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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2908

DETERMINATION OF MEAN CAMBER SURFACES FOR WINGS HAVING
UNIFORM CHORDWISE LOADING AND ARBITRARY SPANVISE
LOADING IN SUBSONIC FLOW

By S. Katzoff, M. Frances Faison, and Hugh C. DuBose
SUMMARY

The field of a uniformly loaded wing in subsoniec flow is discussed
in terms of the acceleration potential. It is shown that, for the
design of such wings, the slope of the mean camber surface at any point
can be determined by a line integration around the wing boundary. By an
additional line integration around the wing boundary, this mechod is
extended to include the case where the local section 1lift varies with
spanwise location (the chordwise loading at every section still remaining
uniform).

For the uniformly loaded wing of polygonal plan {orm, the integra-
tions necessary to determine the local slope of the surface and the
further integration of the slopes to determine the ordinate can be done
analytically. An outline of these integrations and the resulting
formulas are included.

Calculated results are given for a sweptback wing with uniform
chordwise loading and a highly tapered spanwise loading, a uniformly
lcoaded delta wing, a2 uniformly loaded sweptback wing, and the same swept-
back wing with uniform chordwise loading but elliptical span load
distribution.

INTRODUCTION

The design of mean camber surfaces to sustain a specified area
distribution of 1lift at subsonic speeds involves basically a relatively
straightforward process: a system of bound and trailing vortices is set
up in the plane of the wing according to the specified distribution of
lift, and the corresponding vertical velocity is calculated, by the
Biot-Savart law, at points on the surface where the local slopes are
desired. Reasonably practical numerical and graphical procedures have
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been developed for performing this integraticn of the velocity due to
this distribution of vortices (see, for example, ref. 1). If the chord-
wise loading is specified to be uniform, as in a number of recent wing-
design studies, the problem is basically simplified; as will be shown,
the solution can then be reduced from a double integral over the wing
area (or over the wing area plus wake area) to a line integral around
the boundary of the wing and, in the simplest cases, it can even be
reduced to a purely analytical procedure.

The purposes of the present paper are to outline the basic theory
behind the solution of problems involving uniform chordwise loading, to
summarize the mathematical application of the theory and the development
of the required formulas, and to describe the actual use of these derived
results in the design of mean camber surfaces for this type of loading.

The basic theory of the uniformly loaded lifting surface is reviewed
first. The particular case of the infinitesimally wide, uniformly loaded
longitudinal strip is next discussed, together with the integration of
such strips to form the wing of arbitrary contour and arbitrary spanwise
loading. For the uniformly loaded polygonal wing, closed expressions
will be derived for both the local slope of the mean camber surface and
the local height of the surface (relative to the leading edge). Sec-
tions of the mean camber surfaces of four wings calculated by these
methods are also presented.

SYMBOLS

X, ¥, 2 streamwise, lateral, and vertical coordinates, respec-
tively (see fig. 1)

x',y coordinates of vortex element on wing boundary

4] stream velocity

w vertical velocity induced by unit vortex (positive
upwards)

P pressure

p density

CL wing 1lift coefficient

) wing section 1ift coefficient

c chord

g average chord

|
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ref. 2, pp. 225-227). In the field of a uniformly loaded l1ifting sur-
face, then, the pressure (relative to free-stream pressure) is a harmonic
potential that must satisfy the following boundary conditions:

(a) It has a uniform negative value over the upper face of the
lifting surface.

(b) It has a numerically equal, uniform positive value over the
lower face of the lifting surface. (That the upper and lower surface
pressures are equal and opposite is not, perhaps, obvious merely from
the fact that a pressure difference exists across the surface. If, how-
ever, the lifting surface is represented by a distribution of bound and
trailing vortices, as in ref. 1, this fact is immediately apparent.)

(c) It vanishes at infinity.

These boundary conditions, which uniquely define the pressure throughout
the field, are recognized as identical with the conditions on the velocity
potential in the field of a closed vortex that coincides with the edge,
or boundary, of the lifting surface. Accordingly, the pressure at any
point in the field of a uniformly loaded lifting surface is equal in
value to the velocity potential of such a vortex, the strength of which
is the pressure difference between the upper and the lower faces, or the
l1ift per unit area. Correspondingly, the pressure gradient at any point
in the field is equal in both magnitude and direction to the potential
gradient (that is, the velocity) associated with this vortex at that
point; and it can accordingly be determined by the Biot-Savart law. For
present purposes, conly the vertical component of this gradient is of
interest. The vortex should not, of course, be confused with the lifting
vortices of the usual airfoil theory; these latter vortices are not used
in the present paper.

The vertical acceleration of a fluid particle is - % gg (see
z
fig. 1 for coordinate system), so that the vertical velocity acquired by
a particle which has come into the neighborhood of the wing from a large

distance upstream is the integral of this expression with respect to

x
time, or d/\ - % ga %%, where the factor dx/U is the element of time.
Z
- 00

(In order to simplify the notation, the same symbol x is used for both
the running variable and the upper limit.) All perturbation velocities
are assumed to be small so that the path of integration, or the path of
the fluid particle, is the line y = constant, 2z = constant.

Dividing this vertical velocity by U gives the vertical slope dz/dx
of the streamline. In particular, if the integral is evaluated for a
point on the lifting surface itself, the local slope of the surface is
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X
given by - - ég dx, where the integration is along the line
pUZ -0 Bz

y = constant, 2z = 0. Here again the small-perturbation theory assumes
that all displacements from the straight undisturbed streamlines are so ‘
small that the path of integration may, with sufficient accuracy, be i
taken in the plane 2z = 0, and, in particular, that the vertical displace- :
ment of the trailing edge relative to the leading edge is so small that !
the boundary vortex may also be taken in the plane 2z = 0. The local '
height of the surface 12z, relative to the leading edge, is the integral

of this slope, or

\/; \/i: %E dx

LE

For any 1ift coefficient C; the pressure difference across the
o A
= pU
) P

equal to the strength of the vortex that is assumed around the edge of
the projected plan form of the lifting surface. Thus, finally, the
local slope of the surface is

lifting surface is , which, as previously noted, is numerically !

Ex?.:--ch w dx (1)

where w 1is the vertical velocity (positive upward) in the plane of the :
lifting surface induced by & unit vortex along the edge of the surface. -~
The local height of the surface, relative to the leading edge, is then :

2=-10 f dxf v dx (2)

The direction of rotation of the unit vortex is such that its flow is
upward through the surface of the wing; that is, the potential increases
by unity along a path from the upper to the lower wing surface around
the edge of the wing.
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Line integral for local slopes of uniformly loaded wing with arbi-
trary plan form.- By equation (1), the local slope dz/dx may be deter-
mined by evaluating the vertical velocity w induced by the entire
boundary vortex and then integrating w from -«o to x. A more con- -
venlent method, however, is to evaluate the contribution to w induced
by an infinitesimal element of the bounding vortex, to integrate this
contribution from -» to x (which is readily done analytically), and
then to integrate this result over all the elements of the bounding
vortex.

The differential form of the Biot-Savart equation (see ref. 2,
P-. 167) for the induced velocity dw due to an element ds of a unit
vortex is

1 ds X

FY)

dw =

where q 1is the vector from the vortex element to the point in question,
and the direction of d8 1is taken as the direction of advance of a
right-hand screw rotating in the direction of the circulation about ds
(see fig. 1). For the present problem, where the point lies in the plane
of the wing, this induced velocity is in the =z direction and is given by

_1'1_(_v t
aw = L (y - ydx' - (x - x')dy

R PO

where (x,y) is the point at which the induced velocity is desired, and
(x',y') is the location of the vortex element (dx',dy') on the wing )
boundary.

Accordingly, by equation (1), the contribution of a boundary ele-
ment (dx',dy') of a uniformly loaded wing to the slope of the wing t
surface at point (x,y) is ;

d(SIOPe)dx',dy' =-1 % * o(y - y')ax' - (x - x' )y’ i

2 bnJ_, Ex - x)2 4+ (y - y,)zj3/z
- (x - X')dx' dx!'
8x (y - y.)\/(x - xv)z + (y - y,)z Y - Y

dy'
Vix - x)2 + (y - y')2

R 2 S o

tS)

s rsh o gl o
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The signs of dx' and dy' are determined from the previously mentioned
convention for the direction of the vector d§ (or (dx',dy')); for

exemple, both dx' and dy' are negative for the leading-edge element
shown in figure 1.

The net slope of the mean camber surface at the point (x,y) is the
integral of the preceding expression around the wing boundary, or

C

dz __ L (x - x")ax' .
= O (y-y')\/(x-x')z+(y-y')2
dx'_ . dy’ (3)

VoY Jx-xn2 e (y - y)2

where the counterclockwise direction of the integration automatically
takes care of the signs. The problem of determining the local slope of

the mean camber surface at the point (x,y) is thus reduced to the evalua-
tion of this line integral.

WINGS WITH ARBITRARY PLAN FORM AND ARBITRARY

SPANWISE LOADING

Wing considered as sum of uniformly loaded chordwise strips.- For
the wing having uniform chordwise loading and arbitrary spanwise loading,
it is convenient to consider the wing to be made of a series of uniformly
loaded chordwise strips of infinitesimal span. For each such strip
(span dy', see fig. 2) the pressure field can be represented by the
velocity potential of a closed vortex superimposed on the boundary of
the strip. Each of these bounding vortices has strength equal to the
local pressure difference Ap between the upper and lower surfaces of
the strip.

If, as in the preceding analysis, the spanwise loading is uniform,
all these closed vortices will be of the same strength, so that the
chordwise segments common to any two adjacent strips cancel and only
those vortex elements lying on the boundary of the wing remain. The
result is thus the same as that previously discussed for the uniformly
loaded wing (eq. (3)).

P NN S DY S
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If, however, the spanwise loading is not uniform, the closed vor-
tices surrounding adjacent strips will be of unequal strength; vortex
segments common to adjacent strips will no longer cancel, and vortex
elements lying on the wing boundary will vary in strength along the
boundary. The contribution of these boundary vortex elements to the
induced velocity w can still be summed by a line integration around
the wing boundary of the expression given in equation (3), except that
C;, must be replaced by the local section 1lift coefficient cz(y ) and

placed under the integral sign. The contribution of the chordwise seg-
ments is derived in the following paragraph:

Streamwise vortex segments.- The Biot-Savart formula for the induced
velocity due to the straight-line chordwise vortex segment of unit
strength is

v hnr(cos 6o + cos 6;) (4)

where r, 6;, and 6, are defined in figure 3. With r and the

cosines expressed in Cartesian coordinates, this expression becomes
- h

1 x - (x' +¢) x'

Ty - y1) |
ey \/Ec-(x +c] +(y-y) \/(x-X) +(y-y)

where c¢ 1s the local chord. The integral of this expression from -

J

1 deg
to x, multiplied by - dcz/z or -2—¢ dy' (see eq. (1)), gives the
Yy

contribution to the slope from the streamwise vortex segment of strength
corresponding to dcz and length equal to the local chord

d(slope) = -Sn(y]; = :;} dy' [;/(x - x')2 + (y - vy )2 + (x - x'{] -

&-(x'+c§}v2+(y-y')2+x-(x'+c)
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Finally, integrating this last equation with respect to y' across
the span of the wing (from left to right) gives the contribution of all
these chordwise segments to the slope at the point (x,y). It will ve
observed, however, that the term within the second bracket in this equation
is the same as that within the first bracket except that x' is replaced
by x' + ¢, the corresponding trailing-edge coordinate. Accordingly, the
integral of this expression across the span can, for convenience, be con-
sidered as the line integral

i_ ﬁ '__l _'2 _lz - !
P o ¥y \[(x x')+ (y - y)e+ (x - x") (58)

or

8]‘755 dcly_ly, El(x-x')z+(y-y')z+(x-x’;J (5b)

around the boundary of the wing.

The problem of determining the local slope of the mean camber sur-
face at point (x,y) is thus reduced to the evaluation of the line inte-

grals (3) and (5), where the integral (5) is omitted if there is no

sparwise variation in the area loading (or in the local 1lift coeffi-

cient cz) and where the local 1lift coefficient ¢, replaces Cp 1in

equation (3) and must be brought under the integral sign if there is a
spanwise variation of Cy.

COMPUTATION

Although computing the integrands of expressions (3) and (5) and
then performing the integrations should be a fairly straightforward
process, a short outline of suggested procedures may be helpful. It may
be noted at the beginning that, since the slopes (and the integrals for
the slopes) are nondimensional, the results will be independent of the
dimensional scale chosen for the work; taking the root chord or the
semispan as unity will probably be most convenient. It may also be
remarked that a carefully drawn plan form of the wing will be helpful in
setting up the computations.

i
g
]
]

Résumé of procedure for computing slopes of uniformly loaded mean
camber surface.- Given the plan form of a wing that is to have uniform
area loading and a specified 1ift coefficient, a possible procedure is
as follows:
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(1) Select points (x,y) on the surface where the slopes are to be
obtained. In general, these points should lie along several selected
chord lines, with perhaps four along each line.

(2) Select points (x',y') along the leading and trailing edges
where the integrands of equation (3) are to be determined. In general,
trailing-edge points should be at the same spanwise positions as the
leading-edge points.

(3) Consider the integral in equation (3) to be broken up into two
parts - one with respect to x' and one with respect to y':

1 [- X - X +1fax (6a)
y-yL(x_x,)z+(y_y,)z

and

dy. (6b)
\/(x -x)P e (y - y)?

For each point (x,y), compute the values of the integrands in expres-
sions (6a) and (6b) for all the (x',y') points.

(4) For each point (x,y), plot the integrands of (6a) against x',
plot the integrands of (6b) against y', and determine the area of each
(for example, by running the planimeter around the curve in the direc-
tion corresponding to a counterclockwise mpvement of the variable
point (x',y') around the wing boundary).

(5) For each point (x,y), sum these two areas and multiply by
- CL/Bn in order to determine the local slope dz/dx.

(6) The actual heights of the mean camber surface along the chosen
chords are now determined by integrating the slopes found in the pre-
ceding steps. The integration cannot extend quite to the leading and
trailing edges, however, because the slopes cannot be readily determined
very close to the ends of the chord lines, where the slopes become infi-
nite. Near the ends, however, the mean camber lines of the sections may
be considered as NACA a = 1.0 mean lines (ref. 3), and they may accord-
ingly be filled in, with generally adequate accuracy, by fitting
NACA 2 = 1.0 mean lines between the front and rear limits of the calcu-
lated segments of the mean camber lines and the leading and trailing
edges.

3
X
£
B
!
!

[

N R e R SN
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The integral (6a) is actually improper, since the integrand becomes
infinite where y' = y. The Cauchy principal velue exists, however, and
is evaluated by first adding the integrands at equal distances but on
opposite sides from the singular point and then integrating the sum.
This method will be further described in a later section.

Reésume of procedure for computing slopes of a mean camber surface
with uniform chordwise loading and arbitrary spanwise loading.- For an
arbitrary spanwise loading, an additional integration is required,
together with a modification of the preceding integrations.

(1) Determine the integrals

“1 : X - X + 1] ax' (Ta)
oy \[()c-x')?“w*(y-y')2

ol (7o)
Jx - x)2 + (v - y)?

by the same process as before for (6a) and (6b), except that c,, being

and

now & variable, must be brought inside the integral.

(2) Determine the spanwise rate of change of local 1lift coeffi-
cient dcz/dy' at points y'. Compute values of the integrand in

gg% y E-yv ka - xv)z + (y - yv)Z + (x - x")|ay" (8)

Plot against y' and integrate. This integral is also improper and is
treated as previously mentioned.

(3) For each point (x,y), the local slope dz/dx 1is
-é;[}ntegral (8) - Integral (7a) - Integral ("(bﬂ.

Example.- In figure 4 1s shown the plan form of a swept wing and

the desired spanwise lift distribution. As an example of the computation,
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integrals (7a), (7b), and (8) will be obtained for the point designated P
on the figure. Points designated a, b, ¢, ... x, y, 2, &', b', ... are
the points on the boundary where the integrands were evaluated; the
primed symbols are used merely because more than 26 symbols were needed. -

The origin was taken at the wing apex and the wing semispan was assumed
equal to unity.

The computation of the integrands at the points around the boundary
is given in table I. Most of the points were evenly spaced, but near
the singularity (y' = y), the intervals were reduced to one-tenth as
much as most of the other intervals.

Figure 5 shows the plots of the integrands (multiplied by 1/8x
or - 1/8n) against x' or y', and also shows the method of determining
the Cauchy principal value at the =ingularity. For example, in fig-
ure 5(c) it will be seen that the integrand goes to o« at the right of
the singularity and to -« at the left of the singularity. Algebrai-
cally adding the integrands at equal distances from the singularity (for
example, the value at point b plus the value at point v, the value at
point ¢ plus the value at point u, and so on) and plotting the sum results
in the section Bl of the curve, where the portion nearest the singularity
is obtained by extrapolation from point k. The desired integral (8) is
finelly determined by running the planimeter along the path abBilLVva'b' !
J'r's'a.

As a further example of the intermediate steps in the calculation
of a mean camber surface, figure 6(a) is shown, which is a plot of the
slope dz/dx along the streamwise chord through point P. The example
calculation described in the preceding paragraphs, it will be noted, -
gives the three integrals the sum of which provides one point on this
dz/dx curve of figure 6(a). In figure 6(b) is shown the corresponding
curve for the NACA a = 1.0 mean line, for ¢y = 1.0, from reference 3. )

The curve may be found useful in extrapolating to the leading and
trailing edges, as previously mentioned. -

As implied by the preceding remark, the total effort required to
accurately compute a mean camber surface by the method described is very
large, although, according to the authors' experience, it is not at all
prohibitive. Nevertheless, the work is ideally suited to modern high-
speed computing machinery - for example, of the punched-card type - so

that consideration should be given to the use of such equipment where it
is available.

It may also be mentioned that two contour charts of the integrands
in (6a), (6b), and (8), with the factor ¢, or dcz/hy omitted, have

been prepared in the form of film and, if desired, may be obtained on .
request from the National Advisory Committee for Aeronautics. Their
form 1s such that, if the transparency is superimposed on a correctly
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scaled drawing of the wing plan form, with a boundary point (x',y') at the
origin of the chart, the contour value read at point (x,y) is the desired
value of the integrand. The charts are satisfactorily accurate except

in the neighborhood of the singularities.

POLYGONAL WINGS WITH UNIFORM AREA LOADING

For a uniformly loaded wing (uniform chordwise loading and uniform
c, across the span) the boundary of which consists of a number of

straight-line segments, the integrations to determine the local slope of
the surface and the local height of the surface may both be done analyti-
cally. The previously derived equations can be integrated with respect
to x' and y', where the point (x',y') moves from one end of the
straight-line segment to the other. In the present development, however, :
the straight-line segment will be treated as a whole. The vertical §
induced velocity w due to the unit bounding vortex is expressed as the

o €t o BT e LA R

sum of Was Wps ceey the velocities due to the separate straight seg-
ments A, B, ... (see fig. 7) which are given by the Biot-Savart law ;
(eq. (4)). The contribution of segment A to the slope of the surface
X
at point (x,y) is, therefore, - %?}jr wy dx and the contribution to
- 00

the height of the surface at the point (x;,y) is

- SE xl dx../\x w, dx
2 A
XE -

Summing these expressions for all the segments A, B, ... gives
the total slope or height of the mean camber surface at the desired
point.

As already noted, these integrals for the separate straight seg-
ments can be evaluated analytically. Because the mathematical manipula-
tion and the resulting formulas are somewhat lengthy, they are given in
the appendix. Three different cases, distinguished by the relative
geometry of the vortex segment (that is, the segment of the wing boundary)
and the point (x,y) where the slope or height of the surface is to be
found, are discussed in the appendix. In case I (fig. 8), the path of
integration from - to x crosses the segment; in case II (fig. 9),
the path of integration does not cross the segment; and in case III
(fig. 10), which is a special case of II, the path of integration is
parallel to the segment.
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It should be noted that this same problem has been treated from a .
somewhat different viewpoint in reference k.

COMPRESSIBILITY CORRECTION

If the mean camber surface is desired for a compressible subsonic
flow at Mach number M, the Prandtl-Glauert method, as described in
reference 5, may be used. That is, all the longitudinal (streamwise)

dimensions of the wing are stretched by the factor l/\/l - Mz, so that
the aspect ratio is reduced by the factor \’l - M2 and the tangent of

the sweep angle is increased by the factor 1/\‘1 - Mz, and the mean
camber surface is calculated for this fictitious wing in incompressible
flow at a 1lift coefficient equal to the desired 1lift coefficient multi-

plied by 1 - M2. The ordinates (values of 2z) so obtained will be pre-
cisely the ordinates of the mean camber surface for the desired wing at
the desired 1ift coefficient in the compressible flow at Mach number M.

EXAMPLES OF CALCULATED MEAN CAMBER SURFACES ,

~

Sweptback wing, A = 1.7k.- Figure 11 shows (by the curved solid
lines) mean camber lines calculated for the wing already described in
the example and in figure 4. The points where the slopes were computed
are indicated by small circles. It should be noted that figure 11 and .
subsequent similar figures do not represent oblique projections of the
wings. Rather, they show the true plan forms of the wings (in the
Xy plane) and the true mean camber lines (parallel to the xz plane);
accordingly, the y and z axes coincide on the figures.

In figure 11 and the subsequent similar figures, all the leading-
edge points have been assumed to lie along a horizontal line. This
choice is, of course, arbitrary; that is, the extent to which the present
linear theory is applicable would be essentially unaltered if, for
example, the wing had a reasonable amount of dihedral.

In figure 11 may also be seen a series of dotted mean camber lines
lying somewhat above the solid lines. These dotted camber lines were
calculated by the following approximate method, which is much simpler -
than the method of this report:

(a) From the given spanwise 1ift distribution, the slopes along the
3/h-chord line were determined by the 7-point Weissinger method (see .
ref. 6).
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local c,
(b) From these slopes were subtracted the values of =t g
21 cos A ]
where A 1s the sweep of the l/z-chord line. This step results in an :
imaginary "local-flow direction" into which the "local airfoil section"

is placed in order to develop the local c,- It is hereby assumed that
the lift-curve slope of the swept airfoil section is 2n cos A.

»
(¢) In this local flow is placed an NACA a = 1.0 mean line, cambered
local ¢
for a design 1ift coefficient equal to ——————Kl, and with its chord line
cos

parallel to the local flow.

These NACA a = 1.0 mean lines, superimposed on chord lines inclined
as determined in step (b), are the dotted camber lines of figure 1l.
The main difference between the two camber surfaces appears to be a dif-
ference in angle of attack. There is also, however, about 15 percent
difference in twist (as measured between the calculated camber line
nearest the root and the calculated camber line nearest the tip). The
rigorously calculated camber lines (the solid lines of fig. 11) have, at
each spanwise station, almost identically the same amount of camber as
the corresponding dotted lines. Furthermore, their shapes are, on the !
whole, very nearly those of NACA a = 1.0 mean lines; the line nearest
the tip, however, is considerably flatter toward the front than toward
the rear, and the line nearest the root is considerably flatter toward
the rear than toward the front. On the whole, the general agreement
between the two camber surfaces is considered remarkably close; and it
is probable that the agreement would be even closer for wings of higher .-
aspect ratio. The general applicability of the approximate method thus ;o
seems Lo deserve further study. ‘

Uniformly loaded triangular wing.- The formulas derived in the :
appendix for cases I and II were used to calculate the mean camber sur- ;
face of a triangular wing having an angle of sweep of 68.4° of the
leading edge (aspect ratio, 1.57) such that the wing should be uniformly
loaded at unit 1ift coefficient in incompressible flow. Figure 12 pre-
sents chordwise camber lines for several spanwise stations. It may be
noted that the z-scale has been somewhat exaggerated.

Uniformly loaded swept wing.- The formulas derived for cases I, II, ,
and III were used to calculate the mean camber surface of a swept wing :
of aspect ratio 8, taper ratio 0.45, and 45° sweepback of the quarter-
chord line such that the wing should be uniformly loaded at unit 1lift
coefficient at a Mach number of 0.9. The stretched wing and the corre-
sponding chordwise mean camber lines are presented in figure 13(a). In
accordance with the proposed method of taking into account compressi-
bility, the calculations were made for the stretched wing in incompressible
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flow. The stretching factor is 1 = 2.29, so that the aspect

J1 - (0.9)2

ratio of the stretched wing is 3.5 and the sweep of the quarter-chord
line is 66.46°. Figure 13(a) shows this stretched wing and the mean
camber lines calculated for this stretched wing in incompressible flow
at unit 1lift coefficient. The corresponding mean camber lines for the
physical wing (A = 8; design Cy = 1.0 at M = 0.9) should have 0.4k as

much percent camber as the mean camber lines shown in the figure.

Swept wing with elliptical span load distribution.- For the wing of
the preceding example another mean camber surface was calculated such
that, at unit 1lift coefficient and Mach number of 0.9, it should have
uniform chordwise loading but an elliptical span load distribution for
the wing as a whole. Mean camber lines for this case are presented in
figure 13(b).

This example was also calculated, under the direction of Mr. Robert
R. Graham of the Langley lLaboratory. by the method of reference 1. The
two results were in very good agreement. No definite information was
obtained, however, with regard to the relative expediency of the two
methods (that of ref. 1 and that of the present paper). One might sup-
pose that, for wings with uniform chordwise loading, the present method
would be preferable since it is designed to take advantage of this par-
ticular characteristic. The work represented by table I and figure 5
(outlining the computations for the slope at one point), however, is by
no means small, so that such a presumption is not definitely substan-
tiated by present experience. Perhaps the fact that the computations
and integrations are of such form that they can be readily performed by

modern high-speed computing machinery constitutes the most significant
characteristic of the present method.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., January 13, 1953.




IB

NACA TN 2908 ' 17

APPENDIX

DEVELOPMENT OF FORMULAS FOR UNIFORMLY LOADED

POLYGONAL WINGS

Case I - Path of integration crosses vortex segment.- If the vortex
segment is the leading edge of the wing, the path of integration may
cross it. The vortex segment and the path of integration for this case
are shown by the heavy lines in the small sketch on figure 8. The inte-

X
gral t[\ Wy dx 1is improper because the integrand becomes infinite

00

where the path of integration crosses the vortex. The Cauchy principal
value, however, can be determined. Before the integration is performed

the Biot-Savart formula (eq. (4)) is expressed in terms of the variable x

and the fixed dimensions of the vortex segment, where the origin is
defined as the point of intersection of the path of integration and the
vortex segment. Accordingly, the end points of the vortex segment are
(x1,y1) end (xz,yz), where y, >y, (see fig. 8). Let

L = y,csc a
M= -yzcsc a
Y. =Y
a = tan-l(.._l___.z_>
X%
Then it can be seen that
r = x sin a
cos 6, = L- xzcos & - L -xcosa
\[;2 - 2xL cos a + L2
cos 6. = M+ xcosa._ M+ x cos a
2 m

\Ix2 + 2xM cos a + M2

Sl o - LA o o
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The contribution to the slope of the mean camber surface due to w1

will be

L - x cos a "

M+ x cos a dx

\sz - 2xL cos

a + L2 \Ix2 + 2xM cos a + M2

2
L"\/fx + Mcosa+nm
1oge (iﬁ)(x - L cos a + 1) +

= L cos a
8r sin a
2
log X
el(1 +L - x

Sinz Q (Al)
cos a)(m + M + x cos a)

It is of interest to note that, along the wing tip or the wing root,
where L or M goes to zero while x 1is positive, this slope becomes

infinite.

e e Ra0 4150

IS B o s
. .
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The contribution to the height of the mean camber surface will be
the integral of this last expression. That is,

L
= ———— <2 cos ax lo = + cos a{x + M cos a)lo X+Mcosa +m) -
8n sin q ge ( J1oge )

M cosla logeﬁ%(l + cos aé] - cos a(x - L cos a)logs(x - L cos a + 1) -

L cos@a loge[§(l - COS aZ] + 2x loge(x sin a) - !
x logg(l +L - x cos a) - (L - M)103e<i t 22: 2) -

L1l x+1-L)_yx21 + M+ - M1 x +m - M\ _
oge<x T x oge(m X cos a) 0g, P—

-+

cos a(m - M) + cos a(l - L) (A2)

Case II - Path of integration does not cross vortex segment.- The
three small sketches in figure 9 show three cases in which the path of
integration does not cross the vortex segment. In two of these cases,
the segment lies along the trailing edge; in the third case, the segment
lies along the leading edge but lies wholly to one side of the path of
integration.
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For the derivation of case II formulas, the origin of coordinates
is specified as the intersection of the path of integration with the
vortex, or the line of the vortex extended. The end points of the vor-

tex segment are again designated (xl,yl) and (xz,yz) where Yy > Ypo
and L, M, and o are defined as before. (See fig. 9.)
Then, again

r =x sina

cog §. =L - Xcosa
1 [

(vhere L is now a negative quantity)

- M+ x cos a

cos 62 =

1= J;z - 2xL cos a + L2

x2 + 2xM cos a + Mz

and

o, [* c, |*
(Q.E) = oL W dx=--—L- 1 L-xcosa,
II N -
II 2 | 2 |_ 4mx sina 1

Performing the indicated integration and substituting the limits

yields the same expression for Q&) as was derived for dz (see
dx/11 dx/1

eq. (Al)). That is, the singular point in the integration for the slope
in case I did not affect the final result.
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The formula for the ordinate

for the ordinste zI:

Zry» however, is different from that

2 = ——:EL—- 2x cos o log (L> +
IT  8n sin a e\M

cos a(x + M cos a)loge(x +Mcos a +m) -

cos a(x - L cos a)logg(x - L cos a + 1) +
x-1+1L

2x loge(x sin a) - x loge(l +L -xcosa) -L loge(x + 1 - L) .

x logg(m + M + x cos a) - M loge(-;‘—i-%-:—%):l -

cos G(XLE + M cos a)loge(xLE +Mcos a+ mLE) +

2 cos a xp loge(§> - cos “(XLE - L cos a)loge(xLE -

L cos a + zLE) +2x o loge(xLE sin a) -

g * 4p - L
X g loge(lLE +L - x o cos a) -L loge< - -

g U

(43)

XLE loge(mLE + M+ X.LE coS8 a,) -M lOge<XLE + XnLE - M)

g " %E t M

N D NREI- AL R

& »»*lmgﬁi'mu:»u et
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where .

- 2 _ 2 .
ZLE = d&;E axLEL cos a + L

me = V&LEZ + ZxLEM cos o + M2

When x = O the point lies on the vortex or the line of the vortex
extended

m=M
1 =L

and, accordingly, several terms in equation (A3) become indeterminate.
After the evaluation of the indeterminate forms, the ordinate at x =0
becomes

-CL

T e 2
(ZII)X=O " 81 sin a E‘ cos”a log, M(1 + cos a) + ’

L cos2q log L(1 - cos a) + (L - M)log (l + coS a) _
€ €\l - cos a

M cos a + L cos %] + |cos “(XLE - L cos a)loge(xLE -

L cos a + ZLE) - 2 cos a X1p l°ge(ﬁ) -

cos “(XLE + M cos a)loge(xLE + M cos a + mLE) -

2xX1E loge(xLE sin a) + X1| loge(ZLE + L - xpp cos a) +

Xrp + 1 - L
L loge( LE LE

— + xyp log + M+ xp cOs a) +
xLE'lLE+L> LE e(mLE LE )

+ - M
M loge<xLE TLE ) + mp cOs a - lpp COS ;] (Ak)

S A b1
. L .

RO

————
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Equations (A3) and (A4) apply when the vortex segment is along the
leading edge. When the vortex segment is along the trailing edge, its
direction of rotation will be the reverse of that for the leading-edge

segments, and the signs of equations (A3) and (A4) should, accordingly,
be reversed.

Case III - Vortex segment parallel to free stream and hence to path
of integration. (See fig. 10.).- Coordinates are chosen such that the
path of integration lies along y = O. The end points of the vortex

segment are (O,yl) and (xl,yl where x, >O0.

Then, from figure 10,

s = kal - X)z + ylz

t =‘,x2 + yl2

X - X Xy - X
cos 91 = 1 = 1
S 2 2
(3 - %)+
cos 92 = -:;-(- = X
2 2
X* +yy
Then
X X
dz =-EL w dx = - ‘L X1 - X +
ax)g; 2 | I By, 2 4y 2
-e - \/(Xl =Xt tn
X dx
x2 + ylz

Cy, 2 2 2 2
= -8ﬂyl Nx + yl - %xl - X) + yl + xl (As)
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and

C
oo L 2 2 [2 2
Z111 = 16ﬂyl (X1 = X)\J(x3 = X)% + y1° + x [x° + ¥, +
ylzlogeE‘l - X+ \,(xl - x)2 + ylzil + Y1zl°€e <X +\/X2 + ylz) -

(*1 - XLE)\/(xl - XLE)Z * ylz T XE XLEZ * ylz *

2 Z . v 2 2
41 l°geE‘1 - XE +\ﬁ"l - Xp) t yl] N 1°geE‘LE *

xLEz + le + 2% (X - xL%ﬂ (A6)

For equations (AS) and (A6), the direction of rotation of the vor-
tex segment was assumed to be that corresponding to the right wing tip.
For the left wing tip, the signs should be reversed. Stated differently,
the equations will be correct in either case if ¥i in the factor out-

side the braces is replaced by Iyll.

[REVRUSIP
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TABLE T

COMPUTATION OF INTEGRANDS FOR INTEGRALS (7a), (Tv), AND (8)

SRURNPSN SNy

FOR POINT P (x = 0.7707, y = 0.2500) . ;
(1) (2) (3) (%) (5) (6)* (7)** (8)*x*
oty JZ + @2 doyfor | 4210 43 [ a/ea) [ §2 [ + ()
- t - ! + ' +
(i?f;t’;j x=x'Vy -y 1) 2) ey cl/y %—2-)1%3—% %-é-g-

a 0.7707} 0.2500 0.8102 0.5880 0 14.5900 0.7259 0
b L4660 | 1250 L4825 .b72h -.214 9.0097 1.1874 -1.6238
c 385 L1aes .4hoB L5700 -.228 9.9722 1.2672 -1.794%2
a 4051 L1000 4173 L5069 -. 24k 11.172% 1.3585 -2.0067
e 3Tho ] L0875 L3847 L5637 -.259 12.7151 1.4653 -2.2475

0y k1] Lo7s0 .3%22 L5604 -.273 14.7721 1.5911 -2.5345

g L3137 .ovzs .3199 L5569 -.289 17.6479 1.7409 -2.9298

h 2832 .0000 L2870 .5536 -.300 21.9746 1.9249 -3.4248

i 2527 .0375 .2555 .5501 -.316 29.1773 2.1530 -4 .2824

N .2223| .0250 .2237 L5459 -.331 43,5344 2.4403 -5.9050

k L1918 | .0125 .1922 .5h1g -3k 86.6130 2.8195 -10.5677

1 .1613 0 .1615 L5373 =.360 |  esmceees 3.3329] cmemeeeo
m .1309 | -.0125 .1315 .5329 -.313 -85.0679 4.0525 7.8300
n .1004 | -.0250 .1034 L5279 -.387 -41.5985 5.100% 3.1564
o L0699 | -.0375 .0793 b22s -.ho1 -26.2156 6.5889 1.5954
P L0394 | -.0500 L0637 .51u3 -.415 -16.7288 8.1130 8557

q .0090 | -.0625 L0631 L5118 -.k2g -9.3510 8.1062 .bolg

r -.0215 | -.0750 .0780 .5059 - hhl -1.8863 6.4859 L3345

5 -.0520 | -.0875 .1018 .5009 -.458 -2.8005 4.9204 .2607
t -.0824 | -.1000 .12 Loyt -.470 -1.8017 3.8171 .2218
u -.1129 -.1125 L1504 L4885 -.u84 ~1.2066 3.0646 .2001
v -. 1434 F -.1250 .1902 4831 -.498 -.9497 2.5363 .1865
w -.4481 1 -.2500 .5131 4123 -.03h -.2091 .8039 .1648
X -.7527 1 -. 33:0 .8409 .3261 -.770 -.0912 .3879 L1811
y -1.0574 | -.50M0 1.1697 .2206 -.902 -.0425 .1890 .2026 .
z -1.3621 | -.62% 1.4986 .1006 | -1.00% -.0146 L0668 .2195
a' -1.6668 | -.7500 1.8278 o} -.380 0 I .0816
b -2.5271  -.7500 2.6360 0 -.380 0 0 .0552
c' -2.2941 | -.6250 2.3777 L1006 | -1.00% -.0056 .0k21 J13kk -
a' -2.0611 | -.5000 2.1209 .2206 -.902 -.0125 L1042 .1079
e' -1.8281 | -.3750 1.8662 .3261 -.T70 -.0177 L1748 .0782
£ -1.5951 | -.2500 1.6146 4123 -.03 -.0200 L2555 .0kgs
g' -1.3621 | -.1250 1.3678 4831 -.408 -.0162 .3527 .0227
ht -1.1291 ) 1.1291 53731 -.360 0 4761 0 -
i’ -.8961 | .1250 L9048 .5725 -.21k L0439 .6322 -.01k49
3t -.6631 | .2500 .7078 .5880 0 .1812 8297 0
k' -.8961 1 .3750 L9714 .5725 214 .1182 .5888 .0k32

1 -1.1291 | .5000 1.2349 .5373 . 360 .0920 L4348 L0760
m' -1.3621 | .6250 1.4986 4831 498 L0705 .3228 .1088
n' -1.5951 | .7500 1.7626 4123 634 .0522 .2337 L1414
o' -1.8281 ] .87s0 2.0267 .3261 770 .0365 .1608 L1748
P’ -2.0611 | 1.0000 2.2909 .2206 .902 .0221 .0960 .2070

q' -2.2941 | 1.1250 2.5551 .1006 1.005 .0092 .0395 .2329
r' -2.5271 | 1.2500 2.8193 0 .380 0 0 .0888

s' -1.6668 | 1.2500 2.0834 o} .380 0 0 .1266
t! -1.3621 | 1.1250 1.7666 .1006 1.005 .0206 L0572 .3610 -
u' -1.0574 | 1.0000 1.4554 .2206 .902 .0602 .1512 .3586
v' -.7527 | .8750 1.1542 .3261 170 .1296 L2824 .3533
w' -.bk81 | .7500 8737 4123 634 .2676 L4716 3600

x! -.1434 | .6250 6412 4831 498 .6010 T5k5 3966
y' 1613 | .5000 525 5373 .360 1.4035 1.0219 L4931 .
2’ 4660 1 .3750 .5981 .5725 .21k 2.7137 956k .6101

*  Integrand for (7a NACA

#* Integrand for (7b -

### Integrand for (8)
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(x,5,0)
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: (x,Y:0)
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X

Figure 1l.- Element of vortex on wing boundary showing coordinate and
vector systems used in the spplication of the Biot-Savart law.
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Figure 2.- Wing composed of uniformly loaded chordwise strips of span
dy' with a closed vortex superimposed on the boundary of each strip.
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Figure 3.- Geometrical relationships for straight-line chordwise vortex
segments that occur with spanwise-varying area loading.
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(a) Determination of integral (7a).

Figure 5.- Determination of the mean surface slope dz/dx at point P
of the example wing of figure 4.
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(b) Determination of integral (7b).

Figure 5.~ Continued.
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(c) Determination of integral (8).

Figure 5.- Concluded.
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(a) Calculated slopes, example wing.

Figure 6.- Calculated slope of the streamwise mesn camber line through
point P (see fig. 4), and the slope for the NACA a = 1.0 mean
line at c¢; = 1.0.
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(b) Slopes along NACA a = 1.0 mean line, for c¢3 = 1.0, from
reference 3.

Figure 6.- Concluded.
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:

Figure 7.- Unit bounding vortex composed of separate straight segments A,
B, C, D, E, and F superimposed on wing plan form boundary.
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Figure 8.- Geometrical relationships for case I.
sketch show relative positions of vortex segment and path of integra-

tion for this case.
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~ 3

»

Figure 9.~ Geometrical relationships for case II.

Heavy lines in small
sketches show relative positions of vortex and path of integration

for three different conditions for which this case applies.
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Path of \
=% ‘z‘integration N

4

X

Figure 10.- Geometrical relationships for case III. Heavy lines in

small sketch show relative positions of vortex segment and path of
integration for this case,
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-zow

Figure 12.- Chordwise mean camber lines at several spanwise stations for
& triangular wing with uniform area loading. Leading-edge sweep angle,
68.4°%; Cr, = 1.0; aspect ratio, 1.57.
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