) - relative frequency of break at t (ordinete to normal curve). 

h «* relative frequency or first unit break at elongation t* 

If a bundle of n parallel units is stressed to a given elongation t, then the 
probability of having (n-1) units intact at this point will be the probability 
of having any given individual unit intact taken to the (n-l) power, orjp)11"^. 
The additional restriction, that the first unit shall have Just ruptured, is 
satisfied by multiplying this quantity by f,. the relative frequency of break 
at t. A normalizing constant, described in Appendix I, has been omitted here 
since it was shown there that it has no effect on the mean. A curve can now 
be plotted of hy  the relative frequency of e first unit, break,, versus t, where: 

h - f(t)pa-l ~    II-l 

By assuming various values for t and determining for each such value the corre- 
sponding value of p, it is possible to evaluate Equation II-l for all bundle 
sizes, i.e., all values of n- 



$0 

i 
Page xvi 

llie results for values of a from 1 to 15 are plotted In Figure (7 ). 
The mean value of t for each of these curves is plotted versus a In Figure (8 )«. 
This mean value can be interpreted as «& efficiency using a linear approximation 
to the stress-strain curve. That is, one need only find the load on the linear 
curve corresponding to the t value found and divide this by the mean breaking 
load. Using the parameter n as previously described, curves of efficiency 
versus bundle site for • • 10, 20, and 30 have beso plotted in Figure (25). 
These curves also appear in Figure (10) of the text. 

t 

>- 
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i * APPSSDIX III 

Analysis of Seven Ply yarn Strength 

Proa the definition of a parallel bundle given at the beginning of 
Appendix I, it is clear that a seven ply yarn cannot be considered as such a 
group. In two or three ply yams of unifona geometry, the yarn strain Is the 
sane in all yarns, by symmetry. The idealized seven ply yarn (see below) 
although rotationally symmetric, is not radially symmetric, and thus all of 
the singles yarns cannot be considered as equally mtralned. The presence of 
the core in a seven ply yarn creates the difference between this structure and 
a parallel bundle. 

The analysis of seven ply yarn strength however, is similar to 
that of the parallel bundle strength, the only differences arising as a result 
of the variation in strain between the core end the external units. 

The idealized geometry for the seven ply yarn consists of a circular 
core of radius By surrounded by six circular units with the sane radius as 
illustrated in Figure (26). 

s> 

If the external units arc inclined to the core at an angle Sp, then 
their strain in terns of the plied yarn strain, ep, will be epcos^Op (see 3) 
and the load on the external yarns will be that corresponding to this strain as 
given by the stress-strain curve of the siegles yarns. Thus, if a linear 
approxlaation to the shape of the singles yarn stress-strain curve is used here 
aa before, the tension In the core will be (a+bep), and In each oi" the outside 
yarns, (a+bepcos^Qp). For purposes of statistical calculation all quantities 
nust, as previously, be expressed in terse of t. 

Let primed letters refer to the external singles yarns and unpriced 
letters to the core yarn. Then: 

e - ftp} e « epcos20p  IH-1 

By definition: 

t . • " ••   —= 

and thus; 
t0 - *'"*• - ecoggV ^ « e-eq-e+ecoagQp „ t - eQ-cosgOp) „ t^sln2Qp 

0" <r <r ~<r °" 

But since   T « e AT; n 

—— UI-3 

135 
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FIGURE    26 

IDEALIZED     7-PLY    YARN 
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Since: 

Page xx 

t» . t - 10° e sin2©.,  __. - ..—>.—  in-4 

t - 1^5 . 155 100; e - Jjm y + e^ » *» (tV + 100)  -  UI-S 
(T   e~v^        TOO    ^  TO 

Therefore: 

f . t - •*   (tV +100) 8ln2©p x 100   ni-6 
I&7J ^3? 

ors 

f - t - <t • WO) 8in2^ 

The piled yarn load contributed by esch of the external yarna is 
equal to the tenaion in each external yarn times the cosine of the ply helix 
angle. Thus,, if the load-elongation diagram of the singles yarns is expressed 
as a function of t, g(t), the tension on the plied yarn when all units are 
intact is: 

I 
p - g(t) + 6 g(t') cos ©p   —- — III-7 

Following an analysis very similar to that of Appendix I, a number 
of different breaking configurations ar.. assumed, and the strength of each 
configuration together with the probability of such a configuration not attain- 
ing a higher strength is calculated. 

For example: Let the core yarn break at an elongation tj_, with all 
external jams Intact. The strength of the configuration at this point will be 
g(t}) + 6g(t'^) cos 0-. In order that no subsequent load shall be greater than 
this it follows, in the limit, that: 

g(ti) + 62(^3)008 Op « 6g(t2')cos 0p « 5g(t3')cos 0p - Ug(V) cos Opetc. J 

III-8 

5 wherr trj' is the point at which the first external yarn ruptures, to' when the      [ 
second rupture, etc The probability of such a configuration, using the [ 
nomenclature of Appendix I, is; ; 

M(\)  (Pg'+p^Py)6, £ qi^kl, k-2,3 7   III-9     I 

j 
? By using different values of t and assuming different breaking configurations, 

* sets of curves similar to those given in Appendix I can be plotted end averaged.     I 

t: 
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For exanple, another configuration to be assumed is that for vhich aaximnj 
load takes place when the first unit breaks, and the first unit is not the 
core but instead one of the external yarns,, with the second unit- which 
ruptures being either the core yarn or one of the five regaining external 
yarns. Thus this case Is not a single configuration. In the confutations,, 
a sufficient number of configurations were analyzed to yield results of 
engineering accuracy. The plotting and averaging procedure is very similar 
to that described in Appendix I, and will not be repeated here. The only 
difference le that in weighting the contributions to Baxlnum bundle strength 
of each configuration, the weighting factor is dependent not only upon how 
nany units are intact, but also upoa whether these remaining yarns are core 
or external unita7  i.e.; the cos©- of the external yarns must, be Included. 

The results, for several cases, are plotted in Figure (11) of the 
text. 
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