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In this report the variance of narrow band noise plus oowo signal

after detection and gating in time is derived. The problem t solved

for ideal and Gaussian filters with square law and linear detection,

the latter for large pdetoetimn signal to noise ratio. In addition to

those filters the analysis is carried through for a model which

considers the envelope of narrow band noise plus signal as a function

which is constant for intervals of duration equal to the reciprocal

of the noise bandwidth and statisticAlly independent in different

intervals, A very close agreement is found among the filter types

mentioned and the model. Graphs of the mean deviation divided by the

mean power for noise alone arc given fir toth filters and the model,

with square law detection and predotoction signal to noise ratios

0, 0.5, I, 2. Finally we considor a simplified model which is similar

to the model proviously mentioned except that the gate is assumed to

start at a point of change in the model voltage. The values in Table 1

show that this simplified model may be used for very lrrge or very

small gate widths but that the discrepancy is c~nsidorable for gate

widths of the order of the reciprocal )f the noise bandwidth.
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Some Statistical Properties of Gated Signal

Plus Narrow Band Noise

I. The Problem,
0

This paper describes some of the statistical properties of nar-

row band noise plus o.w, signal after deteoion and gating in timeo

IMore specifically, we are concerned with the fluctuation of the vari-

ables
., t

yt) = x(t)dt 1)

andt t-T

a(t) = x(t)dt I t1T t (2)

t-b T-6

(see Fies. la and lb)

where x(t) is the output of the system shown in Fig, 20*

:t t -r -"

Fig. 1

. .yI2df
*The noise bandwidth of a filter is defined as usual by
where Y(f) is the transfer characteristic of the filter )12
and fe its center fre quenoy. Physically r represents jY (f
the bandwidth of an ieal filter which has 

the same total

power output and center frequency gain as the given filter.
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its noise sourot

pectral density

0O ... 4 Narrow band filter

- center frequency f. detector x%

noise bandwidth

Signal generator

P cos 2 tfct

Fig* 2
The variances of y and z , which we denote by 2 and 2

a z

will depend upon the filter and detector characteristics and are in-

dopendent of time, since we shall assume x(t) stationary, dy2  will

2be a function of the parameters 3, F., wo  and b, and O2 will

in addition depend on the parameter T .

We shall consider the following band pass filter characteristics:

a) Ideal Filter - transfer characteristic given by

Y(f) = I f, - ,<f<fc +(3)

= 0 elsewhere

b) Gaussian Filter - transfer characteristic given by

it(-fc) 2

Y(f) = (4)2p

For both of these filters P Ifc and the noise power output is

Swn wo IY(f)I 2df a pwo

In addition to these filters we consider a model for the envelope

of signal plus narrow band noise which is frequently used. This model

considers the envelope of narrow band noise plus signal as a funct.or.

which is constant for intervals of duration and scatistically I.-



dependent in different intervals. An example of such a function is

shown in Fig* 3s The times at which the functions changes its value

SPre assumed to be unknown.

x(t)

S F-

Fig. 3

The problem is solved assuming square law detection and for large

rignt1 to noise ratio in the case of the linear detector.

S. 0. Rice (Jour. Acoustical Soc, Amer. 14 216 (1943), referred

to nereafter as Refs A, has solved this problem in essence for the

case of zero signal. The present work extends that of Rice to in-

clude signal as well as noise. The approach is, however, different

from that of Rice.

II. Noise in LinearSystoms*

The gating process is a linear one and therefore the theory of

noiso in linear systems may be applied,

If we consider a linear system defined by a transfer character-

Istio Y(f) or equivalently by a weighting function*

*Tie weighting function Is the response to a unit impulse excitation.



h(t) JY(f)e 8ft

then tho output g2 (t) is related to the input gl(t) by tho oonvo-

1,+-Ion integral

92(t) = h( 'r)gl(t- )ft

e. that

2S = h( r)h( X)kgl(t- )gl(t- X)d dX

and
- t ~ o

2
2 (t) = h( r)h( ) X1 - X)dr dX

".:hcre i s the autocorrelation function associated with gl(t)a

For tho gating process described by Eq.. (1) and (2) the corres-

pcrding weighting functions are

1 O<t<b
hy(t) = (6)

0 elsewhere

and
1 0<t<6

hz(t) = -1 T<t <T +b (7)
0 elsewhere

The double integral in Eq, (5) may be reduced to a single integral by

the transfomation z - ) = I * = =

For by(t) as given in Eq. (6), we thon haveb b

Jo J h(C )h(X) l('-X)d dX = 2 0dq llq) J h(j + ()h(tldt

From Fig. 4 fro h( + and hy( t ) we hivo

h(q + t)h( C )d b - q for 0" q <

10
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Fig. 4

oo that the double integral of Eq. (5) becomes

2 b

g2 (t) = 2f (b - q) l( q)dq,

(see footnote to Eq. (9))

For hz(t) as given in Eq. (7) we have

,T+b T+b bdY ,T.b-f o h( )h(X) 9 1 ( -%)d-d% = 2fdq yl(q) h('+() h(() d
o to

Prom Fig, 5 for hz(q+) and hz(M) one may note that there are the
,,T+b- q

following contributions to the integral fo h(q+)h()d •

a) For 0 q < b one has

b- q+ (T +b- q) - T = 2(b - q)<
b) For 0 < T - <-- (i.e. T - b = = T) one has

-[6 - (T - (= - CT - 6)]
< < 1. < . ~

o) For 0 T +b - q b (i.e. T 5 q T+b onehas

- CT+ 6-wi]
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Fig. 5

Thus the double integral of Eq. (5) becomos, for the doublo gate:

b ,T

g22(t) = 4 I ),(q)d - 2 [d-(T-b)] il(q)d

T+b

2f (T+b- i) yi( q)d * (0)

Thi.. result is not altered in the event that the regions mentioned In

a) and b) overlap,

It may be noted that we have chosen to express .2 (t) as a

double integral involving h(t) and y(- ) which is then reduced tc

a single integral. We could equally well have expressed 927(t) di-

roctly as a single integral involving the transfer function Y(f) an.

the input spectral density. This procedure was not followed, howevo,

slnce the integrations to be performnd aro not nearly as simple as

i2 : 7(- *[g 2

*The variance 2 t) -~ [g 2 (t)J Is given by Eqs. (8) and (9)0
with 9 1 ( q) replaced by c1(q) minus its d.c, vrluo.

limO



those Indicated in (8) and (9) for the case of the Gaussian filter

and the model* We thus use (8) and (9) for the evaluation of 02
S 2

and 0s 5 respectively (soe footnote to (8) and (9)), for which we

need the autocorrelation function associated with the output of the

detector. This is discussed in the following section.

III$ Properties of the Detector Output.

The action of the detector is such that it rectifies linearly

the input signal plus narrow band noise, raises the result to some

Vth power and then filters so that all components of frequency of

the order of the carrier frequency and above are stopped* In our

analysis, however, we consider the detector as a device which first

obtains the envelope of the input signal plus narrow band noise and

then raises the envelope to the vth power. This output is the same

as that of the actual detector apart from a constant multiplying fao-

gor. (See Fig. 6 below.) For purposos of computation it is more

convenient to consider the second description of detector action.

signal plus I linear l th law low pass x(t)
narrow band rectifier filternoiser~tfedvc .. / itr

signal plus envelope Vth law x)
narrow band detector device
noise

Fig. 6.
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The spectrum and the equivalent autooorrolation function of the

output of a square law detector have boon obtained by Rice (Boll

System Tech. Jour. , Part IV (1945)) and by Lawson and Uhlenbeck
.0', eshold Signals, Vol. 24 of M.I.T. Rad. Lab. Ser., McGraw-Hill*

iY50. See. 7.2, referred to hereafter as Ref. B). The result of in-

2 2,crst for the determination of y and ds is the autocorrola-

.. cn function minus its d.c value. (See footnote following Eqsv

iU) nnd (9)), This is givon in Ref. B (p. 155, Eq. (17)) as

,( ) = 4P2W p( u) + Iw 2 p2 (,,)

S"",o W = noise power input = wo

P = signal amplitude

y c2 cos 2 n(f-fc df
trar

In the case of linear detection the autocorrelation function riy

r19,) bo obtained from Rof. B (p. 157, Eqs. (20a) and(20b)), but in

t; case of signal much groator than noise it may bo obtainod road.ly

by examining the Rico representation of narrow band noise as

X(t) sin 2ifct + Y(t) cos 2 Itf t

%) ov. X(t) and Y(t) are slowly varying functions which have Gaussi.,n

pra':abiltty distributions with variance W and have normalized auto-

correlation functions = p( ). Thus tho envelope of narrow ban4

noiso plus signal = P cos 2 tfct may be represonted at any instant

by the vector diagram shown in Fig. 7, and for P2 r7 the f1-

ti2,con in R is duo primarily to tho fluctuation in X so that in thu

!i.nit of very largo P. the autocorrolation function minus its d.Cc

value is



9

R(t) R(t + O) .( )2 x(t) x(t + -) pw (1)

Thus, for the ideal filter, substituting (3) in (11),

lfo+p/a

p( = 2 ,c(r0  ,,,

,rd tfor the Gaussian filter, substituting (14) in (ii)

concos 2(- c ) fdvd

p

tl df

si x x

fiG 2

p 2 Cos 2 it f df 22d

p c

df ii

fe >>I. Eqi. . 7

1.3 an 1)myteUsusiue n(0,t
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obtain the autocorrelation function minus its d.c. value in the ease

of the ideal and Gaussian filters*

For the model the autocorrelation function is given in Figs 8
a

in the cease of the square law detector*

!
IX (t)

Fig, 8

From Refe B (p. 155, Eqs. (14b) and (17)) we have

2

x4(t) - x 2 (t) - 4 wp2 + 4W2

so that the autocorrolation function minus its d.c. value is givon by

q,(,w) = (4WP 2 + .w2 )(l - P II) I I (15"T (15)
o I I >

In the case of the linear detector the autocorrelation function is

given in Fig*. 99 2

For p2 >w, x 2 (t} - x(t) may be obtained either from Ref. B

(p. 155, Eqs. (l4a) and (14b), retaining the first two terms in the

asymptotic expansion of (l4a)) or directly by setting w = 0 in (12),

giving 2

x t - x(t) = W



13 13

g >

Fig. 9

so that the autocorrelation function minus itr d.c. value is

y,( i) = w(i. - p I' I) I I =- (-6

=0 I I >-

IV. Results, Discussion and Conclusions.
2 @2

y 2and o can now be determined for the ideal and Gaus.lan

filters from (13), (14), (10) and (12) by substituting in (8) and (9)

and for the model by substituting (15) and (16) in (8) and (9). The

integrations are carried out in the appendix and the results are as

follows:

For the single gate, square law detector

Ideal filter Oy2 4W  [G(2 i b) b)] (17)
y (= )2

*To perform the integrations it was found convenient to introduce the
function ix

(;(x) = do tc dt
0 _

defined by
G_ -cos=x'(o) G(o)0

lhe valuesof G(x) and G'(x) for 0 - x = 100 are given in Table 2 at
the end of this report.
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Gaussian filter 22

2 W2  [2pb 4' 1 rf(-n V , 1 __ + 2 a- C6

2(18

Model d2 = 4W2 62(1 + 2 .)(1 - )

b - (19)1

= 4w2 b2(1 + 2 p) ( b-), pb=> 1 (19)p)2

whore IL P predetecton signal to noise ratio.

For P6 «19 2 for both filters as well as the model should

be the variance of a single sample, of width b, i,e, we should ex-

p.'t- to have

0y62 = bx2 -x1 t)2 b 2[4Wp2 + 4w2 ] 2 b 2(1 + 2 p.)

(20)

(sea Ref. B., p. 155, Eqs. (14b) and (17)). Substituting the exp-e-

saons for G(x) and Erf(x) as given in the appendix (Eqs. (A-I)): (17,

('48) and (19) reduce to (20) in the limit for Pb << 1.

For Pb >>,1 we may use the asymptotic expressions for G(x) U -d

Er(x) given in the appendix, Eqs. (A-12), and obtain the following

limits from (17, (18) and (19):

Ideal filter 0y (1 + 2 IL) b (21)

Gaussian filter oy2= = (4+2 Apeb (22)

2 Lw2
Model (1 + 2 L2 ) P6 (23)

In each of these cases i 2 Is proportional to 6 as is to be expected

rinse for P6 >> 1 the gating process is effectively adding up a

nv roer (of order 6 ) of independent random variables, the variance of

th3 sum then being the sum of the variances, It is to be noted that
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both for Pb < 1 and Pb >l the ,y corresponding to the ideal

filter and the model are equal for all signal to noise ratios. The

values of 2 for the ideal filter and model do not differ approl-

ably even for Pb -j 1, as is shown by the figures given in Table 1,

For the particular case of zero signal the expressions given in

(17) and (18) for d for the ideal and Gaussian filters with square

law detector and single gate are compared with the corresponding ey-

pressions given in Ref, A (p, 223, Eq. (6.10) and p. 225) in the ap-

* pondix; and are shown to be four times the variances given in Ref. A.

Th4s is to be expected since in Ref. A Rice considers the short time

av .rage value of the noise after detection, whereas we have been con-

sidoring the envelope, and these differ by a factor of two#

For the single gate and linear detector with large signal to

no-se ratio, we have the following results:

2 2 G,(t.2 b)Ideal filter dy = 2W b"i

Gaussian filter 22

2 _ (25)) ]
=y --- n 2 bi r Pbrt V

Model 2= W b2(1 - ) , Pb= 1
y 3

(26)
2

Wb (Pb - 3./3) Pb

Again, for 16 < <1, d for both filters as well as the model
y

should be the variance of a single sample, of width 6 , i.o, we

should expect to have

21
2 - xlt) = 2W (27)

3Obstituting the expressions for G(x) and Erf(x) as given in the Rp-
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pendix (Eqs. (A-1)), (24), (25) and (26) each reduce to (27) in the

i..tit for Pb <<I.

For P6 > >1, we may use the asymptotic expressions for G(x) and

Er.'(x) given in the appendix, Eqs. '12). We then obtain, from (24),

(25) and (26), 2 W
2P (27)

fni, both the ideal and Gaussian filters and the model. In (21k), as

.. (21), (22) and (23), ay2 is proportional to 6, as is to be ex-

pected.

For the double gate with square law detector we have tho follow-

i:F ° results:

Ideal filter

2 8W 2  [G(2itP 6) + 4ulb '(itA

(Ip2 G( t )+ 4P it P T GI( X PT) (LG2 7P(2 P(- 6)) +4 itp (T- 6)G,(jB (T- b),

([i+ )2 G(2 i P(T+ b )) + 4P it p (T+ b )G'( 7t (T+ b.j

Gaussian filter

d2= 2W2 2 b V Erf(P6 42 ) + 2PT VxErf(p T &23')1

-p (T-b) 42x Erf( p(T- 6) 45 ) - P

- PT+ 6) ,,fxErf( P(T+ 6) 27 )
2 -2 j p2 b 2  2

[~_~ 2 p (T- b)2 - - e-

-e 2T)2J (29;,j



Gaussian tiltor (oonttd)
-2 0 v , R rf( b + / 2 T V;, Erf' T v*0)

+ - p(T- 6b)r' Erf(p (T- 6)v' ) - p(T+b Iu rf( p (T+WV'y
p2,R

" i p2b 2
o-- 2_

2-p 222

" - p2 (T- 6 )2 2 PT2

x 2 (T+ b)21
2

Model 2 2(2( )[T J(T6)<
a) 2 8W 2+ (T -< 1

b) *2 =B (1+2 I L Pb )2 b3 2 - +3(13

.z.2

2 6+ ( PT) T3

PTp<1 P(T+ b

2( ) 2 3 6. 3
) I= 2  P12 [b )2 1 (Pb) 3  P(T-+ P (T

0) . (1,.+2 6 " ( =

.
Ab < ~

P(T- b)< 1 PT

d)W2 2 231
d) (C b~ < (p

i (T- b)
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z 2 22
.) d 2 = - 1+2j) L6- 2. T2b + p2(T-26. P(

1 =b

p(T- b) < I T

f 2 8W2 1 ( b= Pb
1 < (T- 6)

For «b <1, 0y should be the variance of the difference of two

samples, each of width b, separated by a distanco T, i.e, we should

e-pect to have . ... J
d 2 = b2 (x2(t) - x2 (t+T))2 - (x2(t) - x2(t'+ T

= 2 2 [x4(t) _ x2(t)x2(t + T)J (3])

= 8W2 2 ((1..P 2(T)) + 2p, (1- pT))

(See Ref. B, p. 155, Eq. (17))

For the ideal filter this is
02 2 b2 sin2 Ij T si 7c - T,

=8w 2r 2 2 4 si I
Z L (KT) 2  iRPT

and for the Gaussian filter
o= =ew b2 1 e 2 tp2 2 2p 2

w 82 2- + 2& (1 - e (3b)

(31a) and (31b) may be obtained directly from (28) and (29) by examin-

Ing these expressions in the limit of P6<<lo

In the case of the model we have, for b <<l

2 8W2 b 2 (l + 2 1 ) PT for PT < 1, from (30a) (31c)

a2 = 8W2b2(1 + 2p )  for 0T > 1, from (30d) (31 '

For Pb <<, PT >> 1 we have, for both filters as well as fir
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the mode1

_ 3 2 . 8 b2(I + 2 P) (32)

which is twice the variance ot a single sample of width b (see Eq.

20), as is to be expected.

For b x> I, we have, substituting the asymptotic expressins

for G(x), G'(x) and Erf(x) in (28) and (29), and directly from (30),

=S 2 O(1+2 pp (33)
r

for the ideal filter and the model, and

2 8W2 (.+ ~ 4
= 77 + 2 p) ./.3)

2

0 as given in (33) and (34) are twice the variance for aZ

single gate for which b >>1 (see Eqs. (21), (22) and (23)), as

shnculd be expected. It may be noted that (33) and (34) are obtainsd

for pb >> 1 regardless of whether P(T- 6) << I, P(T- b ) - 1 or

p(T-b) >> 1.

For the particular case of zero signal the expression given in

(27) for 6y for the ideal filter with square law detector and

,-',ble gate is compared with the corresponding expression given in

rcf, A (-. 224, Eq. (7.3)) in the appendix, and is four times the

variance given in Ref. A, as it should be, since In Ref. A the aver-

age value of the noise rather than its envolope is considered.

For the double gate and linear detector with large signal to

noise ratio, the results are as follows:

Ideal filter:
%2 4 [xpG( sp b + i P T,( I P T)

(X P)2 (35)

2 [ P((T-bo'l (T- b) + 7 (T+b)'(P(T+.

})



As

Oaussian filters
2 pbV; rw ( p b + 2 pT,; Erf T

2 pwL. -p(T-6bA Ert(p(T-b)Ws )-

P (T b)v'i Erf( p(T+b )VI3 )
2 -xP2b 2  2(36)

2 .Pr 2T2  2 . -1c 2 (T+ b )21

2 -T 2

Model: 0~2 2w ( 2 !6 (,6a) 2 -(pb) [pT P(T+b) < 1

2W "b (pb )3 p2( , + p p3(T
b) 2 =3

.p (T+ b.),+ + ( T)2  l( PT)3
L 2 6

T < 1 (T+b)

2 = Pb )2 - b )3 p 2 (T- b )2  p3 (T- b) P

p(T- b)
2 P~b < 1

P(T- b) <1 S= PT

2 2w( 21)2 3
d) 0 - [( Pbb <1I

1 < p(,- b)

2) *b = -+ p - b--+P 2(T. b )2 + p3T

P(T- b) < 1 OT

f) -- (
1 = P(T- b)

now--------
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Again, for Pb <<1, 2 should be the variance of the differ!.

once of two samples, each of width 6, separated by a distance Tp

,.0, we should oxpect to have 2

d2 = b2 [(x(t) x(t+T))4'- (x(t) - x(t+T))]

26 2 (x 2 (t)- x(t)x(t+T)]

2 b2W(l - p T * 0(35)

f%- large signal to noise ratio,

For the ideal filter this is

" = M 2(1 - sin SOT) (38a)

and for the Gaussian filter

= 2 - e) 2T2  (38b)

(38a) and (38b) may be obtained directly from (35) and (36) by exarnr.

ing these expressions in the limit of Pb < < 1e

In the case of the model, we have, for Pb < <i

2 2 
0 = 2Wb P T for PT <1 , from (37a) (.t,z

0z = NO for T > 1, from (37d)

For Pb , OT > >1, we have, for both filters as well as for tho

model

*From Eq. (12), for2large signal to noise ratio, we have 2

x(t)x(t+T) x(t) a p(T)W, and, setting T O, t x(t) W.

Thus x2 (t) x(t)x(t+T) = W(l- p(T))



20

#2 . 2W 6 2  (39)
3

which is twice the variance of a single sample of width 6 (sea

Eq. (27).

For P5 > > 1 we have, substituting the asymptotic expressions

for G(x), Gt(x) and Erf(x) in (35) and (36) and directly from (37),

!z2 W p6 P, 10)

for both filters as well as for the model. The remarks made follow-

ing (34) apply equally well to (40). (of. Eq. (2* .

In the accompanying graphs (Pigs. 10, ll, 12), the following

plcts have been drawn, in each case for the square law detector on'y:

1) .y as a function of P6 for both filtors and the model, and

in each case for pre-dotection signal to noise ratio p = --- = 0

0 ., 1.0 and 2.0, where m = 2W 6 in the mean power for noise alovis

sid gate width 6 This same quantity has been plotted In Ref. A

,P, 217, Fig. 1) for the ideal and Gaussian filters in the case of

n- signal, and is denoted there by-
-T

2) 02 as a function of P6 ,with T =6 for both filters .

;he model, and in each case for signal to noise ratio = = Os• 2TI

0.5, 1.0 and 2.0, whore m = 2W b * For the particular case of the

_deal filter and no signal this plot is givon in Ref. A (p. 217, rig.

i) and is denoted there by

3) .z as a function of P T, in the limit as 6- 0, for both
m

f.lters and the model, with m and tho values of p as given in abcvee

91".. ee graphs show a very good agreement among the filter types chosen

vnd the model. For most applications use of the model is probably

justified. It should be noted, however, that when the model is used

in a very simple manner for computations, that ic, by assuming that
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the gate starts at a point of change in the model voltagep then the

results are not as good, as Is shown by the values of .y given in
3

Table 1 for P6 a O 1 2P 3P , So

Applying the model to the gating process Is essentially the surs

as adding a certain number of independent variables. When the model

rto used in the simple manner described above, the number of inde-

p'r.dent variables added Is necessarily less than or equal to the num-

ocr. added when the model is used as In this paper, For oqual gate

durations, both methods will give the same mean value, but the simple

method will result in a larger variance** For Pb > > 1 and for

'B < < 1, both methods agree and the greatest difference is whtrn

I.

I

'AE a simple example of this principle, consider two independent .n-
&.,n variables x and y having the same varlanco a4 If. however,
vY, compute the variance of we get o
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Waue of for p 00, 0,50 1, 2

P6 a0 I PbiIPb 2 P=3jPbw4 Obu 5

Simplified Model 1 1 0.5000 0.3333 0.2500 0.2000

Y -1,de 1 0.6667 0.4167 0.2963 0.2292 0.1867

IIeal 1 0.6559 0.3961 0.2825 0.2196 0.1797
,aussian 1 0.5479 0.3225 0.2184 0.1665 0.1341

_ _ _ _IL= 0.5

i .r1plified Model 2 2 1.0000 0.6667 i0.5000 0.4000

Idel 2 1.3333 008333 0.5926 0.4583 0.3733

Ideal 2 1,4296 0.8476 0.5929 0.4571 0.3716

, .-ussan 2 1.2312 0.7431 0.5165 0.3968 0.3217

... . 1' = 1.0 ... .

I SCmplified Model 3 3 1,5000 1.0000 0.7500 0.6000

li-del 3 2.0000 1.2500 0.8889 i0.6875 10.5600

jceal 3 2.2033 1.2990 0.9032 1o.6946 105634

I %ussian 3 1.914 1.1637 0.8145 0".6272 0.5092

L .9. 0

Simplifled Vod& 5 5 2.5000 1.6667 1.2500 1.0000

Yodel 5 3.3333 2.0833 1.4815 1.1458 0.9333
Id ,eal 5 3.7507 2.2019 1.5239 1.1696 0.9471

I_,u , 5 3.2809 2.0049 1.4106 1.0879 0.8843



In this appendix we give the details at the Integrations in-

volved in the determination at d 72 and *2

Let us consider first the Ideal filter. Substituting (10) and

(1.3) in (8) we have,, for the square law detector, single gate,

2 [4WP2 in 9 T ,2 d Ai2r(b - +4
0

* To perform the Integrations it was found convenient to introduce the

function

0(x u do fL coo t dt (

0

defined by

0"() -1-cos x
G"(x) x 01(o) 0(o) 0 0A3

ani in terms of which

sin x = 200C x) + xO"(x)
x

sin2 x (-ox
~-mm20"(x)

Thns,, mdcing the necessary substitution of variables in (A-1) we have

d a
2 uP -w a~ x) [ 2G"(x) + x"(x)] dx (IP6

+(up)2 J(2 Pb - x)G"(x)da

0

Integrating successively by parts and noting GO(o) G(o) -0 we thern

o 2[G2%6 + ig GI tP A5



where i = is the pre-detection signal to noise power ratio. The

result for the ideal filter with linear detector, single gate and

p > > 1 is obtained similarly$ substituting (12) and (13) In (8),

giving
y2 sin RO-T

= 2 (b % )W d(
y

0 (A

= -.--- , .P6 G'(K1x )
x p )2

The results for the ideal filter with the double gate may

bu obtained in similar fashion. Substituting (10) and (13) in (9),

we have, for the square law detector,

b
2 4 [(- r1 [4WP2 siD x r + 4W2 (sin x T d)

T ~ ~ [4p in %Ov€ 4W2 ( a i xv
-;[,- ( T- b )] [ -P ,j=  + ,' 1 A-

+b 2

-2 [T +6b O]( wP2 fpr w2 (+ 4) d

T

BW2 + C(22 + 4pi bG'( it b)
(7E)2L+G(2 (C T) + 4 T T,( PT)

r it P (T- 6)) + 4J it P (T- 6)Ot(G i (T- 6))

+0(2 x P (T+ 6) +q lki (T.,.b )GI( 7E P (T+ b)

For the linear deteotor,_ I >> 1, we have, substituting (12) and

v. ) in (9)



W2 u ix d IT='4.J-' ] w .

0

T

2f[- (T6)) W sin 4" d T

T-b (A-%

(Ts6

-2 I(T+b W Sifn aft d T

= (w ,tpbG'( sob )+ ap T 0,( ip T)]( )2

Cap (T- b)G,(%p (T- b)) + Kp (T+ b)G,(P (T+ 6)]

" ( )2

We consider next the Gaussian filter* Substituting (10) and

(1)i) in (8) we have, for the square law detector, single gate

L2 =2f (6 -2) (aw 2 o.p 2 2  • " p 2,T 2] d

S 2  ( 6v dx+P dpj -xr d
(A-9)

b+/- x82.d +(pb -x)e- x d:x

0 o

where we have made the substitution x = Pv V'7 to obtain the first

integral and x = fvr 2 to obtain the second* The integratio-s

are now straightforward and may be expressed in terms of the fun.'Icn

Zrf(x) = -- ( o t' dt (A-1o)

0

The results for the Gaussian filter with the double gate may be ob-

-PIned in similar fashiono The particular form chosen in writing t.

tcrms in the expressions for y2 and 0.2 given In the text was
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the one found most convenient for the purpose of computation.

In the case of the model, (15) (for the square law detector)

and (16) (for the linear detectork >> 1) must be substituted in
2 2(8) and (9) to obtain d y and d. p respectively. The expressions

in the Integrands are second degree polynomials and hence the inte-

grations present no difficulties, However, several cases must be

dztinguished with the model, depending on the values of Pb and 9 T9

since the autooorrolation function minus its d.c. value is zero for

t  I Z . For the single gate we must considor Pb 1 and

b > 1. In performing the integrations for the double gate we

mu;t consider the following six cases.

1) pb<I
P (T +b) <1

2) P6 < 1

pT<l p(T +6)

3) p

p(T - b) < 1= P

I4) p6<l
p(T - b)_-

(T) b) <Ip(,r -6) <l~ <_ p

6) PbGl

p(T - 6) , 1

In order to obtain 0y2  and i 2  In the limit of Pb or T

vory large or vory small, it is useful to note that for small x,

rn-



(x ) ,.- 22

o I (x) , xfrom (A-3) (-12

and
2x

Err) ,W . from (A-10)

For large x we have (of. Ref. A, p. 222, Eq. (8.8))

G'( W -1 - (log X + I + 0)

2
G W (A-12)

wrre C = Euler's constant = 0.5772 . . .

and Erf(x) -01

As has been noted earlier, comparison may be made with the re-

sults of Rice (Rof. A) for noiso alone in the case of the ideal fil-

ter, single and double gate and in the case of the Gaussian filter.,

single gate. For the ideal filter, single gate, the result is given

in Ref. A, p. 223, Eq. (8.10). Noting that where Rice uses OT ,

'vo fb - fa and x 2F(x) we use 07 , W, b, P and G(x), re-

spectively, we may set p = 0 in (17), which is then exactly four

times the value given by Rice, as it should be. (See comment in

paragraph beginning on line 5, page 13.) For the ideal filter with

double gato the results in Ref. A are given on p. 22, Eq. (7.3), in

the form of an infinite series which may be expressed in terms of

F~x), as noted there.c Using Eq. (6.7) of Ref. A and noting that

OT , S,T of Ref. A correspond to a s , T , , respectively

of this paper, one again finds that (after setting p= 0 in (28)),

2 a2
z is four times OS,T as given in Ref. A.

Finally, the result for the Gaussian filtor, single gate, noise



alone is given in Ref. A (p. 225) In the form of an infinite series*

This series may be sunned as shown below and the result compared

with (18) for the particular case p a 0.

From p. 225 of Ref. A we have

2 2 &2 (-)'2n
T2 w°2 t no (n+l)l(2n+l)

viicre a =Pb
Wo
wo

in the notation we havo been using. Thus, if we define

f(a) T 1-112 a n

W2 = no (n+l)!.2n+l)

~thuil

o af(a)]' a -'1 n' a L4
n=o (n+l),o

a [af'(a) 1' ..o_'2 n+

no(n+l): nz n -

= 1 - e-a 2

intograting, w0 have

af(a) l'O°t2 dtu -(-et2 )d(1
i t2

0 0

a
fla) - 2 . Ertla) + e'a2"

0 2 =
a2.

a a

Siubstituting a m Pb VON' we have



2 .2 WP b2; . r( 2 r

2
which is one fourth ofrd as given In (18) with . as it

should be,*

1'
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Value" of O(W) and G,(x)*

x 0(x) x W'(x) x G'(x

0 0 0 01, 15 1.49?3
. + 00 ,1 ,04996 15.0 105009 1

9.2 :099 9 1M,2 oO+gb .. 1991 o.5O9

.8 .156 .2970 16.5 I.5.}-

1.0 .2466 .8 340 7.0
0~ , .473 1,2 .5767 1, .51'

2:5 1.4375 1.5 .7052 19.0 105o1 0
3.0 1.9998 1.7 .78 19,5 1.51d2

2 ,.5 2 .617 2.0 .8973 20.0

.0 i 3,27,47 2,21 .96$6 21.0 15

070 566 2.0 1:1384 22.0 15-"310 101853 2:0 1.53A,8

. 7. 89 I 3.5 1,2798 25.0 1.53113. 1.391. 30.0 155-
9.0 1 1o..552 40 1.3I8 48.0 1. ..e
10.0 11. 192 4. 1.3636 0.0 ,5 5
1.0 1 1

11.0 17,777 8
S45 19.27.3 0 01180

20,779 6,5 1./4182

170 22,292 7.0 I1.4194
18.0 23,808 Z:5 1023k

190 /$.60 ou10
195 26,8 8.5 1.4i 11
200 26,8/. 9,0 1.4527

21L,0 34259.5 11 i642
260 39,o71 1000 le 4.

30.0 42,168 1015 1e
36,o '18387 1190 18748.0 ' 9,952 li.s5 1, 908

10 - 12.0 1.4920

8,899761: 1.49220100,0 1 zo978 1390 1,.t922

So 5 ( (1) . 922,

*nNot* Eqs. (A-2), (A-3), CA..11)s (A-l2).


