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The concentration of air in the water at an arbitrary point 

and time 

The concentration of air in the water at infinity; also the 

concentration of air in water when the water is in equilibrium 

with air at pressure PQ  and temperature T0 

The specific heat for air under constant pressure 

The specific heat for air under constant volume 

The diffusion constant for air in water 

F -     F-&.-K(*-1,«v(i-i) 

a c-&.-"«Vl>*v(j£-i) 

/0 ; /0(V)     I0(V)=j~e-V('~l)x-s8inV(z-l) dx 

The Boltzraann constant 

Tr.e kinetic energy of the motion of the water 

The average molecular mass for air 

Number of molecules in the bubble 

The initial number of molecules in tr.e bubble 
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_d_ 
dt W 

Tr.e rate at wr.icr. molecules leave tr.e bubole and enter the 

water 

Tr.e- r-iiv at which molecules strea.7, away from *'re  water sur- 

face anc enter the buhcle 

The molecular density ;,f the air 

The molecular density for air at pressure P0   and temperature 

To 

The pressure in the bubble 

The undisturbed hydrostatic pressure; the average pressure at 

infinity 

The sound pressure 

The pressure in the water at infinity 

The relative amplitude of the sound pressure; p - pp sin <jt 

The instantaneous radius of  tne bubble 

The time rate of change of R 

The equilibrium radius of the bubbie 

The resonant radius at angular frequency w 

The distance from the center1 of the bubble to a point In the 

water 

The temperature of the air in bubble, Kelvin 

The constant temperature of the water, Kelvin 

Time 

The radial velocity of the fluid at the point r 

~ fzn *<> 

The rate at which work is done upon the wat^r 
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The value of 0  at T  - T0 

• The ratio of specific heats 

at standard conditions 

Damping constant 

A constant of integration 

•£E_ . approximately V3 for a1"r 

'. 

2 \  ^ 

1 
P. 

< T 

V 

u 

The density of the water 

The density of air at pressure P^  and temperature T% 

The period of the sound beam 

Frequency 

Natural frequency 

Angular frequency 

The angular frequency corresponding to natural frequency 
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THE DEAKhATICN  OK WATcF.  BY A .SOUND BEAM* 
r 

• rd  roce,  y:.^. 

ABSTRACT 

A calculation is made to determine what part might be played by the diffusion of 

air into existing bubbles as a consequence of the mechanical motions induced by a sound 

beam.  The case of in isolated bubble li. a weak sound beam of wavt length considerably 

greater than the bubble radius is considered   Tn» effects of surface tension, viscosity and 

energy dissipation are neglected. The diffusion problem is tinted by means of a per- 

turbation technique.   The growth of the bubble is found to be of second order in the  sound 

pressure,i.e.,proportional to the sound intensity.   Numerical results presented show that 

the effect is sufficient to account for significant bubble growth especially in the case cs 

very small-bubbles. 

INTRODUCTION 

The deaer-.tion of water by an ultrasonic beam Is a phenomenon which 

has become increasingly faralll-.r to experimenters In ultrasonics. However, 

there is as yet no satisfactory account of the mechanism responsible for this 

effect.** The calculation that is made here lends support to the view that 

the deaeration results from the growth of small air hubbies which is caused 

by the mechanical motto:; that Is forced oy the sound beam. The motion of a 

Dufchle ivespondir.£ to a sound beam is unsymmetricai In sucn a manner that tr.e 

average radius becomes slightly greater tnan the equilibrium radius. More- 

over, because the; diffusion of w'r into the bubble varies with the area of 

the boundary, the periods when the bubble :s expanded have greater effect 

upon the ciffuslon of air into the bubble .hftn the periods when the buoole 

is contracted, hence 't is to be expected that the mechanical motions cf  an 

•A dissertation »ub*itt»*i  to K'ct fstr'.ItT    :   the Gioduatc S-bool of Arts and Sciences  of the Catholic 
University of Aaerlca iu parti*!   fulf. I'.r.vus. of the requirements for the degree of Doctor of Philosophy. 

••Alter most of the vuri proeented here  :J\£ cerri accomplisfcel It was discovered that a similar cal- 
culation hal b-ea snic by  K.C.  Blake..  Jr.     ice :e:"«-er.ce 2  on  p**e ?0 of  this roport.    A cotrparisoL 
of the tw.-. calculations  is j.resectc-!  1:; ;pj.-ei:d!i   I  ;>f vr.U  paper. 
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air bubble will result in the growth of the bubble  This mechanism for the 

growth of an air bubcle In a sjund field is very closely related to tne mech- 
Isra for growth of an air bubble in a cavitating flow. The latter case has 
been treated in an earlier paper.1   The raa!n cifference between tr.ese two 
phenomena are the much smaller scale and greater symmetry of the motion of the 

sound field. On the other hand a bubble can readily be exposed to a sound 
field for a relatively long time whereas the time spent in a cavitating 

flow is usually brief. The calculation that is presented neve  follows along 
the lines of the earlier calculation. However, because of the small scale of 
the motion it is now possible to treat the diffusion of air through the water 

in more detail. 
A single small bubble is considered to be immersed in an infinite 

body of water through which a sound beam is passing. The radius of the bubble 
is assumed to be so small In corapar'.son to the wave length of the sound beam 

that the beam can be represented by a periodic variation in the r.ydrostatic 
pressure at infinity. Consequently spherical symmetry is preserved -r. the 
motion. Only the case of a weak sound beam is considered so that the varia- 
tion of the pressure at infinity may be considered small compared to the aver- 
age hydrostatic pressure. Surface tension is neglected and it is assumed that 

all conditions are such that in tne absence of the sound oeam equi1ibr'urc 
would obtain. The conduction of neat is also neglected so that the tempera- 

ture In the water remains constant and uniform ana the compressions and ex- 
pansions of the air in the bubble are adiabatic. In addition the presence of 
water vapor in the bubble Is ignored. 

The ODJect of this calculation is to determine the average rate of 
growth of the bubble wnen conditions have become steady.  It will be assumed 

-hat the change of the amount of a'r in tne bubble during the :':nc required 
to attain steady oondit'ons and during a period of the sound fieiu are botn 
Insignificant in comparison to the amount of a'r initially *.-. the bubble. 
Therefore, the effect of the change of  air content during one period on the 
rate of growth will be ignored.  Thus the preocurc ,f the :'.v   ii, „:,e ouboie 
will be assumed to be directly given by tne adiabatic relations] 
ccrreot'on for tne change in the air content in the bubcle. o': 

density of air 1n the bubble will be taken as inversely prcportional tc the 
volume. 

Tr.e calculation is d'vided 'nto three parts ooverir.g (ij tr.e equat' 
of motion of the boundary of tr.e bubb.e, (2) tne b.umiary conditions for tne 
diffusion equat'on, {'.>)  the solution of the dffus' - e ><^ 

P    W* '. !;OUt 

liarly   t;,e 

^Reforsncoe ar« ll«t«d on page 20. 

I?,,i:"!t*««»»a5$wai^3 

iW,   '. >»«•» »• . "   '»»cr-^>v.*'¥'^^'."Y";*K-*.'-"*1" 5* **M'~' t KCaw^ain-i **•*.»*? - • .:,• ^.-jV^^m^smt 

THE EQUATION CF MOTION OP THE BOUNDARY OF THE BUBBLE 

The equation of motion of an air bubble in water under the conditons 
specified above has been treated by many writers. The derivation is repeated 

nert in order to obtain the equation in a form suitable for present purposes. 
Let the origin of coordinates be the center of the bubble. Let- r 

be the distance from the origin to a point in'the water and let v  be the radi- 
al velocity of the fiuld at this point. Let R be the radius cf the bubble and 
R be the time rate of change of/?. Then the incompressibility of the water 

requires 
*2 R v = —5- K 

[1] 

U) 

and the rate of change of kinetic-energy is 

57«- if '• T l"T'iT'""- i•*'+1 ""*'] 
where Pw  is the density of the water. If P,  is the pressure in the bubble and 
JJ, is the pressure in the water at infinity, the rate at which work is done 

upon the water is given by 

Aw- (p - P)-A-^- [3] 

Writing Pn = P0 + Pt  where Pt  is the undisturbed hydrostatic pressure and Pt 

is the sound pressure, and, since the motion is assumed to be adiabatic, 

Pg = P0 (R%/R )8T , y  being the ratio of specific heats, Cp/c, ; f or the air in 

the bubble, this equation becomes: 

±w-[ri*tf'-P,-p]i*R*A m 

Since no damping effect is included dKE/dt • dW/dt  and the general equation of 

motion may be written 

RR +f p  R* + P. H¥)°l + p. = 0 15] 

For sonic motions we may write R = Ra+ A R , where J^ is the equi- 
librium radius of the bubble and AR < < R4 whence to second order in AR  the 

equation of motion [5] becomes: 

*.RQAR + *yp0*jt ±P.AR AF+\PMR?--\ r<3y + i)P0(4f-)2+P. = o     [6] 

To first order for free sonic oscillation,i.e. P, «0 the familiar result is 

obtained 

wj- 4rr5 
ZYP0 

[7] 
• 
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where ife.-Xs the natural frequency and w0 the corresponding angular frequency. 

Writing P, = p P0smut   ,   where p<<l the following solution, to the 

second order in p, is obtained by the standard perturbation technique. This 

solution can be directly verified by substitution in Equation (b) 

4fl= R - R0 = R0]a0(sin cjt)p+(a, + a,cos'2 erf) /;2] 

where 

-1 

swi w2 \ 

[8; 

19] 

3>" + 1 
w0

2 

4(3^(1-^) 
= <( 

37+1--^- 
w„- \  5 

64 
21 ) i [10] 

3y + 1 + 5 
p., = 

s"p 
.2 ,2 

1 + 5S)  ^0 7 

4<sr)'(l-^r (l 
-V 4 1 3 

_5^ 
64 UU 

The numerical approximations are obtained by using y - 4/3  for air and ignor- 

ing (j/wft when compared to unity in accordance with the hypothesis that we are 

dealing with a bubble whose radius is small compared to the radius for reso- 

ance. 

Differentiation of Equation [8] gives 

R =R0(a0up cos u>t - 2a2 up2 sin 2 ut 

THE BOUNDARY -CONDITION FOR THE DIFFUSION EQUATION 

[12] 

The traffic of air molecules at the boundary of the bubble is^studl- 

ed. by considering the rate dNjdi at which, molecules leave the bubble and enter 

the water and then the rate dNjdt  at which molecules stream away from the 

water surface and enter the bubble thus'obtaining the net rate of transfer of 

molecules dN/dt = dNa/dt - dNjdt     which is the rate of growth of the bubble 

Because of the spherical symmetry^ is only necessary to find t^ rate of  - 

transfer of molecules per uni t area of the boundary (dN/dt) + 4n&  This rate 

may be determined by considering just a small section of the boundary 

•::.<•":".  ,:'. - -.-'• k 

5 

It is assumed that the mean free path of the molecules in the bubble 

TS sufficiently small compared to the radius of the bubble so that the section 

of the spherical surface may be taken small enough to be virtually a plane. 

From ldnetic theory the rate of flow of molecules per unit area through a 

plane surface element in the bubble is given by n/z VriyS where n  is the mole- 

cular density and fi^YktfekT.m   being the molecular mass, T  the temperature 

(Kelvin) of the air in the bubble and k  the Eoltzmann constant.3 Since the 

motion is assumed to be adiabatic 0 = fi^R/R^W*-1)   where 0O  
ls the. value of 

p at equilibrium i.e. Ai = {m/2k%)m =•- (fy2i3)^ and pa  is the density of the air' 

equilibrium. Also «= no(^o/Rf  where n^  is the molecular density at equi- 

librium. Although some of the molecules that strike the surface of the water 

rebound into the gas, almost all remain in the water and it is sufficiently 

accurate for our purpose to assume that all the molecules that strike the 

boundary remain in the water.* Thus the specific rate of loss is 

AnR2 0 \2TTPJ   \Ri 
[13] 

The rate at which molecules stream into the bubble from the water 

surface depends upon the concentration of the dissolved air and the temperature 

of the water. The density of air in equilibrium with water when both are at 

the same fixed temperature is proportional to the concentration of dissolved 

gas in accordance with Henry's Law. The effect of temperature is to vary the 

constant of proportionality. Let c(r,t)   be the molecular concentration of 

air in water. Then ox  = c(°o,t)    is the molecular concentration of air in 

water when the water is in equilibrium with air at pressure P0  and temperature 

TQ .  Since the temperature of the water is everywhere fixed at T0 , when the 

concentration of air in the water at the boundary of the bubble is c„ the 

rate at which molecules leave a unit area of the water surface is M^TT^)1
^ 

When the concentration of air in the water at the boundary is c(R,t)  the 

water would be in equilibrium with air at temperature T0 and molecular density 

(c(.ff,<)/Coojn0 so that the specific rate at which molecules stream away from a 

*This may not be the case when impurities have collected at the boundary of the bubble. It has been 

observed for example that the deaeration of tap water that has been quiescent for a long period of time 
will not occur until the sonic pressure is Increased beyond a minimum threshold level. The suggestion 

has been made by F. E. Fox and K. F. Herzfeld that the accumulation of an organic "skin" at the boundary 
of the bubble may be responsible for this phenomena. Such a skin would stifle the diffusion process. 
The calculation made here presupposes a fresh surface at bubble or water free of impurities with the 

tv--fKhold pressure is obtained. 

.SS53TS><5S1SZir,3V»» 11.';. j.^T.S&i^i nft-.S*'"^** 
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unit area of the water su; 'ace 

--N<: 

°\2npJ 
Pn  V  e.iffl 

,, -rtf? vWnpa- 

The net rate oi   transfer is thus given by 

dt \2.npa>     °L t -•>'        • ?' J 

The net rate of transfer oi  mo".ecu_is through the boundary f>,VlsJ 

15 

• 

wnt.-fe Z? is- the dliTu&f )h cdnstart for air in ,<;ater and c is give?;'-', *. 

molecular concentrate 1!     Eence  tine  boundary: :ondii/lon at  r  - R c;t   It 
n ,':. 

Cj:c     ^V >f=fi R> 

whe-e 

^n&fiBm 
Under normal condiv/jcns A i|3 exceedingly large  For standard cone't'on; 

temperature and pressure thj; following values nay be used: 

P0= 1.dlx 106 dyne cm' ;   D = 1.9x10-'cm* eec'1 • Ceo= 5.02 * 1017 uitri 

no »-- 2.>QxH)w cm~3 ; pa= 1.20 x J<T3 gm cm'3 

\ 
Then for a bubble tofctfsji equUibrium radius   is   10"3 cm , A * 3 x 1 06 

For all paste's of Drhelepjt interest the ?alue of pie left hand side of Eq ..a1 'op 

[17]  is always smal j.l relati\e to A.   Hence lHtir; error is made if the tiu  t!i 

is divided by A ana set equtl to zero so thai;  tru   boundary condition bee .me.. 

cm & -'K   (   [, 

This condition is s*\".'! y t ie stat*>;t_.i'fc••;-'.ia^/ :.e •• ..ice;, .• -V....,c,; jisoolvec •= ir 

in the water at the bnur.o,:'; ~^_the_ b.'-bs-'-s. InstaP'^^Hisiy as'su^" ae'va'ui 

required for equilibrium wiciv y....-/..; ..;... _ ;u-..,,.;,, -^^^r^ .'.r'-.lhe'' boundary 

condition is used in the form of Equation lie >  *~  *<£~ eac^'ntial"that the rate 

of growth of the bubble be computed with the formula given by Equation [l6j 

and not with that of Equation [15.J since the latter would "nvolve the product 

of a very large number and 3 very small number whi :h has been set equal to 

zero in Equation [18] 

THE SOLUTION OF THE DIFFUSION EQUATION 

The diffusion of the dissolved air through the water is described 

by the partial differential equation: 

(DV*-tv)c = %   §-r(r*rrJ 
D'   d_ ( 2de\ _ R2 A.de = de_ 
r2   drV" dr)       r2       dr      dt [19] 

/riere .'? and R  are given as functions of time by Equations [8] and (12] re- 

;i; ectirely. The boundary conditions are imposed by the fixed concentration- 

at infinity, i.e. c(°°,t)=cx      and either Equation [17] or Equation [18]. 

Although there is no inherent difficulty in employing the more precise Equation 

U7], the labor involved in using Equation [18] is considerably less and In 

A;iew of the approximate nature of this calculation In other respects, little 

i:> lost by the use of the Equation [l8j. In either form the boundary condition 

a. r = d  is In general awkward to handle because the condition is imposed at a 

moving )oundary.* However, this difficulty can be avoided in the present case 

because the motion of the boundary is small so that equivalent conditions at a 

fixed boundary I.e. r = R^  can be extrapolated from the condition at the moving 

boi.ndarj . 

A solution is sought which is a perturbation from the undisturbed 

stale. Thus c(r,t)  is expanded in powers of p : 

c(r,t)= cx + cAr,t)p+c2(r,t)p2 + '- [20] 

and £tr= R   expansions of the following type are employed: (see Appendix II). 

c(.l,t) = c(Ro,t)+(R-R0)~URo,t) + ±(R-Rof fjr2 (R0,t) + -~        [21] 

•   -  ;',*In count rtlon with a similar heat diffusion problem, M. S. Plesset and S. A. Zwick? have 

-;_>*.a,loyed & t schnique for treating the condition at the moving boundary that could be adapted to 

:.:. ;\preseat iroblem. This technique is based upon the fact that the diffusion takes piece mainly 
"VV *be wa;er lTjaediately surround'ing the bubble. Successive approximations can be made each ef- 
•~^J*ively ei ending the diffusion to a larger volume of the fluid. However in the present case 

^J^eneral valuation of the explicit solutions which are obtained for these approximations would 
^>^§ to be p ,'tlicated upon the smallness of the motion. The method employed In this paper U3es the 

- r^-5 that **•;' small motions are to be considered to avoid any approximation in regard to the region 
;--»T;s^3in the 1 ffusion takes place. 
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The assumption that equilibrium exists in the absence of the sound beam re- 

quires that the first terra in the expansion of c in Equation [20] be iden- 

tically c. as written and it is easily verified that c(r,i)=  c. 

satifies the differential equation and the boundary conditions with the ex- 

clusion of terms of and beyond first order in p . Using Equations (8J and [20] 

in Equations [21] and [22] one obtains to second order in P 

c(R,t)=c0.+ cl(R,t)p + [*„<*, («n ut) ^(^,0+ cAR^.t)] P*     [23] 

Substitution from Equations [8] and [24] into Equation [l6] and the 

taking of time averages results in the following expression for the average 

rate of growth of the bubble to second order in p 

57 " «***{§?* + [««.(*» «0~f$ +/W-" «o£?4 fSJ P' [25] 

where all derivatives with respect to r are to be evaluated at r = R0 . 

It is apparent from Equation [25J that although the time dependence of c, is 

required for the determination of tne average rate of growth to second order 

in p only the time average of et   is needed. 

The differential equation for el   is found by applying Equations [8], 

[12] and [20] to Equation [19], expanding in powers of p and equating the 

coefficients of the first power of p . T'nus 

D d_   (r2 «£i\ < 
r2 dr \    drl, 

or the equivalent 

t Dh(rc^) = hirc>) 

[26] 

[211 

The boundary condition at  r = ^  is likewise obtained using Equations [8j and 

*-**r*2c iifms^^^MM»fbJ^.':i^ms^B^i 

[23J in [18J. Thus 

[28] 

and the boundary condition at infinity is simply  ^(oo.t)- o. hence the de- 

termination of Cj is mathematically identical to the one-dimensional problem 

cf heat conduction in a serai-infinite medium with prescribed time-dependence 

of the temperature at the boundary. The solution of this heat conduction pro- 

lem is well-known.4 Application of this known solution gives 

where 

and 

cAr ,t)      (3Y+ 3\       '_ .      ,      _ A. -±±—!—i»*-^—-—) Og [Fan ut - G cos ut] 

r *KQ      ' 

r \«o 

[29) 

This solution can also be readily obtained by expansion of    c^r.t) in a 
Fourier-series  in t . 

The following evaluations can now be made: 

^-Oj  smut-^*—— a0cJ^J ;smW/^=0 

The differential equation for o^   is obtained by applying Equations 

[8], [12] and [20J to Equation [19], expanding in powers cf p , equating the 

coefficients of the second power of p,substituting the result Just obtained 

for c, and taking time averages. Thus one obtains 

dr H?) — v(3JrV*.t? [30] 

The boundary conditions at r « /^ is likewise obtained using Equations [8] 

and [23] in [l8j. 

•According to the Interpretation of diffusion aa a consequence of the random wandering of molecule* 
as presented by Blnateln, ve nay write    D ""P/tr    where    ?   Is th< average aiuare of the dleplacc-oent 
of an air molecule In water after the tias r which may be taken as the period of the sound beaa.    Then, 
since     4>-2ir/r        ,       V- tJ^/i^i2DV* • (2n-)W/^/(fIj*»     ao that V nay be interpreted •»» a nni'iple of »ae 
ratio of /^ to the root -mean- square displacement In a period of the sound beaa. 

WRBJI *"'#JP:-' Tf 
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Thus 

5iaj.-(C±i)r( 'ti_3r±i)c; + 0]] 

Equation [30j is easily Integrated to obtain 

32] 

where * is a constant of integration;.a second constant of integration vanlsr.es 
because of the boundary condition at infinity,  c2(<») = 0  • Subst*tution 

from Equation [32] into Equation [31] permits the evaluation of *: 

[33: 

where rK(,_1,«nK(i-l) dz 

Substitution of the results obtained for Cj and ^ in Equation [2p] 

gives the following expressions for dJV/d* : 

or 

= 4TTR 3y + 3\  r9,3y.3V ..2,  (^2 1 , 2 „z>(3-^-3) 

1 M . 8D£-(821±8)[9 4 L% §K   e _ „«j a V 
^o dt n*       2  yL8   8   2    f«  4<j K()

r 

i^b. 

i34c] 

The integral 4 is always less than V "x since this latter value '.0 obtained 
upon elimination of the a:-3 sin V (r - 1) factor of the integrand, this factor 
being less tnan unity while the remaining factor is always positive through- 

out the range of Integration. Moreover as seer: In Figure 'f, I0  , t.-.e evalu- 
ation of which is discusced in Appendix III, rever exceeds C.I and is (2V)-1 

for large V . Hence it is apparent that dtf/dt  is always positive. 

-.im.--  ••» • •• .gf 

•..-.T—-wscy 
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EVALUATION AND INTERPRETATION' OF THE SOLUTION 

The result for d~S   t is illustrated by the curves shown in Figure 1. 
Values of l/ty  dN/dt are shown as a function cC R^  for various frequencies. For 
all of these curves the vaiues previously given for P0, D, cm , n, and pa  were 
used. Also used were V = 4/3 ;P„^1 and p was taken as 1/3. When R*  and tv/at, 
are both extremely small then 

1 *-(^?--&(^f'^4 cm — 2 

is also small and approximately 

1 dS ncx  /3? + 3\ /3>' + 9\l 1 ip2  4.52 x 10~8  ,    I'jxt'i 

Since for any fixed frequency w/o^ becomes small when R^  is suf- 
ficiently small all of the curves are asymptotic to this expression when going 

towards small R0 . However it should be noted that wnen the radius of the 
bubble is much smaller than 10~3e»n, the accuracy of the calculation suffers 
from the neglect of the surface tension and for low frequencies from the use 

of the adiabatic rather than the isothermal assumption. Nevertheless the re- 
sults clearly show that extremely small bubbles grew rapidly by diffusion. 
In fact the estimated ratT of growth of bubbles of small size is so great that 

for low frequencies the growth per cycle is no longer a negligible fraction of 
the in1tlal bubble size.* 

•It  le clear  that  the assumption that the growth of the buOblo during a period of the sound beam le 
negligible will  Impose a lover limit upon the frequencies for which the calculation Is accurate.    The 
assumption as It has been applied refers not only to the e'-iange in tae air content dns to the average 
rate of growth,  but also and more restricting,  to the amplitude of the alternating component of the air 
content.    In particular it has been assumed that this amplitude Is much smaller than the amplitude or 
the volume variation I.e.  that In amplitude (N-N0)/A^«[8(R-/^)]/^.    An estimate of a bound for ths 
amplitude of (Ar-.^)/A^   can be obtained "JJ considering the growth that would occur in a half period if 
the conditions most favorable to growth l.o. maximum expansion where constantly maintained.    Then at 
the boundary,  from Equation (18),  taking   y = 4/3 ; c(R*at) » c„(AV..i//?,)"'*  where    /?„«,     is the maximum 
radius.    Since stead; conditions are aarumed        e(r) <•- e«,l(Rmat]R(lY

Vi-\){Rmuir) + e„.    Hence from 
Equation  (16),    dN/dt- **Rn»m D[\ -(km,,#„)-"*]««,      and  the rolatlve growth in a half-period,  which 
in taken as an estimate of the amplitude of the alternating component of the air content is: 

1 1   d.V 1 
2 .V, dt   V 

2 nil A',., n
r,    //US]   e^      21  f,   D_ 4«-o_,. 

7{~~ Dr  VR, I 1  y " *» •; /?„' R, 

where ARmt, 'Rm^ ~R« and is assumed to be email.    Hence using the values quoted in the text: 

i 1 a?i 

2   \ it   i 
•iili. <•_  D   1       6.7.V 10"' cii^see' 

i  , 0 Hi » % <v 

it a ratio of l/lOO  is considered acceptable,   then the assumption  ie aatiufitxi for frequencies such 
that v > 6.7 x I0~icmtiee-1/R^ .    This  le a rather conservative estimate.    It is probable that the as- 
sumption applies  ;iiite well to somewhat lower  frequenclea.    Also it should be noted that the failure 
of the assumption for low frequencies doen not Imply that the growth by diffusion would bo less than 
that calculated;   the reverse may well be  the case. 
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As R0  increases towards resonant size the terms in V enter.  Also 

c^f increases.. The curves then depart from the asymptote on the positive side. 

Naturally this occurs earlier for the higher frequencies. As R0  attains reso- 

ant size dTt/dt  diverges to + » because no damping effect nas been included in 

the treatment of bubble motion so :-that-a0 becomes infinite. For bubbles of 

near-resonant size V is large, especially in the case of the lower frequencies. 

Then terms in V  in. the bracket on the left-hand-side of Equation L31*] dominate 

Since for large V as shown in Appendix II  ^ * (2F)_1 , an approximation for 

1/^ fflxf&t     for the near-resonant condition is 

1 dN 
At /0 dt  - 6U\nJ\     2     )\i:P„-m \RJ  M,  _ Rlf Rj 

= 0.0018 Rr. »m P1 

(y-m 
3. 

cm2 

Rn
2\* Rnl 

130. 

where Ru is the radius at resonance. 

For the lower frequencies the damping is very slight and it is to 

be expected that the curves will in fact rise very sharply as resonance Is 

approached. However it is difficult to estimate the height of the" peaks that 

will be reached at resonance. According to elementary treatment of the effect 

of a parallel sound beam5 on an air'bubble, the rest>int motion ci u:o 'o'.:bblo 

is "a sinusoidal motion of amplitude pR^/syd,   where 6  is the so-called .damp i:^ 

constant and Is a function of frequency. .In the following table tne values of 

6 are approximate empirical values read from Figure 2, page 44o of Reference 5. 

Frequency, cycles per sec 1,000 10,000 40,000 

Damping constant, 6 0.025 0.11 0.26 
Nominal--ratio of the amplitude of the 
first harmonic to the equilibrium radius; 

p/SYi     for  p = l/3 3.3 U. / : "~ 0.3 

The relative amplitudes show that the elementary theory fails at low frequen- 

cies even for relatively small sound pressures, and the motion of the bubble 

is then not sinusoidal but very asymmetrical-.*   Trie curves shown !n Figure 1 

have been extended-only to tne bubble r^'i at which u>/u . = 1/2    In tnis 

case o0 = - 1/3 and for p=  1/3 the relative amplitude of - the first harmonic 

of the bubble motion is -1/9 so that at tnis point the approximations made in 

the calculation should still be reasonable.** Tne greater damping that is 

"Under such conditions one would expect to find a nonlinear amplitude effect upon the damping 
"When Ufa =1/2    the second htnnonic term diverges, i.e., a., becomes infinite  However to 

second order in p  , a2 does not afieet the diffusion and the inclusion of damping effects would 
probably limit <i2 to reasonably t-nall values. 
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Figure 1 - Relative Rate of Growth as a Function of Frequency 
and Bubble Radius 
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observed for the higher frequencies would indicate that the curves for frequer 

cies greater than 10'' will not exhibit much of a peak at resonance.  Tn fact 

because of the neglect of the damping, the rate of  growth predicted for the 

higher frequencies even in the off-resonant condition may be somewhat over- 

estimated. It should be noted that the increasing asymmetry of trie motion, 

whether produced by resonant conditions or by the application of sound beams 

of greater intensity, will contribute further to the growth )f trie bubble by 

d* '"fusion. 

It is hard to predict what happens when the radius of  the bubble 

grows beyond resonant size.  If the bubble becomes substantially greater than 

resonant size the distortion produced by the motion may cause the bubble to 

split and thereafter the pattern of growth for small bubbles would again ap- 

ply. For very high frequencies the resonant bubble size Js so small that if 

the bubbles do not grow much beyond resonant size they would not be evident 

on visual inspection.  Also very small bubbles may not have time to rise out 

of the water so that the water would not be deaerated. 

The time required for a bubble to grow from one radius to another 

can be determined by integration of the values of. l/N0 dN/dt using the re- 

lationship dR^/dt = RQ/3(l/i% dN/dt) . Pigure 2 shows the result of numerical 

integration applied to the values for_.v = 10 cycles per second. Because the 

growing bubole spends only a very small part of its life at small radii it 

would be very difficult to determine t.-.e original radius of the bubble from 

data on the time after application of a sound beam that is required for a 

bubble to be seen and the,size of the bubble when it becomes visible. 
o.oi 5r 
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Figure 2 - Time History of Bubble Radius 

This figure shows the variation of the radius of a bubble in a sound beam of 101* 

cycles per second. The initial radius was taken as 10r' centimeters. 
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APPENDIX I : 

COMPARISON WITH BLAKE'S CALCULATION 

Since BlakeH includes the effect of surface tension and uses an iso- 

thermal rather than an adiabatic relationship between Pt  and R his basic as- 

sumptions are more appropriate for verv small bubbles than the assumptions 

used for the present calculation, the main Interest of which is centered on 

bubbles of the order of lO'-^cw and greater. A consequence of the inclusion 

of surface tension is that equilibrium with respect to diffusion is not obtain- 

ed In the absence of the sound beam. Therefore Blake obtains, as would be ex- 

pected, a threshold sound pressure above which the bubble grows but below which 

the bubble dissolves. However if one is mainly concerned in obtaining a real- 

istic value for the threshold sound pressure required for the growth of nucleii, 

it would seem necessary to include In the treatment of the problem, the influ- 

ence of whatever factors are responsible for the stability of the nucleii with 

respect to diffusion. Unfortunately definite information as to the nature of 

such factors is not available. 

It is believed that the present calculation is more detailed and 

rigorous.  In the treatment of the diffusion problem Blake neglects the motion 

of the boundary and also omits the convection term in the differential equation. 

Apart from the difference In the motion of the bubble due to the use of the iso- 

thermal assumption, It appears that Blake treats only the off-resonant case 

since no frequency effect appears in his equation for the bubble motion. Also 

Blake uses for the most part only first order effects. However the ultimate 5£-h. 

result shows that the growth of the bubble, is a second order effect In the 

sound pressure. It is therefore advisable that second order terms be retained 

throughout. 

Whereas Blake reports a slight reduction of the rate of growth of the 

bubble when terms beyond the first order In bubble motion are included, the re- 

sults of tne present calculation show that such terms, which reflect the a- 

symmetry of the motion, make an Important contribution. In the off-resonant 

case where V is small, the contribution of the second order term as represented 

by the presence of al\   in Equation [3^J, is 2.5'times as great as the contri- 

bution of the first order. Terms of even higher order are undoubtedly required 

to properly represent the effects of asymmetry when the resonant size is ap- 

proached. 

When the terms that reflect the lack of equilibrium in the absence 

of the sound beam are dropped, and the surface tension is taken as zero then 



c-sns*si«^%c*~?»*a»K&ssaMP*Sfcta£ 

Blake's result expressed in the nomenclature of t.u's paper *s: 

Ae dt   ~  2 »0
U'-1 ^ ' ^ 

For comparison Equation [JUJ reduces in the cff-resonant C3se to 

I •m U^Dfy+'vlJL!. i &Dfl.1S + 1.97V)-£ 

where only the first oider term in V  1s retained. 

«»ua HIJJ jijuTt '••^~iff*S£.--- • v>fc^,**6flH^-^_:J>?>~,**frV.~ . :*r2f-- '       *%£":* ~^?r*~'i 
**, •.: 

**r.xx*> - vj^-v<• •MatlMsS £^4V«4^M3<UCJ. ~* 
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APPENDIX II 

THE EXTRAPOLATION OP THE BOUNDARY CGNDITOH TO R^ 

•     The meaning of the expansions illustrated by Equations [21] and {22 ] 

may require some clarification. Suppose that at time t,the radius of the 

oubbie R is smaller than the equilibrium radius /J, as shown in Figure 3. Then 

since the concentration of air molecules in the water, can be assumed to be 

analytic fo^ r > R  tr.e extrapolation from R to fl^i.e. Px   to Pl( is clearly 

justified. However at some later time tt  when the radius of the bubble Is 

greater than R0 .there is no water at R0  so that physically the function, c 

does not exist at this point, /« . The final justification for these expansions 

is simply that by applying them a solution, e(r , t ), is obtained that is ana- 

lytic for all values of r >0 . It is certainly permissible to apply this so- 

lution fur values ofr^Rar.d it is apparent that the setting of the boundary 

conditions at R0  in the manner described raaKes certain that the solution 

will satisfy the proper boundary condit'ons at R. 

Figure 3 - The Extrapolation of Boundary 
Conditions from R to /^ 

"""-"'!|Bp 
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APPENDIX III 

EVALUATION OP h 

The Integral ^(V) = | «-"t*"^ — 5 dx can be expressed in tpnns 

of the generalized expohentlal Integrals. Integrating by parts so as to 

reduce the exponent of the denominator one obtains: 

/(v) = |_ ev Vj[J -S(0,V)]MV+[£C (O.V)-y- In V- - Jn2j COB FJ 

where r -.5772157 ••• Is Euler's constant and E.(0, V), E,(0,V)   are the gener- 

alized exponential integral functions. These integrals have been tabulated8, 

i'or values of V smaller than the tabulated range the following series 

expansions can be applied. 

V3 V4 
Et(0.V) = V - y+24 •*---- 

EA0,V) « V-- + y- 

For values of V greater than the tabulated range the integral 70 can be evalu- 

ated directly using the expansion 

iw-iiv-h+v**--] 
which can be obtained either by Integrating by parts so as to increase the 

exponent of the denominator of the integrand, or by expanding the denominator 

Vx» ln a power series about s = 1. For values of V that are integral multi- 

ples of rr,the integral can be conveniently evaluated by use of the rapidly 

converging series 

I0(m7T) = V2 y°°   K[(n+ m)n]e-n' 

where values of K(y) 
_ C" e-' s 

Jo (y + , 
sin* 

~S~ dx    are readily obtained by numerical inte- 

gration. In this manner the following values were obtained. 

n 
2rr 
In 
kn 
5«" 
or. 

/. 

0.07393 
0.05108 
0.03944 
C.03172 
0.0264Q 
0.02274 

rr 
n 

9rr 
10 n 
11 rr 
12 it 

0.01991 
0.01771 
0.01594 
0.01449 
0.0132H 
0.01227 

...  i 

: 

J 

1 
A plot cf /0 ( V ) over a considerable range of the variable '.s shown in Figure 
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