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AN APPROXINATE THEORY OF INELASTIC COLLISIONS~*
by

James F. Hormig and J. O: Hirschfelder

ABSTRACT

Approx:mate tr—t-jcc@rim:_for describing the inelastic encounters between
rigid diatomic moléeécules arce described. These trajectories, together with
guantum mecﬁa_rvclal- perturbation theory, are used to derive an aproxinate
formulation of the inelastic differential scattering cross sections for such
collisions. . The quantum mechanical correspondence principle is used when
necessary to bridge the gap between classical and quantum descr.iptions of the -

problem.

¥**This work was carried out at the U:'ni'versﬂ_y of Wisconsin Naval Research
Laboratory under Contract N?onr»-285‘1.1 with the Office of Naval Research.
One of us (JFH) wishes to acknowledge the financial support which made this
work possible. An Atomic Energy Commission Predoctoral Fellowship
administered through the Oak Ridge Institute of Nuclear Studies provided
support while most of this work and all of the preliminary work was being
done. A General Electric Company Predoctoral Fellowship provided
supoort while this work wa1s be‘ng completed,
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INTRODUC TICN

A theoretical prediction of any of the ron equilibrium properties of
dilute gases depends on detailed information about the dynam:ics of a binary
collision. One can, for example. calculate the transpert cocfficients of a
rare gas if one knows the angle of deflection in an encounter as a function of
the 1nitial energy and angular momentum of the two body system. Fcr more
complex molecules, the probability of internal trarsitions accompanying the
collision must also be known. Wang-Chang and Uhlenbeckl have derived a
formal treatment of the kinetic theory of polyatomic mclecules which s
expressed 1n terms of a set of such differential scattering cross sections, one
for every possible internal transition. Similarly, an exact theory of the
pressure broadening of microwave spectral lines will require a knowledge of
the probability of internal transitions accompanying collisions

When molecules interact according to spherically symmetric laws of
force and undergo only elastic collisions, the complete dynamics of a collision
can readily by obtained. If one or both of these conditions are not satisfied.
the problem becomes very much more difficult. Several investigations of
transport phenomena of special molecular models with internal degrees of
freedom have been carried out, but the two-fold difficulty of solving for the
classical dynamics of an encounter, then of modifying the classical Boltzmann
equation has usually led to inconclusive results A brief summary of such work

may be found in chapter seven ofﬂg L_@qlecu]ar Theory of Gases ané Liqu:ds

Wang-Chang-Chang, C. S., and Uhlenbeck , G. E. Umiv. of M.chigan
publication CM-681 (1951)
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bv Hr-schfeider. Curtiss, and Burd.
Rigorous quantum mechanical treatments of the problem are in progress
and promise to yield the mosi fruitful results. The scattering of spherical
imolecules from slightly eicngated ones has been worked out by Gioumousis and

Curt:ssZ

and 18 being used as the basis for a theory of the interaction of diatomic
mnlecules. Buckingham and Delg,\rno3 recently gave a remarkably successful
solut:on for the diffusion and excitation transfer of metastable helium in norraal
gaseous hel:uim. Although :n~lastic. thie helium - metastable helium encounter 18
a casc of exact resonance with a spherically symmetric potential, so that the
theory 15 considerably simplified.

Unfortunately, the exact treatment of more complicated encounters may
not be available for some time, 80 1t would appear very desirable to develop an
approximate theory of suck inelastic encounters. We might expect that such an
approximate theory. containing the essential features of inelastic collisions,
would at least: 1) provide a basis for semi-empirical prediction of transport
coefficients, and 2) indicate which features of the inelastic encounter cause important
modifications 1n macroscopic phenomena.

In this report we describe such an approximate theory and apply it to
thf theory of transport properties. For convenience we will usually talk about

the interaction of diatomic molecules, but wherever possible, we will proceed

from the 1nost general considerations so that the final result will at least suggest

2 Wis. ORD, OOR.8.

Proc. Roy. Soc. A, :!3, 506 (1952).
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a treatment of more complicated situations. The purpose of the arguments w:ll

be two-fold: first to establish the validity of the overall procedure, to justify

the use of the correspondence principle which makes the procedure possible,

and secondly to indicate approximations which will make the method feasible

for practical calculations. We will attempt to identify clearly the nature of all

approximar‘:ons as they are made, and to indicate their range cof vahdity.
Beginning with the general quantum mechanical formulation of the problem,

we will set up a solution 1n terms of 32 perturbation picture. It will be argued that

the translational motion of the molecules can be treated ciassically, so that the

zero order solution of this part of the proolem will simply be ciassical elastic

trajectories. For convenience, various approximations to the classical

trajectories will be considered and compared. The nature of a trajectorv in the

vicinity of a sudden inelastic transfer will be discussed in general terms. giving

certain resirictions or ''selection rules' on the possible nature o: tbe transfor

at a point in space. Consistent with these selection rules, 4 meot . <l e

developed for treating an inelastic trajectory as a perturbation-induced transition

between elastic trajectories. Finally, the formalism of a tentative proccdure for

determining the inelastic differential scattering cross sections will be developed.
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A. QUANTUM MECHANICAL FORMULATION AND SEPARATION

OF COORDINATES

Consider a system of two diatomic molecules "a" and "b", made up
ofatoms | and 2 in a, and 3 and 4 1n b . For an arbitrary fixed set

of coordinates, the Schroedinger equation of the system 18

“/7'1’7; KZVW B %"(V"’E)w =0 (1)

>
Here <7L is the Laplacian in the coordinates of the i'th atom. if we

introduce relative coordinates:

fa"a1 =2 b =3 =4
Ry ® L _» i _ ap 4 ok (2)

M,
v M3 ANy

m. r + )"»K‘
(mom) (222 k
MgV S (/)773 1"7"#) mamy

(7 ) (s tmy)

mi 4-/"‘1.57

equation (1) becomes:

W 7 VeVt Ve W

P Ve W - 3 (v-E)Y =0
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Here we have introducced reduced inavs and total mmass symbols
Mo = N My M = (m, ten)( Mg+ N y)
Mmoo TN E N Nyt ANy
N
Hb = E ¥ /‘ .
= M, + M+ + M3+ M
“n My \4 ! 3 4

This non singular, hnrear tranztormation amounts simply to using the
a1} kno=sa < -paration of variables for two particle problem three times, once
on each diatomic rnolecule, and once on the system of two molecules.

With the Schroedinger equation 1n this form it 18 quite easy to see
the effects of var:ous simple forms uf the potential. Suppose the potential

18 the sum of separate terms:

YV o= V(ra) + V(rb) + V‘R.IH (4)

Then therc 18 a soiution

- b &
w(’i.&:,@n) - XE) CP(Q) ‘Hre) 9(?. (5)

where

7%-\7;)( . Emw/( =0
b vy B, - (Ve - Ee) P =0

Ma
L L&, - B(Vm-E) P =0 ¢

L VL6 - B Ve LB =0

With this approvimation. then we have separated the problem into four
separate physically resonable pa ts  Fquation 6.1 describes the motion of

the center of mass of the whole systein moving like a free particle of mass M .
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The second and third equations describe internal motions of the molecules
relative to their mass centers, and the last cquation describes the relative
motion of the two molecules relative to their joint center of mass. Thys
motion can be described 1a terms of the equivalent vone particle problem 1n
Ma Mo

which a particle ol imass /‘1 S mh moves under the influence of a
poten*tiaj \«'(Rab) . We wil' use this picture of the equivalent one particle
problemn in the rest o’ this report.

The influence of asymmetry 1n the potential {:eld as far as modifying
the trajectory and inducing internal transitions may now be treated as a
perturbation problem. If the molecuics had electric dipole moments, we would
have such a potential of considerable physical interest Before co sidering the
effect of a perturbaticn, however, let us cons:der equations 6 1n : .ore detail.

The motion of the center of mass of the entire system will an general
not enter into kinetic theory prohlems, so only the last three equations will
be of interest. Equation v. 4. the relative motion of the molecules can
irequentiy be replaced oy :ts classical hmit. The DeBroglic wave length of

1.8

[ 4
a molecule with energy kT 1s given, at room temperature, by )\ = = /3

M

'+vhere M 1s the molecular weight. Or, from the point of view of the

uncertainty principle. an uncertainty of 1 R in the position leads to an
LAV - 03

uncertainty in the velocity such that — = —=

9 again at room temperature,
Thus, to a recasonable approximation, a c¢lassical trajectory may be used to
descz.be the relative motion of the molecules This approximation. of course,

is the basis of the ent:re classical theory of transport properties; its validity

over a rather wide range of conditions {s shown by the success of that theory.
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7
Clearly no such classical limit may be taken for equations 6.2 and

6.3. Solved with the usual approximations, these equations give the harmonic
oscillator and rigid rotor wave functions. At ordinary temperatures only the
lower vibrational and rotational levels will be populated, so that the quantum
mechanical description of thesc coordinates of the system 18 necessary. In a
great many special cases it will turn out that excitation of vibrational levels
i8 very improbable in thermal collisions, so that only the rotational motion
need be considered. For this reason we will concentrate on a treatment of
the rotational motion, though the extei.3ion to include vib-ational transitions

would not be difficult.

B. APPROXIMATe TRAJECTORIES FOR ELASTIC COLLISIONS

Since the effect of a perturbation will in general be viewed as causing
transitions among various unperturbed states of the system, it will first be
necessary to investigate these unperturbed states, For the internal
coordinates of a d:atomic melecule, these are obviously the quantum mechanical
wave functions for the harmonic oscillator and the rigid rotor. Since 1n the
unperturbed state these do not change during a collision, the remainder of tne
zevoth order approximation 18 just the classical trajectory for the elastic

collision of spherically symmetric molecules.
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For the elastic classical trajectory we must first decide on some sort of
effective spherical potential which will, 1n general, depend on the internal states
of the two molecules. In the case of eiectric dipoles, this could be done by
calculating the interaction energy of a pair of '""clamped' rotating dipoles. This
calculation has been done by London with his "Unscharfe Resonance', a modified
second order perturbation technique. In any case, we will assume for the
mement that we have such a potential vij (Rab) . where i and j denote the
total quantum states of molecules a and b, and R, 1s the intermolecular
distance. We also assume that this potential contains the necessary hard core
or repulsive properties.

Elastic trajectories might now be calculated in the usual manner.
Specification of g , the initial relative velocity, and b . the collision parameter
or miss distance gives the energy and the absolute value ot the angular mementum
of the system. The distance of closest approach, r ., €4n now be calculated

as the greatest positive root of the equation

-]

| - Vi j(rm) _ £ =0 (7)
AHE” il

Then the angle of deflection X 18 given by

X =7 -2 (£ -rv___L_r’v.(,)) o

b ; v

The resulting angles of deflection are rather complicated functions
or r = and b, so that it would be difficult to consider trans:tions among
the elastic trajectories. Let us consider several approximate trajectories

which would facilitate calculation. We observe that for certain rather simple
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trajectories the angle of deflection 18 uniquely determined by the ratio rm/b :
For rm> b the collision 18 repulsive, for 'm< b , 1t 18 attractive, To
investigate the possibility of approximating the true trajectories by one of these
sumpler cases we will determune X(_fg) for trajectories found when V oC %‘
(Kepler orbats), VoC ﬁ (Maxwell molecules) and for a special trajectory of
connected line segments. Then we will compare the functions X(KEI) with
values for the Lennard-Jones potential. For the Lennatd-Jones potential X
i8 not a single valued function of rm/‘o . but comparative numbers can be
obtained over parts of the range by considering large b for attractive collisions
and amall b for repulsive ones,.

a) Kepler trajectories
If V= — , the equation of the trajectory 18 easily shown to be the

v

conic section

|

E— = Coa 6)

r /75 PPt (/ c (8)

We are interested in the repulsive and attractive trajectories which are
hyperbolae described by equation (8) 1if e> 1. If k >0, the repulsive case,
the center of force turns out to be an externa! focus of the hyperbola. X("—;S)
may be found as [ollows:

from equation (8)

(9

i

fm = T (e,
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from equation (7) for this potential
. L
|- e - =20
or
b T v o o
py —;’/—é—,,.-'— (10)
M3 L N -
solving for e,
3 ,
= 2 I 2> b (11)
()
b -/
1f 6=*V are the directions of the assymptotes,
(Ln) > _
Coa I . b) /
y = e = ("4»._ Ye ) (12)
=)+
Since the angle of deflection 18 given by
DN
X = 17 -2 (13)
we have, finually, fm.)-"_ / 13-
_/lX:/_zw? (14)
(Lz)~+ 1
For attractive collisions, k{ 0 and r 4 b, the center of force
m
/
e and proceeding

becomes an internal focus of the hyperbola. Letting V = r

as ¢bovs,

from eguation (8)
v T+

ro- Mg b
m 4 (1 + <)
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and from equation (7)

3 4 / ~
r 2 ‘—."b~- =20
/‘73\"’/»\ ]
we have
EN = -

20 49 before

Fowm | v

L)

+/

b) Repulsive potential proportional to "’%'y (Maxwell molccules)

4
Let V = 77. then the equation of the orbat is

[ )
6 = [ S 'EZJ dr (15)

~
r

where E =i‘/1§v. b .8 the collision parameter or miss distance, and

where 8 =0 1s parallel to the 1nitial asymptote.
Let - b - (JEL—)‘/
‘x - r xo - b
then

X.
- L
6= [Li-x" =] ux

(o}

The apse of the orbit, where — = 0, 18 given by the real positive root of

dr
a6

/ RIb—(io),(:O o

Call this root I,:’%. Then

X = 7 - 2off‘fv"(§:)“]dx
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The integral can be evaluated in terms of a complete elliptic integral of the

first kind.
Let
y
| 4 FTE
) ¥
bz = —Xf—[v J (18)
c2 = az + bz '\/ / ¥+ ’
then

X =77 -2x” [(av‘xb)(bp*r)]-};vz (19)

This is a standard form of the incomplete elliptic integral of the f{irst kl.nd‘. so

that
2
- 7T - SEE—
X-— / (/.'__ILO")//?‘ F(%)q;} (26)
where
F(K,.() = f/vl v *‘1,‘
and
A P _ cx,
/VT’ A%~ v P T Ab

Substituting from (17) and (18)

~—r 2 X,
X = 7 W K(@) (21)

4 Jahnke and Emde Tables p_f Functions, Dover, 1945,
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where

=
e = | —=
) «V. e T
[e}

the complete elliptic integral of the first kind.

=1/
¢} Astractive potential proportional to 5
Let V - -';,j‘; , then proceeding as for Maswell molecules,
‘;?
” - Y
" A d
5 = ’[;—v‘r ‘_:—4"»] dr
J X
r
Let
4 . R
then -
e = dg
J Vs -3a
Letting
v /
X = 1‘[’ = l/"‘m]
~— ol i
S R
gives
o
/ A
— s
X = T -2|

(2
J
Y.

where Yy is the largest positive real root of

vt -yt

y, ® X Again we have a standard form of the comylete elliptic
integral, giving, finally:

’V(; o) 3%

-

+ A 0

1.€.

(24)

1

13

(22)
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de Stroght e sepments

Gives - arnd b, we canr specifly a1 approximate trajectory such that
the angle of detlection depend= oniv on rm/b by proceeding as follows:

For repulsive coilisions - > b) the molecule continues on its
orgimal stra ght line path unt:l 1t re s hes a distance ra from the origin.

At th s po. * the moied Jlc - derie ted o5 though 1t were rebounding from a

rigid sphere.  See Fag. ).

, .
r Ir" .
r b
m”
Fag 1
|
|
Simple geometry p:ves the angle of deflection
S S
cos X - _2(-(—_".) - (25)

For attractive colhisions /rm (_ b) the molecule continues on the
straight line unt:l it reaches a distance b from the origin. At this point
it 18 deflected through an acute ingle such that the new segmeat passes a
drgtance "m from the or:gin. ‘The remainder of the trajectory is symmetric

‘See Fig. 2
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Frig. 2

In this case

cosx = 2 ()71 (26)

In the following graph the functions cos X/™/}) are plotted against
r,,/b for the various trajectories considered. For comparison, some J.annard-

Jones values are given for several values of the reduced relative kinetic energy

& Angt 5
€

From the curves of Fig. 3, it is clear that the Kepler orbits are the
poorest approximation to the trajectories produced by the more sharply varying
intermolecular potentials.

> The Molecular Theory of Gases and Liquids by Hirschfelder, Curtiss, and

Bird (John Wiley & Sons, New York, 1954) (Appendix, Ch. 8 with Ellen L.
Spotz).
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Choice between the line scpgments and the l/'x'4 orbits would depend
on ease of manipulation and success in giving the desired cross sections. For
repulsive encounters the connected line segments give remarkably goed
answers. Since thesc line segment orbits would be expected to give the iargest
deflection of any purely repulsive trajectory characterized by a certain rm , 1t
must bs *}.at the attractive part of the Lennard-Jones potential tends to compensate
for the softness of the repulsive part, resulting 1n a nearly hard sphere deflection.

In attractive encounters the lhine segments give good answers for r
slightly less than b, but they do not refiect the orbiting tendency as oL ls
decreased. The line segments, for exa ..ple give full 180° deflection only as
r . approaches zero.

To complete the specification of any of these approximate trajectories,
we need only assign a speed to the particle at each point. Clearly this cannot,
in general, be done so as to consec«ve both energy and angular momentum.
Since we plan eventually to use the trajectories in a time dependent perturbation
calculation of transition probab:lities, we are most concel red w:th the time
spent 1n each region of the potential. Now, the approximate t:ajectories have
been adjusted so as to traverse the same region of the potential as the true
trajectory. /.., { {9 , 80 1t would appear reasonable to adjust the speed at
each point 80 as to keep the total energy of the system constant. Angular
momentum conservation would adjust the speed according to the direction of

motion at the point 1n question, a feature of little interest to us as long as the

total deflection of the path is nearly correct.
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It is evcouraging to note that at the d'stance of closest approach our
attractive trajectories coincide with a point ¢ a true trajectory with the
correct energy and angular mementum parameters. -it is from this region

that we expect the greatest contribution to transition probabilities.

C. THE INELASTIC TRANSFER

Consistent with our perturbat:on picture we will Eu.vtnt to consider
transitions between elastic tr?.jectf:\rzc's. Before rnvestigating such transitions
in terms of any of the approximate trajcctaries considercd 1n the previous
section, however, let us look at thc lim:tations imposed by the conservation

laws of classical mechanics on any trajectory 3t the moment of inelastic transfer.

The dynamic state ot an encounter between linear rotating rigid
molecules in conveniently spec;fmd, whep the molecules are far separated, by
the eight variables b, g, i_a, and _«£b , wh¢i-c we have chosen a coordinate
system such that the motion lies in the xy plane. _/;3 and z_e__b are the angular
momenta due to the rotat:on of molecules a and b . The angular momentum
due to translational motion relative to the center of_'mass 18 27_ = H g b (;_?-
The internal energies €a and €b . and the translatxénal energy € rare easily
determined in terms of these variables,

vet us suppose that at some point —ilonvg 4 trajectory determined by these

initial conditions and the potential function \’(r) there occurs an instantaneous

/
change in the internal dynamic stite such that &a 9&’ and &)-n_?_l_) with the
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new potential V Applying the conservation laws of energy and angular

/
{r)
mementum. we have

E = €4 +€y + Exr) =V = ec: + €Ep + Exr] -¢-\/,\,',)

(27)
L.=jm*,_ﬁ_b_+)?r =/&-/T/Q°.*:_€T_

To interpret the consequences of these equations, consider figure 4

Z

Fig 4

Here we picture the situation in terms of the equivalent one particle problem
as usual. RS, lying 1n the xy plane, 18 the segment of the trajectory just
before the transition. The transition occurs at S, so ST is the trajectory
immediately after transition. In general ST does not lie 1n the xy plane,
but in a new plane determined by ST and point 0 ; we designate this as
plane F . The xy plane and F intersect along OS . The molecules are
separated a distance r, at the instant of transition.

Now, the total angular raementum 18 conserved. so in particular the
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component along OS must be constart Thus:
4 f 1 / ! -
(ll s L T re] | r to "-'_[;.)cg
But J_‘_’J. and Vr are clearly perpendicuiar to OS 8o that
4L re'y '(J’i‘l,l _ YASPY o+
— e ) = Z _ - Lam )’[ (28)
4;13}; \\/‘__ ’4;-./; 43 .

or where _,{ 18 the total internal angulat mementum, and r{ 18 the angle in the
xy ptane as shown in Fig. 3 This result might be looked upon as a restriction
on the possible redistribution of x and y components of the internal angular
mementum for a given po:nt on the trajectory Alternatively, and more con-
venient for our purposes, 1t specifies the point or points (1f any) on the
trajectory at which a specified transition could take place. Let us see how this
restriction might operate 1n practice {for any putely attractive or repulsive
trajectories. If & : 0 1s the direction of the imitial asymptote of a trajectory,
as in Fig. 4, then for a repuisive «ollision the direction of the final asymptote
5: will lie 1n the range £<5+<7. Since the tangent function 18 single valued on
the interval (¢ 7/ a specified transiion 4n lead to at most one allowable
solution of cquation 28 For attractive collisions, on the other hand,
80 that there will certainly be one solution ‘/(\ on the interval \/0,/7) and it
18 quite possible that Y(r?; will also be acceptable. Qualitatively, however, 1t
can already be observed that there will be a rather limited range of Tl such
that the two points on the curve represented by nk and Tlr/‘f will lie at about

the same distance from the orig:n. Since we expect that the probability of
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transition will fall off rapidly with increasing separation of the molecules, it
will érequently happen that only one of the allowed transition points is
physically tmportant.

From the energy equation;
AN = _F -ed -€y - Vin),
€rw) = M 9l = © (29)

Selving for g’ we have the speed oi the particle after the transition. If this
result is imaginary, we conclude that the transition is energetically forbidden.
It is interesting to note at this point that if one were considering this problem
in terms of curves on a multidimensional energy surfaces, this last result
would etmply be the Franck-Condon principle restricting transitions between
such curveo.

To somplete our analysis of the transition we use the angular mementum
equation again;

&= Lo-a -

The direction of ,_&' determines the plane of the new trajectory. The selection
rule ea )7 4as assured us that this plane will pass through OB (Fig. 4) se
this Jast item of informatisn gives us the angle between plans F and the xy

plans. Frem the magnitude of ;lI we determine the new collision paramater

b’ = | &' (30)

" Ty
Apparently, if b >F no satisfactory trajectery can be constructed, so

this result constitutes & third selection rule on the transition. I b'<'o
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surprisingly enough, there are two possible directions for the new trajectory,
correspending to the two tangentis to a circle of radius b  which pass through
a point in the plane outside of the circle. Each of these directions is censistent
with the tetal anguizr mementum of the system. The dual choice may also be
seen directly from the express:on for angular momentum, L =rxp . Working
in the plane of r and p, L = rp siny , where T is the angle from r to p.
Apparently for a given L, r, and p, both ¢ and 7-% are acceptable
solutiens.

That the choice is really unique, however, may be argusd as follows:

Let us suppose that the inelastic transition specified by 4, + ¢/ and {) ..4;

appreachss sero in such & way that as defined by equation (28) remains

x
Ly
constaat, thus keeping the .ranaition at the same point on the trajectory. In the
limit of .6 transition, the equations of motion say that the particle continuse

on the smeeth course rather than taking the abrupt change in directioa which
would also be censistent with the energy and angular memsntum of the syetem.
Thus, i the particle is on the approaching branch of an elastic trajectsry, it
does not jump suddernly te the corresponding point on the recseding branch.

Now, & fanite transition at the specifisd point on the trajectory may bs censidered
as a series of small transitions with constant 2—952; .. Then, by continuity of the
whele precess, the particle {inds itself on that point of the nsw trajectory which
correspeads to the starting point on the old *rajectery, correspondence being

interpreted in terms of the picture in which one trajectory is continwously

transformed ints the other by a progressively incressed magnitude of the
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inelastic transfer. [n practice *h;s simply meana that if the particle 18 on the
approaching (receeding) part of one traiectorv, 1t must appear on the approaching
(receeding) part of the new trajectory.

Thus, in terms of a proposed tranaition, we have determined where the
transfer could take place and what the speed and direction of motion of the
particle must be after the transition. (r the course of getting this information
from the energy and angular momentum conservation laws, we have found
three rather simple criteria or ''select)on rules' for determining whether the
transition could take place at all:

1. V‘L as given by equation 28 must lie on the initial trajectory.

2. %’ as given by equation 29 must be real,

3. b as given by equation 30 must be less than the separation of

the molecules at the time of transition.

The second and third of these criteria s mply tell whether or not the
transition has taken place in a region compatable with the total energy and
angular mementum of the system. The first 18 a restriction on the redistr)-
bution of angular momentum due to the fact that the trajectory must te
continuous.

In the next section we will consider the application of these results to
the problem of compounding our approximate elastic trajectories to represent

inelastic encounters.
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D. APPROXIMATE TRAJECTORIES FOR INELAST]JC COLLISIONS

To be congistent with vur approximations at this point, we must seek
in 1nelast:c trajectoty such that energy 18 conserved at every point ont :t. and such
that the angular momentum 15 conserved when the molecules are far separated
beiore and afte: the encounter, Suth a trajectory may be constructed by the
{olilow.ng procedure:

1. Given _/_(1 ; :_ib b g and V(r) we have the approximate elastic
trajectory r - T(8) . Specifying the transition by the new rotational angular
momenta_/__’f:a and /_éb,’ we golve for an angle YL as 1n the preceeding section
'f the lines % . 7 or & - N +~"7 do not interest T , the transition 18
imposs:ble. If one or both of these intersections exist, we have possible po:nts
for the transition. Suppose r [‘h}) 16 4n Intersection.

2. Al 1 we nvestigale equation 29, the energy equation, to determune
the new relative speed g’ . S'nce energy 18 to be conserved at every point,

v, e
we apply the second seles lxof:/\rxgorously and call the 'ransition forbidden if
g’ '8 tmaginary. Suppose g’ 1% an acceptable solution of equation 29.

3. Stricr application ot the third selection rule on angular momentum
3t the transsi:on point would now be 1nconsistent. Such a restriction would
demand that this point on the new trajectory Tl(él) have correct energy
and angular momentum, 'oo stringent 2 condit:on for an «pproximate trajectory.

Though certainly rot undesirable in atself. such a restriction 4t thia po:nt

~ould complete!y deote rmine the rest of the path and would not leave us tree to
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adjust the asymtotic value of the angular momentum.

Instead, we simply use the direction of fr/ =L -__pa/ -!; to give us
the orientation of the plane F in which the new trajectory r = T'(O') must
lie. Since the elastic trajectories lie in a plare, this will also be acceptable
uypptotically. From E, [L/ and V'(r) we can determine the shape of
T/(6') completely, lacking only its orientation in the plane F . Apparently
if rr,n is greater than r,» no orientation of T’ will provide a continuous
transition between T and T/, so that the third selection rule appears here
in a rather denatured form. I r"n is less than r there will be two
orientations of T/ in F which will intersect T at ry but from the
argument in the preceeding section the choice must be made so that the
particle continues approaching or receeding from the apse of T/ according
to its metionon T

Thus, we have a simple and unique method for construction of

approximate inelastic trajectories.

E. THE INELASTIC DIFFERENTIAL SCATTERING CROSS SECTIONS

So far we have described a method for constructing approximate
inelastic trajectories in terms of a combination of classical and quantum
mechanical concepts. We have assumed a classically exact knowledge of all
coordinates, but at the same time we considered a discontinuous change in the

internal coordinates - a distinctly quantum mechanical idea. We now wish to
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vae th s rtosmat r 1o soive the quantum mechacc !l soattereg probhlerm and
-k
Aetern e the cre o8 d e remnt g S0 4te s P L TOSE Ae NS [P (]) V)
&
! .
mmterms ot »h oh Vhienbe x “ i~ deve lnped o theory ol the trsneport phenomena.

':(_I{gla,w, may be detined as injiows Let A arnd ¢ be the polar and
sr:muthal angles of the f:naj ceist-ve veincity vectos measured from the
in.t a4l relative veinc ity vecto-* jet - and ) s.gnifv 2]l of the necessary quantum
numbets to spec.fy the :n tial internal quonturn 8tates of molecules 3 and b°
and let k and | represer: thewe quiantum numbers aiter the encounter. Then
!-*é(f ®, W) umd dad P18 the probabrl«ty that from 3 uniform beam (plane wave)
c3 g e
of molecules :n state 1 inc:dent on a molecule in state ). with relative velocaty
g+ 3 given molecule :8 sca‘tered into the snhid angle a5 1% gk d¥ about o, Y
while the imerna! quantum states go to k and | dur:ng the encounter,

1f ’—/a and -’gb are expvessed in tevms of the polar variables iz O30
and :Pa ”‘b s 6y and ‘::b the quantum numbers 1j kl are suff:cient to
specify the classical var:ables ,"4 5, )Cb 5 b /; 6% /l; and 5{)
Thus the definition of the scatter:ng (ross scction can oe reformulated i1n terms
of classical varjables as follows: In the encounter spec:fied by g, , s Ga
4+ and A . what 12 the probability of scattering 1nto sinx dAJd ¥ while the
internal coardinates goto /. . o . jb and ¢

In order to apecify &« and ¥, from our classical derivation, however,
we need infermation about the extra var:ablee Pa Pp- <Pd , and ¢g or
the ir equivalent. if we can get the probab:lity of the desired scattering event:

by assigning probabilities 1o these extrs variables according 10 the quantum

mechanical correspondence principle, then average over the extra variables,
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we ought to have an approximation of the differential cross sections, valid 1n
the correspondence limat.

For a uniform bcam of incident particles (the corresponden-e liriit of
a plane wave) the relative probability of a collision parameter 1n the range b,
db is just 77 b db Sunilarly 1n the correspondence limit the azimuthal
angle of the angular momentum vector of a rigid rotor 18 completely uncertain,
so that the probability density function for the unprimed P's is just 1"',:, .
For the primed 4’/8 , however, the situation i1s a little different. If the transi-
. . . , /
tion occurs at a point ro on the trajectory, all values of :pa and @b are
equally likely provided they are consistent with the first selection rule
[Ava :&,“)l . Apparently this problem can be handled if we change variables
ALYy
from ?a and Pb to the arc length 8 , according to the first selection rule,
and a variable z equal, say, to 49; . Now, 1f we can find a function ‘f’(u)
such that "f‘(l) ds is the probability of transition in the interval s , ds, then
we know that all values of z wil! have probability consistent with all (Pa' and
@Ib equally likely If z = ¢; , for example, all z will be equally probable
since the relation between qi'a and ¢‘; is satisfied automatically by the
choice of 8 .

The function 'f(s) ds 18 easily gotten from time dependent perturbation

/ ‘
theory. Let us define the function 'f(ij , kI, b. glt) so that f'dt is the
probability that the 31j , kl tranasition takes place at t , dt when we are on
. : . . ¢ h)

the elastic trajectory determined by b, g, and 1) . Let éa L@) and §b([_p)

be the wave functione of molecules a and b when they are in the i'th and

j'th quantum states respectively, and let V(lfa , Iy , t) be the interaction
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potential at timme t . l'hen
t
A S ) : \;'\ 'C0q4 _E :" k7
doe)y = x| - Vo, (t) ot (31)
~
to
where the probability of truns:ton up to trme U s
D o _ | , i} e
1l .’\:, - ! "A(; ~/}
Here
vy
Ai(c): 0 k& # 1
= 1 k(: i)
and
N Vi [ -—_&‘_ (.# - -
\/,; &) = | Pl Pe ‘/fﬁf,_a,é) P. P 5L 4N
=

Dropping the extra ind:ces for a mowment, let us expand a (1) 1n
a Taylor's series about some time t, >t

Az = =, - (da‘"' Nt o+ ..

de Jo-e,
so
' \f » 7 1 j
C ! v awadl 'y d &) + (e oA ANy A
’le‘t) = ’CUUI - [C.(t)l " !_J(t‘)(dt ¢ -t } J( dt /¢ :t,—‘_ll
or
-2 _ / 1*
Pkt) ey = 2 7%@ Cl(t,)( ﬂ‘i’/ At
d€ fpog
Apparently

Al Xe Dt

! = /gl/‘/n, Rr) 'f?f,, _ Sire d—a(q\*
T/“(f) - = 2 IR Gz at Jo-y,
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/
where -{ {t) 18 just the function we are seeking. Explicitly

" [
/ =K LAEt af
7£“a»u,:»z?lt) = R, e A (z)Je V. ot

Here we a3ssume that the encounter started at t = —o0 . Since the arc length
s 18 a3 more convenilent variable for us than the time, we write

,{/43,&1,.,<;lc)dt = ‘§(c1.hi,b§/tm).d_fds
d
(33)

= '{'(‘:,4’»4, b,gls)ds

where 3—5‘: 18 simply the reciprocal of the velocity at the point in question.

Before writing down a general formulation, let us introduce one new
function 5(1_] . kg, b, g, Pa’ Py 2 , 8) which symbolically contains
the last two selection rules. Thus, for a point 8 on the trajectory determined
by b, g, 1j, and k¢, g 18 zero if the 1j, kl transition is forbidden according
to the last two selection rules and 18 unity if 1t 18 allowed.
We are now 1n a position to write down a formal procedure for determin-
L
ing I (8 a y" . In actual calculations a jud:cious choice of variables and
" 4 1
sequence of calculation, as well as some approximations, will doubtless present
themselves. The following formulation, therefore, 18 to be taken only as a
fornial presentation of the procedure.
The event of interest, a collision with definite scattering angles, 1s
8 fied classically by the f tee ariabl b, , 1, ki, . .
pecified ¢ ically by the fourteen var: es g, 1j ¢a ¢b

Pa (Pb . For a given g and 1j, kl we wish to find the probability
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distribution function of the variables o and Y . Let us use the first

selection rule to introduce the arc length 8 as a new variable 1n place of

say. q;’b
For these variables we krnow all of the necessary probability functions.
=tk .

Let 7, [glh, fa Po. A, S) db aFu dfe dPa dS

ve the probability of an inelastic collision in which the variables b, ¢
a

Py cp'a , and s lie in the specified ranges. From the preceeding

discussion
wd

Fi; (%/ b,(Pn.Cfo,P.',s)

] [ \3 - (34)
=i b)k-!?r) Tl ke, b,§ls) g(‘ilbl.b,g,%.%,w,s)
Nowfor a2 given g . ij , kl let us introduce new variables
K = Als. ki Glb ¢.Ps, P S)
w = W(H,,hl,gl b,®a,Fs, P, S)
(35)

X, = XI(M.&Q,QI b, Pa,Por P, S

Xl :Xl(‘ap*—p,a' b,%,‘f’c, R‘l’s)

X3 = X3( ‘-&;"‘-"’/‘é’ b)%/ ?"/ ?‘l/s)
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fere X 1 X o 4nd X ; Tv prope riv chosern combinations of the original
vieridbies which make the transtormetion conventent and non singular. Very
likeiy the » v a:ll best be hosen .n .« sumple mmanrer such 18 xl : b

x& s  and X% ? p

Introduc:iny "hese ne o carrables in our peobability function

l\ , - /

—‘. N ;‘, I’; :’ ;'b ~::_';_ S/' ar 3 ‘Y'". c To C?(» 3S

- 55 . / J(- ja 7% S)

= 5 e fo. Fs'S) do d¥ eX.dLid)Xg

-
[
‘ -

A= v ., X, X3) (36)

/
“e
P (g1« v X, X lajdaa‘w‘d):. gXvd X3

if we now integrate over the appropriate ranges of X, , X 2 and X3 we have
s p(
i . hl ] .
RT (9 a,‘.r/l — 5 P N 1-\ v. X X\. CI-QI;OX)
X ;\ 7) (37)

74
Now P‘fl-’gag«) ddoy 18 1us® the probability of scattering into o, d¢ and W, d¥

so that

//»c( 1 L

Pu. (5 2.V dAdy = 1, e S L 4
or
e

___'_P'i@
I;<3'°"V) T e | ca (84

Thus we finally have the des -red result:

* 4

"""01(3.‘1:7»'/)

(38)

l ‘ . %—l-ﬁ— od X
-—8—77“/1"”‘ d‘j[b 'f:(ca,&ﬂ,b ?'3)5(‘3'*p,b.3-ﬁ'%,%,9ﬂ 1, XJ) dX, dX. d X3
X X)
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