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ABSTRACT

In this report tho variance of narrow band noise plus c,w, signal

after detection and gating in time is derived, Tho problem is solved

1 for idcal and Gaussian filters with square law and linear detection,

4 the latter for large rwedeteotion signal to noise ratio. In addition to
these filters the analysis is carriod through for a model which
considers the envelope of narrow band noise plus signal as a function

hiich 1s constant for intervals of duration cqual to the reciprocal

of the noise bandwidth and statistically indepondont in different
intcorvala, A very closo agrcement is found among the filter typcs

mentioned and the rnodel, Graphs of the mean deviation dividod by the

BT £ RS AT et B

medn power for noise alone are given for toth filters and tho model,
w?th sgua?e law detection and predetccticn signal to noise ratios

0, 0.5, 1, 2, Finally we considor a simpliried model which is similar
: to the model proviously mentioned except that the gate is assumod to

{ start at a point of change in the model voltage, The values in Tablec 1
show that this simplified model may boc used for vecry large or very

i small gate widths but that the discrepancy is coinsidcrable for gatc

|2

widths of the order of the reciprocal »f the noise bandwidth,




Some Statistical Properties of Gated 8Signal

Plus Narrow Band Noise

I. The Problem,
. .
This paper describes some of the statistical properties of nar-

row band noise plus c.w, signal after doteo‘ion and gating in time,

2 liore specifically, we are concerned with the fluctuation of the vari-
. ables |
: t
y(t) = X x(t)at (1)
ths
and £ t-T
s(t) = S x(t)at - x(t)at (2)
t-d t-T=d

(see Figs, la and 1b)
where x(t) is the output of the system shown in Fig, 2%
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#The noise bandwidth of a filter is defined as usual by P= o
vhere Y(f) is the transfer characteristic of the filter V2
and £, its center freguency, Physically P represents Y (fc-l
the bandwidth of an ideal filter which has the same total -

power output and center frequency gain as the given filter,
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2 and czz,

w1ill depend upon the filter and detector characteristics and are in-

The variances of y and 2z , which we denote by dy

dopendent of time, since we shall assume x(t) stationary. dyz will

be a function of the parameters f, P, w, and b, and dzz will
in addition depend on the parameter T ,
We shall consider the following band pass filter characteristics:

a) Ideal Filter - transfer characteristic given by

Y(r) = 1 fo - B-<rer, + B (3)
a0 elsewhere
b) Gaussian Filter - transfer characteristic given by
ﬂ.(r‘fc)a
Y(f) = e~ 2p2 (L)

For both of these filters f << f, and the noise power output is

V=w, j‘a. I_ij)lzdf = Bw,
)

In addition to these filters we consider a model for the envelope
of signal plus narrow band noise which is frequently used, This model
considers the envelope of narrow band noise plus signal as a functilor

which 1s constant for intervals of duration‘~l- and scatiatically fr.-

P
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dependent in different intervals, An example of such a function is
showmn in Fig. 3, The times at which the functions changes its value

rre assumed to be unknown,

x(t)

[Na od

Fie. 3

The problem is solved assuming square law detection and for large
rignul to noise ratio in the case of the linear detector,

S. 0, Rice (Jour, Acoustical Soc. Amer, 1} 276 (1943), referred
Lo nereafter as Refs A, has solved this problem in essence for the
case of zero signal, The mwresent work extends that ol Rice to in-
clude signal as wcll as noise.‘ The approach is, however, different

from that of Rice,

II, Noise in Linear Systoms,

The gating process 1s a linear one and therefore the theory of

noise in linear systems may boe applied,

If we consider a linear system defined by a transfor character-

istie Y(f) or equivalently by a weighting function#

#Tae weipghting function 1s the response to a unit impulse excitation.
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h(t) = J Y(f)e

-lp

then tho output gp(t) 1s related to the input g(t) by tho convo-

2 xirfrt
ar

Mrion integral

go(t) = I h( v)g(t-t)dn
e. that -
822(13) = i I-h( < )h( )‘)gl(t" 1)81“;_ At dA
ang
f
Saa(t) = j j h( T)h( A) @,(% = N)dr ar (5

vhere  94(%)  1s the autocorrelation function assoclated with gl(t),
For the gating process described by Eqs. (1) end (2) the corres-
nording weighting functions are

1 0<t<d
ho(t) = (6)
0 ¢lsewhere
and
1 0<t<d
hy(t) = =<1 TCKECT +d (7)

0 elsewhere
The doublo integral in Eq., (F) may be reduccd to a single integral by

the transformation - A= 19 , A=§

For hy(t) as given in Eq. (6), we then have

5 b b-q
j j h(o)h(N) @ (s=Nat aN = ZS an wl(q)f h(n + E)n(E)AE
0o VYo (o) (o]

From Fig. l} for hy(n + &) and he( &) we have

d-n
j h(n + Eh( §)AE = d=q for 0 S q§b
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a6 that the double integral of Eqe. (5) becomes

2 o
gy (t) = 2[ (3 - n) ¢3(1n)dn

o

~
(e}
-

(see footnote to Eq. (9))

Fcr hy(t) as piven in Eq. (7) weo have
T+d T+d +d T+ 1
I j h(%s)h(N e, (v-N)dtdr = Zrdq ? (n) L h(n+ & h(E) a3
o Jo

°

Prem Figs 5 for hgz(n+§) and hy(E) one may note that there are the
T+d=1
fcllowing contributions to the integral[ h(n+g)h(g)dE

o
a) For 0 2 q==<b one has

3= n+ (T +08-1) =T =2(d - 1)
b) Foroé'r-’q-ﬁ (L,00 T = 82 q=<'1’) one has
[6 <(T-n)] =[n - (T~ ¥]

Sren -3 (1ee PSS 74+ ) one has

¢) For 0
[T+ 0-9]
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1kus the double integral of Eq, (5) becomos, for the doublo gate.

® T
gzz(t) = l;f (d=n)®(n)dn - 2[ [q=(T=2)] ®1(n)an
0 -d
T+d
- zj (T+d- 1) g (n)an * (9)
T

This result 1s not altered in the event that thc regions mentioned in

a) and b) overlap,

It may be noted that we have chosen to oxpreas 322(1:) as a
double intogral involving h(t) and ¢( t) which is then reduccd te
a single integral, Vo could equally wecll have oxpressed -3—2-?(—;; di-
rectly as a single integral involving the transfer function Y(f) and
the input spectral density., This procedurc was not followed, howevor,

since the integrations to be performnd aro not nearly as simple as

: M e 2 ’
#The variance 6% = gaz(t) - [g2(t)] 1s givon by Eqs. (8) and (9).
with @31(n) replaced by ’1(") minus its d.c, voluo,
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those indicated in (8) and (9) for tho case of the Gaussian filter
and the model, We thus use (8) and (9) for the evaluation of 0,?

and 6,2 respectively (sce footnote to (8) and (9)), for which we
need the autocorrelation function associated with the output of the

detector, This is discussed in the following seotion, ‘

III, Properties of the Detector Output,
. The action of the detector 48 such that it rdotifies linearly

the input signal plus narrow band noise, raises the result to some
vth-power and thcen filters so that all components of frequency of
the order of the garrier frequency and above are stopped, In our
analysis, however, we consider the detector es a device which first
obtains tho envelope of the input signal plus narrow band noise and
then raise¢s tho envelope to the Wh power, This output is the same
as that of the actual detector apart from a constant multiplying fac-
gor, (See Fig, 6 below,) For purposos of computation it is more

convenient to consider the second description of detector action,

signal plus linear vth law low pa
‘ . . pass  Lg x(t)
. ::{:g" band _.4 rectifier device filtor
g »
{
th
signal plus onvelope v law
narrow band =® gotector *1 device > x(t)
noiss ‘
Fi‘o 6.

R PAOS  rairn 7o o 0



The spectrum and the equivalont autocorrolation funetion of the

output of a square law dotcotor have bcen obtained by Rice (Bell
System Tech, Jour, 2, Part IV (1945)) and by Lawson and Uhlenbeck
{Threshold Signals, Vol, 2 of M,I,T. Rad. Lab, Ser,, McGraw-Hill,

¥

1950, Secs 7,2, referred to heroafter as Ref, B), Tho result of !=-

2 2
and °z

s, S ¢

teraat for the determinatiog of ¢ is the autocorro%a-

Yy
+*eq function minus its d.cs value., (See footnoto following Eqs,

) and (9)), This is givon in Ref. B (p. 155, Eq, (17)) as

T RN CWAR s we e o e

o( ©) = hPZW pl <) + l;wz pa( 1) {10)
vaong W = nolse power input = Bvwo
‘P = signal amplitude

-3

and 3 2
j 1¥|% cos 2 m(fer )t ar
o]

ol 7) = — (11)
o]

In the case of linear dotection the autocorrelation function may
£lsn be obtained from Ref. B (p. 157, Eqs. (20a) and(20b)), but in
s case of signal much greator than noise 1t may bo obtainod roacdily
by examinling the Rico reprosentation of narrow band noiso as

X(t) sin 2nf t + Y(t) cos 2yt
wheeo X(t) end Y(t) are slowly varying functions which have Gaussi.n
proability distributions with variance W ond have normalized auto-
correlation functions = p( ), Thus the envelope of narrow banc

ncise plus signal = P cos 21tfct may be rcprcscented at any instant

H
£
|3
k
]
&

by the vector disgram shown in Fig, 7, and for PZ5>X2 = Y2 the £l -
tuation in ﬁ is duo primarily to tho fluctuation in X so that in tru
1init of very large P, the autocorrolation function minus its d.c,

value is




R(t) R(t + ®) -(F)% = X(t) X(t + ©) = pW (12)
Thus, for the ideal filter, substituting (3) in (11),
11‘°+ﬁ/2
J cos 2x (f-f,) =df
plx) = f,-p/2
r.+f/2
[ e
t,-p/2
| _ sin x % B r12;
np n
«ré for the Gaussian filter, substituting (L) in (11)
@ x(r-r,)?
e '——B-z—' cos Zn(f-fc) T d4f
: o
pl=) = =
g -x (f-t’c)a ar
3} ——?——
0
-]
g - ufz
) 2 cos 2 xf Tdf
Jo P - xp2 2
= =0 (15
- xfz '
) "ﬂ?

T -0
cinza T;’. 351, Egs. (13) and (1) may thon be substituted in (10; to

- K _ ..
/"' "' \,
P X
Fige 7

iy P A T s it Y i
.
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obtain the autocorrelation runctign minus its d.,c, value in the case
of the ideal and Gaussian filters, '

For the model the autocorrolaeion.runction is given in Fig, 8

in the case of the square law detector,

v(r)'
— x¥(t)
S—
{ ] x (t)
' |
! !
SRS SR S S
A ]
Fig. 8

From Ref, B (p, 155, Eqs, (14b) and (17)) we have
2

) - x2(t) = Lwp? + LR
so that the autocorrclation function minus its d.c. value is givon by

(%) = (4wp? + 4w2)(1 - B |%l) <1l
v ¥ b P Il B (15)

|| >-§-

In the ctoso qf !:he linear dotector the autocorrelation function is

=0

given in Fig. 9, . 2
~ Por P2 MW, xa(tl - x(t) may bo obtained either from Ref, B
(p. 155, Eqs, (1}a) and (14b), rotaining the first two terms in the

asymptotic expansion of (1lha)) or directly by sotting % = 0 in (12),

giving 2
xz(t) - x(t) = W
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Y(T) |
— x“(t)

x(t)

(o)

- — = —
ﬂ

DN ———

Fig. 9
327 that the autocorrelation function mdnus its d.,c, value 1is

C WL - | <l
e(t)=w1-8 Ish) |l (16)

=0 <l >

i~ wl

IV, Results, Discussion and Conclusions,

.

oy and 622 can now be determined for the ideal and Gausiian
filters from (13), (1), (10) and (12) by substituting in (8) and {9),
and for the model by substituting (15) and (16) in (8) and (9), The
integrations are carried out in the appendix and the results are as
follows:

For the single gate, square law detector

2 G(2 n pd) "
Ideal filter oyz = %%)'2'[ +hpnpaot(n B b)] (17)

#To perform the integrations it was found convenient to introduce the
function x $

o(x) = ds‘L igget g

defined by :

" l-co8 X
Gtﬂ=-—;r' ’
e valuesof G(x) and G'(x) for O
the end of this report,

G'(O) = G(O) =0
S x § 100 are given in Table 2 at

o o i



Gaussian filter

w2 ot 2 —2xp?_ 2
oaa-—f:,-_n——[ZBb JZr Erf(Bd VZx) + e -7;3

For Bd «1, dya for both filters as well as the model should

Y B X
(18)
' <
¥odel dye = h.wa ba(l + 2 p)(1 - -E;—), pd =1

5- (19)
i = th 2(1 + 2 p .Ji___%;.
: (p>)
: 2
j whore. g = gﬁ = predetection signal to noilse ratio,

be the variance of a single sample, of width &, i,e. we should ex-

»31t to have

2
dyz = 82 [xh(t) - xa(t)} = 82[hwp? + L2 1= Lw? 83(1 + 2 )

(20)
(se2 Ref. B,, pe 155, Eqs, (14b) and (17)), Substituting the exprec=
s‘ons for G(x) and Erf(x) as given in the appendix (Eqs. (A-11)), (17..
(16) and (19) reduce to (20) in the 1limit for Bd << 1,
For gd >>1, we may use the asymptotic expressions for G(x) w:d
Brr{x) given in the appendix, Eqs. (A-12), and obtain the following
1imits from (17, (18) and (19):

2
Ideal filter : (1 + 2 p)pd (21)

w2
. Gaussian filter ﬂ ) (22)
Model = k‘;—; (1 + 2 p) B (23)

In each of these cases °y2 i1s proportional to ® as 1s to be expected
£inze for fd >> 1 the gating process is effectively adding up a
nvroer (of order b ) of independent random variables, the variance of

tha sum then being the sum of the varlances, It is to be noted that
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both for Bb << 1 and Bb >>1 the oy corresponding to the ideal
filter and the model are equal for all signal to noise ratios, The
values of Gya for the ideal filter and model do not differ appreci-
ably even for B3 ~ 1, as is shown by the figures given in Table 1.

For the particular case of zero signal the expressions given in
(17) and (18) for dy? for the ideal and Gaussian filters with square
law detector and single gate are compared with the corresponding ex-
pressions given in Ref. A (pe 223, Eq. (6,10) and p, 225) in the ap-_
pendix, and are shown to be four times the variances given in Ref, A,
This 1s to be expected since in Ref, A Rice considers the short time
avirage value of the noise after detection, whereas we have been con-
sidering the envelope, and those differ by a factor of two,

For thé sinzle gate and linear detector with large signal to

no’se ratio, we have the following results:

2
2 = 20 G'(ﬂupﬂbb) (0

Ideal filter dy

Gaussian filter

2 L ) /
Oy = 5;-27_“-[25 /r Erf (B 3V ) ‘\ﬁ e Vi
' (25)
Model oya =Wd3(1 - -%—b-) , B S 1
(26)

we 2(8b_- 1/3) 8 21
( Bd)°

. : 2 ‘
Again, for P11, ¢ for both filters as wcll as the model

y
should be the variance of a single sample, of width & , 1.¢, we

should expect to have

L} 2

oy2= bZan(t) - x(t) ]= 5 % (27)

Substituting the oxpressions for G(x) and Erf(x) as given in the ap-
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pendix (Eqs, (A-n)), (214.); (25) and (26) each reduce to (27) in the
linit for P8 <<,

For Bd > >1, we may use the asymptotic expressions for G(x) and

Eri(x) given in the appendix, Eqs. '12), We then obtain, from (2.},

(25) and (26),
e _ ¥ (274)

: for both the 1deal and Gaussian filters and the model, In (2a), as
‘ . ia (21), (22) and (23), dyz is proportional to &, as is to be ex-

pocted,
For the double gate with square law detector we have thc follow=
ing results:

Ideal filter

2 [G(2 n Bd) + Lunpd G'(npd)
g2 _ 6w , |
2 T (np)?
| +G(2xBT) +hpxP TG (xBT) (25
[G(2 ® B(T-3)) + Lunp (T-d)G'(xB (T-d); ]
4w ;
(xp)2 [+6(2 np(T+8)) + bpx B (T+8)GT(np (T+ b .°]

\
Gaussian filter

o 2 . M C2Bpd V2x Erf(ps V2m ) + 2PT VZRErL(p T V2% )|

* o BAA

=B (T-35) VZRErf( B (T- 5) V2x) - B |
- B(T+ d) ZxErt( B(T+ d) V2x )
__g_e-zxpz %2

§
§ + /x Y 3
§ 1] 2 -ZIBZ(T- 6)2 T2 -2% BzTZ
¥ - n | — o R Sl - +
2| /% > 2 YR
-2%f (T+ d)
+ e (29«

S
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Gaussian filtor (conttd)

(2p8 V& Erf(Ba/R ) + 2pT/% Erf(BTvX )
BSvn
2 'ﬁﬁaba 2
+W° -7_;-
;[2 ""32('1'-5)2 > - = B2
"2 |/ ° -2z +
- np2(T+ )2
+ 2 e .
| R
Model

2 2 1.
8w (1+2 r-1i 8
2) of:? *2p ) ps) [B 355, p(T+d ) <1
2 -
2 8w 142 2-1 3‘- 2 - < 3 - 3
b) f’z =—2-B (1+ p)[( ps) (B d) Q(Tab) + B (T- )

gL N R P ST | BJ
3 z+ (B 3(.3'1')

BT <1 fp(ma) (s

23)
2 gwe [( Bd )2 - 1(ps)3. 1-ﬂj_t£_-jﬁ+ 3(7-3)3
o) [ LST“)"

o, =—3(1+2,)

2 p +'B(T£b)
gd < 1
B(r-3)< 1< BT
2 _ o2 2 1 3
= 1+2 -1
d) o, -5-2( p)[(Bd) 3(55)] 55 < 1

1S p(r-8)

S R e . 5 b~ P e 08
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on? (T- 2(p- 5)2_p3(r- )3}
o) dzza"p'zﬂ"'?-u) ﬁb-%+ ﬁﬂ_é_b_)_... pelT +B |

1$ pe
B(T-3) <1 S pr

Q r) dzz =gg-2§0.+2p)(35 --;-) liﬁb

B (- 8)

: 2
3 For Bb << 1, dy“ should be the variance of the difference of two

‘ sarrples, each of width b, separated by a distance T, i.,e, we shouid

evpect to have

| 2]
"’ dza 52[-(x2(t) - x2(t+7))2 = (xa(t) - x2(t'+ ‘1‘)5‘,

25 2 [x(t) - x2(t)x2(t + T) ] (31)

8W2 52 [(1-p 2(T)) + 24 (1- p(T))]
(See Ref, B, p. 155, Eq. (17))
For the ideal filter this is

o 2:8712 bz[ _sin sincn BT 2 ( sin =nf ) Y
z (x B T) nfT
anéd for the Gaussian filter
-5 7B 2m2 -
022=8w2°2[1_62KBT +2p (1 - o =B ] (31b)

(32a) and (31b) may be obtained directly from (28) and (29) by examin-
ing these expressions in the limit of PBd K1,
In the case of the model we have, for Bbd<<1

s 2_ 608214+ 2p)pT for BT < 1, from (30a) (312)

2 . w?s2(1 4+ 2p) for BT > 1, from (30d) (314
For PBd <<1, BT >> 1 we have, for both filters as well as for

L
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the modol;

0,2 = W% 82(1 4 2 p) (32)
which is twice the variance of a single sample of width b (see Eq.
20), as 1s to be expected, |

For B3 > 1; we have; substituting the asymptotioc expressiniis
for G(x), G'(x) and Erf(x) in (28) and (29); and directly from (30),

oza = %22(1 +«2p)Pd (33)

for the ideal filter and the model, and

2
2 _ on <!§+2p)ab 3l,)

0, = 7;2
2

¢, as given in (33) and (34) are twice the variance for a
single gate for which b >>1 (see Egqs, (21), (22) and (23)), as
skculd be expected, It may be noted that (33) and (3l) are obtain=d
fer Bd >> 1 regardless of whether B(T- d) <1, Pp(T-3)~1or
B(T=d) >> 1,

For the particular case of zero signal the expression given in
(27) for oy? for the ideal filter with square law detector and
danble gate 1s compared with the corresponding expression given in
nefa A (-, 224, Eqe (7.3)) in the appendix, and is four times the
variance given in Ref, A, as 1t should be, since in Ref, A the aver-
age value of the noise rather than its envolope is considered,

For the double gate and linear detector with large signal to
neise ratio, the results are as follows:

Ideal filter: B
¢ 2=—ltw—- (rpdG'(xBd) + xPTG'(xP 7))

T  (xp)? (32)
-2 [xB(T-8)0'(x B (T-8)) + P (T+d )G (xP(Te & .
(=xp)

R
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Gaussian filter:

Model:
a)

b)

c)

)

e)

£)

- -{
Eﬂbﬁ Erf( pdyx ) + 2BTVX Erf(p TVX )
-B(T-0Wx Erf(p(T-d)/x ) -
- B(Te 8)VR Erf( B(T+8 VX )

2 -xpaba 2 (36)

VX
[_g__ - xp2T-8)2 _

+

N

N

2me -nB2 2
-2 o BTE 2 o~ TP (T+b)_l

n
2
VR v J

b

2
z

=é:.§( pb)z[p'l‘-%pb] BT+ 8) ¢ 1

- .( pb)a-l( By )3 - p2(1- e p3(T- )3
6, =2 3 _z_b._ + _.6_b._

B

- B%’-’-—P—’-+l+(p'r)2-%(m)3

i 6
BT ¢ 1< B (T+8)
2w |(ps)2-Lpe)d -1 pitr-012 pir- 5)3-.“:’7.'
6g = —ﬂ'z 3 [ |
* pj_';‘_-_bl Bd < 1

B(r-3) <1 S prt

2
aza=-§-w2-[(ﬁb) - 3( 88)°) B < 1
1 $p(T-0)
2 1, a(T=0 2(r- 3)2 3(r- 8 3]
°z="§'§[5°"z'*" *57——*5—5—L<
‘ 13p8
B(T-3) <1 $pPT
¢2= ZW( Bb"}-) lgpb
p 3 <
1= 8(T- 8)
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¢

Again, for Bd <<1, cya should be the variance of the differs
ence of two samples, each of width 3; separated by a distance T,

1.0, we should oxpect to have 2

0,2 = 52 [(x(t) - x(t+7))° = (x(t) - x(t+1))])

= 28 2 [x2(¢) - x(t)x(t+1))
=281 - p(1)) (38)
] f2r large signal to nolse ratio,

% ‘For the ideal filter this is

=B T
and for the Guaussian filter
2m
622 = a2 2(1 - o=TB“T ) (38b)

(38a) and (38b) may be obtained directly from (35) and (36) by examin
ing these expressions in the limit of Bb << 1,
In the case of the model, we have, for PBbd < <1,

6 %= w2
2z

ozz =W 2 for BT > 1 , from (374d)

BT for BT <1, from (37a) (3Cr?

For 8b > , BT > >1, we have, for both filters as woll as for the

model

#From Eq, (12), for_large signal to noise ratio, wo have 2

2 e

x(t)x(t+T) - x(t) = p(T)W, and, setting T = 0, X 7(1) - x(t) = W,

THus x2(t) = x(t)x(t+T) = W(1- p(T))

[ T bt SRR S THUGRAR St b/ Leyet s iyt o 1 100
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5'2 - W32 (39)

which is twice the variance of & single sample of width d (sea
Eqe (27).

For f6 > > 1lwe have; substituting the asymptotio expreasiqns
for G(x), G'(x) and Erf(x) in (35) and (36) and directly from (37),

o?-a%":z B (;0)

3 for both filters as well as for the model, The remarks made follow-
ing (34) apply equally well to (40), (ecf. Eq. (27).
In the accompanying graphs (Figs. 10, 11, 12), the following

picts have been drawn, in each case for the square law detector on‘y-
{ 1) —41 as a function of Pb for both filtors and the model, and
| in each case fqr pre-dotection signal to noise ratio p = ——=— = 0,
O‘S; 1,0 and 2.0; vhere m = 2Wd 1in the mean power for noise alone
and gate width d ¢ This same quantity has been plotted in Ref, A
T 217; Fig. 1) for the ideal and Gaussian filters in the case of

2]
n~ signal, and is denoted there by I .
2) %%E as a function of fb , with T =® , for both filters GRS
.,
3
ol
3¢5, 140 and 2,0, whore m = 2W d , For the particular case of the

che model, and in each case for signal to noise ratio p =

!deal filter and no signal this plot is givon in Refe A (p. 217, I'ig,

COp, T
1) and 18 denoted there by —t— .

¢
3) _ai as a function of § T, in the 1limit as ®—>» 0, for both

fflters and the model, with m and tho values of y as glven in abeve,

T".c2e graphs show & very good agreement among the filter types chosen
nnd the model, For most appligations use of the model is probably
justified, It should be noted, however, that when the model is uscd
in a very simple manner for computations, that 18; by assuming that
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the gate starts at a po?nt of change in the model voltago; then the
rosults are not as gnoq, as ia ,hoyn by the values of _:_‘l given in
Table 1 for fb = o; 1, 2, 3; 4y Se

Applying the model to the gating process ia eagentiany the sars
as adding a certain number of independent var:iablea. When the modci
is used in the simple manner described above, the numboer of inde-
p~rn.dent variables added is necessarily less than or equal to the num-
oir added.when the model is used as in this paper, For oqual gatu
durations, both methods will give the same mean value, but tho simple
method will result in a larger variance,# For Bd > > 1 and for
B5 < < 1, both methods agree and the greatest difference is whon
pd ~ 1,

vAS a simple example of this principle, conaider t!o independent 122~
d>n variables x and y having the same variance o€, If, however,
w> compute the variance of 551 we get _g_ .

Tt SNBSSl ¥ T AR SE
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g TABLEI
Values of ‘% for p= 0, 0,5, 1, 2

ﬁb-o\ﬂb'-1‘ﬁb-2 po = 3 Bd= |, | po= ¢

J—— p - o
r;;mplified Model 1 1 0,5000 | 0.3333 {0,2500 |0,200C
| #odel 1| 0.6667 | 0.4167 |0,2963 |0.2292 |0,1867
;Ideal 1| 0,6559 | 0,3961 | 0,2825 |0.2196 |0.1797
| srussian 1| o0,5479 | 0.,3225 |o0,2184 |0,1665 0.3

p= 0,5

-

:Slmplified Model 2 2 1,0000 | 0,6667 |0,5000 |0.4000

| 1i~de 2 | 1.3333 | 0.8333 | 0.5026 |oulises |0.3733

| Tceal 2 | 1.4296 | 0.8476 |0.5929 |o0.4571 [0.3716
Lsnussian 2 [1.2312 | 0.7431 |0.5265 [0.3968 [0.3217 |
L B=1,0

f;:mpliried Model 3 3 | 1.5000 |1,0000 |0.7500 |0.6000 }
| iodel 3 | 2.0000 | 1,2500 |0,8889 {0.6875 |0.5600

| Tceal 3 | 2.2033 | 1.2990 |[0.9032 |0.6946 |0.563L

| ceussian 3 | 19140 | 1.1637 |0.8145 |0.6272 |0.5092

L p= 2,0
gS:lmplifiod Moddl S S 2,5000 1,6667 1,2500 1,0000
| Kodel 5 ]3.3333 | 2,0833 |1.4815 |1.1458 |0.9333
| Tasa1 5 13.7507 | 2,209 [1.5239 |1,1696 [0.9471
igsusainn S | 3.2809 | 2,0049 [1.,4106 |1,0879 |o0.8843

Aty o e - o -
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ndix

In this appendix we give the details of the integrations in-

volved in the determination of oyz and 0'2.
Let us consider first the ideal filter, Substituting (10) and

(i3) in (8) we have, for the square law detector, single gate,
2 L3
"2=2f(b-f)[hn2M+m ’1“ )z_] av (A-1)
y t 8-
o

To perform the integrations it was found convenient to introduce the

function '
6(x) =f ds f -—2-—1 208 b 4t (A-2
o
defined by
on(x) = 122X gi(0) = alo) = 0 (A-3)

andi in terma of which
E-‘-%—’S a 26"(x) + xG"(x)

2 x
sin 2 _2(1 - cos x)

= " o
x Xf 26 (R)
G
Thns, mak ing the necessary substitution of variables in (A=1l) we have
2 W d
Oy ?‘:)2 (=pd -x)[ 26"(x) + xG"(x) ) ax (A=)}

()

‘2

%‘:;")'5 (2:96 - x)G"(x)ds
o

Integrating successively by parts and noting G'(o) = G(o) = 0 we ther

ohitein

o 2.5.'&__ [G(2xBd ) + Lpxpd a'(xpd )] (A=5)
y ( =p )2
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where 4 = 555 is the pre-detection aignal to no;oe power ratio, The
result for the ideal filter wit;h linear detector, single gate and

p > > 1 is obtained similarly, substituting (12) and (13) in (8),
giring

Q
i

2 2‘f (b -y Mo o

xpv
o ' (A-5}

M, xpb G'(xPB )
(x )2

The results for the ideal filter with the double gate mey
bo obtained in similar fashion, Substituting (10) and (13) in (G),

we have, for the square law detector,

b
2:&5[6-1] [hWPam;t-F%?-+hw2 (%)2] arc

o
7
J[-:- (1- 8)] [Lwp? &‘r’@- + 4P (ii-"—l,‘?-?—-) ] & (a-7}
A
®
.2 f [7+d - v)[LwE2 sin’lu T, (EL‘L".FL) ] at
T —d
o 6(2 %Pt ) + lunp d G'(xpPd)

(x p)° |+ G(2 =B T) + by =B TG' (=P T)
w2 [e(2xB (T~ 8)) + huxB (7= ®)Gr(x B (T~ B))
( xp)° [+ a(2xB (T+d) + hLpx B (T+d)a (% P (T+ 3))
For the linear doteot.or;\ B> 1, we havo; substituting (12) and
{13) in (9)




B e Tt

3
o 2 =hj[a.¢] w-’-&!’%"— ax
o

7
-2/[-:-('1'-5)] w%ﬁ"—u
-3

T4

npt

(A-9)

= hw [xBdG'( xpd ) + =p T G'( np T)]
(xp )2

. ==X 5 [1p (T- 8)G(xB (T= 8)) + %p (T+ d)at(xB (T4 5)]
(=B )

We consider next the Gaussian filter, Substituting (10) and
(1) in (8) we have, for the square law detector, sl ngle gate

- 2 2. 2
62=2 (6_1)[hwyaeﬂﬁ2"+h'2°-2131] ax

Y
(A-9)
, Y ) By V2R
= Swe (Bd vV -x)e‘xadx + 'L (B4 Vv2x - x)e.x2 dx
xp 2 =
o o

where we have made the substitution x = Bt vz to obtain the first
integral and x = Bt V2% to obtain the second, The integratio:s

are now straightforward and may be expressed in terms of the func.icn

& -

o

2 .
Brf(x) = —2. j o=t at (A-10)

The results for the Gaussian filter with the double gate may be oh-

52tned in similar fashion, The particular form chosen in ﬁriting tio

tcrms in the expresalons for oya and ¢ 32 given in the text was
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the one found most convonisnt for the purpose of computation,
In the case of the model, (15) (for the square law detector)
and (16) (for the linear detector, p >> 1) must be substituted in

(8) and (9) to odbtain ¢ yz and 6:2

, reapectively., The expressions
in the integrands are second degree polynomials and hence the inte-
grations present no difficulties, However, several cases must be
dtztinguished with the model, depending on the values of Bd and £ T,
since the autocorrelation function minus its d.c, value is zero for
B!« |.>-. 1 . For the single gate we muat considor PBb S—; 1 and

£d > l, In performing the integrations for the double gate we

must consider the following six casesg

1) pd <1
B(T +3) <1
2) pv < 1

BT<1 S BT +3)

3) Bb <1
p(r - 8) <1< pr

L) PBpd<1

Blr -8) 21
S5) ps21

plr -8) <1 S pr
6) ps21 B

B(T - 8) 21

In order to obtain 0.° and ¢,2 in the limit of B or PT

y
7ory large or vory small, it 1s useful to note that for small x,

3
!
§
i
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G(x) ~ iﬁ

ar(x) ~§ from (A-3) (A-11)
and

Erf(x) ~§;_f_ from (A=10)

For large x wo have (cf. Ref. A, p, 222, Eq, (8.8))
1t
G'(x)~-2-x - (logx+ 1+ 0)
r
G'(x) ~ 3 (A-12)

wrere C = Euler's constant = 0,5772 . . .

and Erf(x) ~1 ,

As has been noted earlier, comparison may be made with the re-
sults of Rice (Rof, A) for noise alone in the case of the ideal fil-
ter, single and double gate and in the case of the Gaussian filter,
single gate, For the 1deal filter, single gate, the rcsult is given
in Ref, A, p. 223, Eq. (8.10)., Noting that wherc Rice uses O, ,
Awy, , fp = fg and xF(x) we use Oy W; %, B and G(x), re-
spectively, we may sot p = 0 in (17), which is then exactly four
times the value given bv Rice, as it should be, (See comment in
paragraph beginning on 1line 5, page 13,) For the ideal filter wii:
double gato the results in Ref, A are given on p. 224, Eq. (7.3), in
the form of an infinite series which may be expressed in terms of
Pi{x), as noted there, Using Eq. (6,7) of Ref. A and noting that
5;.1. » 3,7 of Ref. A correspond to ¢ , , T, b, rcspectively
of this paper, one again finds that (after setting w= 0 in (28)),
0.2 1s four times © Sf’l‘ as given in Re!“. Ao

Finally, the result for the Gaussian filtor, single gate, noise

oS e WA 3O
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alone is given in Ref, A (p. 225) in the form of an infinite series,

This series may be summed as shown below and the result compared
with (18) for the particular case p = O,
From p, 225 of Ref, A we have

2 2 n 2n
°T2='2‘.—_£(.1) L

© 2% p=o (n+l)!(2n+1)

wheore n

pd
L4

P : .
in the notation we have been using, Thus, if we define

Ome - 2 .2n
fla) =T .2 (-1)a
(a) we bz n=o (n+l)!(2n+1)

then
n_2n
[af(a)]' é L:_I'L_T_
(n+l),
or
a[af(a)]' = Z( —=1- 2 .(.ﬁ_L
n=o (n+1 ) n=o0
=1 - o-82

intcgrating, we have

-t2 42
af(a) = j 1-0 at = j(l-e t )a(- l)
2 t

o o]

-al
= /X Erfla) + -°-::—'-1-

2 2
oL ] -
f(a) = T is Erf(a) + [l §

Substituting a = pd /2x , we have




02 e —3— [2p6 VIT Er(p b VIT) +

4 V&
2 -2wp2ed _2_,
+ T (] ﬁ]

which is one fourth of dya as given in (18) with p = 0, as it

should be,
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TABLE II
Values of G(x) and G'(x)#
x ox)  § x| e | x | e |
0 0 0 oL N 1.497
.2 + .0100 } .1 .m9 6 %éog 1.15‘.303 !
o% 0 92 o2 «09989 1 05 1050!}9 )
3 . oo o% 01991 16,0 : 10509,0 l
; 08 [ 15 6 . .2970 16 ® S s 1 I S.L?.L. '
¥ ]
i‘ 1.0 2466 .8 +3930 17.0 1,515%
{ 1.5 .gﬁSS 1,0 .ﬁzgh 17.5 1.5169 :
P 2,0 9473 1,2 +5767 18.0 1,5277 |
i 2,5 1.4375 1.5 7052 19.0 | 1,8150
§ S 1 2,617 2,0 .897 20,0 | 1,519%
] ﬁ.o i 3.27%% L 2.2 .92 8 21,0 | 1.?232
I 4.5 | .25 1 i z.g I 1,0581 22,0 1,552
: 2.0 ( é. 566 2.8 | 1,138, gﬁ.o 1,52:%
o0 : «0713 ! 3.0 } 1,1853 0 1,5393
goo : 703893 ‘; 305 l 102798 i 2500 1.5311
0 ! €.913 Y ﬂ.? 1,309 | 30.0 1,528
900 i 100 552 ;l 0 A 103%48 ﬂB.O 1.5“8 !
10,0 11,8192 b2 | 1.3636 £0.0 | 1.8 |
11,0 | 13,301 ! L.s | 1,385 0.0 1.8550 |
12,0 17916 L8 | 1, ‘ '
; 13.9 i %2.32u ! %.o REwt: ! ! ’ f
' 0 b LT.TT7 z.S ‘ 1,415 ! g |
? | 15,0 1 19.27h3 0 | 180 | !
: 16,0 | 20,779 6.5 | 1,182 | |
. i |
i 17,0 | 22.292 7.0 | 111 ' ’
: %0 | 23.808 1.5 1.&22 3 5
: 19.5 2 'aﬁﬁ 8.5 1.4411 ‘
: 20,0 | 26, 9.0 1.h527
: |
; 00 1 [} 2 ° 1.— 2 !
g . g%oo i 33. g lg.g 1.&6!" i
6. . 1,387 11,0 1,487 |
0.0 0619 12,0 1.4920
0.0 I 8. 76 12,5 | 1.¢322
100,0 | 150.8976 13.0 | 1.4922
13,5 10&922
o0 1,494

#ote Eas, (A-2), (A-3), (A-11), (A-12),

- —-——



