## **UNCLASSIFIED** ## AD NUMBER ### AD-017 047 ## NEW LIMITATION CHANGE TO DISTRIBUTION STATEMENT: A Approved for public release; Distribution is unlimited. LIMITATION CODE: 1 FROM No Previous DoD Distr Scty Cntrl St'mt ## **AUTHORITY** Dir, Ballistic Research Labs; Apr 22, 1981 ## THIS PAGE IS UNCLASSIFIED COMENT SERVICE CENTER KNOTT BUILDING, DAYTON, 2, OHIO JNCLASSFIED REPORT No. 853 19990430236 # On Stability Criteria of the Kelley-McShane Linearized Theory of Yawing Mation C. H. MURPHY BALLISTIC RESEARCH LABORATORIES ABERDEEN PROVING GROUND, MARYLAND ## BALLISTIC RESEARCH LACORATORIES REPORT NO. 853 April 1953 ## ON STABILITY CRITERIA OF THE KELLEY-MCSHANE LINEARIZED THEORY OF YAWING MOTION C. H. MURPHY Project No. TB3-0108K of the Research and Development Division, Ordnance Corps ABERDEEN PROVING GROUND, MARYLAND Reproduced From Best Available Copy #### TABLE OF CONTENTS | 1 not | , | |---------------------------------------------------------|---| | Abstract3 | | | Introduction5 | | | Solution of the Equations of Yawing Motion6 | | | The Stability Criterion10 | | | Discussion of Stability | | | Table of Symbols25 | | | References28 | | | Appendix A: | | | The Kelley-McShane Force System30 | | | -Appendix Bt | | | Derivation of Equations of Yawing Motion34 | | | Appendix C: | | | Conversion from Ballistic to Aerodynamic NomenciaturehO | | REPORT NO. 853 CHHurphy/ekb Aberdeen Proving Ground, Md. April 1953 ON STABILITY CRITERIA OF THE KELLEY-MCSHANE LINEARIZED THEORY OF YAWING MOTION #### ABSTRACT A slightly more accurate dynamic stability criterion arising from a more careful treatment of a perturbation term and incorporating a revised treatment of the gravity term is derived. The new criterion has the property of reducing to the classical ballistic stability requirement s = when only K, is retained while the older criteria became indeterminate for this case. The criterion is then gravaralized by the insertion of the requirement of a minimum level of damping which is not necessarily zero. Comparisons are made with the other criteria and definition of the terms "dynamic stability". "gyroscopic stability" and "static stability" are stated and dismesed. The effect of spin on dynamic stability is indicated and the effect of the location of the center of mass is discussed in some detail. A relation for an optimum center of mass location is obtained. The equations of yawing motion are derived in an appendix and solved in the body of the report. The Kelley-McShane force system is described and the resulting dependence of the aerodynamic coefficients on center of mass position is derived in a second appendix. A third appendix converts the expressions used in the body of the report from ballistic to aerodynamic nomenclature. #### INTRODUCTION The Kelley-McShane linearized equations of yawing motion are simple linear second order equations which possess only one complication. This is caused by the appearance of v, the spin in radians per caliber, in certain of the coefficients. Since this spin is a slowly varying function of position, one is forced to consider the effect of slowly varying coefficients. In order to handle this Kelley and McShane [5] [6] introduced a perturbation term. The effect of this term on the stability has not been completely discussed. In fact most of it is omitted from the stability criterion of [5] and some of it is omitted from that of [6]<sup>2</sup>. The clarification of this discrepancy and the resulting derivation of a slightly more accurate stability criterion is one of the aims of this report. This criterion will have the further advantage of incorporating the correct contribution of gr. .ty as is indicated in [24]. It is found that most considerations of stability are complicated by unnecessarily complex subdivisions of stability which arise from the sign of the moment coefficient and the presence or absence of spin. It is interesting to note that the Kelley-McShane dynamic stability criterion actually becomes indeterminate when the effect of all aerodynamic coefficients other than K<sub>M</sub> is neglected. It will be shown in the body of this report that the Kelley-McShane criterion can be revised so that it will reduce to the expected result of the "classical" ballistic stability requirement s for this special case and is independent of any restriction on K<sub>M</sub> or v. The dynamic stability criterion can then be generalized by the introduction of the concept of a minimum level of stability. The classical stability definition is founded on the requirement that the two damping coefficients $a_1$ and $a_2$ be non-regative. The generalized requirement is derived from the requirement that $a_1$ and $a_2$ be not less than an assigned number $a_1$ which can be described as the minimum permissible level of damping. 1. Numbers in brackets refer to specific publications listed in the references on page [28]. <sup>2.</sup> To be precise in [5], $s_1$ , $s_2$ and $s_3$ which appear in the stability criterion such receive a $J_D - J_g$ from the perturbation term and in [6] they receive a $J_D - J_g - \frac{\text{md}^2}{A} J_A$ from the perturbation term. $J_g$ is defined to be the " - gdu sin 0" of [5] and [6]. A further confusion in stability studies is found in the many types of stability which are discussed. The most common of these are "dynamic stability", "static stability" and "gyroscopic stability". Precise definitions of these terms and a discussion of their interrelationship would be of some value. The effects of spin and especially of center of mass location on dynamic stability of a "statically unstable" missile are quite interesting and are discussed in some detail. At this point a dynamic stability factor s is introduced. The purposes of this report are then: - 1. To derive a dynamic stability criterion which contains the full contribution of the perturbation term and has the correct contribution of gravity. - 2. To state this stability criterion in a fashion which is independent of the sign of $K_M$ and the presence or absence of non-sero spin and which is equivalent to the "classical" ballistic stability when only $K_M$ is retained. - 3. To generalize the dynamic stability criterion by introduction of a minimum permissible level of damping. - 4. To define the terms "dynamic stability", "static stability" and "gyroscopic stability" with respect to this criterion so that all interrelationships are clear. - 5. To discuss the effect of spin and center of mass location on dynamic stability. #### SOLUTIONS OF THE EQUATIONS OF YAWING MOTION The equations of yaving motion, which are derived in the appendix with attention to proper treatment of the gravity terms, may be stated as: (1) $$\lambda^{w} + \left[H + J_{g} - i\overline{v}\right]\lambda^{t} + \left[-M - i\overline{v}T\right]\lambda = G$$ (2) $\overline{v}^{t} = (D - J_{g})\overline{v}$ where $\lambda = \lambda_{2} + i\lambda_{3}$ complex yaw $H = J_{1} - J_{D} + \frac{md^{2}}{B} J_{H}$ $J_{g} = \frac{g_{1}d}{u_{1}z} = \frac{gd \sin \theta}{u^{2}}$ 1. This solution is essentially that described in the original Kelley-McShane report [5]. $\theta$ = inclination of the trajectory $$\overline{v} = \frac{A}{B}v = \frac{A}{B} \frac{\omega_1 d}{u_1}$$ $$M = \frac{md^2}{B} J_M + v \overline{v} J_F = \frac{md^2}{B} J_M$$ $$T = J_L - \frac{ma^2}{A} J_T$$ $$G = \gamma' - \left[ \left( J_D - J_g - \frac{md^2}{B} J_H \right) + i \overline{\nu} \right] \gamma$$ $$D - J_D - \frac{md^2}{A} J_A$$ m = mass of the missile d = diameter of the missile B = transverse moment of inertia A = axial moment of inertia (g<sub>1</sub>, g<sub>2</sub>, g<sub>3</sub>) = acceleration due to gravity vector where the one axis is along missile's axis u, - axial component of velocity ω, = axial component of angular velocity $$\gamma = \frac{\left[ (g_2 - g_1 \lambda_2) + i(g_3 - g_1 \lambda_3) \right] d}{u_1^2}$$ $$J_1 = \frac{\rho d^3}{m} K_1$$ ρ = density of air K<sub>1</sub> are the ballistic coefficients and primes refer to differentiation with respect to the axial arc length along the trajectory in calibers. If the homogeneous equation is first considered, the problem reduces to the solution of a second order linear differential equation with slowly varying coefficients. Equation (1) may be simplified by the substitution $\lambda = q \exp 1/2 \int_{0}^{p} -(H + J_{g} - i\overline{\nu}) dp$ which eliminates the first derivative term. If the type (3) we considerations are employed, equation (1) can be written s = (3) by $- x^2q = 0$ where $$r^2 = 1/2 \left[ (H - \nabla^2) + (H + J_g)^2 + 2 i \nabla (2T - H - D) \right]$$ Equation (i) can be further simplified by use of a second transformation $w = (\ln m)^2$ Clearly if r were a constant, a pair of solutions of (h) is we to close examination would reveal that these are singular solutions of the non-linear equation (h). The solutions of the linear (l) which correspond to these are linearly independent and hence a linear combination of them would be the general solution of that equation. Here we have the interesting occurence of the singular solution of one equation forming the general solution of an equation derived from it. We now assume that for non-constant r one solution of (h) is of the form r -1/2 takere (is small.) (5) $$r' - 1/2 E' - Er + 1/4 E^2 = 0$$ or if $-1/2 E' + 1/4 E^2$ is small in comparison with $r'$ and $r \neq 0$ (6) $E = \frac{r'}{r}$ But by use of (2) we have<sup>2</sup> (7) $\frac{r'}{r} = \frac{(hr^2)'}{2(hr^2)} = (D - J_g) \overline{\nu} \left[ \frac{\overline{\nu} - 1(2T - H - D)}{\overline{m} - 2i\overline{\nu}(2T - H - D)} \right]$ ; $$\bar{m} = \bar{\nu}^2 - \mu_M - (H + J_g)^2$$ <sup>1.</sup> The -1/2 is introduced here in order to obtain a slight simplification in the final form of the solution. This perturbation method is called the W.K.B. method (Wentzel, Kramers, Brillouin) and is described by H. Jeffreys in Proc. of the London Math. Soc. (2) vol 23 (1923) p. 428. <sup>2.</sup> $\overline{\nu}^2$ - $\mu$ is usually written as $\overline{\nu}^2$ $\sigma^2$ where $\sigma^2 = 1 - \frac{1}{3}$ and s, the ballistic stability factor, is $\frac{\overline{\nu}^2}{\mu M}$ . The use of a squared symbol implies that $\overline{\nu}^2$ - $\mu$ must be positive and the definition of $\sigma^2$ has the further disadvantage of becoming infinite for zero spin. In order to avoid these handicaps m is introduced. If a second solution of the form $-r - 1/2\xi^*$ is considered, it follows directly that $\xi^* = \xi$ and hence two solutions of (h) are $r - 1/2\xi$ and $-r - 1/2\xi$ . From this the general solution of (1) is obtained as (8) $$\lambda = K_1 \exp 1/2 \int_{0}^{p} \left\{ -ii - J_g + i\overline{v} - \mathcal{E} + \left[ -\overline{n} + 2i\overline{v} (2T - H - D) \right]^{1/2} \right\} dp$$ $$+ K_2 \exp 1/2 \int_{0}^{p} \left\{ -ii - J_g + i\overline{v} - \mathcal{E} - \left[ -\overline{n} + 2i\overline{v} (2T - H - D) \right]^{1/2} \right\} dp$$ If we write $\mathcal{E}$ in the form $(L-J_g)$ $(\mathcal{E}_1+1\mathcal{E}_2)$ , it is castly seen that only $\mathcal{E}_1$ should be considered. This follows from the fact that $(D-J_g)\mathcal{E}_2$ is small when compared with $\overline{\nu}$ and certainly can be interest in equation (8). Now (9) $$\mathcal{E}_1 = \frac{\overline{v}^2 \left[ \overline{m} + 2 (2T - H - 0)^2 \right]}{\overline{m}^2 + 4 \overline{v}^2 (2T - H - D)^2}$$ ; $\overline{m} = \overline{v}^2 - 4 \frac{md^2}{B} J_H - (H + J_g)^2$ For most missiles $\sqrt{m} > 2T-H-D$ and $\overline{\nu} < 1/20$ and we have the usual approximation $\mathcal{E}_1 \sim \frac{\overline{\nu}^2}{m}$ . Assuming that H, T, and D are constants it can be shown that for a flat trajectory $(J_g=0)$ (8) can be approximated quite accurately by (10) $$\lambda = K_1 \exp(-\alpha_1 + i\beta_1!) p + K_2 \exp(-\alpha_2 + i\beta_2!) p$$ where $\beta_1!$ and $\beta_2!$ are linear functions of p $\alpha_1$ and $\alpha_2$ are constant functions of p $$\overline{v} = \emptyset_{1}^{i} + \emptyset_{2}^{i}$$ $$H = (\alpha_{1} + \alpha_{2}) - D \mathcal{E}_{1}$$ $$M = \emptyset_{1}^{i} \cdot \emptyset_{2}^{i} - \alpha_{1} \alpha_{2} + \frac{\mathcal{E}_{1}}{2} D(\alpha_{1} + \alpha_{2} - \frac{\mathcal{E}_{1}}{2} D)$$ $$T = -1/2 \left[ (\alpha_{1} - \alpha_{2}) \frac{\emptyset_{1}^{i} - \emptyset_{2}^{i}}{\emptyset_{1}^{i} + \emptyset_{2}^{i}} - H - D \right]$$ $$D = \frac{\emptyset_{1}^{i} + \emptyset_{2}^{i}}{\emptyset_{1}^{i} + \emptyset_{2}^{i}} \text{ (see note 1)}$$ 1. The first four relations following (10) are derived for the case of constant 01's in [25]. It can be easily shown that they are true for the case of linear 01's. The fifth relation comes from the first by the use of (2). The relation for M differs from that in [25] due to the retention of (H T<sub>g</sub>) in m. 9 Although the solution of the inhomogeneous equation is not required for the stability discussion, we will state it here for completeness. This solution adds an almost constant "yaw of repose" $\lambda_R$ to the general solution. The relation defining $\lambda_R$ is derived in [2h] and may be stated in the form (11) $$\lambda_{R} = \frac{\text{gd } \cos \theta}{\text{M u}^{2}} \left[ -\bar{\nu} + i \left( 2J_{g} - J_{D} - \frac{\text{md}^{2}}{\text{B}} J_{H} + \bar{\nu}^{2} \frac{T}{H} \right) \right] \left[ 1 + \left( \frac{\bar{\nu}T}{H} \right)^{2} \right]^{-1}$$ where 0 is the inclination of the trajectory. #### STABILITY CRITERION Dynamic Stability is defined by the statement that a missile is dynamically stable if the yaw described by the solution of the homogeneous equation does not increase. Referring to (8) it can be seen that this requires that $H + J_g + (D - J_g) \mathcal{E}_1$ be greater than or equal to the real part of the square root and be non-negative. This is equivalent to the relation: (12) $$H + \vec{\xi} = \int_{\mathbb{R}} \mathbb{R} \left\{ [-\vec{n} + 2i\vec{v} (2T - H - D)]^{1/2} \right\}$$ where $\vec{\xi} = J_g + (D - J_g) \vec{\xi}_1 = J_g (1 - \vec{\xi}_1) + D \vec{\xi}_1$ . If the square root is replaced by $\sqrt{a+ib}$ where a=-m, $b=2\overline{v}$ (2T - H - D), $a+ib=\sqrt{(a^2+b^2)}$ (cos C + i sin C) and tan C = $\frac{b}{a}$ , De Moivre's Theorem states that: (13) $$R(\sqrt{a+ib}) = R(\sqrt{a^2+b^2} (\cos \frac{C}{2} + i \sin \frac{C}{2}))$$ = $\ln \sqrt{a^2+b^2} \cos \frac{C}{2}$ Substituting this in (12) and using the half angle formula for $\cos \frac{C}{2}$ gives the following equations: (14) $$H + \bar{\xi} \ge 4 \int \frac{a^2 + b^2}{2} \sqrt{\frac{1 + \cos C}{2}}$$ or $H + \bar{\xi} \ge 4 \int \frac{a^2 + b^2}{2} \sqrt{\frac{1 + a/a^2 + b^2}{2}}$ 2. Note that $\xi$ is here replaced by $(D - J_g) \mathcal{E}_1$ . <sup>1.</sup> Since the initial conditions affect only the homogeneous part of the solution, this requirement is equivalent to the restriction that the size of yaw caused by the initial conditions will not increase throughout the trajectory. Although the yaw of repose may increase, it is unaffected by the random initial conditions and its effect may be computed. Squaring this we have (15) $$2\left[H+\overline{\epsilon}\right]^{2} = \sqrt{a^{2}+b^{2}} + a, H+\overline{\epsilon} \ge 0$$ The second inequality is required in order that (15) be equivalent to (14). Regrouping and squaring again we have (16) $$[2(H + \tilde{\xi})^2 - a]^2 \ge a^2 + b^2$$ , $H + \tilde{\xi} = 0$ Unfortunately (16) is not precisely equivalent to (15) since the first inequality of (16) implies either (17) $2(H+\vec{\epsilon})^2 = a^2 + b^2$ or $a = 2(H+\vec{\epsilon})^2 = -a^2 + b^2$ In order that (16) be equivalent to (15), it must be possible to reject the second inequality of (17). But this is only possible if $H+\vec{\epsilon}\neq 0$ . If $H+\vec{\epsilon}=0$ , (15) requires that b=0 and that a be non-positive. With this in mind we can revise (16) to the following form which is equivalent to (15). If the inequalities are solved for -a, and a and b are replaced by their definitions, (18) $$H + \overline{E} = 0$$ or $\overline{V}(2T - H - D) = 0$ $\overline{V}^2 - \mu M \ge 0$ $$\overline{v}^2 - \mu_M = \overline{v}^2 \left[ \frac{(2T - H - D)}{H + \overline{\epsilon}} \right]^2 - (H + \overline{\epsilon})^2 + (H + J_g)^2$$ These are the exact stability conditions. The usual size approximations can now be applied which state $J^2$ terms can be dropped and the following theorem is obtained: <sup>1.</sup> Note that for constant spin D - $J_g = 0$ or zero spin v = 0, these $J^2$ terms vanish exactly from (18). Hence the theorem is not an approximation of (18) for this case. Theorem In the linearized theory a missile possesses dynamic stability if either of the following sets of relations is satisfied. (19a) $$H + \overline{\xi} > 0$$ (19b) $H + \overline{\xi} = 0$ $$\overline{v}^2 - \lim_{\overline{\xi}} \overline{v}^2 \left( \frac{2T - H - D}{H + \overline{\xi}} \right)^2 \qquad \overline{v}^2 - \lim_{\overline{\xi}} 0$$ where $\overline{\xi} = J_g (1 - \xi_1) + D\xi_1$ $$\xi_1 = \frac{\overline{v}^{1/2} \left[ (\overline{v}^2 - \lim) + 2(2T - H - D)^2 \right]}{(\overline{v}^2 - \lim)^2 + \overline{\mu} \overline{v}^2 (2T - H - D)^2} \sim \overline{v}^2 - \underline{\lim}$$ Note, (19a) may be obtained somewhat more simply by the assumption that $\overline{m} = \overline{v}^2 - \lim > 0$ together with the approximation of a binomial expansion of the square root in (8). If this is done, the $\alpha_1$ and $\beta_1$ of (10) become (20) $$a_{1,2} = 1/2 \left[ H + E + \frac{\overline{\nu}}{\sqrt{\overline{m}}} (2T - H - D)^2 1/2 \left[ (1 + \frac{1}{\sigma}) H + \frac{2}{\sigma}T + (\frac{1 + \sigma}{\sigma^2}) D \right]$$ $$g_{1,2} = 1/2 \overline{\nu} (1 - \sigma)$$ where $\sigma = \sqrt{\frac{\pi}{\pi}}$ $$\bar{\mathcal{E}} \sim \frac{D\bar{v}^2}{m} - \frac{D}{\sigma^2}$$ Dynamic stability requires that $a_{1.2} \geqslant 0$ and this implies that $$H + \bar{\epsilon} \ge \left| \frac{\bar{\nu}(2T - H - D)}{\sqrt{\bar{m}}} \right|$$ or (21) $$\sqrt{\overline{v}^2 - \mu M} \ge |\overline{v}(2T - H - D)|$$ . But this is equivalent to (19a). Although this derivation is handicapped by the assumptions made above, with some modifications this reasoning can be made rigorous. Since relations (19) require $\overline{v}^2$ - $\mu$ M to be positive, $\mathcal{E}_1$ must be positive and considered as a function of spin it attains a minimum of one for infinite spin. If the slope, D- $J_g$ , is positive then the minimum value of $\mathcal{E}_1$ corresponds to the minimum $\mathcal{E}_1$ and the following sufficient stability condition follows from (19a). (22) $$H + D > 0$$ $$= \sqrt{2} - \lim_{n \to \infty} \frac{1}{\sqrt{2}} \left( \frac{2T - H - D}{H + D} \right)^{2}$$ If D = $J_D - \frac{md^2}{A}$ $J_A$ is approximated in H + D by $J_D$ , there results a set of conditions which are sufficient for stability over flat trajectories when $\mathcal{E}_1 < \frac{J_D}{D}$ . (23) $$H + J_D > 0$$ $$\overline{v}^2 - \mu \neq \overline{v}^2 \left[ \frac{2T - H - D}{H} \right]^2$$ Equations (23) are precisely the stability criteria of [5] with the correct treatment of gravity, and equations (22) are the criteria of [6]. Therefore if only flat trajectories are considered and $C_1 \subset D$ , the stability criteria of [5] and [6] are sufficient conditions for stability. No indication of the second set of relations of (19) can be found in (23) or (23) and herein is the reason for the failure of the criteria of [5] or [6] to reduce to the classical gyroscopic stability criteria, $s \ge 1$ . <sup>1.</sup> This is satisfied over all of the upward branch and part of the downward branch of any trajectory and is true over the entire length of flat trajectories dealt with in spark range work. The minimum value of \$\mathcal{E}\$, is one and hence the minimum \$\mathcal{E}\$ is D. minimum value of £ is one and hence the minimum £ is D. 2. In [5] part of £ is integrated out and not considered in the stabity unlysis. From the remainder the correct treatment of gravity [25] produces (23) which is independent of gravity. It must be emphasized that from a practical engineering standpoint (19), (22) and (23) are equivalent and, hence, (22) being the simplest, should be used. Before going on to a discussion of various types of stability and the effect of spin and center of mass location on stability we will first obtain a generalized form of (19) which should be quite useful in design work. (19) was obtained from the requirement that $a_1 \ge 0$ . If this were replaced by the requirement that $a_1 \ge a$ where a is the minimum permissible damping, the criterion becomes much more flexible and valuable to the design ballistician or aerodynamicist. This revision can be done quite easily by replacing (12) by (12') $$H + \overline{E} - |R \{ -\overline{m} + 2i\overline{v} (2T-H-D)^{1/2} \} \ge \alpha$$ (12') can be reduced to (12) by writing $\bar{\mathcal{E}}$ for $\bar{\mathcal{E}}$ -a. This means that the generalized criterion can be obtained by inserting $\bar{\mathcal{E}}$ -a for $\bar{\mathcal{E}}$ in (20). Theorem In the linearized theory the damping rates of a missile are greater than a when either of the following sets of relations is satisfied. (24a) $$H + \bar{E} - \alpha > 0$$ (24b) $H + \bar{E} - \alpha = 0$ $$\bar{\nu}^2 - \lim_{\to \infty} \bar{\nu}^2 \left[ \frac{2T - H - D}{H + \bar{E}} - \alpha \right]^2$$ $$\bar{\nu}^2 - \lim_{\to \infty} 0$$ #### DISCUSSION OF STABILITY In addition to the concept of dynamic stability two other types of stability are usually considered: gyroscopic and static. Their definitions follow directly from the definition of dynamic stability for the case where only the effect of $K_{\underline{M}}$ is considered. For this case the second set of relations of (19) must be used and they reduce to <sup>1.</sup> Note that a can be negative although its magnitude is restricted to the order of a J term. This means that should a little instability be permitted the generalized criterion will still apply. A missile is said to be gyroscopically stable if it satisfies inequality (25). For zero spin (25) becomes $M \leq 0$ or $K_M \leq 0$ . A missile for which $K_M \leq 0$ is said to be statically stable. For statically unstable missiles $K_M > 0$ and inequality (25) can be written in the form: (25') $$\frac{\overline{v}^2}{4M} = \frac{A^2 \omega_1^2}{4B \rho d^3 u_1^2 K_M}$$ This is, of course, the classical ballistic stability condition $s \ge 1$ where $s = \frac{A^2 \omega_1^2}{4B \rho d^3 u_1^2 K_M}$ . Gyroscopic stability for statically unstable missiles, therefore, reduces to the classical stability condition. The logical connections between gyroscopic stability, static stability, and the basically fundamental dynamic stability can be derived from their respective definitions. They are shown in figure 1 and are listed below. - (1) If only K, is considered for stability, gyroscopic stability is sufficient for dynamic stability. - (2) Cyroscopic stability is always necessary for dynamic stability. - (3) If spin is zero, static stability is necessary for gyroscopic stability. - (4) For any spin, static stability is sufficient for gyroscopic stability. - (5) If $R + \varepsilon \ge 0$ and v = 0, static stability is sufficient for dynamic stability. - (6) If $H + \overline{C} > 0$ and 2T H D = 0, gyroscopic stability is sufficient for dynamic stability.<sup>2</sup> <sup>1.</sup> Since K<sub>M</sub> is defined so that it is positive when the center of pressure is in front of the center of mass, most bodies of revolution are statically unstable while most finned missiles are statically stable. <sup>2.</sup> This relationship is quite interesting since it indicates a sort of optimum center of mass location i. e. such that 2T-H-D = 0. This relationship is implied by R. Turetsky in [18]. #### DYNAMIC STABILITY\* (1) With damping $$\overline{v}^2 - \mu M = \overline{v}^2 \left[ \frac{2T - H - D}{H + \overline{\varepsilon}} \right]^2$$ (2) Without damping $$H + \overline{\xi} = 0$$ $$\overline{\nu}(2T-H-D) = 0$$ Fig. 1 \* $$\xi = J_g (1 - \xi_1) + D \xi_1$$ $\xi = \frac{\overline{v}^2 \left[ (\overline{v}^2 - \mu_M) + 2(2T - H - D)^2 \right]}{(\overline{v}^2 - \mu_M)^2 + \mu \overline{v}^2 (2T - H - D)^2}$ $\frac{\overline{v}^2}{\overline{v}^2 - \mu_M}$ In order to discuss the particular effect of spin, we will use the slightly simpler sufficien, condition (22) and will assume H + D to be always positive. (22) can be written (26) $$\overline{v}^2 \frac{T(H+D-T)}{(H+D)^2} \ge M$$ or $\overline{v}^2 \overline{s}(2-\overline{s}) \ge M$ Where $\overline{s} = \frac{2T}{H+D} = \frac{2(K_L - \overline{k}_1^2 K_T)}{K_L + \overline{k}_2^2 K_H - \overline{k}_1^2 K_A}$ (Dynamic Stability Pactor) $k_1^{-2} = \frac{md^2}{A}$ ( $k_1$ is axial radius of gyration in calibers) $$k_2^{-2} = \frac{md^2}{B}$$ (k<sub>2</sub> is transverse radius of gyration in calibers) If s is either 0 or 2, the coefficient of $v^2$ is zero and for this case a statically unstable missile can not be made dynamically stable by spin while a statically stable missile is dynamically stable regardless of spin. Otherwise (26) can be solved for $v^2$ and two possibilities arise: (27a) $$\overline{s}(2-\overline{s}) > 0;$$ $\overline{v}^2 \ge \frac{\mu M}{\overline{s}(2-\overline{s})}$ (27b) $\overline{s}(2-\overline{s}) < 0;$ $\overline{v}^2 \le \frac{\mu M}{\overline{s}(2-\overline{s})}$ From this we see that: THE RESIDENCE OF THE PARTY T - (1) For a statically stable missile either $\overline{s}(2-\overline{s}) \ge 0$ and it is dynamically stable independent of spin or $\overline{s}(2-\overline{s}) < 0$ and dynamic stability places an upper bound on spin by use of (27b). - (2) For a statically unstable missile either $\bar{s}(2-\bar{s})>0$ and dynamic stability places a lower bound for spin by use of (27a) or $\bar{s}(2-\bar{s}) \leq 0$ and the missile is dynamically unstable independent of spin.<sup>2</sup> - l. Dynamic data obtained from the simple finned configurations described in [7] show that this upper bound actually exists: At Mach number of 1.7 s is -7.2 and for this value of s the upper bound on spin is 4.2 per caliber. One round has been fired at a spin rate of 4.0 per caliber and it was found that the slow arm had practically no damping. At Mach No. of 1.3, s = -30 and model was unstable. - 2. This entire discussion of the effect of spin on stability is essentially that of Kelley-McShane in either [5] or [6]. The si 's of Kelley-McShane may be related to the symbols of this report by si = H + E, si = 2T + E D, and si = 2(H-T) + E + D. The discussion is inserted here in order to give this report completeness. Here again the case of the airship must be excluded. (See Appendix B). For the assumption made above (namely H + $\mathcal{E}$ = H + D > 0), the effect of spin on dynamic stability may be stated in a very concise manner: Theorem If s(z-s) and M have the same sign, a missile is dynamically stable if $s = \frac{v^2}{4M} \ge \frac{1}{8(2-s)}$ . Otherwise spin has no effect and statically stable missiles are dynamically stable while statically unstable missiles are dynamically unstable. We will now consider the interesting question of the effect of center of mass location on the stability of a statically unstable missile. In order to do this we need to convert the generalized stability condition into a more useful and specialized form. Straightforward algebra and the approximation $\vec{\xi} = 0$ can be employed to obtain the following result. #### Theorem The damping exponents $a_1$ and $a_2$ of the epicyclic rawing motion of a statically unstable missile are greater than or equal to an assigned value a if either of the following sets of relations are satisfied. (If a = 0, the relation of the first set became precisely those for the dynamic stability given in equation (27a)). (28a) $$H + D - \alpha > 0$$ or (29a) $H + D - \alpha = 0$ (28b) $\frac{\overline{v}^2}{4M} = s \ge \frac{1}{\overline{s}(2-\overline{s})}$ (29b) $2T - \alpha = 0$ (28c) $0 < \overline{s} < 2$ (29c) $s \le 1$ where $\overline{s} = \overline{s}$ ( $\alpha$ ) = $\frac{2T - \alpha}{H + D - \alpha}$ (Generalized Dynamic Stability Factor) Relations (29) are only of academic interest for designers and will be disregarded in the remainder of this report. The form of relations (28) has been greatly simplified by the introduction of \$\overline{\alpha}(\alpha)\$ which will be called "the generalized dynamic stability factor". Whenever \$\overline{\alpha}\$ appears without a reference to a value of \$\overline{\alpha}\$, \$\overline{\alpha}\$ will be taken to be zero and \$\overline{\alpha}\$ is then called "the dynamic stability factor". If we multiply the numerator and denominator of \$\overline{\alpha}\$ (a) by \( \frac{\alpha}{\overline{\alpha}}\$ it reduces to the following simple form: $$\overline{s}(\alpha*) = \frac{2(K_{L} - k_{1}^{-2} K_{T}) - \alpha*}{K_{L} + k_{2}^{-2} K_{H} - k_{1}^{-2} K_{A} - \alpha*}$$ where $\alpha* = \frac{m}{\rho d^{3}} \alpha$ The equation $s = \frac{1}{5(2-8)}$ is plotted in Figure 2. The curve is a fairly flat one with asymptotes at zero and two. The modification of the classical gyroscopic stability requirement by the dynamic stability factor is significant only when s is outside the interval from 3/4 to 5/4. The center of this interval which is s = 1 corresponds to the optimum center of mass position mentioned before (2T-H-D = 0) and s is independent of a here. This means that if the gyroscopic stability factor is unity for this center of mass position, an increase in spin which in turn increases "s" will not improve the dynamic stability. As a matter of fact equation (20) shows that both arms damp at the same rate which is independent of spin and that this rate is H + E ~ H + D. Equation (20) also reveals the interesting property that for s < 1 the slow arm has the smaller damping rate while for s > 1 the reverse is true. This is important since a of the criterion is the damping rate of the arm possessing the smaller damping rate. We now return to the center of mass effect on stability. From appendix A we have the result that $K_A$ and $K_L$ are independent of center of mass location while $K_T$ and $K_H$ are linear and quadratic functions respectively of its location. (30) $$T = T_0 + T_1 q$$ $H + D = H_0 + H_1 q + H_2 q^2$ where $T_0 = J_1 - k_1^{-2} J_T$ $T_1 = k_1^{-2} J_F$ $H_0 = J_1 + k_2^{-2} J_H - k_1^{-2} J_A$ $H_1 = -k_2^{-2} (J_S + J_H)$ $H_2 = k_2^{-2} J_N$ ALL DESCRIPTION OF THE PARTY by slow or fast arm is meant the arm with the smaller or larger turning rate \$\mathbb{g}\_1\$. The slow arm is sometimes called the precessional arm while the fast arm is called the nutational arm. Since in the classical theory of the top the precessional motion is usually considered to be the motion of the plane of yaw and the nutational motion is the variation of the magnitude of yaw from maximum to minimum, this nomenclature is conflicting. (It can be shown that nutation rate is actually \$\mathbb{A}\_1 - \mathbb{G}\_2\$ while the precessional rate is variable unless \$K\_1\$ or \$K\_2\$ is zero. q is the shift of c.m. in calibers and is bounded to a variation over which the radii of gyration may be considered constant. Relation (27a) now defines the limits on q in order that dynamic stability be possible: The requirement that $\overline{s}(2-\overline{s})$ be positive may be written as: (31a) $$0 < \overline{s} < 2$$ or $0 < \frac{T_c + T_1 q}{H_c + H_1 q + H_2 q^2} < 1$ For supersonic velocities and most bodies of revoluation, experience shows that for s=0 the center of mass is to the rear of the centroid. Beyond this point which is not more than two calibers away from the centroid s<0 and it is impossible to stabilize by spin. The situation can of course be improved by changing $k_1$ . For some long bodies of revolution (fineness ratio greater than eight) s=2 when the center of mass is forward of the centroid. Forward of this point s>2 and it is impossible to stabilize by spin. This situation can be improved by changing $k_2$ and/or $k_1$ . In conclusion we will construct two representative stability plots for long bodies of revolution. The second plot is quite similar to those obtained for shorter models. Table I gives values of the aerodynamic coefficients and physical constants for a typical body and Figure 3 plots the square of the required spin against c.m. location for various values of a\*. v is used in order that s = 1 will appear as a straight line. A value of spin which is above an a\* curve corresponds to a missile with damping exponents greater than a. TABLE I # $K_{A} = .01$ $K_{D} = .15$ $K_{F} = .3$ $K_{H} = 20$ $K_{M} = 4$ $K_{N} = 1$ $K_{S} = -9$ $K_{T} = -.3$ $k_{1}^{-2} = 8$ $k_{2}^{-2} = .2$ $\frac{\rho d^{3}}{m} = 5 \times 10^{-5}$ Notice that there is only a small range of c.m. for which dynamic stability is possible. Point 0 is the optimum c.m. location and is about .4 cal rear of the centroid. If we now attempt to improve the stability characteristics of this hypothetical model by increasing $k_2^{-2}$ from .2 to .3, we find that the situation is completely changed (see Fig 4.). The optimum point is .1 cal forward of the centroid and the region of possible dynamic stability is tremendously enlarged. Note, however, that the restriction on c.m. location reappears when damping of the order of a\* = 6 is required. The major effects that the consideration of the dynamic stability of statically unstable missiles has on the development of such spin stabilized missiles may be summarized in the following three statements: - (1) If there is no requirement on the size of damping and $3/4 \le 5/4$ , the usual gyroscopic considerations apply ( $s \ge 1$ ). - (2) If there is no requirement on the size of damping and s is outside this interval, it must be improved either by a different mass distribution which varies k<sub>1</sub> and k<sub>2</sub> or by a different shape which changes the ballistic coefficients. - (3) If there is a minimum level of damping a, then $\overline{s}(a)$ must be considered and the design procedure is that of (1) if $3/4 < \overline{s}(a) < 5/4$ otherwise it is that of (2). C. H. Murphy C. H. MURPHY #### TABLE OF SYMBOLS - A Axial moment of inertia - B Transverse moment of inertia - $C = \arctan \frac{b}{2}$ $$D = J_D - \frac{md^2}{A} \cdot J_A$$ $F = (F_1, F_2, F_3)$ aerodynamic force $$0 = \chi' - \left[ \left( J_D - J_g - \frac{md^2}{B} J_H \right) + i \overline{\nu} \right] \gamma$$ H = $(h_1, h_2, h_3)$ angular momentum vector or $J_L - J_D + \frac{md^2}{B} J_H$ $$J_{L} - J_{D} + \frac{md^{2}}{B} J_{H}$$ HO, H1, H2 coefficients in expansion of H + D as function of center of mass $$J_{i} = \frac{\rho d^{3}}{m} K_{i} i + g$$ $$J_g = \frac{g_1^d}{u_1^2} = \frac{gd \sin \theta}{u^2}$$ - K Axial spin deceleration coefficient - KD Drag coefficient - K<sub>DA</sub> Axial drag coefficient - Km Magnus force due to yaw coefficient - Ku Damping moment coefficient - K, Lift coefficient Terms in the cross force (A2) or cross moment (A4) which are zero for zero spin are called "Magnus" forces. $K_{M}$ Overturning (righting) moment coefficient K<sub>M</sub> Normal force coefficient Kc Damping force coefficient K<sub>m</sub> Aagnus moment coefficient KXF Magnus force due to cross angular velocity coefficient $K_{\overline{XT}}$ Magnus moment due to cross angular velocity coefficient K<sub>1</sub>, K<sub>2</sub> Integration constants in (10) $M = \frac{md^2}{B} J_M$ $(M_1,M_2,M_3)$ Aerodynamic moment vector $$T = J_L - \frac{md^2}{A} J_T$$ To, T1 Coefficients in expansion of T as function of center of mass d diameter of missile g acceleration due to gravity k<sub>1</sub>,k<sub>2</sub> radii of gyration (g1,g2,g3) vector acceleration due to gravity (h1,h2,h3) angular momentum vector m mass of missile $$\overline{m} = \overline{v}^2 - 4 \frac{md^2}{B} J_M$$ $$p = \int_{-\infty}^{t} \frac{u_1}{d}$$ dt independent variable $q = \lambda \exp 1/2 \int (H+J_g - i\overline{\nu}) dp$ or shift in center of mass location $r = 1/2 \left[ (\mu M - \overline{\nu}^2) + 2 i\overline{\nu} (2T - H - D) \right]^{1/2}$ - s stability factor - s dynamic stability factor $s_1, s_2, s_3$ symbols used in stability discussion of [5] and [6] t time u (u, u, u, u,) vector velocity of center of mass $$w = (\ln q)^{\ell}$$ a minimum level of damping a, a, damping of each epicycle arm E E \* W.K.B. perturbation term $$\mathcal{E}_{1} + \mathcal{E}_{1} = \mathcal{E}(D - J_{g})^{-1}$$ θ inclination of trajectory to horizontal plane $$\lambda = \frac{u_2}{u_1} + i \frac{u_3}{u_1}$$ complex yaw λ<sub>R</sub> Yaw of repose $\mu = \frac{\omega_2 d}{u_1} + 1 + \frac{\omega_3 d}{u_1}$ complex angular velocity $v = \frac{\omega_1 d}{u_2}$ spin in radians per caliber ρ density of air σ<sup>2</sup> symbol used in [5] and [6] see footnote to Equation (7) $g_1, g_2, g_1, g_2$ turning rates and their derivatives for the epicycle arms A angular velocity of coordinate system $(\omega_1,\omega_2,\omega_3)$ angular velocity of missile #### REFERENCES1 - 1. R. H. Fowler, E. G. Gallop, C. N. H. Lock, H. W. Richmond. The Aerodynamics of a Spinning Shell, Phil. Trans. Roy. Soc. London (A) 221, 295-387 (1920). - 2. R. H. Fowler, C. N. H. Lock, The Aerodynamics of a Spinning Shell Part II, Phil. Trans. Roy. Soc. London (A) 221, 295-387 (1920). - 3. K. L. Nielsen, J. L. Synge, On the Motion of a Spinning Shell, Q. A. M. Vol. IV, No. 3 (1946) - 4. C. G. Maple, J. L. Synge, Aerodynamic Symmetry of Projectiles Q. A. M. Vol. VI, No. 4 (1949). - 5. J. L. Kelley, E. J. McShane, On the Motion of a Projectile with Small or Slowly Changing Yaw, BRL Report 446 (1944) - 6. E. J. McShane, J. L. Kelley, F. Reno, Exterior Ballistics, University of Denver Press, (Awaiting publication). - 7. R. H. Kent, An Elementary Treatment of the Motion of a Spinning Projectile about Ita Center of Gravity, BRL Report 85 (1937), and revision with S. J. McShane, BRL Report 459 (1944). - 8. A. C. Charters, R. N. Thomas, The Aerodynamic Performance of Small Spheres from Subscnic to High Supersonic Velocities, JAS, Vol 12, No. 4 (1945). - 9. A. C. Charters, Some Ballistic Contributions to Aerodynamics, JAS, Vol 14, No. 3, (1947). - 10. R. A. Turetsky, Reduction of Spark Range Vata, BKL Report 684 (1948) - 11. A. C. Charters, R. H. Kent, The Relation Between the Spin Friction Drag and the Spin Reducing Torque, ERL Report 287 (1942) - 12. R. N. Thomas, Some Comments on the Form of the Drag Coefficient at Supersonic Velocity, BRL Report 542, (1945). - 13. A. C. Charters, R. A. Turetsky, Determination of Base Pressure From Free-Flight Data, BRL Report 653, (1948). <sup>1.</sup> For the convenience of the reader this bibliography is made more extensive than required by the needs of this report. The additional listings should be of interest to people working in ballistics or in spark range work. - 14. B. G. Karpov, The Accuracy of Drag Measurements as a Function of Number and Distribution of Timing Stations, Ed. Report 658 (1948) - 15. R. A. Turetsky, Cone Cylinder Model El2M, BRL Memorandum Report 435 (1946). - 16. S. J. Zaroodny, On Jumn Due to Muzzle Disturbances, BRL Report 703 (1949). - 17. R. E. Bolz, J. D. Nicolaides, A Method of Determining Aerodynamic Coefficients from Supersonic Free Flight Test of a Rolling Missile, BRL Report 711 (1919). - 18. R. A. Turetsky, <u>Dynamic Stability of Spinner Rocket Model Fired</u> in the Free Flight Aerodynamics Range, BRL Memorandum Report 526 (1950). - 19. H. P. Hitchcock, On Estimating the Drag Coefficients of Missiles, BRL Memorandum Report 545 (1951). - 20. L. E. Schmidt, Aerodynamic Coefficients Determined from the Swerve Reduction, BRL Memorandum Report 599 (1952). - 21. L. C. MacAllister, <u>Drag Properties and Gun Launching Long Arrow</u> <u>Projectiles</u>, BRL Memorandum Report 600 (1952). - 22. C. H. Murphy, Analogue Computor Determination of Certain Aerodynamic Coefficients, BRL Report 807 (1952). - 23. C. H. Murphy, Comment on Kelley-McShane Solution of Yawing Motion of Missiles, BRL Technical Note 703 (1952). - 24. C. H. Murphy, Effect of Gravity on Yawing Motion, BRL Technical Note 708 (1952). - 25. C. H. Murphy, Effect of Symmetry on the Linearized Force System, BRL Technical Note 743 (1952). - 26. J. D. Nicolaides, Variation of the Aerodynamic Force and Moment Coefficients with Reference Position BRL Technical Note 746 (1952). - 27. J. D. Nicolaides, On the Free Flight Motion of Missiles Having Slight Configurational Asymmetries, Institute of Aeronautical Sciences Preprint No. 395. THE TANK #### APPENDIX A KELLEY-McSHANE FORCE SYSTEM In order to describe the aerodynamic force acting on a missile in flight, we need first to set up a suitable coordinate system. This will consist of numbered axes so that the l axis lies along the missile's axis while the 2 and 3 axes are perpendicular to it. As a convenient shorthand we will consider the plane perpendicular to the missile's axis to be the complex plane with the 2 axis as the real axis and the 3 axis imaginary. Now if the velocity vector of the missile's center of mass is resolved along these axes, the yaw, $\lambda$ , of the missile, which is the directed angle between the missile's axis and the velocity vector, can be expressed in complex form as $\lambda = \frac{1}{2}$ . This expression is of course accurate for small yaw only. The second and third components of the angular velocity vector $\omega = (\omega_1, \omega_2, \omega_3)$ are of importance in the consideration of the yaving motion. These can be non-dimensionalized and written in complex form as $\mu = \frac{\omega_2}{u_1}$ where d is the diameter of the projectile. The aerodynamic problem can now be reduced to a dynamic problem by the assumption that the aerodynamic force and moment are functions of the air density $\rho$ , its sound velocity a, axial velocity $u_1$ , axial angular velocity $\omega_1$ , yaw $\lambda$ , cross angular velocity $\mu$ , size of missile which is characterized by its diameter d and its shape. The Kelley-McShane theory makes the further simplification that the aerodynamic force and moment are linear functions of $\lambda$ and $\mu$ . If these hypotheses are applied to a configuration possessing an angle of rotational symmetry less than 180° and a plane of mirror symmetry, the aerodynamic force and moment can be written in the following form [4], [6] [5]: (A2) $$F_2 + iF_3 = \rho d^2 u_1^2 \left[ \left( -K_N + iv K_F \right) \lambda + \left( v K_{XF} + iK_S \right) \mu \right]$$ (A3) $$H_1 = -\rho d^3 u_1^2 \vee K_A$$ (A4) $$M_2 + 1M_3 = \rho d^3 u_1^2 \left[ \left( -\nu K_T - 1K_M \right) \lambda + \left( K_H + 1\nu K_{XT} \right) \mu \right]$$ where $$v = \frac{\omega_1 d}{u_1}$$ An important aspect of the above definitions is the dependence of the coefficients appearing in (A2) and (A4) on the location of the center of mass. In (A2) the aerodynamic force is independent of the location of the center of mass while the yaw $\lambda$ is defined in terms of the velocity of the center of mass. The dependence of the moment coefficients in (A4) is more complex since they relate to the total aerodynamic moment about the center of mass and are also associated with $\lambda$ . Consider the case where the center of mass is shifted from the point 0 on the missile's axis to the point 0\* which is located on the missile's axis at a distance of q calibers from 0. (Positive q will correspond to a shift toward the nose of the missile.) The vector 00\* is in coordinate form (q d, 0, 0). All quantities relating to the configuration possessing the new center of mass will be marked by an asterisk. Now if corresponding points of the two configurations possess the same motion, the total aerodynamic force on each configuration are identical and the total aerodynamic moment then computed about corresponding geometric points will be equal [3], [6], [26] For the same motion we now compute the velocities of the point: 0 and 0. (A5) $$u^* = u + \omega x$$ (qd, 0, 0) = $(u_1, u_2 + \omega_3)$ qd, $u_3 - \omega_2$ qd) Therefore (A7) $$\lambda^{+} = \lambda - iq\mu$$ Since the angular velocity vector is independent of the location of the center of mass, we have We can now express the force acting on the configuration with the new center of mass as (A10) $$F_1^* = -\rho d^2 u_1^{*2} K_{DA}^* = -\rho d^2 u_1^2 K_{DA}^*$$ (All) $$F_2^* + iF_3^* = \rho d^2 u_1^{*2} \left[ \left( -K_N^* + iv^* K_F^* \right) \lambda^* + \left( v^* K_{XF}^* + iK_S^* \right) \mu^* \right]$$ = $\rho d^2 u_1^2 \left[ \left( -K_N^* + ivK_F^* \right) \left( \lambda - ic\mu \right) + \left( v K_{XF}^* + iK_S^* \right) \mu \right]$ If we equate the above with (A1) and (A2) and compare coefficients of $\lambda$ and $\mu$ respectively we obtain the following: (A12) $$K_{DA}^* = K_{DA}$$ (Al3) $$K_N^* = K_N$$ Now in order to compare the aerodynamic moments we must first compute the moment for the second configuration about the point O. This can be written as the moment about O in terms of the starred quantities: (A17) $$M^* + (qd, 0, 0) \times F^* = M^* - (qd, 0, 0) \times F = (M_1^*, M_2^* - F_3 qd, M_3^* - F_3 qd)$$ Therefore (A18) $$M_1^* = -\rho u_1^2 d^3 K_A^*$$ (A19) $$(M_2^{\#} - F_3 \text{ qd}) + i (M_3^{\#} + F_2 \text{ qd}) = M_2^{\#} + iM_3^{\#} + i\text{qd} (F_2 + iF_3)$$ $$= \rho d^3 u_1^2 \left\{ (-\nu K_1^{\#} - iK_1^{\#}) \left( \lambda - i\text{q}\mu \right) + (-\kappa_1^{\#} + i\nu K_{\overline{XT}}^{\#}) \mu \right.$$ $$= q \left[ (-K_1 + i\nu K_{\overline{Y}}) \lambda + (\nu K_{\overline{XF}} + iK_5) \mu \right] \right\}$$ Equating (Al8) and (Al9) with (A3) and (Ah) we have (A20) $$K_{A}^{A} - K_{A}$$ (A21) $$K_{M}^{*} = K_{M} - q K_{N}$$ (A22) $$K_{T}^{*} = K_{T} - q K_{F}$$ (A23) $$K_H^* = K_H - q (K_S + K_M) + q^2 K_N$$ (A24) $$K_{XT}^{*} = K_{XT} - q (K_{XF} + K_{T}) + q^{2} K_{F}$$ In order to obtain the form of (Al) and (A2) used in Appendix B we derive two final relations. Sometimes the force system is reduced to only two components which lie in the plane of yaw and are resolved along the trajectory and perpendicular to it. The first component is called the drag force D and the second is called the lift force L. They define two more coefficients by the relations (A25) $$D = -\rho d^2 u_1^2 K_D$$ (A26) $$L = -\rho d^2 u_1^2 K_L^2 \lambda$$ If we neglect Magnus terms and terms dependent on $\mu$ in (A2), we see that (A1) and (A2) describe the same type of force as (A25) and (A26) but differently directed. We now select the real axis so that it lies in the plane of yaw. Clearly (A25), (A26) are related to (A1) and (A2) by a rotation through the angle $\lambda$ . • • (A25) $$D = F_2 \sin \lambda + F_1 \cos \lambda$$ (A26) $$L = F_2 \cos \lambda - F_1 \sin \lambda$$ Hence for small $\lambda_{r}$ . (A27) $$K_D = K_N \lambda \sin \lambda + K_{DA} \cos \lambda = K_{DA}$$ (A28) $$K_L = K_N \cos \lambda - K_{DA} \frac{\sin \lambda}{\lambda} \cdot K_N - K_D$$ If the discussion of the above paragraph seems to lack rigor, equation (A27) and (A28) may be taken as definitions of $K_{\rm D}$ and $K_{\rm L}$ . This can be done since only these relations and not their physical definitions are used in this report. Using these we can write (A1) and (A2) in their final form: (Al') $$F_1 = -\rho d^2 u_1^2 K_{\Gamma}$$ (A21) $$F_2 + iF_3 = \rho d^2 u_1^2 \left[ (-K_L - K_D + \nu K_F) \lambda + (\nu K_{XF} + iK_S) \mu \right]$$ #### APPENDIX B: DERIVATION OF THE EQUATION OF YAWING MOTION A right handed orthogonal coordinate system with axes numbered 1, 2, 3 moving with the missile and so orientated that the 1 axis always points toward the nose along the missile's axes will be used throughout this appendix. If we specify $\omega = (\omega_1, \omega_2, \omega_3)$ to be the angular velocity vector of the missile in this coordinate system and take $\Omega = (\Omega_1, \Omega_2, \Omega_3)$ to be the angular velocity of the coordinate system, the above restriction on the 1 axis provides the relations $\Omega_2 = \omega_2$ and $\Omega_3 = \omega_3$ . $\Omega_1$ is selected to be identically zero and the 2 axis is initially orientated to lie in the horizontal plane and point to the right. For the small yaw and small curvature of the trajectory which are assumed in this development, the 2 axis will always remain quite close to the horizontal plane. Our equations of motion are: (B1) $$\frac{d}{dt}$$ (m u) = (F<sub>1</sub>, F<sub>2</sub>, F<sub>3</sub>) + m (g<sub>1</sub>, g<sub>2</sub>, g<sub>3</sub>) (B2) $$\frac{dH}{dt} = (M_1, M_2, M_3)$$ where $u = (u_1, u_2, u_3)$ is the velocity vector of the center of gravity $H = (h_1, h_2, h_3)$ is the angular momentum vector of the missile (F<sub>1</sub>, F<sub>2</sub>, F<sub>3</sub>) is the aerodynamic force vector acting on the missile $(g_1, g_2, g_3)$ is the acceleration due to gravity vector (M<sub>1</sub>, M<sub>2</sub>, M<sub>3</sub>) is the aerodynamic moment vector acting about the center of gravity m is the mass of the missile Since our coordinate system is not an inertia system, we have to <sup>1.</sup> All linear and angular velocities are with respect to an inertia system fixed on the earth. differentiate using the relation $\frac{d}{dt} = \frac{d}{dt} + \Omega x$ . Although axis 1 is fixed in the missile the other two are moving with respect to it. This would make the angular momentum vector rather complicated were it not for the fortunate fact that the mass distribution of most missiles are effectively those of bodies of revolution. This implies that every direction normal to the axis of the missile is a principal axis of inertia and one transverse moment of inertia prevails. If A is the axial moment of inertia and B the transverse moment of inertia, then $(h_1, h_2, h_3)$ is the vector $(A\omega_1, B\omega_2, B\omega_3)$ . It is convenient to make the plane normal to the missile's axis a complex plane with axis 2 the real axis and axis 3 the pure imaginary axis. For any vector equation this can be done by multiplying the third coordinate equation by i and adding to its second. In the remaining equations of this section a dot will signify differentiation with respect to time. With the above remarks in mind it is possible to obtain the following equations from (B1) and (B2). (B3) $$u_1 + (\omega_2 u_3 - \omega_3 u_2) - \frac{F_1}{m} + g_1$$ (Bh) $$(\mathring{u}_2 + i \mathring{u}_3) - i u_1 (\omega_2 + i \omega_3) = \frac{F_2 + i F_3}{m} + (g_2 + i g_3)$$ (B5) $$\dot{\omega}_1 = \frac{M_1}{\Lambda}$$ (B6) $$(\mathring{\omega}_2 + i \mathring{\omega}_3) - i \omega_1 (\omega_2 + i \omega_3) \frac{A}{B} = \frac{M_2 + i M_3}{B}$$ <sup>2.</sup> If we take X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub> to be a triad of unit vectors pointing along the respective axes of the coordinate system, any vector V can be written as V = V<sub>1</sub>X<sub>1</sub> + V<sub>2</sub>X<sub>2</sub> + V<sub>3</sub>X<sub>3</sub>. Differentiating with respect to time using the dot convention this yields V = (V<sub>1</sub>X<sub>1</sub> + V<sub>2</sub>X<sub>2</sub> + V<sub>3</sub>X<sub>3</sub>) + (V<sub>1</sub>X<sub>1</sub> + V<sub>2</sub>X<sub>2</sub> + V<sub>3</sub>X<sub>3</sub>). The first term is d is d in the second can be written as \( \int X \). This is the definition for the angular velocity vector of the coordinate system. In component for n \( \int X \) is (\( \int X \) x<sub>3</sub> \) X<sub>1</sub> + (\( \int X \) x<sub>3</sub> \) The equations are now made non-dimensional by use of the axial velocity u, and the missile's diameter d. This introduces the rondimensional dependent variables: $$v = \frac{\omega_1 d}{u_1}$$ (spin in radians per caliber) $$\lambda = \frac{u_2 + i u_3}{u_1}$$ (complex yaw). $$\mu = \frac{\omega_2 d + i \omega_3 d}{\omega_1}$$ (complex angular velocity) The independent variable time is replaced by $p = \int_{-\frac{1}{2}}^{t} \frac{u_1}{dt}$ which for small yaw is approximately arc length measured along the o trajectory in calibers. If a prime is introduced to represent differentiation with respect to p, we have the relation () = (): $\frac{1}{d}$ . From equations (B3) - (B6) we can now write: $$(B7) \frac{u_{1}^{1}}{u_{1}^{1}} + \frac{(\omega_{2} u_{3} - u_{2} \omega_{3})d}{u_{1}^{2}} = \frac{F_{1} d}{m u_{1}^{2}} + \frac{g_{1} d}{u_{1}^{2}}$$ $$(B8) \lambda^{1} + \frac{u^{1}_{1}}{u_{1}^{2}} \lambda - i\mu = \frac{(F_{2} + i F_{3}) d}{m u_{1}^{2}} + \frac{(g_{2} + i g_{3}) d}{u_{1}^{2}}$$ (B9) $$v' + \frac{u_1'}{u_1'} v = \frac{M_1 d^2}{A u_2^2}$$ (B9) $$v' + \frac{u_1'}{u_1'} v = \frac{M_1 d^2}{A u_1^2}$$ (B10) $\mu' + \frac{u_1'}{u_1'} \mu - i \frac{A}{B} v \mu = \frac{(M_2 + i M_3) \cdot d^2}{B u^2}$ From equations (Al'), (A2'), (A3) and (A4) the linearized force system can be written as: (B1) $$r_1 = \frac{m u_1}{d} J_D$$ (B12) $$F_2 + i F_3 = \frac{m u_1^2}{d} \left[ (-J_L - J_D + i \nu J_F) \lambda + (\nu J_{XF} + i J_S) \mu \right]$$ (B13) $$M_1 = -m u_1^2 v J_A$$ (B14) $$M_2 + i M_3 - m u_1^2 \left[ (- v J_T - i J_M) \lambda' + (-J_H + i v J_{XT}) \mu \right]$$ where $J = \frac{\rho d^3}{m}$ K for all subscripts, $\rho$ is the air density, and the K's are the aerodynamic coefficients. (See Table of Symbols and Coefficients) Using (Bll) we can now write for (B7) (B15) $$\frac{u_1^t}{u_1} = -J_D + J_g - \frac{(\omega_2 u_3 - \omega_3 u_2)}{u_1^2} d$$ where $J_g = \frac{g_1 d}{u_1^2}$ . For the small yaw and transverse angular velocity required by the linearity assumption the third term on the right side of (B15) can be neglected in comparison with $-J_{\Pi}+J_{\sigma}$ • (B16) $$\frac{u_1^i}{u_1} = -J_D + J_g$$ Using (Bl6) and definitions (Bl2) - (Bl4) equations (B8) - (B10) may be rewritten as: (B17) $$\lambda^{1} - i \mu = (-J_{L} + i \nu J_{F}) \lambda + (\nu J_{XF} + i J_{3})\mu + \gamma$$ (B19) $$\mu' - (J_D - J_g + i \frac{A}{B} \nu) \mu = k_2^{-2} \left[ (-\nu J_T - i J_M) \lambda + (-J_H + i \nu J_{XT}) \mu \right]$$ where $$\gamma = \frac{(g_2 + i g_3)d}{u_1^2} = J_g \lambda = \frac{[(g_2 - g_1\lambda_2) + i (g_3 - g_1 \lambda_3)]d}{u_1^2}$$ $$D - J_D - k_1^{-2} J_A$$ $$k_1^{-2} = \frac{m d^2}{A}$$ (k<sub>1</sub> is axial radius of gyration in calibers) $$k_2^{-2} = \frac{m d^2}{B}$$ (k<sub>2</sub> is transverse radius of gyration in calibers) The grouping of J<sub>λ</sub> in the γ was a correction introduced by Professor McShane in order to make the treatment of gravity more accurate. A more extended discussion of this may be found in {2\$\bar{\theta}\$}. We now operate on (B17) with the operator $\int \frac{d}{do} + (k_2^{-2} J_H - J_D + J_\sigma)$ - i $v \left(\frac{A}{B} + k_2^{-2} J_{YT}\right)$ 7, multiply (Bl9) by $v J_{XF} + i \left(1 + J_S\right)$ , and add. Assuming that derivatives of force coefficients can be neglected and using (B18) to eliminate v', the result reduces to: (B20) $$\lambda^{m} + \left[H + J_{g} - i \overline{\nu} X\right] \lambda^{i} + (-H - i \overline{\nu} T) \lambda = G + \nu J_{XF}(D-J_{g})\mu$$ where $$H = J_{L} - J_{D} + k_{2}^{-2} J_{H}$$ $$\overline{\nu} = \frac{A}{B} \nu$$ $$X = 1 + k_{1}^{-2} J_{XT} + \frac{B}{A} J_{F}$$ $$H = k_{2}^{-2} \left[ \left( J_{H} + \nu^{2} k_{1}^{+2} J_{F} \right) + \nu^{2} \left( J_{F} J_{XT} - J_{T} J_{XF} \right) + \left( J_{H} J_{S} - J_{L} J_{H} \right) \right] + J_{L} \left( J_{D} - J_{g} \right)$$ $$T = J_{L} - k_{1}^{-2} J_{T} + k_{1}^{-2} \left[ J_{F} J_{H} - J_{XF} J_{H} - J_{S} J_{T} + J_{L} J_{XT} - \frac{B}{A} J_{F} J_{A} \right]$$ $$G = \gamma^{*} - \left[ \left( J_{D} - k_{2}^{-2} J_{H} - J_{g} \right) + i \overline{\nu} \left( 1 + k_{1}^{-2} J_{XT} \right) \right] \gamma$$ The upper case letters with the exception of G are selected in order to identify the moment coefficient which is the principal constituent. The quite formidable expressions above can be simplified by certain quite reasonable size assumptions. We assume that $J_{\mathbf{p}} < 10$ $|J_1| \leq x \cdot 10^{-3}$ otherwise, $1 \leq \frac{B}{1} \leq 10^2$ , $k_1^{-2} \leq 10$ , $k_2^{-2} \leq 2$ , $|v| \leq 1$ , and that $|\lambda| < 1$ . Since $\frac{\rho d^2}{m}$ is usually about 5 x $10^{-5}$ , this restricts the magnitude of K<sub>F</sub> to less than 2 and that of other K<sub>1</sub>'s to less than 60. The requirement for the special case of $J_{g}$ reduces to $d^{1/2} < (10^{-2}u)$ where d is in feet and u in feet/sec. From (B17) it can be seen that # is comparable with ix' and hence the second term on right side of (B20) can be neglected in comparison with iv X \lambda'. X can clearly bevery well approximated by 1 and similar approximations apply to the other terms. There results the following good approximation of (B20). (B21) $$\lambda^{m} + (H + J_{g} - 1 \nabla)\lambda^{l} + (-M - \nabla T)\lambda = G$$ $$H = J_{L} - J_{D} + k_{2}^{-2} J_{H}$$ $$h = k_{2}^{-2} (J_{M} + v^{2} k_{1}^{2} J_{F})$$ $$T = J_{L} - k_{1}^{-2} J_{T}$$ $$G = \gamma' - \left[ (J_{D} - k_{2}^{-2} J_{H} - J_{g}) + 1 \overline{v} \right] \gamma$$ Note that the form of (B21) differs from (B20) only by the absence of X and $\nu J_{ij}(D-J_{ij})\mu$ . Since the general stability analysis of the report is stated in terms of M, H, and T, all the assumptions of (B21) except X = 1 and $\nu J_{ij}(D-J_{ij})\mu$ = 0 may be avoided by inserting the values of H, M and T given after equation (B20). An important case where the above assumptions do not apply is that of the airship. Here $\rho$ d<sup>3</sup> is of the order of one. If the effect of drag and gravity are neglected and spin is taken to be zero equation (B20) reduces to: (B22) $$\lambda^{n} + H\lambda^{1} - M\lambda = 0$$ where $$H = J_L + k_2^{-2}$$ $J_H$ $$M = k_2^{-2} J_M(1 + J_S) - J_L J_H$$ Since for this configuration $J_H$ and $J_L$ are positive and $J_S$ is usually negative and less than one, we see that M can be negative even when $K_H$ is positive. This provides the interesting result that a statically unstable configuration can be dynamically stable without spin. This is, of course, limited to configurations of small density. Note that the center of buoyancy is located at the center of mass and that apparent mass of the air due to flow around the ship can be neglected are, however, implicitly implied in (B22). Since the center of buoyancy is usually located above the center of mass and that apparent mass of the air due to flow around the ship can be neglected are, however, implicitly implied in (B22). Since the center of buoyancy is usually located above the center of mass and the additional consideration of apparent mass affects M by not more than 10%, β22) is still reasonably valid for the horisontal component of yaw, λ<sub>H</sub>. Actually only the behavior of this component is considered in Durand. ## APPENDIX C: CONVERSION FROM BALLISTIC TO AERODYNAMIC NOMENCLATURE The work of this report has been done in terms of the ballistic K's which are little known outside the field of ballistics and may be quite confusing to an aerodynamicist who does his dynamic stability analyses in terms of the aerodynamic C's. It is therefore quite worthwhile to express the results of this report in terms of these symbols. This effort is handicapped however, by the three facts: - 1. The missiles usually treated in ballistics have a rotation symmetry which results in pairs of aerodynamic coefficients being equal and hence corresponding to only one ballistic coefficient. - 2. In ballistics the missiles usually have a high rate of spin and Magnus effects have to be considered to which there are no corresponding aerodynamic coefficients. - 3. Terms involving the rate of change of angle of attack appear in most aerolynamic stability analysis while no such terms appear in the usual ballistic force system. The axial components of the aerodynamic force and moment are usually defined in aerodynamic nomenclature as: $$x = -1/2 \rho V^2 S C_D$$ (C1) $$L = 1/2 \rho V^2 S b(\frac{pb}{2V}) C_{\chi_p}$$ From this we see that $$K_{D} = 1/2 \text{ S/d}^{2} C_{D}$$ $$K_{A} = -1/4 (\text{Sb}^{2}/\text{d}^{4}) C_{D}$$ $$V = \frac{2\text{d}}{6} (\text{pb/2V})$$ If the transverse components of the aerodynamic force and moment are assumed to be linear functions of yaw, change in yaw, and angular velocity, and Magnus coupling is introduced, we have the following definitions: $$Y = (1/2 \rho V^{2} 3) \left\{ \begin{bmatrix} c_{Y_{\hat{i}}} & \beta + c_{Y_{\hat{i}}} & (\frac{br}{2V}) + c_{Y_{\hat{i}}} & (\frac{b\hat{\beta}}{2V}) \\ + \left[ c_{Y_{\hat{p}\alpha}} & \alpha + c_{Y_{\hat{p}\alpha}} & (\frac{c\alpha}{2V}) + c_{Y_{\hat{p}\alpha}} & (\frac{c\alpha}{2V}) \right] & (\frac{pb}{2V}) \right\}$$ $$z = (1/2) \rho V^{2} S) \left\{ \begin{bmatrix} c_{Z_{\alpha}} \alpha + c_{Z_{\alpha}} \frac{(c_{\alpha}^{c})}{2V} + c_{Z_{\alpha}} \frac{(c_{\alpha}^{d})}{2V} \end{bmatrix} + \begin{bmatrix} c_{Z_{p\beta}} \beta + c_{Z_{pr}} \frac{(b_{\alpha}^{c})}{2V} \end{bmatrix} + c_{Z_{p\beta}} \frac{(b_{\alpha}^{b})}{2V} \end{bmatrix} \right\}$$ $$(C3)$$ $$M = (1/2 \rho V^{2} S c) \left\{ \begin{bmatrix} c_{m_{\alpha}} \alpha + c_{m_{\alpha}} \frac{(c_{\alpha}^{c})}{2V} + c_{m_{\alpha}} \frac{(c_{\alpha}^{b})}{2V} \end{bmatrix} + c_{m_{\alpha}} \frac{(c_{\alpha}^{b})}{2V} \end{bmatrix} \right\}$$ $$+ \begin{bmatrix} c_{m_{p\beta}} \beta + c_{m_{pr}} \frac{(b_{\alpha}^{b})}{2V} + c_{m_{\beta}} \frac{(b_{\beta}^{b})}{2V} \end{bmatrix} \left\{ c_{pb} \right\}$$ $$+ \begin{bmatrix} c_{n_{p\alpha}} \alpha + c_{n_{p\alpha}} \frac{(c_{\alpha}^{b})}{2V} + c_{n_{\beta}} \frac{(c_{\alpha}^{b})}{2V} \end{bmatrix} \right\}$$ $$+ \begin{bmatrix} c_{n_{p\alpha}} \alpha + c_{n_{p\alpha}} \frac{(c_{\alpha}^{b})}{2V} + c_{n_{p\alpha}} \frac{(c_{\alpha}^{b})}{2V} \end{bmatrix} \left\{ c_{pb} \right\}$$ If the missile is assumed to possess trigonal or greater rotational symmetry, it follows that [4], [6], [5], [27]: The third set of symbols is introduced in order to emphasize the existence of symmetry and will be employed throughout the remainder of this appendix. If we insert these symbols into (C3), multiply the second and fourth equations by i and add to the fire and third respectively there results: $$1 + iz = (1/2 \rho V^{2} S) \left\{ \begin{bmatrix} C_{N_{\alpha}} + i + \frac{pb}{2V} - C_{N_{p\alpha}} \\ + \frac{(pb)}{2V} + i C_{N_{pq}} + i C_{N_{qq}} \end{bmatrix} \begin{pmatrix} \beta + i\alpha \end{pmatrix} + \frac{(pb)}{2V} + i C_{N_{pq}} C_{N_{pq$$ If equation (C5) is compared with equations (A2) and (A4), the Magnus and non-Magnus static coefficients are easily related. $$K_{N} = -1/2 \text{ S/d}^{2} C_{N_{G}}$$ $$K_{M} = 1/2 \text{ Sc/d}^{3} C_{M_{G}}$$ (C6) $$K_{L} = 1/4 \text{ Sb/d}^{3} C_{N_{DG}}$$ $$K_{L} = -1/4 \text{ Scb/d}^{4} C_{M_{DG}}$$ The relationships between the remaining dynamic coefficients are somewhat more complicated. Fortunately it can easily be shown that the remaining Magnus coefficients are lost in the differential equations of yawing motion due to the $J^2$ connection. It therefore, remains only to connect two ballistic coefficients, $K_S$ and $K_H$ , with four aerodynamic coefficients, $$c_{N_{q}}$$ , $c_{N_{\tilde{a}}}$ , $c_{M_{q}}$ and $c_{M_{\tilde{a}}}$ In order to do this we need only to consider the purpose of this work, namely to state the results of this report in aerodynamic nomenclature. Since this report is concerned with stability, the only contribution of the aerodynamic coefficients is how they appear in the basic differential equations. This means that in order to obtain the partner of K, we see what coefficient appears in the corresponding point of the differential equation similar to (1) which is based on the aerodynamic force system (see [27] for example). By this tactic we have: (c7) $$K_H \rightarrow -1/4 \frac{c^2 s}{d^4} (c_{M_q} + c_{M_q})$$ Since the major function of $K_S$ is its contributions to $K_H$ when the center of mass is altered we have: (C8) $$K_S \rightarrow 1/4 \frac{cS}{d^3} (C_{N_Q} + C_{N_Q})$$ Note: The method of obtaining (C7) and (C8) is not too desirable. It would, of course, be more satisfying to enlarge the ballistic force system so that there would exist a one-to-one correspondence. (Efforts are being made in this direction at the present time.) It also she ld be noted that (C7) follows from a comparison of the homogeneous equations. In the yew of repose, equation (ll), $K_H$ should be replaced by - $1/h \frac{c^2S}{d^4}$ C By use of (C2), (C6), (C7) and (C8) it is now possible to convert our symbols. We will merely tabulate the results. $(K_L)$ will be replaced $K_N - K_N$ for this purpose.) $$H = \frac{-p \, dS}{2m} \left[ C_{N_{\alpha}} + 2 \, C_{D} + 1/2 \, k_{2}^{-2} \, \left( \frac{c}{d} \right)^{2} \, \left( C_{M_{q}} + C_{M_{\alpha}} \right) \right]$$ $$\overline{V} = \frac{2d}{b} \, \left( \frac{p \, d}{2V} \right) \, \frac{A}{B}$$ $$M = k_{2}^{-2} \, \frac{\rho \, dS}{2m} \, C_{M_{\alpha}}$$ $$T = \frac{-\rho \, dS}{2m} \left[ C_{N_{\alpha}} + C_{D} - k_{1}^{-2} \, \left( \frac{c \, b}{2d^{2}} \right) \, C_{M_{\rho\alpha}} \right]$$ <sup>1.</sup> In order to avoid confusion a\* in 5 (a\*) will be replaced by \*\*. $$D = \frac{\rho dS}{2m} \left[ C_D + k_1^{-2} \frac{b^2}{2d^2} C_{k_p} \right]$$ $$S = \frac{A^2 p^2}{hB (1/2 V^2 \rho S c C_{M_q})} \cdot \frac{2 \left[ C_{N_q} + C_D - k_1^{-2} (\frac{cb}{2d^2}) C_{M_pq} \right] + \gamma^*}{c_{N_q} + c_D + 1/2 k_2^{-2} (\frac{c}{d})^2 (c_{M_q} + c_{M_q}) - k_1^{-2} \frac{b^2}{2d^2} C_{k_p}^{-1} + \gamma^*}$$ | h Chief of Ordnance Department of the Army Washington 25, D. C. Attn: ORDTB - Bal Sec 10 British - ORDTB for distribution 1 Canadian Joint Staff - ORDTB for distribution 1 Chief, Bureau of Ordnance Department of the Navy Washington 25, D. C. Attn: Director National Advisory Committee for Aeronautics 172h F Street, N. W. Washington 25, D. C. Attn: Division Research Information Division Research Technical Information Division Library of Congress Washington 25, D. C. 2 Commander Naval Ordnance Laboratory White Oak Silver Spring, Maryland Attn: Mr. Nestinges Dr. May 1 Commander Naval Ordnance Test Station Inyokern P. O. China Lake, Galifornia Attn: Technical Library 1 Superintendent Naval Postgraduate School Monterey, Galifornia 1 Commander Naval Air Missile Test Center Naval Air Missile Test Center Point Mugu, California Advisory Committee for Aeronautics Attn: Disjon Research Information Nathington 25, D. C. Attn: DA. C. Charters Mr. H. J. Allen Commander Naval Ordnance Laboratory White Oak Silver Spring, Maryland Attn: Mr. Nestinges Dr. May 1 Commander Naval Air Missile Test Center National Advisory Committee for Aeronautics Attn: Division Research Information No. Attn: H. J. Allen Commander Naval Atrn Division Nating Top Served. Attn: Division Research Information Nating Top Served. Nating Misson Poison Nashington 25, D. C. Attn: DCS/D, AFED-AC-3 Chief of Staff U. S. Air Force The Petagon Washington 25, D. C. Attn: DCS/D, AFED-AC-3 Chief of Staff U. S. Air Force The Petagon Washington 25, D. C. Attn: DCS/D, AFED-AC-3 Chief of Armed Forces Special Neapons Project Nashington 25, D. C. Attn: DCS/D, AFED-AC-3 Chief, Arm | No. of<br>Copies | Organization | No. of Copies | Organization | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------| | Department of the Army Washington 25, D. C. Attn: ORDTB - Bal Sec 10 British - ORDTB for distribution 1 | ), | Chief of Ordnance | | | | Washington 25, D. C. Attn: ORDTB - Bal Sec 10 British - ORDTB for distribution L Canadian Joint Staff - ORDTB for distribution L Chief, Bureau of Ordnance Department of the Navy Washington 25, D. C. Attn: Re3 1 Commander Naval Proving Ground Dahlgren, Virginia 2 Chief of Naval Research Technical Information Division I Library of Congress Washington 25, D. C. 2 Commander Naval Ordnance Laboratory White Oak Sliver Spring, Maryland Attn: Mr. Nestinges Dr. May 1 Commander Naval Ordnance Test Station Inyokern P. O. China Lake, California Attn: Technical Information 1 Superintendent Naval Postgraduate School Monterey, Galifornia 1 Commander Naval Air Development Center Johnsville, Pennsylvania Naval Air Missile Test Center Foint Mugu, California National Advisory Committee for Aeronautics 1724 F Street, N. W. Washington 25, D. C. Attn: Division Research Information Advisory Committee for Aeronautics Ames Laboratory National Advisory Committee for Aeronautics Ames Laboratory National Advisory Committee for Aeronautics Ames Laboratory National Advisory Committee for Aeronautics Attn: Division Research Information 25, D. C. Infor | - | | 2 | Commander | | Attn: ORDTB - Bal Sec British - ORDTB for distribution | | | _ | Naval Air Missile Test Center | | 10 British - ORDTB for distribution 1 | | | | _ | | distribution Lanadian Joint Staff - ORDTB for distribution Land Chief, Bureau of Ordnance Department of the Navy Washington 25, D. C. Attn: Division Research Information Commander Naval Proving Ground Dahlgren, Virginia Chief of Naval Research Technical Information Division Library of Congress Washington 25, D. C. Commander Naval Ordnance Laboratory White Oak Silver Spring, Maryland Attn: Mr. Nestinges Dr. May Commander Naval Ordnance Test Station Ingokern P. C. China Lake, California Attn: Technical Library Superintendent Naval Postgraduate School Monterey, Galifornia Commander Naval Air Development Center Johnsville, Pennsylvaria National Advisory Committee for Aeronautics Information Research Information Cattn: Director National Advisory Committee for Aeronautics Attn: Division Research Information Information National Advisory Committee for Aeronautics Attn: Division National Advisory Committee for Aeronautics Attn: Division Research Information Information Commander Attn: Dr. A. C. Charters Mr. H. J. Allen Commanding Officer and Director Attn: Aerodynamics Laboratory Washington 7, D. C. Attn: Aerodynamics Laboratory Washington 25, D. C. Attn: Dos Attn: Dos Attn: Dos Attn: Commanding Officer and Director Attn: Dr. A. C. Charters Mr. H. J. Allen Commanding Officer and Director Attn: Aerodynamics Laboratory Washington 7, D. C. Attn: Aerodynamics Laboratory Washington 25, D. C. Attn: Aerodynamics Laboratory Washington 25, D. C. Attn: Commander The Action Agency Documents Service Senter Not Building Dayton 2, Ohio | - | Addit. Oldib - Der boo | • • • • • • • • • • • • • • • • • • • • | Tomo many outside many | | for Aeronautics 1 Canadian Joint Staff - ORDTB for distribution 1 Chief, Bureau of Ordnance Department of the Navy Washington 25, D. C. Attn: Division Research Information Dahlgren, Virginia 1 Commander Naval Proving Ground Dahlgren, Virginia 2 Chief of Naval Research Technical Information Division Library of Congress Washington 25, D. C. 2 Commander Naval Ordnance Laboratory White Oak Silver Spring, Maryland Attn: Mr. Nestingen Dr. May 1 Commander Naval Ordnance Test Station Invokern P. O. China Lake, Galifornia Attn: Technical Library 1 Superintendent Naval Postgraduate School Monterey, Galifornia 1 Commander Naval Air Development Center Johnsville, Pennsylvaria 1 Commander Naval Air Development Center Johnsville, Pennsylvaria 1 Chief, Street, N. W. Washington 25, D. C. Attn: Division Research Information Navalnington 25, D. C. Attn: Division Research Information Navional Advisory Committee for Aeronautics Nath: Division Research Information Navional Advisory Committee for Aeronautics Nath: Division Research Information Navional Advisory Committee for Aeronautics Information Nath: Division Research Information Navional Advisory Committee for Aeronautics Attn: Division Research Information Navional Advisory Committee for Aeronautics Attn: Division Research Information Director National Advisory Committee for Aeronautios Ames Laboratory National Advisory Committee for Aeronautios Ames Laboratory National Advisory Committee for Aeronautios Attn: Division Research Information Director National Advisory Committee for Aeronautios Ames Laboratory National Advisory Committee for Aeronautios Ames Laboratory National Advisory Committee for Aeronautios Ames Laboratory National Advisory Committee for Aeronautios Attn: Division Rational Advisory Committee for Aeronautios Attn: Division National Advisory Noffett Field, Califoria Attn: D. C. Charters Navel For Aeronautios Attn: Dos Attn: Dos Act of | 10 | British - ORDTB for | · 5 | Director | | 172h F Street, N. W. Washington 25, D. C. Attn: Division Research Information Department of the Navy Washington 25, D. C. Attn: Division Research Information Department of the Navy Washington 25, D. C. Attn: Division Research Information Information Director National Advisory Committee for Aeronautics Ames Laboratory Moffett Field, Califortia Attn: Dr. A. C. Charters Mr. H. J. Allen Commander Mashington 25, D. C. Attn: Dor. A. C. Charters Mr. H. J. Allen Commander Mashington 25, D. C. Attn: Dor. A. C. Charters Mr. H. J. Allen Commander Mashington 25, D. C. Attn: Dor. A. C. Charters Mr. H. J. Allen Commander Mashington 25, D. C. Attn: Dor. A. C. Charters Mr. H. J. Allen Commander Mashington 25, D. C. Attn: Aerodynamics Laboratory Washington 25, D. C. Attn: Dos./D, AFDRD-AC-3 Chief, Armed Forces Special Meapons Project P. C. Box 2610 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director David W. Taylor Model Basin Washington 25, D. C. Attn: Aerodynamics Laboratory Mashington 25, D. C. Attn: Dos./D, AFDRD-AC-3 Chief, Armed Forces Special Meapons Project P. C. Box 2610 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director David W. Taylor Model Basin Washington 25, D. C. Attn: Aerodynamics Laboratory Mashington 25, D. C. Attn: Dos./D, AFDRD-AC-3 Director David W. Taylor Model Basin Washington 25, D. C. Attn: Aerodynamics Laboratory Mashington 25, D. C. Attn: Dos./D, AFDRD-AC-3 Director David W. Taylor Model Basin Washington 25, D. C. Attn: Aerodynamics Laboratory Mashington 25, D. C. Attn: Dos./D, AFDRD-AC-3 Director David W. Taylor Model Basin Washington 25, D. C. Attn: Aerodynamics Laboratory Mashington 25, D. C. Attn: Dos./D, AFDRD-AC-3 Director David W. Taylor Model Basin Washington 25, D. C. Attn: Aerodynamics Laboratory Mashington 25, D. C. Attn: Dos./D, AFDRD-AC-3 Director The Pentagon Washington 25, D. C. Attn: Dos./D, AFDRD-AC-3 Director Mashington 25, D. C. Attn: Aerodynamics Laboratory Mashington 25, D. C. Attn: Dos./D, AFDRD-AC-3 Director Mashington 25, D. C. Attn: Dos./D, A | | distribution | | National Advisory Committee | | for distribution 4 Chief, Bureau of Ordnance Department of the Navy Washington 25, D. C. Attu: Re3 1 Commander Naval Proving Ground Dahlgren, Virginia 2 Chief of Naval Research Technical Information Division Library of Congress Washington 25, D. C. 2 Commander Naval Ordnance Laboratory White Oak Silver Spring, Maryland Attn: Mr. Nestingen Dr. May 1 Commander Naval Ordnance Test Station Inyokern P. O. China Lake, California Attn: Technical Library 1 Superintendent Naval Postgraduate School Monterey, California Commander Naval Air Development Center Johnsville, Pennsylvaria Washington 25, D. C. Attn: Division Research Information Division National Advisory Committee for Aeronautics Ames Laboratory Moffett Field, Califoria Attn: Dr. C. Charters Mr. H. J. Allen Commanding Officer and Director David W. Taylor Model Basin Washington 7, D. C. Attn: Aerodynamics Laboratory Washington 25, D. C. Attn: DCS/D, AFDRD-A0-3 1 Chief, Armed Forces Special Neapons Project P. O. Box 2610 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director National Advisory Committee for Aeronautics Ames Laboratory Moffett Field, Califoria Attn: Dr. A. C. Charters Mr. H. J. Allen Commanding Officer and Director David W. Taylor Model Basin Washington 7, D. C. Attn: DCS/D, AFTRD-A0-3 1 Chief of Staff U. S. Air Force The Pertagon Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director David W. Taylor Model Basin Washington 7, D. C. Attn: DCS/D, AftrnD-A0-3 Chief of Staff U. S. Air Force The Pertagon Washington 25, D. C. Attn: Capt. Bert F. Brown, USN | • | | 1 | for Aeronautics | | Attn: Division Research Department of the Navy Washington 25, D. C. Attn: Re3 Commander Naval Proving Ground Dahlgren, Virginia Chief of Naval Research Technical Information Division Library of Congress Washington 25, D. C. Commander Naval Ordnance Laboratory White Oak Silver Spring, Maryland Attn: Mr. Nestinges Dr. May Commander Naval Ordnance Test Station Inyokern P. O. China Lake, Galifornia Attn: Technical Library Superintendent Naval Postgraduate School Monterey, Galifornia Commander Naval Air Development Center Johnsville, Pennsylvaria Attn: Division Research Information Director National Advisory Committee for Aeronautics Ames Laboratory Moffett Field, Califoria Attn: Dr. A. C. Charters Mr. H. J. Allen Commanding Officer and Director David W. Taylor Model Basin Washington 7, D. C. Attn: Aerodynamics Laboratory The Pentagon Washington 25, D. C. Attn: DCS/D, AFDRD-AC-3 Chief, Armed Forces Special Waspons Project P. O. Eox 2610 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director David W. Taylor Model Basin Washington 25, D. C. Attn: DCS/D, AFDRD-AC-3 Chief of Staff U. S. Air Force The Pentagon Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director David W. Taylor Model Basin Washington 25, D. C. Attn: DCS/D, AFDRD-AC-3 Director David W. Taylor Model Basin Washington 25, D. C. Attn: DCS/D, AFDRD-AC-3 Director David W. Taylor Model Basin Washington 25, D. C. Attn: DCS/D, AFDRD-AC-3 Director David W. Taylor Model Basin Washington 25, D. C. Attn: Dcs/D, AFDRD-AC-3 Director David W. Taylor Model Basin Washington 25, D. C. Attn: Dcs/D, AFDRD-AC-3 Director David W. Taylor Model Basin Washington 25, D. C. Attn: Dcs/D, AFDRD-AC-3 Director David W. Taylor Model Basin Washington 25, D. C. Attn: Capt. Bert F. Brown, USN | 4 | Canadian Joint Staff - ORDTB | • | 1724 F Street, N. W. | | Attn: Division Research Department of the Navy Washington 25, D. C. Attn: Re3 Commander Naval Proving Ground Dahlgren, Virginia Chief of Naval Research Technical Information Division Library of Congress Washington 25, D. C. Commander Naval Ordnance Laboratory White Oak Silver Spring, Maryland Attn: Mr. Nestinges Dr. May Commander Naval Ordnance Test Station Inyokern P. O. China Lake, Galifornia Attn: Technical Library Superintendent Naval Postgraduate School Monterey, Galifornia Commander Naval Air Development Center Johnsville, Pennsylvaria Attn: Division Research Information Director National Advisory Committee for Aeronautics Ames Laboratory Moffett Field, Califoria Attn: Dr. A. C. Charters Mr. H. J. Allen Commanding Officer and Director David W. Taylor Model Basin Washington 7, D. C. Attn: Aerodynamics Laboratory The Pentagon Washington 25, D. C. Attn: DCS/D, AFDRD-AC-3 Chief, Armed Forces Special Waspons Project P. O. Eox 2610 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director David W. Taylor Model Basin Washington 25, D. C. Attn: DCS/D, AFDRD-AC-3 Chief of Staff U. S. Air Force The Pentagon Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director David W. Taylor Model Basin Washington 25, D. C. Attn: DCS/D, AFDRD-AC-3 Director David W. Taylor Model Basin Washington 25, D. C. Attn: DCS/D, AFDRD-AC-3 Director David W. Taylor Model Basin Washington 25, D. C. Attn: DCS/D, AFDRD-AC-3 Director David W. Taylor Model Basin Washington 25, D. C. Attn: Dcs/D, AFDRD-AC-3 Director David W. Taylor Model Basin Washington 25, D. C. Attn: Dcs/D, AFDRD-AC-3 Director David W. Taylor Model Basin Washington 25, D. C. Attn: Dcs/D, AFDRD-AC-3 Director David W. Taylor Model Basin Washington 25, D. C. Attn: Capt. Bert F. Brown, USN | _ | for distribution | | Washington 25, D. C. | | Department of the Navy Washington 25, D. G. Attu: Re3 1 Commander Naval Proving Ground Dahlgren, Virginia 2 Chief of Naval Research Technical Information Division Library of Congress Washington 25, D. G. 2 Commander Naval Grdnance Laboratory White Oak Silver Spring, Maryland Attn: Mr. Nestinges Dr. May 1 Commander Naval Grdnance Test Station Inyokern P. G. China Lake, Galifornia Attn: Technical Library 1 Superintendent Naval Postgraduate School Monterey, Galifornia Commander Naval Air Development Center Naval Air Development Center Johnsville, Pennsylvaria 2 Director National Advisory Committee for Aeronautics Ames Laboratory Moffett Field, Califoria Attn: Dr. A. C. Charters Mr. H. J. Allen Commanding Officer and Director David W. Taylor Model Basin Washington 7, D. C. Attn: Aerodynamics Laboratory Washington 25, D. C. Attn: DCS/D, AFDRD-AC-3 Chief, Armed Forces Special Weapons Project P. G. Box 2610 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director Attn: December Center Knott Building Dayton 2, Ohio | | *** | | | | Department of the Navy Washington 25, D. C. Attu: Re3 1 Commander Naval Proving Ground Dahlgren, Virginia 2 Chief of Naval Research Technical Information Division Idwary of Congress Washington 25, D. C. 2 Commander Naval Ordnance Laboratory White Oak Silver Spring, Maryland Attn: Mr. Nestinges Dr. May 1 Commander Naval Ordnance Test Station Inyokern P. O. China Lake, California Attn: Technical Library 1 Superintendent Naval Postgraduate School Monterey, California Commander Naval Air Development Center Naval Air Development Center Johnsville, Pennsylvaria 2 Director National Advisory Committee for Aeronautics Ames Laboratory Moffett Field, California Attn: Dr. A. C. Charters Mr. H. J. Allen Commanding Officer and Director David W. Taylor Model Basin Washington 7, D. C. Attn: Aerodynamics Laboratory Washington 25, D. C. Attn: DCS/D, AFDRD-AC-3 Chief, Armed Forces Special Weapons Project P. O. Box 2510 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director Amed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio | . <b>h</b> | Chief. Bureau of Ordnance | • | Information | | Washington 25, D. C. Attu: Re3 1 Commander Naval Proving Ground Dahlgren, Virginia 2 Chief of Naval Research Techrical Information Division Library of Congress Washington 25, D. C. 2 Commander Naval Ordnance Laboratory White Oak Silver Spring, Maryland Attn: Mr. Nestinges Dr. May 1 Commander Naval Ordnance Test Station Inyokern P. O. China Lake, California Attn: Technical Library 1 Superintendent Naval Postgraduate School Monterey, California Commander Naval Air Development Center Johnsville, Pennsylvaria 2 Director National Advisory Committee for Aeronautics Ames Laboratory Noffett Field, Califoria Attn: Dr. A. C. Charters Mr. H. J. Allen 2 Commanding Officer and Director David W. Taylor Model Basin Washington 7, D. C. Attn: Aerodynamics Laboratory Nashington 25, D. C. Attn: DCS/D, AFRD-AC-3 1 Chief, Armed Forces Special Weapons Project P. O. Box 2610 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN 2 Director Armed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohlo | <b>—</b> | | <b>.</b> | | | Attn: Re3 1 Commander Naval Proving Ground Dahlgren, Virginia 2 Chief of Naval Research Technical Information Division Library of Congress Washington 25, D. G. 2 Commander Naval Ordnance Laboratory White Oak Silver Spring, Maryland Attn: Mr. Nestinges Dr. May 1 Commander Naval Ordnance Test Station Injokern P. O. China Lake, Galifornia Attn: Technical Library 1 Superintendent Naval Postgraduate School Monterey, Galifornia Attn: Commander Naval Air Development Center Naval Air Development Center Johnsville, Pennsylvaria National Advisory Committee for Aeronautics Ames Laboratory Moffett Field, Califoria Attn: Dr. A. C. Charters Mr. H. J. Allen Commanding Officer and Director David W. Taylor Model Basin Washington 7, D. C. Attn: Aerodynamics Laboratory Nashington 25, D. C. Attn: DCS/D, AFDRD-AC-3 Chief, Armed Forces Special Weapons Project P. O. Box 2610 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director Armed Sorvices Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio | | | 2 | Director | | for Aeronautics Ames Laboratory Moffett Field, Califoria Attn: Dr. A. C. Charters Mr. H. J. Allen Commander Maval Research Techrical Information Division Library of Congress Washington 25, D. C. Commander Naval Ordnance Laboratory White Oak Silver Spring, Maryland Attn: Mr. Nestingen Dr. May Commander Naval Ordnance Test Station Inyokern P. O. China Lake, California Attn: Technical Library Superintendent Naval Postgraduate School Monterey, California Commander Naval Air Development Center Johnsville, Pennsylvaria For Aeronautics Ames Laboratory Moffett Field, Califoria Attn: Dr. A. C. Charters Mr. H. J. Allen Commanding Officer and Director David W. Taylor Model Basin Washington 7, D. C. Attn: Aerodynamics Laboratory Mashington 25, D. C. Attn: DCS/D, AFDRD-AC-3 Chief, Armed Forces Special Weapons Project P. O. Box 2610 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director Armed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio | | | _ | <del></del> | | - 1 Commander Naval Proving Ground Dahlgren, Virginia 2 Chief of Naval Research Technical Information Division Library of Congress Washington 25, D. C. 2 Commander Naval Ordnance Laboratory White Oak Silver Spring, Maryland Attn: Mr. Nestingen Dr. May 1 Commander Naval Ordnance Test Station Inyokern P. O. China Lake, California Attn: Technical Library 1 Superintendent Naval Postgraduate School Monterey, Galifornia Commander Naval Air Development Center Johnsville, Pennsylvaria Attn: Lake, Califor Moffett Field, Califoria Attn: Dr. A. C. Charters Mr. H. J. Allen Commanding Officer and Director David W. Taylor Model Basin Washington 7, D. C. Attn: Aerodynamics Laboratory Washington 25, D. C. Attn: DCS/D, AFDRD-AC-3 Chief, Armed Forces Special Weapons Project P. O. Box 2610 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director Armed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio | The second second | | | • | | Naval Proving Ground Dahlgren, Virginia Chief of Naval Research Technical Information Division Library of Congress Washington 25, D. C. Commander Naval Ordnance Laboratory White Oak Silver Spring, Maryland Attn: Mr. Nestinges Dr. May Commander Naval Ordnance Test Station Inyokern P. O. China Lake, California Attn: Technical Library Superintendent Naval Postgraduate School Monterey, Galifornia Commander Naval Air Development Center Johnsville, Pennsylvaria Moffett Field, Califoria Attn: Dr. A. C. Charters Mr. H. J. Allen Commanding Officer and Director David W. Taylor Model Basin Washington 7, D. C. Attn: Aerodynamics Laboratory Washington 25, D. C. Attn: DCS/D, AFDRD-AC-3 Chief, Armed Forces Special Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director Armed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio | _ 5 4 | Commonder | | | | Dahlgren, Virginia Chief of Naval Research Technical Information Division Library of Congress Washington 25, D. C. Commander Naval Ordnance Laboratory White Oak Silver Spring, Maryland Attn: Mr. Nestinges Dr. May Commander Naval Ordnance Test Station Inyokern P. O. China Lake, Galifornia Attn: Technical Library Superintendent Naval Postgraduate School Monterey, Galifornia Commander Naval Air Development Center Johnsville, Pennsylvaria Attn: Dr. A. C. Charters Mr. H. J. Allen Commanding Officer and Director David W. Taylor Model Basin Washington 7, D. C. Attn: Aerodynamics Laboratory Chief of Staff U. S. Air Force The Pentagon Washington 25, D. C. Attn: DCS/D, AFDRD-AC-3 Chief, Armed Forces Special Weapons Project P. O. Box 2610 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director Armed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio | • | | | | | Chief of Naval Research Techrical Information Division Library of Congress Washington 25, D. C. Commander Naval Ordnance Laboratory White Oak Sliver Spring, Maryland Attn: Mr. Nestinges Dr. May Commander Naval Ordnance Test Station Inyokern P. O. China Lake, California Attn: Technical Library Superintendent Naval Postgraduate School Monterey, California Commander Naval Air Development Center Johnsville, Pennsylvaria Mr. H. J. Allen Commanding Officer and Director David W. Taylor Model Basin Washington 7, D. C. Attn: Aerodynamics Laboratory Nashington 7, D. C. Attn: Aerodynamics Laboratory Nashington 25, D. C. Attn: DGS/D, AFDRD-AG-3 Chief, Armed Forces Special Weapons Project P. O. Box 2610 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director Armed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio | | <b>O</b> , | *** | | | Chief of Naval Research Technical Information Division Library of Congress Washington 25, D. C. Commander Naval Ordnance Laboratory White Oak Silver Spring, Maryland Attn: Mr. Nestingen Dr. May Commander Naval Ordnance Test Station Inyokern P. O. China Lake, California Attn: Technical Library Superintendent Naval Postgraduate School Monterey, California Commander Naval Air Development Center Naval Air Development Center Johnsville, Pennsylvaria Commanding Officer and Director David W. Taylor Model Basin Washington 7, D. C. Attn: Aerodynamics Laboratory Mashington 25, D. C. Attn: Aerodynamics Laboratory Mashington 25, D. C. Attn: DCS/D, AFDRD-AC-3 Chief, Armed Forces Special Weapons Project P. O. Box 2610 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN | | Dantage and Art Bentre | | | | Technical Information Division Library of Congress Washington 25, D. C. 2 Commander Naval Ordnance Laboratory White Oak Silver Spring, Maryland Attn: Mr. Nestingea Dr. May 1 Commander Naval Ordnance Test Station Inyokern P. C. China Lake, California Attn: Technical Library 1 Superintendent Naval Postgraduate School Monterey, California Commander Naval Air Development Center Naval Air Development Center Johnsville, Pennsylvaria 1 Commanding Officer and Director David W. Taylor Model Basin Washington 7, D. C. Attn: Aerodynamics Laboratory Nashington 7, D. C. Attn: Aerodynamics Laboratory Nashington 25, D. C. Attn: DCS/D, AFDRD-AC-3 1 Chief, Armed Forces Special Weapons Project P. O. Box 2610 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN | 3 | Chief of Nama Research | | | | Library of Congress Washington 25, D. C. 2 Commander Naval Ordnance Laboratory White Oak Silver Spring, Maryland Attn: Mr. Nestingen Dr. May 1 Chief of Staff U. S. Air Force The Pentagon Washington 25, D. C. Attn: DCS/D, AFDRD-AC-3 1 Commander Naval Ordnance Test Station Inyokern P. O. China Lake, California Attn: Technical Library 1 Superintendent Naval Postgraduate School Monterey, California Commander Naval Air Development Center Naval Air Development Center Johnsville, Pennsylvaria Director David W. Taylor Model Basin Washington 7, D. C. Attn: Aproximation Agency David W. Taylor Model Basin Washington 7, D. C. Attn: Capf. Staff U. S. Air Force The Pentagon Washington 25, D. C. Attn: DCS/D, AFDRD-AC-3 1 Chief, Armed Forces Special Washington 25, D. C. Attn: Capt. Bert F. Brown, USN 5 Director Armed Sorvices Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio | € . | | . 1 | Commanding Officer and | | David W. Taylor Model Basin Washington 25, D. C. Commander Naval Ordnance Laboratory White Oak Silver Spring, Maryland Attn: Mr. Nestingen Dr. May Commander Naval Ordnance Test Station Inyokern P. O. China Lake, California Attn: Technical Library Superintendent Naval Postgraduate School Monterey, California Commander Naval Air Development Center Johnsville, Pennsylvaria David W. Taylor Model Basin Washington 7, D. C. Attn: Aerodynamics Laboratory Lohief of Staff U. S. Air Force The Pentagon Washington 25, D. C. Attn: DCS/D, AFDRD-AC-3 Chief, Armed Forces Special Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director Armed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio | | . = = ================================= | • | | | Commander Naval Ordnance Laboratory White Oak Silver Spring, Maryland Attn: Mr. Nestingen Dr. May Commander Naval Ordnance Test Station Inyokern P. O. China Lake, California Attn: Technical Library Superintendent Naval Postgraduate School Monterey, California Commander Naval Air Development Center Johnsville, Pennsylvaria Washington 7, D. C. Attn: Aerodynamics Laboratory Lohief of Staff U. S. Air Force The Peutagon Washington 25, D. C. Attn: DCS/D, AFDRD-AG-3 Chief, Armed Forces Special Weapons Project P. O. Box 2610 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director Armed Sorvices Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio | | | | | | Commander Naval Ordnance Laboratory White Oak Silver Spring, Maryland Attn: Mr. Nestingen Dr. May Commander Naval Ordnance Test Station Inyokern P. O. China Lake, California Attn: Technical Library Superintendent Naval Postgraduate School Monterey, California Commander Naval Air Development Center Johnsville, Pennsylvaria Library Attn: Aerodynamics Laboratory Chief of Staff U. S. Air Force The Pentagon Washington 25, D. C. Attn: DCS/D, AFDRD-AC-3 Chief, Armed Forces Special Weapons Project P. O. Box 2610 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director Armed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio | | Mantrikon 539 p. c. | | | | Naval Ordnance Laboratory White Oak Silver Spring, Maryland Attn: Mr. Nestingen Dr. May Commander Naval Ordnance Test Station Inyokern P. O. China Lake, California Attn: Technical Library Superintendent Naval Postgraduate School Monterey, California Commander Naval Air Development Center Johnsville, Pennsylvaria Library Chief of Staff U. S. Air Force The Pentagon Washington 25, D. C. Attn: DCS/D, AFDRD-AC-3 Chief, Armed Forces Special Weapons Project P. O. Box 2610 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director Armed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio | • | Commandes | 1 | | | White Oak Silver Spring, Maryland Attn: Mr. Nestinges Dr. May Commander Naval Ordnance Test Station Inyokern P. O. China Lake, California Attn: Technical Library Superintendent Naval Postgraduate School Monterey, Galifornia Commander Naval Air Development Center Johnsville, Pennsylvaria Chief of Staff U. S. Air Force The Pentagon Washington 25, D. C. Attn: DCS/D, AFDRD-AC-3 Chief, Armed Forces Special Weapons Project P. O. Box 2610 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director Armed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio | | | | Mann Morandimmen manny manny | | Silver Spring, Maryland Attn: Mr. Nestingen Dr. May Commander Naval Ordnance Test Station Inyokern P. O. China Lake, Galifornia Attn: Technical Library Superintendent Naval Postgraduate School Monterey, Galifornia Commander Naval Air Development Center Johnsville, Pennsylvaria U. S. Air Force The Pentagon Washington 25, D. C. Attn: DCS/D, AFDRD-AC-3 Chief, Armed Forces Special Weapons Project P. O. Box 2610 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director Armed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio | * * | | 1 | Chief of Staff | | Attn: Mr. Nestingen Dr. May Commander Naval Ordnance Test Station Inyokern P. O. China Lake, California Attn: Technical Library Superintendent Naval Postgraduate School Monterey, California Commander Naval Air Development Center Johnsville, Pennsylvaria The Peutagon Washington 25, D. C. Attn: Cipt. Bert Forces Special Weapons Project P. O. Box 2610 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director Armed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio | | | | | | Dr. May Commander | • • | | • | | | Attn: DCS/D, AFDRD-AC-3 Commander Naval Ordnance Test Station Inyokern P. O. China Lake, California Attn: Technical Library Superintendent Naval Postgraduate School Monterey, California Commander Naval Air Development Center Johnsville, Pennsylvaria Attn: DCS/D, AFDRD-AC-3 Chief, Armed Forces Special Weapons Project P. O. Box 2610 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director Armed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio | | | | | | Commander Naval Ordnance Test Station Inyokern P. O. China Lake, California Attn: Technical Library 1 Superintendent Naval Postgraduate School Monterey, California 1 Chief, Armed Forces Special Weapons Project P. O. Box 2610 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN 5 Director Armed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio | | | | | | Naval Ordnance Test Station Inyokern P. O. China Lake, California Attn: Technical Library Superintendent Naval Postgraduate School Monterey, California Commander Naval Air Development Center Johnsville, Pennsylvaria Chief, Armed Forces Special Weapons Project P. O. Box 2610 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director Armed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio | 1. | Commander | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | Inyokern P. O. China Lake, California Attn: Technical Library 1 Superintendent Naval Postgraduate School Monterey, California 1 Commander Naval Air Development Center Johnsville, Pennsylvaria Neapons Project P. O. Box 2610 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director Armed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio | | and the second s | 1 | Chief. Armed Forces Special | | P. O. China Lake, California Attn: Technical Library 1 Superintendent Naval Postgraduate School Monterey, California 1 Commander Naval Air Development Center Johnsville, Pennsylvaria P. O. Box 2610 Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director Armed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio | | | , - ; | | | Attn: Technical Library 1 Superintendent Naval Postgraduate School Monterey, California 1 Commander Naval Air Development Center Johnsville, Pennsylvaria Washington 25, D. C. Attn: Capt. Bert F. Brown, USN Director Armed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio | | | | | | Attn: Capt. Bert F. Brown, USN Superintendent Naval Postgraduate School Monterey, California Commander Naval Air Development Center Johnsville, Pennsylvaria Attn: Capt. Bert F. Brown, USN Director Armed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio | ** | | | | | Superintendent Naval Postgraduate School Monterey, California Commander Naval Air Development Center Johnsville, Pennsylvaria Director Armed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio | • | | | | | Naval Postgraduate School Monterey, California Commander Naval Air Development Center Johnsville, Pennsylvaria Director Armed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio | 1 | Superintendent | | | | Monterey, California Information Agency Commander Naval Air Development Center Johnsville, Pennsylvaria Armed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio | | • · · · · · · · · · · · · · · · · · · · | 5 | Director | | Information Agency Commander Documents Service Center Naval Air Development Center Knott Building Johnsville, Pennsylvaria Dayton 2, Ohio | | | | • | | Commander Documents Service Center Naval Air Development Center Knott Building Johnsville, Pennsylvaria Dayton 2, Ohio | | | | · · | | Naval Air Development Center Knott Building Johnsville, Pennsylvaria Dayton 2, Ohio | 1 | Commander | • | | | Johnsville, Pennsylvaria Dayton 2, Ohio | ~ | | | | | | | | | | | | | | | Attn: DSC - SA | | No. of<br>Copies | Organization | No. of Copies | Organization | |----------------------|------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------| | 3 | Commanding General<br>Redstone Arsenal<br>Huntsville, Alabama | 1 | Professor J. W. Cell<br>North Carolina State College<br>Raleigh, North Carolina | | <b>3</b> | Commanding Officer Picatinny Arsenal Dover, New Jersey | 1 | Dr. J. L. Kelley Department of mathematics Tulane University New Orleans, Louisma | | 1 | Commanding Officer Frankford Arsenal Philadelphia, Pennsylvania | 1 | Dr. Z. Kopal<br>Department of Electrical | | | Commanding Officer<br>Camp Dietrick<br>Frederick, Maryland | | Engineering Massachusetts Institute of Technology Cambridge 39, Massachusetts | | 1. | Department of Ordnance<br>Military Academy<br>West Point, New York | 1 | Professor G. Kuerti Department of Mechanical Emgineering | | 1, | Professor George Carrier<br>Division of Applied Sciences | | Case Institute of Technology<br>Cleveland, Ohio | | | Harvard University<br>Cambridge 38, Massachusetts<br>Professor Francis H. Clauser | | A. D. Little, Inc.<br>Cambridge 42, Massachusetts<br>Attr: Dr. C. S. Keevil | | | Department of Aeronautics<br>Johns Hopkins University<br>Baltimore 18, Maryland | 2 | Illinois Institute of Technology | | | Professor Edward J. McShane<br>Department of Mathematics<br>University of Virginia | | Technology Center Chicago 16, Illinois Attn: Mr. W. Casler Dr. A. Wundheiler | | | Mr. A. E. Puckett Hughes Aircraft Company Florence Avenue at Teal Stre Culver City, California | 2<br>et | Applied Physics Laboratory<br>Johns Hopkins University<br>Silver Spring, Maryland<br>Attn: Mr. George L. Seielstad | | 1 | Dr. L. H. Thomas | 1 | Consolidated Vultee Aircraft Corp. | | 18.7<br>19.4<br>19.4 | Watson Scientific Computing 612 West 116th Street New York 27, New York | Laborato: | Guided Missiles Division Pomona, California Attn: Mr. J. P. Syren | | 1 | Dr. R. E. Bolz<br>Case Institute of Technology<br>University Circle<br>Cleveland, Ohio | | Vitro Corp. of America<br>Silver Spring Laboratory<br>962 Wayne Avenue<br>Silver Spring, Maryland<br>Attn: Librarian | | No. of<br>Copies | Organization | No. of<br>Copies | Organization | |-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------| | OOPIOS | 0. 21.1.20.01 | Oopies | OI BANIZA CION | | , 1 | Bell Aircraft Corporation | 1 | General Electric Co. | | | P. O. Box 1 | | Project HERMES | | | Buffalo 5, New York | , | Schenectady, New York | | • | Attn: Miss Dorothy F. Zeman Chief Librarian | | Attn: Ar. J. C. Hoffman | | | $(\mathbf{x},\mathbf{x},\mathbf{y},\mathbf{y},\mathbf{y},\mathbf{y},\mathbf{y},\mathbf{y},\mathbf{y},y$ | 1 | Raytheon Manufacturing Co. | | 1 | Bendix Aviation Corp. | | Waltham, Massachusetts | | | Research Laboratory | | Attn: Guided Missiles & Radar | | | 4855 Fourth Avenue | | Division | | 1 N 1 | Detroit 1, Michigan | | | | | Attn: Dr. Harner Selvidge | 1 | McDonnell Aircraft Corp. | | | | | P. O. Box 516 | | 1 | Boeing Airplane Company | and the second | St. Louis 3, Missouri | | | Seattle 14, Washington | | Attn: Dr. B. G. Bromberg | | | Attn: Mr. R. H. Nelson | | Programme of the second se | | | | 1 | Glenn L. Martin Co. | | | Consolidated Vultee Aircraft | *** | Baltimore 3, Maryland | | The Market States | Corp. The state of | | Attn: Mrs. Mary Ezzo | | | San Diego 12, California | | | | | Attn: Mrs. Dora B. Burke | -1 | Goodyear Aircraft Corp. | | | The state of s | | Akron 15, Ohio | | 1 | Cornell Aeronautical Laborator Inc. | 7, | Attn: Dr. Karl Arnstein | | | Buffalo, New York | ì | Common Advances Decimandes | | | Attn: Miss Elma T. Evans | | Grumman Aircraft Engineering Corp. | | | Librarian | | Bethpage | | | | | | | 1 | Douglas Aircraft Co. | · · · · · · · · · · · · · · · · · · · | Long Island, New York Attn: Mr. Wm. T. Schwendler | | | 2000 Ocean Park Boulevard | in the second se | Manual 17.9 WHY TO BOTHANGTEL | | | Santa Monica, California | . 1 | Hughes Aircraft Co. | | <b>V</b> | Attn: Mr. B. F. Burton | - | Florence Avenue at Teal Street | | | But the state of the second secon | | Culver City, California | | 3. | Consolidated Vultee Aircraft C | orp. | Attn: Miss Mary Jo Case | | | Fort Worth Division | | Avail 1125 1121 y UU UABU | | | Fort Worth, Texas | 2 | California Institute of | | | Attn: John Goode | _ | Technology | | | | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | Jet Propulsion Laboratory | | 1 | Chrysler Corp. | | Pasadena, California | | | Engineering Division | | Attn: Mr. Irl E. Newlan | | The Alberta | Department 901 | | Reports Group | | | 12800 Oakland Avenue | | | | | Highland Park, Michigan | 1 | Bendix Products Division | | , | Attn: Mr. J. E. Charipar | | Bendix Aviation Corp. | | | | | 400 S. Beiger Street | | 1 . | Fairchild Engine and Airplane | | Mishawaka, Indiana | | | Corp. | | Attn: Mr. W. C. Suttle | | | Guided Missiles Division | , | | | , | Wyandanch | ı | United Aircraft Corp. | | | Long Island, New York | | Chance Vought Aircraft Division | | • | Attn: W. J. McDonald, Librari | an | Dallas, Texas | | No. of<br>Copies | | No. of Copies | Organization | |------------------|----------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------| | 1 | University of Michigan Willow Run Research Center Willow Run Airport Ypsilanti, Michigan Attn: Mr. J. E. Corey | 1 | M. W. Kellogg Company Foot of Danforth Avenue Jersey City 3, New Jersey Attn: Mr. Robert A. Miller | | 2. | North American Aviation, Inc.<br>12214 Lakewood Boulevard<br>Downey, California<br>Attn: Aerophysics Library | 1 | Madioplane Corp. Metropolitan Airport Van Nuys, California Attn: Mr. Ferris M. Smith University of Virginia | | 1 | Northrop Aircraft, Inc.<br>Hawthorne, California<br>Attn: Mr. R. A. Dutton | | Physics Department<br>Charlottesville, Virginia<br>Attn: Mr. J. W. Beams | | 1 | Sperry Gyroscope Co. Division of the Sperry Corp. Great Neck Long Island, New York Attn: Librarian | 1 | Ryan Aeronautical Co.<br>Lindbergh Field<br>San Diego 12, California<br>Attn: Mr. Bruce Smith | | <b>2</b> | Massachusetts Institute of Tec<br>Cambridge 39, Massachusetts<br>Attn: Guided Missiles Library<br>Room 22-001 | | Republic Aviation Corp. Military Contract Department Farmingdale Long Island, New York Attn: Dr. William O'Donnell | | 2 | Sandia Corp. Sandia Base P. O. Box 5800 Albuquerque, New Mexico | 1 | Purdue University Lafayette, Indiana Attn: Dr. M. J. Zucrow University of Southern California | | 1 | Attn: Mrs. Wynne K. Cox Reeves Instrument Corp. 215 E. 91st Street New York 23, New York | - | Naval Research Project College of Engineering Los Angeles, California Attn: Mr. R. T. DeVault | | 1 | Aerojet Engineering Corp.<br>Azusa, California<br>Attn: Mr. T. Grenier | 1 | Consolidated Vultee Aircraft Corp. Ordnance Aerophysics Laboratory Daingerfield, Texas Attn: Mr. J. E. Arnold | | 1 | Wright Aeronautical Corp. Wood-Ridge, New Jersey Attn: Sales Department (Government) | 1 | Eastman Kodak Co. Navy Ordnance Division Rochester 4, New York Attn: Dr. Herbert Trotter | | 1 | Marquardt Aircraft Co.<br>7801 Hayvenhurst Avenue<br>Van Nuys, California<br>Attn: Mr. Robert E. Marquard | 1<br>It | United Aircraft Corp. Research Department East Hartford 8, Connecticut Attn: Mr. Robert C. Sale | # No. of Copies Organization - University of Texas Defense Research Laboratory Austin, Texas Attn: Dr. C. P. Boner - Johns Hopkins University Institute for Cooperative Research 4810 Roland Avenue Baltimore, Maryland Attn: Dr. E. R. C. Miles Project THOR - l Lockheed Aircraft Corp. Burbank, Galifornia Attn: Mr. Hall L. Hibbard Hrmed Services Technical Information DOCUMENT SERVICE CENTER WICE CENTER NOTT BUILDING, DAYTON, 2, 0410 UNCLASSIFIE