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PLASTIC STRESS-STRAIN RELATIONS BASED ON
LINEAR LOADING FUNCTIONSL

~ S e

J. L. Sanders, Jr.2

ABSTRACT

The stress-strain relations of incremental
theories of plasticity have recently been general=-
ized by Koiter who introduced the use of any number
of loading functions instead of only one. The
present paper 1s concerned with incremental theory
based on any number of linear loading functions.

In this case the resulting plastic strain incre-
ments are integrable in a restricted sense and the
stress-strain relations can be given in a form
partially resembling deformation theories, The
slip theory of Batdorf and Budiansky falls within
the class of theories which are discussed in this
paper.

1The results presented in this paper were obtained in the course
of research sponsored by the Office of Naval Research under
Contract N7onr-35801,

2Research Associate of Applied Mathematics, Brown University,
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Introduction. Within the last few years the development of plastic

stress-strain relations for strain hardening materials has received
increasing attention from workers in the field of applied mechanics
[11,02),03),0%) ., A knowledge of the stress-strain curve
for a material in simple tension or compression is not in itself
sufficient for predicting the behavior of a material under more
complex types of loading. At least two problems immediatly pre-
sent themselves when one considers loading which may involve all
six components of stress, These are the generalization of the ldea
of a yield point to the idea of a yield surface in a stress space
of six dimensions and the formulation of a plastic stress-strain
relation for nolyaxial loading.

During the history of the subject these problems have
been attacked in two more or less distinct ways. One method of
approach is to try to deduce the behavior of a bulk piece of metal
from the behavior of the individual crystals making up the aggreg-
ate. A recent example of recsults obtained by pursuing this method
is the slip theory of plasticity[ 2], The other method of approach
is to try to deduce from a few reasonable assumptions what the
general form of the yleld surface end the stress-strain relation
must be without inquiring very deeply into the structure of metals
but rather proceeding in a phenomenological manner( 3],

Results obtained by one method often suggest research
to be done by the other method which tends to unify the whole sub-

ject. The earliest known yield condition, the Tresca maximum shezr

iNumbers in brackets refer to the bibliography at the end of the
paper.
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condition [5], when expressed in geometrical form as a yield sur-
face in stress space possesses "corners'. The initial yield sur-
face according to slip theory is the Tresca yield surface which
arises as an envelope of planes in stress space. The yleld surface
after work hardening according to slip theory is also an envelope
of planes and naturally possesses corners, Drucker [3] allows for
corners in his general discussion of yleld surfaces from a phenom-
enological point of view. The relation between corners in the yleld
surface and linearity of the stress-strain relation was investigated
experimentally by Stockton (6] . The yield surface is closely
connected with a function called the loading function which appears
in the stress-strain relation, The geometrical expression of the
loading function, the loading surface, is identical to the yield
surface 1f there i3 only one loading function in the stress-strain
relation; if the stress-strain relation is based on many loading
functions the yield surface is the boundary of those points in
stress space which represent elastic behavior with respect to all
the loading surfaces. Obviously corners in the yleld surface may
arise even though all the loading surfaces are smooth, Stresse
strain relations basrd on many loading functions were sugzested by
Koiter who also investigated some of their properties [4+] . Al-
though slip theory was derived through physical reasoning Koiter
states that it may be regarded as a theory of plasticity based on
an infinite number of planec loading surfaccs.

An interesting feature of slip thecory is that the

incremental form of its stress-strain relation is integrable in a
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restricted sensc which resembles deformation theories in this re-
spect and is unlike most incrcmental theories, The present paper
1s conccrned with the use of many linear loading functions in con-
structing stress-strain relations, It is shown that in some cascs
the resulting incremental stress-strain relation is integrable in
a restricted sense, Mecans, suggested by the behavior of a single
erystal, of including cross effect and Bauschinger effect in the

stress-strain relation are also discussed.

A Single Plane Loading Surface., In the formulation of a plastic
stress-strain relation it is commonly assumed that the strain may
bc scparated into an elastic and a plastic part which arc additive,
This assumption is made in thc following trcatment and the plastie
strain only is thc subject of discussion, It is further assumed in
the following that thc plastic part of the strain may be separated
into many parts cach associated with a loading function.

It is convenient to phrase the discussion in gco-
metrical terms and speak of loading surfaces, loading paths, strain
incrcement vectors and so forth, Imagine a euclidcan spacc with
rectangular coordinates, onc coordinate for each componcnt of
stress, Each stress state 1s represented by a point in this spacc.
For convenicnce we also represent strain in the same space with
each component of thc strain acting as coordinatc on the same axis
as thc corrcsponding component of stress. The loading history of
a plecc of strain-hardening matcrial which has been subjected to a

“varying homogencous statc of stress is rcepresentable in this space
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as a loading path, We now want to consider tho contribution of a
single planc loading surfacc to the plastic strain,

The stress-strain relation to be dcseribed in the
following is consistent in that it satisfics all the mathcmatical
conditions which havc boen discovercd by phenomcnological studics
to apply to inercmental stress theorics of plasticity. The proof
that in the particuler case of a planc loading surface thc in-
cremental stross-strain relation is integrable is given in the
appcndix, Tho stross-strain relation in its intcgratced form is
prascnted herc,

Fig. 1 shows a symbolic rcprcsentation of the loading
plane and thc loading paths of two hypothetical cxperiments. As
loading procceds from O to P thc matcerial bchaves clastically. At
P plastic straining begins and continues as long as the loading path
ig directed outward from the loading plane, Thus during thc part
Q'R of the loading path OPQ'R no plastic straining occurs., One may
think of the loading planc being pushed out parallecl to itself as
loading proceeds. The total plastic strain suffercd by this hypo-
thetical material depends only on the distance the loading planc
has been pushed out., Thus thc total plastic strain is the same for
aither loading path OPQ or OPQ'R and is a function of d. The direc-
tion of the plastic strain vector is perpendicular to the loading

planc.

Two Plane Loading Surfaces.

Several novel featurcs of the use of many plane load-

ing surfaces can be illustrated most simply by examining the casc in
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which there arc only two planc load'ng surfaces f1 and f>. Fig., 2
is a schematic drawing which shows how stross spacc is divided into
four regions by two planc loading surfaces, If the loading path
remains in region I no plastic straining occurs. If the loading
path only pcnetratcs rcgion II (or IV) then only onc of the two
Plancs is affccted and we hav: thc case trcated in the last section,
If however the stress path enters rcgion III then both loading planes
ar2 affected as shown in Fig, 3,

Suppose thc loading has reached a point such as P in

Fig. 3 and now a small increment of stress do,, is added to the

13
load. Thrre are scveral cascs to consider depending on the dircetion
of the strcss increment vector. Fig, 4 shows the rcgion of stress
spacce in the neighborhood of P, There are four regions around P

into which the stress increment vector may cxtend., If de extcnds

i
into rcgion 1 there is no additional plastic strain, consciucntly
region 1 may bc called thc clastic region., If dcsij extends into
elther rcgion 2 or 4 onc of the two planes is affccted and the othor
is not, 1If ddiJ cxtends into rcgion 3 both loading plancs are
affceted so rezion 3 may be called the rogion of total loading.

The strain increment is taken to be tho sum of the contribution

from fl and f2 as though each acts 1qdopendent1y.

The boundary of the clastic region is tho yield sur-
facc which is shown in heavy lines in Fig, 4, In thc case under
consideration a "corncr" has developed in the yield surface at the
load point P, If thc load point wore on any straight portion of

the yicld surfacc thc strain increment vector would of course be
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normal to the yicld surfacc, At a corncr such as in Fig. 4 there
is no normal to the yicld surfacce, Howcver, thc strain incrcment
veetor degJ is thc veetor sum of the contribution from both load-
ing surfaces. Thereforc at a corner the strain increment veetor
has somc doterminatc dircction betwean the normal to fl and the
normal to f2 (sce Fig. 5).

The mathematical cxprcssion of the stress-strain
rclation which we arc considcring contains the diffcrcentials of
stress doij to thc first power only and thus is lincar in somc
respceets, If the stross inercment vector do1J causcs a plastiec

strain degj thcen 2do,, causcs twice as much plastic strain, 2de§J.

1
Howover -doiJ mi-ht nit causc any plastic strain at all becausc if
the vector doiJ falls in the region of total loading then ‘d°13
falls in the clastic rcgion, Hooke's law for the clastic part of
the strain is truly lincar and does not posscss this pcculiarity,
The plastic strcess-strain rclation is non-lin:ar becausc the prin-
ciplc of superposition does not apply. A plastic stress-strain
relation which involves cven only one loading function is non-lincar
in this respect,

The non-lincarity for multiple loading surfaces is
of a lecss trivial sort., Supposc for instance that ddij(c) = d°ij(A)
+ ddiJ(B) and that doiJ(A) ’ ddij(B) and ddiJ(C) cach acting by

itself causcs non-zcro plastic strain incrcments ‘de

a..1 de

p del
13(8) * “F13(3)
fj(c) respectively, In goneral it docs not follow that

p = deP
) deij(c) deiJ(A) Fig, 6 illustrates a casc in which

P
+ dEiJ(B)'
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superposition does not hold, The stress increment ddiJ(A) is applied

followed by do Clearly tho resulting plastic strain is not

13(8)°

the same as that produced by do acting alone because the load-

13(C)
ing plane f1 is moved out more in the first instance than in the
second, Even the order in which doiJ(A) and doiJ(B) are applied

makes a difference. Experimental evidence for the existence of

corners in the yield surface has recently been found[ 6] .

Many Plane Loading Surfaces. There is no difficulty in generaliz-
ing the previous results by introducing any finite or infinite

number of plane loading surfaces, If there are an infinite number
of loading surfaces the stress-strain relation may involve an in-
tegration, The set of all those points in stress space which are
elastic with respect to all the loading planes constitutes the
elastic region. The boundary of the elastlic region is the yield
surface, Figs., 7 and 8 show symbolically the elastic region and
yleld surface when the number of plane loading surfaces is finite
or infinite respectively.

As loading proceeds the loading plances get pushed out
more or less depending on the loading path, but at any instant of
loading there 1s a well defined yield surface. The property of in-
tegrability for a single plane loading surface leads to the followe

ing simple rule in the case of many plane loading surfacest

The total plastic strain is thc same
for all loading paths which result in

the same yield surface,
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Fig. 9 illustratcs a casc in which two diffcrent loading paths A
and B producc the samc total plastic strain, If the loading had
procccded only as far as P the total strain for paths A and B
would bc different but continuing thc loading to Q wipes out this
diffecrence,

The goneralization of the notion "region of total
loading" to thc casc of many planc loading surfaces can be done in
the following way, Supposc loading has proccedcd along a straight
line loading path into the plastie range and reached a point P
(Fig. 10), The yield surface is made up of part of the initial
yield surface and of part of the envelope of the loadingz planes
which pass through P and are tangent to the initial yield surface.
The part of this conical envelope which extends outward from P
bounds the region of total loading. All loading planes previously
pushed out in reaching P are further pushed out by a stress in-
crement doiJ whose vector drawn from P falls in the region of total
loading,

The straight line loading path (radial loading) is a
special case of a more general loading path traced out by a load
point P which always proceeds into the region of total loading.
For such loading paths (and only for such loading paths) the interest-
ing result has been obtained that J, deformation theory coincides
with a particular incremental theory based on an infinite number

of plane loading surfaces. The details are left to a later paper,

Further Remarls on Plane Loading Surfaceg. In all the foregoing
discussion it has been assumed that the loading planes act entirely
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independently., Fig. 11 illustrates a case in which the loading

planes act interdependently, The loading plane f_ has been pushed

out to the position indicated by the dotted line.1 The other planes
also move according to some law as a consequence of the motion of
fl' This type of behavior is certainly more complicated than in-
dependent action but the phenomenon of latent strain hardening of
a single crystal suzgests such behavior, In a metal crystal there
is a certain preferred set of planes called slip planes go oriented
with respect to the crystal lattice that slip is most likely to |
occur in them rather than in any others, Within these planes there
are several preferred directions of slip. Thus there is some
definite number of slip-plane slip-direction combinations or slip
systems within a given crystal, When a ziven slip system has been
activated it becomes more resistant to further slipping, that is
it becomes strain hardencd. However the slip systems do not strain
harden independently. When any one slip system is strain hardened
so are the others., The condition that the shear stress on a given
slip system remain constant is that a certain linear combination
of the stress components remain constant. The locus of points in
stress spece satisfying this condition is of course a plane., Per-
haps a theory describing the macroscopic plastic strains of a single
crystal could be formulated basei on a finite number of plane load-
ing surfaces acting interdependently. Even though it is not at all
obvious how to take the step from a single crystal to a crystal
aggregate the behavior of a single crystal is very suggestive,

Fig. 12a shows a possible yield surface after an

:xperiment performed on a material whose initial yield surface is
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Jo = k2, The material has been stressed in simple tension in the
x direction beyond the elastic 1limit. The yield stresses for
tension and compression in the y direction have been altered
(cross effect) and the ylield stress for compression in the x direc-
tion has also been altered.(Bauschinger effect) [7]. Fig. 12b
shows the results of the same experiment performed on a hypothetical
material which obeys a stress-strain relation based on an infinite
number of plane loading surfaces which act independently, The
initial yileld surface for this material is also J, = k2. No cross
effect or Bauschinger effect in the sense of a lowering of the
yield point in compression followin, loading in tension Js exhibited
by such a material, Fig. 12c shows the result of the same experi-
ment performed on another hypothetical material obeying the simple
32 rule. The material of 12c¢ could also be regarded as obeying a
stress-strain relation based on an infinite number of plane loading
surfaces in which the planes always move in such a way as to envel=-
op a surface J2 = constant, The property of integrability does not
necessarily hold for stress-strain relations besed on many plane
loading surfaces which act interdependently, The properties of
such stress-strain relations have only becgun to be investigated,
but the phenomenon of latent strain hardening exhibited by individe-
ual metal crystals as well as the evidence from experiments on
polyerystalline materials supgests further investigations,

Many plate buckling experiments agrec well with a
theory in vhich the hypothetical material of Fig. 12b is taken as
the mathematical abstraction of the rcal material, Unfortunately
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other kinds of experiments show that this material is not accept-
able as a good approximation to a real matcrial. Recent investiga-
tions[ 8] on the stability of non-linear systems indicate that the
classical buckling criterion is not applicable in the plate buckling
problem, These investigations show that small and unavoidable
initial imperfections can have a pronounced effect on the load
carrying capacity of a plate and yet not cause much scatter in the
test data., If these conclusions are correct plate buckling experi-
ments are not decisive in the choicc between various possible stress-

strain relations.
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APPENDIX
Consider the following stress-strain relationi

ae? = G(r) %5 af df> o
1) 1j
(1)
= 0 dfs 0

in which f, the loading function, is a function of stresses alone,
Provided the surface f = constant be sufficiently smooth and non-
convex toward the origin in stress space, this is the most general
stress-strain relation involving only one loading function which
belongs to the class of stress thecories of plasticity. If f is
a lincar combination of the stresses then (1) may be integrated to
give the components of total strain in terms of the stresses., The

resulting relation is of the forms

p
= H(f 2
eij (£) aiJ (2)
where dH = G4df and a arc direction numbers of the normal to the

1]
loading plane. This may be verified by taking the diffcrential of

(2) to obtain (1), Conversely the only intcgrablc stress-strain
rclations of the form (1) are thosc for which f = constant is a
plane surface in stress space. This may be proved by the following

considerations. If dei’J is intcgrable then there exists a family

of surfaces in stress space such that efj is congtant on cach

surface of the family. Supvosc that a point moves on a surface

f = constant; thcen according to (1) 4f = o and dei = 0 80 the

surfacc f = constant must also bc a surface eb, = constant, hence

1}
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e? 1s a function of f alone. This implies that.ii is a function
1 %

of f alone, say:
‘gij = Fyy(0), (3)

Now g% are the direction numbers of the normal to the surface
iJ

f = constant and (3) implies that the normal has a constant direc-
tion; hence the surface f = constant is a plane., All that has been
proved is that f must be a function of a linear combination of the
stresses, however there 1is no loss in generality in taking f itself
to be linear in the stresses since any additional arbitrariness may

be absorbed into the factor G which occurs in (1),
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Dr. E. Sternberg
Dr. W. Osgood

University of Illinois
Urbana, Illinois
Attn: Dr. N. M, Newmark

Eagineering
T. J. Dolan
Dr, F. Seitz, Department of Physics
Department of Theoretical and Applied Mathema-
tics, Attn: Prof. Ms C. Gteele

Indiana University
Bloominston, Irdiana
Attn: Dr. T. Y. Thomas

Institute for Advonced Study
Princeton, New Jeisey
Attn: Dr. J. vcn Neumann

Iowa State College
Ames, Iowa
altn: Dr. G. :furphy
Dre Ds L. Holl

Johns ‘lopkins University
Baltimore, Maryland
Attn: Dr. W, H, Hoppman, II

Director, Applied Physics Laboratory
Johns llopkins University

8621 Georgia Avenue

Silver Spring, Maryland

Lehigh University
Bethlehem, Pennsylvania
Attn: Mr. Lynn S, Beedle

Massachusetts Inctitute of Technology
Cambridge 39, Massachusetts
Attns Dr. F, B, Hildebrand

Drs J. Ms Lessels
Dr. VW, M. Murray
Dr. F. Roeissner
Dre M. Cohen, Rms 8-413, Dept. of Metallurgy
Dr. Bs L. Avaerbach, Department of Metallurgy
Dre J¢ Ts Norton
Dr. E. Orowan
Dre Re Bisplinghoff, Dept. Aoro. Lngr,
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University of Michigan
Ann Arbor, Michigan
Attn: Dre. Bruce G, Johnston

Dr, Paul Nagdhi, Dept. of Engineering Mechanics

Dre N« Coburn
Dr. W, Kapla.n

New York University
Institute for Mathematics & Mechanics
45 Fourth Avenue
New York 3, New York
Attn: ﬁrofessor Rs Courant
Dr. G. Hudson

New York University
New York 53, New York
Attn: Dr. C. T. Wang, Depte of Aeronautics

Northwestern University
Evanston, Illinois
Attn: Dr. M. M, Hetenyi

University of Notre Dame
Notre Dame, Indiana
Attn: re« P. A. Beck

Pennsylvania State College
State College, Pennsylvania
Attn: Dr, J. A, Sauer
Dr. Joseph Marin
Dr. J. W, Fredrickson

Princeton University
Princeton, New Jersey
Attn: Dr. S. Lefschetg
Dr. L. Lees
Dre Jo V. Charyk

Purdue University
Lafayette, Indiana
Attn: Dr. C. A, Iringen

Rensselaer Polytechnic Institute
Troy, New York
A‘tm Library
Dr. Paul Leiber
Dr. C. O, Dohrenwend
Dr. G, He Lee

Santa Clara Universit
Santa Clara, Californ{a
Attn: Dr, R. M, Hermes



R T e v e L ) e e e rrn—— T I

7
¥ Stanford University
- Stanford, California
Rel Attns Dr. L. Jacobsen
M-l Dr. A. Phillips, Dept. of Mechanical Engineering
R=1 Dre J. N. Goodier

Stevens Institute of Technology
Hoboken, New Jersey
Rel Attn: Dr, E, Gs Schneider

Swarthmore College

Swarthmore, Pennsylvania
M-1 Attn: Capte W. P, Roop
Rel Dr. S. T. Carpenter

University of Texas
Austin 12, Texas
R-1l Attn: Dr. A. A. Topractsoglou

University of Utah
Salt Lake City, Utah
M-1 Attn: Dr. ﬁb Eyring

Washington State College
Pullman, Washington
R-l Attn: Dr. B, Fried

Wheaton College
Norton, Massachusetts

Re1l Attn: Dr. H., Geiringer
Aerojet, Inc,
Azusa &alifornia

R-1 Attn: F. svicky

Aluminum Company of America
New Kensington, Pennsylvania
M=1 Attn: R. L. Templin
M-1 He No Hill, Aluminum Research Laboratory

Armstrong Cork Company
Lancaster, Pennsylvania
R=1 Attns Je We Scott

Bell Telephone Laboratories
Murray Hill, New Jersey

R-1 Attn: C. Herring
Re1l D. P, Ling
Rel We Ps Mason

Corning Glass Company
Corning, New York
R=1 Attn: J. T. Littleton
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E. I. Dupont de Nemours & Cos., Ince

Wilmington 98, Delaware
Attgs 3. R Faupel, Materials of Construction Section

General Electric Company
Schenectady, New York
Attn: H. Fehr
H. Poritsky
J. He Hollomon

General Motors
Detroit, Michigan
Attn: J. Os Almen

Lockheed Aircraft Company
Department 72-25, Factory A-1, Building 66
Burbank, California

Attnt Engineering Library

Midwest Research Institute
Kansas City, Missouri
Attn: M, Goland

Pratt & Whitney Aircraft Corporation
East Hartford, Connecticut
Attn: R. Morrison

U. S« Rubber Company
Passaic, New Jersey
Attn: H. Smallwood

Welding Research Council
Engineering Foundation
29 llest 39 Strest
New York 18, New York
Attn: W. Spraragen, Director

Westinghouse Research Laboratories
East Pittsburgh, Pennsylvania
Attn: Dr. E. A, Davis

Dr, A. Nadail
136 Cherry Valley Road
Pittsburgh 21, Pennsylvania

Westinghouse Electric Corporation
Lester Branch P, 0,
Philadelphia, Pennsylvania
Attn: R. Pe Kroon, Manager of Engineering,AGT Division

University of Pennsylvania
Towne Scientific School
Philadelphia 4, Pennsylvania
Attns Dr, 6. W. MacGregor, Vice Pregident in Charge of
Scientific and Engineering Studies
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Profossor G, Wastlund

Cement & Concrete Research Institute
Royal Institute of Technology
Stockholm 70, SWEDEN

Profegsor John E. Goldberg
Department of Structural Engineering
Purdue University

Lafayette, Indiana

Milad F, Hanna

4 F.S.S.B.

Massachusetts Institute of Technology
Cambridze 39, Massachusetts

Dr. W. Freiberger

Department of Supply

Aeronautical Research Laboratories
Box 4331 GPO

Melbourne, AUSTRALIA

Professor Bs W. Shaffer

Department of Mechanical Englneering
New York University

New York 53, New York

Professor G. Sachs

Divisionn of Metallurgical Research
Englne~ring & Science Campus

East Syracuse 4, N, Y,

Professor Azig Ghali

Head, structural Analysis Department
Fona& University

Giza, EGYPT

Professor Hugh Ford

Mechanical IEngineering Department
Imperial College of Science & Technology
London, S.W,?7

ENGLAND

Dr. Rs H. Wood

De Se IsRs Building Research Station
Garston, Watford, Herts

ENGLAND




