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Abstract

The expression u = ¢ ‘£/T'3 (where ¢ 1is a constant)
somet imes assumed for the displacement around a point imperfec-
tion (interstitial or substitutional impurity, lattice vacancy)
gives a non-zero stress at the surface of the solid. The addi-
tional 'image displacement! necessary to insure that this stress
vanishes 1is usually neglected, but may be important. For example,
it accounts for from 30 to 50 per cent of the volume change pro-
duced by such defects. This and other effects of the image term
are discussed. Miller and Russel have pointed out that a point
imperfection near the center of a sphere the apparent volume
change deduced from measurements of the x-ray lattice constant
is greater than the geometrical volume change. It is shown that
the reverse 1s true when the defect is near the surface, and
that for a large number of defects scattered uniformly through
the sphere the geometrical and x-ray expansions are equal, This
result is true with or without the image term, but to establish
the equality of geometrical and x-ray expansions for a body of
arbitrary shape the image terms must be included.

The contributions of the image term to various phenomena
are different and so they cannot be merely absorbed in the 'strength'

¢ of the imperfection.



Introduction

As a3 model for the distortion of a crystal lattilce
by a substitvutional or interstitial atom or a vacant latuice
slte & number of authors have taken a center of dilatatiru in
an isotropic elastic continuum. In many cases calculaticns
have been made using the elastic displacement appropriat: to
a center of dilatation in an infinite medium. This dispiace-
ment cannot be correct since it would give a non-vanishing
stress at ¢he free surface of the body. It is convenient to
regard the actu:al displacement as the sum of the displactmant
in an infinite medium and an ‘'image' displacement due to :che
perturbing effect of the boundary.

It is the object of this paper to shew that the image
term cannot be neglected in certain applications. In partieular,
if it is omitted the volume change due to one Or more po.atl singue
larities will be underestimated by a factor of 1,5 for metals or
1.8 for alkali halides. Again, if the effects of the free boun-
dary are ignored, any non-spherical body uniformly filled with
peint singularities would suffer a change of shape as well as a
change of size. When the boundary effect is taken into &ccount
there 13 a change of volume without change of shape. lNorsover,
for this case, a calculation of the change of x-ray lattlcse cone-
stant gives a result consistent with the geometrical defcrmation
only if the image displacements are included. Thus, unusuwally, the
boundary effects simplify the problem instead of complicriing 1t.

2. A Point Singularity in an Infinite Body

The olosbic disviacement due & a ecemter of «is nal .un




in an infinjite medium isd

1 A. H, Love, Matheratical Theory of flaasticity. (Cambridge Universitvy
Press. 1924}.
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where ¢ is a constant, the ‘'strenpgth' of the singularity. {\e use
the affixz s¢ to emphasige that (1) is only valid in an infinite
medium). The displacement has the same form as the field of an
electrostatic point charpgs. The real justification for taking (1) as
a rough description cf the elastic field of a point imperfectiorn in
an infinite crystal whieh has been idealized as a homogeneous isotropic
elastic vontinuum is that it is the only spherically symmetriceal
displacement which satisfies the equations of elasticity and does
not inerease with ¥~ . Still, it is convenlent to have some sort
of detalied elastic model. Ag a2 model of an interstitial or sube
stitutional atom we mipght take an elastic sphere of radius {1 @-8,375
forced into a spherical hole of radius¥s  in an infinite block of
the same material, 1% is easy to show that for ¥~ > YT the
displacement is given by (1) with ¢ = Eﬂfﬁ%l s ) /3(1 « o ) and
that for v~ « ¥ there is a uniform compreasion, { ¢ is Pols-
son's ratis}. The surface of the hole suffers an outward displace-
ment c/yzfa, increasing the volume within it by 4%¢.

This model must not be taken too literally. The lat-
tice coastant of gold is increased by a littie dissclved silver, The

misfitting sphere mcdel would suggest that therefore a little



dissolved gold would decroase the lattice constant of silver,
and this is not true. All that we can hope for is that a par-
ticular type of singularity in a particular matrix will be
characterized by a constant ¢ which can be used consistently to
describe various phenomena.

Again, a foreign atom in a lattice exerts forces on its
neighbors differing from the ‘*standard' forces they would exper-
ience in the perfect lattice. When we assimilate the lattice to
a continuum the standard forces are absorbed in the elastic pro-
perties of the medium, but the additional forces due to the im-
perfaection are still outstanding. Hence as an alternative to the
sphere-in~hole model we may take a cluster of point forces to re-
present a point lattice imperfection in the elastic approximation.
For a sufficiency symmetrical relation of the interstitial or sub-
gtitutional atom and the lattice, the forces will be equivalent
to three equal 'double forces without mcment' at right angles.

The displacement will then be of the form (1) which can be consi-
deredl as due to a distribution of bedy force

F A ) =- lzxcxg:rad \('{‘) (2)
(K 18 the bulk modulus),
In a less symmetrical case (e.g. carbon in iron) the cluster of
forces will be squivalent to three unequal double forces without
moment and the resulting displacement will be more complicated
than (1). However, it is probably not Jjustifiable to introduce
this refinement without at the same time considering the aniso-
tropy of the material, and we shall not conaider it further.
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The displacement (1) can be produced by heating a point
of the elastic medium, assumed to be non-conducting., Thig can be
seen by imagining that the misfit in the first model was produced
by heating a sphere with originally no misfit, or in termns of the
second model by noticing that the thermal stress? due to a tampere

ature distribution T (" )} is the same as the stress produced by

2 :
S, Timoshenko, Theory of Elasticity, McGraw-Hill Beok (o., Ine.
New York, N. t. 1934, ’ ’ !

a density of body force proportional to grad T, which for the hot
spot T = const 3( V") would be of the form (2)., This analogy will
be useful in discussing a body containing a large number »f ilmperfec-
tions,.

In general the stress assoclated with a displscement a
whose Cartesian components are u;, up, Ug is

KN {: . .
Pyg ™ Myy div a*n(.‘i.”.‘z. + 9"“4\) (3)

%;3c3 Cx

where A\ and  are Lame's constants. From the electrostatic inter-

pretation it is at once clear that the divergence and curl of (1)
vanish, so that the stress produced by the singularity when in an
infinite body s simply

”~

" Li;

2x1;
8
3, A Point Singularity in a Finite Body with a Stress-Free Surfsce.

(4)

Pij = 2

Consider now a center of dilatation in a finite body with



a free surface, First mark out the surface S of the propcsed body
in an infinite block of material and introduce the singularity.
The displacement is given correctly by (1). Across any surface
element of S there is a stress* punjds, where n 1s the normal to

S. Thus if we remove the material outside S the displacement will

*
Throughout the paper we use the convention that a repeates suffix
is to be summed over the values 1, 2, 3.

continue to be g: only if we apply a distribution of surface trac-
tion pjjng to S. Removing this distribution to give & body with a

-

stress~free surface .ls equivalent to applying an additional distri-
bution “Pg4nye The elastic state will then be given by

0 oo

w=u +uf Pyy " Pgy * p{j (5)

where the image stress pi 3 is the stress vwhich surface tractions

“P:ljhj would produce in the body and the image displacement p__I is
is related to ph by (3). p{j is clearly free of singularities
within 3 and satisfies

(pig + p:; ) ny = 0 on 8. (6)

Unlike ‘\:’ . &I has in general a non~vanishing divergence.

If the surface traction and swrface displacement are pre-
seribed (they are not, of course, independent) the elastic field
inside the body can be found by integration. Wwhen only the surface
traction is given, we need the appropriate elastic Green's function,
‘known for only a few simple shapes. Since we know ths image tractiom
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P10y but not &i on S we cannot in general calculate the image field
in the body. '

The change in volume of the solid can be divided into parts
AV and avl arising from the two terms in (5). e have at once

v f -n dS = 4xc , (7)

the integral being, according to (1), ¢ times the solid angle sube
tended by the surface at the singularity. This result can be seen
at once for the sphers-in<hole model: When the sphere is inserted,
the volume of the hole increases by ,xc, and since div ,5_‘ = 0 out~
side the hole, this increase is transmitted unchanged to S. Again
for the ideal mathematical singularity for which (1) holds for all
’i' we have strictly not div 3:. = 0 but rather

div 4 = e e V2 4 ) = uxe D), (&)
with a delta-function of expansion at " = 0., A formal volume in-
tegration gives (7).

Although we cannot find the image deformation in detail,

we can find AVI with the help of the rule that the volume change of
a body subjected to a distribution of surface traction _‘{." per unit

.z_’:_‘zjsff’ T 48 = SKg ,,’#‘J'n ds @

vhere P, j is the stress produced by }:__ and K is the bulk modulus.
For -~
' (9*)

j"ﬁ ’hj’nj dS = j%—; (’Xl‘h])d'\f =j‘hj dv = 3KJ6LN u 0"\)’,
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since 91,-‘ /9;3 = S‘] and in elastic equilibrium ?)fhj/ng;o“

I 1 =
To find AV" we muat put ] . = '*;1] 3 s ] J
od
with . from (4 ). %tmewwnwxﬂ‘2/911 )
applied to ’V‘u z Xy /4' merely multiplies it by 2. Hence

the integral (9) is equal to the integral (7) times 4(3/3K and so

l+¢&

(10)

Thus the total volume change on introducing a center of dilatation
of strength ¢ into any homogeneous isotropic body with a stress-free

surface is
oo

I oD
AV = AV 4V = AV - bxcy (11)
where the constant

3’ 31’0_ (12)

is about 1.5 for metals { 0"~ 1/3) and 1.8 for alkali halides
{ 6~ 1/4). This result has already been given by Seitzla,

—

® Frederick Seitz, Rev. Mod. Phys. 18, 38, (1946)

It is also implicit in the known result for the interaction energy
of a center of dilatation and an external hydrostatic prcssure"’-b:

This energy is the product of AV and the hydrostatic pressure.

2b ?055 for example, J. D. Eshelby, Phil. Trans. Roy. Soc. A 244, 87
1951)
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If in (9') we take Pyy to be any state of purely intermal
stress, sc that the surface integral is zero we arrive at the known
result that the volume of a body is unaffected by internal stresses
provided Hooke's law is valid. The volume expansion we have calcu~
lated is not in disagreement with this. Consider the hole.-in-sphere
model of section 2, and suppose for clearness that £ is negative,
Then the unstrained state is a body with a spherical hole of radius
re containing a sphere of radius ro(l - ‘E] ) and an unoccupied
volume 4xry3 |£] - ix ‘c} j « In the strained state the surfaces
of the hole and sphere have been drawn together and welded. Since
the total volume of materigl is unchanged, the volume enclosed by
the outer surface must have decreased by an amount equal to the
volume eliminated between sphere and hole. This simple derivation
does not supersede our more elaborate treatment since to relate the
expansion to stress effects arising from the imperfections we need
to know something about }x:o and ‘\é separately. If there are depar-
tures from Hooke's law, the volume change of the material is not

quite zero: %his is discussed in section 6.

4. The Deformation produced by & Large Number of Singularities

If there are a number of singularities in the body we have

" ) -Zen £ ‘9 (13)
n

with summation over all imperfections. The image stress p}d is that
stress which has no singularities within S and on S annuls the sur-
face traction calculated from (13),. gf is the associated displace-

ment,



If the defects are all alike we have

Av/v-l.ay cf /OO (12°)
where £ is the atomic fraction of defects and L) 4s the volume
per atom of the matrix.

Of special interest is the case where there are a large
nunber of ideﬁtical centers spread through the volume, with an
approximétely uniform density of n centers per unit volume. Here
we can also say something about the change of shape if we allow
ouraelvés to replace the actual distribution by a continuous dis-
tribution of ihﬁniteaimal centers with the same total strength per
unit volume, (We shall try to justify this below). If as before
the body is embedded in an infinite matrix this averaged displace-
ment is clearly

00
"en e gy (14)

T r

v v )

at;any rate outside S, (It is not at once clear that we can give
any meaning to the average displacement in a medium riddled with
singularities.)

The comparison already made with thermal expansion sug-
gests that a body uniformly fillo?l with infinitesimal centers of
dilatation will s like a uniformly heated solid, expand uniformly.
The following is a formal proof. Wwe first show that the displace-
ment given dy the volume integral (14) can be duplicated outside S

by a distribution of body force over S of uniform magnitude

p = KAVN = z.sm-/x
per unit area and directed along the outward normal at each point.
A point forece F in an infinite medium prcduces a displacene &



1w

, B = 1/18%k (1 - g ),

A = (3 «4ag )8

at a veetor 4 istsnce r from it. Ezch elemant of the surfar:z contris

mtes a {orce d‘ “pn d3 and the net displacement is

= [ SRS ¢ By Im as
PN . , +. i 1 z l’ 'y Ci w./
L‘V YY)

{9 {3 | N
Lo ar . - LA e AL
?J%Hw - p(anB) | el

Juppose now that S is marked sut in an infinite pudium,
that the uniforn distribution of infinitesimal centers of dilata-
tion is introduced and that z layer of body force equal and opposite
$0 that just described 1is distributed over 5. The combinai effect
of these ixst twe steps pives zero dlsplacement outaide 3 znid leaves
S5 its original‘ahape and gize, If the unstralned matrix is now cut
away, the elastic state of the body bounded by 3 is unzhanged, but
the layer of body foree beccmes a hydrostatic pressure p ac.ing on
the surface, When this iz removed S undergoess the uniform expansion

g - -;*:»'nchl (15)
-y o
Though é, 1'53 represents a uniform expansion, u and 3} geparately
do no%t, except for a spherical body. Thus omission of the image
terms in addition to giving a volume change lacking the factor 1{
{which could be absorbed in the usually unknocwn constant ¢/ would

alsc give a noneuniforr» expansion.
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Suppose, for example, that S is an ellipsoid with axes
y )
{/],J, Z+- Then u- ®e-cn grad (( where
= 1/2 (D - Ay, = Bx, - Cx3 ) (16)
with the usual notation for the potential of an ellipsoid. Thus if

image terms are neglected, the ellipscid becomes ancther ellipsoid

with semi-axss - A , etc., where

A R

L

= gnA, A4 = ¢nB, «QNLZ:_. = onC ., (17)

174 4 4

Since A + B + C = % the volume change agrees with (7). As an ex-

ample, if 1134?::* = 2:1:1 then A:B:C = 2:1:1 very nearly. This dé-
parture from uniform expansion, if it existed, would be hard to de-
tect by macroscopic measurements, but as we shall see below, there
is an exactly similar effect on the lattice constants determined by
x«ray diffraction, and this would be easily observable.

We must now try to justify replacing the sum (13) by the
integral {14). Just this question arises when we replace the field
of a set of gravitating or electrified particles by the field of a
continuous body. This kind of problem can be attacked in various
ways, none completely satisfying; the following seems a plausible
line for the elastic case,

The observable macroscopic displacement at a point of a
bodi in which the displacement fluctuates on a microscopic acale
is essentially the displacement of the centroid of a region large
compared with the scale of the fluctuations. It is therefore

reasonable to define the gross (or macroscopie) displacement at a
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point as the aversye of the vetual (micruscopie) displacemunt haker
over the veiume of a sphere whose radius R is large encugh to cone
tain many fluctuations, but is szall compared with the dimsnsions
of the tody,
. s TR
Let us {find the grous displacemt u  corresponding to
M
{iL) for a point inzide the body. The volume integral over the
sphere I of the displacement due to a sinmgularity av r rel:tive
to its center is egual to the sttraction on a charge ¢ at 1
5
(add

produced by & distribution of charge of unit density filiirg the

sphere, i.e. 4/3 xer if x & R and 4/3 ﬁcﬁzg/%3 if » » R. Thus

. <
u® e & r o ose ;E In
- R} e— -1
n
T <R TR
As R increases and becomes reasonabtly large compared with N ~143

the first term should te small, being proportional to the posisicn
vector of & large number of points taken at random in a sphere,
At the same time, as R increases it becomes more and more r23son-
abls to replace the second term by an integral since the distance
of each singularity from the point at which their effests are summed
1s large compared with the mean distance between them. we thus
reach (14) but with a sphere of radius R about the point ¢f observa-
tion excluded from the integration. However, ty a known result cf
potential theory (14) is unaltered by this omission providei the
sphere lies wholly within S.

Having defined the gross displacement we can cslcclate a

gross strass from it with the aid of {3). This should be tia true
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macroscopic stress, l.e. it should give correctly the surface trac-
tion required to prevent relative motion of the faces of a macro=
scopic cut made in the material,

Ve can obviously generalize these results to a distribue
tion of imperfections in which is a funstion of positiorn., The
microscopic u is still given by but the gross displacement is

- O Nir) r
& = - dv {18)
v =

and in the sveraging process we must have n‘l/a'di R &K n“l/3
|erad (n2/3)]

The gross or mcroscopic pid is the stress produced by
surface tractions ‘5:3“3 calculated from (13) or (14, 18). These
two surface tractions will differ by rapidly fluctuating quantities
with a 'wave-length' of the order of n-1/3 whose effect will be con-
fined to a surface layer of the same order. Thus in the bulk of the
material the image quantities are efficiently smoothed by ¢l ,
Venant's principle whether we smooth the infinity quantities or notg

and we need not distinguish between their gross and microscopic values.

5. The Effect of Point Singularities on the I-ray Jiffraction Pattern

Miller and Russel? originally suggested that there is a

3
P. H. Miller, Jr., and B. R. Russel, J. Appl. Phys. 23, 1163 (1952),

difference between the geometrical volume change of a crystal contain-

ing imperfections and the volume change deduced from the chtange of
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x-ray lattice constant, They calculate that for a uniform distri.
bution of point mperfections the latter should be about twice the

former.% Huangd found that they were equal. These authors omit

% fhey have since withdrawn this factor, P, H, Miller, Jr. and B,
R. Russel, J. appl. Phys.

5 k. Huang, Proc. Roy. Soc. A190, 102 (1947).

image eff'ects. Miller and Russel calculate the image effect for a
gingle imperfection at the center of a sphere. They take & collec-
tion of such spheres with the interstices filled up to represent a
body containing riany imperfections and argue that the lmage effect
is negligible because the surface traction across these spheres is
by no means zero. As we have seen, the effect of the image term

on the volume chznge ean be taken into account quite generally,

and we shall finc that the same is true for its effect on tie x-ray
lattice zonstant.

For an undisturbed crystal the scattering power plotted

in recipruocal spzce will be a set of patches with their maxima at

the points of the reciprocal lattice. If the erystal is distorted

by external forces or internal imperfections the patchea wiil be

Saurlaced wna Jeloroaon Wv Ly 2 ogard the new maxima as defining a

A @ LG satt o and we can et speas of the deformation of

the reudpr radl ta.ti10e correspondang to o deformation of the crystal.

Lot the postition o a point of rhe erystal or resiproeal

favtine beflure and sfrer distort:on be
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~£ « L, ais “x;«o-ﬁr* - ‘LL’ALi):i
and
3oy, B+ 28 = (hy + fhy) by

Miller and Russel derive the following relation valid within a re-
gion around the origin of reciprocal space which decreases as the
degree of crystal distortion increases:

Bhy Agy = - by Byy (§ = 1,2,3) (19)

where

Aij = Ly LJQ BU - ZAL1 Lj:
7 implying summation ower all points of the crystal lattice. ‘e
have simplified equations (1, 2, 3) in reference 3, appendix 1, by
taking the origin at the lattice point nearest the center of gravity
of the crystal: then the sums Z L4 will differ from zero by inte-
gers small comparsd with the number of atoms in the crystal and may

be neglected. Equation {19) has the solution

where Rij is the matrix reciprocal to Aij'

metric even if Bjy is, Thus (20) is an infinitesimal affine trans-

C is not in general syme

formation in reciprocal space. In other words the reciprocal lattice
points are shifted as if they were embedded in am imaginary elastic
continuum which undergoes a deformation in which all the strain and
rotation components
3 (

eyq = ) Ah1/3 hy + 9&3/9 hi) = «% (Cyg + Cy1)

wi.’ ) % ( ? Ahi/g hJ - 7&1/ 9))1) - “;’(cij - O

2 52/

v
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are in general different from gero and constant from swmall hy.
This implies, for example, that from x-ray measurements of the
pesition of lowe-order spots alone, a disterted cubic crystel could
not be diatinguished from an unstralned monoclinic crystal slightly
misoriented,

Following Huang we mey replace the displacenent expressed
as a sum of the effects of the separate lmperfections by & integrsl
if the distribution ls statistically uniform. This corresronds to

the averaging proceas of the previous section, and we may put asly = ujy,

The summation may also be replaced by an integrel and we have
A, =1 T e
\Y v

But we know that when the image terms are included~ai has the form

(15), so that A,, » 4t n ¢ Bij and (20) has the solution

i} 3
ah Ah th
-“v; - --3. [ .....2. - 'y {t zncy
by ha h3 3
{The Aij are the products of inertia of the crystal and dat (Aij)

could only vanish if the moment of inertia of the crystal about some
axis were zero.) Thus the reciprocal lattice contracts uniformly
in the way we should expect for a crystal which had suffered the
uniform expansion (15).

This simple result would be destroyed if the imare terms

were omitted. We sghould have




17

qp - ~f- dv/r
v
is the potential of the specimen if filled with charge of unit density.

. TMgrre.
nates (egqn. {16)), and it follows that -Ahi/hl, ~4ha/hy, -Ah3/h3 are

For an ellipsoidal crystal ?P is a quﬁgratic function of the coordi-
equal respectively to the three quantities (17). In this case the
(incorrect ) deformation cf the reciprocal lattice agrees with the
(incorrect) macroscopic deformation with image effects omitted. For
a body of arbitrary shape this is no longer true, since there is no
simple relation between Ay4 and Byjy. X-ray measurements would in-
dicate that the cubic unit cell had become monoclinic, and its change
of volume would bear no simple relation to the change in volume of
the crystals calculated with or without image effects. These com~
plications are implicit in Huang's calculations. Each of the two
terms his expression (I) is, in electrostatic language, the sum nf
the potentials of 4 set of parallel dipoles. OSuch a sum tzken over
a large finite region in an infinite distribution of dipoles is
ultimately independent of the size of the region but depends on its
shape and the relative position of the point of observation within
ix, Inclusion of the image terms adds a layer of surface charge

which just annuls these variations. Thus Huang's (I) does not re-

rresent a uniform expansion ¢ -2 t for a sphere, for the latter the
exrar s ton jroks o Pretor ‘.f Ty roanr €T . .t o the
o ‘ 1 of roeT
3 elas Lailtice ro LYo se (N
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eventually eliminated with the help of his equation {18) in which
also ¢ znust be replaced by cz the final result 1is unaffected.

Miller and Russel found by calculating the 2 Lyalg
numerically that for a single singularity at the center of a sphere
the expansion deduced from xerays was 2.5 times the gaometrical ex-
pansion. They deduce from this that there should be a similar
difference {with the factor reduced from 2.5 to about 2} when there
are a large number of imperfections distributed at random.

The previous discussion indicates that this is incor-
rect, but does not show exactly how the discrepancy arises. This
discrepancy exists whether image terms are introduced or not{though
introducing them would reduce the factor from 2 to (1 + C? )/'y }
and for gimplicity we omit them in the following discussion,

Let us find the effect of a single imperfection at a
point‘JEM relative to the center of a spherical crystal of radius
R. We can save calculations by finding the dilatation of the re-
ciprocal lattice and not its detailed distortion. Putting

— ) 4
ugy - c(xi - g'i)/ {«EL‘ < \ in {21) we find after some man~

ipulation
. #) ‘ ”,
AV o =t 4hy 15 ¢ “Hf )
¥ 7 bt Lk R e
:
/
l dv
|x- &
Vt Randd o~
The inter. oi 35 b revitational potential at :’1 in oa oagldd
. : y L -t )
sphersz ui unit density and has the value £« (18 . {' Yo itas

o0 A
v modeme (L~ FRT) (22)
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If we exciude from the integratlon a sphere of radius rg about 2
a term -r, /R must be introduced inside the bracket. Since Ty
can presumably be taken of atomlc dimensions we shall omit %,

The reason for the discrepancy now becomes clear. The
axprezsion {22} is greater or less than the geometrical v gew
cording as é: is greater or less than zf(3/5)R = 0,77R. {or
é: =« 0 it 1s 2,5 times the geometrical value, in agreemenl with
Miller and Russel, If there are a large number of defeots scat-
tered at rendom throughout the sphera, the average contribucion
to av™ per imperfection is given by replacing g’L in {22) by its

mesn value for all ooints of the sphere

¥

ihig plves & mean x-ray &V: pit LB, in apreemant wil the geompeas
trical value {7}. There seems ¢o be ascthing odbjectionable iu the
replacement of sums by integrals, and presumably iiller und Hussel's
summation procedure would give the geowetrical value if car:sied out
for a reasonable number of imperfections scattered throughsit a
spherae.

As a corollary we see that with a given number of defects
the xeray expansion depends strongly on their {non-uniform) distri-
bution, while the geometrical expansion is, of course, inderendent
of the distribution, Thus, for a sphere the ratic of the x-ray
av 0 to the geometrical AV“ ¢an be given any value between 2.5 and
0 by sweeping the defects towards the center or surface. when

the two expansions are ccrrected for the image terms the racio lies

between (1.5 + Y )/ and ( j -1/ .
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/. Discussion

The equality of the xeray and pgeomatricsl expansions of a
crystal uniformly filled with point imperfections hes a bewuring on
the question whether they are of Schottky or Frenkel type3. Revised
caleulations by Miller and Ruseal gave a ¢ifference of not mowve
than 10 4o 20 per cent difference between the twn expaunsicrs in
place of their original factor of two., The residual differsncse
uay be partly due to the neglect of image terams,

Turning to the fac¢tor )> introduced into the sxpansicn
by the image terms it looks at firat sight as if one couid rede-
fine the strength of an imperfection as ¢ and then forget about
the image effects. This 1s not so. The contributions ts the ex.
pansion from u” and ul are in the ratilo 1: (’j ~ 1), But zhe

e —
ratio of their contributions to any other phencmenon will in gener-
al be quite different, since u" is 2 rapidly fluctuating function

Y-

of position associated with a pure siaear whereas’&f is smocth ex-
cept near the surfzce with an associated stress which is chiefly a
hydrostatic pressure in a body of reasonable shape. ¢ 13 tius the
basic conegtant which we might hope to determine from measursments
of one effect, and apply in calculating tha velue of anothe:, The
fol%owing examples illustrate this,

dabarro® has discussed the bardness of dilute alloys.

° F. R. H. Nabarro, Froc. i'hys. Soc. (London) 58, 669 (1946).

‘ . o .
The bharlening iz du> alirowt entirely to p13 y the slcwly varying

p{k playing searcely aty part, He eliminates o with the e o of
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the obaserved change of lattice constant with composition but neglects
the image eiffect. This can be put right by dividing his theoretical
constant Q.= 0,05 by'f before comparing it with the values deduced
from experiment, The spread of the latter is too great to say if
this gives any improvement.

o3
Dexter? has calculated the effects of u and ulan the
—

Ay

7 p. 1. Dexter, Phys. Rev. 87, 768, 1952,

electrical conductivity of metals. The former gives a temperature
independent and the latter & temperature dependent contribution.
They are of the same order at rocii-temperature.

Overhauser8 has considered the modification of ratioc of

8 A. W. Overhauser, Phys. Rev. Q0 , 303 ('9533

diffusion by the strain due to point imperfections. The effects

arising from u and ul depend differently on temperature, and the
g e d

image torm may become important at high temperaturss.

Zener? has calculated the change of shear modulus caused

9 C. Zener, Acta Cryst. 2, 163 (1943},

by the u” field of point imperfections. Evidently the dilatation

due to the imape field should give rise to an analogous change of

. > N .
bulk medulus. (As we have seen u ~ produces no dilatatiosn of Lhe

fo g W

material betwean the imperfections.,) In fact we should have u clonge

a6 , dlogK oV- _ dlogK . F-1l  dr
s dlog Vv ¥ dlogVv > ¢ 7 (23)

- T
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preportional to the relative change d /1 of lattice constant but
of oprosite sign, since d log i/k log V is negative. saccording vo

a simple theorylo verified quite well by experiment ~d log K/d log V

10 J. C. Slater, Phys. deve. 57, 744 (1940),

is equal %o 2 ' + 4/3, where 7' is Gruneisen's constant. Zener's
Ap/pt on the other hand depends on the shear strain energy associated
with an jmperfection and so is proportional to Idl /?‘_\

By an atomic calculation Dienesll has found that one per

u G. J. Dienes, Phys. Rev. 85, 228 (1952).

cent of interstitials increase the bulk mcdulus of copper by 6.8
per cent and of sodium by 1.9 per cent., His calculations deal in
principle with what happens in the immediste neilghborhood of the
imperfection, so it is reasonable to suppose that they take account
of Ejo and that the effects of ul 'should be added. The reaults

L i

of Dienes and Huntington and Seitz)? suggest that we may take

12H. B. Huntington and F. Seitz, Phys. Rev. 61, 315 (1942).

4xe/() to be about 0.6 and 0.9 respectively for an interstitial
in copper or sodium., By (12') and (23) the corresponding percen-
'tage changes for one per cent interstitials are: lattice coastant
0.9 {Cu), 1.4 (Na), bulk modulus - 4.6 {Cu), - 6.9 (Na). Our
calculation cannot claim any accuracy, but it suggests that the
image term is important, perhaps even large enough to change the

aigm of ~¥/K.
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(4%
A

The change of shear modulus fyund by Zener's arpunsnt
depends on non-linsar bshavior in the 1: gion close te the imperfec.
tion {see below; and it is therefore in  .inciple already incliuded
in a caloulation such as Dienes’ which curaiders the balarce of
interatumic forces near the iuperiection.

It was pointed out at the ernd of i12ction 3 that Tor a
purely «¢lastic model the zetual velume of piterial was unclitered.

Zenerl3 has shown how in such a case the departure from liccke s

o

1l
3 C. Zener, Trans. Am. Inst. Mining Met. Eng. 147, 361 (I342i.

o oanre o

law gives a volume change, and we ought '« consider what effect
this will have on our calculations. This change has the value
6V = ~{1 + d log K/d log V) dq /K
=(1 + d log /4 log V) /K
where W,; and ws are the total dilatetione! and shesar strain erer.
givs associated with the internal stress, The first vers san he

considered as a small correction to AVI

corresponding to sing in
{9) the vualue of K appropriate to the lattice as expanded. The
shear strain associated with the sphere~inshole model of sa2et.on

2 ig g,;# ;L;foi {of ref. 8). If we take the ctass of interstitials
in a face-centered cubis material and put ry equal to the distance

Seom the interstitial w0 the nearest face«centered atom we have
7-1“

AVEN = o {1 ¢ d log,luu / & log V) 16x {/W/F.) (/.02 Y ¢,

Pris 19 abo ore tenth of (12%) for interstitials in ecorj v ¥ aa

wafore wo vake o/ L - .05, However, oven if the raiidc wer.;



cuite luaepe our previous calenlations wouid et be upset., OF the
shear strailn energy &M!ch /rQB asscalated with &n imperfc tlon
nearly minety percent iz contained within s sphere of relive .
Thus the correction comes entirely from an ad?itign&l FAPANZLLD Con
fined to vhe immediate geighbcfh&md nf the iﬁperfectiaauz hig e

tra velume changs is transmitied to the surface by the disolacement

"

3ﬁﬁ whiclh must have the form (1) as soon as the elastic region is
reached. Thus the effect we are congidering merely ‘renormalizes’
the conabant ¢ in (L} and it 13 correch to use the modified velue
net enly in (12} but also in discusszing any other phenowsson in
whieh onliy strains in the elastic reglion,

Point imperfections may expand the lattice by mechanlioms
sther bthan misfic, Take for example an alkall hglide erysial with
doubly charged forgign cutions in some positions together with an
aqual nuwnber of vacant anion sives. The continuum model is a di~
electric with positive and negative charges embedded in it. FHound
e@ach there is an elagtic stress fiald due to elecirosiriction.

The dilatation is large near a change and falls off rapidiy with
distance., The stress field is essentially that of a center of
dilatatien. A rough calculation suggests that its strength is of
the same crder as for a reasonagble degree of misfit, It i3 of the
same sign for both positive and negative charges. Again, if atoms
of different valency are introduced substitutionally into a metal
the re3ulting change in the number of electrons in the conduction
band will produce a change of lattice constan% quite spart from any

misfit «ffects,
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It is not the aim of this naper to advocste the alaastic
approach, but to show that when it is used, neglect cf the pre.

sence of the free surface may lead to qualitative untidinesses
(such as non-uniform deformation by 4 uniform distribut ion of de-

fects) and quantitative errors which may ve important.



