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PLASTIC STRESS-STRAIN RELATIONS BASED ON

LINEAR LOADING FUNCTIONS1

J. L. Sanders, Jr.2

ABSTRACT

The stress-strain relations of incremental
theories of plasticity have recently been general-
ized by Koiter who introduced the use of any number
of loading functions instead of only one. The
present paper is concerned with incremental theory
based on any number of linear loading functions.
In this case the resulting plastic strain incre-
ments are integrable in a restricted sense and the
stress-strain relations can be given in a form
partially resembling deformation theories. The
slip theory of Batdorf and Budiansky falls within
the class of theories which are discussed in this
paper.

The results presented in this paper were obtained in the course
of research sponsored by the Office of Naval Research under
Contract N7onr-35801.

2Research Associate of Applied Mathematics, Brown University.
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Introduction. Within the last few years the development of plastic

stress-strain relations for strain hardening materials has received

increasing attention from workers in the field of applied mechanics

[i] J [21 (3], 4] 91 A knowledge of the stress-strain curve

for a material in simple tension or compression is not in itself

sufficient for predicting the behavior of a material under more

complex types of loading. At least two problems immediatly pre-

sent themselves when one considers loading which may involve all

six components of stress. These are the generalization of the idea

of a yield point to the idea of a yield surface in a stress space

of six dimensions and the formulation of a plastic stress-strain

relation for polyaxial loading.

During the history of the subject these problems have

been attacked in two more or less distinct ways. One method of

approach is to try to deduce the behavior of a bulk piece of metal

from the behavior of the individual crystals making up the aggreg-

ate. A recent example of results obtained by pursuing this method

is the slip theory of plasticity [ 2] . The other method of approach

is to try to deduce from a few reasonable assumptions what the

general form of the yield surface and the stress-strain relation

must be without inquiring very deeply into the structure of metals

but rather proceeding in a phenomenological manner [ 3 J

Results obtained by one method often suggest research

to be done by the other method which tends to unify the whole sub-

ject. The earliest known yield condition, the Tresca maximum shear

1Numbers in brackets refer to the bibliography at the end of the

paper.

• PU
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condition [5] when expressed in geometrical form as a yield sur-

face in stress space possesses "corners". The initial yield sur-

face according to slip theory is the Tresca yield surface which

arises as an envelope of planes in stress space. The yield surface

after work hardening according to slip theory is also an envelope

of planes and naturally possesses corners. Drucker [3) allows for

corners in his general discussion of yield surfaces from a phenom-

enological point of view. The relation between corners in the yield

surface and linearity of the stress-strain relation was investigated

experimentally by Stockton [6] . The yield surface is closely

connected with a function called the loading function which appears

in the stress-strain relation. The geometrical expression of the

loading function, the loading surface, is identical to the yield

surface if there is only one loading function in the stress-strain

relation; if the stress-strain relation is based on many loading

functions the yield surface is the boundary of those points in

stress space which represent elastic behavior with respect to all

the loading surfaces. Obviously corners in the yield surface may

arise even though all the loading surfaces are smooth. Stress-

strain relations basr d on many loadtng functions were suggested by

Koiter who also invostigated some of their properties [ 4 ] . Al-

though slip theory was derived through physical reasoning Koiter

states that it may be regarded as a theory of plasticity based on

an infinite number of plane loading surfaces.

An interesting feature of slip theory is that the

incremental form of its stress-strain relation is integrable in a
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restrictel sense which resembles deformation theories in this re-

spect and is unlike most incremental theories. The present paper

is concerned with the use of many linear loading functions in con-

structing stress-strain relations. It is shown that in some cases

the resulting incremental stress-strain relation is integrable in

a restricted sense. Means, suggested by the behavior of a single

crystal, of including cross effect and Bauschingor affect in the

stress-strain relation are also discussed.

A sinP_ plane Loading Surface. In the formulation of a plastic

stress-strain relation it is commonly assumed that the strain may

be separated into an elastic and a plastic part which arc additive.

This assumption is made in the following treatment and the plastic

strain only is the subject of discussion. It is further assumed in

the following that the plastic part of the strain may be separated

into many parts each associated with a loading function.

It is convenient to phrase the discussion in geo-

metrical terms and speak of loading surfaces, loading paths, strain

increment vectors and so forth. Imagine a euclidean space with

rectangular coordinates, one coordinate for each component of

stress. Each stress state is represented by a point in this space.

For convenience we also represent strain in the same space with

each component of the strain acting as coordinate on the same axis

as the corresponding component of stress. The loading history of

a piece of strain-hardening material which has been subjected to a

varying homogeneous state of stress is representable in this space
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as a loading path. We now want to consider the contribution of a

single piano loading surface to the plastic strain.

The stress-strain relation to be dcscribod in the

following is consistent in that it satisfies all the mathematical

conditions which havc boon discovered by phonomonological studios

to apply to incremental stress theories of plasticity. The proof

that in the particulpr case of a plane loading surface the in-

cremental stross-strain relation is intograblu is given in the

appendix. The stress-strain relation in its integrated form is

prosented here.

Fig. 1 shows a symbolic representation of the loading

plane and the loading paths of two hypothetical experiments. As

loading proceeds from 0 to P tho material behaves elastically. At

P plastic straining begins and continues as long as the loading path

is directed outward from the loading plane. Thus during the part

Q'R of the loading path OPQ'R no plastic straining occurs. One may

think of the loading plane being pushed out parallel to itself as

loading proceeds. The total plastic strain suffered by this hypo-

thetical material depends only on the distance the loading plane

has been pushed out. Thus the total plastic strain is the same for

either loading path OPQ or OPQ'R and is a function of d. The direc-

tion of the plastic strain vector is perpendicular to the loading

plane.

Two Plane Loading Surfaces.

Several novel features of the use of many plane load-

ing surfaces can be illustrated most simply by examining the case in
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which there are only two plane load.tng surfaces fl and f2. Fig. 2

is a schematic drawing which shows how stress space is divided into

four regions by two plane loading sarfacos. If the loading path

remains in region I no plastic straining occurs. If the loading

path only penetrates region II (or IV) then only one of the two

planes is affected and we hav. the case treated in the last section.

If however the stress path enters rcgion III then both loading planes

are affected as shown in Fig. 3.

Suppose the loading han reached a point such as P in

Fig. 3 and now a small increment of stress doij is added to the

load. The-re are several cases to consider depending on the direction

of the strcss increment vector. Fig. 1+ shows the region of stress

space in the neighborhood of P. There are four regions around P

into which the stress increment vector may extend. If doij extends

into region 1 there is no additional plastic strain, consequently

region 1 may be called the elastic rogion. If doi, extends into

either region 2 or 4 one of the two planes is affected and the other

is not. If ddij extends into region 3 both loading planes are

affected so reion 3 may bc called the region of total loading.

The strain increment is taken to be the sum of the contribution

from f and f2 as though each acts independently.

Tha boundary of the elastic region is the yield sur-

face which is shown in heavy lines in Fig. 4. In the case under

consideration a "corner" has developed in the yield surface at the

load point P. If the load point wore on any straight portion of

the yield surface the strain increment vector would of course bo
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normal to the yield surface. At a corner such as in Fig. 4 thoro

is no normal to the yield surface. However, the strain increment

vector dEc is the vector sum of the contribution from both load-

ing surfaces. Therefore at a corner the strain increment vector

has some determinate direction between the normal to f, and thc

normal to f2 (see Fig. 5).

The mathematical expression of the stress-strain

relation which we are considering contains the differentials of

stress doij to the first power only and thus is linear in some

respects. If the stress increment vector doij causes a plastic

strain dej thcn 2doij causes twice as much plastic strain, 2dep.
ii ijJ

However -do mi-ht not cause any plastic strain at all because if

the vector doij falls in the region of total loading then -doij

falls in the elastic region. Hooko's law for the elastic part of

the strain is truly linear and does not possess this peculiarity.

The plastic strcss-strain relation is non-linear because the prin-

ciple of superposition does not apply. A plastic stress-strain

relation which Involves cven only one loading function is non-lineer

in this respect.

The non-linearity for multiple loading surfaces is

of a less trivial sort. Suppose for instance that doij(C) = doij(A)
+ doij(B ) and that dij(A) I ddij(B ) and ddiJ(C ) each acting by

itself causes non-zero plastic strain increments dep de(

a.A dEC respectively. In general it does not follow thatij(C)

d±(C) dep + d  p B. Fig. 6 illustrates a case in whichi(C) ij(A) iJ(B)O
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superposition does not hold. The stress increment doij(A) is applied

followed by ddiJ(B). Olearly the resulting plastic strain is not

the same as that produced by ddij(, ) acting alone because the load-

ing plane f is moved out more in the first instance than in the

second. Even the order in which doij(A ) and ddij(, ) are applied

makes a difference. Experimental evidence for the existence of

corners in the yield surface has recently been found[ 61 .

Many Plane Loading Si faces. There is no difficulty in generaliz-

ing the previous results by introducing any finite or infinite

number of plane loading surfaces. If there are an infinite number

of loading surfaces the stress-strain relation may involve an in-

tegration. The set of all those points in stress space which are

elastic with respect to all the loading planes constitutes the

elastic region. The boundary of the elastic region is the yield

surface. Figs. 7 and 8 show symbolically the elastic region and

yield surface when the number of plane loading surfaces is finite

or infinite respectively.

As loading proceeds the loading planes get pushed out

more or less depending on the loading path, but at any instant of

loading there is a well defined yield surface. The property of in-

tegrability for a single plane loading surface leads to the follow-

ing simple rule in the case of many plane loading surfacest

The total plastic strain is the same

for all loading paths which result in

the same yield surface.
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Fig. 9 illustratos a caso in which two different loading paths A

and B produco the samo total plastic strain. If tho loading had

proceeded only as far as P the total strain for paths A and B

would be different but continuing thc loading to Q wipes out this

difference.

The goneralization of thc notion "region of total

loading" to thc case of many plane loading surfaces can be done in

the following way. Suppose loading has proccedod along a straight

line loading path into the plastic range and reached a point P

(Fig. 10). The yield surface is made up of part of the initial

yield surface and of part of the envelope of the loading planes

which pass through P and are tangent to the initial yield surface.

The part of this conical envelope which extends outward from P

bounds the region of total loading. All loading planes previously

pushed out in reaching P are further pushed out by a stress in-

crement do,, whose vector drawn from P falls in the region of total

loading.

The straight line loading path (radial loading) is a

special case of a more general loading path traced out by a load

point P which always proceeds into the region of total loading.

For such loading paths (and onjX for such loading paths) the interest-

ing result has been obtained that J2 deformation theory coincides

with a particular incremental theory based on an infinite number

of plane loading surfaces. The details are left to a later paper.

Further Remarks on PjnjLoadin Sufaces, In all the foregoing

discussion it has been assumed that the loading planes act entirely
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independently. Fig. 11 illustrates a case in which the loading

planes act interdependently. The loading plane f has been pushed

out to the position indicated by the dotted line. The other planes

also move according to some law as a consequence of the motion of

fie This type of behavior is certainly more complicated than in-

dependent action but the phenomenon of latent strain hardening of

a single crystal su-gests such behavior. In a metal crystal there

is a certain preferred set of planes called slip planes so oriented

with respect to the crystal lattice that slip is most likely to

occur in them rather than in any others. Within these planes there

are several preferred directions of slip. Thus there is some

definite number of slip-plane slip-direction combinations or slip

systems within a given crystal. When a ,iven slip system has been

activated it becomes more resistant to further slipping, that is

it becomes strain hardened. However the slip systems do not strain

harden independently. When any one slip system is strain hardened

so are the others. The condition that the shear stress on a given

slip system remain constant is that a certain linear combination

of the stress components remain constant. The locus of points in

stress space satisfying this condition is of course a plane. Per-

haps a theory describing the macroscopic plastic strains of a single

crystal could be formulated based on a finite number of plane load-

ing surfaces acting interdependently. Even though it is not at all

obvious how to take the step from a single crystal to a crystal

aggregate the behavior of a single crystal is very suggestive.

Fig. 12a shows a possible yield surface after an

xperiment performed on a material whose initial yield surface is



All-97 11

J2 = k2 " The material has been stressed in simple tension in the

x direction beyond the elastic limit. The yield stresses for

tension and compression in the y direction have been altered

(cross effect) and the yield stress for compression in the x direc-

tion has also been altered.(Bauschinger effect) [7] . Fig. 12b

shows the results of the same experiment performed on a hypothetical

material which obeys a stress-strain relation based on an infinite

number of plane loading surfaces which act independently. The

initial yield surface for this material is also J2 - k " No cross

effect or Bauschinaer effect in the sense of a lowering of the

yield point in compression followin, loading in tension is exhibited

by such a material. Fig. lc shows the result of the same experi-

ment performed on another hypothetical material obeying the simple

J2 rule. The material of 12c could also be regarded as obeying a

stress-strain relation based on an infinite number of plane loading

surfaces in which the planes always move in such a way as to envel-

op a surface J2 = constant. The property of integrability does not

necessarily hold for stress-strain relations based on many plane

loading surfaces which act interdependently. The proporties of

such stress-strain relations have only begun to be investigated,

but the phenomenon of latent strain hardening exhibited by individ-

ual metal crystalo as well as the evidence from experiments on

polycrystalline materials suggests further investigations.

Many plate buckling experiments agree well with a

theory in which the hypothetical material of Fig. 12b is taken as

the mathematical abstraction of the real material. Unfortunately

NOW
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other kinds of experiments show that this material is not accept-

able as a good approximation to a real material. Recent investiga-

tions[ 8] on the stability of non-linear systems indicate that the

classical buckling criterion is not applicable in the plate buckling

problem. These investigations show that small and unavoidable

initial imperfections can have a pronounced effect on the load

carrying capacity of a plate and yet not cause much scatter in the

test data. If these conclusions are correct plate buckling experi-

ments are not decisive In the choice between various possible stress-

strain relations.



All-91 13

APPENDIX

Considor the following stress-strain relations

de = G(f). df df> o
ii (1)

= 0 df< o

in which f, the loading function, is a function of stresses alone.

Provided the surface f = constant be sufficiently smooth and non-

convex toward the origin in stress space, this is the most general

stress-strain relation involving only one loading function which

belongs to the class of stress theories of plasticity. If f is

a linear combination of the 3tresses then (1) may be integrated to

give the components of total strain in terms of the stresses. The

resulting relation is of the forms

9 P = H(f) (2)J aij

where dH = Gdf and ail are direction numbers of the normal to the

loading plane. This may be verified by taking the differential of

(2) to obtain (1). Conversely the only integrable stress-strain

relations of the form (1) are those for which f = constant is a

plane surface in stress space. This may be proved by the following

considerations. If dcp is integrable then there exists a family

of surfaces in stress space such that vp is constant on eachii

,'urface of the family. Sup'lose that a point moves on a surface

f = constant; then according to (1) df = o and dep = o so theii
surface f = constant must also be a surface ep = constant, hence

ij



I

~~All-97 1

All is a function of f alone. This implies that A is a function

of f alone, say3

ia = F M(f). (3)

Now 8f are the direction numbers of the normal to the surface

ad13

f = constant and (3) implies that the normal has a constant direc-

tion; hence the surface f = constant is a plane. All that has been

proved is that f must be a function of a linear combination of the

stresses, however there is no loss in generality in taking f itself

to be linear in the stresses since any additional arbitrariness may

be absorbed into the factor G which occurs in (1).
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