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Summary

Correlators (multiplier-averagers) are analyzed and
comrared with detectors (rectifier-averagers) of various
power laws from the point of view of their possible use in
signal reception systems. Comparison is made in terms of
signal-tc-noise ratio for the limiting case of small input
signal-to-noise ratic and long averaging time., Of the de-
tectors, the square-law is found to be slightly superior
for determining the presence of a small signal in a noise
Sackground, while 1f two samples of the signal in incoher-
erit baeckground nolses are available , although the correlator
cannot improve the signal-to-noise ratio, it does have the
advantage that no constant terms independent of the signal
appear at its output. The design of electronic sorrelators
is discussed, and several practiecal circuits are given, Two
other types of circuits, similar in operation to correlators,
but much simpler to construet, are also analyzed. Both of
these are very slightly inferior to true correlators in out-
vput signal-to-noise ratio.
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FREFACE

An investigation of the possible application of corre-
lation techniques to acoustic receiving systems is under
way at this Laboratory. In this first technical memorandum
on the subject are presented findings which pertain especi-
ally to electronic correlators, including theoretical
analysis and practical circuit design. Consideration of
applications to specific acoustic systems will be reserved
for a subsequent memorandum.,

This study of correlation techniques was suggested by
Professor F. V. Hunt, and the authors are greatly indebted
to him for his helpful and stimulating guidance of the
project. The authors also gratefully acknowledge the
assistance of Professor Harvey Brooks, who demonstrated
to them many of the methods of analysis used herein, and
of Professor David Middleton, who contributed his time in

many helpful discussions.
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Correlators for Jignal Reception
by
James J. Paran, Jr. and Robert Hills, Jr.

Acoustics Research Laboratory, Harvard University

I
INTRODUCTION

There are many possible criteria for comparing the effi-
cacy of various systems for the reception of acoustic signals.
Many of these depend upon the particular type of system being
~ considered. However, we have attempted to keep our considera-
" tion general rather than specific, and have chosen a5 a cri-

terion of system performance the output signal-to-noise ratio,

and in most cases have concentrated attention on the important
case of very small input signal-to-noise ratio. In order to
evaluate signal-to-noise ratios theoretically, we must make
use of certain statistical methods for dealing with the random
functions we encounter. While these methods are dy now rela-
tively well known, the following sections will serve as a
review of some of the basic 1deas, as well as a definition

of our notation,

Mathematical Ireatment of Bandom Punctions’

A particular example of a random noise voltage is, of
course, an explicit function of time and could, in principle,
be so represented. However, such a representation would be
of no physical interest, since each example of random noise
is different and could never §g exactly repeated. We must
instead make use of certain average properties of all noises
belonging to the same class. Por example, if we are concerned
with the output of an electronic noise generator, we focus

.le
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attention on what would be the average properties of all the
outputs of a large number of identical noise generators. The
outputs of all these noise generators comprise an epsempble of
random functions; the complete ensemble is called a random

process (as soon as certain mathematical properties of the
ensemble are specified -- finite mean-square amplitude, for

example). 7The description of the random process is then
formulated statistically, and we can speak, for example, of
the probability that at some time oneé of the noise voltages v
will lie between v and v*dv  A more complex probability func-
tion will give the probability that at some time one of the
noise vo.tages will lie between.vl and vl*dvl and that at a
definjite time later the same noise voltage will lie between

v, and vz*dvz. The random process can be completely described
by a sufficiently complex sot of such probability densities.
Prom these usually complicated functions, however, may be
derived certain average properties which are much more use-
ful in describing and zmeasuring the noise, these include the
mean value, mvan-square value, power spectrum, and correlation
function Por example, if P(v)dv is the probability tha® the
nofse volitage v(t) livs between v and v+dv, then the mean value
0!l the noise is

<v(e) = TvP(v)dv,
<

and its mean-squars value 1is

4

ra - [

= a

0f course :7P(v)dv = 1, since P(v) is a proper probability den-
sity. In "% the above examples, the average values are denoted
by angular brackets, < >, to indicate that they are statistical
averages, computed from the probability densities which describe

the ensembls. In most experimental messurements of random funa-
tions, on the other hand, as when a d ¢ voltmeter 1s used to measure

e
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the mean value of a noise voltage, what is measured is a time

average of one member of the ensemble. Time averages, which we
shall indicate by overlines, can be represented mathematically

as
T

‘ e 1 1
v(t) = 1.__.@-5,1.4 v(t)at

and " T
vi(t) =  Mia %,jvz(t)dm
T

If none of the probability distributions which describe a ran-

dom process changes with time, the process is said to be stationary
If each member of a stationary ensemble of random functions is
typical of the ensemble as a whole, that is, 6 if each member fune-
tion can be expected, as time progresses, to go thrcough, with

the proper frequency, all the convolutions of any of the member
functions, the ersembie 1is said to baAgI‘gging An important
theorem, the ergodic theorem, states that for an ergodic ensemble,
tire and statistical averages are equal, 1 e , if v(t) is a mem-
ber ¢f an ergodic ensemble,

v(t) = <v(t)>

It {s not usually possible to prove that a given physical system
is ergodicy the above description of the ergodic property may .
serve as a guide in deciding whether or not it is possible to
make such an assumption. The ergocdic theorem allows us to re
place messurements which in our mathematical model reprasent
averages over many members of an (ergodic) ensemble with long-
time-average measurements of one member of the ensembie. All
the stationary ensembles with which we shall be concoerned in
this memorandum are assumed to be ergodic.

ihe Geussiap Pistribution

It can be shown that all the probability diatributiens of
thermal and shot nolse, the typos most oftan encountered tn
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electronic circuits, are normal or gaussian distributions°3
(These types of noise are said to belong to a gaussian random
process.) Other fairly common types of noise are also more or
less accurately described by the gaussian distributions.® The
gaussian probability density (for the amplitude of the voltage
v) is

2
Pv) = —hr oV/20
Ve
where 02 is the mean-square asplitude of the voltage. It will

be useful later to determine the average of the fourth power
of a gaussian-distributed variable:

(1.1)

Ve

ta

® 2,2
<vhra —h— / vd eV /20 4y
®

P
- —1--(202)2 qu‘ Y du' -
Yo -

- —e v, B‘r—"
yq;(Zﬂzl n

4
-3 (1.2)
In general it may be shown that .
<v2”> - _£ZILL az" (1.3)
27 (m)t

and, because the distribution is here symmetrical

- - e - e -

*Note, however, that if gaussian noise is passed through a non-
linear device, the output is no longer gaussian. In Pig. 1 are
shown the probability distributions for gaussian noise, for the
output of a multiplier when the inputs are incoherent gaussian

noises, and for the output of a "squarer" when the input is gaus -

sian naise. The latter two are very definitely non-gaussian
For further examples, see Rice's papers and Middleton's paper,
cited in footnot? 1.
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v
GAUSSIAN NOISE
! P(v)
r)
v
/4/1// pi .

SQUA@E Of A GAUSSIAN NOISE
- I

have

P(v)

PRODUCT OF TWO INGCOHERENT GAUSSIAN NOISES

Fig. 1.1 Probebility densities for the =mplitude v of & gsussien
noise, of its square, &nd of the product of two incoherent
gausclan noises of the same amplitude.
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<v2m“l> = 0. (1.4)

Represeptations of Noise Voltages

There are several ways in which mathematic¢al representsticons
of noise voltages may be written, each of these being espacially
useful in different cases. As we have noted, a particular exampise
of rnoise might be represented by an explicit function v(t); how-
ever, a complete ensemble must be represented by a parametric
function of the form

'(“1r°2v’°'“n’t)“

A farticular example is thus characteriged by a particular numer-
ical cholce of the parameters a;,a,...ap (which may be infinite in
runber). The statistical character of the noise is completely
syecified {f we know the probability density of the parameters

12, in general given by a function

P(ala2 aa),

The 3's are called random variables and constitute the statisti-
25l parasmeters of the ensembdble.

Thesze ideas will become clearer in the light of several
etazples We consider first noise which is made up by the
superposition of a number of individual events, each of which
ras the explicit time-functional form f£(t) but with different
starting times tk, all of which fall inside some long time {n-
rerval T. Then the noise voltage is given byl’j

v(t) = E f(tv—tk),, (L)

k=1

A particular chioice of a family of R particular valuea of tk glves
a particular example of noise. The tk'n corraapond to the a's

and are the statistical parameters of the enszemble  The complete
ensemble consists of an Infinity of examples Tike Fq. (1.%), in
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which each of the parameters tk takes on all possible values

within the time interval T, within which the nolse is specified !

by Eq. (1.5). In the most usual case the probability density _
dtloodtkoodtn ' ;

P(tl,otk,otn)dtloodtkoodtR = TR

Another representation which will be used frequently is the
Fourier series representation. Consider an example of noise in
the time interval T. It may always be expanded in a PFPourier
series:

®
v(t) = E (a cosw t + b sine tl, (1.6)
n=0

where w, = 2¥n. If we omit the term for n = O, the average

noise voltage vanishes, which is the case of usual interest.

The an’s and bn's, irfinite in number, are the statistical para-
meters corresponding to the a's. In order to specify the statis-
tical character of the noise, we must know the probability distri-
butions of the coefficients a , b . In the case of gaussian noise
it 1s customarily assugped that the 8, bn obey the gaussian dis-
tribution law (Eq. (1.1)) and are statistically independent, so
that the probability density function may be expressed as a :

product: 2 2 ’
- [ i '

ﬁ 2 ar2
P( ' ) rf17 26h n
Q450008 bicooob = ﬁ'e ﬁ-e
1 w’1 ®
n=1 2"%1 2 n

Applying the properties of the gaussian distribution (Eqs. 1.3
and 1.4)), we find

-

2 2., . =
<g > = <b§>= n 9 <'anbn> =05 <aa> =<bb> = 0,n#/m,

(1.7)
Another method of representing a random function is te
assume that the functien vanishes outside the leng interval o
-T/2 S|t € T/2. It can then be written in Fourier integral form
as
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v(t) = TA(f) ed2ntt 4 (1.8)

-

where the complex function A(f) is the voltage spectrum. Now
hy the Parseval theorem,4

2/2
] v3(t) dt = va(t) dt = j'p(f)l2 ar.
® -1/2

<o

This leads immediately to a definition of the jintensity spe *
of the random process, for, dividing by T and going to the limit
T—o, and using the fact that |A(f)|2 is an even function of f
(because v(t) is real), we have
T/ ®

lim # v3(t)dt = v3(t) = [W(f)df,
-1/2 “0

Y—

where the intensity spectrum is defined as

1lim A 2
'(f) = r__’m [

In this representation the functions A(f), which are different
for each member of the ensemble, take the place of the statisti-
cal parameters.

Correlation Functions

A very useful method of expressing the properties of ran-
dom processes is in terms of correlation functions. The guto-
cerrelation function of v(t) is defined as

R(7) = v(t)v(t=2) = <v(t)v(t-v)> .
In terms of the representation of Eq. (1.6), this is

*Intensity has the dimensions of voltage squared. We use the
term "intensity spectrum" rather than "power spectrum" to
avoid the necessity of defining the resistance in which the
power is dissipated.




TM27 -8=

® ®
R(z) = <: E E_?[amcos wmt + bm sin mmt]
m= n=

°[ancoswn(t«1) -+'bnsinmh(t:-‘b‘)]:>_°

Using the relations of Eq. (1,7), we have

R(z) = E ( <aﬁ > cos wnt cos wn(tJ)
n:

+<b§ sin o t sinw (t-2)1.

8 )

= zz:j <a§> cos w . (1-9)

n=1

The autocorrelation function thus consists of terms equally
spaced in frequency. If we pass to the limit as the interval
of definition of v(t) is made infinite in length, the spacing
2n/T becomes smaller and <:aﬁ>-—? W(f)df, where W(f) is the power
spectrum. In the 1limit, the sum can be replaced by an integral,
and we have )

™

R(r) = .f W(f) cos 2nfr 4f . (1-10)
0

The above is a demonstration of the Wiener-Khintchine theorem,5

which states that, with complete generality, the autocorrelation
function is the cosine Fourier transform of the intensity spec-

trum. The inverse transformation is

O
W) =4 f R(¢) cos 2nfT dt . (1-11)
0

The value of the autocorrelation function forz= 0 is obviously
the mean-square value of v(t), while the value of the autocorrela-
tion function of a random process fort—mw 1is the square of the
mean value. Autocorrelation functions alsc have the properties
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R(TY = R(-1),
and IR(zY] « R(0).
Twe porpalized autecerrelatiep function i oftan useful. It can

he written _
p(e) = B

and has the property that p(0) = 1.
Sxesa-cerrelation lunctieons are defined in an snalegous way:

312($> x vk(t)va(tnf) » <.vl(t)v2(twt?:>w

They have the properties that
Rla(t) = Rzl(-r)

pnd
\au(r)‘ < VR (OR,(0) ,
wrere Ro..T0 s 22(z’) are the autocorrelation functions of
v. ¢5 and v:(t), respectively
References
1. Por an excellent general introduction to the mathematical

description of noise7 see Lawson, J L., and G. E. Uhlenbeck,
hreshold MCGraw-Hill, New York, 1950, Chap. III,
A more compre ensivp and detaiied treatment is contatined in
8. 0. Bice s two papers, "The Mathematical Analysis of Random
Koise %&1} Syst _Tech J. 23, 282-332 (1944), and 24
158 (194 while for a general account of noise and sfgnals
in nonlinear systems, see Middleton, D,, "Some General
sults 1n the Theory of Noise throu n Nonlinear Devices "

Math. 5, 445-498 (1948) A fairly detailed bibliog~
raphy including these and ouner references.listed here, 1s
given 'at the end of this memorandum.

2. In more mathematical language, an ensemble 1is ergodic if it
is stationary, and there is no subset of the functions in
the ensemble with a probability different from O and 1 which
is stationary. PFor more complete discussions of the ergodic
property, see Shannon, C. E., and W. Weaver, The Mathemgtical

P “—



yi

YH27 ~10~

3o

4

Thepry Qgigggmggi%ggigg, The University of Illinpis Press, .
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11
* SIGNAL-T0-NAISE RATID AT THE OUTPUT OF A CORRELATOR

In & prfactical application 1t is not possible to perform
the infinite time averaging which, as {ndicated in the previous
section, is an essential part of the computation of a correla-
tion function. The best we can do electronically is to usse
some sort of low-pass filter as an averaging network. Bscauss
the averaging cannot be extended over an infinitely long time
there arrears at the output of the averageyl, in addition to
tbe correlation function we desire to measure, a fluctuating
voitsge which we can call the output noise It is of great
interest then to estimate the amplitude of this output noise,
and especially what might be called the output signal-to-noise

ratio.l

Correzator Output Signal-te-Nofse Ratig

Trne zean-squarz noise (or error) in the output of a
practical correlator can be found as the differerce of the mean-
square of the actual ocutput and the square of the correlation
furction being measured Por example, 1f Rg(fgtﬁ is the actual
output of the correlator, which is, of course, a function of
time, and if R(¥) = i;T?jES is the desired (signal) portion of
the output, the mean-sgquare noise 1s

(R T, t) - R(£)IC = Ri(t,t) - ZR(OR (¥, 1) + RO(7)

= RE(z,t) ~ R(z) + R%(e)

2 R2(7,t) - R3(r)
This procedure will be nsed below to compute the output nolse
If £(t) 1is the input to a filter, the output i{s given by

g,

N //’f(twﬁg(t~t")dt"
JJ o0
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which can be written, after a change of wvariable,

x
f.f(tw‘t“}g'{'t:—?)dt‘ , (2 1)
0

1 E o . g o 2 % 3
wnere g(t) 1s the welghtiny functlop™ of the filter, und haus
the propertlies, for a stable filter,

8

g(t) = 0, for t < 0, and | gl{tidt = L. {2.21

£

Wher a correlator is uscd o measure an subocorrelation funntion,
the anout to the filter iy the product fanectlion

witiwlt o)

W can then write the outpul of the correlator as

#;'ﬁf:
Rt = ff PLE TVl L-t)Vit-tiog) gL
Y
ItE mein-sguare value iw
e »
AT 1) = j git )v(t-tiywlit o 2)ge) gl )vit-tTjv(t-tint) 4t’,
‘“ 0 0

I7 #¢ cnanpe ¢ in the second intepral to " to distinguish batwsen
wne vurizhoes of integratlion, we can write the above as a doublws

X
- » "
SRIRETHL

H,{ﬁif) = T
' 0

Irterchanging the order of summing (integrating) and averaging,

s8]

i

T;(t‘)g(t?}v(twt*ﬁv(t»t‘«t}v(t-t“)v(t~t“~17dt’ dat»
0

WE Nave

ag(tm = 7 Tgw)g(t"") [vC ottt P)v(t t9)v( L) Jdtr dem
o ‘0
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The brackets enclose what might be called a third-order autocor-
relation function. In‘Appendix 1, an expression is derived for
the third-order autocorrelation function of a gaussian random
process,* in terms of the ordinary autocorrelation function. By
comparing the above expression with the first form of Eq. (Al.3)
we see that we can write -

V{tet ) v(tot 1O vttt v(totoT) = RO(T) + RE(tv-t)
+ R(t“wt9+f)R(t“«t“w¢§?

where R(¥) = v(t)v(t-t), the (ordinaryjautocorrelation function
of v(t). Then

P : 7 2 2
Rgft«,f”) = f g(t)g(t™) [R(T) + RE(t"-t¥)
0 Y0

+ R(tY «t94)R(EM.Eo.2]ds dem .

To simplify this expression, we note that the variables of inte-
gration appear in the correlation functions only as t%«t!, and
we therefore maks the change of variables

RSO L g tLES AR

whencs
"‘(_‘,“ - n{éﬂ; {:_u o .D_“;E

The Jacohian of thisz trangformation im

2t 3%
Ja%&g) - 3 \; 5 - = 1!’2
2% 2%

an
e m e

*At this point we must restrict our consideration to gausslanly-
distributed random signals as well as to a gaussianly-distributed
background noise. For sinusoidal signals, for example, where
vit-t'), v(t-t'=7), etc,, might consist of a random noise plus a
sinusoid, the reduction &erived in Appendix I is not valid. Our
results below for the limiting case of small input signal-to-

noise ratio will not be greatly in error, however, regardless of
the character of the signal, since the d{stribution of the gaussian
nolse plus small signal wili still be very closely gaussian,

Q)

~
¥

¥

PP
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z0 at'at" = (1/2)dg dn .

The regions of integration are indicated in Pig. 2.1. We see

1 ‘

/ﬂ

oy

g

Pig. 2.1 Regions of integration in the t',t", and in
the ¢~ m-planes.

that n must be integrated from‘é lto + wand g, from - to +w.
Wz then have

R2(t;2) = (1/2) f an Z 35 e (R3(x)

H
+ R(B)R(%) + R(E +2)R(E-THa%, (2.3)

The n-integration can be performed directly, since n appears only
in the g-functions. We define the transformed meighting fupction

©
wg) = (1,/2);’f g5 e(Eay
n’

which, after substituting t = a--;-*‘s , becomes

w(5)‘|2 g(t)g(t+8)dt .

4

The lower limit, which might just as well have been taken as - @,
simply serves to remind us that the weighting functions g(t) vanish

FI e g
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for negative arguments. With that in mind we can write

foin]
w(g) = [ glt)g(t+xiat .
Lo

It is readily seen, however, that when ¥.>90,

o -
w(3) = f e(bg(t3)at |
0
and, furthermore, that (2.4)

w(-E) = w(%) .

Equations (2.4) are the most useful form for evaluating the
transformed weighting function. It is readily demonstrated
that

wikldy = 1. (2.5)
- O

In terms of w(¥), as defined above, we can write Eq. (2.3)

— o
Ré’{tz’f} - R2(T) + fw({) {112{5} + R{Z+ZIR(Z-€) JAYX,
Em

The mean square of the correlator output noise is then

——— ' ©

R2(tz) - RA(T) = f w(E)(R3(E) + R(Z+DIR(3-0))dE , (2,6)
= ®

and, taking as the signal the average output of the correlator,

the mean-square output signal-to-noise ratio is

2
(S/M) e * B-(z) o (2.7)
f w()RZ(3) + R(E+DIR(5-2)1d g
Yoo

When the correlator is used to measure z cross-correlation

3 TR ——
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furniction, the input tec the averager is the product function
and, using the first form of Eq., (Al.4), we can show by the

same method as above that the mean~square output signal-to-
noise ratio 13
RZp ()
(5/Mout = . T °

fw(S) [Ry s(E)Rgp(E) + Ryp(E+)Ry, (£=7)]dE
“w (2.8)

Aeighting Functiong

The evaluation of a correlator’s output signal-to-noise
ratio depends upon the weighting function of the averager which
15 used, and more specifically, in the above formulation, on the
transformed weighting function. The weighting functions and
transformed weighting functions for three simple averagers will
ke glven below,

The weighting function of a filter network is its impulse
response, or output for a delta-function input, initiated at
time ¥ = O, and may conveniently be found, for stable filters,
as the Pourier transform of the voltage response spectrum of the
filter, which 1is simply the complex ratioc of the open-circuit
nutput voltage to the input voltage. For the low~pass averager
of Fig. 2.2, the voltage response
spectrum is

f..g,__;u.;g_.g —-0
ey R+ 1700

and the welghting function is L ;I; o
- readily determined to be o
1 =t/RC
glt) = RC € ;y 8208
‘ Fig, 2.2, RC Averaging

- 09 t <‘00 Networkc
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Then from Egs. (2.4), we find the transformed weighting func-
tion to be

-{&l/re
w(§) = 5%5 e , for allk, (2.9)

A simple and quick comparison of different averagers may be
made on the basis of their responses to a unit step input.
Just as the unit step is the integral of the unit impulse, the
response of a network to a unit step 1is the integrai with re-
spect to t of the impulse response. Calling the unit step
response U(t), we have, for the RC network,

U(t) = 1 - o~ t/RC t> 0.

In the same way, these three functions may be determined
for the critically damped RLC cir-

cuit of Pig. 2.3. The voltage
response spectrum 1s

1
1+3fo-LCWw’

Hm lom

and critical damping occurs when
R' = %1¢f'70', making the voltage
spectrum for this case

i Fi |

. g 2.3. Critically damped
(1 + 4 % ,/%%w)z RLC averager. (B-éfr¥737)u
The weighting function'is then

g(t) = —-1-—3 t e"t/R'Cl
a4(R'C")

’ tz 0,

and the transformed weighting function 1is
- Biyerrce
W(3) = b [2R'C'+|E]]e

The unit step response is

e e el
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Y <t/2R'C*
U(t) =1~ (1 + Y2R'CY)e , t=>o0.

The response of a finite-time "perfect averager®™ to an
input funetion f£(t) 1is

I
3 j £(t-t1)dt",
1 0

where Tl is the length of the interval over which the average
is computed. By comparison with Eq. (2.1) we see that the
weighting functicn 1s

g(t) = 1/7y, 0 <t <Z3
=0, t <0 and t>Tlor

No realizable network has this welghting functionj; it is, how-

ever, mathematically convenient for comparison purpoées, and,

1f necessary, its operation could be approximated by various
arrangements, one of which is shown schematically in Pig. 2.4,

2R

£ ) Re» T £ 2R ouTPUT

DELAY T, L-mf INVERTER ¢ f“"’
| -£Gt-T) =

Fig. 2.4. Circult for Approximating Operation
of a Finite-time Perfect Averager.

The transformed weighting function is

w(g) = %—1- (1 -y, HERSY
= 0, 51>,

and the unit step response is
U(t) = t/Tla 0< t < Tlg

= 1 £ > Ty,
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These three averaging systems may be compared by examining:

thelr step responses after adjusting thelr time constants sc
that their noise-reducing properties for wide-band input noise
are the same. Equation (2,6) gives the mean~square value of
the noise at the output of the averager. Now the range of 7
over which a correlation function R(T) i3 appreciably differ-
ent from zero is roughly equal to the reciprocal of the signal
bandwidth. 8imilarly, the extent of the transformed weighting
function w(¥) is inversely proportional to the width of the
pass-band of the averaging network. For good smoothing the
pass-band of the averager must be small compared to the band-
width of the signal. Usually, therefore, the principal contri-
bution to the integral of Eq. (2.6) comes in the region where
#w{%) 1s not substantially different from w(0). In this case,
then, Eq. (2.6) may be replaced by the approximate form

Eg(t,n-n?(r) = w(0) 7 [(RZ(E)+R(5 +T)R(Z -T) 1d¥.
« (D

The mean-square noise output for a given (wide) input spectrum
is therefore proportional to w((0). HNumerical values of the
time constants of the three averaging networks discussed above
were chosen so that w(0) was the same in all three cases, and
the resulting weighting functions, transformed weighting func-
tions, and responses to a unit step are plotted, to the same
scale, in Pigs. 2.5, 2.6, and 2.7, respectively. It is to be
noted that the rise times are roughly equal when the noise-
reducing properties are equal. There does exist an advantage
in using the optimum filter for a given input functionj this
will be discussed in a following section.

Correlator Qutput Signal-to-Nolse Ratio; Specific Examples
The correlator output signal-to-noise ratio was shown in

Eq. (2.8) to depend on the transformed weighting function of
the averager and on the auto- and cross-correlation functions

s v T L e - e e
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of the inputs. Using the transformed weighting function given
in the preceding section for the RC averager, and the autocorre-
lation functions derived in Appendix II, we can reduce Bq. (2.8)
to a much simpler expression, subject to a few restrictive condi-
tions which often pertain. We assume first that the two inputs
to the correlator are made up of various combinations of two
random noises n,(t) and n,(t), of equal amplitude, and a noise
signal s(t), all three being statistically independent and
having the same rectangular spectrum of half-width »f and center
frequency fo“ These signals then have the autocorrelation func-
tions

Bi(t) - N(%%ﬁ%%?ﬁz) cos2nf0t

- ﬁm; I Ay f
R_Z('U) = N( mfz ) UOSaﬂfo'z

Rs(cﬂ = S(ﬁéﬁf%%}zj cos2nf T
where N and S are the mean-square values of the noise and the
signal, respectively. We assume that the correlator uses an
RC averager, and we use the transformed weighting function
given in Eq. (2,9). Now, as we noted above, if the pass-band
of the averaging network is small compared to the bandwidth
of the signal, we may assume that the principal contribution to
the integral in Eq. (2.8) comes in the region where w(E) 1is not
substantially different from w(0). Subject to this assumption
that 1/RC << Af, Eq., (2.8) becomes (with 2’ set equal to zero, to
give the maximum signal output, the signal s(t) beiné assumed
present in both channels without relative delay), -

2 »

REL(0)
(S/M) u¢ = £ ”
”2111"67[31\14@) Rpp(3) * Ryp(5)Rp,(5)1d%

= 0

We consider four different modes of operations

P

R —
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t
FINITE-TIME PERFECT AVERAGER

9(1)

t
RC LOW-PASS NETWORK
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CRITICALLY~DAMPED RLG NETWORK

Flg, 2.%, Welghting fNinotione for three Kverigers ,



W(¢)

3
FINITE-TIME PERFECT AVERAGER
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Fig. 2.6,
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CRITICALLY -DAMPED RLG NETWORK

Tranaformed weighting functions for three averagers.
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FINITE-TIME PERFECT AVERAGER
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RC LOW-PASS NETWORK
|
u(t)
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t
CRITICALLY-DAMPED RLG NETWORK

Fig. 2.7. Unit step responses for three averagers.
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I, Both inputs s(t): In this case we have the maximum
output signal-to-noise ratic which occurs in the measurement of
an autocorrelation function or the"signal-to-noise ratio" for
the neasurement of the mean-square of s(t). We have

Ra(8) = Bpg(8) = Ryp(§) = Ry, () = 5(3MBMLEcosant

so
s

8

(S/N) out S

s 1)
SZ 12 cos2
Re / cos“2nf ¥d §

- 2BCAw
1w b}

where Mw = 2mAf, We see for the first time here the very general

and well-known result that the output mean-square signal-to-noise

ratio is proportional to the product of the input bandwidth and

the output time constant.

II. Beth inputs {gagtz*sgtzlg Here the correlator is

simply used as a square-law detector to determine the presence
of a signal in nolse. We have

Raal%) = Rgg(®) = Ryp(B) = Ry, (8) = (N+5) éizz}‘?fﬂgﬂ

cos27f ¥ .

The d-c¢ output in this case is RAB(O) = N + 8., We take as the
output signal simply S, assuming that the d.c voltage N can be
biased out, or ignored. The cutput signal-to-noise ratio is
then

2

2 @
N+S f (L2t £242, 4 2ons O;d}

(S/N)out

Y]

_ _28° RC_ M
n(N+8)2
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and, -if 8 << N, .
- 2RGAY 2 '
(S/N)aut " (S/N)in ¢

III. Qne Input (n,(X)+s(t)], other input igaﬁt)+s§t)]2

The correlator is used here to determine the presence of a

‘common signal in two different samples of signal in noise.

) = Bgp(®) - (15) BT conzor

QAB(g) = Ry, (E) =8 slngfl . oconr 13

Y3 o ;

and

2 3
(8/N),y = —2-BCLa_ ?
[(N+8)%+ 521 =

In the limiting case where S << N,

(/M) = 28R (5/m)%

IV. One Input {n.(t) + s(t)], other input vN/5 s(%):

Here a standard sample of the signal of constant mean-square
amplitude N is cross-correlated with the signsi and noise. We
have

RAAQ;) = (N+S) (Siggqééi)cosznfd;
Rpy(3) = 2"Af§-'{) cosant
Ryp(¥) = Rp,(§) = (S—i—rﬁ-'g-s)coszn‘ 3
and .
4NS RC_Lw .

S/N = —
(5/Mous [N(N+S) + NS1m

which becomes, if S<<N,
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(/M) = e (s/m)

o

in
I this mede of cperation the output signal-to-nolso ratio 1s pro-
portionsl to the Lirst power of the input signal~to-nolse rutis,
resulting in an advantare of a fagkor 2 1o Qeuikels over the other
srrangements above, for small dnput signal-tu-nolse ratioa. The
srocess [rom shich this seving results 1s known as "predetector
on," and always involves knowing the instantaneous wave-
form (phases) of the signal being sought. This is the prinsipls
berird so-ralied thase or coherent detectors. In cases II and 117,
#hare the smgll-zignal ocutput signal-te-nolse ratic 13 proportionsd
o the zquare of the inout signal-to-ncise ra*io, we have the ohe.

ropenon of #signal 5Uppr3$ﬂiaﬂr”&

Copnarissn of eases II and IIT for the square-law detector
and tre correlator sust be made wery carefully  The resulis
e P

stove show that {f two samples of the same signal in incoherent
vyzxgreunt nolse: are avsilable, the correlator can oroduce a3 zig
ral-toe-ncize ratic 1 db better than that of tha square-law deter.

vor fopereting on cne fample of the signal in nolse). Obvicusly,
2L tsy rzmples of the signal in {nccheren® nolses are avallable,
he added and zopplied to the square-law drtertor, whers
¢ tnruat signgl-to-nolse ratio {ncreased by 3 db, the out-
1gnal s¢ ratio will be increased by 6 db, a result
i ib tetner than for the correlator  The correlator, on tha

4
Fa g
o

i
o3
Q
i

ceher nand, oroduces no d-o cutput independsnt of the signul, &
that should not be nverlooked

T3
s |
)
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(34
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3
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s& of noise whose spectrum 1s that of a single-
sult of at least moderntely high Q, we use the
-
1%

bi
autceorrelation function derived iniApp&ndix 1T,
wi T
R(?) . &« F HoSw T,

AneIe wxf2ﬂ is the half-bandwidth to the hglf~powear point, and
mﬁ/;n 15 the center Lfreancrnicy sguming, e pelora, thaf
l/Bngwy?, and slso that wy <<h%ﬂ 0 That wilh 9Lt 1o wrror
we Mmay replace The Cﬂﬁ%uﬁz by Lto nverape valw (1700 wn
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The formulag derived above £or the rectangular spectrum may then
# gperigtised o the case of the tuned~clrcult spectrum of
e favavaly Wigh @ by replacing the factur'zﬁgfw by ry

re

F
Thesa Jutrut signal-to-nolse ratios are summarized for the two
sugeg in Table 2.1

AveTyrer Efficiency and Optimum Filters

Trfortunately, the signal~to-nolse ratios derived theoreti~

¥ in the preceding sectlon are never achieved in practice.

Tt was azsumed ih the derivation that the d-¢ zignal in the outw
the avsrarper had tuilt up to its n‘rimate value, while with

“

i
wal
ot
o

“re sycaption ¢f the finite-time perfect averager, this requires
20 infinitely long time. In practice, either because the re-
eiver is scanned 1n one or rore angular dimensions, or because cf
r itory nature of the signals themselves, an infinitely
Long obgervation time Is not available. If one used an averager
with such a short time constant that the d-c¢ signal in the out-
rut doeg very rearly attain its ultimate value during the epoch of the

o T FY

*A“thuugh the ingpgration could be carried out easily without -
replacing the cos® by its average, it would not be exactly
correct to do so, since the more exact form of the autocorrelation
function for lowﬂQ ¢irenits (see Appendix TI) should be used in
the widembdnd cage,

g
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signal, then one iz not obtaining the greatest possible output
signal~to-noise ratic because increasing the time constant will,
for a while, cause the noise to decrease faster than the signal.
It is therefore important to consider the time-functional form
of the signal as 1t appears at the input to the averager, and
the general problem of specifying the optimum type of averager
for detecting the pressrce of that signal in noise. We here
define the optimum averager (for a signal of finite duration)

as that one which produces the greatest peak-signal-to-rms-

noiss ratio gt its cutput. It is not recessarily true that

such an averager procduces at the same time the most easily
discernible signal (in the presence of noise) to the eye. 1t
is reasonable to assume that this is a fairly satisfactory
¢riterion of detectability, however, and it is mathematically

convenient. Woodward, 5 by applying the theory of inverse proba-
bility, has specified much the same criterion for extracting the

greatest possible amount of information from a radar signal.
Other optimum filter criteria have been used, for example:

(1) minimization of the mean-square error (best possible re-
covery of the ghape of the input signal) and a closely related
method of minimizing an arbitrarily defined “distortion,"7 and
(2) minimization of the mean-square error in determining the
average value of a noise wave (or of measuring a steady d-c¢
voltage in the presence of noise) when there is only a finite
time available for the measurement. '

It has been shown by Van Vleck and Hiddleton9 that the
filter which gives the test output peak-signal-to-rms-noise
ratio when the input noise bandwidth is much larger than that
of the signal pulse is simply that filter whose weighting funcw-
tion is proportional to the time-furctional form of the signal
backwards.” (The result was expressed originally in spectral
language.) This optimum filter is called the "matched" filter.

*The weiﬂhting function of a physically realizable passive net-
work must vanish for negative arguments. This makes difficult
the problem of constructing a passive filter tc match a pulse
whose time-functicnal form extends a considerable distance

sy e

| ne
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Thelr mathematical proof will not be repeated herey it was
applied by them specifically to the case of a rre-detection
filter on the basis of maximizing the pmstwdeceutor signal-to«
noise ratio, but exactly the same arguments may be applied in
this case. Van Vlieck and Middleton stste further that if the
optimum pre-ded eotion filter is used, no post-detection filter
can improve the signal-to-noise ratieArnrtherplo In s correla-
tion system, on the cther hand, pre-multiplication filters are
used {with broad-band signels) mainly to determine the shape of
the correlation function being measured, by establishing the
signal spectrum, the signal at the output of the correlator
being determined in many cases by the relative delay of the

two input signals rather than by modulation of a carrier,

The greatest part of the signal-to-noise ratio improvement by
filtering must then be obtained in a post-multiplication filter.

We here define the "efficlency®™ of an averager for a signal
of finite duration to be the output peak-signal-squared-to-mean-
sruare-noise ratio divided by that same guantity for the matched
{ilter Efficliency thus i3 a numeric which runs from 0 to 1.
Oir averaper efficiency differs from that defined by Eckartll
in that we assume that the background noise has always been
prezent at the input to the filter, while he assumed that the
nolse and signal were applied simultaneously@lz We feel that
our definition 18 more realistic for the case where the recelver
ig "on® continucusly and signals arrive at the input from time
to time., The efficiencies have been computed by very stralght-
forward rethods, by finding the peak value of the transient
response of the filter, squaring that value, and dividing by
the transformed welghting function of zero argument, which,as

i

P .

either side of its peak or center. However, one method has been
suggected for corstructing an active filter "which can have welight-
ing functions that do not necessarily vanish for negative argu-
ments (see Ref. 7 ahove). If the pulse ig symmetrical, there

15 an advantage of 3 db in using the symmetrical weighting

function over using (the physically realizable) halfl of *t
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we showed above, is proportional to the mean-square noise out-
put, when the averager band-pass is nérrow compared to the in-
put bandwidth, and normalizing. The illustrations below are
thus valid only for relatively wide-band inpuf background noise.
Averager efficiencies for detection of a rectangular pulse of
length T  are plotted in Pig. 2.8. for the three averagers

whose weighting functions were given above. The abcissa, x, is,
for the finite-time perfect averager, Tl/Tog for the RC averager,
ZRC/TO; and for the critically damped LRC circult, BR'C'/Too It
can be seen that the time constant of the averager must be
adjusted carefully to the pulse to achleve the best signal-to-
noise ratio, and particularly so in the case of the finite-time
perfect averager.,

Averager efficiencies for detection of a "backwards" expon-
ential pulse having the t!me-functional form

£/7
£(t) = e °, t g0,

= 09 ﬁ>09

are plotted for the same three averagers in Fig. 2.9. In this
graph, x is RC/T0 for the RC averager; '1'1/1'o for the finite-~time
perfect averagery and BR'C“/T0 for the critically damped LRC
circuit. The backwards exponential pulse was chosen to match
the RC averager, and the advantage of this filter over the others
1s clearly apparent. As here deflned, averager efficiency is
proportional to relative peak-signal-squared-to-mean-square-
noise ratlo, so that a decibel scale can be used to compare

the different averagers. A decibel scale has therefore been
added to the right-hand side of Figs. 2.8 and 2.9. The differ-
ericesbetween these three filters in the region near x = 1 are
thus seen to be rather small in decibel measure.

By reference to Figs. 2.8 and 2.9 it may be seen that the
degree to which a fllter is optimum is closely related to the
extent to which its weighting function matches the pulse being
detected. One would therefore expect that an RC averager, for
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example, would be a relatively poor averager for the detection

of the presence of a signal pulse having the form of a correla-
tion function such as that shown in Fig. 2.10. This is the
autocorrelation function of random noise having a spectrum

equal to the intensity response of a tuned circuit with Q = 8.
Approximate calculations have been made comparing the RC

averager with the best time constant for the purpose with the
matched symmetrical (physically unrealizable) filter. Por

fairly high Q's it was found that there is an improvement in

the peak-signal-squared-to-mean-square-noise ratio of approxi-
ma‘ely a factor Q. This improvement factor diminishes to unity
85 ¢—*0. It 13 noteworthy that the coptimum filter for such a
correlation function is not an averager but a band-pass filter!
This i3 the best filter for detecting the presence of correlation
but not the best filter for an accurate nmeasurement of the corre-
Llation function, wnich regquires a d-c measurement.

Incidental to the above nalculations, the relative efficiency
of an RC averager for the detestion of a sinusold of frequency
wwfan‘in wide-band noilse has been gomnuted snd i3 dlsplayed in
Fig 2.11 a3z a function of the produnt R TP The maximum
efficiency occrrs at RC = l/mog this may be ftaken a® an approxi-
mate best value of the time constant RC for the detention of a
correlation function of the form of Fip. 2.10, where w /2n 1s
the frequency of the modulatsd cosine wave of the correlation
function as it anpears at the output of the multinlier

It 18 possible that the filtering procesz might be re-~
placed by s correlation method, especially for the jpurpose of
achieving nonphysically realizable welghting functions. If an
electrical functlon genérator could be constructed to generate
the desired weighting function, the operations of miltiplication
and integration indicated in Eq. (2.1) could be performed elec-
tronically. (This would require at least an approximation to a
finite-time perfect averager to perform the indicated integra-
tion.) This method would be somewhat complicated by the fact
that each different possible time of arrival of a signal wouid
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have to be investigated separately, while, with a passive filter
we have gimply to observe the output as a function of time and
note at what time a signal appears. Either a multichannel sig-
nal processer or a receiver which would record the recelved
signals for later high-speed playback and processing might make
such a system feasible.,

e
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ELECTRONIC CORRELATORS

A correlator 1s assumed to consist of a multiplier and
an averaging network or output filter. We have discussed
filters in the preceding chapter, and therefore the problem
of the design of a practical correlator reduces to that of
designing the multiplier. An electronic multiplier is an
electronic ecircuit whose instantaneous output voltage is
proportional to the product of the instantaneous values of its
two input voltages. We have given consideration only to elec-
tronic multipliers although there are a good many other methods
of performing the multiplication of the two input signals. It
was desired to keep the apparatus simple and rugged, and to
make it possible to use various electrical filters as averag-
ing networks. For these reasons, wa have not used dynamometer
or wattmeter systems (where the average force between two coils
carrying currents proportional to the input signals is probor-
tional to the average product of those signals). Sampling
correlators1 or digital correlators,2 although inherently
capableof considerable accuracy, fall into the class of labora-
tory instruments or computing machinery, and are too complex
for purposes of signal reception. One electronic multiplica-
tion scheme reported in the literature3 has also been considered
more complex than necessary for these purposes. In this arrange-
ment, the frequency of a carrier is modulated in proportion to
one of the multiplicands and its amplitude is modulated in pro-
portion to the other. 2The resulting signal is fed to a phase
discriminator whose average output is proportional to the
required product. A good many other possible schemes of multi-
plying two voltages will come to mindo4

Two types of electronic multipliers have been considered

-31-
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in some detaily these are multigrid-vacuum-tube multipliers, in
which signals applied to different control grids of a multigrid
tube are directly multiplied together in the plate current, and
multipliers based on the "quarter-difference-squares method"™ of
multiplication, which reduces the problem to one of addition and
squaring.
Multierid Multipliers

This circuit makes use of the type 6AS6 pentode.* In this
tube, the total (cathode) current is controlled mainly by the
grid voltage, and the fraction of this current which reaches
the plate is controlled mainly by the suppressor voltage.
The plate current then depends, in a sense, upon the product
of the grid and suppressor voltages. 4 multiplier can be
built in the form shown in Fig. 3.1. %To adjust this circuit
for accurate operation, it is neéessary to balance the d-¢ grid
and suppressor voltages, and the a-c (signal) grid and suppressor
voltages, first for each pair of tubes, and then from pair to
pair, While this arrangement permits perfect balancing-out of
error terms up to the second order, the large number of adjust-
ner.ts makes it unwieldy to use. Fortunately, some simplifica-
tions can be made in the multiplier when 1t is used as a signal
processing device. We need a multiplier whose average output is
proportional to the gverage product of the inputs, not necessarily
one which generates the instantaneous product. Furthermore, we
are concerned only with input signals which have zero average
value, and which are usually symmetrically distributed in ampli-
tude. For these reasons, it does not matter if the input signals
themselves appear at the output of the "multiplier," since they
will be averaged out and will contribute no error. Thus, if it
is recognized that the output is to be averaged, we may use the
circuit of Fig. 3.2., which uses only two ;ubesg A detalled

- ® uw o e o8 gD

*The use of this type of circuit was first suggested to us by
Dr. Peter Elias of Harvard University. Dr. Elias has applied
for a patent covering multiplier circuits of this general type.
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Fig. 3.2, An electronic multiplier-averager using tha GAS6,
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analysis of this circuit will best demonstrate how it works. A
schematic diagram of a practical circuit of this type is shown
in Fig. 3.3,

In tube No, 1, we assume that the total cathode current 1is

_ 2
Igr map1 Y a0 t 810 oo

and that the fraction of that currept which reaches the plate
is

where e81 is the signal voltage on the grid and eq1 is the sig-
nal voltage on the suppressor. Then the plate current is

. 2
151 = %01P01* 201P11%a1* *11P11%1%a1" *01%21%41

* ‘21“01’51 * ‘11“21’g1°§1 * ‘21“11°i1°§1
+ a21b21e§le§1h.g.° .
In tube No, 2. with the sign of °g2 opposite that of °gl
1go = 802 - %12%2 * a22322 MECEEE
@y = Boy * Bigegp * bpyeiy *oeee

and
_ 2
152 = 802%02% 20201282 = 212P02%g2 ~ 212P12%s2 * 20272242

2 2 2 2 2
+ayb008,0 = 815D008, 0000 855D 58,505 t ap5D,50 0 5t -

The difference of these plate currents is then

(a91P01 = 202P02) * (201°11%s1 = 202P12%s2" 211P01%1% 212P02%g2)
2 2 2

* (ay7b)1€g1801% 310P12802%50) * (8g1Pp1851 80yP00050) 4 (85100151

| 2 2 2 2
- 855D00850) * (811D518,1851F 815P0080850) * (anibyyegieg
b. 2]

O 2 2 2 2
= 8y, 129g2932) + (a2lb21eglesl a22b22eg2e82) 4 oone o



¥

&

™27 “«34-

The c¢ircuit is balanced for operation as followss We flrst set

91 ™ 89> by adjusting the d-c¢ grid voltages (Balange No. 1 in
Piz, 3,3. With matched 120-chm resistors in the cathode circuir
the cathode currents in the two tubes will be equal when the caih-
odes are at the same voltage.) Then an adjustment of the d-¢
sunpressor voltages (Balance No. 2) will make the sum of the

terms in the first parentheses zero. (The 63,000-ohm plats re-
sistors are also matched,) The terms in the second pair of
parentheses all have zero average value provided that the asignal
inputs have zero average value, and therefore they contribute
nothing to the d-¢ output. The third palr of narentheses enclose
the wanted ocutput terms. The fourth and fifth parentheses encliosne
exrcr terms proportional to the squares of the input signals, and
these can be made zerc by adjusting the relative amplitudes of

&11 and 0‘2, and e and e o In the circuit of Pig.3.3, this is
soromplished by first applying an a-c¢ signal input to the grids
cri.y and adjusting the balance No. 3 control for zero d-¢ output,
then by applying an a~c signal te the suppressors only, and adjust-
ing the balance No. 4 control for zero d-c output. The sixth natir
«f parentheses enclose terms proportional to egﬂ ef which cannot
te bYzlanced out, but which for sinusoidal or symmetrically dis-
*rivuted roise signals have zero average value and contribute
nothing to the d-¢ output. It i3 possible that a signal having
2eT0 average value but unequal moments either side of the axis
could contritute a large errcr at this pointj; in using this cir-
2131t with such unsymmetrical waveforms care should be taken to
determine whether such errors are negligible or not. ©The remain-
ing terms in the last narentheses are =mall and nearly balanced
out,

Measurements of the characteristics of 6A56's indicate that
the following are good operating conditions for multiplier uses

Escreen - Eplate 120 v
By ria v 2.5V
- "4- L] 5 V

Esunpressor
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The characteristics are fairly linear for a peak grid swing of
v and a peak suppregsor swing of 2 v. The performance of tha
mﬁi iplier as a squarer was checked by applying the same sinu-
soidal voitage te both fnputs and plotting the square root of
the d-¢ output veltage against the a~-c input voltage. The
rasulting curve was guite linear for input voltages up to the
timits given above.

As originally tried, the circult of Pig. 3.3 suffered
e instanility of the d-¢ balance and this instability was
trazed in part %o oxireme sensitivity to fluctuatiens of the
-egter voltapge. An eléectronically regulated a-¢ supply and
snme selection of tubes have improved the circuit greatly in
this resneot. However, because of the large number of balance
sdjustments, this circuit is somewha® unwieldy to use, and the
i o fluctuations in the output set a definite limit to this
sprrelator’'s ability to detect small signals,

The assumptions of the preceding analysis are a little too
zi=yle since ik depends to a small extent on B and a depends
%o a greater extent on e Peedback systems for linearizing
ne 1, - ey characteristic (and making it indevendent of es)
will come to mind. It must be remembered, however, that it 1is
impossible to feed back arcund the entire multiplier. 1It is
1cs3ible that a can be made more nearly independent of e‘ by

feeding some of the e‘ signal in on the suppressor grid.

"suarter-Difference-8quares” Multinliers

Another method of multiplying two signals 1s the quarter-
difference-squares method, which iz simply based on the fact
that the product AB = 1/4CA4B)2 - 1/4(AMB)29 The operation of
multiplication 1s thus reduced to that of forming the sum and
the difference of the multiplicands, and squaring. A block
diagram of a correlator based on this principle 1s shown in



4

Pig., 3.4.

Because of curvature of the plate current-grid veltage
characteristic, many vacuum tubes operate very satisfactorily
as squarers., For example, a twin-triode squarer can be bullt
as shown in P1g. 3.5. We again assume that the plate currents
in the individual tubes can be expressed in power zeries in
the signal voltage at the grid. The current in the first tube
may be written:

| w ‘ , 2 . I 4.
1 agy? 811%;1 + 45187 + 341971 * 3418g1 vevasaaa
and that in the second,

- ; 4 2 . 3 4 ‘
1 =a5,% 312%2 + d22832 + 81,827 + 84582 S

= Ags- Aqsf . b a el = a .e0, +a. et ...
027 1281 T %22%1 T %12%1 T fa2fgl et
WLETE B,y and €yp AT the signal voltages at the two grids. The

cutnut voltage Is praanrfional to the sum of these two currents,
Ly 1, = (ag* agy) * (ayye., - ay,e,9) *(ay 1000 ayse)

, 1. 3 4 4
24 (a3le&l 332321) + (a4legl "a42°g1) D

Tne terms {in the firat parentheses ropresent sismply the d-c¢ plate
surrent, while those in the second can be mude zero by balancing
the amplitudes of the zignals applied to the prids. The terms

in the third npalr of parentheses reoresent the desired sguired
gutpiut. The terms in the fourth pair are small and nearly bal-
ancel out, and those in the fifth and higher are small until the
grid signals become very .arge (or until the circult becomes
overloadeds 30 to apeak). If, however, we apply the same argu-
rent glven 1m the section above, we dee that 't 1as not necessury
to have perfect (instantaneous) squarers, dut simnly a cliroutt
whose average oltpubt is nroportional to the nquare of the {npat.
4 3ingle tube 13 thus adequate to perform the -«quaring oeperntiun,
if the aversge outnit of the multiplier 15 all that 1a roqulped.
A cireult arrangement for a single-triode aquarer (5 zhown {n
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Fig. 3.6, It is necessary to use fixed bilas with such a squarer,
since with a cathode bias resistor, the degeneration linearizes
the operation of the tube to such an extent that 1t loses much
of 1ts square-law sensitivity. A graph of the change in the
average plate voltage as a function of the rms amplitude of
random sinusoidal grid voltages for this circuit is given in
Pig, 3.7. Pentodes may also be used in the same way, 1f well-
stabilized voltages are applied to all the fixed-voltage
electrodes. A schematic diagram of a pentode squarer using a
68J7 is shown in Fig. 3.8, and a graph of 1its average eutput
voltage as a function of the rms input voltage is shown in

Figo 3990

A circuit diagram of a quarter-difference-squares multi-
plier using the two halves of a 6SN7 twin triode as the squarers
is shown in Fig. 3.10. Self-blas is used, but the resistive bias
network is by-passed by a large capacitor, so that cathede-circuit
degeneration cannot linearize the tube characteristics. A d-e¢
balance potentiometer in the cathode circuit allows one te set
the no-signal output at zero. Two ganged potentiometers in
the grid circuits allow adjustment of the signal amplitudes at
the grids to compensate for possible inequality in the square-
law sensitivities of the two halves of the tube. This control
is adjusted so that the output remains zero when a signal is
applied to only one of the inputs. %The inputs should net ex-
ceed 3 v rms. An RC averaging network is shown at the output;
in adjusting this network to a particular time-constant, account
must be taken of the non-zero source impedance at the plate cir-
cuits of the squarers. We have found it easiest te measure this
(resistive) impedance using a simple resistance voltage-divider.
Circuits of this type, but using fixed bias derived from a
battery, exhibit a considerably greater zero-drift stability
than the 6486 multipliers discussed in the previous section,
and the circuit described above, which uses a common cathode
bias circuit, is even a little more stable in this respect.
Because of charging of the capacitor in the cathode circuit,
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the operating points of the squarer tubes change slightly
with the amplitude of the input signals. This change was
found to be very small, however, and apparently has negli-
gible effect on the operation of the correlator.

A solution to the problem of the drift in the output
was sought in the use of synchronous switches or choppers
which were used to interchange the two squaring tubes period-
ically, The choppers serve to ¢onvert any d-c unbalance which
may arise in the squarers to an a-c voltage whose average value
is zero. A block diagram 11lustrating the application of chop-
ners to the correlator of Fig, 3,10 is shown in Pig. 3.11. The
choppers used were double-pole double-throw, break-before-make
Type 253 AC~DC Choppers.* They are powered by the 6.3-v,
60-cps heater supply. The two switches in these choppers are
well synchronized, and are open for about 1 millisecond of
their 8 1/3-millisecond period. The alternate perieds of
contact in the chopper are factory-adjusted to be equal within
5 per cent, but can be balanced more accurately by adjusting
the amplitude of the driving voltage. Measurements of the
output signal-to-noise ratio were made by the method to be
described below for a correlator of this type. They indicate
that for random inputs the output signal-to-noise ratio is not
more than 1 db less for a correlator with chonpers than for
one without choppers. In addition, the output drift is very
substantially reduced. Unfortunately, if there is in the in-
put a sinusoidal wave of a frequency which is a near multiple
of 60 cps, there appear "beats" of fairly large amplitude in
the output, presumably due to the imperfect action of the syn-
chronous switches (the fact that they are open for about 1/8
of their period). If a switch could be built which would in-
staneously change from one position to the other this beat
phenomenon would disappear, and there would be no difference
between a correlator equipped with such perfect choppers and

- om ®  a  w -

*Manufactured by Stevens-Arnold, Inc., South Boston, Massachusetts.
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one without, except that the drift noise would be removed. It
appears that the amplitude of the chopper driving voltage must
be well regulated in order to prevent zero drift due to changes
in the lengths of alternate periods of contact,

If one can tolerate imperfect choppers, that is, 1f one
is performing cross-correlations of purely random functions,
one can use a "single-channel" correlator in which only one square-
law device 1s used, being alternately switched back and
forth from the sum channel to the difference channel. A
schematic diagram of such a correlator is shown in Pig. 3.12,
where a 6SJ7 pentode squarer is used. A4 little greater sta-
bility of the output is expected here, since only one chopper
is used instead of two, and it is only necessary to maintain
the symmetry of operation of one chopper. An output d-c bal-
ance control is provided in this circuit, although it would
not be necessary with perfectly matched components in the
plate circuits, and a perfectly symmetrical chopper. Be-
cause of the much greater square-law sensitivity of the
6SJ7, this correlator has a much greater output voltage for
a given input amplitude than the correlator of Fig. 3.10.

Reasonably accurate square-law rectifiers can be con-
structed of contact rectifiers such as the 1N34 germanium
diode. One method is to use a large number of rectifiers,
each biased at a different volitage, so that each starts con-
ducting at a different input amplitude. By means of suitable
resistive combining networks any monotonic characteristic can
be approximated. Because of possible variations in the
characteristics of the individual rectifiers, it is necessary
to use fairly large bias voltages so that the rectifiers are
essentially nothing more than switches. This, in turn, re-
quires that the input voltage be of a fairly large amplitude,
which may require special amplifiers. However, good accuracy
is claimed for this method, eleven diodes being required to
match a square-law curve for inputs from O to 100 v with
1 per cent accuracyos Another method is simply to make use

e 4



™7 =40

~f the fact that the characterlistic of the contact rectifier,
for small signals, a good approximation to a aquare law.

q

3
Baecause 1t is necessary to keep the volbtages across the
ndividual diodes low, 1t is necessary to connect many diodes
x,se,iesq to obtain square-law operation at convenient input
yortbage levels, Figure 3.1% is a schematlc diagram.ox a
sippaver of this type. When it is connected Tor fall-wave
speration, as shown, 1t is a perfect squarer, whose butput
i5 proporticnal to the square of the input., I only the
sverags square 1s required, 1t is only necessary to provide
4alf-wave operation., In Filg. .14 ares shown ourves of average
mibput voltage as a Tunciion of the rms input voltare Jor the
souarer of ®ig. 3,11, These curves show the affect of chang~
ing the 1load resistance R while kreeping the nunber of recti~
“imre (11 in thig case) conztant, In Pig, .05 are showmn
surves {1lustrating the affept af onanging the number of
rectifliers while keening the losd resistance fixed, These
~urvag show that 1f ftne load resishor is *uo amall, there 13
a Aepartyre froam the true sqiars-law curve st tne zmall inpad

;-4

4

v tare and, whiles 1f it £3 *too lares tae aovwl operation la-
narts from trie gguare-law 4% the hiph tneat soltage end,  The
1{~iss used in theas Leats were aslactas to have pearly equal

sorviuntanses at g Cormard voltare of 1.5 v 4 arremqbtie
itapram of a "many-rechifiact eorrwiytor L rooen din FuR. AL

Tra maximam allowadle input avplibide 12 «hot L4 v, and the
sensitivity of thisz unit {2 2onsiderably (et than that of the
£5%7 corretator of Pip., 2,10, Hecnuae of this ark of asnai-

Livity, this unilt has been mich o5y uas¥il 5o i than obther
correlators, bat it does have the preat advantages of having
no zero drift, and requiring no powsr of any kind, We are
ropeful that it may be possivle to devize a pefwork of these
contact rectifiers which will aceurately repyadincs a sguare-
iaw dynamic charschteristic over a wider ramye

¥easurements of Correlator 3ignal to Walse Rarie

5

Measurements of the signal to-nolsge ratde al the onfpmt of
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chaln am & function of the ruw valus of a einasoidal Input voltage.
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a correlator are of interest not only in checking the theory,
but also in evaluating the performance of the multiplier.
Noise in the output can be divided into two categories:

the fluctuation nolse which always appears when random volt-
ages are applied to the inputs, and other steady or fluctuat-
ing voltages which are present because of improper operation
of the multiplier. The latter may consist of

(1) d~-c balance instability or drift,

(2) d-~c voltages which may appear because of
improper operation of the multiplier (de-
parture from square-law characteristics,
imperfect sum-and-difference network, etc.),

(3) self-noise (thermal or shot moise),

and (4) periodic noise due to choppers,

The signals were measured and noises of the first two kinds
were evaluated by recording the output of the correlator on a
level recordero7 The fluctuation noise and chopper noise were
measured with the low-frequency square-law voltmeter described
below. Self-noise was proved negligible for the simple corre-
lators tested.

It is reasonable to assume that drift noise im the output
of a correlator exists in a frequency band much smaller than
the band-pass of the RC averager. Neglecting this very-low-
frequency drift moise, it can be shown that the spectrum of the
input to the averager may be assumed uniform with 1little error
if the bandwidth of the correlator input signals is wide com-
pared to the band-pass of the averager. We therefore evaluate
the output noise by measuring that above 1 cps in frequency and
extrapolating to estimate the total noise output. $Since drift
nolse occurs at frequencies much lower than 1 cps, it does not
disturb this measurement.

The circult of the noise meter constructed for this
purpose is shown in Fig. 3.17. Because the output of most of
the correlators we have built is not push-pull, the first two
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stapes effectively take the difference of the voltages at the o
two input terminals and convert this difference into a true
push-pull signal which is applied to the grids of a 12AU7 ot
squarer of the form of that shown in PFig. 3.5. The meter thus ’
reads the true mean square of the input. All the correlators §
¥nich were tested were equipped with BRC averagers each of .
which cunsisted of a 100,000~chm resistor and & l-microfarad é
zapacitor. I% can be shown that the input circuits of this :
weter do not load these averaging networks enocugh tc make &

significant change 1n the effective time constant of the

aversger. Decause of the extreme sensitivity of & voltmeter

cireufit of this type to supply voltage changes {both plate

and heater), the unit is operated from an a-¢ ling voltage

regulator., Long warm-up and freasuent zero phocks are neces-

sary for accurate opeération. The metsr is= calibrated by

zeasurezent of a 30-50 copz sinusold of known axolitude. A

sondenser across the yrid circuits of the third pair of tubes

Timits the response of the meter at high fregquencies (3 db

iArn zt 160 eps) to reduce the effects of self-noise in the

weter,  The tire cornstant of the meter aversger is adjusta’le

Trom C.1 second to 100 secondso that 1% can be made appropri-

B for the particular eazuresent being rude.

PR

This -eter ~oazures the nolse above 1 onx in the output
£ tne correlator., The extrapolation to the total nolse out-
vt (nobt inciuding drift nolse, of conrse) can be cuarried ont
in terms of the ejquivalent rectangular pass-bands of the aver-
76T and the nolise meter. The intensity-frequency claracteris-
tie of the RC averarer 1s o

©o

24.2 !
)

W w

where w . = 1/RC. The width of a rectangular ban? (with unity

o
respense) which would pass the same power is then
o ,2 -
wgdnz = Tfo eycles,
+ 2
0 w w
o)
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The nolse meter has three RC high-pass coupling nelworks which
act independently on the frequency rexzponut, Its intensity.
frequency characteristic (3 then

2 3
@ﬁ *f»i‘ !

where w, = ifﬂaczt the cut-off frequency of one of the three
ceupling networks, so the cut~off frequency of the sguivalent
reetanpular high-pass filter is

. . .
) 2 - 1%mw,
{1y, [ W — N |
:Z:‘ — | |07
w wl |

The reading of the square-law meter must then be multiplied by

e

2 .—1
D M 1.8
2 1 w0,

to obtain the mean»squaré'value of the output noise,

Output signal-to-noise ratios have been measured for the
correlators of Pigs. 3,10, 3.11, and 3.12. Input background
ncises sand a random {(noise) signal were derived from gas-tube
noise generators and combined im resistive adding networks.

Tre input signal-to-noise ratios were measured with a Ballantine
Model 300 Electronic Voltmeter.* The input signals were passed
through an amplifier which had a single-tuned-circuit filter with
& center frequency of 3800 cps and adjustable Q. The correlator
time constants were always adjusted to be 0.1 second as accurately
#s possible, The theoretical output signal-to-noise ratios were
computed from the formulas in Table 2,1 from the above data and

W e e W e

%1t has been found that when the Ballantine voltmeter is used
to measure the normal random noise used in these experiments,
1 db must be added to the meter reading to obtain the true rms
value. This correction is constant over the entire scale.
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the measured input signal-to-noise ratioc. The correction fac-
tor for the low-frequency square-law voltmeter for the above
averager time constant is 0.4 db. The results of these meas-
urements are compared with the theoretically predicted values
in Table 3.1.

Because of the inherent difficulties of noise measurements
cccasioned by the requirements of long averaging time, and be-
cause of zero drift in the low-frequency voltmeter, the
accuracy of these measurements is probably not better than

1.5 db. With this in mind, the data in Table 3.1 show gecod

apreement between theory and experiment: The last entry in
the table (for the correlator of Pig. 3.12) which indicates a
very vpoor output signal-to-noise ratlio, is included simply as
a reminder that with that circuit there is a comparatively
large 60-cps component in the output because of the chopper.
The fundamental and several harmonics of this frequency are
within thepass-band of the low-frequency voltmeter, so that,
even with no input signals, the voltmeter indicates a large
cutput"noise." Comparison of fluctuation amplitudes on graphs
made by the recorder, whose pen-drive system cannot respond to
the 60-cps voltage, indicates that there is, as one would
expect, no difference in the output signal-to-noise ratio

for this correlator and an "honest" one, if the chopper
"noise" 1is neglected.
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TABLE 3.1

¢ ris f Measure d Predicted Out
Signal-to-Noise Ratios for Beveral Correlators

Input « Qutput Signal-to-Noise Ratio
Correlator Signal- Eandwidth
to-
Noise
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(wp=1930n)
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" -10 Q=4 10.8 10.5
(wp=950m)
" -10 Q= 7.4 8.3
(uyp=430n)
FPig. 3.10 -10 Q=2 10.9 8.5
as square-
law detec-
tor (inputs
parallel)
Figo 3010 "“10 Q-2 1309 1100
with
choppers
(Fig. 3.11)
as correla-
tor
Fig, 3.12 -10 Q=2 13.9 -3.4

i
i e, TR
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SIGNAL~TO~NOXSE RATIO AT THE QUTPUT OF A DETECTOR

A detector is ussumed to consist of u rectifier and an
averaging network or filter. It is of interest to compute out-
put signal-to=noise ratios from the detector both for comparison
with those for correlators, and for estimsting cutput signel-to~
noise ratios for circuits which are similar in operation to cor-
reiators but somewhat essier to construct., Tnese correlator-
type circuits will be discussed in Chapter V.

Considersble attention has been given in the literature to
tihe problem of the signal-to-noise ratio after a deﬁectaral The
proviem solved here is one which can be handled by fairly straijght.
forward mathematical technigues. We limit our conslderation to
the case of 3 nolse signal in a noise background, where the sig-
nal and the noise nave the same spectral distribution, to the
zase of the fuli-wave detector ,* and to the case of relatively
iong averaging tire and very small input signal-tec-nolse ratins.
Tre problem of detectiinn reduces ta the gquestion of whether the
rnerement in the average outpul of the detepotor due to the sig-
n4l ¢can be seen in the presence of the output noise, As long
x5 the innut signal-to-ncise ratio 1s very =mall, these results

shoula be usemMl for any type ¢f input siprzl, because the proba-
¥ility denvity for the sum of & paussian nolse and any small

signal s woprosimately the same as that [o: a gaussian noise
raaving a mean-square amplitude equal tc the sum of the mean-
vquare ampiitudes of the noise and the signal.

Detector Outpyt Signal-to-Noise Ratic

Let us suppose that the instantaneous voltage output of
a rectifier circuit is f{v(t)!, where v(t) 1s the instantaneous

input voltage, We assume that v(t) 1s gaussianly distributed
-

A more mathematically elegant solution of this problem by
Middleton and Stone is included herewith as Appendix III,

b
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and has the mean-square N. For a full-wave power law detec~
tor

£y = vV . (4:1)

Then the average output of the detector is
7Ty - L I,v,v w2/

37 wv ;zw
o \
[;?73.?“;7. v eveny

b(4.27

/2
- ﬁﬁ_l-v——- by 1, v oad.

/

If the output is averaged by a network whose weighting func-
sion is g{r}, the output of the averaging network is (Bq. (2.1})
ks &

F(t) = f’ g(t!) flvit-tr)lde |

and its mean sjuars 1s

o f
Po() ,4}” p(t?) fivw(t-17)lde") (z g(t) f(‘v(t~t‘)]rlt‘)>
A ,
'<7 7&%“‘) plt") flv(t-t!')Iflv(e-t")) dt’dt">.
o] o]

Let v(t-t!) = x and v(4{ t") = y, Then

JUS—— @© @ -
72(1) »<[ ! 26 E(e) £0x) 1) @' an .

W2 evaluate this by meane of the Joint probahility density for

o >
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the gaussianly distributed variables x and y,2
x> + y° - 2xy (B)

2
P(x,y,2) = E%ﬁ 1;§=%=?§7?§ e 2N[1-0°(E)] s (4.3)

where P(§) 1s the normalized autocorrelation function of x (or

V) P(x,y,;) dxdy is the probability that the voltage lies be-
tween x and (x + dx} at some time t and between y and (y + dy)

at the time ¢t + % . Thus

) = ‘2% U)P .7P g(t') g(t") £(x) f(y) P(x,y,t"-t!)dxdydttdt",

We make the change of variables (cf. Chap. II),
t" - t) =¥ and t" + t' =N
perfore tha integration with respect to M, and find that

W3~;;-w zz 5? jF w(¥) t(x) f(y) P(x,y,%) dxdydg, (4.4)
0 -00 ~00

where w(§) is the transformed weighting function of the averaging
network. To avaluate the integral in Eq. (4.4}, we note that

£q. (4.1} can ha written
. WL T o W

P(x,y,t) =

1-P(E)

and that, by Eq. (4.1),
. ']

£(x) t(y) = Jxy| |

which can be written

Ixy|¥ =

7w 1] [

_.

Then

£x+y12; (x=y)°
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1+p¥%51 _dx dy 4%

1/ 2
We now let 2 NV1-p%(3)

. S5 S and R i S— %‘v ,
7aN[1-p(8)) | /4N[14p(%)]
whence
——§§=ﬂ£-- = du dv,
2N/1-p<(g)
and M

@

| PP M 7
r2(t) - L f f w(E)
@ @O ol * 3
2

2
el o°V au av ar. (4.5)

v
w2(1-p(5)] - v2L1+p(%))| -

We now let
w® + v2 = r2, u=rxrcos @, v=rsing,
and Bq. (4.5) becomes

e 0) 20 @

————— 2
P2(t) = g} J/ j/ J[ w(Z) ]cos 20 - p(5)|Y r2¥* &7 4r a6 ag.
PO "0 O

We perform the r-integration and set 20 = 4.
Then

@ v
P2(t) = N fw(§) %ﬂ-ﬁ‘cos 6 - p(E) | ag dx . (4.6)
(S

We have found it difficult to evaluate the integral

1=k ‘Zyl

for arbitrary values of v, although it must represent a comtinuous

v
a¢é (4.7)
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function of v for 0 < v €« w. It is possible, however, to
evaluate it for a few specific values of vi

When v = 1,
. cos'lp(g) | ?
I s'ﬁ , [cos # « p(%)] df + %‘ Jf (p(Z) - cos dlad
cos“lp(;)

= 20p(3) 317l p(z) + A4 - PE(B.

Ye substitute the following series expansions:

| i i 242,y
p(%) sin'l pl¥) = ;gﬁff?%ﬁ 2E+§ '
=g © *
R . . K42,y
A - o) =1 - 2 ;é'&f‘ff;‘a“ b,
G

Then, for v = 1,
5“" 7 _(w)! 242y
1-842 Loy )2 Tt ’

and Xq. (4.6) 1s

S

k~o

(4.8)
If v in Bq, (4.7) 1is an even integer,

Zp[cos g - p(¥))" a¢

2
- %; J/ g (-1)" T7:%§TET cos’ ¢ p®(2)ag .
o ‘m

=0

I »

Y-

, " 5% Y } ) k42
e BB | SEL oot [eor e,
.. .

R L
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This integral amounts simply to averaging over a period of #.
We can write

. g
- e'f + ¢
cos’ g = y

and, after expanding by the binomial theorem, we see that the

only term with nonvanishing average is the term independent of
g. That is,

’ w
cos’™® 4 = Y

2V~m(l§m)g2 , (vem) even,

(4.9)
= 0, (v-m) odd.

/
Then, substituting 2{ for m, in order to retsin only the terms

for even values of m (and even values of (v-m)),we have

v! 92’(’(5) + Y1
() 272G 412 2'gn?

and, for v even, Eq. (4.6) is

; v , L @®
- ) v, .2 vv.2 22 j/ 2,
Po(t) = i 4 Nova () (5)ax.
2"(3):° 2¥ (b A2 L ") eTEIE

(4.10)

If there is added to the input "background noise" a small

noise signal of mean-square amplitude S, there will be an incre-

mental increase in the average output. From Egs. (4.2), this
increment (which we call the output signal) is, for v = 1,

JEER 2. B e -1y 2 /B A,

S KNy
and for v=2,4,6,8, .... ,

[2»»7‘2';-!).} [(N + 8)v/2. N"/z] = §V/2 [TV \é("""""v :l'vé &), s <.
20 . 2)! .

B S e
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The output noise can be measured as the difference between the
mean square of the output and the square of the average output.
Then the mean-square output signal-to-noise ratio is, for v = 1,
and (8/N), < 1, (from Eq. (4.8)),

8.2
l(ﬁ)

(8/F) yut™ — i2.. ' (4,11)

—p2kli w(z)pPE™2(x) a
i——t ck(yrye (2k+1)(2k+2) f 20 5) &

and for v = 2, 4, 6, 8, .... (from ch (4a10)),

v¥/a (/M5

(S/N)out = : ZL’ ' . (4.12)
(v/2)12 2 7w( e(z) a
- @ 2 | T

Evaly fic E e

The output signal-to-noise ratio depends upon the correlation
function p(;) of the input noise (or its spectrum) and upon the
transformed weighting function of the averaging filter (or its
frequency response). The integrals to be evaluated are in each

case of the same form,
®

J = /w(}) p%(s) a3 . (4.13)

- @

This integral can be readily evaluated for at least two forms
of input spectra, for an RC averaging network, subject to the
assumptions that the averaging time is very long, and that the
input bandwidth is at least moderately narrow. We use the
transformed weighting function for an RC averager, from Eq.

(2:9), 1£1/8c
"(5) = e e :

8. Tuned Circuit Spectrum: The normalized autocorrelation
function of "white" noise after passage through a moderately

. e e o
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‘ high-Q single-tuned circuit filter, of center frequency w.o/2rr
and half-bandwidth wF/2rr is (see Apperdix II)

Izl

p(r) = e-wp cos w T .

Then, for this case, Eq. (4013) is
@O 7 A “2‘&» '
J = 5%5 je' I51/RC cosuw‘); e 'F,;ldg
®
P - [z + 2lwpl
--ﬁ% / e &5 ¥ ;cosa‘{’wo‘g az .
0 .

If we assume that ©, >>wp, we can replace the cosine
term with its average value which we found in Egqs. (4.9):

[
. %l: o [BC + Mp];dg B} (%li
RC 22° (41)2 2% (1121 + 2lwgRC)
If we assume now that RC >> -b— , Which simply corresponds to
thorough filtering, we have

Y (1)} .
224(41)2 2lugRe
Substituting this value in Eqs. (4.11) and (4.12) gives the
mean-square output signal-to-noise ratio for the tuned-circuit

input spectrumj for v = 1,

2,RC (8/N)2
(S/N)out = FR 4 )m

=3 12%an?]  aer)d

= 2wpRC (8/MF - 0.965 ; (S/N), << 1;

and for v =2, 4, 6, 8, ....,
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2 ($3 (342
(8/W) gy = 2wpRC(S/N)3, =375 —— 5 (8/N),, <<1.
1

271 Y -4 )t an?

Values of ——-——-~997- computed from the above for various
ag’RC(S/N)

values of v are tabulated in Table 4.1.

Table 4.1
Tuned-Circult Srectrum

Power Law of Relative Output Relative Output

Full-Wave Detector S/N Ratic S/N Ratio
1 965 -0.12 db

2 1.000 0.00

4 . 889 -0.48

6 .650 -1.84

8 405 -3.90

10 212 -6.58

b- Rectangular Spectrum: The normalized autocorrelation function
of nolise whose spectrum is constant between (wo ~bw) and Qno W )
and zero elsewhere 1is

p(t) = cos w T [%éf%“£)°

Then J (Eq. (4.13)) is

A 2
J = -2-%{-5 Ze"lg'/m cos? o “’;LJ'D%‘&] a3%.

We again replace the cosine term by 1ts average value as before,
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and assume that KRG 39’7%7 , S0 that throughout the range where
the integrand 1is appreciably different from zero,

5”19‘/3Cw1°
| ' 1wy 120
re oy Rl [t o
o
1 (20!
JEDLAPE I

2

Then

[sinx 12t 4x,

g 8

The ‘integral ®

- ®

Ky

which can be evaluated by contour integraticn, has the values
given belows

L 5

1 121
2 L6667 n
3 .5500
4 .4794 1
5 . 4304 o

el SR 24) ]
By substituting the values of J = S ARG 22 {))2 KL in Eqs.
(4,11) and (4.12), we find, for v = 1,

2LwRC 2
1. (S/N)in

2
M
= |7 k! (k'*l)"_\

2
= 2RC (&w) % (s/M)3, - 0.952

(8/W) gt =

and, for v = 2, 4, 6, 8, .c..,
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g

(v/2)3/(v/21)®
v/2

(S/M) = 228RE (5/m2

(8/N) ut - =
Values of §§§§§~9——~5~— computed from the above for various
~ (S/N)in ‘

values of v are tabulated in Table 4,2,

: K';L'/rr *
j;é;; & -01%12

Igble 4.2
Rectangular Spectrum
Power Law of Relative Cutput Relative Output

Pull-Wave Detector S/N Ratio 8/K Ratio
1 0.9%2 -0.18 dv

2 1.000 0.00

4 0858 “‘0564

6 L] 580 "‘2033

8 0325 “4‘0 85

10 Bl 157 "‘80 02

gonclusions

Curves of relative output signal-to~noise ratio are plotted
in FPig. 4.1 for these two input spectra. For both input spectra
there 1s a slightly better output signal-to-noise ratio for the
square-law detector, although the linear detector 1s not appreci-
ably worse. The slight suveriority of the square-law detector
is also predicted by Hayer3 although his results for the half-
wave detector are apparently in error. He predicts that the
half-wave detector should be considerably inferior to the full-
wave detector; we, and others, feel that; for long averaging
times, there should be no difference. Burgess% finds that the
square-law detector has a similar silight superiority with

d‘g
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RELATIVE OUTPUT SIGNAL-TO-NOISE RATIO
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POWER LAW, », OF FULL-WAVE DETECTOR

Fig. 4.1. Relative output signal-to-noise ratin for two different
Input spectra as functione of the power law of the detector,
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regpect to output signal-to-noise ratio in the detection of a
ginusoid in noise, although his work is based on different
assumptions concerning the averaging time,

1.

2o
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V.
OTHER CORRELATOR-TYFE CIRCUITS

Two other cirecuits which behave in much the same way as a
maltiplier-averager have been analyzed, Although these cir-
cuits do not prioduce quite as high output signal-to-noise ratios
ag a multiplier-averager, they do have characteristics which
may be advantageous in certain uses, and one of them is consid-
erably easier %o construct and operate. The first to be dis-
cussed is the polarity coincidence correlator, which measures
thie degree of correlation cf two signals by determining the
fraction of time that the irstantanecous polarities of the two
signals are the samej the other, the linear rectifier corre-
witor, ia the same s the multiplier-averager shown in Pig.

T4 with tne sguare-law rectifiers replaced with linear
protifisrs,  The first of these !s thusg seen to be at least
similar in operation to a conventional phase meter, and the
seeond 18 simply a form of the scherent detector.

The polarity colnclidence correlator is an slectronie
~lreult with twe inputs, whose output, before averaping, is
+1 v when the instantanenus npolarities of *he two inputs are
the same, and -1 v when the inputs have onpusite polarities.
Thie operation can be realized by seversly clipring dboth in~
fuats and applying the resaltant rectangular voltage waves to
any of a varilety of coincidence circutts I the two inputs
are incoherent random nolsey, the average output will be rero,
sirice the two inputs will be of the opposite polarity as often
as they are of the same polarity. If the inputs are identical
the output will be 41 regardless of tha input signal amplitudes.
The average output depends on the degree of coheremwre of the two
input sigrnals rather than on thelr amplitudes, sinece all ampli
tude information 18 removed in the alipping.

Tre aversge output of the polarity ecoincidericn correiator

{; 8 or

T —
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is simply the probability that the instantaneous signs of
the two inputs are the same less the probability that the
instantaneous signs are different. We can compute this
probability only if we know the joint probability density
for the two input functions. We assume here that both
inputs are gaussian random functions, a.d our results here
are only valid for that case. The probability that the
signs of both inputs are positive is

(89]
D = 7 fpzix,'y,C)dxdy,,

o “o
where x(t) 1is one input function,
y(t«€) is the other input function,

and Pz(x,y,C) is the joint probability density for the
gaussian random functions x and y (Eq. (4,3)). In terms
of p(€), the normalized correlation function of x(t) and

y(t),
x2 + y2 - xyp(g)

I SR S 7 f 2N[1~92('L‘)l dxd
P 2nN m) Y,

where N is the mean square of x(t) and y(t). Paralleling the
procedure of Chapter IV, following Eq. (4.4), we write the

above as
2 2
X< - +
Y 7& ]? T aN[1-p(@ )] 4Nt'1i+Lp%)cT]
p - # e e
ZYN 1='P (1) A o

and make the change of variables

X *ty X - Y =

= 1 and
YaN[14p ()] aN{1-plr)]

dxdy
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o /3G
1-plt e-(u2+v
[»] Y 1+
Y lmp%fg

2y
dvdu.

We then substitute

r? = u? o+ v2§ u=rceos 6y v=rsing,

‘ I-p <
2 eT rar e

-1 [14p(x -1
-%tan i%s%#%;rsin p(2).

The probability that the signs of both inputs will be negative
will also be p, so the probability that the instantaneous signs
of both inputs are the same is

2p = -12' + %sin"lp(r)o

The probability that the signs of the two input functions are
different must then be

1l - 2p = % - % sinmlp(f).

The average output of the polarity coincidence correlator is
the difference of these two probabilities or

P(t) = % sinwlp(t)o (5.1)

The average output thus depends only on the normalized cross-
correlation of the two input functions. Equation (5.1) is
plotted in Pig. 5.1 for the range p(z) > 03 P(t) is clearly
an odd function of p(T).

If one input function is [nl(t) + s(t)] and the other is
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AVERAGE OUTPUT VOLTAGE
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Fig. 5.1, Average output voltege of the polarity coincidence
correlator as a function of the normalized crosscorrelation of
the input functions. For negative values of P(7’) the average
output is negative; it 1s an odd function of p(7Z).
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[n (%) + s(t)], where ny(t), ny(t) and s(t) are incoherent
random functions, and if the mean square of nl(t) and nzit) ix
N, and the mean square of s(t) 1is S, the normalized cross-
correlation of the inputs is

(S/N)y,
T+ (8/M, .

where (S/N)in 1s the mean-square signal-to-nolise ratio at
either input. 1In this case, the average output is

(8/W).
6] -1 i
F t = % Sin I * (S/N)?n o

2 (s, , (8/M); <<1.  (5.2)

If one input signal is Lnl(t) and s{t)], as defined above,
and the other is simply s(t), the normalized cross-correlation
of the input functions is

1/ (/M)
1+ (/M)

and the average output 1is

F(t) = % sinwl (S/N)ig—
14 (8/N)y,

'%Mn , (S/My, <1, (5.3)

The determination of the mean-square output noise (after
averaging) has not been attempted for the general case. How-

ever, for small input signal-to-noise ratios, it 1s logilcal

to assume that the output noise is practically the same as that
when the signal 1s completely abéent, which can be evaluated
when the inputs are incoherent gaussian noises, This is
probably the greatest ocutput noise, since, for an infinite
input signal-to-noise ratio, the output noise vanishes. We can
consider the polarity coincidence correlator as a multiplier-
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averager in which the inputs are severely clipped to an ampli-
tude of *1 before multiplication. Van Vleck has shown that
the auntocorrelation function of such strongly clipped gaus-
sian nolse 1s

R(z) = % sin“lp(t),

where p(?’) is the normalized (p(0) = 1) autocorrelation func-
tion of the noise before clipping.,l When both inputs to the
polarity coincidence correlator are uncorrelated but have the
same asutocorrelation function, p(¢), the mean-square output
of the averaging filter will be

P2t) = 2 f w(5)R2() 4%,
o
where w(%) is the transformed weighting function of the filter.
If we assume that the nolses have the same spectrum as a narrow~
band tuned-circuit filter,
~wg |7
p(r) = e CoOSW Ty
where wy/2n is the half-bandwidth and wo/zﬁ is the center
frequency. The mean-square noise output is then

00
—5 “Bp§
F2(t) = 2fw(%) 45 rstnle T cos 3)] 4%
i
0
- |3[/RC
Now, for an RC filter, w(}) = g5 e and we assume

that ) >a»%§ so, where the rest of the integrand is appreciably
different from zero, w(¥) ¥ w(0) = 5%50 We have then

P2(t) = --éi-(-:- [sin"l(equB coswo\;)]2 d% .
n

Now sin"Ix = x + x3/6 + 3x7/40 + 5x//112 + o0.e

, 4
=1 +2_ 2 . X 6 8 }
[sin "x]™= x° + 3 +'f%x + é%x * ohooe .

SO
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Thern
fon)

S— “Zunb ~dp B
2 .4 op 2 J P 4 .
FE(t) = e JC [% 905%00; + 1/3 o cos'w 5

-0 =8
+ 3% e 4 cms6 w,5 4 % e F;cosew(); *oooe ] az.

Since we also assume @y << w y we can replace the cosnguo; by
their average values

D S S ?
cosnd SR ¢ 7- S

ven
2“(g§1>2 v TRV

= 0, n odd,
Using
e
23
fe 4% ’—n%; ,

“o

.we find that the mean-square rnoise is approximately

2 & & 4 1o _lB ..l§. & - 2elb4..0
F (t) = L t o= 4 + ’ aGOJ" . (504)
NZRCh)F 4 32 10 1230 r;‘?RC wp

Por small input signal-to-noise ratios, then, the output mean-
square signal-to-noise ratio is (from Eq. {(5.2))

(/M) u4 = -1—31-5 > 4RC w'F(S/N)in . (s, 5).

By reference to Table 2.1, we find that for a multiplier-averager
with inputs [s(t) + n,(t)] and [s(t) ¢ n2(t)] having the same
statistical properties as in the above example, the mean-

square output signal-to-noise ratio for small input signals is

2
4BG»P(S/N)in »
The polarity coincidence correlator then has a disadvantage for

the above spectrum of a factor 1.164 in small-signal-mean-square
output signal-to-noise ratio, or 0.7 db., The 0.7 db might be

et 2
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considered the penalty one pays for not making use of the informa-

tion contained in the clipped portions of the input voltage wave-
forms.

If one input is pure signal, and if the signalsto-nédse
ratio at the other input is very small, we can assume that the
output noise is the same as above (Eq. (5.4)), The mean-square
output signal-to-noise ratio for this arrangement is then (from
Eq. (5.3))

(S/M)yp = Tigg ° *RQp(S/N), . (5,6)

FProm Table 2.1 it can be seen that the small~signal output signal-

to-noise ratio of a multiplier-averager used in exactly the same
way 1is

4RC wp(S/N),

so the polarity coincidence correlator again has a disadvantage
of 0.7 db, for this particular input spectrum and averager.

The polarity coincidence correlator is almost, but not
quite, a normalized correlator; that 1s, a correlator which
determines the quantity

which is a normalized correlation function. The average output
of such a correiator would be a straight diagonal line on the
graph of Fig. %.1. The polarity coincidence correlator does
measure the cross-correlation of the clipped input signals.
This means that the autocorrelation function of a sine wave, as
measured by the polarity coincidence correlator, will be saw-
toothed rather than cosinusoidal, and all correlation functions
measured by it (except those of already strongly clipped waves)
will be more or less distorted. As an example, the normalized
correlation function of gaussian noise which has been passed
through a single tuned-circuit filter is plotted at the top

ir Fig. 5.2 and the autocorrelation function of the same noise,
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as 1t would be measured by the polarity coincidence correlator
is shown at the bottom. If sufficiently large incoherent
noises were added to each input so that the input normalized
cross-correlation did not ever exceed 0.7, the measured cor-
relation function would he little distorted.

It is possible that a polarity cocincidence correlator
could be built more easily than a multipiier-averager; 1if so,
its performance with respect to output signal-to-noise ratio
is not enough worse than that of a true correlator to rule it
out of consideration. It has the advantage in a practical
application that the input signals would not require automatic
gain control, as is the case with a multiplier-averager, which
may be easily overloaded. The greatest difficulty in its con-
struction will probably be found in the clipping circuits,
where absolute symmetry of clipping must be maintained,

A polarity coincidence correlator consisting of two
clipper-amplifier circuits (Fig. 5.3) and a coincidence-averager
circuit (Pig. 5.4) has been constructed. Note in Fig. 5.3 that
a potentiometer is provided at the output of the clipper cir-
cuits to allow adjustment of the output amplitude, This was
necessitated by the fact that the contact potentials of the
various type-6ALS twin diodes varied greatly, and it was not
found possible, even by selecting tubes, to make the output
amplitudes from different clipper circuits match exactly with-
out such an adjustment. Measurements made by the methods
described in Chapter III indicate that this correlator's out-
put signal-to-noise ratio for small input signals is inferior
to that of the multiplier-averager by ¢ db, when the same in-
put spectra (tuned-circuit, Q = 4) and averaging networks
(RC = 0.1 sec) are used. Because of a possible error of +1.5 db
in the measurement, we can only conclude from it that the theoret-
ical predictions are roughliy confirmed,

Linear Rectifier Correlsator
It will be seen that the linear rectifier correlator is of
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the same form as a phase-sensitive detector or coherent detector,
of 'which thorough analyses have been already madeo2 We here de-
termine only the average output of the linear rectifier correlator
in terms of the properties of the input functions and estimate

the small-signal output signal-to-nolse ratio.

Pigure 5.5 is a block diagram of a linear rectifier corre-
lator. By comparison with Pig. 3.4 it may be seen that the
lirear rectifier correlator is simply a multinlier-aversger of
the quarter-difference-squares type, with the square-law recti-
fiers replaced by linear rectifiers.

We assume that the inputs to a linear rectifier correlator
are {s(t) 4 n;(t)] and [s{t-2) *+ n,(t)], where s(t), ny(t), and
nzct) are independent, gaussianly distributed, random functions.
The sum of these input signals 1s s(t) ¢ s(t-2) + nl(t) 4+ nz(t)
and the difference is s(t) - s(t-c) ¢ n, (t) - nz(t;)° Now the
average output of a full-wave linear rectifier, whose input, x,
{s gaussianly distributed and has the mean squars dz, is (Eq.(4.2))

“/_2;” . (5.7)

We cannot simply determine the mean-square amnlitudes of the sum
and the difference of the input signals by adding the mean squares
of the four individual components, because s(t) and s(t-7) are

not indevendent functions. We note that

[(s(t) + s(t-1)1° = s2(t) + 25(t)s(t-1) + s2(t-7)
= 2R(0) + 2R(7),

where R{7) 1is the autocorrelation function of s(t). The mean
square of the sum of the input signals is then

W

[s(t) + s(t-2) + ny () + ny(£)1° = 2[(R(0) + R() + N]

and the mean-square of the difference is

2[R(0) -~ R(?) + N]

it

[s(t) - s(t-%) +n;(t) - ny(£)1°
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where N = n%(t) = ng(t), the mean squars of the background noises,
The average output of the linear rectifier correlator is the dif-
ference of the average outputs of the sum and the difference rec-
tifiers, and is (from Eq. (5.7)),

VE {/20R(0) *R(Z) K - Y2 y2[R(0)-R(p)*N]

= 7%: \:1/8(0)+n(c)+w - VR(O‘)K-»R(tNN]Q

If we set R(0) = S, the mean square of s(t), we can write the
average output =zs

FOE) - &= [/WSTIREN] - /STTR(DT] (5.8)

where p(Z) is the normalized cross-correlation of the inputs. We
can expand the above by the binomial theorem, and we have

7 - 2K | 1+p(2) ] = S/NT1-
T - 2L [/1+<S/N>a T5(2)1 - yiT(E/NII p(z‘)]]

. g-fir 1+ 3§ 4 1 3 §-p())4 ]

:'%Ag‘(%)inp(c>9 (S/N)in <1.

Therefore, 1f there is a large enough incoherent noise back-
ground, the average output of the linear rectifier correlator
will be directly proportional to the signal autocorrelation
function.

If N = 0, corresponding to the use of the linear rectifier
correlator to measure a correlation function, the average output
will be (from Eq. (5.8)),

P(E) = 2 Wiep(@) -Vi-p(o)l. (5.9)

A graph of this function, normalized, is shown in Pig. 5.6.
Because of the great similarity between Pigs. 5.6 and 5.1, it
may be seen that the distortion of an autocorrelation function
as measured by the linear rectifier correlator will be nearly
the same as that if it were measured by a polarity coincidence
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Fig. 5.6, Average output voltage (normalized) of a linear rectifier
correlator as a function of the normalized crosscorrelation of the
inpute, p(t). For negative values of p(Z) the average output is neagm-
tive; it 1s an odd function of p(T).



R o ]

SIQRETOIIOD XV ITA08L AWUIT v JO seIIwlp oriwwsyas Cleg dF11

PEN! pia{ o .
= <A o =
_ T A S
i 009¢ W 000} W i* *
g MOUM wo 2 10GNI
; oxXj |
ww - r&ﬁ%&%% et ;%,4“ ® ~ SR o
3 NOO! v ENI Ovi-S1
| o1n
m»
“ = = 4t =
T T vm,mz_ T o W T
1ndino , f Al $
= 1 I
! o > T I LOdNt
] - - P
T e 0096 == 0001 Z F+x ,
! | £ e
4 yuny dd 43— i -
b Tols] HENI W oew ww m




1\

e ——

TH27
Appendix I
EVALUATION OF THIRD-OCRDER CORRELATION FURCTION
We wish to evaluate the ﬁhirdmmrder‘antocorrala@ion
function
R(Ly,7,%0 = <v{t)vit. )Tty ) >

in terms of the ordinary auntocdérrelation function
Ric) » <wi{tiv{t.T)>
Por sirplietty of notation, wo write

B(Zy,7,, 3) - «v{,q}v{mg}v(‘g)v(ﬁ (A1 1)

whwre, of sourgs, o= Yy

) .
Cow t, wh,
z i 3
arid q 1 ¢

A sample of vidy in an interval of Teppih T 10 sroended in u
F

Conrier serica (oFf R ot oand st oeewprencden o ocubsatie
tuted 4n Eq. (A1.1Y a nves

R(T

21

(’7‘
Lag cosm by * b osinw byl - } (ajcosw, t, + b singt,]

“r=L )
[akcoswktB + bksinuktal Kakcosmxt& + bksinwkt4jj> )
n=

where o = 2nk/T. Writing in different summation integers in
each sum above allows us to write the above product of sums as

«69.-
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a sum of products

R( 17 27 3)

@ )
<</ E E E :E::[a coa»ktl + b sinwktll [qLcoqQLt2+ hcsinuqyz
n=x

rl n=l n=l

{a cos W t3 + b sin © t Je £a cos wnt4 + b sinw t4 ;> . (A1L.2)

This now consists of many terms of the form

saymg A s coswgty cbs@ctg eos mmtB cos @ b, ,

where we have interchanged the operations of adding and averaging
and have rmade use of the ergodic theoren,

Por gaussian nolse, the propertler of the coefficlents given
tn Bgs. (1.7) apply here, and we #ee that <hkatamap> = 0 unless
the indices ar» at least equal in paire  Thon the only nonvanish-
ing terms are those where at leant

(a} X =& and = = ng
th) k »m and L =n,
o {¢) k=n and 4 =»m
The torms for the case k= 4 *m *n will be discussed relow. Mak.
ing the sudbaztitutions indicated above 45 {a), (b}, and (2}, »
can write the ricnvaniahing terms in ths ﬂuadru?lﬂ sum ag three

double nums:

) ) {'”af. -~ 4 :‘ "
m €08 @ty 4 b sin W 1} (a cos @mﬂz by Sin . 2)

~ s « ' : . " + £
{an cos mnt3 + b sin mntal {an cos w t, b =in mnt43

+ » 7 L
: ; £nm coa wmﬁl + b sin wmtl] ian cos mnﬁz + b sin o, tzs
=1 =1

P s U]
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- +
{a_ cos wmt3 bm gin W _t

m 3]°[an cOoS wnt4 + bn sin wnt4]

8
=}

e

{am cos w t, + b _sin wmtllo[an cos wnt2 + bnsin wnt21

g
L]
154
3

t
[

”{nn cos W t3 + b sin o t3] [a cos w t4 + b sin Wy ]:} o

"Using the further pronerties of the coefficients that < a b > =

for all m, n and < A2> <b2> , We can write the above as '

© (e v]
ﬁ:‘

ZE: EZ: <a£> <n§> cos wm(tlwtz) 0S8 W (t3 4)
m=1 n=1
® ™

+ jgj j{: <a“> <32> COS W (tl 3) cos W (t »t )
m=1 n=1

+ 2. . ,
j;j j;i <a > <a§> c20s wm(tlﬁt4) coswn(tz-tB)
m=1 n=1

Now the terms in Eq. (41.2) for the case k =4 *m = n have coef~-
ficients of the form <ag> . In Eq.- (1.2) we proved that, for
the case of gaussian statistics,

ap> =30t = 3(<af 2P,

n
so these terms are included exactly in the above three double sums
as the cases where m = n. By comparison with Eq. (1.9) we have
immediately

<r{tIV(E,)V(£)V(E, 0> = Rt =t )R(Eyt,)

+ R(t1=t3)R(t2wt4) V' (A1.3)

kS
+ R(ty £, )R(tymty)

[Whof

o -:‘.?»v:-n—
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R(ZTy,Tpy %) = R(Z)R(Cy=T,)

+ RQ%)R(meTl)

+ R(@3)R(Cém¢1) » y

(A1.3)

This formula 1s proved by Fano in a different way for a slightly

izss gener-l case“Al

The generalization of Eq. (Al.3) to a third-order cross-

correlation function will be stated here without proof:
7Lt Vg E0 Vet )vp(8,) > = Byplty ot Rop(ta-t,) |
* Ryc(ty-t3)Rpp(to-t,)
+ RAD(tl“t4)RBc(t2‘t3)
or

Rapcp(®12T20T3) = Bup(f))Rep(03-7)

*+ Ry (FR)Rpp(T'y-7)

}(A1,4)

* Ryp(Ty)Rpe (7=

o rms————
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Appendix II

DERIVATIORS OF AUTO&ORRELATION FUNCTIONS OF NOISE HAVING
RECTANGULAR AND TUNED-CIRCUIT SPECTRA
As indicated in Eq. (1.10), the autocorrelation function of

a random noise is the cosine Pourier transform of its intensity
spectrum. The integration is here carried out for two examples:

A. Rectangular Spectrum

We assume that the intensity spectrum of a random function
has the constant value W between the frequenciles fo - Af and
fb + Af, and vanishes everywhere else. The center frequency
is thus fo and the half-bandwidth is 4f. The corresponding
autocorrelation function is

f0+Af
R(T) = W cos entrdf
£ =t (A2.1)

 ewae 51n 2222
= WAL (ﬁ;@, ) cot 2mf v,

B. Tuned-Circuit Spectrum

We assume here that the intensity spectrum of the random
noise ras the same form n3 the response characteristic of a
single-tuned resonant c¢ircuit. Noise having this spectrum may
be generated by passing wide-band noise through a single-tuned-
circuit filter. We shall first examine the analytic expression
for the response characteristics of such filters in order to
show how our definitions apply to series and parallel resonant
circuits.

Series Resonant Circuit: We consider first the series
resonant circuit of Fig, A2.1. The ratio of the output voltage
to the input voltage is

=72 .

R
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. 3 o—{hae - I-—-~ -0
@y R + jlwL - 14C) ° e
The intensity response spectrum O o uj: —0
18 siven by the absolute value
2f the square of the expression: Fig. A2.1 Garies
Reszonant Cireulit.
)
, 2 »
(ﬂ’) 'FJ ; = 2 R ) 2 N
§31§ + (WL - 1A9C)
¥o irrreduce the two varameters, w,, the resomant frequency, and

4;& the damping constant, defined by

.2 = 1/1C and wp = B/2L .

‘w-gmz
% () = —— - . (A2.2)
P4 (o .w.?.} + 40)!(9

I+ is interesting to note that the spectral response of the
"arii.el =ireuit of the config- O
ratfen shown in Pig. k2.2 18 '
~f thne saze form. It is often 1 R' C €,
valid to assume tha? a constant ‘ m(
current ie applied to the paral- -O
Lel circuit, when 1t 1is used as Fig. A2.2 Parallel Resonant

a filter; the ratio of the output  Circult of One Zype.

7oltage to the constant input current
is

]

- 1
7? TI/RY 4 Jow + 1/30L °
Me apain define the parameters ®, and wp, this time defined by
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2 -
®2 = 1/1C and wp = 1/2R'C.

The intensity response spectrum is then

o 12 w32

| - w7

which, except for the factor 3’2, is of the same form as Eq.
(42.2.). (It must be remembered that the resoonse spectrum

of a parallel circult having the resistance in series with the
inductance i3 not of the same formi this case, which we shall
¢all the parallel resonant case in agreement with the literature,
w41l be discussed briefly at the end of this appendix.)

Spectrup Properties: We shall first exaxmine some of the

oropertics of the series-resonant tuned-circuit spectrum of
En. {A2,2), The fresuency of maximum response is found by solv-
ing the equation

(P 2 2y v awml
2 T2 202 4 42212
a¢.%) [ @) 4(*«02]
The solution is easily sesn to be w = w j the angular frequency
of maximur respornse 1s w, repardleas of the § of the circult.
The zaximuz value of W(W) 13 W(W ) = 1. Parameters which are

a convenient measure of the hsndwidth of the spectrum are the
twothalf-power™ points obtained from Fq (47.2) when

W) = »
(@2 - w§)2+~«n%m§ ’

= 0.

W) = éﬁﬁoo)

or
2
2 :O?L - 3
2 4 a5l 2
(wp ~ wg)® + dwpup
The solutions of this equation are
©, =4l + ws +
h o} P~ “p

A2

T
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Ths damping constant Wy iz equal to the angular half-bandwidth
for all values of Q. However, for low-Q c¢ircuits, the frequency
of maximum response 1s not midway betwesen ¥the two half-powar
roints, The Q of a series circuit is defined as the ratic of
the serles reactance of elther reactor at resonance to the
series resistance. Por the circuit of Fig. A2.1,

o T w1/ 2 0y A om s
Q mag/B 1 w@RG SR

The total zngular frequency bandwidth bestweesn the half-powsr
1 | |

points 1s

2wy = a\)@/Qn

Analvtical Properties of Wlwj: Factoring the denominator
of BEq (A2.2), we can write W(w) az 2 sum of partial fractions.

s’ A i B ~ o D
% 4 ST v " + - - wh -
Ww) = (wémiwjmy} guuwfmgij (w*w94;wg§ (muwf+§wy} .
s (42,3)
where w! ﬂ@ﬁng ~ w; and the guantities A, B, ¢, and D are given
Ty _ ) _
u)p,uuh- ij) wF{w k-?_;wyl)
A = "“‘“‘”ﬁﬁ'ﬂ'— i = '~=~~2~3€5;-~w-e—-
wrtuuﬂwjm?) wF(.w‘+3wy)
G ="z =TI

The function W(®w) has, in general, four polez in the complex w-plane.
The locations of these poles are indicated by the denominators of
the fractions in Eq (AZ2.3) and are plottzd in Fig, 42.3. It will
be noted that for wy < ®, the four poles are symmetrically lo-~
sated on the circls | ©| = @ - When wp is equal to wo(Q = 1/2) the
four simple poles merge inte two second order polesz at w= + y»ah

As wy 1s increased further (Q< 1/2) the two second-order poles
s5plit into four simple poles, all lying on the imaginary

axis. As wp Increases from w, to w, twe of these poles move

;wm W™
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from the vpoints * Jw  toward the orlgln, while the other twno
move Trom * jwu tovard * J o,

Pie 42,2 Comnlex w-Plane Showing Location of
Foles of Punction Wlw). Aarrows Show Motion of
Poes as wp Inerwases, w, Remaining Pixed.

Pupction. With the above information we

3TE now ready to evaluate the autocorrelsnfion function of nolse
naving the intensity spectrum of Eng (a2,2). In order to ob-
‘xiri the normalized autororrelation function p(T) we shall sizoly
evaluate Egq, (1.10) and normslize the result (so that p(0) = 11},
Since !g(fé 13 an even function [Eq (A2.2)], it 1is possible to
write

(4 03
R(Z) = % fws(mej“”ao (A2 . 4}
- D

We will evaluate thie above only for 72 positive, since

R(~-f) = R(T), (A2. %)
because R(Z) 1s an antocorrelation function.

Case I5 0 <wp <0 : In this case the integral of Ea. (A7.4)
18 easlly evaluated by means of a conbour integral along a path

tiag , SOETINL Gt
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aontaining the real axis and a large semicirels around the

urprer half-plane. Then for 72> 0,

@
R(r) = 1 W (w)ed
= o0

= 21 Renddus E% Wiw} eyﬁﬁjw = g

¥4 ;}’J)F

H
$§t§

B e e SN S - oottty s o

?w?i, .ﬁ«:&ﬁ?} f;,fmg,-g"?ng}if uJF{ wH 4}DF)
FTTET 4 Jw?

"Dt :
‘ W7 anznty - bl “intote

¥ 4d
il 2
Peorefrrr b normalized antocorrelntion fanetion plr)

{3 1YE (AR
o ¥ RAE A é sinst TN

gt ute weloae miens, g
For wory nlebey Tivcaits sbure wpoe 0 gl wheen |

o -a,

LS

RTC IR S

ape dreorted o oaard oty koo (A2 RY,

!‘ngé al‘s ?,xa‘»fﬁ

oo grrppnhaly apyrowineted by thie i by puuied forsuls

g
V‘xfa ‘
p’l"’:’} o F ey W R, Y
N
Cran IT, g < u  Eoaetton Cal ) yawen Lo corrpeed forn of

j)(ﬂ‘") for all & > i/ Hoowgep wbrn g o -","110*;,1 1 mpand t""w.m

wid w0 4y zurn, ancd owr omea b oeiunty *pe Intrprad

"f
Ri l"} » i&u;j d’""ﬂ'g ‘n‘ 4
- of . (ot $uf -
1 ]

This could also be dops by contemr intogrotlon, bul we
that -

W“i} o, T
R(T) = == {1 . & T e
(v)r) it

Thersfore, for § = 1/2,

fin *i‘ 3

1

j.
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=)
p(r) = £1~woizl le o 7l . (A2.8)

Case III§ W < Wp¢ For very low-Q circuits the contour
integral is again useful. In fact, the integral evaluated for
Case I above may agaln be used i1f we note that ®', as defined

by

! = K e 2
m“moud;-,,

45 now an imaginary number. Defining a nsw parameter,

. %/2 - 2
0 R o !

we find, without further ado,

-Wp |¥
p(T) = e O I [cosh o' T w=£§ sinh o [t] 1.

w
(42.9)

Parallel Resonant Cireuit: The correlation functions for the
medium and low-Q cases derived above correspond only to response
spectra of the circults of Figs. A2.1 and A2,2. If, for example,
the circuit 1s a parallel resonant
eircuit of the form shown in Fig-
A2.4, the intensity response
spectrum is of the form

w2 + o —
W (w) = 5 55 (42.10) Pig, A2.4 Usnal Parallel
P (uﬁ_u?) + 4u>uy‘ Resonant Circuit Configu«

ration.,

where u% = 1/LC and W = R"/2L., The normalized autocorrelation
function of random noise having the spectral intensity given by
Eq. (A2.10) has been computed by the same methods as in the pre-
vious example. The results are
Y 2
i (0 ~ awx)
Ol coswWT - ﬁ% 2 F sine: ltll, @ > 1/25
w 2 2 ’ 9
| (W5 + awg)
(A2,11)

p(z) = e
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p(T) = e“‘ﬂ}? el 1 -?im wy || J ;s @ = 1/2;
L o : '
and _
ity = e T e wnt - -:-g-l-wﬁ-« sinh w"h:!}l <1/2.
L r

Wren 4 is very large, Eu. {2 11) also reduces to Ea. (A2 9)
parallel rﬂfanant elr-
o Ad

srited graphiecally in the literature Normal-~
1zed correlation funciions for nolse having the corresponding
srastry osre plotted in Fip., A2.%5 for

Besponse curves for the sariez and
“uits are presg

various values of (.

R adiana L
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Fig. A2.5. Autocorrelation functions for noles having “Cmed-ofroult”
spectra, Solid curve: Seriss resonant circult; Dashed surve: Yarallel
resonant clrcult. Both curven are even functiony uf 7,
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Fig. A2,5, (cont.) Autocorrelation functions for no
circuit” spectra. Soiid curve: Series resonant cirouit ; Dashef ourve:
Parallel resonant circuit. Both curves are even functions of . For
Q 24, the two curves are practically identical.
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Fig. A2.5 (cont.) Autocorrelation functions for noise having "tuned-
circuit”™ spectra, Solid curve: Series resomant circuit; Dashed curve:
Parallel rescpant circuit, Both curves are even functions of T, For
Q 2 4, the two curves are practically identical,




™27

Appendix III \

CORRELATION FUNCTIONS OF THE OUTPUT
OF A PULL-WAVE, v D.LAW DETECTOR
by

David Middleton and Noel Stone

th

The dynamic response of a full-wave, v  -law nonlinear

device may be reprosegted by

16 =|VO| = (W),  (~0<i <@), (v2 0)
(43.1)

where I(t) is the instantanecus input distur“bance, eorrespond-
ing to the input wave V(t), and B 1s an appropriate scale fac-
tor. As has deen shown elsewhero,‘s the full-wave relation
(A3.1) may be expressed in terms (more convenient for analyt-
ical purposes when V(t) eonsists of a signal and noise) of a
(complex) Pourier transform by

I(t) = %-,-,ff(i’)[o"’v(t)n"‘}“t)]d}, (43.2)
c

where C is a contour extending along the real axis from - to
+ ® and indented downward in an infinitesimal semicirele ahout
a posslble'singuIarity at 3 = 0. Here t(i’) is the (complex)
Fourier transform of the dynamic charaoteristic g(v), which is
calculated in this instance from

£(1%) = 7;(v>.'1"hv ,  In(Z) <o.

0

8pecifically, one readily finds here that for (A3l.1),

£(13) =874y (1p) VL (41.4)
81
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Phe autocorrelation function of I(t) is‘

Rp(t) =<LT(EII(E,) > stat. av. = :11:5 ff £(15,)1(1%,)
ce

6

(43.5)

°<(e1§1"1* RN IE2APN 9_1;2vz)>statoavod§1‘52 ;

where the statistical average 1s taken over the random por-
tions of the input (V(t)) and the time-average over the
phases of the signal, if it is periodic. If it is not, as
is frequently the case here, when the signal portion of V(t)
is 1tself a noise wave, this time average is replaced 1ﬁ the
usual manner by an additional statistical average, it being
assumed here that there is no correlation between signal and

noise, in any case. Equation (43.%) may be somewhat simplified,
to

R (t) -;"13 [fcmgl)ru;z)trz(;l,;Q;t)v

(43.6)
* Fa(-21, 5ty a5 a3, ,
in which P2 is the chargcteristic function (i.e., the Pourier
transform of the probability density w2(Vl,V2;t) of the input

wave V(t). [Por the V(t) assumed here, the following symmetry
properties of 12 are easily established:

Po(= 51,3800y = Fo(d1,-Hr3tdys Fo(5y,-Tpstly
=P8, Faitdy 5

stationary ergodic ensembles are also assumed throughout.)

(43.7)

Let us now determine BI(t) for a variety of input waves
V(t). We summarize below some of the principal results:

I. ¥ = e 3

For nornai random noise the characteristie function 12

—

.

O

IR st
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assgciated with the second~order probability
A
is

density W,(V,,V,3t)

- $G35r2n (005 y3))

) (A3.8)

where ¥(t) = ¥p(t) 1s the autocorrelation function of the input
noise V(t), p(t) is the normalized correlation functionj and
¥ = V2. (Itdis assumed that <V> = 0.) From (A3.6) we get

2,2 ,
RI(t) = ﬂﬂ%)—ﬂ_ f/'(igl)-v-l(i;z)-v-l
n c C
2+§2)

- 33
. cosh[*P(t)glgzle el d51d52

2n
@LY)—_ 0 2n ) (53,9)
where the amplitude functions ho op are
~-v~l 2
Ry on 1——9-&—-11f /2 g2mv-lay (43.10)

- (-1)7p(-v2) 27" /22 MM

in which (a), = a(atl) - (a*n-1)3 (a), = 1.

2
R () = (29" £ (52 p (- v/2,- v/2:1/

(29) ¥ g2 +1.2 (-v/2)3p(t
- 2E-E regh 2; ERVON

and (1/2)_ = (2n) !/ 2°™n 1

The final result 1sA7

2;92(t))
)28

II. V(t) = s f two stati cal independent no ves:

For the problem considered in Chapter IV

of this report, we

wish to determine the autocorrelation function of our vih law,

full-wave rectifier when the input V(t) = Vy
the sum of two, uncorrelated noise voltages,

+VN, i.e., 1is
The 2characteristic

g

e i bty . e . M ==
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function l'2 in (A3.6) riow factors into the product of the two
characteristic functions of le and Vo viz.,

2

P, (3, ,553t)y = P2(51132§t)nl . r2(;1’§2;t)N2

(¥, 4¥,) (32452) |
- .__l._a__;_LEL . (A3.12)

BRI TCL THCINE 51 A

this last for normal random noise such that <"_1> - <Y'2 = 0,
As before, [ef., (A3.8), <Vll >= ¥, <Vu2> =" ¥,, ete.” Let-

ting
v
aagé = p(0) (43.13)
e op -

N

be the input “signal®-to-noise ratin (V. represents a "noise"
signal), and following the procedure of (A3.9), we can write here

420
Ry(t) = & Z fg’:[pl(“t’)ﬂpz(t)lz"ug,zﬂ, (A3.14)

where now h, . 1s given by (A3.10) {f ¥ = v, Vl(l*p).
Por identical spsctral ahanes (but different total intensities)
the general expression (A3.14) simplifies somewhat to

a2n
R (t) = 4 S vn % hg'a(l*y)zn (43.15)
n+*Q

(--v/2)nzp(t)2n
v 1.2 :
= (2%, (1)) '{,2-\""(’3") S nl (172)
n (A3.150)

since pl(t) = pz(t) = p(t) under this assumption. In the case
of weak signals, i.e., p2<< 1, this reduces still further to



byt e e

W =8~
| Vo2 2 < (ay/2)Ppre)?n
At = (29, (14p)] » %‘r(%l) ’ Z " n”bzf
ne EC | l - n
p- <<1 (A% ,164;

3 4 .
= Etow, (o) (DGR (-v/2,-9/25 1/24p(83%)
(A2,16)
24=1lar techniques may be nsed for other types of s3ignals; for
-atq1ls see Refs. AS and A6. Note here that we have obtained a
sc=ract and general result, good for all values of v2 0. These
results may now be inserted directly into Eq. (4.4) and the out-
~ut signal-to-noise ratios computed, as indicated (Eqs. (4.11)
a* seq,) for the various types of smoothing filters and corre-
*w*ion “unctions P(t) considered in this report.
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