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BALLISTIC RESEARCH LADORATORIES

RERT NO. 853

CHf/irphy/ekb
Aberdeen Proving Ground, Md.
April 1953

ON STABILITY CRITEIIA OF THE KELLEY-NCSHANE LITARIZED
- THEORY OF YAWING MOTION

ABSTRACT

A slightly more accurate dynamic stability criterion arising
from a more careful treatment of a pertu*i~ton term and incorporating
a revised treatment of the gravity term is derived. The new
criterion has tho property-of reducing td the classical ballistic
stability reqirement s r'uhen only KM is retained while the older

criteria became indeterm.nate for this case. The criterion is then
gs.; eralised by the insertion of the requirement of a minimum level
of damping which is not necessarily zero. Comparisons are made
with the other criteria and definition of the terms d.ynamic stabilityl,
"gyroscopic stability" and "static stability" are stated and dis-
nssed. The effect of spin on dynamic stailty is indicated and the

effect of the location of the center of mass ii discussed in some
detail. A relation for an optimum center of mass location is obtained.
The equations of yawing motion are derived in an appendix and solved
in the body of the report. The Kelley-McShane force system is
described and the Tesulting dependence of the aerodynamic coefficients
on center of mass position is derived in a second appendix. A third
appendix converts the expressions used in the body of the report from
ballistic to aerodynamio-nomenclature.
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IINTRCODUCTION4

The Kelley-McShane linoarized eqilatlons of yawing .'notion are
simple linear second order equations which possess only one com-
plication. This is caused by the appearanco of v., the spin in
radians per caliber, in certain of the coefficients. Since this
spin is a slowly varying function of position, one is forced to
consider the effect of slowly vLvixp -oefficients. In order to
handle this Kelley and McSbane L6. introduced a perturbation
term. The effect of this t.rm an tie stability has not been com-
pletely discussed. In fact most of it is omitted from tV- 3tability
criterion of [5and some o" it is omitted from that o' 16)2. The
clarification oi this discrepancy and the resulting der:L-a ,ion of
a slightly more accurate stability criterion is one .of the aims of
this report. This criterion will have the fur+her advantage of
incnr4 orating the correct contribution of gr, .ty as is indicated
in rah'

It is found that -.st consideratiuns of stability are com-
plicated by unnece3sarily complex subdivisions of stability which
arise from the sign of the moment coefficient and the presence or
absence of spin. It is interesting to note that the Kelley-McShane
dynamic stability criterion actually becomes indeterminat,! when the
effect of all aerodynamic coefficients other than LA in neglected.
It will be shown in the body of this report that the Kelley%-McShane
criterion can be revised so that it will reduce to the expected
result of the "classical" ballistic stability requirement s
for this special case aud is independent of any restriction on

KM or V.

The dynamic Aabllty criterion can then be generalized by the
introduction of the concept of a minimum level of stability. The
classical stability definition ic founded on t.he requirement that
the two damping coefficients Cand a 2 be non-ie,,gative. The

generalized requirement is derived-from the requirement that 0i and

2 be not less than an assigned number a which can be described as

the minimum permissible level of damping.

1. Numbers In brackots refer to specific publications listed
in the ro'erences an pageL28;

2. To be precise in •, sl, a2 and s9 which appear in the stability

criterion s ich roce'•e a J J- from the perturbation term and

in [63 they receive a D md2 JA from tl'e perturbation term.

idgdu sin 0" of [5] and
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A further -.onhision in stability studie3 11s fouirne in the nany
types of stability whieh are disýussed. The os3t co-r-mon of there
are "dynamic stability", "static stability" and "pTroscopic stabilityu.
Precise definitions of these term! and a disCus3ion of their in-
terrelationship would be of zome value.

The effects of spin and especially of center of mass location on
dynamic stability of a "statically unstable" missila are quite in-
teresting :xnd are discussed in some detail. At this point a dynamic
stability factor i is introduced.

The purposes of this report are thent

1. To derive a dynamic stability criterion which contains the
full contribution of the perturbation term awd has the correct con-
tribution of gravity.

2. To state this stability criterion in a fashirn which is
independent of the sign of KM and the presence or absence of non-
sero spin and which is equivulent to the "classical" ballistic
stability when only Km is ret&ined.

3. To generalise the dynamic stability criterion by introduction
of a ininim permissible level of damping.

4. To define the terms 'dynamic stability", "static stability*
and "gyroscopic stabil.ty' with respect to this criterion so that all
interrelationships are clear.

5. To discuss the effect of spin and center of imass location on

dynamic stability.

SOLUTIONS OF THE EqJATIONS OF YAWINO MOTION

The equations of yawing motion, which ard derived in the appendix
with attention to proper treatment of the gravity terns, may be stated
asn

(1) Xv .f H +jg +) ffm; T1 X

(2) 71 = ( - Jg)V

Where X X2 + iX3 complex yaw
• sd2

•~ = d sin 0

.UU

1. T•_s solution is esconti lUy that described in the original
Kelley-MoShane report [5J.

6



-* inclination of the trajectory

SA A wý.d

M -Md2 rod2
Vr -- r-V

- d 2

SMm:d 2 .. 4vF B K

D- JD - ikA

a - mass of the missile-
d a diameter of the missile

B - transverse moment of inertia

A a axial moment of inertia
(g1, g2, g3) * acceleration due to gravity vector where

the one axis is along mlssilets axis

u 1  axial component of velocity

ca axial component of angular velocity

,p density of air

are he al~ticcoefficients and primes refer t
differentiation with respect to the axial arc length along the
trajectory in calibers.

If the homogeneous equation is first considered, the problem
reduces to the solutivn of a second .order linear differential equation

"with slowly varying coefficients. Equation (1) may be simplified by

the substitution X a q exp 2 -(H÷ Jg - i) dp which eliminates
0i

the first derivative term. 0

7.
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If the ; c- conjiderations are employed, t-Tiation (1) ca tL
written 3. •* -0

-2 2 -wherer i10 f L -. ) V (H + J) +2 iv (2T - H -D 3

Equati,', ]P .A-= tbe farther simplified by ue-e of a second transformation

Wm la

(Z4) v' r2

C 1 e -:', r were a constant, a pair of solutions of (4) is
w +" ÷ r - examination would reveal that these are singular

solutiou-ý .l e non-linear equation (4). The solutions of the
linear (1) which correspond to these are linearly independent and
hence a linear combination of them would be the general solution of
that equation. Here we have the interesting occurence of the singular
solution of one esuation forming the general solution of an equation
derived frox i.,, We now assume that for non-constant r one solution
of (b).--. r~a % '1Eihere C in .all.l.

(5) r' -1/2 £'-Er 4 1A1~ C n
or if -1/2 S.1 4 AL is imiaL in comparison with r' and r 4: 0
(6) m-

r

But by use of (2) we have

t V- -i (2T H D))
(7) Oern (D i g) iŽ . D j - S

2(14r2 i 2 (2T - H -D

=-.;2 4iZM i(11 +Jg) 2

1 'The -1/2 is introduced here in order to obtain a slight simplifi-
cation in the final form of the solution. This perturbation method
is called the W.K.B; method (Wentzel," Kramers, Brillouin) and-is
described by H. Jeffreys in Proc. of the London Math. Soc. (2) vol 23
(1923) p. U8.6

2. 72 -4 is usually-written ac 72,2 where F2 - I - 1 and a, the
ballistic stability factor, isR- . The use of a squared symbol
implies that h2 1M must be positive and the definition of a2 has
the further disadvantage of becoming infinite for zero spin. In
order to avoid these handicaps m is introduced.

8



*• .- " ,•';If I iecond solution if t%* form -r -m/2e
ft foll.ow d!rctly that& - =and hence two s.lutiots of (h) a.re

/r -. 6, r: -1/-- . trom this ttn:ep..a solution of (1)
is obtainiu as

ifve writein the form (L Td \ +l ),ts sa en

that only shou3d be considerid. This folloaw from the fact that

,',(D - -• =" -l when compared vitl. i and certainly can be .- ,,

Inequation -(B - 2o

Now (a V ju

For most mihsiles l i?2T-H-DJ andG 1/20 and We have the U--a1
approximation

Assminzg that No Ts and D are constants it c.-m be shown that for
a flat tajectory (J. 0) (8) can be approximated qaite accurately by

'(10)~~ ~~ )mK x -. ý' * 2 exp (-a +,1021) p

where, l and Olare linear fanct±-m of p

and a0 are constant functions of p,

H - .÷ €02),

Nm 1 . 2 -os+ m  D(o 1 .o 2 13)O.0 02 ft , 2 +" 62
Tmm-1/2Eagl 2 ). 01, 02 iH -DJ

D i,, 2 (see note 1)

1. The first fouR relations follcwing (10) are derived for t,.e case of
constant Oil l' in L25]. It can be easily shown that they are true

for the case of linear Is. The fifth relation comes from the

d•bythe use of n2). Te elatýon fop M differs from that inr. d- the retention of -H in M.

, :'•-.:.;.,...m w, • -... •. •.:.•... ,... : : •:-• ... .- ,•• - .. . . ............................



Although the solution of the inhomogeneous equation ic not
required for the stability discussion, we will state it here for
complateness. This solution adds an almost constant "yaw of repcses
X o the general solution. The relation defining ).a is derived in

C241 and may be stated in the form ad-2
ud co 0  ; i (2J-JD "r t +/\

M u2 E"J[
where 0 is the inclination of the trajectory.

STAB•TT CRITERION

Dynic Stability Is defined by the statement that a missile is
Sstable N -the yaw describccyLy the solution o f the

homogeneous equation does not increase. Referring to (8) it can be
seen that this requires that H + Jg 9 (D - Jg)4C be greater than

or equal to the real part of the square root and be non-negative. 2

This is equivalent to the relations

where • 9J + ((D- J g()l UJg (1-( 1 ) +DE 1  0

If the square root is replaced byf h where a 4 -, b = Y (2T - H - D),

a+ ib (Ca (cos C + i sin C) and tan C-b
a'

DoMoivre' s Theorem states that:

- •b2 003 C

Substituting this in (12) an4 using the half angle formula for cosC

gives the following equations_.
..(14) H 4- P.• •,, & . 1 + Cos .C.

(�-14 202 ...

*jr H r, a
or H + b+ a

1. Since the initial conditions affect only the homogeneous part of
the solution, this requirement is equivalent to ths restriction that
the sife of yaw caused by the initial conditions will not increkse
throughout the trajectory. Although the yaw of repose may increase,
it' is unaffected by the random initial conditions and its effect
may be computed.

2. Note that is here replaced-by (D - J "

10



Sqwaring -his we have
(15) 2 [H .+1]2 H-÷, +g• o

The second inequality is required in order that (15) be equivalent to
(14). Regrouping and squaring again we have

(16) [2(H + C)2 _a] 2 Z a b2 , H+ .H o

Unfortunately (16) is not precisely equivalent to (15) since the
first inequality of (16) implies either

(17) 2(H 410)2 -a or a -2(H 4g)2 .. 4 by
In order-that (16) be equivalent to (15), it met be �ossi'1 to
reject the second igqqualitr of (1,1), But this is r'ý4y possible
if H l t'O. If H +6-- -0, (15) rouq that b-- 0 and that a
be non-positive. With this in md ve cAn rsvise (16) to the
following orm, which is equivalent to (3,).

(261) H ÷007 H+ 0

b O
Or!

a 0• 2(l *-E)2. al• 2 a2 + b• 2
If 'the neqmalitiee are solved for-a, andand b are replaced by

the•r detinitionms

(28) w 1 o H +E 0

or "(2T-H-D) m 0

SW2 
-* (g

These are the exact stabilitrt conditions. The usual size approxlaations
can now be applied which state j12 terms can be dropped" and the follow-
ig teorem is obtainedd

*1 Note that for constant spin D - J w 0 or sero spin v .O,

""these terms vanish exacti? from (18). Hence the theorem
Is not an approxEimation of (18) fcr ths case.

11
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Theorem In the linearized theory a missile p"- esses dya-.ic
stability if either of the follcwing sets Df relatio, is sati2led.

(19a) H 0 (0b) . .) -o
)2(T-H-D) -o

2 "2 ( 2T4HD 2;2

N 4(19a) may be obtaind somewhat more smply by the assumption that
j. mv -11 F'0 together .with the approximation of a binomial expansion
of the squr r'oot in (8), Iftl;hiissdone, the oe and %g' of (J0)

be¢ome

where g (I -DE

-V- .h2) Dr22.. 4

72-4 - > 1T-

AjthouhI this derivation is handicapped by the assumptions made abote,

with some modificeations this reasoning can be made rigorous.

12
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Since relations (19) require V2 -_4 to be positive, 4 1 must

be positive and considered as a function of spin it attains a
minimum of one for infinite spin. If the slope, D-J, is

positive.1 then the minimum value ofC 1 corresponds to the minimum

Sand the following sufficient stability condition follows from (19r).

(22) H, oD

SL2r2TD1
-2 I

I±D-JD'T" JAisapp tedinHDb7JDvthe~e

results a eat of conditions which are sufficient feyr stability over

flat trajectories when oE 1 JD

(23) H ÷ 0

2

;22
Equations (23) are precisely the stability criteria of •

with the correct treatment of gravity,, and equation3 (22) ar3 The
criteria of t6J. Therefore if only flat trajectorints are con-

sidered ande 1 Cl D, the stability criteria of r53 and (63,are

sufficient conditions for stability.' No indicatioi. of the second
set of relations of (19) can be found in (k or (P3) and herein
is the reason for the failure of the criteria of r•) •r J6 to
reduce to the claosical gyroscopic stability crit".A. , 8.

1. This is satisfied over all of the upward branch and part of the
downward branch of any trajectory and is true over the entire
length of flat trajectories dealt with in spark range work., The
minimrau value of L is one and hence the minir- m is D.

2. In V part of Z isliutegrated out and not contiidered in the stab-
Ity A tlysis. Frort the remainder the correct treatment of gravity
P-4 produces (23) which is independent of gravity.

3. It must be emphasized that from a practical engineering standpoint
(19), (22) and (23) are equivalent and, hence, (22) being the
simplest, should be used.

13



1ýefore going on to a d.iscussion of various typei of stability
and the effect of spin and center of mass location on stability
we will first obtain a generalized form of (19) which should be
quite useful in design work. (19) was obtained from the require-
inent that o. 2> 0. If this were replaced by the requirement that
a, ;ý a iwhefe a is the minimum permissible damping, the criterion
b 4mes much more flexible and valuable to the design ballistician
or aerodynamicist.

Thic revision can be done quite easily by replacing (12) by

(12') H +C- I t4m-+I2i (2T-H-D) l~I

(12') can be reduced to (12) by writing[foroE -a. This

means that the generalized criterion can be obtained by inserting

•C.-a fbr C in (20).

Theorem In the linearized theor7 the damping rates of a
missif greater than a when either of the following sets of

relationsis satisfied.1

(214a) H* + @0 (24~b) H + 6-(L0

!;2 .. j 7~2 r2T-H-D 1(Ti)a0CSL H oi ;

DISCUSSION OF STABILITI

In addition to the concept of dynamic stability two other types
of stability are usually considered: gyroscopic and static. Their
definitions follow directly from the definition OC dyn&mic stability
for the case-where only the effect of m is considered. For this

caso the second set of relations of (19) must be used and they reduce

t o

to(25) 1; -4;

1. Note that a can be negative although its magnitude is restricted
to the order of a J term. This means that should a little
instability be permitted the generalized criterion wlln still
apply.

14I
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mA missile is said to be 11oscopicr1ly stable if it sýitisfies
inequality (25). For zero spin E25becomes T •-'or K, - O. A

missile for which Km t 0 is said to be staticailly satluat. For

statically urctable miusiles KM ; 0 and inequality (25) can be
written in the form:

This is, of course, the classical ballistic stability condition

A2 2

a 1 where a - . Gyroscopic stability for statically

unstable missiles, therefore, reduces to the classical stability
condition.

The logical connections between gyroscopic stability, static
stability' and the basically fundamental dynamic stability can be
derived from their respective definitions. They are shown Li
figure 1 and are listed below.

90

(1) If only K, is considered for atab4 lity, gyroscopic etability
t is sufficient for tynamic stability.

(2) Gyroscopic stability is always necessar7 for dynamic stability.

(3) I .spin is zero, static stability is necessary for gyroscopic
stability.

(4) For any spin, static stability is sufficient for gyroscopic
stability.

(5) If H FAo0 and v - 0, static stability is sufficient
for dynamic stability.

(6) If H + C00 0 and 2T - H - D - 0, gyroscopic stability is
sufficient for dynamic stability. 2

1. Since KM is defined so that it is positive when the center of
pressure is in front of the center of mass, most bodies of re-
volution are statically unstable while most finned missiles
are statically stable.

2. This relationship is quite interesting since it indicates a sort
of optimum center of mass location i. e. such t1*. 2T-H-D - 0.
This relationship is implied by R. Turetsky in fie]-

:15

H .. .. _____________�______ 5-_
. I ,77777



DY!,1AMTOC STAPILITf*

(1) With damping (2) Without darmping

V g -4V [:-D or '(2T-H-D) 0

Sor

OTROSCOPIG STABILITY

Ylig. 1

- ;2E-2 -4M + 2(2T-H-DL217-;

16



In order to discuss the parrticular e f fect of .in. We W"i1 u S the
slightly simpler sufficien, condition (22) and will asswe H + D to
be always positive. (22) can be written

i "(26) ;2 TOJ + D - T) M o 2•(_)

(26) i(25). M or
A (H + D)

-2 .mod 2 (-is axial radius ofi

Ic1  T . KT)
2T

a md (k2 is transverse radius of gyr•tLion in calibers)

of i er

If a is either 0 or 2, the coefficient of v' is zero and for this

case a statically unstable missile can not be matdc dynamically stable
by spin while a statically stable missile is dyne Ticallf stable
regardless of spin.,-Otherwise (26) can be solved for v and two
possibilities arise:

:(27a) "1(2 -7"), o1 01 ;2 4M•

-(2 -- a)

FPra this we see thatt

(1) For a statically stable missile either T(2 -l).) 0 and it
is dynamically stable independent of spin or i(2 - 1)e 0 and dynamic

stability places an upper bound on spin by. use of (27b).1

(2) For a statically unstable missile eitht rs(2 - )70 and
dynamic stability places a lower bound for spin b, use of (27a) or
1(2- l) * 0 and the missile is dynamically unstable independent of

1, Dynamic data obtained-from the simple finned configurations de-
scribed in 071 show that this upper bound acttally exists* At Mach
number of 1 67 s is -7.2 and for this value of'i the upper bound on
spin is 4,2 per caliber. One round has been fired at a spin rate
of 4,0 per caliber and it was found that thn slow arm had practi-

2 cally no damping. At Mach No. of 1.3, * --30 and model was unstable.
2. This entire discussion of the effect of spin nn stability is,

essentially that of Kelley-McShane in either 5 or (6). The
sa 's of Kelley-MoShane may be related to the symbols of this
report bysa - H , s 2  2T + C -D, and s 3 - 2(H-T) +C + D.
The discussion is inserted here in order to give this report
completeness. Here again the case of the airahip must be excludsd.
(See Appen& .B).

S -- 17



For the ass•umpLion made above (narmely ii * + i ÷ D ? 0),

the effect of spin on dynamic stability may be 'Late in a very

concise manner: Theorem If ( -S ) and M have the same sign,
-2

a missile is dynamically stable if s - V !t7 "

Otherwrise spin has no effect and statically stable mIJ2;iles are dy-
namically stable while statically unstable missiles r dynamically
unstable.

We wil1 now consider the interesting question of the effect of
center of mass location on the stability of a static.Aly unstable
missile. In order to do this we need to convert the gnneralized
stability condition into a more useful and specialized form.
Straigtforward algebra and the approximation E A D cin be employed
to obtain the following result.

Theorem

The damping exponents a, and a of the epicyclic 7awing motion
of a statically unstable mis lle arl greater than or cZ. qal to an
aassignel value a if either of the following sets of rclations are
satisfied. (If a a O, the relation of the first set bcame
precisely those for the dynamic stability given in eq,,ktion (27a))

(28a) H +D-a or (29a)H D-a-O

(28b) (29b) 2T a-o0

(28a) 0O4;.42 (29c) s I
here - - (a) + (Generalized Dynamic Stability Factor)

Relatiomi (29) are only of academic interest for desi- ers and will

be disregarded in the remainder of this report. The fom, of relations
(28) has been greatly simplified by the introduction of "(a) which
will be called fthe -generalised dynamic stability factor". Whenever
a appears without a reference to a value of a, a will t, taken to
be zero and a is then called "the dynamic stability fac;or". If
we multiply the numerator and denominator of'-(a) by . it reduces

to the following simple formn

-2
2(KL kl KT)--a*

XL*= 2  Jc..2K~a

where* aL
pd

3

18



The equation a - 1 is plotted in Fig-rc 2. The curr
1(2 7~)

is a fairly flat one with asyrptces at zero and two. The modification
of the classical gyroscopic stability requirement by the dynamic
stability factor is significant onlyv when 'i is outwside the interval
from 3/4 to 5/4.. The center of this interval whi.h is -
corresponds to the optimum center of mass positicna mentioned before
(2T-H-D - 0) andi is independent of a here. This means that if
the gyroscopic stability factor is unity fbr this center of mass
position, an increase in spin which in turn increjses Oss will nAt
improve the dynamic stability. As a matter of fVct equation (20)
shows that both arms damp'at the m rate which -In independent
of spin and that this rate is H H + D. Ecry'tion (20) alsoreveals the interesting property that for "s-4 1 Vta slow arm has

the Mai dampn rate wiil fr r i e rev~rrs is tre.1
7h8 is Important aimse a of the criterion is the dauping rate of

Sthe arm posseuing the 8allsr damping rate.

We "no m~to the center of mass effect on stability. From
appendix A we haU the result that KA and 1 are idependent of

cenUr of mass location while K? and % are linear and quadratic

faneimo s respective of its location.

0 " Hk 2 J+ i " 21JA
whr T SL "I ý

1, By' slov orf•ast arm is meant the arm .with the smaller or, larger
turning rate• 0i•. 'The slow. arm is Sometimes ca~lled the precessioni.

* arm while the fast arm is cafled the nutation~l arm. Since in the
-* classical theory of the top the precessional motion is usually co•n-

sidered to be the motion of the plane of yaw and the nutational
motion is the variation of the magnitude or yaw from maximum to minimum,
this nomenc'ature is conflicting. (It can be shown that nutation rat;
is actually A.- 0• while the precessional rate is .variable unless

HI o=: (2isJ.o•
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q is the shift of c.m. in calibers and is bouncd to a variation over
which the radii of Mrration may be considered constant.

Relation (27a) now defines the limits on q in order +tiat dynamic
stability be possible: The requirement that si(2-i) be positive may
be written as:

(31a) 04.< 2 or 04q 4
H 1 Hq +

For supersonic velocities and most bodies of revoluation, ex-
perience shows that for i a 0 the center of mass is to the rear
of the centroi4. Beyond this point which is not more than two
calibers away from the centroid 1 4 0 and it is inposaible to
stabilize by spin, 'Ie situation can of course bo improved by
changing k. For some long bodies of revolution (fineness
ratio jreater than eight) a a 2 when the center ox mass is forward
of the centroid. Forward of this point i V 2 and Lt is impossible
to stabilize by spin. This situation can be improved ta changing
k andor k•o

In conclusion we will construct two representative stability plots
for long bodies of revolution. The second plot .' quite similar tO
those obtained for shorter models. Table I give,, values of the
aerodynamic c6efficients and physical constants for a typical bod

•-and Figure 3 plots the square of the fmquired spin against co.m.
location for various values of a*. v is used In order that s a 1
will appear as a straight line. A value o. spin ihich is above an
6* curve correiponds to a missile with damping exponents greater
than as

TABLE I

, 01. .32

kM2  8 ý2 *. d * x0

Notice that there is only a small range of c.m. for which dynamic
stability is possible. Point 0 is the optimum c.m. l9cation and is
about .4 cal rear of the centroid.- If we now attompt to improve the
stability characteristics of this hypothetical model by increasing

k 2
2 frm .2 to .3, we find that the situation is completely changed

(see Fig 4.). The optimum point is .1 cal forward of the centroil
and the region of possible dynamic stability is tremendously enlarged.
gLte, however, that the restriction on c~m. location reappears when
damping of the order of al * 6 is required.
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The mzjor effects that the consideration of t1, dyriarc .ýliitV
of statically unstable missiles has on the developrint of such npin
stabilized missiles may be summarized in the following three staterLents:

(1) If there is no requirement on the size of damping and 3/4-e 7 5/4,
the usual gyroscopic considerations apply (s _Z I).

(2) If there is no requirement on the size of danping and 3 is
outside this interval, it must be improved either by-a different mass
distribution which varies c and k. or by a different shape which
changes the ballistic coeffncients.

(3) If there is a minimum level of damping a, then 9(a) must be
considered and the design procedure is that of (1) 3/h ( ) ' /
otherwise it is that of (2).

C. H. MURPHY
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TABLE OF SYMBOLS

A Axial moment of inertia

B Transverse moment of inertia

C arctan _b
a

F (F1 ,F 2 ,F) aerodynamic force

PLV - ig 3 JH+ Qr

H - (hlI2,9h) angular momentum vector or

HovHl 2 coefficients in expansion of H + D as funtion of center of mass

.pd'

g1d, sin 0

K Axial spin deceleration coefficient

ID Drag coefficient

KDA Axial drag coefficient

K? Magnus force due to yaw coefficient

Kd Damping moment coefficient

Y% Lift coefficient

1. Terms in the cross force (A2) or cross moment (A1) which are
zero for zero spin are called *agnus" forces.
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SOverturning (righting) moment coefficient

YLN Normal force coefficient

KS Damping force coefficient

KT Aagnus moment coefficient
KT Magnus force due to Cross angular velocity coefficient

KXT Magnus moment due to cross angular velocity coefficient

K ,K Integration ccnstants in (10)

(M1 1HM2,1 3 ) Aerodynamic moment vector

T md

-•. JT

TojTl Coefficiints in expansion of T-as function of center of mass

"2 (2T-H-D)

d diameter of missile

g acceleration due to •ravity

c.11k2 radii of gyration

S(g1 %,g,) vector acceleration due to gravity

(h.ih2 ,h ) angular momentum vector

m mass of missile

2 4md2

dt independent variable

q 0 X exp 1/2f(H÷Jg - vi)dp or shift in center of mws location

ra/2 [(4M 2) * 2 17v (2T - H- DD) V/2



s stability factor

idynamic stability factor

s1' s symbols used in stability discussion of 1,j and [6j

t time

u (U.qU,2 PU3) vector velocity of center of mass

a minimum level of damping

alsG2 damping of each epicycle arm

,,E W.K.B. perturbation -tae

- & Jg (..,,•) ÷ DC,,

0 inclination of trajectory to horizontal plane

IL-U2 ui.- complexyaw

• , Yaw of repose

wo~d
IA 1. 3-~- •complex angular velociv,
Ul U

V, cJ" spin in radians~per caliber

Ul

p density of air -*

a symbol used in f52 and [62 see footnote to Xqalation (7)

$1 ,P 01.902 turra~ng rmues and their derivativws for thie
epicycle arms

""f. angular velocity of coordinate system,

(a•,•,) angular velocity of missile
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APPENDIX A KKL -HcSHANE FORCE SYSTEM

In order to describe the aerodynamic force acting on a missile
Sin flight, we need first to set up a suitable coordinate system.
This will consist of numbered axos so that the 1 axis lies along
the missile's a~is while the 2 and 3 axes are perpendicular to it.
'As a convenient shorthand we will consider the plpne perpendicular
to the missile's axis to be the complex plane with the 2 axis as
the real axis and the 3 axis imaginary. NVM if the velocity vector
of the missile's center of mass is resolv4 along these axes, the
yaw, W, of the missile, which is the directed angle between the
missile's a3s anrthe velocity vector, can be expressed in complex

form a's "3 7 his expression is of course accurate for

small yaw only.

The second and third components of the angular velocity vector
= (ci, w., *a).are of importance in the consideration of the yawing

motion. These can be no-dimensionalized and written in complex form

as,&~!.um± p here d Is the dianter of th projectile.

The aerodynamic problem can nov be reduced to a dynamic problem by
the assumption that the aerodynamic force and moment are ftnctions
of the air density p, iti sound velocity a, axial velocity uA,
axial angular Velocity 01, yaW ), cross angular velocity p, Sise

of missile which Is characterized by its diameter d and its shape.
The Kelley-MoShane theory makes the further simplification that the
aerodynamic fbrce and moment are linear functions of X and p. If
these hypotheses are applied to a configuration possessing an angleof rotational symmetry leds than 180" and P. plane of mirror symmetry,,

the. aeroftamic force and moment can be wri 4,`%en in the following form.

(Alk1, (6J Uj I
(A2) ±u' d 2  , X+ LaA i

F2ere * P -=---old
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An important aspect or the above definitions is the dependence
of the coefficients appearing in (A2) and(AQ) on the location of the
center of mass. In (A2) the aerodyrnaic force is independent of the
location of the center of mass while the yaw X is defined in terms
of the velocity of the center of mass. The dependence of the moment
coefficients in (AQ) is more complex since they relate to the total
aerodynamic moment about the center of mass and are also associated
with X.

Consider the case where the center of mass is shifted from the
point 0 on the missile's axis to the print 0* which is located on
the missile's axis at a distance of q calibers from 0. (Positive
q will corresjond to a shift toward the nose of the missile.) The

vector 00* is in coordinate form (q d, O, 0). All quantities relating
to the configuration possessing the wre center of mass will be
marked by an asterisk.

Nov if corresponding points of the two cnnfieurations possess
the same motion, the total aerodynamic force on each configuration
are identical and the total aerodynamic momenit -,hen nomi+ed about
corresponding geometric points will be equal [3)J, 163,. r261 For
the same motion we now compute the velocities - tI e joint:; 0 and0.
4) u* u mx (qd, o, o) (U- U2 3 u3 "0qd)

Therefore

(A6) X - 111

Since the an ular velocity vector is ihdependent of the location
of the center of mass, we have

(AB) vA

We can now express the force acting on the configuration with the
new center of mass as

(A3. ) _ ....

2, ,,, l Fo us pdnun [ UKN* ,,KF ) K , iIi*), n]

*p d2 u1  [KKN F ±vX)X i .( c F)~
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If we equate the above with (Al) and (A2) and corpare coefficients
of ). and g respectively we obtain the following:

(A.12) "DA

(W3%) KN * K

(A4) ;F '

(A3.5) q IN

(A16) XF mKIT q K

Now in order to coapare the aerodynamic moments we meat first
compute the moment for the second configuration about the point 0.
This can be vritten as the moment"about 0 in terms of the starred'
quantities:

(Al,) + * (qdOsO) X,;F' N* - (qd, O, O)X1F (, - F , F3 qd)

Therefore

jm ,.. •_2 3A

gU atng (Ad) and (A19) ith i)and (A) we ave

(A•o)1m .xA

33
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(A• ati) (A3.8 andT (A19F wih+A n (44) we have
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In order to obtain the form of (Al) and (A2) used in Appendix B
we derive two final relatinas. Sometimes the force sy3tm is reduced
to only two components which lie in the plane of yaw and are resolvsd
along the trajectory and perpendicular to it. The first component
is ca3led the drag force D and the second is called the lift force L.
They define two more coefficients by the relations

(A25;) D- -p d 2 .l_2 z

2 2
*(A26) LDn-p d u1 IL

If we neglect Magnm terms and terms dependont on p in (A2), we
see that (Al) and (A2) describt the same type of far•e as (A25) and
(A26) but differently directed. We now select tVs real axis so that
it lies in the plane of yaw. Clearly (A25), (A26).are related to
(Al) and (02) by a rotation through the ang• e X.

•.. (7,) D An - + uF 1 cos X

(A26) L- coo X - F sin X

Hence for small X,

* (27) ID'sN)4sin) X+NAcoosX %A

~~~~co X• sin. 1, t..• N °" ' € ' .. "..

If the discussion of the above paragraph saems to lack rigor,
equation (A27) and (A28) may be taken as definitions of 1  and 1 L.

-This can be done since only these relations and not their physical
definitions are used in this report. Using these we can write
(Al) and (42) I their final forms

2 *2
*(All) 71  iP d U1 Kil

(A2) ~ ~ 2 d 2' ['KX +(V , ~~ KXF "s(A2,)2+ p d• u - -+
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APPENDIX B: DEMIVATION OF THE BWJATIOA OF IAWINOG M•TION

A right handed orthogonal coordinate system with axes mut.bered
1, 2, 3 moving with .the missile and so orientated that the 1 axis
always points ,toward the nose along the missile's axms will be used
throughout this appenOx.- •f we specify & (0 1 0'2 03) to be the

angular velocity vector 1 of the missile in this coordinate system
and takeA Q2 21-02--113) to-be the angular velocity of the
coordinate Dy.ter the above restriction on the 1 a4s provides the

-relationsj22 " nd.fL.3 = is selected to be Identically
c =.-.d �,• "ais is initially orientated to lie in the horizonta.

'plane and .point to the right. For the small yaw and small cvatue
of the. trajqctory which are assumed in this developments, the 2 axis
Will always remain qite close to the horis•ntal plane. Our equations
of motion are .

(13) (au)- F1 ,12 3) ' * (g:, 92' g3)

(B2) . ~ 3
where.

U (U.ls U2, U) is the velooit"y etor of the center of gravity

. - ( 2, )• it angular momentum vector of the missile

(F F2 , 73) is the aerodynam ,ic, force vector acting an the

;+l' g2 g•). is+ theacceleration due to gravity vector

. "+, X .... '3 ) is the aerodnamic moment vector acting about the,

ceniter -of geavity

* a. is •Qu mass .of ,the :missile ,

Since our coordinate system is not an inertia system, we have to

" 1. All2 linear and angular velocities are with respect to an inertia
system ftid ,on the earth.'.

• - •+ + . . . : ,.r.+ • . • .++ . . .. + -

S. .. . . dfl m R• • p*



differentiate using the relation 2 d d + 1 x.
ME fixed axes

Although axis 1 is fixed in the missile the other two are moving with
respect to it. This would make the angular momentum vector rather
complicated were it not for the fortunate fact that the mass distribution
of most missiles are effectively those of bodies of revolution. This
implies that every direction normal to the axis of the missile is a
principal axis of inertia and one transver'se moment of inertia prevails.
If A is the axial moment of inertia and B the transverse moment of
inertia, then (h1 , h2 , 13) is the vector (Ao•, B2' po)"

It is convenient to make the plane normal to the missile's axis
a complex plane with axis 2 the real axis and axis 3 the pure
imaginary axis. For any vector equation this can be done by multi-
plying the third coordinate equation by i and adding to its second.

In the remaining equations of this section a dot will signif~r
differentiation with respect to time.

With the above remarks in mind it is possible to obtain the
following equations from (BI) and (B2)0

(B3) 'I (c2 U3 "c63 u2) " +÷9

A M2 +iM 3

i. Ifew° L., ta, 3 t be a triad of unit vectors pointing
along the respective axes of the coordinate system, any vector
ýV can be writ ~en as, V a V111 + V2X2 + V3A- Differentiating
with respect to time using the dot convention this yields

tmf~*2T2 4 13X3) + (01:k *VX, 2 + V3 ±3). The first term
15(d) and the second can be written as Af X V. This is

the definition for the angular velocity vector o4 the coordinate
system. In component for.•jlis ( . X3) X1 + (13 . Z1)Z2 * (X+ . 12) 'X.
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The equations are now made non-dimensional by use of the ay-ial

velocity u1 and the missile's diameter d. This introduces the ron-

dinensional dependent variables:

codV a-- (spin in radians per caliber)

U,

(complex yaw).
U,

(complex angu3Ar Velociy)

The independent va.iab!. time in replaced by p f ul dt Whi

for small yaw is approximately ar length measured along the 0 tra-
jectozr in calibers. If a prime is introduced to represent differen-

tiation with res' ctt6,p,, we have the relation ( ) , fo

equations (Y)- (06) we can nov writes

ul,2 ( u3.-u 2 m)d d F d g, d

a U)m1's4

,(F .2 F3 )d (g 2 +ig 3 )d

-~ ~ ((O2 +, +_..93..). .
(~)~ 2

uld2 r d

09) Vt h io y2. lear-edfo-. 'ste
A .. ' •, (M2 + I M3).dI "

lFrmc equations (Al')P'(A2'),9 WA) and (A•) the i~nearized f'orce etam
can be wri£tten ask

2
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(B14) M, iM m j J i4 jH i +JV JX) ILj

where J -, K for all subscripts, p is the air density, and the* .m

K's are the aerodynamic coefficients. (See Table of Symbols and
Coefficients)

Using (B11) we can now write for (B0)

ut(B3.5) W + 1 (02 U.3 " q3) d

91d .

where J g

For the small yaw and transverse angular velocity required by
the linearity assumption the third term on the riqht side of (B15)
can be neglected in comparison with -JD-+ Jg° • Jg

Ui
S (B16) -JD + J

Using (B16) andcdefnitionn (B12) - (B01).equtions (B8) - (MO)
may be rewritten ast,

(B17) V . - -(- ÷i V jF) X + (v J J 3)p + T

0(18)v, - (D-Jg)•

.T • n oA Jg ± 2 n teor T'o i J b irosso

whe ore exene di92sc 9of2 +hi (93 bfud in d

2 2
,uI,

22

-2 md 2'

r- (k2 is transverse radius of g~rotion in calibers)'

Is The grouping of J g% in the ywas a correction i.ntroduced by Professor

McoShane in order to make the treatment of gravity more accurate*
A more extended discussion~ of this may be found in(2.
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We now operate on (BI7) with the overator -L ' J- JD + Jg)

-i V *i k2  ~~ 'MUlt~iPlY (B19) bY V iX (1 + JS, and add.
Assuming that derivatives of force coefficients can be neglected and
using (B18) to elimin~te v', the result reduces to:

(B20) X" + jg Cv V (-K -if'T) Xu 0 +v ,(J

where

H f-2
HJL JD +k J

-2 
B

2A J14. "2 JXT - 'T J)

oj is:' - JL "R J ÷ (JD * g
o.I r 2  -2 B j1kFJz,3JIJ

The upper case letters with the .exeption of 0 are selected in
order to identif the moent coefficient which is the principal con-
stcint; - The quite formidable expressions above can be tiU ed.

* ' by certain, quite reasonable sue assumptions. We assume thJatjJ 4 .0 ,

mkgitu•d. of K7 to less than 2and that of other K1 's to less thn60. •:

The requirement for the special case of .g reduces to d1/2 (2If' 2u). "

where h is in feet and u in feet/sec. From (B17) it can be seen that

3is eoparable with i' an4 hence the second term on right side of

(320) can be niglected in cowpariscn with iv I )'. X can clearly 1e-
very veil approximated by 1 and similar approximations apply to the

r other ,terms There results the folloving good approximation of (B20).
(B21)i -).1 (H + 7 .i) ' + * M T).
where '-2 ......

H JL JD IC2 '

-022

T JL- k272 'iT
. CjD .k-2 j . .]



Note t1hat U.- frm of (B21) differs ftrom (B2O) only by the
absence of X and yv D-Jg)P._ Since the general stability analysis

of the report is stated in teras of X, H, and T, all the assumptions
of (B21) except I w 1 and IJ(D-"Js a= 0 may be avoided by inserting

the values of H, X and T. given alfter equation (B20).

An important case where the above assumptions do not apply is

that of the airship. Here is of the order of one. If the
U V.

effec of drag and gravity aee neglected and spin is taken to be
sero equation (B20) reduces to:

(B22) V + XI- A=0

W2

K n-. J JS) ".JL.7

Mine. for this confiVrationJ• and JL are positive and Jis''

usuall negative and less than one, we see that N can be negative
ev when 3ii positive. 'This provides the interesting result that

a ,sttioally unstable configuration can be dynamically stable ,.
* without spin1 . This is, of course, limited to configurations of

fuLU dGenstl'.

L. An ewplicit exumpl of this is given in Durand,* Ae=Aod M€ Theaeys i
Vol. VI, pasa 1WD - 212. The negle ction of dag and gravj+ is
uite alid since drag is usually neutral.sed -by the ship's

propulsion system and gravity by the ship's buoyancy. The
asamptions that the center of buoyancy is located at the center
of mass and that apparent mass of the air due to flow around the
ship can be neglected ares- howevers Implicitly implied in (322).
Since the center of bw ay ins uisaly located above the center
of ass and the additional consideration of appareut mass affects
X by not more than 10%, $22) is still reasonably valid for the
horisontal component of yaw, ),. Actually only the behavior of

this component is considered S•n Durand.
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APYP&~DIX C: C0NVVU3IO1N FROM¶ BAXLLISTIC TO Y..C
NOME~NCLATIURE

The work of this report has been done in terms, of the ballistic
its wihich are little known. outside the field of ballistics and may be
quite confusing to an aerodynamicist Who does his dynamic stability
*analyges in -,,ems of the aerodynamic Cls. It is therefore quite
vwrpzwhile to express the results of this report in terms of these
symbols. This effort is handicapped however,, by the three facts:

1. The missiles usually treated in ballistics have a rotation
syuiuutry which results in pairs of aerodynamic coetficeants
being equal and hence corresponding to only one ballistic
coefficient.

2. In ballistics the missiles usually have a high rate of spin
and Magnus effects have to be considered to uhich there are
no corresponding aerodynamic coefficients.

:3. Terus invol'ving the rate of change of angle of attack appear
in most aero~ynamia stability analkysis while no such terms

apparInthe usual, ballistic force system.

The axi~al compnents of the aerodynamic force and moment are
uxually defiqed in aerodynamic nomenclature &as:

X 1a-/2P V2  %

-.L 1/2 V2 Sb( bC
lp

From this we see that

(02) KA 1/24 tS/d ) C

* ~ *2d (pb/2V)

If 'the transverse components of the aerodynmuic force and moment
are assumed to be linear functions of yaw,, change in yaw,, and angular

adMagnus coupling is introduced, we have the following

T. (212p/ 2 a pC ( Cr)Yr * P~,
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t9M V2 (.)5 4C i'SA(12) viCza CL + z c

M (1/Z p V2  )' [m S. +~~ 3 *(

["PP ~ pr

N. (V/2P V2Sb)~ c p .Cr(4) *Ci(a )

+[Ca + Crap(E) .',Cp(g

If theo missile is anstvz*d to porsi-ss trlgonal..rgetrrttca
symtuatr, it follows that [1,LAJ [4#(71 rVatrrtai~

C C CNc -c sC

.mC C. *C. zo N

Cr y"q5 'N p Zpr"; N 11
q q pq

C czmz C Y 0ZA a ~CN

-o u'C(.~)mcL a uc .C)..cUi ý(! 2lp iUýl Cp i l ~ a

C: b) b MCp(ý) %

cmq rrq 'p r 'pq p

A n

a fCMm~ IAC aAf

2&1



The third set of symbols is introduced in order to emphasize the
existence of symmetry and will be employed throughout the remainder of
this appendix. If we insert these symbols into (C3), multiply the
second and fourth equations by i and add to the fti.4 and third respectively
there results:

• . -÷ )C p *qic~q 1 (Cq;L r)

f~% U~N (12pi23 1f

CCNO nr) r)

N 2V E

It-equation (0%) is coopared with equations (A2) and (CM), the Magnu8
S aMn on-agna ms tatic coefficients are easily related.

S(0,6) -.... 145hb/dSbC

Thie •ela•iionships between the remaining dynamnic coefficients
ar•e someghat aicre complicated. Fortunately it can easil)y be shownthat the rema Magnus coe(ffiientn 2 re lost in the differential

• equations of yawing motion due to/thej Jconnection. It therefore,
rem:ins o.01y to connect twO ballistic coefficilents, K• and K1f,vi~th

Z&2
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four aerodynamic coefficients, CN Cqi , CM axCl• 11

In order to do this we need only to consider the purpose of this
work, namely to. dtate tho results of this report in aerodynamic
nomenclature. Since this report is concerned with 3tability, the only
contribution of the aerodynamic coefficients is how they appear in the
basic differential equations. This means that in order to obtain the
partner of K we see what coefficient appears in the corresponding
point of the differential equation sinilar to (1) which is based on
the aerodynamic force system (see C?73 for example). By this tactic
we have:,

-~ (C7)'4 2/4 05(Cý ct.
d q "

Since the major •£untion of K• is its contributions to w when

the center*.6f mass is altered we have&

(CB),
I IS. ......

. . Notet The method of obtaining (C7) and (C8) Is not too desirable.
"It would, of course, be man satisfying to enlarge the ballistic force
system so that there would exist a one-to-one correspondence. (Efforts
are being made in this'direction at the present time*) It also sho ld
"be noted that (C?) Soflows from a comparison of the homogeneous ecpaat4onse
In the; yaw o. 'eoeqato (1) K. should be replaced by - V rC

Byuse es (02)#-(06), (07) and (08) iN% is now posuible to convert
our s3abols,. Ve wil merely tabulate the results. (0L will be replaced

Klml~for this.pau'Pos..)

URn *2%CD 1/2 k2
I. f=

T A

-2 )C J
S.... 2d2

1e In order to avoid confusion a* in i (0I) will be replAced by y.1
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