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AN APPROXIMATE THEORY OF INELASTIC COLLISIONS'* 

by 

Limes F.   Hornrg and J.   O    Mir schfelde r 

ABSTRACT 

Approximitc  trajectories .-foi  describing the inelastic encounters between 

rigid diatomic InoleCules are described.     These trajectories,   together with 

quantum mechitrcal perturbation thfory     are  used to derive an approximate 

formulation of the inelastic differential scattering cross  sections for such 

collisions.    The quantum mechanical correspondence principle is used when 

necessary to bridge  the  gap between classical and quantum descriptions of the 

problem. 

**This work was carried out at the  University of Wisconsin Naval Research 
Laboratory under Contract N7onr-Z8511  with the Office of Naval Research. 
One of us (JFH) wishes to acknowledge the financial support which made this 
work possible.     An Atomic Energy Commission Predoctoral Fellowship 
administered through the Oak Ridge Institute of Nuclear Studies provided 
support while most of this work and all of the preliminary work was being 
done.    A General Electric Company Predoctoral Fellowship provided 
S'ipDon while this   *ork   was be-ng completed. 



W1S ONR-5 
9 October   1953 

1 
INTRODUCTION 

A theoretical predu tjon of any of the r.on equilibrium properties of 

dilute gases depends on detailed  information about the dynamics of a   binary 

collision.    One can,   for example,   calculate the transport coefficients of a 

rare  gas if one knows the  angle of deflection in an encounter as a function of 

the initial energy and angular  momentum of the two body  system      For  more 

complex molecules,   the probability of internal tranaitions accompanying the 

collision must also be known.    Wang   Chang and Uhlenbeck    have derived a 

formal treatment of the kinetic  theory of polyatomic  molecules which is 

expressed in terms of a set of such differential scattering cross sections,   one 

for every possible internal transition      Similarly,   an exact theory of the 

pressure broadening of microwave  spectral lines will require a knowledge of 

the probability of internal transitions accompanying collisions 

When molecules interact according to spherically symmetric laws of 

force and undergo only elastic  collisions,   the complete dynamics of a collision 

can readily by obtained.    If one or both of these conditions are not satisfied, 

the problem becomes  very much more difficult.    Several investigations of 

transport phenomena of special molecular models with internal degrees of 

freedom have been carried out,   but the two-fold difficulty of solving  for the 

classical dynamics of   an encounter,   then of modifying the classical Boltzmann 

equatipn has usually led to Inconclusive results      A brief summary of such work 

may be found in chapter seven of The Molecular Theory of Gases and  Liquids 

Wang-Chanjr,-Chang,   C.  S. ,   and Uhlenbeck ,  G.   E.   Univ.  of Michigan 
publication CM-681  (1951) 
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bv  Hi - schfeidcr .   Curtiss,   and Bird. 

Rigorous quantum mechanical treatments of the problem are in progress 

and promise to yield the most fruitful results.    The scattering of spherical 

molecules from slightly elongated ones has been worked out by Gioumousis and 

CurP.ss    and is being used as the basis for a theory of the interaction of diatomic 

rrolecules.    Buckingham and Delgarno    recently gave a remarkably successful 

solution for the diffusion and excitation transfer of mctastable helium in normal 

gaseous helium.    Although inelastic,   this helium -  metastable helium encounter is 

a case of exact resonance «.:th a spherically symmetric potential,   so that the 

theory  is considerably simplified. 

Unfortunately,   the exact treatment of more complicated encounters may 

not be available fot  some time,   so it would appear very desirable to develop an 

approximate theory of such inelastic encounters.    We might expect that such an 

approximate theory,   containing the essential features of inelastic collisions, 

would at least:    1) provide a basis for semi-empiric al prediction of transport 

coefficients,   and I) indicate  which features of the inelastic encounter cause important 

modifications in macroscopic phenomena. 

In this report we describe such an approximate theory and apply it to 

tne theory of transport properties.    For convenience we will usually talk about 

the interaction of diatomic molecules,  but wherever possible,   we will proceed 

from the most general considerations so that the final result will at least suggest 

1   Wis. ORD,    OOR  8. 

Proc.   Roy.  Soc.  A,   -13,   506(1952). 
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a treatment of more complicated situations.     The purpose of the  arguments w:ll 

be two-fold:    first to establish the  validity of the overall procedure     to justify 

the use of the  correspondence principle which makes the procedure possible, 

and secondly to indicate approximations which will make the method feasible 

for practical calculations.    We will attempt to identify clearly the nature of all 

approximations as they are  made,   and to indicate their range of validity. 

Beginning with the general quantum mechanical formulation of the problem, 

we will set  up a solution in terms of a perturbation picture.     It will be argued that 

the translationa! motion of the  molecules can be treated classic all/,   so that the 

zero order  solution of this part of the problem will simply be classical elastic 

trajectories.     For convenience,   various approximations to the classical 

trajectories will be considered and compared.     The nature of a trajectory in the 

vicinity of a sudden inelastic  transfer will be discussed in general terms     giving 

certain restrictions or "selection rules" on the possible  nature o:   :''•<• tr i-.sf. r 

at a point in space.    Consistent with these selection rules,    i  ir.< t u      AMI   ><• 

developed for treating an inelastic  trajectory as a perturbation- induced transition 

between elastic trajectories.     Finally,   the formalism of a tentative procedure for 

determining the inelastic differential scattering cross sections will be developed. 
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A.    QUANTUM MECHANICAL FORMULATION AND SEPARATION 

OF COORDINATES 

Consider a system of two diatomic molecules "a" and Mb",   made up 

of atoms    1    and    2   in   a ,   and    3   and   4    in   b .    For an arbitrary fixed set 

of coordinates,   the Schroedinger equation of the system is 

Here   ^        i» the Laplacian in the coordinates of the i'th atom.    If we 

introduce relative coordinates: 

r    = 
—a *1 X-l *b 

-• r -   r 
3     -4 

R u —ab - 
r m,±.     -+. »uj; 

— 
•?»73 />r>y 

(2) 
/r>1. rrn-^ 

(-. 'S(' . IS    f 
-f (/Wj-r-»1yJ 

/AWaA <. /»v Ji) 

R ^       />r>3^^y    y 

(/>r,,t/Y*iv)( /wijt/77iy) 

equation (1) becomes: 

A" V»>    + 7T ^'^   + 771 ^ ¥ 

*- jk VIW - & ( v - E) ty   = O 

(3) 
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Here  we have introduced  reduced mass and total IHANS  symbol* 

u        _        tv-i  STY)* 

This non Singular,   linear ttanaiormaiion amounts simply to using the 

a. >li krwv»:i *   paration of variables for two particle problem three limes,   once 

on each diatomic   molecule,   and once on the system of two molecules. 

With the Schrocdinger equation  in this form it  is quite easy to see 

the effects of various  simple  forms of the potential.    Suppose the potential 

is the sum of separate terms: 

v   -- V(ra)+ VCb) * V<Rab W 

Then there-  is a solution 

\\J(R,R^,r,rc)   =  X'l) ^(t>) far*) &IP**; (5) 

where 

H*> 

H   VL 9   - f-( v^ - &*) e   = ° 
With this approximation    then     we  have  separated the problem into four 

separate physically  resonable  pa   ts      Fquation 6. 1 describes the motion of 

the center of mass of the whole  system moving like a free particle of mass    M 
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The second and third equations describe  internal motions of the molecules 

relative to their mass tenters,   and the  last equation describes the  relative 

motion of th" two  molecules  relative to their joint center of mass.     This 

motion can be described in terms of the equivalent one particle problem in 

^ Ma Mt> 
which a particle of mass    M    -  ~7z—~r~TT    moves  under the influence of a 

potential    V/R     j    .    We wil'  use this picture of the equivalent one particle 

problem in the  rest c' this  report. 

The influence of asymmetry  in the potential field as far as modifying 

the trajectory and inducing internal transitions may now be treated as a 

perturbation problem.    If the molecules had electric   dipole moments,   we would 

have such a potential of considerable physical interest      Before co   sidering the 

effect of a perturbation,   however,   let us consider equations 6 in >   ore detail. 

The motion of the  tenter of mass of the entire  system will in  general 

not enter into kinetic theory problems     so only the  last three equations will 

b« of interest.    Equation o. 4    the  relative motion of the molec ulcs can 

frequently be replaced   jy its classical limit.    The DeBroglie  wave  length of 

a molecule with energy    kT    is  given,   at  room temperature,   by    /\   =     l—=-      ft 

where    M    is the molecular weight.    Or,   from the point of view of the 

uncertainty principle    an uncertainty of    1   A    in the position leads to an 

uncertainty in the velocity such that   —r="  = 7f— 1  again at  room temperature. 

Thus,   to a reasonable approximation,   a classical trajectory may be used to 

desci.be the relative motion of the molecules      This approximation    of course, 

is the basis of the entire classical theory of transport properties; its validity 

over a rather wide range of conditions is shown by the success ot that theory. 
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Clearly no such classical limit may be taken for equations 6. 2 and 

6.3.    Solved with the usual approximations,   these equations give the harmonic 

oscillator and rigid rotor wave functions.    At ordinary temperatures only the 

lower vibrational and rotational levels will be populated,   so that the quantum 

inechanical description of these coordinates of the system is necessary.     In a 

great many  special cases it will turn out that excitation of vibrational levels 

is very improbable  in thermal collisions,   so that only the rotational motion 

need be considered.    For this reason v/e will concentrate on a treatment of 

the rotational motion,   though the extension to include  vib-ational transitions 

would not be difficult. 

B.    APPROXIMATE TRAJECTORIES FOR ELASTIC COLLISIONS 

Since the effect of a perturbation will in general be viewed as causing 

transitions among various unperturbed states of the system,   it will first be 

necessary to investigate these unperturbed states.    For the internal 

coordinates of a diatomic molecule,   these are obviously the quantum mechanical 

wave functions for the harmonic oscillator and the rigid rotor.    Since in the 

unperturbed state these do not change during a collision,   the remainder of the 

zevoth order approximation is just the classical trajectory for the elastic 

collision of spherically symmetric molecules. 
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For the elastic classical trajectory wo must first decide on some sort of 

effective spherical potential which will,   in general,   depend on the internal states 

of the two molecules.    In the case of eiectric dipoles,   this could be done by 

calculating the interaction energy of a pair of "clamped" rotating dipoles.    This 

calculation has been done by  London with his "Unscharfe Resonance",   a modified 

second order perturbation technique.     In any case,   we will assume  for the 

mement that we have such a potential V     (R,u)    •   where    i   and   j   denote the 
»J 

total quantum states of molecules   a   and   b ,   and   R   .     is the ir.termolecular 

distance.    We also assume that this potential contains the necessary hard core 

or repulsive properties. 

Elastic trajectories might now be calculated in the usual manner. 

Specification of   g .   the  initial relative  velocity,   and   b  .   the collision parameter 

or miss distance  gives the energy and the absolute value ot the angular memer.tum 

of the system.     The distance ot  closest approach,     r        can now be calculated 
m 

as the greatest positive  root of the equation 

! 
_   V'jC-i) 

r, - o (7) 
/v*v 

Then the angle of deflection y\   is given by 

The resulting angles of deflection are rather complicated functions 

or   r and   b ,   so that it would be difficult to consider transitions amonc m b 

the elastic trajectories.    Let us consider several approximate trajectories 

which would facilitate calculation.     We observe that for certain rather simple 
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trajectories the angle of deflection is uniquely determined by the ratio    r     /b . 

For    r      S  b    the  collision  is   repulsive,   for    r      ( b  ,   it is attractive.     To m r r in x 

investigate the possibility of approximating the true trajectories by one of these 

simpler cases we  will determine   /\ (-£?/ for trajectories found when     V  OC ~jr~ 

(Kepler orbits).     VcC   yi    (Maxwell molecules) and for a special trajectory of 

connected line segments.     Then we will compare the  functions   ^/J2aj   with 

values for the  Lennard-Jones potential.     For the  Lennatd - Jones potential     X 

is not a single valued function of    r     /b .   but comparative numbers can be 

obtained over parts of the  range by considering large   b    for attractive collisions 

and small   b    for repulsive ones, 

a)   Kepler    trajectories 

A 
If   V r    —  ,   the equation of the trajectory is easily shown to be the 

conic section 

I - e. c^, &\ (8) 

We are interested in the repulsive and attractive trajectories which are 

hyperbolae described by equation (8) if   e ^   1 .    If   k ^> 0 ,   the repulsive case, 

the center of force turns out to be an external focus of the hyperbola.     /C(^^) 

y be found as follows; 

from equation (8) 

\nrr\    — 

v     u (9) 



from equation (7) for this potential 

2 A bV 

or 

f     - 

"1 

rr- - hi      =, O 

LV     r~ 

solving for   e 

C^     - 

1— '/"•*%      _j 

I1?) - / 

W1S-ONR-5 
9 October  1953 

10 

f/>*.   ^ to 

If   ©= ± 1|/   are the directions of the assymptotes, 

Coa y    = 
&r+1 

Since the angle of deflection is given by 

(10) 

(11) 

(12) 

X   "-    T n    N' 'f (13) 

we have,   finally, r 
CfTO^X     -     /     ~     ^ (14) 

For attractive collisions,    k. C 0   and   r     ^. b ,   the center of force 
m 

becomes an internal focus of the hyperbola.    Letting   V -    ~r~>   *nc' proceeding 

as ibove, 

from equation (8) 

U   - 
v-   I -u 
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and from equation (7) 

»*e have 

e   - 

- tk. r ^ o 
\ r/v, j 

i»o as before 

CnX   = /  - 2. 

b)   Repulsive potential proportional to    "p~y   (Maxwell molecules) 

Let   V -    "~~y ,   then the equation of the orbit is 

r 

* = Ki-'-^-^r- (15) 

where   E = j[H5    .    b    is the collision parameter or miss distance,   and 

where   Q    - 0    is parallel to the initial asymptote. 

Let 

then 

-A-       —      Y Xo    ~-      b&) 

x. 

*= I'-^-m 
L, 

dX (16) 

dr 
The apse of the orbit,   where   —r       » 0 ,   is given by the real positive root of 

Call this root   T,--^-     Then 

cJX 
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The integral can be evaluated in terms of a complete elliptic integral of the 

first kind. 

Let 

2 X (18) 

aSb2 
x: V/<- \ 

then 

X = ir - 2xr/>v-^b"^7« (19) 

This l« a standard form of the incomplete elliptic integral of the first kind ,  so 

that 

2 

where 

* =    V   '   (H-fr)* F(t,f) 

^Vl  ty; 

7' ~ *^*v^ a.b 
Substituting from (17) and (18) 

IX, 
x°n -^ K(m 

(20) 

(21) 

Jahnke and Emde Tables of Functions ,  Dover,   1945. 
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/her« 

Kc 
ci> 

2j y.f - 2;>'xu-,-,v'^ 

the complete elliptic   integral of the  first kind, 

c)    Attractive potential proportional to     ~~pv 

-A. Let    V  --      ^y  ,   then proceeding as for Maswell molecules. 

5 - J I —] f bv/ 
r 

Let 

then 

Letting 

y--£ /9    - Eh 

/ - Y^i*] 

gives 

X   ~-   IT  - 2-\An 

13 

(22) 

(23) 

where    y.    is the largest positive real root of 

y4    -    y2   •   A   =   0 

i.e.    y.  - J Again we have a standard form of the complete elliptic 

integral,   giving,   finally: 

X- " -fKl'FW) (24) 
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d1    St r < • >iht   !tu   segments 

Give;,    r -• r.ci   b ,   >*«• i  it-  specify a;   approximate trajectory such that 
m 

'he   angle of do ilcct ion depend-* oniv on    r     /b   by proceeding as follows: 

For   repulsive  collisions      •      > i>j    'he molecule continues on its 

origiinl  st r * ght  iiric p-it h um • 1  i:   re -*t he s  -* distance    r        from the origin. 

\t tr  -. po.   •  'he  trioie.   .U     - dvi'.eted   is though it  were  rebounding from a 

rigid  sphere.      See   Fig.    1;. 

Fig     1 

r     \   b 
m' 

Simple   geomi iry  gives 'he  -ingle of defle<tion 

cos*     -     Z  &"~   , (25) 

For  attractive  collisions    (r      /   bi    the molecule continues on the m ^ 

straight  Imp  untl  it   rt-ai hes H dtHtance    b    f'om the origin.    At this point 

it   is deflected through an at ute  -ingle  such that the new segme.it passes a 

d'Stame    r        from the origin.     1 he   remainder of the trajectory is symmetric 

•See  Fig.   I 
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Fig.   2 

In   this case 

cos*    .    2  fa)"-I 

r      <b 
m 

(26) 

In the following graph the functions   cos^/^/ij) are plotted against 

r     /b   for the various trajectories considered.    For comparison,   some J,annard- 

Jones values are given for several values of the reduced relative kinetic energy 

From the curves of Fig.   3,   it is clear that the Kepler orbits are the 

poorest approximation to the trajectories produced by the more sharply varying 

inter molecular potentials. 

The Molecular Theory of Gases and Liquids  by Hirschfelder,   Curtiss,   and 
§Trd~(John Wiley fc Sons,   New York,   1954) (Appendix,   Ch.   6 with Ellen L. 
Spotz). 
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.   4 Choice between the  line  segments and the    1/r      orbits  would depend 

on ease of manipulation and success in giving   the desired cross  sections.    For 

repulsive encounters the connected  line  segments give remarkably good 

answers.    Since these  line  segment orbits would be   expected to give the largest 

deflection of any purely  repulsive trajectory characterized by a certain    r      ,   it 
m 

must br-  'hit  the attractive part of the  Lenna rd-Jones potential tends to compensate 

for the softness of the  repulsive part,   resulting in a   nearly hard sphere deflection. 

In attractive encounters the  line  segments cive good answers for    r 

slightly  less than   b  ,   but they do  not   reflect the orbiting tendency as    r is 

decreased.     The line segments,   for exa ..pie    give full  180° deflection only as 

r       approaches zero, 
m     rr 

To complete the specification of any of these approximate trajectories, 

we need only assign a speed to the particle at each point.    Clearly this cannot, 

in general,   be done so as to cons^tve both energy and angular  momentum. 

Since we plan eventually to use the trajectories in a time dependent perturbation 

calculation of transition probabilities,   we are  moat concei led with the time 

• pent in each region of the potential      Now,   the approximate trajectories have 

been adjusted so as to traverse the same region of the potential as the true 

trajectory.   f~^ ^ f ^°°    ,   so it would appear reasonable to adjust the speed at 

each point so as to keep the total energy of the  system constant.    Angular 

momentum conservation would adjust the speed according to the direction of 

mention at the point in question,   a feature of little interest to us as long as the 

total deflection of the path is nearly correct. 
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It is encouraging to note that -it r.he distance of closest approach our 

attractive trajectories coincide wi*h a point c    a true trajectory with the 

correct energy and angular mementum parameters;   Tt is from this region 

that we expect the greatest contribution to transition probabilities. 

C.     THE INELASTIC  TRANSFER 

Consistent with our perturbation picture wewill want to consider 

transitions between elastic trajectories.    Before mve stigating such transitions 

in terms of any of the approximate trajectories considered in the previous 

section,   however,   let us look at the  limitations imposed by the conservation 

laws of classical mechanics on any trajectory  at the moment of inelastic transfer, 

The dynamic state ot an encounter between linear rotating rigid 

molecules in conveniently  specified,    vhen the- molecules are far separated,   by 

the eight variables    b,    g, ti a,    and   -£\>    ,   where we have chosen a coordinate 

system such that the motion lies in the    xy    plane.     /a   and   Xb    are the angular 

momenta due to the rotation of molecules    a    and   b .     The angular momentum 

due to translational motion relative to the  center of mass is     Vj-  —  /7 ^ b     tv- 

The internal energies     ca    and   cb      and the translational energy    trare easily 

determined in terms of these variables. 

x^et us suppose that at some point   ilong a trajectory determined by these 

initial conditions and the potential function    V,   .    there occurs an instantaneous r (r) 

change in the internal dynamic state  such tha»     A_j   ~> £j\     md   /b -*+<b    with the 
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new potential    V, Applying the conservation laws of energy and angular 

mementum.   we  have 

J=L     "     <i±   * A± + Al.      =     M   T 4±    + £r 
(27) 

To interpret the  consequences of these equations,   consider figure 4 

T, 

Fig    4 

Here we picture the situation in terms of the equivalent one particle problem 

as usual.     RS ,   lying in the    xy    plane,   is the  segment of the trajectory just 

before the transition.     The transition occurs at   S ,   so   ST    is the trajectory 

immediately after transition.     In general   ST    does not He  in the    xy    piano, 

but in a new plane determined by   ST    and point   0 ;    we designate this as 

plane    F        The    xy    plane and    F    intersect along   OS .     The molecules are 

separated a distance    r      at the instant of transition. r o 

Now,   the total angular mementum is conserved,   so in particular the 



WIS  ONR-5 
9 October  1953 

20 

component  along   OS    must bo  lonstiirl       Thus: 

(   l\    ~      i»   •    (r)( (i._.     '   I*    l/sjcz 

But   JC    and    Pr   •iff c learly perpendic ular to   OS    so that 

y\ 
-    S<XSYI ft (28) 

or where   X   ,s the total internal angulai   mementum,   and   f\   is the angle in the 

xy   plane a» shown in Fig     3      This  result might be looked upon as a restriction 

on the possible  redistribution of    x    and    y    components of the internal angular 

mementum for a given point on the trajectory      Alternatively,   and more con- 

venient for our purposes,   it  specifies the point or points  (if any) on the 

trajectory at which a specified transition could take place.     Let us see how this 

restriction might operate  in practice  for any purely attractive or repulsive 

trajectories.     If Q  - 0    is the direction of the  initial asymptote of a trajectory, 

as in Fig.   4,   then for a repulsive iollision the direction of the final asymptote 

Gr     will he in the  range   C i. -*«- ^ •  .    Since the tangent function is single valued on 

the interval   { C- y      a specified transition c an lead to at most one   allowable 

solution of equation 28      For attractive collisions,   on the other hand, 

so that there will certainly be one solution    t)    on the interval     ( 0t fTJ     and it 

is quite possible that   Y,T77   *'ill also be  acceptable      Qualitatively,   however,   it 

can already be observed that there   oull be a  rather limited range of   Y]    sue h 

that the two points on the curve  represented by   >}    and     hf/T will lie at about 

the same distance from the origin.    Sine e  *c expect that the probability of 
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transition will fall off rapidly with increasing separation of the molecules,   it 

will frequently happen that only one of the allowed transition points is 

physically Important. 

From the energy equation; 

e• =i:«9fe7 =£-^-^'"v^- (29) 

SoWlng for   g'    ws have the speed of the particle after the transition.   If this 

result is imaginary,  we conclude that the transition is energetically forbidden. 

It is interesting to note at this point that if one were considering this problem 

in terms of curves on a multidimensional energy surfaces, this last result 

would* eisaply bo the Franck-Condon principle restricting transitions between 

such-curve*. 

To complete omr analysis of the transition we use the angular me men turn 

equation again: 

M » J- - 41 '41 
Too direction of j£  determines the plane of the new trajectory.   The selection 

rule on >?   -has assured us that this plane will pass through OS  (Fig. 4)   so 

this mot itom of information gives us the angle between plane   F   and the  ay 

piano.   From the magnitude of    4l      *• d«tsrmins the new collision parameter 

b' = 1ML no 
9' 

Apparently, if  b' > E no satisfactory trajectory can be constructed, so 

this result constitutes a third selection rule on the transition.   If     b <. fo 
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surprisingly enough,  there are two possible directions for the new trajectory, 

corresponding to the two tangents to l circle of radius   b      which pass through 

a potat in the plane outside of the circle.    Each of these directions is consistent 

with the total angular mementum of the system.    The dual choice may also be 

seen dtrectry from the   expression for angular momentum,    L » £ xjg, .    Working 

in the plane of   r   and   p ,    L   *• rp sin cp ,   where  & is the angle from _r   to j>_ . 

Apparently for a given   L , j ,    and _p_ ,  both  f and 7r-f  are acceptable 

solutions. 

That the choice is really unique,  however,  may bo argued as follows: 

Let as suppose that the inelastic transition specified by J^ -» ^ '   and J^ -+4.L 

approaches ssro in such a way that    • • —   as defined by equation (28) remains 
v 

constant, thus keeping the   ranailion at the same point on the trajectory.   In the 

limit of iy* transition, the equations of motion say that the particle continues 

on the asaooth course rather than taking the abrupt change in direction which 

would also ho consistsnt with the energy and angular mo mo atom of the system. 

Thus, if the particle is oa the approaching branch of an elastic trajectory!  it 

does not Jump suddenly to the corresponding point on the receeding branch. 

Now, a baise transition at the specified point en the trajectory may be considered 

as a aerieaof small transitions with constant     rf-.   Then, by continuity of the 

whole process, the particle finds Itself oa that point of the now trajectory which 

corresponds to ths starting point on the old trajectory,  correspondence being 

interpreted in terms of the picture in which one trajectory is continuously 

transformed into the other by a progressively increased magnitude of the 
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inelastic transfer.     In practice 'his simply means that if the particle  is on the 

approaching (receedlng) part of one t raiec tor v,   it must appear on the approaching 

(receeding) part of the new trajectory. 

Thus,   in terms of a proposed transition,   we have determined where the 

transfer could take place and what the  speed and direction of motion of the 

particle must be after the transition      \r the course of getting this information 

from the energy and angular momentum conservation laws,   we have found 

three rather simple criteria or "selection rules" for determining whether the 

transition could take place at all: 

1. y\    as given by equation 28 must lie on the initial trajectory. 

2. <X    as given by equation 29 must be real. 

3. b   as given by equation 30 must be less than the separation of 

the molecules at the time of transition. 

The second and third of these criteria simply tell whether or not the 

transition has taken place In a region compatable with the total energy and 

angular menentum of the  system.    The first is a restriction on the redistri 

button of angular momentum due to the fact that »he trajectory must \e 

continuous. 

In the next section we will consider the application of these results to 

ths problem of compounding our approximate elastic  trajectories to represent 

inelastic encounters. 
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D      APPROXIMATE   rRA JECTORLES FOR INELAS'I JC COLLISIONS 

To be consistent with our   Approximations at this point,   we must seek 

in  inelastic  trajec'oty such that energy i» conserved at every point or. it    and such 

that tht  angular  momentum is conserved when the molecules are far separated 

before *r.d afte •  the  encounter.    Such a trajectory may be constructed by the 

following procedure: 

I.    Given     J    • Je h *'      R   anc^    V(r'    NbC h&ve the approximate elastic 

trajectory    r      T(d)  .    Specifying the transition by the new rotational angular 

moment4/:)    and Jcy.t *e solve for  an angle   Vl  as in the preceeding section 

If the  lines f)  • >?    or     €>   •- \f~^     do not interest    T  ,   the transition is 

impoR»;bie.     If one or both oi these intersections exist,   we have possible points 

fo'  the transition.    Suppos.     r rv   .    is .in internee t:on. 
O (7)  | 

Z.    At    r       *c  investigate equation Z9,   the energy equation,   to determine 

t he new  relative  speed   g' .    S'nce energy is to be conserved at every point, 

'    e 
we   applv the  second  ielei t ion  r igoroua ly and c.ill the  Transition forbidden if 

g    'H  imaginary.     Suppose    g      is  -in acceptable   solution of equation  Z9. 

3.    Strict application ol thf  third selection rule on angula'  momentum 

Jt the transition point   *ould now be  inconsibl«n'.    Siw h a  restriction would 

demand that this point on the new trajectory    r       T ( 6 )    have correct energy 

4nd  angular   momentum,   too stringent   1 condition (or  an .ipproximate trajectory. 

Though certainly  not undesirable   in  itself,   such   i   restriction  it  this po.nt 

*.ould completely determine the  rest  of  the  path   «rid   would  not   |,< ivc  us  tree  to 
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adjust the asymtotic value of the angular momentum. 

Instead,   we simply use the direction of   J^r   - L -£   -Jp,    to give us 

the orientation of the plane   F   in which the new trajectory   r = T (&')   must 

lie.    Since the elastic trajectories lie in a plar.e,   this will also be acceptable 

asymptotically.    From   E ,     / L/   and   V (r)   we can determine the shape of 

T (6')   completely,   lacking only its orientation in the plane   F .    Apparently 

if   r'     is greater than   r    ,   no orientation of   T      will provide a continuous 
m o r 

transition between   T   and   T/ ,   so that the third selection rule appears here 

in a rather denatured form.    If   r'     is less than   r     there will be two 
m o 

orientations of   T/    in   F   which will intersect   T   at   r    ,  but from the o 

argument in the preceeding section the choice must be made so that the 

particle continues approaching or receeding from the apse of   T     according 

to its motion on   T    . 

Thus,   we have a simple and unique method for construction of 

approximate inelastic trajectories. 

E.    THE INELASTIC DIFFERENTIAL SCATTERING CROSS SECTIONS 

So far we have described a method for constructing approximate 

inelastic trajectories in terms of a combination of classical and quantum 

mechanical concepts.    We have assumed a classically exact knowledge of ail 

coordinates, but at the same time we considered a discontinuous change in the 

internal coordinates - a distinctly quantum mechanical idea.    We now wish to 
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vie th 9    r.fo'ma' >-r  to   -.olvi    \h<-  quin'mn  nn>. h»i.:t  •• :  s<  "leri'.i; problcr**  and 

•r-    /'   f 
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in '«• • ms CM   ih.h  Uhionbf > k       :   . - ri< »•« ;.>p<-«:   .  I Iwor y ol  the t r an*»por t  phenomena 

'    .O/*'^    in3V h*"  denned  as fo;io*s      Lc<    A    ir.d    4/   be  the polar  and 

i r :ma?hal  angles of the  f: n ai   • <• 1 H   --c   vc loc :t v vec to*     mc asured from the 

in.t *j  relative  velo. ;'»-  vector'   let and   j    s.gnfv  all of the necessary quantum 

numbci fi to spec .f y the   :n '; 11  mle rnal quantum s» ates of  mo lee ules    a    and   b ' 

and let    k    *nd    I    repieser*  thc.r  qaantum numbe rs after  the encounter.     Then 

• t 1 0? >&> V)s*v»dL =IJ<J f' is the  probab>l'ty that from  a uniform bears (plane wave) 

of molecules  :n  %tate     i    incident on 3  moleculr  in  statr    j:     with 'elatjve  velocity 

g ,   a given molecule  <s scattered  into thr  solid angle    SJ i«-drXd>f   about   oC?  ly 

while the intern*! quantum s'atc* go to   k    and    1   dur:ng the encounter. 

If  J      and  0,     are expressed in te~ms of the polar  variables    .    .    A     > 
•- a> — • **'* a 

and   cp      J.   ,    £,,     and    $>.       the quantum iumbe r s    lj        kl    are sufficient to 

• pec'fy the  classical variables ^4    £ <    /b      £ b,    ^ ^      £ a      ., b     and   j, b    . 

Thus the definition of the  scatter   ng < ro«i section can oe   reformulated in terms 

of c lassir al variables a« follows;    In the  enrounte r spec •{ied by    g ,  A    .   £   , 

(\   ,    and   $.       what i* the probability of scattering into    sin^c   daL d f  while the 

internal coordinates go *o J> ' ,    Q' .   JJ-   «"d   £).    ' 

In order to specify <rv    and     ^f ,   f'oo our classical derivation,   however, 

we no«d information about the e*tra vartablep    <-p <£>    ,   &'   ,   and (pi    or 

the tr equivalent.    If we < *n get the probability of the desired scattering even? 

by assigning probabilities to these extra variables according to the quantum 

mechanical cor respondent r principle,   then average over the extra variables. 
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we ought to have an approximation of the differential cross sections, valid in 

the correspondence  limit. 

For a uniform beam of incident particles (the correspondence Unit of 

a plane wave) the relative probability of a collision parameter in the range   b , 

db    is just    77 b    db        Similarly  in the correspondence limit the azimuthal 

angle of the angular momentum vtrctor of a rigid rotor is completely uncertain, 

so that the probability density function for the unprimed   <P s    is just   j-^- 

For the primed   Cp s ,   however,     the  situation is a little different.     If the transi- 

tion occurs at a point    r      on the trajectory:   all values of   £p'     and    <p'    are 

equally likely provided they are  consistent with the first selection rule 

   — tjLy\ "V) Apparently this problem can be handled if we change variables 

from    (D      and    (C'    to the arc length   s    ,   according to the first selection rule, 

and a variable    z   equal,   say,   to  Cp Now,   if we can find a function  T (u) 

such that   T(s) ds    is the probability of transition in the interval    s ,   ds,   then 

we know that all values of    z   will have probability consistent with all   <T)'      and 

Cp'w    equally likely      If   z =   <p     ,   for example,   all   z   will be equally probable 

since the relation between   qp '     and    <£>.     is satisfied automatically by the 

choice of   s  . 

The function ~f(s) ds    is easily gotten from time dependent perturbation 

theory.     Let us define the function   "f(ij ,   kl ,   b .   g| t)    so that -f dt is the 

probability that the    lj ,   kl   tranasition takes place at   t ,   dt when we are on 

the elastic trajectory determined by   b ,   g ,   and    lj  .    Let  $a Cl^) an<*    XbUi) 

be the wave functions of molecules    a   and   b   when they are in the i'th and 

j'th quantum states respectively,   and let   V( fa ,   £&  ,   t) be the interaction 
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V"t)   =  l9*~&~rf*-.&.i) §* $* ^jg «*r* 

(31) 

Dropping the extra  indices (or a moment,   let  us expand   £2 (t)    in 

a Taylor's  series about  some  tune     tj >   t 

so 
~1 

RW-M
V= ia"-'r + !At'(-C+ ** (*¥)* -J* t    -r- 

or 

Apparently 

•fit)   ~       *->G 
J^    R^p    =   2    ^ *<,(^)*^ 
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where   4-  (t)    is just the  function we are seeking      Explicitly 

Here we assume that the encounter  started at    t  =   -co Since the arc length 

s    is a more convenient  variable for  us than the time,   we write 

7 (ii,-kil yj It) d r        =     T(<>*. *>", b $!*(»)  *± d£ 

—   T( i i, Jv*, b, %/sJdS 

US 
(33) 

where    —     is simply the reciprocal of the velocity at the point in question. 

Before writing down a general formulation,   let us introduce one new 

function    P (lj ,   kjg ,   b ,   g ,     m     ,   (p.   .   ? .   ») which symbolically contains 

the last two selection rules.     Thus,   for a point    s   on the trajectory determined 

by   b ,   g ,   lj ,   and    ki      c    is zero if the    IJ ,   kl   transition is forbidden according 

to the last two selection rules and is unity if it is allowed. 

We are now in a position to write down a formal procedure for determin- 

g J     /« ^u  .    In actual calculations a judicious choice of variables and in 

sequence of calculation,   as well as some approximat ions, will doubtless present 

themselves.    The following formulation,   therefore,   is to be taken only as a 

formal presentation of the procedure. 

The event of interest,   a collision with definite scattering angles, is 

specified classically by the    fourteen variables   b ,   g ,   ij ,   kl ,    <p    ,   ^    , 

d/'   ,    (p' For a given   g   and    ij ,    kl    we wish to find the probability 
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distribution function of the variables OC and    1|   .     Let us use the first 

selection   rule to introduce the arc  length   •   as a new variable in place of. 

say,  <p'b    . 

For these variables we know all of the necessary probability functions. 

Let HLi   ' &' *• fV P* • <^'< -S.)   <*fc  af* d9e crf<pa <iS 

jf the probability of an inelastic collision in which the variables   b       (C    , 1 a 

(p .   ,     cp'   >    *n<l   •   lie *n the specified ranges.    From the preceeding 

discussion 

i      , i'-L)3   r C (34) 

Now for a given   g     ij ,   kl   let us introduce new variables 

•J8:- 

X3 =X3(^,^^l^^,^<P^s) 

(35) 
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Mere   X   i      X    >    ,,ru*    X r<"  properly < hoKer. < ombtnat:ons of the original 

v iMibir s  v*h;ih make the  tr.insti)' m'lion « or. vr merit  and non singular       Very 

likrjy t he    >  *>     *: 11 bea' be  < ho sen   .n a   s.mplr   inini.fr  su( h   '.8   ^      ••  b 

Y 8    and    V ,5 

!nt rodui : n v;    hrse  ne •»   • irublrs   in our   probability  function 

; c •    •> ---'^ f^S^;^***'**,*. 

If  *e no*  integrate over  the appropriate   ranges of    J£ ,   ,      V      ,   and       V       we have 

/ X   xi (37) 

No<«,   P    .'§*.<) d< a f»   is jus-  the probability of a< ottering  into at,rfoc    and    W; <* V 

so that 
// K V 

P  M i.wi^^ - 1.. i i * v; -^,* **d^ 

or 

4t( 

Thus   we finally  have the des  red  result 

(38) 
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