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ON STABILITY CRITERIA OF THE KELLEY-MCSHANE LINEARIZED
- THEORY OF YAWING MOTION

ABSTRACT

~ A slightly more accurate dynamic stability criterion arising
from a more careful treatment of a perturbation term and incorporating

'a revised treatment of the gravity term is derived. The new

eritsrion has the property of reducing té the classical ballistic

- stability requirement s ’;Iuhen only KH is retained while the older

eriteria became indeterminate for this case. The criterion is then
g:i-araliged by the insertion of the requirement of a minimum level

of damping which is not necessarily gzero. Comparisons are made

with the othar criteria and definition of the {erms "dynamic stability®,
"gyroscopic stability" and “static stability" are stated and dis-
~iesed, The effect of spin on dynamic stabiliiy is indicated and the
effect of the location of the center of mass i3 discussad in some
detail. A relation for an optimum center of mass locatlon is obtained.
The equations of yawing motion are derived in an appendix and solved
in the body of the report. The Kelley-McShane force system is
described ana the wesulting dependence of the aerodynamic coefficients
on center of mass position is derived in a second appendix. A third
appendix converts the exprassions used in the body of the report from
ballistic to serodynamioc nomenclature.




INTRCDUCTION

The Kelley-McShane linsarized equations of yawing motion are
simpls linear second order equations which possecs only one com-
plication. This iz caused Yy the appearancc of v, the =pin in
radians per caliber, in certain of the coefficients. Since this
spin is a slowly varying function of position, one is forced to
consider the effect of sliowly va"virvg soefficients. 3In order to
handle this Kelley and McShane f} J [6]1 introduced a perturbation
term. The effect of this turm on Lie stability has not been com-
pletely discusced. In fact most of it is omitted from tt - stability
criterion of and some oi it is omitted from that of ._5]2 The
clarification o1 this discrepancy and the resulting deriva.ion of
a slightly more accurate statility criterion is one of the aims of
this report. This criturion will have the further advantape of
inenrrorating the correect contribution of gr. .ty as is indicated

in [24]

It is found that mcat consideratiuns of stability are com-
plicated by unnecessarily complex subdivisions of stability which
arise from the sign of the mcment coefficient and the presence or
absence of spin. It is interesting to note that the Kelley-McShane
dynamic stability criterion actually becomes indeterminat. when the
effect of all aerodynamic coefficients other than KH is neglected.
It will be shown in the body of this report that the Kelley-McShane
criterion can be revised so tiat it will reduce to the expected
result of the "classical™ ballistic stability requirement s
for this speciul case and is independent of any restriction on

K“or Ve

- The dynamic stability criterion can then be generalized by the
introduction of the concept of a minirmm level ol stabtility. The
classical stability defirdition i5 founded on the requirement that
the two damping coefficients ey and G, be non=is~gative. The

generalized requiremnt is derived: n'om the requirement that ey and

© Gy be not less than an assigned number & which can ba described as

the minimum permissible level of damping.

1. Numbers in brackets refer. to specific publications listed
in the raterences on page [28
2. To be precise in [5], 8), 8, and s, which appear in the stability

criterion aach roceiva a dp = J, from the perturbation term and
in [6] they recuive Rdy-J g " IA_EL J, from the perturbation term.
Jg is defined to he the " = gduc 'sin O" of [5] ana [6).
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A further confusion in stability studies Is found in the many
types of stablility which are discunsed. The most common of theses
are "dynamic stability", "static stability" and "gyroscopic stability“.
Precise definitions of these terme and a discussion of their in-
terrelationship would be of some value.

The effects of spin and especlally of center of mass location on
dynamic stability of a "statically unstable® missils are quite in~
teresting ond are discussed in some detail. At this point a dynamic
stability factor s is introduced.

The purposes of this report are then:

‘1. To derive a dynamic stability criterion which contains the"
full contritution of the perturbation term ard has the correct con-
tribvution of gravity.

2. To state this stability criterion in a fashicn which is
independent of the sign of and the presence or absence of non-
gsero spin and which is equiviilent to the "classical® ballistic

stability when only KH is retsined.

- 3. To generalisze the dynamic stability eriterion by introduction
of a minimum permissible level of damping.

b. To define the terms ®dynamic stability", "static stability®
and "gyroscopic statility®™ with respect to thig criterion so that all
interrelationships are clear.,

5. To discuss the effect of spin and center of mass location on
dynamic stability. ,

SOLUTIONS OF THE EQUATIONS OF YAWING MOTION L

: The equat.ionh of yawing motion, which ars derived in ’the appendix
with attention to proper treatment of t.he gravity terms, may be stated
ast

»

(1) k"*Ei’ng-ivJX'#[-H-iv'rJ).-G
(2) v'-(n-.r)
where ). 12 1).3 complex yaw

| na?
Red -9+ B g '
&d . .
Jg ,‘_\;1_2:: gdusin 0

TS solution Is escontially that described in the original
Kelley-McShane report [5]-
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& = inclination of the trajectory
- A _a ™0

Ve y = P,
T B N
M = md® +vvJ‘md2 J,

» = mass of the missile

d = diameter of the missile

B = transverse moment of inertia
A = axial moment of inertia

- (gl, & 35) = acceleration due to gravity vector where
‘ the one axis is along mlssile'a axis

wy - axial component of velocity

o = axial component 2f angular wvelocity
-K_:Ez - 81 XZ) + i(gL- 81 XBﬂd

¥- 7 =3 —
Y

| i
p ® density of air

Ki are the ballistic coafﬁcients and primes refer to

‘difforentution with respect to the axial arc length along the
trajoctory in calibers.

R .3
d
J-gﬁ.x

- It the homegeneous equation is first considered, the problem
_ reduces to the solutinn of a second.order linear differential equation
with elowly varying coefficients. Equation (1) may be simplified by

the substitution A = q exp 1/3/‘J -(H + Jg = iV) dp which eliminates

the first derivative 'oom.' °

[
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If the v i 3¢ ~oxxjiderations are employed, sqation {1) can ve
written . - {1l .;f’

vhere ~,~2 Y. !»4'&?4 ) s (H+d )2 +2 4% (21 - 4 - D)]
Equat.iu 3 \.u <an be further simplified by use of a second transformation
(h) ‘;,;‘ + Vg? - r2 -

[

Clexr!y {7 r were a constant, a pair of solutions of (L) is
LA 23 | ,mqt sxamination would reveal that these are singular

soluticns > :1e non-linear oquation (4). The solutions of the
linear (1) which correspond to these are linearly independent and
hence a lincar combination of them would be the general solution of
that equation. Here we have the interesating occurence of the singular
solution of one equation forming the general solution of an equation
derived from ... We now assums that for non=-constant r ons solution
of (h\ 2 2fihe fo;«- r «)/2 £ vhere § is small.l

(5) rt -3/2€'- Er + 1/&{,2 -0
or1f-1/2£'*1/h£ ismanincomparisonwithr'mdr#o
ORI |

But bty use of (2) we have®
]

_gu_;-"’g i me Ty '\'v'-ii(ZT-H-D)
M s 2“‘:)  (D{Jg)v[,_.‘zﬁ(u_ﬂ_n 3

Cwe o +'ag)?

1 _The -1/2 is introduced here i.n order tc obtain a slight simplifi-

. cation in the final form of the solution. This perturbation method
is called the W.K.B. method (Wentzel,:Kramers, Brillouin) and:is
described by K. Jetn'eys in Proc. of the London Math. Soc. (2) wol 23

(1923) p. L28,
2. -hn is umny written ag v2 gz where 02 «] - - and &, the
" ballistic atability factor, is m— o« The use of a squared symbol

implies that 2= 1M must be positive and the definition of '6° has
the further disadvantage of becoming infinite for zero spin. In
ordsr to avoid these handicapa nm is introduced.

govrimnie e B T R ks T T Y
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2 “H;& / ' -
_/IL 2 2econd solution gf e form -r ~1/2&° i= conzidared,
t follgws dirsctly that & € and hence two salutiorns of (L) ure .
| o r -.‘,’g, and =p =1/2£ . From this the gansvsl salution of (1) '
\ o is obtainsu as J_ ,
(8) A=K exp 1/2 S i Jz + ‘Lv [—n v 25 (27 - B D J‘dp
. . ) - - - 2
. ’X,Je::pl/Zf {-li-Jg*iv-é- [—m02iv (2 -H- D) dp
- I T

mm’mii’ﬁ'!m"ﬁ**qm‘ U S T “_;‘!‘.; Lt hS

..fw- write &m the i'o"m (2N Js) ‘£L + 15 ), it i3 cu3ily seen

. that onlyE shauld be consideryd. This followe from the fact that
‘(D -t /f:.-. bt "'ull when conparad vith v and certainly can be-  :{11""‘

inequation (8).
4'uow(9)£ ZIE "’(2’ S j Tk "‘T "u ’a+.rg)

s b (X -H-D)2 °
For most munes[a | |22~5-p | < 1/20mdvehavethe urual

— '  appro:imtion 81--- o ]

R .

Yoo '-  Aaming that E ‘1‘ and D are constants it can be shown that for
L a flat mjcctory (J - O) (8) can be approximated quite accurately by
- "(10) Aw 31 exp (-01 + 1¢1') P*+K,exp (-a, +16,') p
‘where dl and §,' are linear functiws of p :
: “1 and °2 m conatmt functions of P

,v.¢1 "’¢2,  | .
a.? “1 *’“2):‘?.”&1-‘, |
“"“J; ¢2"°1“2* ”(“1*"2'{%"’)

4 T - -1/2 [(dl 62) ¢i . ¢2' -H = DJ

. ’1‘ + ¢2

. v | D- m : (890 note 1)

T. The first four relations i‘oucwing (10) are derived for ihe case of
consteont ¢1' 's in [_253 o« It can be easily shown that they are true
for the case of linear ¢1 's, The fifth relation comes from the

1rst, by the use of (2). ;elat}on for M differs from that in
25]due the retention of inm. ¢

R T T T Tyt s S o sy o




Although the solution of the inhomogeneous equation ic not
required for the stability discussion, we will state it here for
completeness. This solution adds an almost constant “yaw of repcse®
)‘R w the general solution. The relation defining )'R is derived in

(2] and may be stated in the form

2 -1
o gd cos 6 - oy md -2 7T vT\ 2
R al AL AL B A S BN PN .
where 0 is the inclination of the trajectory.
STABILITY CRITERIOMN
c Stability is defined by the statement that a missile is
c .stable the yaw described by the solution of the
homogeneous equation does not increase.” Referring to (8) it can be
seen that this requires that H ¢ J8 + (D~ Jg)gl be groater than

or equal to the real part of the square root and be ,non-negative.z
This is equivalent to the relation:

) mels [rf[Eeem (r-n- @Vﬁ

- vhere £ = Iy * (.1)--.1';){:'_-.1g (1-&)+DE .

If the square root is replaced by {@ +ib where a=e<m be32y (27T - H - D), o
. ’ B v
a + ib =J(a® + bv°)(cos C + 1 sin C) andtanc-‘-g,
De Moivre's Theorem states that: : :
- ]

(13) R(M)-R(y 2 + b2 (cosg-*isin-g))

- h’ a® + v? "qoa-g- ,. : '
. C

Substituting this in (12) and using the half angle formula for cos
gives the following equations: .

(1) & +E ;:{t/ a? + p% J ilgeas

l. Since the initial conditions affect only the homogensous part of :
the solution, this requirement is equivalent to ths restriction that o
the size of yaw caused by the initial conditions will not increase ‘
throughout the trajectory. Although the yaw of repose may increase,
it is unaffected by the random initial conditions and its effect ‘ ‘ ,
may be computeds = .

2. Note tha:l? is here replaced by (D = J 8)51.

10
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Squaring vhis we have

(15) 2 [n 03]2’1£2 +v2 +a, H +EZ0

. The second inequality is required in order that (15) be equivalent to
(1s). Regrouping and squaring agzin we have

(16) [2(H + €)% 2] 2T a2 + W%, B +Fm 0

Unfortunately (16) is not precisely equivnlent to (15) since the
first inequality of (16) implies either |

(17) 2B +E)° -2 % 1{5 s 12 or a -2 +Z)2 =2 4 B2
In order.that (16) be equivalent to (15), it must be possinle to
rejeot_tho second inequality of (17). But this is suly possible
At H +€40. IfH +E€=0, (15) reaquirss that b = 0 and that a
be non-positive. With this in mind we can revise (15) to the
following forn vhich is oqnivalont. to (15).

_ (16") HeE¥0 .. " H+E=0
- - b=0
. B I or aso
e 'E(Kog)z-ajzfazobz
S 1L tho inequalities are aolnd for -a, and a and b are rophced by
- thoir definitions, _
o | 18) a*e>o | ) a+€-o
S or | F(21-8-D) = 0
{ S 'W -’ S-...’.IL:Q). - (H ,£)2 +(H+J )2
. L e " H# E
3 e " These are tho exact stability conditions. The usual size approximations
S . can now be applied which state J2 terms can be droppedl and the follow-
I hg thcom 1. obtd.nedt o

“:__

< de lohthlttwconstmtapinD-J -Oo*-urospinv-o,

. © o these 3 terms vanish exactly from (18). Hence the theorem
© . ds not an approdution of (18) for this case,

R B 7 - ey

e e e e i oo,
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Theorem In the linearized theory a missile porcesses d_,'na:-.ic
stability if either of the follcwing sets of relatinnz is satisfied.

(192) H+E> 0O (198) H +& =0
\ 2 V(2T-H-D) = O
32 52 { 20-H-D -2
M2 ( vo =lMBO
H +Z.'j .

whare & = Ig (1-8 ) +DE,

l (v ~jM) + 2(2’1‘-!1-1)) _J ~s v
(Ve =lM)“ + lw (2‘1'-H D) Vel

v

Ve > |2r-HeD |
Notg,(19a) may be obtained somewhat more sduply by the assumption that

R 32 ~4M >0 together with-the approximation of a binomial expansion

of the aquare root in (8) If this is done, the os and ¢£' of (10)
become

. . . ; ‘ 1 - 2 R .
(20) “1’2‘1/2[3 +& ;-ﬁ-(ﬂ‘ﬂ'njq’lfzt(l'g)ﬂ* -y T ] ' -
# , =12 1te).
02 Dl
where o -E -
2 - . '
- D ' . .
eEeE y
Dynamic stabﬂi.t.y requires that “1 2 = O and this implies that
n . z > |\!S2T°3-D2'
(21) J E - M = l SZT-H-DZ' « But this is equivalent to (29a).

H+ &
Although this derivation is handicapped by the assumptions made above,
with some modi ﬁcationa this reasoning can be made rigorous.

-




Since relations (19) require 72 ~lM to be positive, £ q Muet

be positive and considered as a function of spin it attains a
minimum of cne for infinite spin. If the slope, D-Jg, is

positivel then the minimum value of& 1 corresponds to the minimum
€ and the following sufficient stability condition follows from (19z).

(22) H+D>oO

=2
v~} 2T=H=D
v2amz [ H+D

]

2
IrD = Jy - ¥ J, is approxiuated in H + D by Jp, there
results a set of conditions which are sufficlient for stability over

flat trajectories when £'1< _;_13 .

(23) H +» Jb”'o

. e
-2 =2 | 2T-H=D
Ry Er‘—TD]

Equations (23) are precisely the stability critoria of [S]

with the correct treatment of gravityg and equations (22) ara the
. criteria of {§]. Therefore if only flat trajectorins are con-

sidered and{ , (-;1_: » the stability criteria of [S] and [6] are

sufficient conditions for stabilityj.' No indicatioi. of the second
set of relations of (19) can be found in (*) or (?3) and herein
: is the reason for the failure of the criteria of T57] »r [6]to
Feduce to the classical gyroscopic stability crite..a, s2].

1+ This is satisfied over all of the upward branch and part of the
- . downward tranch of any trajectory and is true over the entire
" length of flat trajectories dealt with in spark range work. The
minimim value of £ ., is one and hence the minimum & is D.
2 In [B]part of & Talintegrated out and not considered in the stabe

1ty wlysis, From the remainder the correct treatment of gravity
[25] produces (23) which is independent of gravity. :

. 3. 1% wust be emphasized that from a practical engineering standpoint
(19), (22) and (23) are equivalent and, hence, {22) being the
simplest, should be used. :
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Gefore going on to a discussion of various types of stability
and the effect of spin and center of mags location on stability
we will first obtain a generalized form of (19) which should be
quite useful in design work. (19) was obtained from the require-
ment that 2% 0. If this were replaced by the requirement that

2 o whete a is the minimum perm* ssible damping, the criterion
a}égmes muck: more flexible and valuable to the design ballistician

or aerodynamicist.
. Thiz revision can be done quite easily by replacing (12) vy

2
Z &

(12') H +E€ -| R{-Tn + 247 (27-H-D) 1/:"} 2

(12') can be reduced to (12) by writing £ for-& -3. This
means that. the general ized criterion can be obtained by inserting
€-a for & in (20),

Theorem In the linearized theory the damping rates of a
missile are greater than @ when either of the following sets of

 relationsis satisfied.’

(2Ua) H + € ?70 (2Lv) H+E -a =0
JRTR [2?-3-» J"— F(21-H-D) = 0
H "’E- a 32 M2 0

|  DISCUSSION OF STABILITY
In addition to the ééncept of dynamic stability two other types

~ of stability are usually considered: gyroscopic and static. Their

definitions follow directly from the definition ¢ dynamic stability
for the case where only the effect of KM is considered. For this

casq the second set of relations of (19) must be used and they reduce
to .

25 ¥ -wzo

-

1. Note that @ can he negative although its magnitude is restricted
to the order of a J term. This means that should a little
instability be permitted the generalized criterion will still

apply.




A missile is said to be pyroscopictlly stable if it satisfies
inequality (25). For zero spin (25) Lecomss H 4 U or K, ¢ 0. A

missile for which &M 2 0 is said to be static:liy staviE  For

statically urctable missiles K, > 0 and inequality (25) can be
written in the form:

2 2
() iAoy >
R

This is, of course, the classical ballistic stability condition

2 2
A
2, 1l where s = ml. n o GOyroscopic stablility for statically
: 3. <
LB pd w, Ky
unstable missiles, therefore, recduces to the classical stabiliity
condition. _

The logical connections between gyroscopic stability, static
stability, and the basically fundamental dynamic stability can be
derived {rom their respective definitions. They are shown ia
figure 1 and are listed below, )

’
(1) If only K, is considered for stabtlity, gyroscopic rtability

is sufficient for _ ¢ stability. ,

(2) ayroscopic stability is always necessary for dynmamic stability.

(3) ir ap:Ln is zero, ‘static at.ability is necessary for gyroacopi.c
‘atability.

(4) For any spin, static stability is sufficient for gyroscopic
ahbility.

() 1r "+ €) 0 and v = 0, static stability is sufficient
for dynamic stability.

(6) IrB +& 20and 2T - H - D = 0, gyroscopic stability is
sufficient for dynamic stability.’

1. Since K, is defined so that it is positive when the center of

pressure is in front of the center of mass, most bodies of re-
volution are statically unstable while most finned missiles
are statically stable.

2. This relationship is quite interesting since it indicates a sort
of optimum center of mass location i. e. such that 27-H=D = O,
This relationship is implied by R. Turetsky in [18].

R 2083, ”E’t:.ﬂu ‘Nﬁ_ : BB




DYNAMIC STARILITY# |
(1) With damping (2) Without damping

H+€Z0 | He £ =0

=2 -2 (21r-1-p] 2 | o

Ve =4M BV | —— or v(2T-H-D) = O .

H+E )
- VelM Z 0
A
HeJ 20 H+€EZ0|*
or
V=0 2T-H-D = 0
) " | OYROSCOPIC STABILITY
| -V aAMEo0
P | y
- | STATIC STARTLITY ]
i
x . .
i | |
*» E=3 (- E)+DE) |
2[5 - 2 =2
ve[(vC <lM) + 2(2T-H-D) v
§- Vs NS
vee UM)€ ¢ L4v°(2T-H~D) Ve - ,
16
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In order to discuss the particular offect of crin, we will use the
sliphtly simpler sufficien. condition (22) and will assume H + D to
be always positive. (22) can be written

(26) 3° T(‘(‘H‘+DD;2” Z M or (253 W

Where s = 2T - Z(KL;;‘?' KT)
T+D - =2

' Ktk Ky - kg K,

2
k{z - %Q (kl is axial radius of gyration in calibers)

(Dynardie Stability Factor)

2
kgz - %-d (kz is transverse radius of gyration in calibers)

If 3 is either O or 2, the coefficient of v- is zero and for this
case a statically unstable missile can not be mad2 dynamically stable

by spin while a statically stable missile is dyn:mically stable
regardless of spin. Otherwise (26) can be solved for v© and two
possibilities arise: '
"32 -4 :?"JE%?"'

3(2 - 78)
-;2% - hH-

8(2 - 8)

(27a) 3(2 -8)” 0;

. (270) (2 - 3) £ O;

From this we see that:
(1) For a statically stable missile eiiher ©{2 = 8)3 0 and it -

" i1s dynamically stable independent of spin or (2 - 5)< 0 and dynamic

stability places an upper bound on spin by use of (271) .1

| (2) For a statically unstable missile either 3(2 - B) >0 and
dynamic stability places a lower bound for spin b;- use of (27a) or
8(2=-8) § O and the missile is dynamically unstable independent of

Bpinoz . g

1. Dynamic data obtained.from the simple finned configurations de-

. soribed in [f} show that this upper bound acinually existst At Mach
number of 1,7 8 is =7.2 and for this value of '3 the upper bound on
spin is L4.2" per caliber. One round has been fired at a spin rate

~ of L.0° per caliber and it was found that thn alow arm had practi-
_cally no dampinge At Mach No. of 1.3, 8 = = 30 and model was unstable.

2. This entire discussion of the effect of spin on_stability is
essentially that of Kelley-McShane in either {5) or [6] The
8; 's of Kelley-McShane may be related to the symbols of this

report by 8, =H +E , 8, = 2T +E <D, and 8, = 2(H-T) +& + D.

The discussion is inserted here in order to give this report
completeness. Here again the case of the airship must be excluded.

(See Appendi: B).




For the assumption mads above (namely H -+ E =H +D > 0),
the effect of spin on dynamic stability may be <tat~< in a very

concise mannar: Theorsm If 8(Z - 8) and M have the zame sign,
=2 -
a miasile is dynanically stable if s = g—% gorc-z -

Otherwise spin has no effect and statically atable missiles are dy-
namically stable while statlcally unstable missiles z2rs dynamically
unstable. :

. We will now consider the interesting question of the effect of
center of mass location on the stability of a statically unstable
missile. In order to do this we need to convert the goneralized
stability condition into a more useful and specialized form.
Straightforward algebra and the approximation € # D cin be employed
to obtain the following result,

Theorem s ‘
The damping exponents aL and &, of the epicyclic yawing motion
of a statically unstable mis3ile arg greatevr than or ¢mual to an ,
assigned value @ if either of the following sets of rclations are
_satisfied. (If @ = O, the relation of the first set tocame
precisely those for the dynamic stability given in equation (27a))

E, (28a) E+D-a>0 or (29a) H+*D=-a=0
(28b) E;-a— - és’ L (29v) 2T -a =0

z 8(2-3)

(282) 0<€ 3¢2 | (29¢) 831

| ,4 _where B =3 (a) - 23 - f al ' (Generalired Dynamic Siability Factor)

. Relationy (¢9) are only of academic interest for desirmers and will
: .. be disregarded in the remainder of this report. The fvrm of relations
! (28) has been greatly simplified by the introduction of a(a) which
P will be called "the -generalized dynamic stability factor®. Whenever
t ' 8 appears without a reference to a value of a, @ will b taken to
! ‘ be sero and s is then called "the dynamic stability fazlorts If
" we multiply the numerator and denominator of s(e) by --’%‘Tn reduces

 to ths following simple forms pd

Razon ba o 8oy n i O8O it o ARkt I S b R e i

TSR g, 50 - SRR € Pk ORI T T 1L USRS S AT Y A8 S
i ‘%:M e Stinmmin—" S NS

= * Kk, S K, =k 2 K, - a¥
: | Kotk Kkt K
where g = -—3—-"' c
- pd o
’ 18
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-‘ The equation a = ( 1 ) is plotted in Fipure 2. The curte
! s(2 -8

is a fairly flat one with asymptdes at zero and two. The modification
. of the classical gyroscopic stability requirement by the dynamic
stability factor is significant only when's is ouiside the interval
from 3/4 to 5/4. - The center of this intervai whiich iss =1
corresponds to the optimum center of mass positicn mentioned before
(2T7-H-D = 0) and 8 is independent of @ here. This means that if
the gyroscopic stability factor is unity for this center of mass
position, an increase in spin which in turn inecrecises ®s® will rot
improve the dynsmic stability. As a matter of froct equation (20)
shows that both arms damp-at the rate which i3 independent
of spin and that this rate is H 0‘?‘:!1 + D. Equation (20) also
reveals the .'mt.erestj.ng property that for s £ 1 tha slow arm has

thcmllerdnpl.ngrateixilerorsrltha revorse is trua.l «
This is important since @ of the criterion is thz damping rate of
‘tho arn ponusing the mller damping rate,

: We now utum to tho ceuter of mass effect on stability. From
appondix A we have the result that KA and KL are !ndspendent of

e centar of mass ].ocation whila x.r and Kn are linezr and quadratic B
o "muom rupect:lvoly of ita 1ocntion :

P mm "o 2 ‘L "1.2 5y
L . Tl ""‘1.2 '
LRERE g2y,
sty

g a2 | |
r_"z"‘zl", - S

1. Brulovcr tntmhmanttha arm with the smaller or larger
turning uto ¢1 ‘The slow arm is sometimos called the precessionl

' : "arm while the fast arm is called the mutational arm. Since in the
classical theory of the top the precessional riotion is usually con-
sidered to be the motion of the planes of yaw and the nutational
motioni 13 the variation of the magnitude of yaw from maximum to minimum,
this nomene‘!.a*ure is conflicting. (It can be shown that nutation rats
is actually - @ while the precessional rate is variable unless

Kl o K2 is ro) 19
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X

q is the shift of c.m. in calibers and is boundsd to a variation cver
which the radii of gyration may be considered cunstant.

Relation (27a) now defines the limits on _q in order that dynamic
stability be possible: The requirement that s?’é-s) be positive may
be written as:

(3la) 0 &L 8 <2 or - 04 —

< |
r
Hc+qu*32q

For supersonic velocities and most bodies of revoluation, ex-
perience shows that for s = O the center of mass 1s to the rear
of the centroid. Beyond this point which is not more thzn two
calibers away from the centroid s < 0 and it is lmposaible to
stabilize by spir. The situation can of course be improved by
changing k.. For some long bodies of revolution (fineness
ratio greater than eight) s = 2 when the center ot mass is forward
of the centroid, Forward of this point s » 2 and it is impossible
to stabilize by spin. This situation can be improved by changing

In conclusion we will construct two represcntative stability plots
for long bodies of revolution. The second plot i3 quite similor to
those obtained for shorter models. Table I giver values of the

. asrodynamic coefficients and physical constants for a typical body
-and Figure 3 plots the square of the Fquired spin against cem.

locaticn for various values of a*. Vv“ is used in porder that s= 1
will appear as a straight line. A value of spin which is above an
a* curve corresponds to a missile with damping exponents greater d

anen
| . TARE T | .
A-:,'2°1-, : Ky a5 | "‘xF-.a ) 'xﬂ‘-wao
Kiss ko = 42 9-%3- csxwS |

Notice that there is only a small range of c.m. for which dynamic
stability is possible. Point 0 is the optimum c.m. location and is
about .4 cal rear.of the centroid.- If we now atiempt to improve the

- stability characteristics of this hypothetical model by increasing

k2-2 from .2 to .3, we find that the situation is completely changed

(ses Fig L.). The optimum point is .1 cal forward of the centroiu
and the region of possible dynamic stability is tremendously enlarged.

‘Rote, however, that the restriction on c¢.m. location reappears when

damping of the oxrder of a* = § is required.

2l
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The major effects that the consideration of thr dynamic r*ability

of statically unstable missiles has on tha developriont of such spin
stabllized missiles may bs summarized in the followving three statements:

(1) If there is no requirement on the size of damping and 3/L<'s < 5/},
the usual gyroscopic considerations apply (s2Z 1).

(2) 1If there is no requirsment on the size ¢f damping and s is
outside this interval, it must be improved either by-a different mass

distritution which varies lacand k, or by & different shape which
changes the ballistic coefficients.

(3) If there 1s a minimum level of damping a, then 5(a) must be
considered and the design procedure is that orn?l) if 3/h <8(a) « S/4

othervise it is that ’or (2).
| C. W Mét

C. H. MURPHY

2l




TABLE OF SYMBOLS
A Axial moment of inertia
B Transverse moment cf inertia
. C = arctan ry
2
md
Dedp =T
Fe (FI’FZ’FJ) aerodynamic force
2 .
md -~
R e O U B {
He (hl’h?ha) aggular momnﬁum vector or
. md '
,nl,az cosfficients in expansion of H + D as fun:tion of center of mass

Hy

3
pd o, ,
Iy =319

3 _g_i;_ s :m 6.
' K Axial ‘apin deceleration coefficient
i KD Drag coefficient

Ky, Adal drag coefficient

Ky Magnusl force due to yaw coefficient

KH Damping moment coefficient
K, Lift coefficient

. 1e Terms in the cross force (A2) or cross moment (AlL) which are
gero for zero spin are called "Magnus® forces.

25
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T

Ky Overturning (righting) moment coefficient
KM Normal force coefficient

K. Damping force coefficient

S
K 7 dagnus moment coefficient

KIF Magnus force due to cross angular velocity coefficient
Kn. Magnus moment due to cross angular velocity coefficient

X K2 Integration canstants in (10)
1,72 ot
M - md J
(M, ,M, ,Hs) ‘Aerodynamic moment vector
0 .
- - md
Ted = 9
0
a=en
b = 275 (20-H-D)
d diameter of missile

,‘1'1 Coefficients in expansion of T as function of center of mass

g eacceleration due to . ravity

A kl’kz radii of gyration

(81;32,33) vector acceleration due to gravity}*_

-»Fhl’hz’h3) angular nomentum vecktor

m mass of missile ~

rl
"i-'iz-hl“-g-a“‘

P '-j -;1- dt independent variable

N
Q= \exp ]./2}'(}10.38 = 1v)dp or shift in center of mans location
ral/? [(hn V2 +24v (27 -H - nﬂ 1/2




8 stability factor

s dynamic stability factor
8)58,,83 symbols used in stability discussion of {5} and [6}
t time

u (“1’“2’“3) vector velocity of center of mass
w=(1n q)’
a minimum level or‘damping
8;6, damping of each epicycls arm
E €7 WEKB. perturtation term

’ [ 4 - N -1‘ .
£,4€, F 53y

0 inclination of trajectory to horizontal plane .

2 ey ok
Ao ¢4 complex yaw
ol e}
A Yaw of repose
: uzd X B
B 43 - . complex angular velocityy
1 b S |
'mld _
ve -,a-l— spin in radians per calibar
Ve g” |
p density of air

o symbol used in [5] and [6] see footnote to Kquation (7)

gr, @y, g% , g% turning raies and their derivatives for the
2
epicycle arms '

JL angular velocity of coordinate system
(°1’°°2’°°3) angular velocity of missile

27

e et i




10.

B T S —
T A

1.

2.
3.
k.

Se

60'

o
8.

9

.-

REFEAENCEST

R. H. FOWler’ E. G. Gallop, c. No H. Ioc}(, Ho We Richmond.

The Aerod%ca of a Sginnin; Shell, Pnil. Trans. Roy. Soc.
ondon (A y €O .

R. H. Fowler, C. N. H. Lock, Ths Aerodynamics c¢f a Spinning
Shell Part II,Phil. Trans. Hoy. Soc. London (A) 221 295-5

K. L. Nielsen, J. L. Synge, On the Motion of a Spinning Shell,

i Qo Ae M. Vol. IV, No. 3 (191&6)

C..G. Maple, J. L. Synge, %E;o)gﬂamic Symmetry of Projectiles
Qo A. H. Vol. VI, NO- (l

Jo L. Kelley, B. J. McShane, On the Motion of a Projectile with
Small or mow}LChmM, m m “Lh& (15LL) T

‘Be J. McShane, J. L. Kelley, F. Reno, Exterior Balltstica,
University of Denver Press, (Awaiting publication).

R. He Kent, An Elsmen Treatment of the Motion of a S
Projectilc a t,.. aenlﬁr oT ar 'v'IE BRL Report 85 (f%??%
revision ,

eport us9 (19hh)-

A. c. Charters, R. N. 'mo:as, Tho Aarﬁwic Performance of Small
Spheres from Subaonio to High Supersonic Velocitles, o
n?.‘ﬂr;m . ’

‘Ae Gs Charters, Sou Ballistic Contributions to Aerodynamics,
JAS, v01 lh’ No. .

Ra A, Turotalqr, Reduction of ggn-k Range Data, BRL Roport 68L

(19h8)

A, 0. Ohartera, Re He Kant, The Relation Between the Spin Friction
Drag gnd the. Spin Reducing Torgt_x_e, 212 Heporﬁ 281 (I§E§I _
R. N. Thomas, Somé Comments on the Form of the Dra Coafficient
at Supérsonic Vemﬂz, BRL Report Sh2, (1945).

A. Co ch-.rtera, R. A. Turetsky, Dstermination of Base Pressure
Fron Free-Flight Data, BRL Report 853, (1548),

1.

For the convenience of the reader this bibliography is made more
extensive than required by the needs of this report. The additional
listings should be of intereat to psople working in ballistics or in
spark range work,

28

" " " P T Tyl B e LT e ,vsr::i"l.g“..::*"“f"""""’”"’ et
DR St T R R T IV N 77 Y G SR .
. S .o . ¥ B St S .
Lo - e o R .

87 (1520).




15.

16.

17.

18.

19.

a3,

2L,
25.
26.

27.

B. G. Karpov, The Accuracy of Drag Measurements as a Functicn
of Number and Distribution of Timing Stations, Eul, Report 653

{1945)

Re A. Turetsky, Cone Cylinder Model E12¥, BRL Memorandum Report
L35 (19L6).

S. J. Zaroodny, On me Due_to Muzzle Disturbances, BRL Report

R. E. Bolz, J. D, Nicolaides, A Method of Detemining Aerod%c

‘Coafficients from Supersonic Free Filight Test of a Rolling Missile,

BRI, Report 7ﬁ. (10LS T,

R. A. Turetslqr, Qymmic Stabilii.x of Sﬂinner Rocket Model Fired
1&9;30 Free FligHt Aero@naﬁcs Range, BRL Memorandum R.aport.T6
le :

H. P. Ritchcock, On Estimating the Drag (‘oefficients of Missiles, .
BRL !!emormdum Reporf 5L5 (EEI).

L. B. Schmidt, Aerodynamic Cosfficients Determined from the Suem
Reduction, BRL Memorandum Report 599 (1952).

i
L. C. MacAllister, Drag Properties and Gun Launching Long Arrow
Proleotiloa, BRL Memoran Ppo. Jo

C. H. Murphy, Analogue Computor Deteimination of Certain Aerodynamic
Coeftioiente, TRT Report BOT (Io52y -

C. H. Murphy, Comment on Kelley-McShane Solution of Ya Motion
of Missiles, ERL Tecmcﬁ No% 75“ (1952).

c. n.
Note 708 19§

C. H. Murphy, Effect of Symme on the Lineariged Force Sy_gtém,
BRL Technical Note 743 (I%Eg).

Je D. Nicolaides, Variation of the Aerodynamic Force and Mcnent
Coefficients with ﬁvference;?osition BRL Technical Note L5 (1952).

Jo Do Nicolaides, On the Free Flight Motion of Missiles Having

8light COnfiguration_AI A8 ymmeﬁ‘!os, Institute ol Aeronautical
ences orepr ‘

Effect of Gravity_on Yawigg Motion, BRL Technical

29




e e pp e g

e e

g g e = e e oy

e

APPENDIX A KELLEY-McSHANE FORCE SYSTEM

In order to describe the aerodynamic force acting on a missile
4in flight, we need first to set up a suitable coordinate system.
This will consist of numbered axes so that the 1 axis lies along
the missile’s axis while the 2 and 3 axes are perpandicular to it.
.As a convenient shorthard we will consider the pl:ne perpendicular
to the missile's axis to be the complex plane with the 2 axis as
the real axis and the 3 axis imaginary. Now if the velocity wvector
of the missile!s center of mass is resolvcd along these axss, the
yaw, A\, of the missile, which is the directed angle between the
nissile’s uﬁz an&tho velocity vac‘bor, can be expressed in complex

form as A = “This oxpreasion is of course accurate for

. small yaw only.

Tha second and third conponents of the angular velocity vector

- “1’ By m3 -are .of importance in the considuration of the yawing ,

motion. These can ba mn—dinonsiounud ‘and ur:l.tten in complex form
o, 4+ 1 o, d
e = 3 ‘here d is the diameter of the projectils.

The nerodynmic problem can now be reduced to a dynamic problem by
the assumption that the aerodynamic force and moment are mnctiona
of the air density p, ite sound velocity a, axial velocity uh

ze

asp =

- axial angular “].ocity @y yaw A, cross angular velocity u,

of missile vhich 18 characterized by its diameter d and :l.ta shape,
The Kelley=-McShane theory makes the further simplification that the
aerodynamic force and moment are linear functions of A and . If

. these hypotheses are applied to a conﬁ.gurauon possessing an angle

of rotational symmetry leds than 180° and a plane of mirror symmetry,

‘the aerodynamic. force and nonent can be wristen in the following form

[, C] Bl

2
(Al)}l'-pd ‘m

.(m)rz...u-a.pd? [Kxu+1v )x+(xm+1xs)“3

(a3) H1 P d “1 v KA , _
(k) Wy ¢ 4y =0 & uy? [('?_:*r pE LR (R g

vharov--?-,l“-;-
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An important aspect of the above definitions is the dependenca
of the coefficients appearing in {A2) and{4L) on the location of the
center of mass. In (42) the aerodyaamic force is independent of the
location of the center of mass while the yaw \ is defined in terms
of the velocity of the center of mass. The dependance of the moment
coefficients in (AL) is more complex since they relate to the total
aerodynamic moment about the center of mass and are also associated

with A. '

Consider the case where the center of mass is shifted from the
point O on the missile's axis to the print O% which is located on
the missile's axis at a distance of q calibers from 0. (Positive
qwili ggrrespond to a shift toward the nose of the missile.) The

vectur 00* is in coordinate form (g d, O, 0). All quantities relating
to the configuration possessing the zew center of mass will be
- marked by an asterisk. . ' S

Now if corresponding points of ths two cnfigurations possess
the same motion, the total aerodynamic force on each configuration
“are ldentlcal and the total aerodynamic mome.t wvhen sommted about
corresponding geometric points will be equal [3], [6), [2¢] For .
the same motion we now compute ‘the velocities oi tie int: 0 and 0,

(A5) “’ ".“ + ox (qu 0, 0) = (“1» Ry + 0"3 qd) u3 =0, ad)
Therefore ‘ N
(46) ) = wy

(A7) X* =\ = gy

- 'Since the angular velocity vector is ihdependent of the location
of the center of mass, we have - .

- (A8) v*-v'_ _
(a9) u" = p

We can now express the force acting on the configuration with the
- new center of mass as _ :

(m) | }F; .- d2 nl*i' anl- s - cl2_‘,“12 %*
'(All) F; . 1‘1,,3* . paz ‘;1«!2 [‘_('ﬁq* . iv*.lc;) \* . (v* xx; *.u;) “f]
“p d2 ul2 [(—KN* + ivl(;)(x - 19'»)-0 (v K)CF* + il(s*) g '
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If we equate the above with (Al) and (A2) and cormpare coefficients
0f N\ and p respectively we obtain the following:

(112) Kp,* = Kp,
(o) &' o=y
W ' -y

w9 K ex-an

(x26) %v'?‘n-ﬁr -

Now in order to compare the gorodynamic moments we must first
compute the moment for the secord configuration about the point O.
This can be written as t.he noment about 0 in terms of the starred -
q\unutiu: :

NCUR Y * (s, O.O)XF ' -<qd. 0, O)XF= (1, M) -F, oo, M} - F at)

'I‘herefore

‘-‘(AJ.B)HI - Uy dSK

"(A19)(H: qd)*i(HB*Faqd)-H2+1H *iqd(F2+1F3)

;.,,,,3 2. {(-vlq. ﬂn)(l-i%) GReaDw

- q[_"“u 1y "r) Ne (" "n + i"s) “33
Bquawxs (A18) and (A19) with'(A3)and (Ah) we have '
(A20) KA - KA |

(m) K=Ky -aky

0 = ary

(a23) Ky = Ky = a (g + Bp) + o
(420 K2 = Ky = q (R ¢ KD + o Ky
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In order to obtain the form of (Al) and (A2) used in Appendix B
we derive two final relations, Sometimes the force sysism is reduced
to only two components which lie in the plane of yaw and are resolv.d
along the trajectory and perpendicular %o it. 7Tha first component

. is called the drag force D and the second is called ths 1lift force L.
They defins two mors coefficients by the relations
2.2
. (A25) D= «pd” w" Ky

~ 2 .22
(A26) L= «pd "‘1‘:. 'y
~ If we naglect Magms terms and terms depenceat on u in (A2), we
ses that (A1) and (A2) describe the same type of force as (A25) and
(A26) tut differently directed. -We now select tis real axis so that
it 1ies in the plane of yaw. Clearly (A25), (A25) .are relatad to
(A1) and (A2) by a rotation through the angle A. : -

o »(A'25)", D= F, sin A F, cos A
. (A%) L=F,cos\=F, sin
TR B Hence for small Ay ’,' ; ‘

T L N Eye K Astad e Ky cosh 2Ky,

o e Kemoeededy SRS tkeny

I © . If the discussion of the above paragraph sesms to lack rigor,
- eguation (A27) and (A28) may be taken as definitions of Kj and Kj.

.. _This can be done since only these relations and not their physical
3 - definitions are used in this report. Using thess we can write
' S (A1) and (A2) in their final form: ‘

- {a1) rli-pdzuixta. .

(a2') ?é ‘+"'1F5 - a2 ul '[(-xb ‘-‘KD + v KA ’(;‘n + 1K) “]
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- APPENDIX B: DERIVATION OF THE EQUATIO. OF TANING MOTION

A right handad orthogonal coordinate system with axss numbered
1, 2, 3 moving with .the missile and so orientated that the 1 axis
| always points toward the nose along the missile's axes will be used
throughout this appendix.  If we specify o = (ool, ®ps %) to be the
| angular velocity vector® of the missile in this coordinate system
. and take_f)L = (-{21’.’22’-”'3) to be the angular velocity of the

| coordinate system, the above restriction on the 1 axis provides the
rohtionsﬂz - o, andfl, = 3 = @30 J1y 1s selected o be identically

------ & the 2 axls is initially orientsted to lie in the horisontal

®TA v GOA

phnaandpointtothe righte For the small yaw and small curvature
of ths trajactory vhich are assumed in this developmnt, the 2 axis
- wil) always remi.n qui.to closa to the horisontal plane. Our equtionu

of not:l.on m:

| () H'F. (n u) - ( ra, 1"3) *n (31. 32. 33)
) §- ‘"1' uz. x,)

‘u- (“1’ “2’ u.3) is th. valocity veetor of the center of grav.l.ty
A :" ! . H, hz, h3) u tho anguhr momentusm vector of the n:l.uile |
i | ( rz. rj) 13 the aerodynamic force vector acting on tho
uﬂa ' |

(‘1’ 52’ 33) is, t.ho aocoloration due to gravity vector

(Hl. “2' H3) is the aerocvmmic moment, vector act.ing about the.
cen’ur or mvity L , A o

nis h@ naaoftho miuile , o
‘ SS.noo our coornimte ayaten is no'c. an inertis vyatcm, we have to :__

‘A1) linear and angular 'nlocitioa are with respect to an :Lnerth
uyat.u tindonthourth. Yo . :
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differentiate using the relation® d _d + flx.

‘d" dt fixed axes

Although axis 1 is fixed in the missile the other two ure moving with
respect to it. This would make the angular momentum vector rather
complicated were it not for the fortunate fact that the mass distribution
of most missiles are effectively those of bodies of revolution. This -
implies that every direction normal to the axis of the missile iz a
principal axis of inertia and one transverse moment of inertia prevai.! 8.
If A is the a:d.al moment of inertia and B the transvarse moment of

inertia, then hl’ h,, h3) is the vector (Aml, Bm3)

It ia convenient to make the plane normal to the missile!s axis

& complex plane with axis 2 the real axis and axis 3 the pure

imaginary axis. For any vector equation this can be done by multi-
pl.ying the third coordinate equation by i and adding to its second.

In the remaining equations of this section a dot will signify
differem.htion with reapect to time ,

With tho above remarks in mind it 1s poaaiblo to obtain the
tollowing equations from (Bl) and (B?.).

o3 “1’(”2"3' 3% "L g

. +1F
(BU) <n2+1u3)-u1(«» * 1) -—-——-2+(32+1¢33

L uz.q.iga
) <»2+i»3>-1~1<~2*w3»z - 22

2 Ifwe take 11, 12, 13 to be a triad of uvnit vectors pointing

" along the reapect.lvo axes of the coordiaote aystem, any. vector
V can be writien as V = V x1 +V 12 + v Differentiating

with respect to time using the dot convention this ylelds
- (4x + 0T, +vx3) + (V x1+v,,x2+ x3). The first term
. isfd ) ~ and the second can be written as L X V. This is
- \dt fixed axes ’
the definition for the angular ve o:l.ty vector of the coordinage
system. In component foraf)is ( 13) X, + (13 11)12 + (xl Iz) 13
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The equations are now made non-dimsnsional ty use of the axial
velocity u, and the missile's diumeter d. This introduces the ron-

dimensional dependent variables:

d
y = %— (spin in radians per caliber)

-

A= Y2 ::3 (complex yaw). |
d+ion, d
0” ~%; m’ (conplez aneunr velndv)

‘rhe mdopendent vu'iablo ‘time is replaced byp= f “1 dt which

for small yaw is appro:dmtely arc length masnred along the © tra-
Jectory in calibers. If a prime is introduced to represent differen-

tiation with respect to p, ve have the relation (¥ ( )' u]' Fronm

equations (BB) - (%) we can now writes

m)_':i_,', (s u3-= vy @3)d Fd g d

, “1 :“1! B "-T“l' ""12—“1
' F.+41F d q. d
S g acwe DD Ll
O '.,:.,_ ,.:“1:1.2_
2
(m)“.,“i“ ' m_(xz#iua)-d _

From equati At A2t d the
can ha%/it:::}a(\s: )’ : )’ “3) an ‘Ah) Jinearizad force mtem

e,
';' 1 ',"3"', D
-

n | ‘
(812) r2 +1 r3 -;1-—- (-JL - "n + v JF)?» + (an, *1 Jsﬂ | 1
(BB) Hl -n “1 v J* |
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~ can be neglected in comparison with -Jj + J

- vhars yo (gt

2 .
(B14) Mz*iMB-mul [.(-vJT-iJM)X*(-JH*ian)u '
d3
where J = en-:— K for all subscripts, p is the air density, and the

K's are the aerodynamic coefficients. (See Table of Symbols and
Coefficients) _ .

Using (B11l) we can now write for (B7)
ul

(81S) == = gy 9y - gyl
gld ' Y

" wh - o
ere Jg -“-i-z- -

For the small Yyaw and transverse angular velocity required b .
the linearity assumption the third term on the right side of (B1S

| Using (B16) hnc&defﬁﬁﬁona (B12) - (Blh),eqaiﬁou (Bé) - (B10)
may be rewritten as:™ ‘ -

'(nAr'ry)‘x"-i..-(-aLquF)xﬂv Iptiddaty

A e 3

(E18) vt = (-3 v

(229) = (i = 3+ £ 3 9) b = i B' RS 0

éa)d _"J‘x-(“z"l"é)'&(s g A)]e
e~ % [ e 1’13 .
B 3 - Y |

- o -2 " » .
o Dedpekty
| 52 - .’1&9._-; (k; is axial radius of gyration in calibers)

2 . ' : . o
t;z - 1"-59— (k, 18 transverse radius of gyration in calibers)

" 1. The ‘grouping of J gk in the y was a correction introduced by Professor

McShane in order to make the treatment of gravity more accurate.
A more extended discussiow of this may be found in {20}

37

p-an




¥ T AT g

We now operate on (Bl7) with the operater [%; + (kgz Jy= Jp * Jg)

-1v(§+k"2 )__]zimltiply(B‘lS?)b:,"an.#i(l* §)» and add.

Assuming that derivatives of force coefficients can be neglected and
using (B18) to eliminate v', ths result reduces to:

(820) A + Enag-iy_gv+(-u-1‘iv’r)).-c*v.r (-3 Ju

where
-2

Hedp=dpti &
- A '
V-EV
"1”‘1 xr * I‘F
,H. 2[("](*'2 ’zar)ove(JrJ 'JTJXF)
- _ﬂ*(-ws ‘L"R)J"’L("n“’)
- "x. -9° "r”‘m ["r“u "xr"x"’s ot et "r:’AJ
o= '-[Jn kz.g-J)oiv(u-kl Jn.Jy

| ﬁo upper case htfara with the .exception of G are selected in

order to :l.dentuy the moment coefficient which is the principal con-

stituent . ' The quite formidabls expressions above can be s

by certain quite maaonahle size usmlptiona. We asm that|J. <10 h
‘Ji‘c x 10 =3 ot.hor;ise 1(1(102 52<0, 15 %2, vk,l, and that

) I).I(l.‘ Ss.ncee—-ilummabouthlos this restricts the

“""L"Jn”‘a "a

. magnitude of KT to less than 2 and that of other Ki." to less than 60. -
~ The requirement for the special case of J8 reduces to dl/2< (207%)

where d is in feet and u in feet/sec. From (B17) it can be seen that
¥ 1s comparable with i\' and hence the second term on right side of
(B20) can be neglected in comparison with iv X A'. X can clearly be-
very well approximated by 1 and similar approximations apply to the
other. toru. * There results the following good approximation of (320).

(B21) AW . (H*Jg-iv)).' + (-u-v'm-o
vhore : ‘

h-k2 (J kalJF)

Ted kl .

0-7'-E(JD-' ZJH-JE)*:I.'\'"y
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Note that thc form of (B21) diffsrs from (B20) oniy by the
absence of X and v.h(D-J Jue Since the general stability analysis

of the report is stated in terms of M, H, and T, all the assumptions
of (821) except X = 1 and an.(D-Js)u -0 may be avoided by inserting

the values of H, M and T given after squation (B20).
An important cise where the above assumptions do not apply is
that of the airabip. Here g 63 is ofthe order of one. If the

effecl of drag and gravity a}re neglocted and spin is taken to be
uro equation (B20) reduces to:

(m)x-¢m'-m-o
e g
n- “2 "n(l"’s)"'x."n

< s:lmo for this eonnzurauon & ‘and J; are positive and Js 13

" . usaally negative and less than one, we see that M can be negative .
' even whsn !H is poaitive. ‘This provides the interesting result that

a ‘statically unstable conﬁguration can be dynamically mble

" without cpi.nl This is, of conrse, limited to conﬁgu'atd.ons cf

mnall density.

i

1. ‘Am‘uplioit example of this is given in Durand, W,
Vol. VI, pages 110 - 112, The neglection of drag gravity 1is

‘quite walid since drag is usually neutralized by the ship's
. propulsion system and gravity bty the ship's buoyancy. The

..assumptions that the center of buoyancy is located at the center
of mass and that apparent mass of the air due to flow around the
ship can be neglected are, however, implicitly implied in (B22).
8ince the center of buoyancy is us\nny located above the center
of mass and the additional consideration of apparent mass affects

" M by not more than 10%, 622) is still reasonably valid for the
horisontal component of yaw, )‘H' Actually only the behavior of

this oonpmnt‘ is considered §n Durand.
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APPENDIX C: CONVERSION FROM BALLISTIC TO AEZODTUAMIC
NOMENCLATURE

The work of thia report has been done in terms of the ballistic
K's which are little known outside the field of ballistics and may be
quite confusing to an aercdynamiciat who does his dynamic stability
.analyses in terms of the aerndynamic C's. It is therefore quite
worthwhile to express the results of this report in terms of these

symbols. This effort is handicapped however, by the three facts:

1. The missiles usually treated in ballistics have a rotation
symmetry which results in pairs of aerodynamic coefficlsnts
being equal and hence corrosponding to onl;r one hom:tio :
coefficient.

2. In ballisilcs the missiles usually have a high rate of spin -
~ and Magms effects have to be considered to which there are
' no corresponding aerodyncmic coefficients. '

| 3. Terms involving the rate of change of angle of attack appear
. - 0 o ¢ in most aerovynamic stability analysis while no such tom
S T ; . _-,appear in the usual bamstic force system. g

B AR e e

TEETET
PR :

‘ The axial componenta ‘'of the aerodynamic force and moment are -
L um‘.uy doﬁnod 1n aorodynu:l.o nomonohturo as: N .

T : X=-1Y2p¥s °n |
m | o ,:. - 1/2 o V' 8 vy °z
rron im: ;. 13 ﬁm o |

nevewd

‘A .- (sni’/d") ¢

e fp
o : ve3 (po/2v)
If tho tranaverao components of the aorodynamic force and moment

m assumed to be linear functions of yaw, change in yaw, and angular
7 weloolity, ‘and Hagnus ooupling is introduoed, we have the following :

donnitlonot |
| r- 2 v"’s) e, X)) +c,. G
(1/ P [[g !ﬁ"‘ Y, (w)* Y‘ (-ze:)

[zpa” “th (’23)”’1 Lv)]

Lo

ot R e AV o S T R M 70 S g TR A s T e
stm———




.~.--(1/2)pv‘?s)g:cZ a+§ z *c )_J

[ aﬁ*cz & v e, ﬁ%_](’%vj

M- (Vzpvzsc){,}m 6+C, (gé) ‘0, (%%ﬂ
-3

. *[oan ® o <%8j<gvj
-(uapvzsm{[ P*%,‘ﬂ’ ,,;,(%%ﬂ |
) [npa (%3) #C, (°° ‘Evj

If the missile is assymid to_porscss tri ona],‘or greater rotatimal
symmotry, it fo‘llows that [4], [6], [3], [27]: S

(c3)

r:!‘B ALY LWL
| "°r,.§" %2, * % e zpr
| °z§'§ " Cz, u Oy ®ra "%, © () = ot
(eb) -c _ cng(-) . -CM cmp ..q%(g) » cnm
.c';';..c“r(_) "% e ch g € b M
\"‘ n§°) " -Gy %é(-:i);c CELNS
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(06) : xr: llh su/@a c‘N’

- equations of yawing motion due to_ the

The third set of symbols 1s introduced in order to emphasize the
existence of symmetry and will be employed throughout the remainder of
this appendix. If we insart these symbols into (C3), rultiply the
second and fourth equations by i and add to ths fir.c and third respectively
‘there results:

r+1z-(1/2pv23){[°n « 1485 o ¢+ 19)

: : +R§v)c 410.]" 4‘102‘)

_. QR
P wemeare? ol - "G ]6 1)
: - : : cn -i( cH ‘cg-o-icr)

R

s

If oqtution (05) is compmd with eq\utiona (A2) and (AL), the Hagxms B

~and non-Hagnus atatic coafﬁcimts are oaaﬂy related. g

K#'--l/zs/dzcn

| 1;,'4-.,1/2 scl/é,gﬁ;‘\

K.;--l/hScb/dh(‘upc

- 'ﬂ:o Mlahionahipa between t.he ramainin dynamic coefficients

" are somewhat more complicated. Fortumtely it can easily be shown

that the remaining Magnus coefficients gre lost in the differential
J¢ connection. It therefore,
rmiuo on‘.ly to connect two hullistic coefﬁcienta, Ks and xﬂ,wit.h

L2




o T e, 78 o 7t e et

P

o e e e ey

four asrodynamic coefficients, ON CH& R qu anicn&

In order to do this we need only to consider the purpose of this
work, namely to, State thn results of this report in aerodynamic
nomenclature. Since this report is concerned with stability, the only
contribution of the aerodynamic coefficients is how they appear in the

“basic differential equations. This means that in order to obtain the

partner of KH we see what coofficient appears in the corresponding -
point of the differential equation sinilar to (1) which is based on

the aerodynamic force ayaten (see [27] for example). By this tactic

we havo:

o *a—> 1‘/&' (6 26y

- 8ince the ujor mnction of Ks is its contritutions to KH uhan

P the centar of uaa is alterod we have:
- ::(ca) 13’;1/!3'3 (6 + & ) -

Notot The- nothod of oht.i.ning (07) and (C8) is not too dasirable.

e It would, of courss, bs mare satisfying to enlarge the ballistic force
. system 8o that there would exist a one-to-one correspondence. (Efforts
. are being made in this direction at the present time.) It also she 1d

be noted that (C7) follows from a couparison of the homogeneous e lxa ons.

| Ia the m of 'ropoao, cqmtion (11), ‘n should be replaced by -

By use ot (02), (06) ’ (07) and (08) 13 48 now poasible to convert

- our symbols, - We will merely tabulate the results.l ( ‘x. W1l be replaced
Co KN ‘D for thia purpose.) .

u.'ﬁa[cn +zcn+1/2k2’2 (°)2 (GH 0,,)]

L seRaey
H kz-z 2_5 c“

%‘:s[cn *op- &"2 i—};ﬁc@

1. "In order to avoid confusion a#* in's (a%) will be replaced by ¢¥,
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