
.Reproduced by

ared Services Technical information gencl
DOCUMENT SERVICE CENTER

KNOTT BUILDING, DAYTON, 2, OHIO

UN~ASIFIE



Technical Report No. 9
Contract W~onr 17(0

N -C:)

-j

... ,- THE DISTORTION OF A GRYSTAL

BY POINT t o ON.TIN S

J. D. EsheV1y

Department ol" Physics

Uuivrersity of Ill1inois

Urbana, 111.nois

J1ly, 1953

U° S. Navy Department.

Office of Naval Research

Washington, D. C,



Abstract

The expression u - r/ 3 (where c is a constant)

sometimes assumed for the displacement around a point imperfec-

tion (interstitial or substitutional impurity, lattice vacancy)

gives a non-zero stress at the surface of the solid. The addi-

tional 'image displacement' necessary to insure that this stress

vanishes is usually neglected, but may be important. For example,

it accounts for from 30 to 50 per cent of the volume change pro-

duced by such defects. This and other effects of the image term

are discussed. Miller and Russel have pointed out that a point

imperfection near the center of a sphere the apparent volume

change deduced from measurements of the x-ray lattice constant

is greater than the geometrical volume change. It is shown that

the reverse is true when the defect is near the surface, and

that for a large number of defects scattered uniformly through

the sphere the geometrical and x-ray expansions are equal. This

result is true with or without the image term, but to establish

the equality of geometrical and x-ray expansions for a body of

arbitrary shape the image terms must be included.

The contributions of the image term to various phenomena

are different and so they cannot be merely absorbed in the 'strength'

c of the imperfection.
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Introduct ion

As a model for the distortion of a crystal latwlce

by a substitutional or interstitial atom or a vacant lat stce

site a number of authors have taken a center of dilatation in

an isotropic elastic continuum. In many cases calculations

have been made using the elastic displacement appropriate to

a center of dilatation in an infinite medium. This disp.aice-

ment cannot be correct since it would give a non-vanishinr

stress at the free surface of the body. It is convenient to

regard the actual displacement as the sum of the displacuient

in an infinite medium and an 'image' displacement due to ;he

perturbing effect of the boundary.

It is the object of this paper to show that thc, Image

term cannot be neglected in certain applications. In paxrAcular,

if it is omitted the volume change due to one or more poi.nt singu-

larities will be underestimated by a factor of 1.5 for motals or

1.6 for alkali halides. Again, if the effects of the frree boun-

dary are igored, any non-spherical body uniformly filled with

point singularities would suffer a change of shape as well as a

change of size. When the boundary effect is taken into Pccount

there is a change of volume without change of shape. Moreover,

for thIs case, a calculation of the change of x-ray lattlne con-

stant gives a result consistent with the geometrical defrmation

only if the image displacements are included. Thus, unu :ally, the

boundary effects simplify the problem instead of complicc. ing it.

2. A Point Sit!aritZ in an Infinite . Bd

I. olds:'c wpiiacement, due ',o a c.nter oi' 6 ., -,at .n



in an infinite medium is1

1A. H. 110ve, Jiathezatical Theory of Elasticity. (Cambridige University
Press, 1924)

where c isa constant, the 'strength' of the singu:larity. ('Je use

the affix to- to emphasize that (10 is only valid in an infinite

medium). TIhe displacemwent hias the same form as the field of an

electros-La-4ic point charge. The real justificationL for taking (1) as

a rou&7i de3cription cf ths elastic field of a p.oint imperfection 5.n

an jiifin-itq crystal which hies been idealized as a horiogeneous isotrop-ic

elastic t.ontinuum iE that it, is the only spherically syrnetrical

displacemn~t which satisfies the equations ofT elasticity anid does

not increase with 'Y' . tillt it is convenient to have 3ome sort

of detalled elastic model. As a mnodel of an interst-1tial ol- sub-

stitutional atom we~ might take an elak--tic sp-here of radius (1

forced. :t-OW a spheri cal hole of raditisro ~i an infinite block of

the same m3terial. It is easy to show that for t ' jI the

displacenneiit is given by (1) irith a ~&7' (1 4 Or' ) /3(1 - )and

that for -f 1; here lz a unifor'm compress ion. is Pois-

son's rati,,)). The -,-urface olf' the hole suffers an ou~tward displace-

M exit C/'f, 3 increas.mg the volume witlain it by 4Jre.

This raodel must niot be taken too literally. The lat-

tice caast-int of gold is ixtoreased by. a little disso.vedi si~lver. The

misfittiag sphere imc-del. ..ould suggest that therefore a little
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dissolved gold would decrease the lattice constant of silver,

and this is not true. All that we can hope for is that a par-

ticular type of singularity in a particular matrix will be

characterized by a constant c which can be used consistently to

describe various phenomena.

Again, a foreign atom in a lattice exerts forces on its

neighbors differing from the 'standard' forces they would exper.

ience in the perfect lattice. When we assimilate the lattice to

a continuum the standard forces are absorbed in the elastic pro-

perties of the medium, but the additional forces due to the im-

perfection are still outstanding. Hence as an alternative to the

sphere-in-hole model we may take a cluster of point forces to re-

present a point lattice imperfection in the elastic approxzimation.

For a sufficiency symmetrical relation of the interstitial or sub-

stitutional atom and the lattice, the forces will be equivalent

to three equal 'double forces without moment' at right angles.

The displacement will then be of the form (1) which can be consi-

dered1 as due to a distribution of body force

F (1)--12X cKg~rad ~( ~(2)~

(K is the bulk modulus).

In a less symmetrical case (e.g. carbon in iron) the cluster of

forces will be equivalent to three unequal double forces without

moment and the resulting displacement will be more complicated

than (1). However, it is probably not Justifiable to introduce

this refinement without at the same time considering the aniso-

tropy of the material, and we shall not consider it further.



t
4

The displacement (1) can be produced by heating a point

of' the elastic medium, assumed to be non-conducting. Th:.s can be

seen by imarLning that the misfit in the first model was produced

by heating a sphere with originally no misfit, or in terns of the

second model by noticing that the thermal stress2 due to a tsmper-

ature distribution T ([ ) is the same as the stress produced by

2 S, Timoshenko. Th or of Easticit, McGraw-Hill Book Go., Inc,
New York, N. f

a density of body force proportional to grad T, which for tha hot

spot T - const ( ") would be of the form (2). This aralogy will

be useful in discussing a body containing a large number .f imperfec-

tionso

In general the stress associated with a displacement u

whose Cartesian components are ul, u2 , u3 is

Pi i Aiv u + Ix + (3)

where X and Ix are Lame's constants. From the electrostatic inter-

pretation it is at once clear that the divergence and curl of (1)

vanish, so that the stress produced by the singularity when in an

infinite body is simply

pi (4~)

3. A Point Si rtlarity in a Finite Body with a Stress-Free Surface.

Consider now a center of dilatation in a finite body with



5

a free surface. First mark out the surface S of the proposed body

in an infinite block of material and introduce the singularity.

The displacement is given correctly by (1). Across any surface

element of S there is a stress* PjjnjdSp where n is the normal to

S. Thus if we remove the material outside S the displacement will

Throughout the paper we use the convention that a repeates suffix
is to be summed over the values 1, 2, 3.

continue to be ut only if we apply a distribution of surface trac-

tion pijnj to S. Removing this distribution to give a body with a

stress-free surface is equivalent to applying an additional distri-

bution -pijnj. The elastic state will then be given by

u s+U P ul 00 Pft- O -' Pij Pij* l(5

where the image stress pI is the stress which surface tractions

-Pijnj would produce in the body and the image displacement u is

is related to p~j by (3). Pia is clearly free of singularities

within S and satisfies

(Pl + pI n -0 on S. (6)

Unlike u u has in general a non-vanishing divergence.

If the surface traction and surface displacement are pro-

scribed (they are not, of course, ndependent) the elastic field

inside the body can be found by integration. When only the surface

traction is given, we need the appropriate elastic Geen's function,

,known for only a few simple shapes. Since we know the image traction
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pijnj but not u on S we cannot in general calculate the image field

in the body.

The change in volume of the solid can be divided into parts

AV and AVl arising from the two terms in (5). We have at once

AVu 0  u . n dS "4*c, (7)

the integral being, accordine to (1), c times the solid angle sub-

tended by the surface at the singularity. This result can be seen

at once for the sphere-in-hole model- When the sphere is inserted,

the volume of the hole increases by 4xc, and since div = 0 out-

side the hole, this increase is transmitted unchanged to S. Agpin

for the ideal mathematical singularity for which (1) holds for all

we have strictly not div u - 0 but rather

div u c ) 4

with a delta-function of exansion at .- 0 A formal volume in-

tegration gives (7).

Although we cannot find the image deformation in detail,

we can find AVI with the help of the rule that the volume change of

a body subjected to a distribution of surface traction T per unit

area is

J ~ 7 4r (9)Kf 5 K +i

where p,, is the stress produced by Tand K is the bulk modulus.

For

dS ~(2i 2 3 ~ :~~ cv= 3K t
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since ' Aj and in elastic equilibrium 9 1 a.o

To find Awe must puttj#4

with I)'from (4).. But the operator x:,( xi~~,

applied to C.) i . merely multiplies it by -2. Hence

the integral (9) is equal to the integral (7) times :1/3K and so

VI  -4c 21-2(10)

Thus the total volume change on introducing a center of dilatation

of strength a into any homogeneous isotropic body with a stress-free

surface is

AV a AV +-VI Y/V O(

where the constant

3 -(12)

is about 1.5 for metals ( 4", 1/3) and 1.8 for alkali halides

( 6- 1/4). This result has already been given by Selts2a.

2a Frederick Seitz, Rev. Mod. Phys. 18, 384 (1946)

It is also implicit in the known result for the interaction energy

of a center of dilatation and an external hydrostatic pressure2b:

This energy is the product of AV and the hydrostatic pressure.

2b See for example, J. D. Eshelby, Phil. Trans. Roy. Soc. A 32&k, 87

(19h)



If in (9') we take PiJ to be any state of purely internal

stress, so that the surface integral is zero we arrive at the known

result that the volume of a body is unaffected by internal stresses

provided Hooke's law is valid. The volume expansion we have calcu-

lated is not in disagreement with this. Consider the hole-in-sphere

model of section 2, and suppose for clearness that S is negative.

Then the unstrained state is a body with a spherical hole of radius

ro containing a sphere of radius r0 (l - J&D and an unoccupied

volume 4xro3 If. 1 - 4x I c IJ . In the strained state the surfaces

of the hole and sphere have been drawn together and welded. Sines

the total volume of material is unchanged, the volume enclosed by

the outer surface must have decreased by an amount equal to the

volume eliminated between sphere and hole. This simple derivation

does not supersede our more elaborate treatment since to relate the

expansion to stress effects arising from the imperfections we need

to know something about and X separately. If there are depar-

tures from Hooke's law, the volume change of the material is not

quite zero: this is discussed in section 6.

4. The Deformation produced by a Lare Number of Szialarities

If there are a number of singularities in the body we have

u 1 (r) =T- (13)

with summation over all imperfections. The image stress pIf is that

stress which has no singularities within S and on 3 annuls the our-

face traction calculated from (13). uI is the associated displace-

ment.
I
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If the defects are all alike we have

AV/i.40 1 c f /1"1 (12,)

where f is the atomic fraction of defects and Q0 is the volume

per atom of the matrix.

Of special interest is the case where there are a large

number of identical centers spread through the volume, with an

approximately uniform density of n centers per unit volume. Here

we can also say something about the change of shape if we allow

ourselves to replace the actual distribution by a continuous die-

tribution of infinitesimal centers with the same total strength per

unit volume. (We shall try to justify this below). If as before

the body is embedded in an infinite matrix this averaged displace-

ment is clearly

UW0M Cf r (14)

at any rate outside S, (It is not at once clear that we can give

any meaning to the average displacement in a sedium riddled with

singularities.J

The comparison already made with thermal expansion sug-

gests that a body uniformly filled with infinitesimal centers of

dilatation will, like a uniformly heated solid. expand uniformly.

The following is a formal proof* We first show that the displace-

ment given by the volume integral (14) can be duplicated outside S

by a distribution of body force over S of uniform magpitude

P K KA /V *4SCn/ K

per unit area and directed along the outward normal at each point.

A point force F in an infinite medium produces a dimplaceme t



- A rr (r.F)
+m1 . B - - -- V 16 r,(

A (3-4d-IB

at a vector distance r froiz it. Eacl e.lerent of the surfaee contri-

but-e a force dF p n dS and the net diwplacement is

c- - .~- (A -- .L.e -<

Surposf nm-i that S is marked out in an infinite r,'.dium,

* tha the u.niform distribution of infLiltesimal centers of dilata-

tion is introduced and that a layer of body force equal and opposite

to that just described is distributed over L. The combined effect

f these last two steps gives zero displacmtert outside 3 ad leaves

S its original Yh~ape and size, If the unstraned matrix is now cut

away, the elastiC state of the body bounded by S is unchan&d, but

the layer of body force becomes a hydrostatic preasure p ac;,ng on

th, surface. When this is removed S undergoes the uniform expansion

Ax.- n c 'X(5
3

Though u + u1 represents a uniform expansion, u and u' aeparately

do not, exCept for a spherical body. Thus omission of the image

terms in addition to giving a volume change lacking the factor

(which could be absorbed in the usually unknown constant c! would

also give a non-uniform expansion.
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Suppose, for example, that S is an ellipsoid with axes

wr Then ~ --cn grad Cr where

1/2 (D- x -BX 2 -Cx3 ) (16)

with the usual notation for the potential of an ellipsoid. Thus if

image terms are neglected, the ellipsoid becomes another ellipsoid

with semi-axes A etc., where

nA icnBcnC (17)

Since A + B + C 4X the volume change agrees with (7). As an ex-

ample, if , 2:1:1 then A:B:C - 2:1:1 very nearly. This de-

parture from uniform expansion, if it existed, would be hard to de-
*

tect by macroscopic measurements, but as we shall see below, there

is an exactly similar effect on the lattice constants determined by

x-ray diffraction, and this would be easily observable.

We must now try to justify replacing the sum (13) by the

integral (14). Just this question arises when we replace the field

of a set of gravitating or electrified particles by the field of a

continuous body. This kind of problem can be attacked in various

ways, none completely satisfying; the following seems a plausible

line for the elastic case.

The observable macroscopic displacement at a point of a

body in which the displacement fluctuates on a microscopic scale

is essentially the displacement of the centroid of a region large

t compared with the scale of the fluctuations. It is therefore

reasonable to define the gross (or macroscopic) displacement at a
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poirnt a.3 iv~ 1erE , of the :)ctual (mi,:roscopic) d: pl.aceurtnt taken~

over the voluime oxf a sphere whoss radius P. is larg _ enough to con-

tain many fluctuations, but is small compared with the dim.;sions

of the 'zxdy.

Let us find the groas rdispiacernt U0 corresponding to

(1)fox a, poinZ inzide the body,.~ The volume i.ntegral over the

spher'e R~ of the displacement due to a singularity at ,r rel.:,tive

to itr; ce;itar is eq~ual to the attraction on a charge o at.

producect by a ditstribution of charr~c of unit density ftllirg the

sphere, 1-9 4/3 'rer if r 4Rand 413 xscR 3 r/r 3 if r ;: R,, Thuz

R3 N

As R increases and becomes reasonably large comipared vrith f

the first tern should be small, being proportional to th.- posliti on

.rector of large number of points taken at random in a sphere,

At the sarne time, as R increases it becomes more and more 2reason-

able to replace the second term by ar. integral since the dli3tane

of each oJiuularity from the point at which their effects ar-e summed

is large compared with the mrean distance between them. .;e thus

reach (14) but with a sphere of radius R about the point oi observa-

tion excluded from the integration. l-1owever, by a kn~own reitilt of

patential theory (14; is unaltered by thio- omission. proviria6 the

sphere lies wholly within S.

Having defined the gTosa displacement we can cs~c-,.ate a

gross strass froso it with the aid of (3.This qhou'd be c tri~e
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macroscopic stress, i.e. it should give correctly the surface trac-

tion required to prevent relative motion of the faces of a macro-

scopic cut made in the material.

Ie can obviously generalize these results to a distribu-

tion of imperfections in which is a function of position° The

microscopic u is still given by but the gross displacement is

U J c ... . dv (18)

and in the averaging process we must have n"I/3 4. R << n-1/3

Sgrad (n-1/3)f1
I

The gross or microscopic pi is the stress produced byij
00

surface tractions -Pijnj calculated from (13) or (14, 18). These

two surface tractions will differ by rapidly fluctuating qvantities

with a 'wave-length' of the order of n-1/3 whose effect will be con-

fined to a surface layer of the same order. Thus in the bulk of the

material the image quantities are efficiently smoothed by r.

Venant's principle whether we smooth the infinity quantities or not)

and we need not distinguish between their gross and microscopic values,

5. The Effect of Point Singularities on the X-ray Diffraction Pattern

Miller and Russel3 originally suggested that there is a

3
P. H. Miller, Jr,., and B. R. Russel, J. Appl. Phys. 23, 1163 (1952).

difference between the geometrical volume change of a crystal contain-

ing imperfections and the volume change deduced from the clange of
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x-ray lattice constant. They calculate that for a uniforn: distri.

bution of point imperfections the latter should be about twice the

former. 4  Huang5 found that they were equal. These author. omiln

4 They have since withdrawn this factor. P. H. Miller, Jr. and B.H. Rus, el, J. Appl. Phys.

K. Huang, Proc,, Roy. Soc. AlO, 102 (1947).

image effects. Miiller and Russel calculate the image effect for a

single imperfection at the center of a sphere. They take & collec-

tion of such spheres with the interstices filled up to represent a

body containing many imperfections and argue that the image effect

is negligible because the surface traction across these spheres is

by no means zero, As we have seen, the effect of the image term

on the vo.ume change can be taken into account quite generally,

and we shall find. that the same is true for its effect on thie x-ray

lattice constant,.

For an undisturbed crystal the scattering power plotted

in reciprocal spece will be a set of patches wish their maxima at

the point; of the reciprocal lattice. If the crystal is distorted

by external forces or internal imperfections the patches will be

a: c1"(ac; . ,,., - :'a"d ,Jo-. new maxima as defining a

.t , at u he deformation of

t hs r e-. 1 ,tI a t , e corr*spond; to ., deformation of the crystal.

e th r.,t. cf a point r ii f e crystal or re-:iprocal

lito 2 c bof.i ',_- arid 3ift~r d]i tort m. be
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r - Li aip r + Ar - (Li + ALi ) a

and

B fah 1 b4 , B + AB - (h i  hi ) bi
,%-A1- -. -

Miller and Russel derive the following relation valid within a re-

gion around the origin of reciprocal space which decreases as the

degree of crystal distortion increases:

Ahi Aij - h i Bij (j - l2,3) (19)

where

AIJ Li L 2 B13  ZAL1 Lj,

Uiplying summation orer all points of the crystal lattice. 'e

have simplified equations (1, 2, 3) in reference 3, appendix 1 by

taking the origin at the lattice point nearest the center of gravity

of the crystal: then the sums 7L, will differ from zero by inte-

gers small compared with the number of atoms in the crystal and may

be neglected. Equation (19) has the solution

6h * hk Cki, Ct - Bkj Aj1  (20)

where A i is the matrix reciprocal to Aij. C is not in general sym-

metric even if Bij is. Thus (20) is an infinitesimal affine trans.

formation in reciprocal space. In other words the reciprocal lattice

points ar3 shifted as if they were embedded in am imaginary elastic

continuum which undergoes a deformation in which all the strain and

rotation components

eji a 1f dhh/ hj. / hi) 4 (Cij +

CO) . 1j~ Ah 1 /h')a PthIh1  - (CC
2 2



16

are in general dif :erent from~ zero and constant from small hi,

This implies, for example, that from x-ray mea:3uremerits orA t he

position of low-order spots alone, a distorted cubic crysUAl could

not be distinguished from an unstrained monoclinic crystal slighitly

misoriented,

Following liuarg we -nay replace the displacenient (.xpressed

as a sum Gf' the effects of the separate imperfection8 by zj. integral

if the distribution Is statistically uniform,. This correarods to

the averaging process of the previous section1 and we may j~ut at~l ul.

The summation may also be replaced by an integral and vie have

I 5 4 X'4 z.T di - I"xj u dv- (21)

But we know that wte the image termr e ncuedu has the formi

(15), so that AJ4 A n c B and (20) has the solution
3

ah Ah th)

(The A are the products of iner-tia of the crystal and dot (Aij)

could only vanlish if the moment of inertia of the crystal about some

axis were zero.) Thus the reciprocal lattice contracts uniformly

in the way we should expect for a crystal which had suffered the

uniform expansion (15).

This simple r03ult would be destroyed if the imag,:e terms

were omitted. We should have

B~j cn-
B5 f~ * dv

a5 V
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where

Cf. ,dv/r

is the potential of the specimen if filled with charge of unit density.

For an ellipsoidal crystal 4 is a quadratic function of the coordi-

nates (eqn. (16)), and it follows that -Ahi/hl, -&h2 /h2 , -Ah 3 /h 3 are

equal respectively to the three quantities (17). In this case the

(incorrect) deformation of the reciprocal lattice agrees with the

(incorrect) macroscopic deformation with image effects omitted. For

a body of arbitrary shape this is no longer true, since there is no

simple relation between Aij and Bij. X-ray measurements would in-

dicate that the cubic unit cell had become monoclinic, and its change

of volume would bear no simple relation to the change in volume of

the crystals calculated with or without image effects. These com-

plications are implicit in Huang's calculations. Each of the two

terms his expression (I) is, in electrostatic language, the sum of

the potentialF of a set of parallel dipoles, Such a sum taken over

a large finite region in an infinite distribution of dipoles is

ultimately independent of the size of the region but depends on its

shape and the relative position of the point of observation within

. Inclusion of the image terms adds a layer of surface charge

which just annuls these variations, Thus fluang's (I) does not re-

rirp. ent ,rorr; expansion , t for a sphere, for the latter the

o>, . , W.( . $ ' . ." _ "C .c r, Z Lhe

" T - y'I - , , .
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eventually eliminated with the help of his equation (18) in which

also c must be replaced by c the final result is unaffected.

Miller and Russel found by calculating the I Li Lj

numerically that for a single singularity at the center of a sphere

the expansion deduced from x-rays was 2.5 times the geometrical ex-

pansion. They deduce from this that there should be a similar

difference (with the factor reduced from 2.5 to about 2) when there

are a large number of imperfections distributed at random.

The previous discussion indicates that this is incor-

rect, but does not show exactly how the discrepancy arises,. This

discrepancy exists whether image terms are introduced or not(though

introducing them would reduce the factor from 2 to (1 + I )/-j

and for simplicity we omit them in the following discussion.

Let us find the effect of a single imperfection at a

point _ relative to the center of a spherical crystal of radius

R. We can save calculations by finding the dilatation of the re-

ciprocal lattice and not its detailed distortion. Putting.

i a c(Xi i) I in (21"' we find after some man-

ipulation

AV f hi R
()

d[d

sphere .:- un-J .:ens.t~ty andi has tbe valu X viJ - ,' , !,,J r L I.

tv %( (A (22
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It we exclude from the integration a sphere of radius ro about

a term -r. /R must be introduced inside the bracket. Since r

can presunably be taken of atomic dimensions we shall omit It.

The reason for the discrepancy now becomes clear. The

expression (22) is greater or less than the geometrical -V ac-.

ording as is greater or less than J(3/5)R - 0.77R. For

4 0 It is 2.5 times the geometrical value, in atreemenw with

Miller and Russel. If there are a large number of defects scat-

tered at random throughout the sphere, the average contribucion

to AiV per imperfection is given by replain& I in (22) by 3ts

mean value for all points of tLe sphore5

K IN

ih-- .ye a irear X-ra" 64 1') C L% ae-,CCLT!met wit,',', Zt)i

tz'cal va1.ue (7). There seems to be :tachinF objectionable I tj 6

replacement of sums by integrals, and presumably i.iller and Russel's

summation procedure would ,ive the geometrical value if carried out

for a reasonable number of imperfections scattered throughoit a

sphere.

As a corollary we see that with a given number of defects

the x-ray expansion depends strongly on their (non-unlform.1 distri-

bution, whmile the geometrical expansion is, of course, indeaendent

of the distribution, Thus, for a sphere the ratio of the x-ray

by0 to the geometrical AV can be given any value betwee, 2.5 and

0 by sweeping the defects towards the center or surface. 'W'han

the two expansions are corrected for the image terms the ral;io lies

between (1.5 + and
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6.Discussion

The equality of the x-ray arid geometrical expansion~s of a

crystal uniformly filled with point imperfections has a beLirin' on

the question whether they are of Schottky or' Frenkel type 3 ,. Revised

calculations by Miller and Ruseell4 gave a difference of' not mora

thani 10 to 20 per cent difference between the two expausior s in

place of their original .actor o~f two., Th-i residual differ-nes

may be partly due to the neglect of image terms.

turning to the f'actor introduced into the expansion

by the iaage terms it looks at first sight as if one could r'ede.-

fine the strength of an imperfection as c and then forget about

the image effects. This is rnot so. The contributions to fthe ex-

pansion fr'on U'D and ul are in the ratio 1: -1). But -h

ratio of' their contribution~s to any other phenomenon will In gener-

al be quite different, since u is a rapidly fluctuating funation

of position associated with a pure shiear whereas ul is smoorh ex-

cept nea." the sjurface ith an associated stress which 15s chi.efly a

hydrostaric pressure in a body of reasonable shape. c Is th1us the

basic constant which we might hope to determine from measuiraents

of one effect, and apply in calculating the value of anothe;:. The

fol owing examples illustrate this*

iabarro6 has discussed the hardness of dilute alloys.

F . R. N. Nabarro,.,}roc~. i"hys. Soc. (London) 669 (196).,

The han1E'Ae-iir, is~~ a,*' % -ntirely to p ,t icl>vVg

p i layir!E scarct-y w;Y part., He eliminates o 2e~ of
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the observed change of lattice constant with composition but neglects

the image effect. This can. be put right by dividing his theoretical

constant &,- 0.05 by f before comparing it with the values deduced

from experiment. The spread of the latter is too geat to say if

this gives any improvement.

Dexter7 has calculated the effects of u and uon the
A--

7 D. L. Dexter, Phys. Rev. 82, 768, 1952.

electrical conductivity of'metals. The former gives a temperature

independent and the latter temperature dependent conDribution.

They are of the same order at roou-temperature.

Overhauserg has considered the modification of ratio of

A. W. Overhauser, Phys. Rev. Q00 303 (It 5)

diffusion by the stra.n due to point imperfections. The effects

arising from u and uI depend differently on temperature, and the

image term may become important at high temperatures,,

Zoner 9 has calculated the change of shear modulus caused

9 C. Zener, Acta 'Cryst. 2, 163 (1949).

by the u fie ld of poitit imperfections. Evidently the dilatation

due to the image field should gve rise to an analogous change of

bulk modulus. (As wiz hAve seen u produces no diLatation of Ahe

material between t.he imp:;erfections, in fact we. shou!i hIv'e a cirnze

K do gV V d log V
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proportional to the relative change d of' lattice constant but

of oppos-Ie sign, since d log i/I. log V is negati, e. According r, o

a simple theory10 verified quite well by experiment -d log V./d log V

10JC. Slater, Phys. ijev. 32 744 (1940.

is equal to 2 4/3,~ where P sGruneisen's constant, Zener's

Ai/ton the other hand depends on the Whear strain energy associated

with an iirperfectLon and so is proportional to Idi /t7 .

By an atomic calculation Dienesll has found that one per

UG. J~. DJienes, Phys. Rtev. $6, 228 (1952),

cent of interstitials increase the bulk modulu~s of copper by 6"8

per cent and of sodium by 1.9 per cent. His calculations deal in

principle with what happens in the imediate neighborhood of the

Imperfection1. so it is reasonable to suppose that they take account

of U 11 nd Lhat the effects of u' should be added. The results

of Dienes and Huntington and Seitz12 suggest that we may take

12 H B. funtington and F. Seitzr Phys. R~ev. §1, 315 (1942).

4Pc/a2 to be about 0.6 and 0.9 respectively for an interstitial

in copper or sodium. By (12') and (23) the corresponding percen.

tage changes for one per cent interstitials are: lattice coastant

0.9 (Cu), 1.4 (Na), bulk modulus - 4.6 (Cu), - 6.9 (Na). our

calltion cannot claim any accuracy, but it suggests that the

image term is Important, perhaps even large enough to change the

sli. of



Tihe cheiige of shear modulus h urid by Zener' s arfuiant

depen-ds on non-linear behavior in tho x'. rion close to the I.mperree-

tion (see below) and it is therefore i-n .,7-icipie already Inc*-uded

Thq a calpculation such as Dienes'~ ,,hich a,,1,.ideri the balal-ce of

nt eratoiruc force-, near the imp erireet on.

it ',wan pointed out at the er~d of *3:Ictiorn 3 that :1'or a

purely e3 astic zrodel the a,,ctual volixnte oi n'~teri was ur. - tred,,

Zener 1 3 1has shown how -in such a case thre de t rtuwe from 1ic-oike s

13 C. Zerier, Tran's. Ain. Inst, Minning 1,1et. Ent. liav 361 (9~Y

law gives a volum~e change, and we oughat 1,;o consider what Cf,.fect

this will have on our calculations, This -hange has the vil~ue

LV-(U + d log K/d log VT) li/K

.l+ d log /d log V) '4$/

W..ere W, ad are the total dijlataet-one I and shear strain erner.

gi~ a ~~cat~~d ii tba irt*err:i3 str'ess., The first term -.an be

4,'osidox.'a as a small correction' to 01 corresponding to i ,1,.nzg JA

(9,) the ~l~of K appropr*iate to the lat-t1.ce as expanded,. The

shear st-aiin a s-oc.iated with the sphere-hin-lhole model of nel t,O~n

2 -1.s Sir a- /r. 3 (of ref, 8). If we take thbe case of L,-,,,stitjaj1

iLn a falzv-ceiitared cubi-. material and put ro equal to thle distance
from th 0 it-erstitial to the near-est face-centere towchr

V /V (1 + d logpf,(, / d lor, V) 16s f (1 Ai/) (c/212I.

-ihto'xt. cr:e terth, of (121 ) for int stita_'1s in taoIr2

opkio'. -,-'Z? kc .05, ""Pl owever, een if the tj



shear sta-ai erlf-gy' & V /rO ct .ri~,lth o-; ti

nearl; - ne. percent is ,onta med within a sph-lre of ~fw

fined to %'-ke i.bnadiate nei~bbood of 1,.h4 iiiperfectio,,- ThIWU e<.x-

tr vclutn, changP is .rans,,it1-,d to *,' surface by. th, ~c~ma

U mhic ist h2nVx3 the P(LZ'n (1) a~s sooi as the elastitc rcq&:;jopis

reached., Ihue the effeot we are consid~r:Le mere&-y rn:-rail~zes

the cons",nt o in 00 i;A Jt is corra,.,t to use the wodifte;6 va.lue

act only in (12t) but also in ;-isicusing any ot~her pheno.,u,.m in

r~hioh ori.Ly strains in the elaatic region~

Po-ixt iLrperfectionsi may extpand the lattice by nii,hanisza

,:ther thanr risfiz, Take for example an alkali halide araa with

dou.~bly charged foei~p ~aaions in some positions together bi-h an

equi nwu.iter of' vacant anion sites. The continuum modsl J.F a di-

electriC with positive and negative charges embedded Inl it,, Round

each there is an elastic stress field due to electrostriction.

The dilatation is large near a change and fralls off rapidl1y with

distance. The stress field is essentialily that of a center of

dilatatio.n, A rog calculation suggestsi tWhat its strenigth is of

the same order as for a reasonable degree of misfit. It 15 of the

sam~e si~m for both positive and negative charges.~ Again, If atoms

of difforen",; valency are introduced substitutionally into a metal

the remuPting change in the number of electrons in the coneiuct ioni

band will produce a chatnge of lattice constantC quite apart fromn any

laisfit efecs



25

It is not the aim of this paper to advocate the alastic

approach, but to show that when it is used, neglect of the pre,

sence of the free surface may lead to qualitative untidinesses

(such as non-uniform deformation by a uniform distribution of de-

fects) and quantitative errors which may be important.


