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SYMBOLS
parameter associated with the transition surface
attached to the airfcil!s leading edge
arbitrary constant

velocity of sound

airfoil chord
pressure coefficient ——- Lrgs__
(1/2)p

distance from airfoil leading edge to axds of pitch
arbitrary function associated with the equation of
the airfoil surface.

right hand side of eq. (11)

functions associated with the form of the first
order potential function

functions associated with the form of the second
order potential function

unit vectiors

functions associated with the form of F

a distance small compared to unity

Mach number

rate of pitch

V (x- £)% 82(3-m)? ~p%(2-C)?

a function associated with the airfoil surface

surface of integration (see eq. (12))

time




¢l

wvelocity wvector

volume of integration (see eg. (12))

free stream welocity

rectangular coordinates fixsd in space
rectangular coordinates attached to airfoil
angle of attack

maximum angle of attack of an osciliating airfoil

acceleration

N1

adiabatic exponent

a small distance ( see fig. 11)
thicimess parameter
rectangular coordinates

auxilary functions used in finding the second order

potential function

density

parameter associa‘ed with the transition surface
attached to the sirfoil's leading edge

first order potential function

potential function (see eq. (A-l))

second order potential function




.

second order perturbation potential function

frequency ®f oscillation

normal force coefficient

noment cocfficient
_ . -
o fae, / (2v)}_

B . T
& c_/a {a cl_/(zv)}J P

:a c./? {q'cr/(zv)} : q 0

-

=
normal force

(1/2)p ¥ ¢,

 moment

(1/2)p v cf.

-




BALLISTIC RESEARCH LABORATORIES

REPORT NO. 856

JCMartin/NGerber/ekb
iberdeen Proving Ground, Md.
May 1953

THE EFFECT QF THICKNESS ON AIRFOILS WITH CONSTANT VERTIC.L
ACCELERATION AT SUPERSONIC SPEEI'S

ABSTRACT

The effects of thickness on the lift and pitching-moment of two
dimensional airfoils at supersonic speeds with constant vertical
acceleration are investigated. The airfoils considered have arbitrary
symaetrical cross sections, and the flow is supersonic everywhere.

The analysis is based or a second order theory similar to the
sscond order theory introduced by Busemann and extended by Van Dyke.
The lifting pressure due to a constant vertical acceleration is found,
and this is used to calculatq the lift coefficient, CL-’ and the moment

a

coefficient, C-., due to a constant vertical acceleration.
a

] The airfoil’s second order contribution to the damping of longitudi-
nal oscillations in aircraft 1s considered and its relation to the
damping of oscillating airfoils is anvestigated. .
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INTRODUCTION

The development of the linearized theory of supersonic flow has
permitted a first order evaluation of a mumber of stability derivatives.
Second order theories similar to the one introduced by Busemann (ref. 1)
and extended by Van Dyke (refs. 2 and 3) offer possibilities of obtain=-
ing second order evaluations of certain stability derivatives, such as
the 1ift, CL-’ and *he mcment. Cm‘, due to a constant vertical accelera-

a -3

tion. Examples of the use of second order theories to evaluate stability
derivitives are found in refs. (L) and (%).

Recently two papers have appeared (refs. (6) and (7)) dealing with
two dimensional oscillating airfoils. The flow over oscillating airfoils
is of great importarce in flutter calculations. For stability studies,
however, it is more convenient t¢ kncw the flow o sr airfoils with a
constant wvertical acceleration and a constant rate of pitch.

In this paper a second order theory is developed for two dimensional
airfoils with constant vertical acceleratlon at supersonic speeds.
From this theory the lifting pressure due to constant vertical accelera-
tion is evaluated. The expression for the lifting prassure enables the
stability derivatives G  and Cm. to be calculated. The airfoils con-

a a

3idered herein have arbitrary symnetrical cross sections; however, the
analysis can easily be extended to include airfoils with unsymmetrical
cross sections.

The flow around an accelerating airfoil 1s of an unsteady nature
and this necessitates the use of time dependent partial differential
equations. The differential equation. studied here is not* the time
dependent equation commonly used. since the coordinate axes employed
in the analysis are attached to the airfoil.

ANALYSIZ

Introduction: Recent work by Milton D. Van Dyke (refs. 2 and 3)
indicates that sesond order s-.utions of the partial differential
equation of steady supersonic flow can be obtained by iterative methods.
In the present paper it will be assumed that i1terative methods can also
be used to obtain second order solutions of the differential equation
for unsteady supersonic flow. This assumption was made in ref. (6)
in treating oscillating airfoils.

In addition it will be assumed that the cliaracteristics are the
same for the first and second order solutions.: This assumption does
not appear unreasonable since for steady plane fiow the second order
solution (ref. (2)) found by an iterative method yields the correct
second order pressure of the Busemann second order theory.




for the second order potential flow around an a.irfoil is (ﬁ‘om ref. (L))
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The perturbation potential function., ¢ . has been normalized through

division by the free stream velocity Also from ref (L) the pressure
relation 1is

. S : R2 5 éc 2, . x 2 2
cp 2 (.bx ’Qt /V) t S B g‘x Z‘Hzrx' éff/v *+ M étt ~,/v2 (2)
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| These two equations are asscciated with axes fixed in space. For
the problem considered here it is convemient to express the differ-
ential equation 1in terms of « new set of axes fixed to the airfcil.
The relations be‘ween the two sets of axes are (see fig. 1)

X * Xx

. . 6V (t )°
ez R (3)
t =t

For the axes attached to the airfoil eqs. (1) and (2) become

828 &, ﬂ-(znzq‘.nzv)--(c}tt/c?) . znzfat. §

e, )+ a2 @n e lmiz (8, 48, /M (B 08 )+

% 3
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J
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Eqs. (L) and (5) will be used in the analysis of accelerating airfoils.

Solutiop By Itcrgtion: On the assumption that eq. (L) can be
solved by an iterative procedure the initial step will be finding the
first order solution. The first order partial differential equation,

The Partial Differential Equation: The partial differential equation
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obtained by neglecting the second order terms in eq. (L), is

-p2e_ o (Mo - @, A <0 (6)

XX 2

The solution ‘o eq. (6) 12 taken as the first approximation to the
solution of eq. (L) We shail assume that the second approximation
can be found by substituting the first order solution into the right
side of eq. (L) and solving the resulting non-homogeneous ejuation,
which from egs. (L) and (6), is

)

N 2‘ ) , X ? , \ < - {, . ‘
BS UtV ,, (M ‘.,xt/v\ L oM -ct 2 +(at Gzt/v)‘

-

[& 6 /(2v): + [(v VD2 (g -9 /MR +0.,) 88" (7)

. N
P P * (Q,‘Qx,_/V) . (Gz ozt/v);

The solution of eq. {7) wiil bte referred tc as the second order solution.

Examination of Form of Potertial Function: It is helpful to in-
vestigate the type of sclution obtained from eq. (7) The first order
solution will be cf the form @ - a g.(x z) » @& g (x.z,t) + €g.(x,2) ,
where 7 13 a thickness parameter and Where a. & &nd ¢ are smali compared
tc uraty. It follows from the above expression and eq. (7) that the
second order sclution wili be of the form

2

Y » a‘h,ix 2) *aah

1 {x 2 t) +a’ h3(x z,t) ‘-cthh(x‘z) +

2

. L2
a(hs(x 2 t) ~¢ hé(x )

Thas paper :s concermed only with the 1lifting pressure and its
integrated effects. The terms 32 h](x,z), a &.‘12(x z,t), and aehj(x,z, t)

contrabute nothing to the lifting pressure This can be seen from the
following argument The thickness parameter. « . 18 not present,
therefore, the airfoiis can be considered to have zero thickness when
these terms alone are treated. If the potential cf the flow on the
upper surface of a fliat piate 15 expressed as

£(a.g) ~ ag, * &gz - a‘h, ¢ agh, + a?

h
3
the potential cn the lower surfaze 13 given by

. o 2 . 2
$(a a)- ag Gg,*a h *+a, +a hy

The potential differernce 13
a8 - 2ag, * 206y,




Since for the flat plate the pressure 4d:fference beiweon the upper and
lower surfaces can be found directly from the potential difference, the

terms c? hl' ca hp, and 32 hq do not affect the lifting pressure.

The terms on the right side ¢f ¢3~ {7) which are multiplied by

02c aa, and 32 can be teglected: for v3. (7) 1s linear. and 02 h ,ahhz,
1
and a2 h, do not contribute to the lifiing pressure. The terms

3 »
ce&hh and € < h6 are indeperdent of @ {the acceleration parameter),

and hence they also contribute nhothing to the pressure due to
»
acceleration.

4

The remaining term @ r Lo "x o2 W) ';11 “e found by use of eq. (7),

/

negliecting all exprescicns i1nwo.ving a - I ?, 42 and aa

A furtner censidera<ior c¢f the ferm of tha solution indicates
that the second order i:fting pressure 15 iinear in the thickness
parameter. This can te establ:shed by zonsidering a first order
solution cof the form

¢ -a g](x 7) - ag?(x z t) -4 lgh(x z) + i gs{x 2)

Ther. the second crder 1i:frinp pressure w:l1 be cf the fcrm
g ¥

A L 4 . T ‘ > - 7 o
“CP’AJxx)'a(-.1,xn)‘af?_fx.)‘.u
This squation is l:inear in 61 an1 {g' thus the lifting pressure for
various known thickness drstiriouticrns :an be added tc obtain the
lifring pressure for cther thickness distributicns.

This l:nearity has no specza. value fcv the 'wo dimensional
airfoil. s1rme we shall derermire the scluticr for an arbltrary thickness
dastritutien. It can bte shown similariy that l:pearity of lifting
pressure with thickress daratueticr heid: {or three dimensional a:r
foils alsc. and for th:s case it shcu.d prove quite useful.

Beunda~y Cond:ticrne Physica. rcons:derat:ons require that the
flow be targen® tc the surface ¢! the a:rfoil and that all velocity
perturbatiors vapish upstream of tre airfo:l. These bourdary can-
ditions may be exprassed mathemat:caily as

@ (x y 2z t) -0 upstream cf the airfoil.
“{x y z 1) -0

and v 7s «+ 0

ey

. . .2
# The terms a: hL " h6 ard 4 h are ass¢oiated with steady super-

sonic flecw and c.n be found by the Busemarn seacond crder theory.



where s(x. 3) = O 13 the equation cf the surface of <he arrfoil

The equation of the surface of the airfoil may alsc be expressed
as z » € £(x)

Thus
< s - e
V o 1€£ ¢
Since the velocity vector v, can be written as

o . _
v 1 (1 Gx s

it follews that the bocunaary c¢sndation on the airfoil surf.ce 1is

Y ¢« (@ s Gt)
2

(]

(1 +0_ +.)&f +Q =« +a =<0
x x z 2
The cocrdinat: axes wi.! ve chcser 5o that tue a:rfoirl lies
approximately in the » ~ C plane. The becundary condit:ons for the
first order sclution are @(x y 2z) - C upstream of the arfoil and

e I .a at =i ¢ (8)
? e 6

Since only the @ ¢ term :s peing caicu.ated & wi1l. he set equal to
2ero. Sim:larly the boundary conditicns fer the second crder solution
are Y = O upstream of the airfcii and

i2 20 z « 0 tiz:0

. - L -
v -0 S ! (9)
For the airfoi.s considered 1n this paper the first order velocity

components are discentinuous across wne Mach sheet from the leadirg
adge. The effect of these disccntinuities on the se.cond order solution
will be determined by asswuing that a small transition surface 13
attached w the leading edge. This small surfate s £¢ shaped that the
discontinuities in the velocity campcnents are remcved. The effect of
the d.scontinuities wiil be evaluated by a limitirg process in which
the width of the attached surface anprcaches zero, A surface which
wi1ll remove tne first crder velocity discontinuities in the flow over
the upper surface :s

2+ - (0 x°t/2) + (x° a/2)

where the surface extends fromx - O to x = f, and o f - d, al =¢.

Evaluating the se:ord crder pctentiail funct:on assoc:ated with the
flow over the 3mail transiticn surface introduced above will lead o
the determination cf the second crder icading edge disccntinuities.
The first crder solut:orn. fer the fuicw cver the transiticn surface 1is

r 2 072 N 2 g
g = [ (xB2)/(2pV)] <o M(x =2pd v ,(3B") ¢ oVt - Va: (10)

e

__ ¥Y—i1




The second order solution can be found by substituting eq. (10)
into eq. (7) and solving the re-ulting non-homogeneovs equation;
however, in this case it is easier to use a different approach. In
appendix A it is shown that the solution for planar problems to the
three dimensional non-homogeneous equation

'92 ‘Pn M 4 Yy * k"’zz - (2H2 th/v)- ('*tt/c?) = Flx,y,2,t) (11)

can be written as

Vioyat =g JSL 3 TR s pe) ] ar - (12)
. i
-~ ) - ~
1 1 J:3y(&. M, 0,t.)3L+! ayépo.t d

vhere v is the volume inclosed by the forward Mach cone from the point
(x, y, z), and the surface S, is the area of the transition surface in
the faorward Mach cone from the point (x y, z).

When eq. (12) 1s applied to an arbitrary point located on the

Mach surface from the trailing edge of the transition surface, the
result can be expressed as

Y B C (PRSI CL Y
V(x,z,t) = T j a’ j dE r
(o]

1
BS £ [Fle)er(e,) ] an-

\
.:(',’(x- £)2 -p%(2-C)°) /p

o (Jix -8)2 -p%22 Vg

1 1.

2r d§, F@aw( ,0.0,t.)/5 +
o -( J(x»i_)g -ﬂzZQ% 246 .

Since F, [ay(&, 0, 0, t;) /2 {:\, and [aw(gj 0,0, tz)/a(]are
independent on) , the preceding equation can be reduced to

¥ (x,2,t) = § J a Sﬂgoi (7€ &, ¢r<E,(,t2)] €
B
¢

3 I[{[a Y(E, 0.0,4)/ 3L |+ [a\y(goco_,t)fa(]}dg

2

12

+[a‘ﬂ{§,o,o,t;_}/a§]} d"‘k




The integrand of the first integral in eq. (13) can be written
as

F(&,(, t) * FE,, ) = J(E, &, +E-BLI(&,Q,0) +
(8- 80 5,(€,¢, v + (B-88)° 0y(8, T, 0

are
vhere Jo, Jl’ -5,a.nd 3“cont,inuous functions and are not zero at{ BC

Since the & in the integrands of eq. (13) varies over a very small
range, the functions Jo, Jl’ J2 and J3 can be considered as constants

with respect to integration in the E direction. Therefore 2 can be
replaced by B¢ in these integrands, thus permitting integr:tion to be
performed with respect to § . Eq. (13) becomes

Y (x,2,t) -hé- fzJ (8¢, t) dgogéf fzJ (6, (» t) a¢ +

¥ Y SRR o LAV SRR
[OH (? g) th %]

The value of the second order potential function on the downstream
side of the leading edge Mach sheet above the airfoil can be found by
taking the limit of e3g. (1k) as [ approaches zero and as o and a
approach infinity so that

lim of = &
[ +o

o —»00
and
lim q [ ® €

f+o
a-»

Thus the discontinuity in the second order potential function is given
by

\P!x-ﬁz i I"Ohé-j J(B( (, ¥ dg* i gé-fJ(ﬂi Qt)d§ (15)

o->°°

o a-»x

The integrals containing J2 and J3 are zero in the limit since J, and J3

13




are linear functions of 6°, &a, a2, &°, and da.

From eqs. (10) and (7) the functions J, and J, are {nsglecting

the &2, &3, a% and &2 terms)

Jg = Lo M a [-t. + M(x-BY) / (52c)]

Jy - - UM 52 [ ve- w2x/p? ] /(v8?)

Substituting the preceding expression into eq. (15) and performing
the indicated operations yield

- aeM?/p?) | -t + K x/(2p° +
T /6% [t + & w28 g
& e[(p1)/2087/8Y) [-tx/(B%)] B (16)

Expression (16) is the value of the discontinuity in the second order
potential function across the leading edge Mach sneet above the airfoil.

Solution of the Partial Differential Equation: The part of the
second order potentfﬁ function which contributes to the 1lifting
pressure due to a constant acceleration will now be determined. Since
the method of solution is essentially the same for both the upper and
lower surfaces, only the flow over the upper surface will be considered
in detail.

The first order solution is

i 242 W
M 2, £(x=pz)
s [‘;,;f— v 2 velepn)] - S il

It follows from egs. (7) and (17) that the seccnd order potential
function must satisfy the non-homogeneous' equation

2 2. I 2
2 ™ 1 M® a ¢ lfsz(l-
-gw +y -_v.\y ‘?\Ptt- v 4 éh ﬁ) f

[(1%(2 -M . 2)/52] vern + (M2/34) (y41) (g 2) f"} (18)

2 and & 2 terms have been neglected.

where theaz,a&,aé,e

The potential function \y will be divided into two parts "1 and 0

such that 91 satisfies the non-homogeneous equation and 62 satisfies

2

the homogeneous equation.

1L




By inspection a solution of the non-homogeneous equation is found

to be
--aeu M2 - + ! _&(H ph- mh- -
. 2 .
aEM L Ml 2 ¢ eM
- -y (M1 £ e —— (1 xzf! 19
LV B [ﬂ Y )] : 2V B (rea) o

The boundary conditions are given by eqs. (9) and (16). From eq.
(19) and the boundary conditions it follows that

| - o
x=Bz

and

28 .

e =8¢ [-(n" +2)vw-ﬁ % o gl - 2) 1o
LD \z-o 2vps A 2p° SaE A
(M2/p2) (M2y22+2) xf']

By inspection

o, = 8¢ {(H‘* - M e 2)ves e /2Euz(-1)2-(n2 M2+ 2)x | £+

2" i LU 02/p2)| 42 (y-1)%2- (2 x:‘

2 -
';M? (- 28 + e - 2082 2>fx " w du} (20)
[0}

Thus, from eqs. (19) and (20), the part of the second order
! potential function which contributes to the lifting pressure is

Y - _&.;é_h f{z(n% M2 +2) Bz Vst -y p2 g2 g -(Hh/ﬂ2)6r'1)18f'2+
2vp

(1% - W+ 2) ver -(nz/pz)kn“y - M o M2 o DBz o (MyH2e2) x] £ -
2 2 b
(2/p2)0H - 3 o 9 - 1)5’ £ @ } (21)

Lifting Pressure: The lifting pressure distribution can be expressed

as

ACp = -6 ‘upper M \lower

surface surface

15
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From egqs. (2) and (21) it follows that for symmetric.l airfoils the
1lifting pressure distribution at t = O is

ac, - %L;Sx . 2“"2 [0 - 12+ 2) x 0100 + (2B -3Pe5) 1))
(22)

Fig. 2 presents the lifting pressure distribution at t=0 on a
ten percent thick wedge for various Mach numbers, and fig. 3 presents
the lifting pressure distribution at ¢t = O on a five percent thick
airfoil with a parabolic cross section for various Mach numbers,

The Force and Moment: The effect of thickness on the 1lift, C; ,
a

and the momsent Cm., due to a constant vertical acceleration can be
a

found by use of eq. (22). The stability derivatives C;_ and C
a (-
can be expressed as
c - e ? .
¢ a_(x"r) ( "’ f O, dx
g ?v--)
acm 1 Cr
c“‘a = 3‘&( : \ - (txc—r3-> f (x-d)ACp dx
W)& —0 W) °

From the preceding relations and eq. (22) the C; ard the
(3

c of an airfoil are found to be

2 L . Cr
T{ 233 (HzT-M +2) -E-EE- . (H27-2H2 B)f (1:‘_()251 dx]} (13)
o r

and

2
o~ 5 13-, + U [0 e -

B r 2
Cr f( _ a2 (fr .
7-dx-f [ —‘3)";" d"]} (24)

(d/c,) (Wg-2n243) [
O [o}

16
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Fig. L presents the variation of the C,.  of a wedge airfoil
&
with Mach number for various thicknesses; and fig. S presents the
variation of the CL of an airfoil of parabolic cross section with
é
Mach number for zero and 7.5 percent thicknesses. Fig. 6 presents
the variation of the c"d of a wedge airfoil with Mach number for

various thicknesses, and fig. 7 presents the variation oi the cm
&
of an airfoil of parabolic cross section with Mach number for
various thicknesses.
The sum of the stability derivatives CIn and the damping in
.3

piteh, Cm s largely determines the damping of the 1-—gitudinal

oscillatidns in aircraft. The second order damping in pitch far
airfoils with symmetrical thickness distributions is given by
eq. (23) of ref. (5). The sum of this equation and eq. (2L) can
be written as

Cag * O, " B [ (‘?'T) (d n ] %F{%(-""’ * gulolont Jo
( d/c r)(uzmh-hnzou)] (1- -1)+a¢6 1M .
1842 - e]J J,l dx + z(M-w?-ou) J‘ _(_xl } (25)

Fig. 8 presents the variation of the C; + G, of a wedge airfoil
a q

with Mach number for various thicknessees for the case where the axis

of pitch i3 located at the mid=chord poiniv. Fig. 9 presents the

variation of the Cma * Cm of an airfoil with a parabolic cross section
q

with Mach number for various thicknesses for the case where the axis of

pitch is located at the mid{:hord point. These two figures indicate that

the effect of thiclkness has a destabilizing effect for a wedge airfoil

and has a stabilizing effect for an airfoil with parabolic cross section.

Fig. 10 presents the regions of possible instability for a ten
percent wedge and a five percent parabolic arc airfoil. The curves
are lines of zero damping found by placing Ch. * Cp equal to zero.

a q
This figure indicates that the effect of thickness increases the regim
of instability for the wedge airfoil and shifts the region to a lower

19
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value of d/cr for the parabolic airfoil.

The relation between Cm + Cm and the damping of a 3lowly oscil-
& q
lating airfoil is investigated in appendix B. It is shown that to
the second order in amplitude and thickness, and to the first order in
frequency, the damping of a slowly oscillating airfoil is directly pro-
portional to the sum C_ ¢+ C_ .
my mq

CONCLUDING REMARKS

The airfoils considered in this paper have symmetrical thickness
distributions, But since the flow over the upper and lowe: surfaces
of the airfoils treated are independent of each other, the aerodynamic
properties due to constant vertical accelerations of airfoils with .
unsymmetrical thickness distributions can easily be determined from
the results obtained here.

The limitations of the Busemamnsecond order theory have been
investigated (see ref. 8). 3Since the theary contained in the present
paper is closely associated with the Busemann second arder theory
it seems likely that the results presented herein have similar
limitations.

C. WMontin

HN C. MARTIN

%J:jamﬂ
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APPENDIX A

In ref. (9) several expressions are given for the scalar potential
function of the three dimensional time dependent linearized partial
differential equation of supersonic flow. In this appendix the results
of ref. (9) are extended to include eq. (11). The notation of ref. (9)

will be used in this appendix.
Eq. (17) of ref. (9) can bve written as

o o, H,\]-
Pl vofm el e
(a-1)
2%

B 2

vwhere the closed surface of the integral of the left side incloses the

volume of the integral on the right side.
The potential function, ¢, is required to satisfy eq. (11). In this
case eq. (A-1) reduces to

3, i M N, A -
Blive( sy mowlss 277 il T

%jﬂ[(rl + F)/R] av

Eq. (A-2) will be applied to a volume (denoted by v_) inclosed in

the forward Mach cone from the point (x,y,z) (see fig. (11)). This
volume is bounded by the forward Mach cone, an arbitrary surface, S1

inclosed in the forward Mach cone, and a surface given byﬁ- x =~ 5,
where § is small,

The finite part of the surface integral is zero since on the
Mach cone

Y= %

The surface integral over the area

E = x =5
reduces to a time independent problem in the limit as & approaches zero.
Thus this surface integral in the limit becomes

ﬁ [R N - ¢ g?‘h(%r)] da=~-2ng (x,y,2z,t)

8->0
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The dt(ata:)tls of the above integration may be found in ref. (10) or
ref. (11).

It follows from the preceding paragraph and eq. (A-2) that trs
potential function at the point (x,y,3) can be expressed as

#(x,5,5,t) = - 151:' ”fv [(Ir1 + F2)/R1 dv + ﬁ—ﬁsl[%- Ve-
(A-3)

o 2 A9
(55, % (R e

For planar problems in which the paint (x,7,%) Ties above the z = O

plane and the disturbing surface lies in the sz # O plane eq. (A-3)
can be reduced to

Bx,7,2,8) = - ,;},-ﬂ};grl * B[R |av - - jjsl[(¢§ - %) & (98"

of . .o a8,

R 1 R 1 R 2 R 2 (A=L)
— =5 - 3t -3 5|9 d
ﬂc”;’ﬂc”; ’Bc 2 P 2)]& "

where the surface Sl is the z = O plane.

The potential function ¢' is as yet undefined. The potential
function J' will be defined so that

g1 (x,5,-2 ,t) = #(x,7,a,,t)
In this case eq. (A~L) reduces to

#(x,7,5,t) = - %‘ g];[(pl* Fz)/a] dv - %‘(sk;? ‘. :-’!2-)% dg d7)
. J (A-5)

3




APPENDIX B

The Relation Between the Cm Plus the Cm and the Damping of
& q
Oscillating Airfoils

The damping of oscillating airfoils calculated on the basis of the
linearized theory can easily be shown to be directly proportional to
the sum Cm * cm calculated by the linearized theory. The question

a q
arises -- does this hold true for second order calculations? This
question will be answered by investigating the partial differeantial

equations 'gnd the boundary conditions for the three tyves of motions
involved.

Eq. (1) can be used in the analysis of oscillating airfoils; hok-
ever, for camparison purposes it is more convenient to express the
equation in terms of axes fixed to the airfoil. The relations between
the two sets of axes are (see fig. 12)

x = x! coscmem-z’ sinqnem

it oot
- y! -
z xsin%e + 2 cos o e (B-1)
t =t

For the axes attached t~ the airfoil eq. (1) becomes (to the
second order)

A By 0By - M (V) By, a0 = [ofa (B
(10n 8o/7) (0 xB/7) + (8,1}
(2/) (2 Byy = x B 4) * (/)6 B - 28,)]0 (&2)
# [e0@, « 8@ 8y e8,8 20, 8, - '
(28:82/7) * (2 82810 /)

For slowly oscillating airfoils the time variation can be ex-
panded in the form

et .14t - wtd2 e ..,

32







The result of substituting this relation into eq. (B 2) and retaining
only the terms up to first power of w yields:

'52 i * P2 - /2M2 g:xt/v)' @tt/‘:e}. %n ‘mz(@xz ’ta/v) *
o 102 [0 @ o (eBa/vy (18 V) (xg /Y (B3)
(&) -(280/P) (x 3 ,0/7)) *

+
Xz

LB s B B 5, ¢ 2, By 028,

(2 §x éxt”}’_/?Qz §zt/v: ’

-

The boundary condition on the airfoil surface can be expressed as

v.Vs=0

In this case

- - \ 7 Xiw ) _
vei(leg)l-€1 0+ 5 a s 9,+%, %0, amimt)
Therefore, on the aimfoil’s upper surface
L. ro. = i
Pz i200 ® = Op = Gy Wlx ¢ V)/V je€g (B-L)
and
Y- ‘ -g }
20 X0 €4x "€ 0,5 0 200 (B-5)

The discontinuity in i/ across the leading edge Mach sheet need not
be evaluated since the differential equation and the boundary conditions
on the airfoil surface are sufficient tu determine its value.

The first order boundary condition on the airfoil's upper surface
for a constant vertical acceleration and a steady pitching e (from
eq. (8), and ey. (8) of ref. (5))

r.
¢ \ = -a-|at e (qx/vj* €L (B-6)
z z=0
Comparing eq. (B-4) and (B~6) it can be seen that if we let
i-q-a i, (B-7)

to the first order the osciilating motion can be considered as the sum
of a constant vertical accele-ation and a steady pitching motion,

3




The second order boundary condition on the airfoil'’s upper surface
for a constant vertical acceleration and a steady pitching is (from eq.(9),

and eq. (9) of ref. (5))

/& i JAY q; * = 4
yz‘z-o '€\¢x lze0 * ¢:!z.o) “(g" laxy * Pag z-O) (B-8)

where, 9 denotes the first order solution associated with pitching,
and ¢c denotes the first order solution associated with a constant
vertical acceleration. Comparing eqs. (B-5) and (B-8) it can be seen
that the second order boundary condition on the airfoil surface for a
slowly oscillating airfoil can be considered as the sum of a constant
vertical acceleration anid a steady pitching motion.

The second order partial differential equation for the combined
motion of accelerating and pitching can be written as

2 .
-Bzgxx - ézz “(2”2 ;v;n/v)_@tt/c?)‘ M am lw(xéxz ’Qz - zén "

- (B-9)
"o 1) o ([0, 80 1)

BiBo < B, By (Brb/V) (8 B0 /)

where q and @ have been replaced by e 1w Eqs (B-3) and (B-9)

are not the same; they agree except for the terms a_ 2M2§xz ,

o 2P /v, iwoM 2f /¥, and o 1w M x & /V.

These terms do not contritute to the part of the second order solution
which is cf the form a_ iw € h(x,y,2,t). This can be astablished by
analyzing the form of Pae second order solution in the same manner that
the form of the acrelerating soiution was analyzed previously in this
paper. An analysis of the form of the second order solution for the

slowly oscillating airfoil will also show that only that part of the
second order solution which is of the form & iwé€h(x,y,z,t) will

contribute to the lifting pressure which is out of phase with the in-
stantaneocus angle of attack, and hence to the aerodynamic damping of
the motion. It follows that to the second order the damping of slowly

oscillating airfoils is directly proportional to Cm + Cm .
& q
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