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dt “ witer
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_ Wil Gy P, “he pressure in the bubble 2
G‘ 07 (4 (4)2 ) 4 ;
b P, The und!sturbed hydrostatic pressure; the average pressure at 8
infintty g
4 4 L.
eie(r,t) The concentration of air in the water at an artitrary point P, ThelRsoundlipreseure ;.
and time : . r”
P The pressure in tne water at iniinity L!
Co; C(oc, ) The concentration of air in the water at infinity,; also the
’ q 1 4 A 1 3 . - M \
concentration of air in water when the water is in equilibrium P The relative amplitude of tne sound pressure; £, = pF, sin u¢ j,‘
with air at pressure P, and temperature T, R The instantaneous radius of tne bubble
cp The specific heat for alr under constant pressure R The time rate of change of R
o The specific heat for air under constant volume R, The equilibrtum radius of the bubbie
D The diffusion constant for air in water R, The resonant racdius at angular frequency w
r The distance from the center S the bubble to a po!nt in the
X water
F F=RoVE ey (L -1)
3 ) T The temperature of the a'r in bubble, Kelvin
1_?9 (s r To The constant temperature of the water, Kelvin
G G = e~ Ry sin V (k“ - 1) =
r 0 ¢ Time
v Tre radial velccity c¢f the fivid at the point 7 :
© _v(r-1 . .
I, (V) Ly = [ ¢ atin v (2 - 1) de -
Ve /2 4
| 4 2D R, §
%
k The Boltzmann constant d% w The rate a3t waich work is dene upen the wacver >
KE Tre kinetic energy of the motion of &tre water g
m The average moiecular mass far air g
N Number of molecules in tnhe bubble o
b,
N, The initial number of mclecuies in tir¢ uubble 1
3
3
¥
O T S ~N P P SN S SR S A . ) ‘ : o o AT WAL . ot o fadelile o TS AN | RN = e \‘.:“"‘
— e s e T — A =
R



iv

B =(m/2kTH
The value of 8 at T = T,

Tre ratio of specific heats
at standard cconditions

S

Damping constant

A constant of integration

1
i 3

The density of the water

The density of air at pressure B, and temperature

The period of the sound beam
Frequency

Natural frequency

Angular frequency

The angular frequency corresponding to natural frequency

approximateiy 4/3 for air
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THE DEAFRATICN OF WATEX BY 4 ZOUND BEAM*

Cy

ABSTRACT

A calculation is made to deterriine what part might be piayed by the diffusion of
air into existing bubbles as a consequeace of the mechanical motions induced bty a cound
beam. The case of in isolated bubble i.. a weak sound beam of wav: length considerably
greater than the bubble radius is considered. Th« effects of surface tensicn, viscosity and
energy dissipation are neglected. The diffusion probiem is tyeated by means rf a per-
turbation technique. The growth of the bubble is found to be of second order in the sound
pressure,i.e. proportional to the sound intensity. Numericai resuli{s presented show that

the effect is sufficient to account for significant butble growth especially in the case of
very small-bubbles.

INTRCDUCTIUN

Trhe deaer:tion of water by an uitrasoenic beam is a phenomenon which
r.as become increasingly familisr to experinenters !n ultrasonics. However,
there 's as yet no satisrfactory account of the mechanism responsible for this
effect.** The calculation that is made rere lenuyd support to the view that
the deaerat!on results from the growth Cf small air bubbles which 's caused
by tne mechan!cal mciion that is furced ¢y Lhe souna beam. The moticn cf 2
puthl¢ responding 1o a sound beanm !s unsymnetricai In sucn a manner that tne
average racdlus beccmes slightly greater (nan the equlilbrium radius. More-
over, because Llrne A4iffusion of a'r ‘nts tre hihble vartes with the area of
the toundary, the nerfods when the bubbic :8 expanded have greater effect
upor the ciffusion of air intc the tutble .nan Lre pericds when the buosle

‘s ccntracted. kence ‘Y is Lo be expected that the mecnanical metions of an

eA dliesertation subaitted £o tze furiley - the Sinduate School of Arts and Sciences of the Catbolic

University of America iu partia) fulfi{ll=cut of the requiremects for the degre: of Doz%or cf Philosophy.
saptter most of the wurk preesented here nad ceen accomplished it was discovered that a similar cal-

culation hai beea made by F.C. Blake, Jr. od&s [leference T on prge SO of this report. A comparisou

of the tw) calcuintions a8 preserte! {n fprecdix I of wris paper,

£ & s MRS L =’ Wihen's - » T P BT

ek e

.

il

Afiw

7 AN O TRV b4 A

el | S e o o Cbar.

SO Vel LN TS B

St 3




-~ ——

/ : e T o AP o
——— i W 3 AV T TG TP e < DR § <o B SIS nm“‘éﬁ‘uu B Ay s i) 1m : o TR AR R IR
é
)
. [ . ml “.'\ 0
alr bubbie will result in the growth of the bubble Iris mechantism for the i

growth of an z'r bubtle in a sound fleld is very closely relaited to the mech-
tsm for growtn of an alr bubble !n a cavitating /iow. Tiie latter case has
been treated in an eariler paper.’ “re ma‘n c¢ifference between tiese twu i
phenomena are the much smz2ller scale ancé greszter symuetry oI tre motion of the
sound fleld. On the other hand a bubble can readily ve exposed to a scund
f‘eld for a relativcly long Lime whercas tre time spent in a cavitaling
flow 1s usually brief. The calculation that is presentec here follcws along
the lines of thc earlier calculation. However, because of tne small scaie of
the motion 1t 1s ncw possible to treat the d!ffusion of alr thrcugh the water
in more detall.

A single small bubble is considered¢ to te immersed in an infin!te
body of water through which a sound bezm is passing. Tnhe radius of the bubtble
is assumed to be so smsll in compar!son to the wave length of the sound beam
that the beam can be represented by a periodic vartation ir the -~ydrostatic
pressure at infinity. Consequently spherical sy.ametry Is preserved ‘n lhe
motion. Only the case of a weak sound beam is considered $0 thal the vartla-
tion of the pressure at infinity may be ccns!dered small compared tc the aver-
age hydrostatic pressure. Surface tension 1s neglected znd 't !s assumed that
all conditions are such that in tne ahsence of the sound beam egu'iitor'um
would ottain. The conduction of neat is also neglected sc tnatl tne tempersi-
ture in the water remains constant and uniform and the ccmpressions and ex-
pansions of the alr In the bubbdle are adiabtatlic. In addition thre presence of
water vapor in the bubble is ignored.
. The ooject of this calculation i{s L) determirie the average rate cf
growth of the bubble wnen conditions nave beccume stcady. It wiil be assumed
-hat the change of the amount of a'r in the bubble aurin; <he *'ie requirea
tc a%taln steady condii‘ons and during a gerlod of the scund f'elu are bour
insignificant in comparison t0 ‘he amount ¢f a‘r nttialiy ‘o the budbbie.
Therefore, the effect of the chunge of a'r corien: ou.inb tne per‘ua on the
rate of growth will be ignored. Tnus the proc S

cuiny e
........ poeliure (D e

T1.oune Dudble
will be assumea to be directliy given by the adtadat'c re.ziionegr 'y witnout
correzt'‘on for tne change in the a‘'r content n the budole

SUmilargy Lhe
cdensity ¢f air in the bubble wiil be taken us ‘nverse.y sronortional Lo Lhe

volumne.

Tre calculation !s d'vided ‘ntc three iarts tovering (1) e egustion

of motion ¢f th2 boundary of tre bubz.e, 12) tno S.ununry conditions for Lhe
diffuston equutien, (%) the sclubtton of tre diffustin eguitton

I R 2N V24 3N

lReforencos are liated on page <O.
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THE EQUATION CF MOTICN OF THE BOUNDARY OF THE BUBBLE

The equation of motion of an air bubble in water under the conditons
specifled abcve has been treated by many writers. The derivation !s repeated
nere in order to obtain the equation in a form suitable for present purposes.

Let the origin of coordinates be the center of the bubble. Let. r
be the distance from the origin to a point in’ the water and let v be the radi-
al velocity of the fiuid at this point. Lei R be the radius cf the bubble and
R be the time rate of change of R. Then the incompressibility of the water

requires R? e
vETE (1]
and the rate of change of kinetic.energy is
& ggod (" 9 (s + & nei]
& -4 RRR*+ SRR (2]
at KE = at pw 2 4mr-dr LU 2

where P, is the density of the water. If B, 1s the pressure in the bubble and
B, 1s the pressure in the water at infinity, the rate at which work is done
upon the water 1is given by

d d 4n R
2‘ = (P, P 3 —3 (3]

B 1s the undisturbed hydrostatic pressure and F,

Writing P, = P, + F, where
18 the sound pressure, and, since the motion 1is assumed to be adlabatic,

P, = PO(R./R )*” , 7 being the ratio of specific heats, ¢/¢ ; for the air in
the bubble, this equation becomes:

v =[] ] e )

Since no damping effect is included d KE/dt = dW/d¢ and the general equation of
motion may be written

(Ro)“’] +P =0 5]

3
p, RR +~— s, R24-P [ R

For sonic motions we may write R = R,+ 4 R, where Ry 1s the equi-
1ibrium radius of the bubble and 4R < <R, whence to second order in AR the
equation of moticn (5] becomes:

4R

A ARAP+ (AR)--—Y(37+1)P( )2+P.=0 (€]
Py R,

R,

To first ovder for free sonic oscillation,i.e.P, m 0 the familiar result 1is
obtained

po R, AR +37P,

R 37 P,
“o = ° p Rf (7]
h e P S RPTACIOeT
e - PUEGESS - SV VU . - - —— c - T 3 PN
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where Y--is the natural frequenesf and w, the corresponding angular frequency.
Writing P, = p F;sinwt where p <<1 the following solution; to the

second order in 'p,is obtained by the standard perturbation technique. This

sclution can be direc*ly verified by substitution In Equation ('c_)' -

AR=PR — R, = Ro[ao(smwt)p+(a + a,¢ S2<~'-‘l‘)p2] (8]
where /
Sy 1 3
37\1——5)
W
(¢
3yt 1%y 3y + 125 :
al_ e 0 =a2 9 R — r].Oi
= = i L
4(37)* (1-5) : )=
: (}
w? -
37 +1+ 5% Har+1+5;) 2
L 2 w? 2 0 w? e w sl S 64 L1l
)I — Ty Ay e p— —
4(37)* ( o) (1-425) 4(1 4%2)

The numerical approximations are obtained by using y=4/3 for air and ignor-
ing wjw, when compared to unity in accordance with the hypothesis that we are
dealing with a bubble whose radius is small compared to the radius for ress-
ance.

Differentiation of Ecjuation [8] gives

R -—Ro(ao wp cos wt ~ 2a, wp? sin 2 wt)

THE BOUNDARY‘CQNDITION FOR THE DIFFUSION EQUATION

The traffic of air molecules ‘at the boundary ot th
ed by considering the rate dN,/dt zv which molecules leave

e bubole 15 studl-

he bubble znd enver
the water and then the rate dN,/dt at which mo1ecules Stream away from the

water surface and enter the bubble thus obtﬂ‘n‘mg the net rate of transfer of
molecules dN/d¢ =dNg/dt —dN,/d¢t which is the rate of growth of the bubble.
Becau%e of the spherical s,zmmetr,r 1€ 1s only neces s8ary Lo find thé rate of e
transfer of molecules per unit area of the ooundary (ENjdt) =+ 47 R2, This rate
may te determined by considering just a small Section of the boundary. — =

#
i
i

\n

It 1s gssumed thst the mean free path of the molecules in the bubble
is sufficiently small compared to the radius of the bubble 50 that the section
of the spherical surface may be taken small enough tc be virtually a plane.
From kinetic thecry the rate of flow of molecules per unit area through a
plane surface element in the bubble is given by n/z Va8 viere n 1s the mole-
cular density and B=VmRkT ,m beling tne molecular mass, T the temperature
(Kelvin) of the air in the bubble and k the Boltzmann constant.® Since the
motion 1s assumed to be adiabatic B=g(R/R,)¥2(?-1) where By 1s the value of
B at equilibrium 1.e. Bo = (MRKL)2= (ARRB and p, is the Gensity of the air
equilibrium. Also n=ny(Ry/R)® where n, 1s the molecular density at equi-
librium. Altiough some of the molecules that strike the surface of the water
rebound into the gas, almost all remain in the water and it ‘is sufficiently
accurate for our purpose to assume that all the molecules that strike the
boundary remain in the water.* Thus the specific rate of loss is

B Rty =l
)\Ri

The rate at which molecules stit-eam into the bubble from the water
surface depends upon the concentration of the dissolved air and the temperature
of the water. The density of air in equilibrium with water when both are at
the same fixed temperature 1s proporticnal to the concentration of dissolved
gas in accordance with Henry's Law. The effect of temperature is to vary the
constant of proportionality. Let e(r,t) be the molecular concentration of
air in water. Then ¢, = ¢(~,t) is the molecular concentration of air in
water when the water is in equilibrium with air at pressure B, and temperature

Ty . Since the temperature of the water is everywhere fixed at Ty, when the
concentration of air in the water at the boundary of the bubble is ¢e the
rate at which molecules leave a unit area of the water surface is 7y (B/2xp, )2
When the concentration of air in the water at the boundary is c(R,t) the
water would be in equilibrium with air at temperature T, and molecular density
(C(R t)/c,,)no s0 that the specific rate at which molecules stream away from a

*This wmay not be the case when impurities have collected at the boundary of the bubble. It has been
observed for example that the deaeration of tap water that bas been quiescent for a long period of time
will not occur until *he sonic pressure is Increased beyond a minimum threshold level. The suggestion
bas been made by F. E. Fox and K. F. Herzield that the accumulation of an organic "skin" at the boundary
of the bubble may be responsible for this phenomena. Such a skin would stifle the diffusion process.
The calculation made here presupposes a fresh surface at bubble or water free of impurities with the
resuly ~hold pressure is obtained.
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unit area of the water sur ‘ace i
i ﬂ

The net rate of %ransfer 1is thus given by

B [c(R.a,\ N ':—,.“3]
(1]

27p,!

&0 =em

The net rate of transfer of mo .66u.:s through the boundary iéxals{

- anr(22)

T—.

: i : .
Whe'e D 1is the diffusion ccastart for air 1n Jater and ¢ 1s given-‘n .

molecular concentratici) Eence ine bcundary; tondiiion at r =R cov oL

"_-_C\'l.,.____._:. A[‘E:R' t) /Qq) 7+ 3]

Em_ L L, Nyl
Co V0T izap U r
whéje £ = 1 ]
= 47 (2:&)2 (Z—i) (%)

' = | Jauie] : L
Under nermal condiijcns A 13 exceedingly large For standard cong't’on ©
temperature and pressuze thi: following values miy be used: ]

P =1.61x10° dyne (m“z D=19x10" cm*eec™t ; o = 5,02 x 107 sp—?

ng = z‘. >0x1()19 em™%; p,=1.20x307% gm em~3,

Then for a bubble whis equ librium radius ts 1 %em, A=3x10°,

For all cases of brasent interest the value cf t'ie left hand side of Eg a'

[17] 1s always smaliirelatite to A. Hence littl: error is made if tre equtie

is divided by A ana set equzl to zero so Lne the boundary condicion bec. me .
R

oo o AR :
L‘_(R: "_)\"‘ f—":f.\ [,9} ) [1'::1

This condition is sftnﬂy_t}e'SLacbmzaL bl - PO Toaten o <t L7 aissolved zir
In the water at the bouni..” ™af_the hapb e tnetap aranugly pggume

_ mes Lne value o

14 i AT X . ) ,."‘.;x ~

required for equilibrium wio:iiy hi, fgni g T e O Bie o inda) 'y
condition is used in the form of hquaL1 11eC) 4% te esesntial that the rate

of growth of the bubble be computed with the formula given by kguation {16]

and not with that of Equaticn [15] since the latter would ‘nvolve the product

of a very large number and z very small number whi:h has been cet equal to

2o

zero in Equation [181.

THE SOLUTION OF THE DIFFUSION FQUATION

The diffusion of the dissolved alr through the water 1s described
by the partial differential equation:

23

(o]

D 8 (,0c\ B 400 8¢
(D7 ~TPe=" a_r("a‘l TiE i [19]

Q)IQ)
|0

."ere 2 and R are given as functions of time by Equationg [8] and (12] re-

z;ectirely. The boundary ccnditions are imposed by the fixed concentration

at inz: nity,1i.e. e¢{w~,l)=c¢, and either Equation [17] or Equation [18].

EAlthough there is no inherent difficulty ;n employing the more precise Equation

117] the labor involved in using Equation [18] 1is considerably less and in
\1ew of the approximate nature of this calculation in other respects, little
15 lost by the use of the Equation [18}. 1In either form the boundary condition
ai r=:0 1s in general awkward to handle becauce the condition is imposed at a
meving joundary.¥ However, this difficulty can be avotded in the pfesent case
be-ause the motion of the boundary is small so that equivalent conditions at a
fised boundary 1.e. » = Ry can be extrapolated from the condition at the moving
boinadary .

A A solution is sought which 1s a perturbation from the undisturbed
stals. Thus ¢(7,t) is expanded in powers of p:

e(r,t)=c¢x + ¢ (r,t)p+ cz_(r,t):n2 g [20_]

“and ctr= R expansions of the following type are employed: {see Appendix II).

260

e(.2,t) = c(Ryt) +(R-R)) =~ (Ro,t)+ (R—Ry) 573 (By,8)+ -~ {21]

]

iz —

- 7*In connt :tion with a similar heat diffusion problem, M. S. Plesset and S. A. Zwick7 have
w.&loyed & 1chnique for treeting the condition at the moving boundary that could be adapted to
- '_‘\present roblem. This technique is based upon the fact that the diffusion takes plece mainly
2 'he waer 1rmediately surrounding the buoble. Successive approximations can be made each ef-

\
% \{; \1ve1y ex .ending the diffusion to a larger volume of the fluid. However in the present case

"

P \3enem1 ‘valuation of the explicit solutions which are obteined for these approximations would
\u to be p :dicated upon the smallness of the motion. The method employed in this paper uses the
=¥ that or. ./ small motions are to be considered to avoid any approximation in regard to the regioun

- - E¥3in the « ffusion takes place.

e
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(23] in {18]). Thus
8c(R, t) _ Oc(Rt) 2 O%¢ .- -
3 aﬂn +(R- R) (RD th+ < (R—Ro) 53 R )+ (22) c,(€0»8)=_372+3 a,sin wt (28]

The assumption that equilibrium exists in the absence of the sourid beam re-
quires that the first term in the expansion of ¢ in Equation [20] be iden-
tically ce as written and it 1s easily verifled that c¢(7,!)= Cqu

satifies i‘..he differential equation and the boundary conditions with the ex-
clusion of terms of and beyond first order in p . Using Equations (8] and [20]
in Equations [21] and [22] one obtains to second order in P

and the bcundary conditlon at infinity 1s simply ¢(e,t)= 0, Lence the de-
termination of ¢; 1s mathematicalily ldentical to the one-dimensicnal problem
cf heat conduction in a semi-infinite medium with prescribed time-cdependence
of the temperature at the boundary.

The solution of this heat conduction pro-
lem is well-known.*

Application of this known solution gives

cl(:'“z-(ay;s)aoli‘sinwt—Geoswt] (29]
C(Rtt)’: Cot c](Rot)p+[ Oa\)(aul (dl) —(&")+CZ(R° t)]p’ [23] where 4 L‘l T
p,.-,f:“_e (R° )MV(}?O 1)
” G=-§9e_v(”—o‘l)sinV(Fr—l)
dciR,t) _ac (EO t) [ ao(smwt) c, 1 (R, ¢)+802(Ro 3)] [24] * bt 3 0
or and V=(2_D_ R"z)z

Substitution from Equations [8) and {24] into Equation [16]) and the
taking of time averages results in the tollowing expression for the average
rate of growth of the bubble to second order in p

This solution can also be readily ¢

tained bty expansiocn of cl(r,t) in a
Fourier-series in t.

The following evaluations can now be made:

2 S et S I T 3¢ o 9¢, _37+3 (1+V) a'c,
‘1)_‘:_ 5 8_‘-'1 " ; _ 861 3 aﬁ} 802] . [25] —'—r'=0 ; gin wt 8T= N Q€ R .smwta—r 0
T —4#R°D{arp+[4ao(smwz)8—r+R°a°(smwt)6r2+ O—er L 0

where all derivatives with respect to 7 are to be evaluated at r = R, .
It 1s apparent from Equation {25] that altiough the time dependence of ¢, 1is
required for the determination Of the average rate of growth to second order

in p only the time average of ¢; 1s needed.

The differential equation for ¢, 1s obtained by applying Equations
(8], [12] and {20) to Equation [19], expanding in powers cf p, equating the
ccefficients of the second power of p,substituting the result just obtained
for ¢, and taking time averages. Thus one obtains

The differential equation for ¢, s found by applying Equations (8], d(:'( 2%3) Co %(37—2 )V R°(¢iif {30}
{12] and [20) to Equation [19], expanding in pcwers of p and equating tne

coefficients of the first pcwer of p . Thus

D & ¢ ¢ :
% 55 (" 52) - 22
or the equivalent
8 d
{ Dg_r_i (7'01)=a—(rcl) 127]

The boundary condition at r = R, is likewise cbtalned using Equations ;8 and

*’“zmwm- RIS T T

The boundary conditions at r = R, 1s likewise obtained using Equations {8]
and [23) in [18].

*According to the interpretation of d1ffusion as a consequence of the random vandering of molecules
as presentsd by Einstein, ve may write D =?/2*r vhere 1z 1g the average square of the dieplacement
of an air molecule in vater after the tims v which may be taken as the period of the sound beam. Then,

since wa=lW4H V=uRR /(2D™ =(@mMMR/EYM so that V may be interpreted 1 a mitiple ~¢ +he
ratio of R, to the root-mean-square displacement in a pveriod of the sound beam.
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Equation [30C] 1t easily integrated to obtain
<, 3y +3 & G dr R,
zf:='“o( 2 e 1 L 7‘ el

.a second constant of
because of the boundary condition at infinity, c,(o0) =0
from Equation [32] into kquaticn {311 permits the cvaluation of #:

where « is a constant of integration; tntegration vantsres

Substitution

Vzg)gf-FaJ

.. (3y+3)[(v+1_3v+5_
GRS 2 8
o _(3_?_2_+_§) a:[% + 281 +12, _£2_ Vzlo] 133

whare smV(:c 1)

b=f

Substitution of the results cbtalned fcr ¢, and & in Equatfon (25,
gives the following expressions for dN/dt :

= Y+
Ed_\'-41rRoD(°7+3) Q[(% +%—3 3 s-VZIO)a§+a..]p2 [34a]
3r+3 r9 3 3V w? ;
_47I’ROD( 5 )C,;EL'8'+F+f—V2[0—4IT°2]a§p2 i\ 340,
or
1 dN c=(8Y+3\[9 , 37 3V w? 22
= &V =3p | 4 A .
N, dt no( 2 )Lzs 8 2 0 fuwil RY [ 3uc;

The integral I, 1s always less thanV “vsince tn's latter value 'S Jhtatned

upcn elimination of the z—3sinV (zr - 1) factor of the integrand, this factor

being less tran unity while the remalning factor !'s zlways posiiive through-

out the range of integration. Moresver as seen !n Figurc 4, I, ,tre evalu-
TI, never exceeds C.1 2nd ts (2V)7!

fence it 1s apparent that d} fd t

3
ation of which 1s discucced in rfppenity 1

tor large V. ts always pesltive,
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EVALUATION AND INTERPRETATICN OF THE SOLUTICON
The result for dN ¢t !s !{llustrated 5y the

Values of lh% aﬁﬁatare shown as
all of these curves the values previously given fcr

curves st.own in Flgure i,
a function ¢f R fcor varicus frequencies. For
K.D,

tzken as 1/3.

Cos My and p, wWere

used. Also used were Y =4/3;p =1 and p was Wher Ry, apd wjw,

are both extremecly small tnen

1 3 1 1 1
(& pa\T_ (3YRN\I(@ g\ T em—2
v =(3p ™) ‘(4,;”07)‘(%’20) = 7260 (o Ryt em ™
is aisc small and approximately
1 dN € (37 + 3V /374+9\¢1 \p?2 4.52x10"° AR
N It _30’;( S )(9),2)E0§=—————R02 em? sec—1 [35)

Since fcr any fixed {requency w/ab becomes smel when Ry s suf-
ficlently small all of tne curves are asymptotic toc th!s expression when go'ng
However 1t zhculd be noted that wnen the radius of the
bubble 15 mucnhn smaller than 10- 3cnz. the accuracy of the calculation suffers
frcm the neglect of the surface tension and for low frequencies from tne use
of the adiabatl Nevertlieless the re-
shlts clearly show that extremely small bubbles grcw rapidly by diffusion.

In fact the est'mated rat> of growth of bubbles of small size i{s so great that
for low freguecnci!es the gr:wth per cycle 1s no longer a negligible fraction cf
the in‘tial bubble size.*

towards smz2ll R, .

¢ rather than the isothermal assumption.

#It 1e clear that the assumption that tbe growth of the buuble during a period of the sound beam ig
neagligidble will impose a lower limit upon the frequencies for vhich the calculation ie accurate. Tre
asoumption as it has been applied refers not only to the change in tas air content dus to the average
rate of growth, but also and mare restricting, to the amplitude of the alterrating camponent of the air
content. In particular it has beer aseumed ‘hat this amplitude ie¢ much emaller than the amplitude of
the volume variatior i.e. that in amplitude (N—No)/No<<[8(R—&)]R,. An estimate of a bound for ths
amplitude of (N —XN,)/N, can bs ob*aine) by considering the grovth that would occur in & half period 1f
the conditions most favorable to growth 1.s. maximm expansion where constantly maintained., Then at
the boundary, fram Equation (18), taking ¥ = 4/3 ; c(Rmas) ™ Co{Rmss/Ry) ™ whore Rae, 16 the maximm
radius. Since steady conditions are asrumed c(r) = Col(Rmau/R, Y% —1}(Rumas/7) + €. Hence from
Equation (16), dNﬁt = 4MRase D[1~(Kme::R,)""t)c, and tbe rolative growth in & half-period, which
in taken as an estimate of ths amplitude of the alteroating camponsnt of the alr content is:

1 1 dN1 27l D 1-(”"4) ‘] ee 21 ¢ D SRnas
2N dr v % L R, v T avn BRI Ry
where ARumes ®* Rma: =R, and 1o assumed to be emall. Hence ueing tke values quotad in the text:

1 1 dN1 [38Rma: _ T D1 675107 TemPsee~
aNdT e TR T v T Ro"'

If a ratio of 1/100 te conaidersd acceptadble, *then the assumption is satiefl for frequencies such

that ¥ > €.7 x 10" 4cm? uu:"/[zo2 . Thia 1s a rather conservative estimate. 1t is probable that the as-

ewtption applies -uite well to samewhat lower frequenciea. Aleo 1t ehould be noted that the fallure

of the assumption fcr low frequercios does nct imply that the growth by diffusion would be leee than

that calculated; the reverse may woll be the case.
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As R, increases towards resonint size the terms in V enter. Also

af increases. The curves tnen depart from the asymptote on the pos'tive side,
Naturall&‘tnis,occurs earlier for the higher frequencies. As R, atiaine reso-

ant size Jﬁﬂht diverges to + o« because nc damping effect nas been inciuded in
the treatment of bubble motion so that a, becomes infinite. For bubbles of

near’ﬁesonant size Vis largé, especially in the case of the lower freguencies.
Then terms in V in the bracket on the left-hand-side of Eguation | 34] dominate
(2v)™

Since for large V as shown in Append xII L= zn approximation for

lh% dp”d! for the near-resonant cond1t1on is
1 dN _: 37 + 3\ /3Y P\ RVl p? 1
N = PR )(4,,“32)‘(3—1)2@)(1_”&32@;
= trea R 136]
Ryt 22 emt
o . = 0. 001815(Rw)2(1_.lﬁff E%?
R?

where R, is the radlus at resonance.

For the lower frequencies the damn ing is very slight and 1t is to
_be expected that the curves- will in fact rise very sharply as resonznce is
approached.
will be reached at resonance.

However it js QiffiGUlt tc estimate the he%ght of tre peaks t"at
ALCO“d ing to elementarj treatment of tne effec
of a parallel sound beam® on an air bubble, the resc:2
1s-a sinusoldal motion of amplitude pRy/374, “where-d

constant and is a function of frequency.

is the sc-called damping
In the following table the values of

8 are approx 1mate empirical values read from Figure 2, page U4Uo of Reference 5.

Fréquency, cycles per sec . 1,000 10,000 40,000
Damping constant, § 0.025 0.11 0.28
Nominal ratio of the amplitude of the

{first harmonic'to the equilibpium radius; : :

pf3¥s for p=1/3 ke S 38 dlens 0.3

The relative amplitudes show that thé elementary theory fails st low frequer.-

cies even for relatively small sound pressures, =nd the molion of iLre bubble

is then not sinusoidal but very acymmetricol.* 'he curves shown 'n Flgure 1

have been extended only to the'bubble_rédii 2t which w/wy, = 1/2 . In tnis
case @g =—1/3 and for p = 1/3 the relative mplitude of the first hzrmon‘c
of the bubble motion is 1/9 so that at tals point the appr

the calculation should still be reasonaple. *¥

oximations made in

Tre greater damping that is

*Under such coz{ditions cne would expect to find & noalinear amplitude effect upon the danmping.
#Hyhen Whwy =1/¢ the second hermonic term diverges, i.e. a, becomes infinite.

second order ia p , 0 does not afieect the diffusion and t,he inei
probably limit g, to reasonably c1sll values.

However, To
zusion of damping effects would

qt_nuthn ctriie 5phb1;7‘

)
]
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~Figure 1 - Relative Rate of Growth as a Function or Frequency
and Bubble Radius



observed for the higher frequencies would indicate that the curves for [rejuen-
cies greater than lO5 will not exhibit much of 2 pesk st resonance. Ta [ucl
because of the neglect of the damping, the rate of growih predicted for 'he
higher frequencies even in the off-resonant condition may be somewhat cver-
estimgted. It should be noted that the increasing asymmetry of the motion,

whether produced by resonant conditions or by thie spiifeation of sound benme

of greater intensity, will contribute further to the growth »f tre bubble by

S

diffusion.
i It is hard to predict what happens when the racius or tne bubbie
grows beyond resonant size. If the bubble beccmes substantially greater than i

——

resonant size the distortion produced by the metion may cause the oubtle to
split and trereafter the pattern of growth for small bubbles would aga'n -p-
ply. For very high frequencies the resonant bubble size s so small that if
the pubbles do not grow much beyond rescnant size they would not be evident
on visual inspection. Also very small bubbles mey nct hive time to rise cut
of the water su that the water would not be deazeratead.

The time required for a bubble to grow Irom cne rzdaius to ancther
can be determined by integration of the values of. 1/N; dN/dt using ine re-
lationship  dRy/dt=R3(1/N, dNjdt) . Figure 2 shows the result of numerical
integration applied to the éalues for v = 10 c¢ycles per second. Because the
growing bubole spends only a very small part of its 1life at small raaii it
would be very difficult to determine tne original radius of the bubble from
data on the time after application of a sound beam that is required for a
bubble to be seen and the size of the bubble when it becomes visible.

0.015 l t T T ;: T
I | !
V=104 ¢/soc : /
| {
i

o
O
o

BUBBLE RADIUS
GCENTIMETERS
o
Q
(o]
o
\,

A

IME - SECONDS

Figure 2 - Time History of Bubble Radius

This Figure shows the variation of the radius of a bubble in a sound bsam cf th

cycles per second. The initial redius was teken as 10 centimeters.
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APPENDIX I
COMPARISON WITH BLAKE'S CALCULATION

Since Blake® includes the effect of suarface tensicn and uses an iso-
thermal rather than an adiabatic relationship between P, and R his basic as-
sumpticns are more appropriate for verv small bubbles than the assumptions
used for the present calculation, the malr interest of whiech is centered on
bubbles of the order of 10'3cnz and greater. A consequence of the inclusion
of surface tension 1s that equilibrium with respect to diffusion is not obtain-
ed in the absence of thie sound beah. Therefore Blake obtains,as wbuld be ex-
pected, a threshold sound pressure above which the bubble grows but below which
the bubble oissclves. However 1f one 1s mainly concerned in obtaining a real-
istic value for the threshold sound pressure reguired for the growth of nucleii,
it would seem necessary to include in the treatment of the problem, the influ-
ence of whatever factors are responsible for the stability of the nucleli with
respect to diffusion. Unfortunately definite information as to the nature of
such factors is not availsble,

It 1is believéd that the present calculation is more detailed and
rigorous. In the treatment of the diffusion problem Blake heglééts the motion
of the bound=ry and azlss omits the convebtion term in the differential equation.
Apart from the difference in the motion of the bubble due to the use of the iso-
thermal sssumption, it appears that Blake treats only the off-resonant case
since no frequency effect appears in his'equation for the bubble motion. Also
Blake uses fcr the most part cnly first order effects. —-However the ultimate .
result shows that the growth of the bubble is a second order effect in the
sound pressure. It is therefcre advisghble that second order ﬁerms be retained
througnout. ] :

Wrereas Blake reports a slight reduction of the rate of growth of the
pbubble wiien terms beyond the first order in bubble motion are included, the re-
sults of tne present calculation show that such terms, which reflect the a-
symmecry of the motion, malke an Important contribution. In the off—reson@nt
caze where V is small, the contribution of the second order term as represented
by the presence cf a;, in Equation [34], is 2.5 times as gfeat as the contri-
bution of the first order. Terms of even higher order are undoubtedly required
to properly represent the effects of asymmetry when the resonant size 1s ap-
rroached. :

When the terms that reflect the lack of equilibrium in the absence
of the sound beam are oropped, and the surface tension 1s taken as zero then
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For comparison Equation i34 reduces In ‘he cf{f-resonant case ic

i dN _21cx 113 3. 1p% 1 cap

2
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where only the (*rst order term ‘n V *'s retained.
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APPENDIX 11
THE EXTRAPCLATICN UF THE EOUNDARY CONDITON TO R,

. Tne mearning of the expansicns filustrated by Equaticns [21) and (2]
may require ccme clarification. Suppose that at time t; the radius of the
pubbie R is smaller than the equilibrium radlus Ry 3s shown in Figure 3. Then
since the concentration of air molecuies in the water, car be assumed to be
analytic for r > R tre extrapolation from Rto Ry, i.e. B, to Py, is clearly
Justifi‘ed. However at some later time ty when the radius of the bubblie s
greater than R, ,there is no water at Ry so that phycically the function, ¢
does not exist at this point, P,  The final justificattion for these expansions
1s s'mply that by applying them a solutton, ¢{(r, ¢t ),4s obtained that is ana-
lytic for all values of r>0 . It s certainly permissible to apply this so-
lut‘on for values ¢fr>Rard 't 's apparent that the setting of the boundary
conditions at Ry in the manner described makes certa*n that thé solutiocn
will satisly the proper ooundary condit‘ons at R.

7 cotty
L

R

—-———_RGTT. ey

- Ro -
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Figure 3 - The Extrapolation of Boundary
Condittons from R to
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APPENDIX III plot cf [, (V) cver a ccnsiderable range of the variable 's shown in Figure

3>

FVALJATION OF Iy b,
_V(,_I) sinV(z—1)
The tntegral (V)= ——5———dz can be expressed in ferms
. t
of the generalized expohential integrals. Integrating by parts so as to
reduce the exponer.t of the denominator one obtains:
v \
1(v) =— —ev V{[— —E.(0, V)j smV+[E 0,V) =r—InV- —ln2] V}
2 0. —r - R
i |l 0| ;I 1 Tj/’/ r\\\l ! BT
where ¥ =.5772157 ... is Euler's constant and E.(0,V), B£(0,V) are the gener- ' A | n = |
alized exponential integral functions. These integrals have been tabulatec® Ty ™ I i . / H _{ A
: ! 1 T 7T =1 ER s
ror values of ¥ smaller than the tabulated range the following series __J.‘__-,%_. ‘ __‘; / ! ! 3 4, PR \_..i By
expansions ¢ be ed. ' =4 i ) = e
pa an appli V) ' —¥ ! N
3 J 0.00t , : T P
v s : i _l ‘ ko ! ' ;'—\Q
E.(0,V) = V——+2—4- 4l ] : I S )
A o e 5 Y I OO G O G
l S aan EEE SEEEEE
IR 00008 ' H———+
E.(O.V)=V—‘2"+§‘ 4 - i } .'
; .
For values of V greater than the tapbulated range the integral I, can be evalu- 0.00001 = Ples 500 ; feey]
Qo000 00001 000! ool o1 19 10 100 100
ated directly using the expansion

which can be obtained either by integrating by parts so as to increase the
exponent of the denominator of the integrand, or by expanding the denominator

%/;: in a power series about = = 1. For values of V¥V that are integral multi-
ples of m,the integral can be conveniently evaluated by use of the rapidly
converging series

171
IO(V)=‘ E[V_ V2+V§+

ot V(z—l)
Figure 4 - Plot of 4} = [ e-vis- e

lo(mﬂ)=V22:O K((n+ m)mle—"~

" e-%ginzx
where values of KXu)=_L '67;:5r'd2 are readily obtained by numerical inte-
gration. In this manner the fcllowing values were cbtained.
1 % I, | 4 Iy
” 0. 0732 gﬁ 0.01991
2n 0.051¢5 " 0. 01771
Inm 0.03944 9 0. 012
Yo C. 03172 10 0.0144
5 0. 020!19 1l 0.0132
b 0.02274 127 0.01227
e . . ) i Ao g g T T T T AR TR S, S o
2 REEE TS L -.ai.}!!:—:i-- .
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