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Introduction and summary. '‘aximum likelihood estimates of the

parameters of a bivariate normal distribution are obtained for a sample
in which only those observations falling in a specific region can be
measured, all other observations being called "unmeasured observations'.
Two cases are treated, the number of unmeasured observations being un-
known (Case I) or known (Case II). Explicit expressions are obtained
when the region of truncation is a rectangle or an infinite strip, The
asymptotic covariance matrix is obtained simultaneously with the solution.
'lg denote the bivariate normal density function with parameters
Mys Ty thys oy, and p (sometimes denoted Xl, Aoy XB, xh, XS for con-
venience) by #(x,y). Then, in Case I, the likelihood of a sample of n

independent observations all in a region R is

1 n
"'ﬁ 11 ¢(x.g )Y.; )
p i=l T

wnere

‘

p = Pr/(x,y) in R 7 = S #(x,y) dx dy ;
2

and, in Case II, the likelihood of a sample of N independent observa-

tions of which n observations occur in R and M-n elsewhere is




v

2=

™M (1-p)' rnw(x.,y ) .
n §=1 i?71

The partial derivative of the logarithmic likelihood, L , with respect to

one of the parameters, say A, is

n
%T{ = - f(n,p) %ﬁ + _;315@); log #(x,,v,)

where f(n,p) = n/p in Case I and f(n,p) = (¥-n)/(l-p) in Case II. To
obtain the maximum likelihood estimates, all five partial derivatives

are equated to zero and solved for the unknown parameters,

Tterative solution of the maximum likelihood equations. To solve

the five estimating equations simultaneously, we propose a Newton itera-
tive procedure, Choosing an initial trial solution, we approximate the
system of equations by a linear system using the linear terms in a Taylor

geries expansion, Thus

S 2

. 9L . (3L + 2 s A=A (1) =l,e0.
0 - K, &) 131(3%5?3)(1)(13 ) (Geheen8)

where a subscript (1) denotes evaluation at the first trial point and a

superscript (1) denotes the first trial value. In matrix notation we have
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1l
fay = Ay &Y

vhare { is the (colwmn) vector with elerments gi (3=1,...,5), d(l) is
J

the (column) vector with elements (Xj-xj(l)), and
2
\ = s t. QL
A (aij) ( gxggxil .
Second trial values are obtalned from the first from

(1) _ -1
N R

(assuning L(l) non-singular), and by substituting these values for the
initial ones further estimates are obtained, and so on until stability
is reached, (Tt may not be necessary to recalculate the A matrix at

each step if its elements are sufficiently stationary. '’hen it is recal-

culated, its inverse may be obtained quicklv by iteration Z";;7.\

“recision of Tstimates. The asymptotic covariance matrix is the
2
inverse of the matrix with elements ~(- S%Tg%?')’ and thus may be estimated
RN

by A'l This estimate 1s obtained simultaneously with the solution of the

estimating equations,
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Rectangular truncation. Here we develop exvlicitly the estimating

equations for a rectangularly truncated population. ILet the region R be a

rectangle, bounded by the lines x = hl, X= h2, y= kl, y

Then

k2

)

Now @#(x,y) may be expressed as a power series in p with Hermite

2
#(x,y) dx dy .

h
h
functions as coefficients

Jxy) - whe 2 O e (S o (kD)
X y v=0 : Oy

where

1 g" %2

6 (8) = (-1) =S (v=1,2,...)
v {2n at” ’
2
1 -t7/2
W) = e 2

(See R. A. Fisher's introduction, po.xxvi-xxviii, /2 7.) For negative sub-

scripts, the llermite functions are defined by the two following relations:

t
2
G_l(t) = 1-| L e /2dx
y2n
-

-

= k, (hy<hy, k< k).




t 6 (t) = vG ,(t)+G ,(t).

Since the series in p converges uniformly in x and y, and since S Gv(t) dt =

- Gv-l(t)’ ve have

M 52
P = & \,!G(x)o(y)dxdv
M &
52 'n'}g
0 v
= on o % Gv(x) dx g Gv(y) dy
£1 ™
= %0
where
h, -4 h, =pn
- i x = 417 -
Egi G, N4 0‘:2 (1=1,2)
and
co pv ,
Z:r,s ; viO'VT / v+r l(F ) - +r—1(g2) / /—Gv¢s-1(n1) v+s-1(n2)—7 '

After calculating the derivatives of the Zr g function, we obtain the
3

following derivatives:
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".i 32 =2 (2), o* 2P25 1+ 0725 5* Zp )

X X
|
S S [ 022, g+ o(2, 4+ 2, 42 )7
f <%, 55, *~ P Jag 2" Plag 1™ 21,37 %1,1/-
i
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!
t 2
' d 1
1 x = =
| 30::3)9 5, (p 2y o* 25 4)
i
2
| g,
{ a‘;é 2,2

all others being obtained by symmetry. (the interchange of x and y re-

quires the interchange of the order of the subscripts on the Zr s functions.,)
>

Tn Case I,
(3) S f(n,p) = < /e
and in Case IT,

() 0 fn,p) = (1-m)/(1-0)° .

Calculating the derivatives of log #(x,%r), we find:
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d 2
gL lopg g = - —y (3 myy- 20myq= 1 +p°)
v s n
' 2 npm g

s 9
= log @ = e
BUQBE; cxoy(1~p )

52
Paz e i L0 e my 2o

e —————— e .

2
k\ §13 log ¢ = z;:—g—j/_(l + 3p )(mzo* n 2)

- 2p (3 + o) My = (l-ph)_7 ;

all others being obtained by symmetry; we have denoted

n r s
m_ = S g (Xix) (Zizky) (r,s = 0,1,2) .
s n j=1 O'x OY

Using (1) and (5), we may now calculate the elements of the { vector:

n
SEREELOL - ST CRSEE

and using (1), (2), (3), (L), and (6), we may calcnlate the elements of the

A matrix-




2, 2 n 2
Qe - 9D A ypp . d
(8) Aj 5 f(n,P)'Skjo - + o axjgxk izl nggx; log #(x3,y3) .

(The required Zr,s functions may be computed from tables of the tetrachoric
functions /3 /7, using the relation ¥V 7,(t) = G,_1(t). )

The estimates for truncation over an infinite quarter-plane may be
obtained by letting one of the his and one of the k's in the discussion
above 0 to *co,

Tnitial estimates may be obtained by aporoximating the region R by

an infinite strip and using the linear truncation estimation method which

follows.

Linear trincation. We shall consider independently the estimation

problem when the region R is an infinite strip, bounded Ly x = hy and x = hp
(hy< h,). Here, we shall distinguish three cices: (1) the number of un-
measured observations is unknown, (II) the numbers of unmeasured observations
in each truncatecd half-plane are known (say ny observations in Rl =

[ (x,y): x<hy_7 and n, in Ry = [ (x,y) x>h, 7, 1y + np = N-n), and (III)
only the total nuanber N-n of ummeasured observations is known.

Now the marginal distribution of x is independent of “y’ Gy’ and p,
and is simoly a truncated univariate normal distribution. Thus, in all
three cases, by and o, may be estimated by the methods of A, C. Cohen'Z~Q;7
for truncated univariate normal distributions, the three cases above corres-
ponding to the three cases enumerated by Cohen.

The likelihood functions in the three cases are:
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n
(1) 2 TIf(xe,1)
p i=l

nl n

n
(II) k]. pl p2 2 .IIIQX(x'j_:Yi)
l:

(9)

T

S TN
- N NG .

n
II ¢(x5_: Y3 )

P\ -
(111) kg(l-p)J
i=1

where

‘O
]

e/ (x,y) nR7 = PR - pfzu)
b X

]

;_9\;
j=3
;

Pr/ (x,y) in Ry 7

Pr/(x,y) in By 7 = 1- p(=25%)

Ke/
no
]

and

k1 and k2 are congtants. Since p, Pys and p, are all independent of u._, oy,

J
and p , the maximum likelihood equations for these three parameters will be

the same in all three cases; namely, froa (5) and (9),

QL n
* - - ) = 0
3, oy(l_pﬁ) (Pmyp- Moy
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oT, . n 2 -
5. " c(L-p" #pmyy-my,) = 0

y o (l-p:)
y
%’ i -Hf?? [pmyyr mop- 140 %) = (L) my 7 = 0

where L denotes the logarithmic likelihood, m.o being defined by (7). Hav-
ing obtained estimates of My and Sy by Cohen's method, these three equations
may be solved for estimates of Wy cy, and p, yielding (after some algebraic

manipulation):

| 2
(myy' = Moy (gl = ) =ity Hmpg! = 2"y + ™)

2 2
(mlol - “x) - (m20' -2 Mo’ Hx ¥ oMy )

Ry

2 2
(10) o = Mo’ = 2 My, ! by * by

Moy’ < by 2 o 2
! ("‘10 - ux) Lo = (myg' = 2mgt u, + 0, 5) 7
P .
(11) oo XL -

where m.s' denotes sample moments about the origin, If by = mlo', then we

substitute

a1 = vt m.' -
11~ Mo 0N o Ly
Mon' = Mg ™o' " Mx




in equations (10) and (11).

Since the estimates of My and o, are independent of “y’ oy, and p,
we find that the A matrix is now the direct sum of two sub-matrices, and
likewise for its inverse, The first inverse sub-matrix (corresponding to
Ky and ox) is given by Cohen ZTL;7’ the second may be obtained by inverting

the matrix whose elements are given by (8).
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