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lB NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2908

DETERMINATION OF MEAN CAMBER SURFACES FOR WINGS HAVING

UNIFORM CHORDWISE LOADING AND ARBITRARY SPANIISE

LOADING IN SUBSONIC FLOW

By S. Katzoff, M. Frances Faison, and Hugh C. DuBose

SUMMARY

The field of a uniformly loaded wing in subsonic flow is discussed
in terms of the acceleration potential. It is shown that, for the
design of such wings, the slope of the mean camber surface at any point
can be determined by a line integration around the wing boundary. By an
additional line integration around the wing boundary, this mekhod is
extended to include the case where the local section lift varies with
spanwise location (the chordwise loading at every section still remaining
uniform).

For the uniformly loaded wing of polygonal plan form, the integra-
tions necessary to determine the local slope of the surface and the
further integration of the slopes to determine the ordinate can be done
analytically. An outline of these integrations and the resulting
formulas are included.

Calculated results are given for a sweptback wing with- uniform
chordwise loading and a highly tapered spanwise loading, a uniformly
loaded delta wing, a uniformly loaded sweptback wing, and the same swept-
back wing with uniform chordwise loading but elliptical span load
distribution.

INTRODUCTION

The design of mean camber surfaces to sustain a specified area
distribution of lift at subsonic speeds involves basically a relatively
straightforward process: a system of bound and trailing vortices is set
up in the plane of the wing according to the specified distribution of
lift, and the corresponding vertical velocity is calculated, by the
Biot-Savart law, at points on the surface where the local slopes are
desired. Reasonably practical numerical and graphical procedures have
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been developed for performing this integration of the velocity due to
this distribution of vortices (see, for example, ref. 1). If the chord-
wise loading is specified to be uniform, as in a number of recent wing-
design studies, the problem is basically simplified; as will be shown,
the solution can then be reduced from a double integral over the wing
area (or over the wing area plus wake area) to a line integral around
the boundary of the wing and, in the simplest cases, it can even be
reduced to a purely analytical procedure.

The purposes of the present paper are to outline the basic theory
behind the solution of problems involving uniform chordwise loading, to
summarize the mathematical application of the theory and the development
of the required formulas, and to describe the actual use of these derived
results in the design of mean camber surfaces for this type of loading.

The basic theory of the uniformly loaded lifting surface is reviewed
first. The particular case of the infinitesimally wide, uniformly loaded
longitudinal strip is next discussed, together with the integration of
such strips to form the wing of arbitrary contour and arbitrary spanwise
loading. For the uniformly loaded polygonal wing, closed expressions
will be derived for both the local slope of the mean camber surface and
the local height of the surface (relative to the leading edge). Sec-
tions of the mean camber surfaces of four wings calculated by these
methods are also presented.

SYMBOLS

x, y, z streamwise, lateral, and vertical coordinates, respec-
tively (see fig. 1)

x', y, coordinates of vortex element on wing boundary

U stream velocity

w vertical velocity induced by unit vortex (positive
upwards)

p pressure

p density

CL wing lift coefficient

c wing section lift coefficient

c chord

average chord
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ref. 2, pp. 225-227). In the field of a uniformly loaded lifting sur-
face, then, the pressure (relative to free-stream pressure) is a harmonic
potential that must satisfy the following boundary conditions:

(a) It has a uniform negative value over the upper face of the
lifting surface.

(b) It has a numerically equal, uniform positive value over the
lower face of the lifting surface. (That the upper and lower surface
pressures are equal and opposite is not, perhaps, obvious merely from
the fact that a pressure difference exists across the surface. If, how-
ever, the lifting surface is represented by a distribution of bound and
trailing vortices, as in ref. 1, this fact is immediately apparent.)

(c) It vanishes at infinity.

These boundary conditions, which uniquely define the pressure throughout
the field, are recognized as identical with the conditions on the velocity
potential in the field of a closed vortex that coincides with the edge,
or boundary, of the lifting surface. Accordingly, the pressure at any
point in the field of a uniformly loaded lifting surface is equal in
value to the velocity potential of such a vortex, the strength of which
is the pressure difference between the upper and the lower faces, or the
lift per unit area. Correspondingly, the pressure gradient at any point
in the field is equal in both magnitude and direction to the potential
gradient (that is, the velocity) associated with this vortex at that
point; and it can accordingly be determined by the Biot-Savart law. For
present purposes, only the vertical component of this gradient is of
interest. The vortex should not, of course, be confused with the lifting
vortices of the usual airfoil theory; these latter vortices are not used
in the present paper.

The vertical acceleration of a fluid particle is - IP (see
P 6z

fig. 1 for coordinate system), so that the vertical velocity acquired by
a particle which has come into the neighborhood of the wing from a large
distance upstream is the integral of this expression with respect to

x _time,~ or R dx

time, or - , where the factor dx/U is the element of time.

(In order to simplify the notation, the same symbol x is used for both
the running variable and the upper limit.) All perturbation velocities
are assumed to be small so that the path of integration, or the path of
the fluid particle, is the line y = constant, z = constant.

Dividing this vertical velocity by U gives the vertical slope dz/dx
of the streamline. In particular, if the integral is evaluated for a
point on the lifting surface itself, the local slope of the surface is
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givenby 1 dx, where the integration is along the line

y = constant, z = 0. Here again the small-perturbation theory assumes
that all displacements from the straight undisturbed streamlines are so
small that the path of integration may, with sufficient accuracy, be
taken in the plane z = 0, and, in particular, that the vertical displace-
ment of the trailing edge relative to the leading edge is so small that
the boundary vortex may also be taken in the plane z = 0. The local
height of the surface z, relative to the leading edge, is the integral
of this slope, or

X ._f..-6x 
dx

PIU 2  XLE -0 z

For any lift coefficient CL the pressure difference across the

lifting surface is CL pU, which, as previously noted, is numerically2
equal to the strength of the vortex that is assumed around the edge of
the projected plan form of the lifting surface. Thus, finally, the
local slope of the surface is

dz-1i r d (1)d dx

where w is the vertical velocity (positive upward) in the plane of the
lifting surface induced by a unit vortex along the edge of the surface.
The local height of the surface, relative to the leading edge, is then

z -- CL dx w dx (2)

fXLE

The direction of rotation of the unit vortex is such that its flow is
upward through the surface of the wing; that is, the potential increases
by unity along a path from the upper to the lower wing surface around
the edge of the wing.
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Line integral for local slopes of uniformly loaded wing with arbi-
trary plan form.- By equation (1), the local slope dz/dx may be deter-
mined by evaluating the vertical velocity w induced by the entire
boundary vortex and then integrating w from -co to x. A more con-
venient method, however, is to evaluate the contribution to w induced
by an infinitesimal element of the bounding vortex, to integrate this
contribution from -Co to x (which is readily done analytically), and
then to integrate this result over all the elements of the bounding
vortex.

The differential form of the Biot-Savart equation (see ref. 2,
p. 167) for the induced velocity d due to an element ds of a unit
vortex is

d- 1 d x q1w i 13

where 4 is the vector from the vortex element to the point in question,
and the direction of d9 is taken as the direction of advance of a
right-hand screw rotating in the direction of the circulation about di
(see fig. 1). For the present problem, where the point lies in the plane
of the wing, this induced velocity is in the z direction and is given by

dw 1 (y - y')x' - (x - x')dy'
dw = P - x')2 + (y- y') 3/2

where (x,y) is the point at which the induced velocity is desired, and
(x',y') is the location of the vortex element (dx',dy') on the wing
boundary.

Accordingly, by equation (1), the contribution of a boundary ele-
ment (dx',dy') of a uniformly loaded wing to the slope of the wing
surface at point (x,y) is

_, 1CL x (y - y')dx' - (x -x')dy'd(slope)dx',d '  2 l E 2 )31 dx A

-F x _ x2 + (y-y

[. (x -x ')dx' + dx' +

d' i2]

+ (y

\/-(-_ x)2 +(Y _y,)
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The signs of dx' and dy' are determined from the previously mentioned
convention for the direction of the vector di (or (dx',dy')); for
example, both dx' and dy' are negative for the leading-edge element
shown in figure 1.

The net slope of the mean camber surface at the point (x,y) is the
integral of the preceding expression around the wing boundary, or

z- ) (x - x')dx' +
dx 8% (y- y')4(x - x') 2+ (y y') 2

dx' + dy1 (3)Y "Y' (x x) 2 + (y-y'

where the counterclockwise direction of the integration automatically
takes care of the signs. The problem of determining the local slope of
the mean camber surface at the point (x,y) is thus reduced to the evalua-
tion of this line integral.

WINGS WITH ARBITRARY PLAN FORM AND ARBITRARY

SPANWISE LOADING

Wing considered as sum of uniformly loaded chordwise strips.- For
the wing having uniform chordwise loading and arbitrary spanwise loading,
it is convenient to consider the wing to be made of a series of uniformly
loaded chordwise strips of infinitesimal span. For each such strip
(span dy', see fig. 2) the pressure field can be represented by the
velocity potential of a closed vortex superimposed on the boundary of
the strip. Each of these bounding vortices has strength equal to the
local pressure difference Ap between the upper and lower surfaces of
the strip.

If, as in the preceding analysis, the spanwise loading is uniform,
all these closed vortices will be of the same strength, so that the
chordwise segments common to any two adjacent strips cancel and only
those vortex elements lying on the boundary of the wing remain. The
result is thus the same as that previously discussed for the uniformly
loaded wing (eq. (3)).
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If, however, the spanwise loading is not uniform, the closed vor-
tices surrounding adjacent strips will be of unequal strength; vortex
segments common to adjacent strips will no longer cancel, and vortex
elements lying on the wing boundary will vary in strength along the
boundary. The contribution of these boundary vortex elements to the
induced velocity w can still be summed by a line integration around
the wing boundary of the expression given in equation (3), except that
CL must be replaced by the local section lift coefficient cl(y') and

placed under the integral sign. The contribution of the chordwise seg-
ments is derived in the following paragraph:

Streamwise vortex segments.- The Biot-Savart formula for the induced
velocity due to the straight-line chordwise vortex segment of unit
strength is

41trw -vco 2 + cos oI) (i4)

where r, el, and are defined in figure 3. With r and the

cosines expressed in Cartesian coordinates, this expression becomes

w1 x- (x' + c) x -x
41' y' 2 y 2 2' x2 ' (

where c is the local chord. The integral of this expression from -o

to x, multiplied by - dc,/2 or dy' (see eq. (1)), gives the
2 dy'

contribution to the slope from the streamwise vortex segment of strength
corresponding to dc and length equal to the local chord

1d - xdc y x,)2 + (y -y,)2 + (x - -

8n(y- y') dy'

-(x' T + (y-y +x +

(X~~ + x, c
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Finally, integrating this last equation with respect to y' across
the span of the wing (from left to right) gives the contribution of all

these chordwise segments to the slope at the point (x,y). It will be
observed, however, that the term within the second bracket in this equation
is the same as that within the first bracket except that x' is replaced

by x' + c, the corresponding trailing-edge coordinate. Accordingly, the

integral of this expression across the span can, for convenience, be con-
sidered as the line integral

d y' x x' + (y- y' + - (5a)

or

1 dc, 1  V ~ (x - x')' + (y- y'), + (X -XlI (5b)

around the boundary of the wing.

The problem of determining the local slope of the mean camber sur-
face at point (x,y) is thus reduced to the evaluation of the line inte-
grals (3) and (5), where the integral (5) is omitted if there is no
spanwise variation in the area loading (or in the local lift coeffi-

cient c) and where the local lift coefficient cl replaces CL in

equation (3) and must be brought under the integral sign if there is a
spanwise variation of c,.

COMPUTATION

Although computing the integrands of expressions (3) and (5) and

then performing the integrations should be a fairly straightforward
process, a short outline of suggested procedures may be helpful. It may

be noted at the beginning that, since the slopes (and the integrals for
the slopes) are nondimensional, the results will be independent of the
dimensional scale chosen for the work; taking the root chord or the

semispan as unity will probably be most convenient. It may also be
remarked that a carefully drawn plan form of the wing will be helpful in
setting up the computations.

Resum4 of procedure for computing slopes of uniformly loaded mean

camber surface.- Given the plan form of a wing that is to have uniform
area loading and a specified lift coefficient, a possible procedure is
as follows:
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(1) Select points (x,y) on-the surface where the slopes are to be
obtained. In general, these points should lie along several selected
chord lines, with perhaps four along each line.

(2) Select points (x',y') along the leading and trailing edges
where the integrands of equation (3) are to be determined. In general,
trailing-edge points should be at the same spanwise positions as the
leading-edge points.

(3) Consider the integral in equation (3) to be broken up into two
parts - one with respect to x' and one with respect to y':

___x_ X + 1 x (6a)
Y-YL(x - x') 2 + (y - y,2

and

f dy' (6b)
4-x-X) 2 + (y - y') 2

For each point (x,y), compute the values of the integrands in expres-
sions (6a) and (6b) for all the (x',y') points.

(4) For each point (x,y), plot the integrands of (6a) against x',
plot the integrands of (6b) against y', and determine the area of each
(for example, by running the planimeter around the curve in the direc-
tion corresponding to a counterclockwise mpvement of the variable
point (x',y') around the wing boundary).

(5) For each point (x,y), sum these two areas and multiply by
- CL/8ir in order to determine the local slope dz/dx.

(6) The actual heights of the mean camber surface along the chosen
chords are now determined by integrating the slopes found in the pre-
ceding steps. The integration cannot extend quite to the leading and
trailing edges, however, because the slopes cannot be readily determined
very close to the ends of the chord lines, where the slopes become infi-
nite. Near the ends, however, the mean camber lines of the sections may
be considered as NACA a = 1.0 mean lines (ref. 3), and they may accord-
ingly be filled in, with generally adequate accuracy, by fitting
NACA a = 1.0 mean lines between the front and rear limits of the calcu-
lated segments of the mean camber lines and the leading and trailing
edges.
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The integral (6a) is actually improper, since the integrand becomes
infinite where y' = y. The Cauchy principal value exists, however, and
is evaluated by first adding the integrands at equal distances but on
opposite sides from the singular point and then integrating the sum.
This method will be further described in a later section.

Resume of procedure for computing slopes of a mean camber surface
with uniform chordwise loading and arbitrary spanwise loading.- For an
arbitrary spanwise loading, an additional integration is required,
together with a modification of the preceding integrations.

(1) Determine the integrals

C, ,zi X+-1'x
Y _ )2 y- f )2 +  dx (7a)

and

cZ dy'(7b)

j x(x X')2 + (y- y') 
2

by the same process as before for (6a) and (6b), except that c,, being

now a variable, must be brought inside the integral.

(2) Determine the spanwise rate of change of local lift coeffi-
cient dc,/dy' at points y'. Compute values of the integrand inI dc, y 1 y x dy' (8)1y y)2y -x + (y - Y)2 + -(x

Plot against y' and integrate. This integral is also improper and is

treated as previously mentioned.

(3) For each point (x,y), the local slope dz/dx is

[ntegral (8) - Integral (7a) - Integral (Tb]).

Example.- In figure 4 is shown the plan form of a swept wing and
the desired spanwise lift distribution. As an example of the computation,
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integrals (7a), (7b), and (8) will be obtained for the point designated P
on the figure. Points designated a, b, c, ... x, y, z, a', W', ... are
the points on the boundary where the integrands were evaluated; the
primed symbols are used merely because more than 26 symbols were needed.
The origin was taken at the wing apex and the wing semispan was assumed
equal to unity.

The computation of the integrands at the points around the boundary
is given in table I. Most of the points were evenly spaced, but near
the singularity (y' = y), the intervals were reduced to one-tenth as
much as most of the other intervals.

Figure 5 shows the plots of the integrands (multiplied by 1/B8
or - 1/8A) against x' or y', and also shows the method of determining
the Cauchy principal value at the qIngularity. For example, in fig-
ure 5(c) it will be seen that the integrand goes to - at the right of
the singularity and to -o at the left of the singularity. Algebrai-
cally adding the integrands at equal distances from the singularity (for
example, the value at point b plus the value at point v, the value at
point c plus the value at point u, and so on) and plotting the Rum results
in the section B1 of the curve, where the portion nearest the singularity
is obtained by extrapolation from point k. The desired integral (8) is
finally determined by running the planimeter along the path abBILVva'b'
j 'r's'a.

As a further example of the intermediate steps in the calculation
of a mean camber surface, figure 6(a) is shown, which is a plot of the
slope dz/dx along the streamwise chord through point P. The example
calculation described in the preceding paragraphs, it will be noted,
gives the three integrals the sum of which provides one point on this
dz/dx curve of figure 6(a). In figure 6(b) is shown the corresponding
curve for the NACA a = 1.0 mean line, for cI = 1.0, from reference 3.

The curve may be found useful in extrapolating to the leading and
trailing edges, as previously mentioned.

As implied by the preceding remark, the total effort required to
accurately compute a mean camber surface by the method described is very
large, although, according to the authors' experience, it is not at all
prohibitive. Nevertheless, the work is ideally suited to modern high-
speed computing machinery - for example, of the punched-card type - so
that consideration should be given to the use of such equipment where it
is available.

It may also be mentioned that two contour charts of the integrands
in (6a), (6b), and (8), iwith the factor c z or dcz/dy omitted, have

been prepared in the form of film and, if desired, may be obtained on
request from the National Advisory Committee for Aeronautics. Their
form is such that, if the transparency is superimposed on a correctly
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scaled drawing of the wing plan form, with a boundary point (x',y') at the

origin of the chart, the contour value read at point (x,y) is the desired

value of the integrand. The charts are satisfactorily accurate except
in the neighborhood of the singularities.

POLYGONAL WINGS WITH UNIFORM AREA LOADING

For a uniformly loaded wing (uniform chordwise loading and uniform
cz across the span) the boundary of which consists of a number of

straight-line segments, the integrations to determine the local slope of
the surface and the local height of the surface may both be done analyti-
cally. The previously derived equations can be integrated with respect
to x' and y', where the point (x',y') moves from one end of the
straight-line segment to the other. In the present development, however,
the straight-line segment will be treated as a whole. The vertical
induced velocity w due to the unit bounding vortex is expressed as the
sum of WA, WB, ..., the velocities due to the separate straight seg-

ments A, B, ... (see fig. 7) which are given by the Biot-Savart law j
(eq. (4)). The contribution of segment A to the slope of the surface

at point (x,y) is, therefore, - . wA dx and the contribution to

the height of the surface at the point (xly) is

f- dx wA dx

Summing these expressions for all the segments A, B, ... gives
the total slope or height of the mean camber surface at the desired
point.

As already noted, these integrals for the separate straight seg-
ments can be evaluated analytically. Because the mathematical manipula-
tion and the resulting formulas are somewhat lengthy, they are given in
the appendix. Three different cases, distinguished by the relative
geometry of the vortex segment (that is, the segment of the wing boundary)
and the point (x,y) where the slope or height of the surface is to be
found, are discussed in the appendix. In case I (fig. 8), the path of
integration from -w to x crosses the segment; in case II (fig. 9),
the path of integration does not cross the segment; and in case III
(fig. 10), which is a special case of II, the path of integration is
parallel to the segment.
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It should be noted that this same problem has been treated from a
somewhat different viewpoint in reference 4.

COMPRESSIBILITY CORRECTION

If the mean camber surface is desired for a compressible subsonic
flow at Mach number M, the Prandtl-Glauert method, as described in
reference 5, may be used. That is, all the longitudinal (streamwise)

dimensions of the wing are stretched by the factor 1 /rl-m M, so that

the aspect ratio is reduced by the factor 4I - M2 and the tangent of

the sweep angle is increased by the factor i/jI7-M, and the mean
camber surface is calculated for this fictitious wing in incompressible
flow at a lift coefficient equal to the desired lift coefficient multi-

plied by 1 - M2 . The ordinates (values of z) so obtained will be pre-
cisely the ordinates of the mean camber surface for the desired wing at
the desired lift coefficient in the compressible flow at Mach number M.

EXAMPLES OF CALCULATED MEAN CAMBER SURFACES

Sweptback wing, A = 1.74.- Figure 11 shows (by the curved solid
lines) mean camber lines calculated for the wing already described in
the example and in figure 4. The points where the slopes were computed
are indicated by small circles. It should be noted that figure 11 and
subsequent similar figures do not represent oblique projections of the
wings. Rather, they show the true plan forms of the wings (in the
xy plane) and the true mean camber lines (parallel to the xz plane);
accordingly, the y and z axes coincide on the figures.

In figure 11 and the subsequent similar figures, all the leading-
edge points have been assumed to lie along a horizontal line. This
choice is, of course, arbitrary; that is, the extent to which the present
linear theory is applicable would be essentially unaltered if, for
example, the wing had a reasonable amount of dihedral.

In figure 11 may also be seen a series of dotted mean camber lines
lying somewhat above the solid lines. These dotted camber lines were
calculated by the following approximate method, which is much simpler
than the method of this report:

(a) From the given spanwise lift distribution, the slopes along the
3/4-chord line were determined by the 7-point Weissinger method (see
ref. 6).
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local C

(b) From these slopes were subtracted the values of
2A cos A

where A is the sweep of the 1/2-chord line. This step results in an
imaginary "local-flow direction" into which the "local airfoil section"
is placed in order to develop the local cZ. It is hereby assumed that

the lift-curve slope of the swept airfoil section is 2v cos A.

(c) In this local flow is placed an NACA a = 1.0 mean line, cambered
local cZ n ihiscodln

for a design lift coefficient equal to a c and with its chord linecos A

parallel to the local flow.

These NACA a = 1.0 mean lines, superimposed on chord lines inclined
as determined in step (b), are the dotted camber lines of figure 11.
The main difference between the two camber surfaces appears to be a dif-
ference in angle of attack. There is also, however, about 15 percent
difference in twist (as measured between the calculated camber line
nearest the root and the calculated camber line nearest the tip). The
rigorously calculated camber lines (the solid lines of fig. 11) have, at
each spanwise station, almost identically the same amount of camber as
the corresponding dotted lines. Furthermore, their shapes are, on the
whole, very nearly those of NACA a = 1.0 mean lines; the line nearest
the tip, however, is considerably flatter toward the front than toward
the rear, and the line nearest the root is considerably flatter toward
the rear than toward the front. On the whole, the general agreement
between the two camber surfaces is considered remarkably close; and it
is probable that the agreement would be even closer for wings of higher
aspect ratio. The general applicability of the approximate method thus
seems to deserve further study.

Uniformly loaded triangular wing.- The formulas derived in the
appendix for cases I and II were used to calculate the mean camber sur-
face of a triangular wing having an angle of sweep of 68.40 of the
leading edge (aspect ratio, 1.57) such that the wing should be uniformly
loaded at unit lift coefficient in incompressible flow. Figure 12 pre-
sents chordwise camber lines for several spanwise stations. It may be
noted that the z-scale has been somewhat exaggerated.

Uniformly loaded swept wing.- The formulas derived for cases I, II,
and III were used to calculate the mean camber surface of a swept wing
of aspect ratio 8, taper ratio 0.45, and 450 sweepback of the quarter-

chord line such that the wing should be uniformly loaded at unit lift
coefficient at a Mach number of 0.9. The stretched wing and the corre-
sponding chordwise mean camber lines are presented in figure 13(a). In
accordance with the proposed method of taking into account compressi-
bility, the calculations were made for the stretched wing in incompressible
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flow. The stretching factor is 1= 2.29, so that the aspect
1- (o.92

ratio of the stretched wing is 3.5 and the sweep of the quarter-chord
line is 66.460. Figure 13(a) shows this stretched wing and the mean
camber lines calculated for this stretched wing in incompressible flow
at unit lift coefficient. The corresponding mean camber lines for the
physical wing (A = 8; design CL = 1.0 at M = 0.9) should have 0.44 as

much percent camber as the mean camber lines shown in the figure.

Swept wing with elliptical span load distribution.- For the wing of
the preceding example another mean camber surface was calculated such
that, at unit lift coefficient and Mach number of 0.9, it should have
uniform chordwise loading but an elliptical span load distribution for
the wing as a whole. Mean camber lines for this case are presented in
figure 13(b).

This example was also calculated, under the direction of Mr. Robert
R. Graham of the Langley Laboratory. by the method of reference 1. The
two results were in very good agreement. No definite information was
obtained, however, with regard to the relative expediency of the two
methods (that of ref. 1 and that of the present paper). One might sup-
pose that, for wings with uniform chordwise loading, the present method
would be preferable since it is designed to take advantage of this par-
ticular characteristic. The work represented by table I and figure 5
(outlining the computations for the slope at one point), however, is by
no means small, so that such a presumption is not definitely substan-
tiated by present experience. Perhaps the fact that the computations
and integrations are of such form that they can be readily performed by
modern high-speed computing machinery constitutes the most significant
characteristic of the present method.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., January 13, 1953.
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APPENDIX

DEVELOPMENT OF FORMULAS FOR UNIFORMLY LOADED

POLYGONAL WINGS

Case I - Path of integration crosses vortex segment.- If the vortex
segment is the leading edge of the wing, the path of integration may
cross it. The vortex segment and the path of integration for this case
are shown by the heavy lines in the small sketch on figure 8. The inte-

gral w dx is improper because the integrand becomes infinite
00,

where the path of integration crosses the vortex. The Cauchy principal
value, however, can be determined. Before the integration is performed
the Biot-Savart formula (eq. (4)) is expressed in terms of the variable x
and the fixed dimensions of the vortex segment, where the origin is
defined as the point of intersection of the path of integration and the
vortex segment. Accordingly, the end points of the vortex segment are
(xl,yl) and (x2,y2), where Y1 > Y2  (see fig. 8). Let

L = y1csc a,

M = -y2csc

= tanl(l Y2V1 2)

Then it can be seen that

r =x sin c

Cosl L -xcos L - x cos m
qx2 - 2xL cos. m + L2

Cose 2  M + xmCos a M + x cos M
\fX2 + 2xM cos c] + M2
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The contribution to the slope of the mean camber surface due to w I

will be

_x x
Idz 1 c  o WI dx =- CL  1o4xsnc

L-x Cosa + M +x Cos C d

2 q 2 12)__________

8n sin a loge x - L cos m + +

loe (  x2 sin 2 aCO C)] (AI)

e + L - x cos )(m + M + x cos

It is of interest to note that, along the wing tip or the wing root,
where L or M goes to zero while x is positive, this slope becomes

infinite.
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The contribution to the height of the mean camber surface will be
the integral of this last expression. That is,

zi = x dz) dx II
I dx 1

"L 2 cos ax loge L + cos (x + M cos a)loge(x + M cos cL + m) -

8A sin mIe M

M cos2cL loge[M(l + cos o.) - cos c(x - L cos c)loge(x - L cos a. + 1) -

L cos 2 a loge[L(l - cos a-) + 2x loge(x sin ) -

x loge(' + L - x Cos cL) - (L - M)lOge ( Cos

L loge( + I - x loge(m + M + x cos M) - M log e X + M -

Cos a.(m - M) + cos a.(I - L) (A2)

Case II - Path of integration does not cross vortex segment.- The
three small sketches in figure 9 show three cases in which the path of
integration does not cross the vortex segment. In two of these cases,
the segment lies along the trailing edge; in the third case, the segment
lies along the leading edge but lies wholly to one side of the path of
integration.
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For the derivation of case II formulas, the origin of coordinates

is specified as the intersection of the path of integration with the

vortex, or the line of the vortex extended. The end points of the vor-

tex segment are again designated (xl,yl) and (x2 ,y2) where Yl > Y2'

and L, M, and a, are defined as before. (See fig. 9.)

Then, again

r =x sin cL

Co _= L - x cos .

(where L is now a negative quantity)

Cos e2 = M + x cos a

I = x2 - 2xL cos a, + L2

m = x2 + 2xM cos a. + M

and

fdz\ CL cxc.. ! 1 L xcos a.

- w dx = - I x +

M + x cos mdx
m /

Performing the indicated integration and substituting the limits

yields the same expression for ( ) as was derived for (dz) (see

eq. (Al)). That is, the singular point in the integration for the slope
in case I did not affect the final result.
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The formula for the ordinate zll, however, is different from that

for the ordinate z

-C
LcfLTA 8sin L Cos CL loge  +

cos Ga(x + M cos M)loge(x + M cos a. + m) -

cos a(x - L cos a)loge(x - L cos a + 1) +

2x log(x sin oL) - x log(Z + L - x cos ac) L loge x + L

x loge(m + M + x cos c) - M loge(x + m M

+x M mo +M

os ax + M cos U loge + M Cos a + +

2 cos a xL log() C cos L(x. - L cos aiog(x -

L Cos C + I LE) + 2xLE log(xLE sin a)-

l og (I + L - C os a). L ioeLE (L+ 'LE - L

+cXLE LE ] -

XLE log e(mLE + M + xLE Cos a) -XL + 'oe rLE (A3
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where

ILE = - 2xL cos a. + L2

E = + 2xLEM cos m. M+

When x = 0 the point lies on the vortex or the line of the vortex
extended

m=M

I =L

and, accordingly, several terms in equation (A3) become indeterminate.
After the evaluation of the indeterminate forms, the ordinate at x = 0
becomes

(zII) -CL cos 2a. loge M(l + cos a.) +
x=O =8 sin aTLMV

cos2M oe L(l -cos a) + (L- 1+ cose(l +  o .) -

M cos a.,+ L cos a.+ [cos +.(L- L cos a.)loge(xLE -

L cos c + LE)- 2 cos m x. loge(l) -

Cos a(xLE + M Cos a.)loge(x. + M Cos a + LE)-

2XLE loge(xLE sin .) + XLE loge(LE + L - xLE cos a) +

loe(LE + L + xL loge\mLE + M + xLE cos a)+
L loge XLE - ZLE +)

xloe( + mLE - (AMC)SoLE + M)+ mLE Cos c -ILEco }
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Equations (A3) and (A4) apply when the vortex segment is along the
leading edge. When the vortex segment is along the trailing edge, its
direction of rotation will be the reverse of that for the leading-edge
segments, and the signs of equations (A3) and (A.) should, accordingly,
be reversed.

Case III - Vortex segment parallel to free stream and hence to pathof inte.gration. (See fig. 10.).- Coordinates are chosen suc'h that the

path of integration lies along y = 0. The end points of the vortex
segment are (Oyl) and (xl,yl) where xI >0.

Then, from figure 10,

s (Xj- X) 2 + yl 2

t= x2 +yl 2

xI -x xI - x
Cos 1 = 2

(xI - + y1 2

Cos e2 =x= X

x2  +Yl

Then

I__ CL rx d CL __ i_________ +

2 -co x J-L[(x 1 . x)c + 12

x d
x2 +_2

C L xF+ Y2+x2e + X (AS)
8ny[ L
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and

II 16ny.. i X X2+

y2ig 1 x + 77) 2 ] -+yf Yi g( + 2+ yl2)-

{(Xl -LE 4x XL)2 + Y,+ YUE 4; ;2 y +

y21ogexl - XIE + (Xl- LE) + Y1 21 + Yl2loge[XLE +

L + yi2 + 2x,(X - XL-1j}) (A6)

For equations (A5) and (A6), the direction of rotation of the vor-
tex segment was assumed to be that corresponding to the right wing tip.
For the left wing tip, the signs should be reversed. Stated differently,
the equations will be correct in either case if Yl in the factor out-

side the braces is replaced by yll.
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TABLEI

COMPUTATION OF INTEGRANDS FOR INTEGRALS (7a), (T), AND (8) i
FOR POINT P (x = 0.7707, y = 0.2500)

(1) (2) (3) (4) (b) (6)* (7)** (8)***
pon, x- x' y- 4(1) 2+ (2) ,c dc/Y + 11>-

Boundary 
(4/~l 5(x' ,y')

a 0.7707 0.2500 0.8102 0.5880 0 4.5900 0.7259 0
b .4660 .1250 .482b .5725 -.214 9.0097 1.1874 -1.6238
c .4355 .1125 .4498 .5700 -.228 9.9722 1.2672 -1.7942
d .4051 .1000 .4173 .5669 -.244 11.1725 1.3585 -2.0067
e .374o .0875 .3847 .5637 -.259 12.7151 1.4653 -2.2475
f .3441 .075o .3522 .5004 -.273 14.7721 1.5911 -2.5345
g .3137 .0625 .199 .5569 -.289 17.6479 1.7409 -2.9298
h .2832 .0)00 .2876 .5536 -. 300 21.9746 1.9249 -3.4248
i .2527 .0375 .25b5 .5501 -.316 29.1773 2.1530 -4.2824

.2223 .0250 .2237 .5459 -.331 43.5344 2.4403 -5.9050
k .1918 .0125 .1922 .5419 -.344 86.6130 2.8195 -10.5677

.1613 0 .161 .5373 -.360 3-3329
m .1309 -. 0125 .1315 .5329 -.373 -85.o679 4.0525 7.8300
n .1004 -.0250 .1035 .5279 -.387 -41.5985 5.1005 3.1564
o .0699 -.0375 .0793 .5225 -.4o -26.2156 6.5889 1.5954
p .0394 -.0500 .0637 .51u3 -.415 -lo.7288 8.1130 .8557
4 .0090 -.0525 .0631 .5115 -.429 -9.3510 8.1062 .4949
r -.0215 -.0750 .0780 .5059 -.444 -4.8863 6.4859 .3345
s -.0520 -.0875 .1018 .5009 -.458 -2.8005 4.9204 .2607
t -.0824 -.1000 .1296 .4947 -.470 -1.8017 3.8171 .2218
u -.1129 -.1125 .1594 .4885 -.484 -1.2666 3.0646 .2001
v -.1434 -.1250 .1902 .4831 -.498 -.9497 2.5363 .1865
w -.4481 -.2500 .5131 .4123 -. 34 -.2091 .8039 .1648
x -.7527 -.3 0 .8409 .3261 -.770 -.0912 .3879 .1811
y -1.0574 -. 50 0 1.1697 .2206 -.902 -. 0425 .1890 .2026
z -1.j621 -.62!) 1.4986 .i006 -I.005 -.0146 .0668 .2195
a, -1.6668 -.7500 1.827d 0 -.380 0 o .0816
b' -2.5271 -.7500 2.636o 0 -.380 0 0 .O552
c' -2.2941 -.6250 2.3777 .1006 -1.005 -.0056 .0421 .1344
d' -2.0611 -.5000 2.1209 .2206 -.902 -.0125 .1042 .1079
el -1.8281 -.3750 1.8662 .3261 -.770 -.0177 .1748 .0782
f' -1.5951 -.2500 1.6146 .4123 -.634 -.0200 .2555 .0495
81 -1.3621 -.1250 1.3678 .4831 -.498 -.0162 .3527 .0227
h' -1.1291 0 1.1291 .5373 -.360 0 .4761 0
i' -.8961 .1250 .9048 .5725 -.214 .0439 .6322 -.0149
i' -.6631 .2500 .7078 .5880 0 .1512 .8297 0
k' -. 8961 .3750 .9714 .5725 .214 .1182 .5888 .0432
1' -1.1291 .5000 1.2349 .5373 .360 .0920 .4348 .o76o
m' -1.3621 .6250 1.4986 .4831 .498 .0705 .3228 .1088
n' -1.5951 .7500 1.7626 .4123 .634 .0522 .2337 .1414
o' -1.8281 .8750 2.0267 .3261 .770 .0365 .1608 .1748
p -2.0611 1.o000 2.2909 .2206 .902 .0221 .0960 .2070
q' -2.2941 1.1250 2.5551 .l006 1.005 .0092 .0395 .2329
r -2.5271 1.2500 2.8193 0 .380 0 0 .0888
s, -1.6668 1.2500 2.0834 0 .380 0 0 .1266
t' -1.3621 1.1250 1.7666 .l006 1.005 .0206 .0572 .3610
ut -1.0574 1.0000 1.4554 .2206 .902 .o602 .1512 .3586
v' -.7527 .8750 1.1542 .3261 .770 .1296 .2824 .3533
w. -.4481 .7500 .8737 .4123 .634 .2676 .4716 .3600
x -. 1434 .6250 .6412 .4831 .498 .6010 .7545 .3966
y .1613 .5000 .5254 .5373 .3b0 1.4035 1.0219 .4931
z' .4660 .3750 .5981 .5725 .214 2.7137 .9564 .6101

* Integrand for (7-)
** Integrand for (Tb)

**Integrand for (8)
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Ldi

Figure 1.- El.ement of vortex on wing boundary showing coordinate and
vector systems used in the application of' the Biot-Savart, law.



28 NACA TN 2908

) 4

dy

Figure 2.- Wing composed of uniformly loaded chordwise strips of span
dy' with a closed vortex superimposed on the boundary of each strip.
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(xY) i

_ _ _ _ _ _ _ _X0_ _ V'l

Figure 3., Geometrical relationships for straight-line chordwise vortex
segments that occur with spanwise-varying area loading.
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(b) Determination of integral (Tb).

Figure 5.- Continued.
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Fur 5. Conlued
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di-

.1 .2 .5 .7 9 1.

(a) Calulte slopes exampl wing

Fiur 6._acltelpfth__emie encme ln hog

poin P~_ (see fig. 4), an hlp frteN a=10ma

lin at c, = 1.0. ---- -
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di

.*2

(b) Slopes along NACA a =1.0 mean line, for cl 1.0, from

reference 3.

Figure 6.- Concluded.
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F

Figure 7., Unit bounding vortex conrposed of separate straight segments A,
B, C, D), E, and F superimposed on wing plan form boundary.
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/ 1,
(Xl)

/ ',\/
Path of

M Integration\

____/____\

Vortex

Figure 9.- Geometrical relationships for case II. Heavy lines in small
sketches show relative positions of vortex and path of integration
for three different conditions for which this case applies.
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Path of
~ Integrati1on

Figure 10.- Geometrical relationships for case III. Heavy lines in
small sketch show relative positions of vortex segment and path of
integration for this case.
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alTZ Y

94 .4

t2 .3
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Figure 12.- Chordwise mean camber lines at several spanwise stations for
a triangular wing with uniform area loading. Leading-edge sweep angle,
68.40; CL =1.0; aspect ratio, 1.57.
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