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1. Introduction. By performing experiments at the levels Xl,X,...,

we obtain observations Yi a a 8x + Ai (i1.,2,...), the A's being inde-

pendent N(O, 2) random variables, and a and P the unknown linear regression

coefficients. The x's are at the disposal of the experimenter, subject to

the restriction of being within a given range, say x' < x < x". It is

desired to design an experiment--i.e., to specify the levels at which the

experiment is to be performed--to estimate that x, say 9, for which E(y)

equals soae specified value; we choose this value to be zero without loss

of generality. Then, we are to estimate 9 = -a/8. We shall assume that

x, < Q< x"; moreover, we transform the x-axis so that x' = -1, x" = +1.

(See the diagrams, pg. 13 .)

We propose tN - -a /b as an estimate of 9, aN and b N being the

least squares estimates of a and B, respectively, based on N observations,

assuming the x's are determined before experimentation begins. In this

case, tN is the maximum likelihood estimate of 9 since a N and bI are maximum

likelihood estimates. If the x's are chosen sequentially so that they are

random variables, we use the estimate t,, computing a. and bN from the same

formulas. From regression theory, we have

(1) b 22+ 5-x

-X2Z ZxZXtA(2) a~ ~'bX -
NN 2~x~
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(Sometimes we shall omit the subscripts on aN, bl, and tN without fear of

confusion.)

We shall give designs of experiments for estimating Q based on cer-

tain "optimum" criteria in both the non-sequential and sequential cases.

Properties of both the non-sequential and sequential estimates tN are dis-

cussed, including, in the non-sequential case, an approximation to the distri-

bution of t N and a confidence interval for 9. Finally, some examples have

been conjtructed to illustrate the character of the designs.

2. INon-seqlnential estimation. WTe assume the x's to be fixed by thc

experimenter in advance of the experimentation. From regression theory, we

know that (a,b) has a bivariate normal distribution with means a and B,

variances a a nc 2 and covariance rab, where

2 X, 2 2 2 1 2 -_x 2
a - _ oa, a a--Y CT

ZX_- 22 b2bo

For latar rcference, if we replace a2 above by s2 ,nn es',i..n!.te of a2 on N-2

d.f., we obtain the estimates sa2 , Sb2 and sab , respectively, which are

independent of a and b.

It may be shown that the ratio of tvro nc-.,ially distributed variables

has no finite moments (except in special case,)! hence, t = -a/b has no

finite moments. This would not be so if b could not take on values in a

small interval about zero; hence, if the coefficient of variation of b, vb,

is sufficiently small, such an event would not occur in practice. Therefore,
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we may svppose that if we give expansior3 in powers of vb for the mean and

variance cf t-, that the first few terms in the expansions will give, in

practice, reasonable measures of 1 cation and s-'ale, respectively. The

symbols for mean and variance of t used below are to be understood in this

light.

: % t qe .e ."c e'xpnsion for the expectation of the ravlo of two

nornall dist:cib.lted variables given by Rao [-, pp. 153-4 7, we have

,.* = - (30-e) (2,, 2v@2,-- 7 .... vb
v1 2" v|

2where vb = ,,,/r= c/R(x_ ) 2 . By a development similar to that in Rao, we

obtain

2 0 (. t 2 00

Var t 7(x-e) 2 Z  + , .

v=12V v I -

____ 1 0 (2Q I (2v2-
wherec Zv Ien

V 2 V 2" p.

(3) 1 t = - )

2 2
(4) Var t = + 7(x. _ + o,> ) .

Ri
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(Further justification may be given for these expansions. (1) If we

assume b to have a truncated (at b-O) norTmal distribution, the variance of

t is finite and the first two terms in the expansion (4) may be shown to

be correct up to the proper order _2, pp. 353-4, 358_7. (2) If we ex-

pand t as a function ofA - (l4,...,LiN) in a Maclaurin series and take

expectation and variance term-wise, we obtain the same first two term.- as

given in (3) and (4), even if the A's are not assumed normally distributed.)

We can reduce the bias of t and the variance of t, as given by (3)

and (4), simultaneously by choosing the x's so that 5-9 is small and Z(x-7)2

is large. 14e shall choose the x's so that Z(x-R)2 will be maximized subject

to x being fixed close to 9; this is accomplished by performing all experi-

ments at one of the two extreme levels n at x'(=-l) and N-n at x'(m+l)

where n is chosen so as to make the following approximation as close as pos-

sible: 7 - (N-2n)/T A 9; i.e., n is the closest integer to .I(i-9). These

will be termed the optimum criteria in the non-sequential case. Thus a

good design will require some a priori knowledge of 9; if none is available,

it would appear reasonable to retain the two-level design with n&N/2.

(As further justification for the optimum criteria, we note that:

(1) Maximizing the term corresponding to Q in the inverse of the informa-

tion matrix for (8,Q) leads to the same criteria. (2) According to

Fieller (see Section 5), we may obtain a confidence interval for 9 with length

2t 2 asb2 a 2 ab+ b2Sa2 - to 2(S22_ab 2

b C-to 2
sb2
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where to is a constant. If we replace (a,b,s 2 ) by (c,p,a 2), minimization

of the length of the confidence interval is essentially accomplished by

the above criteria.)

If n observations are taken at x - -1 and N-n at x - +1, it may be

shown that

a , " ,,(,r+) bN  - -,(Y-Z), tjT

where here 7 denotes the average of the observations at x--l and T the

average of those at x=+l.

3. Properties of non-sequential estimates. For designs in which 3-9

is very small and/or Z(x- )2 is large (in particular, for optimum non-

sequential designs), Var t A a2/N 2 . This may be estimated by s 2/Nb2 . We

find that a 2/Nb2 has no finite moments, but by arguments similar to those

above, we obtain

22

-89 1.2 1 a2 2~ 47sr = -l Es S b fl<'E + 3Vb + 0( b )_.7 •
Nb b NG3

Pence, s2 /Nb2 is a consistent estimate of c2 /1'12 if Z(x-R)2 tends to infinity

with N; moreover, it is a conservative estimate in that the bias is positive.

tN, being the maximum likelihood estimate of 9, has all the well-

known properties of such estimates, in particular, consistency and asymptotic

normality, assuming Z(x-) 2 tends to infinity with N. The asymptotic variance

is a ATP

j



-6-

4. The distribution of the don-sequential a-timate. Geary [-37 gives

an approximation to the distribution of the ratio of two normal variables,

the error being small if the coefficient of variation of the denominator

variable is small. Applying his work, with some refinement, to the variable

t - -a/b, we have, denoting the c.d.f. of t', by F,

FN t) + ut_ R(t)

where 4! is the standard normal c.d.f.,

5 2

u(t) = (a+rt)/ 4/7b2 2t + a

(t-Q,! - -ZX-T,
t, t 2(t + x /N

and

00

R(t) - Pa/n 2pat -nb 2 ab) -X /2~ -dnx

7o b -a% aab

Now R(t) is a monotone increasing function of t and varies from -1(-i/vb)

to +I(-i/vb). Hence, for smal Vb,

F N~t) -" [u( .
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In particular, iU vb, 0.430, 'R(t)!_< 0.01.

For two-level designs,

u(t) - (t-e _ -n
0 Nt- 2bT~nit + 171

and the normal approximation is valid within 1 % if vb  0.430 or

n(N-n)/N > 1.353 c 2 2

5. Confidence interval for G (non-sequential case). Fieller [D7

develops exact confidence intervals for the ratio of two normal variables

based on the Student-Fisher t-distribution. He reasons as follows!

Since a + Gb is normal and Sa2+ 29Sab P2 2 is an independent estimate of

its variance on M-2 d.f., it follows that

z W (a+gb)/ / S29sab+ 92b2

has a t-distribution with i.-2 d.f. Therefore, for given 6, if to is chosen

so that Pr(zil< to) - 8, we have

6 - Pr(z2< to2 ) - Pr(a*gb)2< to 2(Sa2+ 
29Sab G2S b 2_ 7

= Pr_(a 2 - t2S a2 * 29(ab - to2Sab) + 92 (b2- to2Sb2) < 9-7

Fieller shows that if b is sufficiently different from zero (specifically,
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if b 2 /Sb 2> to2, which is likely if vb is small), then we have a confidence

interval for 9:

Pr(ab - to2ab- to ab - to 2ab+ toc

b 2 - to 2- ' b 2- - b2 _ to2sb 2

where c - a2sb 2 2abab+ b2a 2 _ to2(Sa2Sb2_ Sab2).

6. Sequential estimation. We now suppose the experiments to be

performed sequentially, the level of each experiment being determined on

the basis of the previous observations. Specifically, we suppose observa-

tions to be taken in groups of k (a positive integer), the levels in the

(m+l)st group being determined on the basis of the observations in the first

m groups; thus

(5) xkm~i ' f(yl'y2f.$'''"Yk ) .. g(A A2 , . . . ,3AIc ) ,I i--l,...,k; rr--O)l,...

say. Hence, the yts are no longer independent, and the previous results do

not necessarily hold. We propose the same estimate, tN .-aN/b,, where

and bN are defined by (1) and (2) though now they may not be normally

distributed.

Expanding tN as a function of (A = ( "I,,N from equations (1), (2),

and (5), in a Iaclaurin series, we obtain:

tN N
Ni - i ij --

A-0 A-0o

,Im
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Assuming that we may take expectation and variance term-wise (though they

may not be existent as in the non-sequential case), we have

(6) E tN 12 + +9

N i

A=O

-2 +

where .x,

A-O

Consider a sequential plan such that T t for some <N; we call

all such plans in which observations are taken in groups of k "designs of

type Dk. Then Z -j uO t_]O -9, and Var tN - a2 NP2 + .... By

evaluating the second term in equation (6), we find it to be 2ero for

designs of type Dk. Hence, for such designs, the bias and the variance,

as given by (6) and (7), are simultaneously reduced. By evaluation of

some of the higher order terms, it may be shown that Z(- )2 always appears

with a negative exponent. Hence, as in the non-sequential case, a design

in which all but the last group of observations are taken at x - +1, and

the last group is so allocated that ! - t NkV is optimum in the above

sense. We call such a design a "truncated two-level design". Thus, for

L -J
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k - 1, the first N-I observations are to be taken at -1 and +1, keeping the

average close to the previous estimate of 9 so that the last observation

may be taken at some x between -1 and +1 in such a way that 7 n t N 1.0

Explicitly, the sequential design is :

xI = -1 x2  41

- mS2tl" l<m<N-2 (after the m stage, we

suppose n observations have been taken at -1 and m-n at .1)

(8)N-2
xN.l = min(NtN. 2- i 1i+ 1, +1)

/ N-1
x N = Nl - Zx

where sgn(u) - +1 if u > 0, -1 if u < 0.

(If we wish to add further single observations with the possibility

of terminating the experiment at any step but yet retaining a design of

type Dl, we can take

Xn41 ' (n+l)tn- ntn-1 (n>N)

Then, at any stage, we have n t . .ioreover, such observationsThen, ~ ~ ~ n+ aZ xn t~,w aen i i n

i.1

will permit a check on the linearity of the regression line, if desired.)

7. Properties of sequential estimates. In the two-level sequential,

FN(t) -- the distribution of non-sequential t in Section 4 -- is the condi-

tional distribution of t given that n observations were taken at -1 and

N-n at +1.
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In the sequential case, we have no assurance that tN is a maximum

likelihood estimate; however, we do prove consistency: Consider an arbi-

trary sequential design in which Z(x-R)2 tends in probability to infinity

with N. (For two-level designs, this assumption is that n and N-n tend in

probability to infinity with N.) Now xi is independent of A for i <J, so

that E(x iA i)(x = E xi)EA = 0 (i <J); thus

EZA O, E(nA)2 . EZA2 . No2 ,

EZx - 0, E(Zx) 2 - 2 x2 2 < EZA 2 = Na2

moreover, 1ZxI <N and Zx 2< N. By application of Tchebycheff's Inequality on

pZA and 1xA and Slutsky's Theorem f2, pg. 255 , the consistency of aN and

b as estimates of a and 8 follows from equations (1) and (2) and the aboveN

remarks, irrespective of the distribution of the Vis. Further application

of Slutsky's Theorem proves the consistency of tN as an estimate of 9 under

the stated conditions.

8. Examples. Two samples have been constructed by assigning the

values a - 1, f = 4 (9 - -1/4), a2 1, x' - -1, x" = +1, and taking values

of the A's from Mahalanobis' "Tables of a random sample from a normal

population" [-5_7. (Sample 1 consists of the first 20 values and Sample 2

the second 20 in Plate 1.) Four designs were used with each sample, two

non-sequential and two sequential, and estimates were computed on the first

10 observations as well as on the total of 20. The designs used were:

A
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Design 1 x" x 2 = -1, x3 .x4  -1/2, x50 x 6 0, x7 x. +1/2,

Xg9. x10 +1; similarly for x to x20.

Design 2: two-level non-sequential design with n = N/2, xi= (-I)i.

Design 3: x1W -1, x2 W +1, Xna ntn -l- (n-l)tn.2  (n>2)

(see the last paragraph in Section 6).

Design 4: "optimum" sequential design, given by (8). (The

designs for the samples of 10 were not truncated.)

Before presentation, the data were transformed by the transformation

x*I + 4x so that a*- O, 1I, a = ., x I = -3, x*"= +5; hence tN is

an estimate of G"= 0. (See the diagrams below.) The estimates of 9

from each design and variance estimates from Designs 1 and 4 are given in

Table I below; the levels of the designs are given in Table II; confidence

intervals for Q" are given in Table III.
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and to Professor S. N. Roy for suggestions after reading the manuscript.
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DIAGRAMS
V y

.y + x Ey- a"+ x

p

xt=-1 Xt 1.+1 *=-

9=1/4 . 0~I4 *

a=1, .8=4 a =0, 8 =1

TABLE I

f*

V N (Estimate of @ - 0) and Variance Estimates

(after the transformation x-1 +4x

Design s/l~b s//h

1 2 3 4 Design 1iDesigns41

N~-10 +.199 -. 071 +.016 +.008 .316 .21 .355
Sample I

IN-~20 +-*158 -. 070 *.001 -.00'S .224S 0224S .201

N-1.0 -. 901 -. 64o -. 619 -78 .316 .44'7 .404lj
Sample 2'

N-20 -.34S9 -,218 -.239 -.228 .224s .277 .261

I,
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TABLE II

Levels of the Experiments (x. i=,...,20)

(after the transformation x = 1 + 4x)

i Design 3 - Design 4~Design 1 iDesign 21
i. Sample 1 Sample 2 Sample 1 Sample 2

1 -3 -3 -3.000 -3.000 -3 -3

2 -3 +5 +5.000 +5.000 +5 +5
3 -- -3 -0.803 -4,792 -3 -3
4 -1 +5 +0.598 -0.745 +5 -3

5 +1 -3 +1.827 -1.749 -3 -3

6 +1 +5 +0.7931 -0.446 +5 +5
7 +3 -3 -0.347 -2.475 -3 -3

8 +3 +5 -1.840 -1.422 -3 -3
9 +5 -3 +0.922 +2.062 +5 -3

10. +5 +5 -1.828 +1.855 -3 +5

R x +1.000 +1.000 +0.132 -0.571 +0..200 -0.600

11 -3 -3 -1.142 -1.093 -3 -3

12 -3 +5 -0.190 +1.901 -3 +5

13 -i -3 +1.385 -1.271 1 +5 -3
14 -1 +5 -0.516 +0.977 -3 +5

15 +1 -3 +0.855 -1.284 +5 -3
16 +1 +5 -0.134 -1.185 -3 -3

17 +3 -3 +0.119 +0,001 +5 +5
18 +3 +5 +0.676 +2.534 -3 -3

19 +5 -3 -0.500 +0010 -3 3
20 +5 +5 1 .984 -0.887 +1.745 +4.274

3*1+1.000 +1.000 +0.045 -0.260 +0.037 -0.236

_______________________________
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TABLE III

Confidence Interval for "

(after the tranafvrmation x*=1 + 4x)

- i Design 2
8 N

Sample 1 Sample 2

10 -0.782, +1.027 -0.342, +1.827

-0.375, +o.54o -0.335, +o.823

10 I -1.170, +1.541 -0.772, +2.518
0.99 1

, 20 i -0.536, +0.724 -0.526, +1.O48
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