# UNCLASSIFIED

# AD NUMBER

### AD003174

# **CLASSIFICATION CHANGES**

TO:

### unclassified

FROM:

confidential

# LIMITATION CHANGES

TO:

Approved for public release, distribution unlimited

## FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; Jan 1953. Other requests shall be referred to Office of Naval Research, 800 North Quincy Street, Arlington, VA 22217-5660.

# AUTHORITY

31 Jan 1965, DoDD 5200.10; ONR ltr, 13 Sep 1977

# THIS PAGE IS UNCLASSIFIED

# UNCLASSIFIED



THIS PAGE IS UNCLASSIFIED

# Reproduced by Armed Services Technical Information Agency DOCUMENT SERVICE CENTER

KNOTT BUILDING, DAYTON, 2, OHIO











भू स्टब्स् 📰

This material concerns to lowerton affecting the ration of the work the United Structure of the Sector of the sector of the Bien concerns of the person is prohibited by law.

5301A -3732-

SECRET

### TABLE OF CONTENTS

|      |              |      |                                                                                                  | Page No.        |
|------|--------------|------|--------------------------------------------------------------------------------------------------|-----------------|
| Auth | oriza        | tion | , Subject, Objects, Scope                                                                        | l               |
| Summ | ary          |      |                                                                                                  | 1-3             |
| Cone | lusio        | ne   |                                                                                                  | 3-5             |
| Reco | mmenđ        | atio | nø                                                                                               | 5-7             |
| I    | Intr         | ođuc | tion                                                                                             | 8-9             |
| II   | Meth         | ođe, | Apparatus, and Procedure                                                                         | 9-12            |
|      |              | Α.   | Analytical Methods                                                                               |                 |
|      |              | в.   | Apparatus                                                                                        |                 |
|      |              | C.   | Procedures                                                                                       |                 |
| III  | Resu         | lts  |                                                                                                  | 13- 20          |
|      |              | A.   | Conversion of NaClos in Five Gram<br>Batches                                                     | 1               |
|      |              | В.   | Catalysis by Contact Substances<br>and Impurities                                                |                 |
|      |              | C.   | Thermal Decomposition of Perchlor                                                                | ates            |
|      |              | D.   | Conversion of Sodium Chlorate in                                                                 | Metal Pans      |
|      |              | E.   | Solubilities in the System:<br>NaClO <sub>4</sub> - NaClO <sub>3</sub> - NeCl - H <sub>2</sub> O |                 |
|      |              | F.   | Attempted Separation of NaClO <sub>4</sub> -                                                     | NEClos - NaCl   |
|      |              | G.   | Alternative Methods of Mtilizing                                                                 | the Mixed Selt  |
|      |              | н.   | Conversion of KClC3 in Five Gram                                                                 | Batches         |
|      |              | I.   | Separation of Components of Mixed                                                                | Salt Product    |
|      |              | J.   | Conversion of NaClOs - KCl Mixtur<br>Approximately Five Gram Batches                             | es in           |
|      |              | ĸ.   | Conversion of Potassium Chlorate                                                                 | in Metal Pans   |
| IV S | 5 U F        | ΡL   | EMENT follows                                                                                    | page 20         |
| V J  | <u>A p p</u> | ΕN   | DIX follows                                                                                      | pag <b>e</b> 20 |

# CECHPITY INCODMATION

# SECRET

1

,

.

3

# TABLE OF CONTENTS (continued)

| F. | 1      | g  | ٠ |   | I   | Y   | <b>i</b> e | ild          | .s c<br>Ten        | of<br>1de         | So<br>ra         | đi<br>tu      | un<br>re  | n I<br>98        | ?er<br>ar         | or<br>nd          | nlo<br>Ti            | rø<br>.me               | te<br>a         | a                 | t 1                     | lei                       | 10               | oue                     | 3                         |              |                 |
|----|--------|----|---|---|-----|-----|------------|--------------|--------------------|-------------------|------------------|---------------|-----------|------------------|-------------------|-------------------|----------------------|-------------------------|-----------------|-------------------|-------------------------|---------------------------|------------------|-------------------------|---------------------------|--------------|-----------------|
|    |        |    |   |   |     |     |            |              |                    | - <b>1</b>        |                  |               |           | -                | -                 |                   |                      |                         |                 |                   | f                       | <b>)</b> ]]               | 01               | N 8                     | pag                       | e            | 13              |
| F  | 1      | g  | ٠ |   | II  |     | Ve         | ig           | ht<br>Cor<br>Tin   | Lo<br>ive<br>nes  | 88<br><b>r</b> 8 | D<br>10       | ue<br>n   | e t<br>at        | to<br>t V         | 0x<br>'ar         | ye<br>ic             | er.<br>vue              | E<br>T          | vo:<br>emj        | lui<br>per              | tic<br>rat                | on<br>tui        | Du                      | rin.<br>an                | g            |                 |
|    |        |    |   |   |     |     |            |              |                    |                   |                  |               |           |                  |                   |                   |                      |                         |                 |                   | f                       | 513                       | 01               | <b>8</b> N              | pag                       | e            | 13              |
| म  | د<br>۲ | £  | • |   | IIJ | •   | g          | ođ           | iun<br>Cor<br>Var  | n C<br>ive<br>'io | hl<br>rs<br>us   | or<br>10<br>1 | n<br>'en  | ie<br>of<br>npe  | ir<br>S S<br>Əre  | i N<br>Jođ<br>iti | (ix<br>liu<br>lre    | eđ<br>m<br>s            | . S<br>Uh<br>an | al'<br>101<br>d'  | t I<br>rai<br>Tir<br>f  | re<br>te<br>nee           | ai<br>ai<br>B    | act<br>5<br>WB          | : Af<br>pag               | te<br>e      | r<br>13         |
| म् | 1      | g  | • |   | IV  |     | Yi         | .el          | đa<br>Ten          | of<br>npe         | F                | ot<br>ti:     | ae<br>re  | 381<br>38        | Lun<br>ar         | n F<br>nđ         | Per<br>Ti            | or<br>me                | lo              | ra                | te                      | at                        | t '              | Var                     | iou                       | ទ            |                 |
|    |        |    |   |   |     |     |            |              |                    | -                 |                  |               |           |                  |                   |                   |                      |                         |                 |                   | ſ                       | 01:                       | Lo               | 8 W                     | pag                       | е            | 17              |
| T  | а.     | Ъ  | 1 | e | נ   |     | Ţ          | 'vp          | ice<br>Tir         | nes               | Re               | su<br>t       | lt<br>Va  | :s<br>ir!        | at<br>Loi         | ;                 | lpr<br>Te            | emŗ                     | xi<br>er        | mat               | te:<br>ur(              | ly<br>es<br>ol:           | t]<br>-<br>Lor   | ne<br>Ne<br>ws          | Opt<br>010<br>per         | in<br>a<br>e | ium<br>13       |
| T  | a      | Ъ  | l | e | ]   | []  |            | Τy           | pic<br>Pro<br>Opt  | odu<br>cim        | lot<br>un        | on<br>s<br>I  | ipc<br>Ot |                  | it:<br>air<br>s 6 | lor<br>nec        | ns<br>1 s<br>Vs      | ot<br>it<br>i <b>ri</b> | Ar<br>Ar        | he<br>pr<br>s     | M<br>ox:<br>Tei<br>fo   | ixe<br>ime<br>npe         | ed<br>ati<br>eri | Se<br>ely<br>at:<br>we  | alt<br>7 th<br>res<br>pag | e            | 13              |
| Ţ  | a      | Ъ. | ı | e | ]   | III |            | C            | onv                | rer               | si               | on            |           | nf               | Sc                | di                | תנו                  | n C                     | h1              | ore               | ate                     | - ·                       | 'n               | Me                      | tal                       | P            | ana             |
|    |        |    |   |   |     |     |            |              | at                 | Va                | ri               | ου            | 8         | Te<br>A          | emp<br>L          | s<br>S            | o<br>0               | ur<br>E                 | ee<br>5 U       | e.<br>P           | nđ<br>fe<br>P           | T<br>ol:<br>L             | l m<br>lov<br>E  | er<br>We<br>M           | pag<br>E N                | e<br>T       | 15              |
| T  | a      | Ъ  | 1 | e | נ   | :v  |            | Ту           | pic<br>Tin         | al<br>nes         | R                | ea<br>t       | ul<br>Ve  | .te<br>ari       | 38<br>Lou         | t<br>18           | Ap<br><sup>m</sup> e | opr<br>emp              | ox              | 1ma<br>ati        | ate<br>ure<br>fo        | ely<br>ea<br>ol]          | 7 1<br>1<br>LO1  | the<br>KC<br>W8         | 0p<br>03<br>03<br>pag     | ti<br>e      | mum<br>18       |
| T  | a      | Ъ  | 1 | e | V   | r   | Ţ          | ' <b>y</b> p | ice<br>Fro<br>Opt  | ul<br>odu<br>:1m  | Co<br>ct<br>um   | mp<br>s<br>T  | os<br>Ot  | it<br>Dte<br>nee | tic<br>air<br>a e | ne<br>lec<br>t    | s c<br>la<br>Va      | f<br>t<br>ri            | th<br>Ap<br>ou  | e 1<br>pro<br>s ( | Mix<br>oxi<br>Fer<br>fo | cec<br>ima<br>npe<br>pl]  | ate<br>era       | 3a]<br>ely<br>etu<br>ve | t<br>th<br>res<br>pag     | e            | 18              |
| T  | a      | ъ  | 1 | е | V   | /I  |            | Τy           | pic                | al                | R                | es            | ul        | .te              | s f               | 'nc               | m                    | Na                      | .01             | 0 <b>9</b>        | -<br>fc                 | - K                       | 101<br>Lo1       | l M<br>Vs               | lixti<br>pag              | ur<br>e      | <b>es</b><br>18 |
| T  | 8.     | ъ  | l | e | V   | 'II |            | C            | on <b>v</b><br>Per | er<br>15          | si<br>at         | on<br>V       | o<br>ar   | of<br>ic         | Po                | tr<br>I           | sa<br>!en            | iu<br>pe                | m<br>ra         | 0h:<br>tui        | Lor<br>ref<br>f(        | າຄt<br>3 <b>ຄ</b><br>ວ່11 | e<br>ind<br>or   | ir<br>9 7<br>VB         | Me<br>lime<br>pag         | ta<br>B<br>e | 1<br>20         |
| S  | U      | P  | ņ | L | Ε   | М   | मि         | Ņ            | T                  |                   |                  |               |           |                  |                   |                   |                      |                         |                 |                   | f                       | 21                        | Lov              | 8                       | pag                       | e            | 20              |
| A  | Ŀ      | P  | E | Ν | D   | I   | Х          |              |                    |                   |                  |               |           |                  |                   |                   |                      |                         |                 |                   | fe                      | 511                       | .01              | 18                      | pag                       | е            | 20              |
|    |        |    |   |   |     |     |            |              |                    |                   |                  |               |           | · •              | ÷.                | <b>!</b> 1 .      | (* )<br>(* 1)        | 1                       | IJ              | Ň                 |                         |                           |                  |                         |                           |              |                 |

SHOL: I

# Authorization SECRET

ł

Contract No. NONR-68100 Froject NR 352-299 Office of Naval Research/Oldbury Electro-Chemical Co.

#### Subject

Thermal conversion of chlorates to perchlorates, and the preparation of potassium perchlorate and ammonium perchlorate of sufficient purity to meet military and commercial recuirements.

#### <u>Objects</u>

To systematically investigate the thermal decomposition of commercially available chlorates with the objectives of finding optimum conditions for maximum yields and efficiency, finding suitable materials for construction of equipment, and determining the feasibility of the process for manufacturing perchlorates. To find means for converting thermally produced perchlorate into useful salts of adequate purity.

#### Scope

This investigation was limited in scale of operations to those which could be carried out in the laboratory, and in the use of materials to those which are commercially available. The use of platinum in any significant quantity was specifically avoided, since this is a prime objective of the entire perchlorate program.

#### Summary

1- Sodium chlorate has been thermally decomposed, or converted, batch-wise, in quantities of 5 grams to 10,000 grams under a great variety of conditions and in several different containers. The highest yields and conversion efficiencies, and the optimum composition of the product, were obtained by melting the salt and maintaining it at carefully controlled temperatures for a relatively long time. The time/temperature schedule was found to be critical. The higher the temperature the shorter was the required time, and the less efficient the conversion process. The size of the batch, and the shape of the reacting mass of chlorate are also important factors. Large masses require a time/ temperature schedule different from small ones.

No conditions were found under which sodium chlorate could be converted completely to a perchlorate - chloride mixture. The mixed salt always contains some chlorate, and the molar perchlorate/chlorate ratio appears to approach a constant value of about 7. Products obtained under conditions giving maximum yields and conversion efficiencies contain perchlorate/chlorate in a molar ratio around 5.

# SECURITY INFORMATION

### SFCRFT

There is a critical temperature, its value depending upon various factors such as batch-mass, contact surface, etc., at which any batch of socium chlorate in the process of conversion may decompose spontaneously, very rapidly and completely, and highly exothermally, into oxygen and sodium chloride, leaving the latter as a red-hot, fused mass. This phenomenon will impose serious limitations upon equipment design, batch size, and procedures in the operation of the process. There is believed to be a critical mass, or mass/area ratio, above which it would not be possible to control this spontaneous decomposition. Its value would, necessarily, depend upon a number of factors, and has not been definitely established for any set of conditions.

ſ

đ.

. ......

2- The thermal conversion of potassium chlorate to mixed perchlorate-chlorate-chloride proceeds in a manner generally similar to that of sodium chlorate, but at somewhat higher temperatures. At comparable conversion rates this temperature is, roughly, 40°C higher. Yields of perchlorate and conversion efficiencies are slightly higher in the case of the potassium salt.

3- When a mixture of sodium chlorate and potassium chloride is converted by heating, the temperature of conversion is approximately the same as for sodium chlorate but yields and conversion efficiencies are slightly higher than those for potassium chlorate. This effect has been attributed to a favorable "catalysis" by potassium chloride, but it seems probable that conversion of sodium chlorate takes place in the normal way and that potassium perchlorate, no doubt formed by metathesis in the melt, decomposes at a lower rate at the conversion temperature than sodium perchlorate. Whatever the mechanism may be the facts are that such mixtures gave conversion efficiencies among the highest so far obtained.

4- Trace impurities adversely affect conversion efficiencies, and this is true, also, of contact of the hot chlorate with the surfaces of most containers. Quartz glass, Vycor, and Pyrex were extensively tested and compared. Quartz and Vycor are about equally inert, but new Pyrex has an adverse effect. After repeated use Pyrex improves, and after about half a dozen runs it has been found approximately equal to quartz. So far as could be determined quartz surfaces have no effect upon the course of the decomposition of heated chlorates.

5- As a practical matter ceremic materials would not be used if suitable metals could be found. The common corrosion resistant alloys were found to catalyze the decomposition strongly, and in an adverse manner. Methods have been found, however, for "passivating" the surfaces of some of these alloys to such an extent that they compare favorably with glass or quartz in inactivity. Quantities of sodium chlorate as large as 10 kilograms (22 lbs.) have been converted in a passivated metal pan.

6- The mixed salts obtained by thermal conversion, under optimum conditions, of sodium chlorate contain approximately 62%

NaClO<sub>4</sub>, 13% NaClO<sub>3</sub>, and 25% NaCl. Nearly all of the NaCl may be separated from such a mixture by conventional methods involving solution in, and crystallization from, water but no practical method for separating sodium perchlorate from sodium chlorate, other than destruction of the latter, has been found. An investigation of the system NaClO<sub>4</sub> (H<sub>2</sub>O) - NaClO<sub>3</sub> - NaCl - H<sub>2</sub>O was made to confirm and supplement published solubility data.

7- One of the principal perchlorate salts required is ammonium perchlorate. This is usually made by metathesis from commercially pure sodium perchlorate. Efforts to prepare sodium perchlorate in pure form from thermally converted chlorate having failed, it was of interest to determine whether or not the crude mixture could be used. A process has been developed for preparing this salt by metathesis using ammonium chloride. The ammonium perchlorate obtained by operation of the process on a laboratory scale appears to meet commercial and military requirements as to purity.

8- Potassium perchlorate, the other principal salt required, has been made by direct conversion of potassium chlorate, as already noted, and also by metathesis similiarly to ammonium perchlorate. Laboratory data indicate that this salt may be obtained in any desired degree of purity by recrystallization or other known methods.

9- A flow-sheet of a suggested pilot-plant based on the thermal conversion of sodium chlorate has been prepared. The proposed process includes conversion to ammonium perchlorate. The same plant, or a simplified version, could also be used to manufacture potassium perchlorate.

ź

#### Conclusions

1. Sodium chlorate may be converted by heating under controlled conditions to a mixed salt product containing, typically, NaClo. - 62%, NaClos - 13%, NaCl - 25%. The efficiency of conversion, under optimum conditions, approximates 80%, i. e. 80% of the sodium chlorate which decomposes is regarded as being converted to perchlorate according to the following reaction;

 $4 \operatorname{NaClO_3} = 3 \operatorname{NaClO_4} + \operatorname{NaCl}$ 

The remainder of the decomposed chlorate is, in effect, wasted by conversion to sodium chloride and oxygen:

2 NaClO<sub>3</sub> + 2 NaCl + 3 O<sub>2</sub>

About 12% of the sodium chlorate used remains unchanged in the mixed salt product.

a. The stated reactions are over-simplified. The exact mechanism of the conversion is not known.

b. Maintenance of optimum conditions involves fairly accurate control of temperature and time.

c. Highest yields and conversion efficiencies are obtained at relatively low temperatures and long times.

d. Trace impurities and contact surfaces may, in many cases, catalyze the reactions adversely. No known catalyst improves the conversion.

ſ

(

(

e. There is a critical temperature above which any batch will spontaneously, and uncontrollably, decompose completely to oxygen and sodium chloride.

f. The actual value of the critical temperature depends upon several factors, of which the mass/area ratio, and the presence of catalysts or catalytic surfaces are known to be important.

g. Recognition of the critical temperature factor is a prime requisite in the design and operation of apparatus for carrying out the thermal conversion of chlorates.

h. Commercial grades of sodium chlorate give substantially the same results as products highly purified by recrystallization or other methods of purification.

2. Potassium chlorate may be converted, thermally, to a mixed salt product containing, typically, KClO<sub>4</sub> - 68%, KClO<sub>3</sub> - 9%, KCl - 23%. Conversion efficiencies under optimum conditions approximate 83%. As a rule the control of the conversion process has been more difficult than in the case of sodium chlorate.

All conclusions listed under 1., above, are applicable.

3. Sodium chlorate - potassium chloride mixtures, when heated appropriately, produce perchlorate at higher conversion efficiencies than potassium chlorate. The highest conversion efficiency reported, 88.4%, was obtained in this way. Values approximating 86% are typical.

4. Fused cuartz and Vycor glass are practically inert, catalytically, when in contact with chlorate under the conditions required for conversion.

a. Most metallic surfaces catalyze the reactions adversely, and cannot be used.

b. Certain alloys may be passivated by special treatment to such an extent that the surfaces are comparable to quartz in catalytic inactivity.

c. Quantities of sodium chlorate at least as large as 10 kilograms (22 lbs.) may be successfully converted in metal pans.

5. The sodium chloride contained in the sodium chlorate conversion product may be almost completely separated by leaching the mixed salt product with water.

4

a. Sodium perchlorate and sodium chlorate cannot be separated from one another by any known simple method.

6. Ammonium perchlorate may be prepared by metathesis from ammonium chloride and the mixed salt product made by thermal conversion of sodium chlorate.

ĺ

ť

7. Potassium perchlorate may be prepared by metathesis from potassium chloride in a manner analagous to that used for ammonium perchlorate,

#### Recommendations

1. The thermal conversion of sodium chlorate should be extended to a scale larger than the 22 1b. batches so far successfully converted.

a. It is believed that larger batches may be successfully converted, especially if the length and breadth of the container are increased without excessive change in the depth of the charge. It is believed that charges of greater depth may be converted, also, but that there is a critical volume/surface ratio near which control will become increasingly difficult. The determination of these factors, experimentally, is essential to the design of the most economical plant.

b. The initial stage of the process, melting and heating the chlorate, requires a positive heat input, and the environment in this stage must, therefore, have a temperature in excess of that of the charge. The reaction is, however, exothermic and the excess heat must be dissipated at the proper rate. It is clear, therefore, that the charge must be moved to a cooling environment immediately after conversion begins. At least two stages or compartments are necessary. It is doubtful whether a simple two-stage process can provide optimum conditions. It is recommended, therefore, that provisions for at least two additional stages, each with thermal controls, be made. This phase of the process deserves extensive study.

c. The critical temperature, at which the reaction becomes uncontrollable, should be determined for several different batch shapes and sizes.

d. To accomplish the extension of the scale, and to provide facilities for the intensive study of the conversion process, it is recommended that a tunnel oven, comprised of several units arranged in series, be designed and constructed.

1. The recommended number of units is four.

2. The units should be identical in size and shape, but may differ in heat input capacity and in other thermal characteristics. 3. The temperature of each unit should be regulated and controlled independently.

4. The temperature range within which points may be selected at will (in the cases of the 2nd, 3rd, and 4th stages) should be 50° to 550°C. The temperature range in the first, (heating) stage should be 450° to 550°C., minimum.

5. The recommended size of each unit is 42" x 42" x 14" deep, all being inside dimensions of the oven cavity.

6. The recommended pan size is  $36" \times 36" \times 8"$ .

7. It is recommended that electrical heating be used, initially, for maximum uniformity and ease of control. Consideration of the possibility of gas heating should be deferred until the conditions for satisfactory operation have been more definitely established. Radically different methods, for example: continuous processes, should be, likewise, deferred until more extensive study of the process has been completed.

8. Ample provision for the escape of gas, in case of uncontrolled decomposition, is recommended.

2. The conversion of potassium chlorate to perchlorate should be, similarly, extended to a larger scale and further investigated. No additional ecuipment should be required.

3. Further investigation of the conversion of mixed sodium chlorate - potassium chloride, or of mixed sodium and potassium chlorates, should be undertaken only if justified by economic analyses of the proposals in comparison with the simpler and more direct methods.

4. It is recommended that all new suggestions or ideas as to suitable materials of construction be considered and, if economy or technical advance is indicated in any case, promptly investigated.

5. It is recommended that new methods for processing the mixed salt products of thermal conversion be dilligently sought.

6. It is recommended that the conversion of unchanged chlorate in the mixed sodium perchlorate - chlorate solution by the alternative method of electrolysis in the conventional perchlorate cell be checked experimentally. If the results confirm the possibility of operating the thermal conversion process in conjunction with the standard electrolytic process an economic analysis, based upon experimental data, should be made. It is, theoretically, possible to multiply the productive capacity of a unit of platinum anode by four or more. 7. It is recommended that a small pilot-plant, minimum daily capacity - 100 lbs. of ammonium perchlorate, be designed for the manufacture of this salt by metathesis from ammonium chloride and thermally produced sodium perchlorate - chlorate. The crude ammonium perchlorate should be purified by repeated recrystallization.

ł

ŧ

a. It is recommended that the manufacture of potassium perchlorate, analagously, by metathesis from potassium chloride and the crude sodium perchlorate be investigated in this apparatus and the capacity of the plant determined.

#### I INTRODUCTION

(

1

The detailed data accumulated in the course of work in this project have been recorded and reported in a series of Interim Reports. In this Final Report these are briefly summarized and the most informative and pertinent findings presented as concisely as possible.

The partial conversion of chlorates, especially alkali chlorates, into perchlorates and other products has been long known and extensively investigated. The most important published observations were confirmed, and to some extent extended, by research in the Oldbury Electro-Chemical Company Research Laboratory a decade or more ago.

The present project was undertaken because of prospective large demands for certain perchlorate derivatives. The conventional method of manufacture involves electrolytic oxidation of the chlorate ion at a platinum anode, and relatively large quantities of this metal are required. Although this process is economically sound in spite of the large investment involved it cannot be expanded, indefinitely, because of limited availability of platinum. The primary objective, therefore, was to develop a process which would eliminate the need for any substantial amount of platinum. Costs of production, while obviously important, were regarded as secondary.

The work has, throughout, been directed toward practical goals. A certain amount of fundamental data not available elsewhere has, necessarily, had to be obtained experimentally, but aspects of academic interest, only, have been avoided.

Thermal conversions have been limited to sodium chlorate and potassium chlorate, these being the only chlorates manufactured in large quantities.

No serious attempts have been made to find catalytic substances or additives to improve the yields. Previous experience, as well as most observations recorded in the literature, indicate that all catalysis is adverse.

After having established a standard of reference by the conversion of a large number of small batches of chlorate the process was extended to a larger scale. The largest batch converted was 10 Kg (22 lbs.) of sodium chlorate, this being the practical limit in the apparatus available.

Solubilities in the system:  $NaClO_4 - NaClO_3 - NaCl - H_2O$ were determined to confirm and supplement data obtained from the literature.

The utilization of the mixed salt product obtained from thermal conversion is an essential part of the project. Alternative methods have been considered, of which two types appear practical. Both ammonium perchlorate and potassium perchlorate have been prepared by metathesis, and this method deserves consideration although it has aspects which are not particularly attractive. economically. The second alternative involves combining the thermal process with the usual electrolytic, using the sodium perchlorate chlorate mixture from the former as the cell feed for the latter. The method has not been confirmed by actual trial. As to the separation of the mixed salt products into each of its components no encouraging progress has been made.

II METHODS, APPARATUS, and PROCEDURES

#### A. Analytical Methods

( )

The analytical methods usually used have been described in detail in the First Interim Report.

1. <u>Gravimetric Determination of Oxygen Loss</u>. This was obtained by weighing the chlorate and the mixed salt product before and after conversion.

2. <u>Volumetric Determination of Chloride</u> in the presence of chlorate and perchlorate was made by titration of the neutral solutions with standard silver nitrate solution adding potassium chromate as the indicator.

3. Volumetric Determination of Chlorate involves reduction of the chlorate by standard ferrous sulfate in dilute sulfuric acid solution, followed by titration of the excess ferrous ion with standard dichromate solution adding diphenyl amine sulfate as the indicator.

4. <u>Gravimetric Determination of Perchlorate</u> depends upon the insolubility of either tetraphenyl phosphonium perchlorate or tetraphenyl arsonium perchlorate in cold aqueous 10% sodium chloride solution, and low solubility in ice-water. The quaternary perchlorate is precipitated metathetically followed by filtration, drying and weighing.

5. <u>Determination of Perchlorate by Difference</u> is applicable in cases where the chloride and/or chlorate of a single metal ion are the sole contaminants.

6. Yield of Perchlorate is calculated on the assumption that all perchlorate formed during conversion is produced by the reaction:  $4 \text{ MClO}_3 = 3 \text{ MClO}_4 + \text{ MCl}$ . This, therefore, represents the "theoretical", or 100% yield. The actual yield is always less, and may be expressed as % of theoretical, or simply Yield - %.

7. <u>Conversion Efficiency</u> is calculated by assuming that all chlorate taken for conversion is (a) converted to perchlorate as in (6), (b) decomposed according to the equation:  $2 \text{ MCl}_3 =$  $2 \text{ MCl} + 3 \text{ O}_2$ , or (c) remains unchanged. The ratio of the quantity converted according to (a) to the sum of the quantities involved in (a) and (b) represents conversion efficiency - %. Unchanged chlorate is assumed to be completely recoverable.

#### B. Apparatus

The various items of special apparatus have been described

in detail in the Interim Reports to which reference is made:

1. <u>Chlorate Containers</u>. First, Second, and Fourth Interim Reports.

In the preliminary experiments with five gram batches standard 1" x 7 3/4" test-tubes of Pyrex, Vycor, or fused quartz were used. The preliminary investigation of various metals was carried out by inserting small samples in the test-tubes with the chlorate.

After suitable alloys had been found larger batches of Chlorate were converted in rectangular pans  $10^{"} \times 4^{"} \times 2^{"}$  deep,  $10^{"} \times 4^{"} \times 4^{"}$ , and  $15^{"} \times 15^{"} \times 4^{"}$ . Methods of "passivating" metal pans are described in the Second and Fourth Interim Reports.

2. <u>Heating Apparatus</u>. First, Second, and Fourth Interim Reports.

The five-gram batches were heated in a fused salt bath composed of lithium chloride, 44.4%, and potassium chloride, 55.6%, contained in a solder melting pot, electrically heated. The fused salt was stirred, and the temperature was controlled automatically. The description and complete specifications of this apparatus are in the First Interim Report.

Larger batches, 250 to 900 grams, were heated in an ordinary laboratory muffle furnace, as described in the Second Interim Report. The thermal characteristics of this furnace were unfavorable and fully automatic control within the desired temperature limits was impossible. Supplementary manual control was necessary to obtain satisfactory results.

The largest batches, 2.5 to 10 Kilograms, were heated in an electrically heated glass-annealing oven, described in the Fourth Interim Report. This oven, internal dimensions 18" x 18" x 15", has built-in automatic controls and fairly good thermal characteristics. By supplementary monual control satisfactory conditions were obtained, empirically, and the results were good.

3. <u>Pan-handling Apparatus</u>. Fourth Interim Report. The hazard of handling heavy pans of molten chlorete was minimized by the use of a hand-operated lift-truck suitably adapted.

#### C. Procedures

(

t

<u>1.</u> Conversion of Alkali Chiorates in Test-Tubes. First Interim Report (Sodium Chlorate), Second Interim Report (Potassium Chlorate), (Sodium Chlorate - Potassium Chloride Mixtures).

Five grams, plus or minus 5%, of the alkali chlorate was accurately weighed into a tared test-tube which was then quickly immersed in the molten salt bath and, after the desired time interval, withdrawn and allowed to cool in a stream of air. The weight loss was determined and the mixed salt product dissolved and analyzed.

Í.

Freliminary tests of metals were made by placing samples in the chlorate and proceeding in a similar way.

(

1

Ţ

2. <u>Conversion of Sodium Chlorate in Metal Pans</u>. Second Interim Report (250 g. and 500 g. sodium chlorate in "conditioned" Inconel, Hastelloy, and #316 Stainless Steel). Fourth Interim Report (250 g. to 10,000 g. sodium chlorate in "passivated" Inconel).

Quantities of 900 g. or less were converted in the small pans heated in the muffle furnace. The desired amount of sodium chlorate was weighed into the tared pan, previously "conditioned" or "passivated", and inserted in the pre-heated (480°C) furnace. A glass enclosed thermocouple junction was imbedded in the crystals to measure the temperature of the molten salt during conversion. The sensitive element of the controller was suspended slightly above the pan contents. When the indicating thermocouple showed that the temperature of the molten chlorate was 460° timing of the process was started. At the end of the desired time the thermocouples were raised and the pan removed and cuenched. The temperature was kept as nearly constant at the chosen value as possible.

1

ł

Quantities of 2,500 g. to 10,000 g. were processed similarly in the larger equipment. In this case the pans were inserted and removed by use of the lift-truck. The procedure was otherwise similar except that it was found difficult to control the larger batches if the temperature within the melt reached 475° or higher. At 470°, therefore, the temperature was maintained as nearly constant as possible by turning off the heat and cooling the oven by opening the door periodically as required. During conversion of the largest batches the oven temperature fell, due to the required elimination of heat of conversion, to 430° at the end of the run. The conversion was considered complete when the melt temperature began to decrease rapidly. The pan was then removed and quenched.

3. <u>Sampling of Mixed Salt Product</u>. A significant nonuniformity due to segregation of sodium chloride was noticed, especially in the largest batches. Several large lumps representing cross-sections of the solidified melt were weighed, dissolved and diluted to a definite volume. Appropriate aliquots were taken for analysis.

4. <u>"Conditioning" and "Passivating" of Alloys</u>. Nearly all of the metals, and all of the commercial alloys, tested were found to catalyze the conversion adversely. After repeated contact with successive batches of molten sodium chlorate at conversion temperatures the catalytic activity of the surfaces of some alloys, notably Inconel, Hastelloy C, and "316 Stainless Steel, was found to diminish greatly.

11

A "passivating" treatment, involving thorough cleaning and pickling of the metals with warm nitric-hydrochloric acids, followed by a treatment with pure nitric acid, was found to produce a surface domparable to quartz in inertness.

Ķ

1

ί

"Conditioning" and "Passivating" are described in detail in the Fourth Interim Report.

#### III RESULTS

{

#### A. Conversion of Sodium Chlorate in Five Gram Batches

The results of approximately 200 runs made at ten degree intervals in the temperature range from 490° to 560°C, and at various times from 50 to 3,600 seconds, are tabulated in the First Interim Report. The data include Weight Loss, %, NaCl, %, NaClO<sub>3</sub>, %, NaClO<sub>4</sub>, %, Yield of NaClO<sub>4</sub>, %, and Conversion Efficiencies. The most informative of these are shown graphically in this Final Report:

| Fig.               | I   | Yields of Sodium Perchlorate at Various<br>Temperatures and Times           |
|--------------------|-----|-----------------------------------------------------------------------------|
| Fig.               | II  | Weight Loss Due to Oxygen Evolution at<br>Various Temperatures and Times.   |
| <b><b>₽ig</b>∙</b> | III | Sodium Chlorate in Mixed Salt Product at<br>Various Temperatures and Times. |

The peak of each curve of Fig. I represents the optimum time at the indicated temperature. The compositions of the products at these maxima are of special interest. The results of conversions under approximately optimum conditions of temperature and time are shown in tables:

- TABLE I Typical Results at Approximately the Optimum Times at Various Temperatures.
- TABLE II Typical Compositions of the Mixed Salt Products Obtained Under Optimum Conditions.

### B. Catalysis by Contact Substances and Impurities

No significant differences were observed when sodium chlorate conversions in Quartz, Vycor or "old" Pyrex test-tubes were compared. Catalysis at such surfaces is, apparently, negligible. When "new" Pyrex tubes were used under similar conditions Conversion Efficiencies were about 5% lower. After being re-used about a dozen times, during which the catalytic activity of the glass gradually diminished, Pyrex compared favorably with quartz in inertness.

Commercial sodium chlorate, as supplied by the Oldbury Electro-Chemical Co., was found to be practically equal to the further purified product. The commercial grade was purified by recrystallization, and also by boiling after acidification with hydrochloric acid (to remove bromate), or by treatment with hydrogen sulfide (to remove heavy metals), prior to recrystallization. The purified product gave, on the average, slightly better results but the improvement (about 1% higher conversion efficiencies) is not considered important or particularly significant. Fig. I

.



£

. ...



(

(

1



Fig. III

:

(

(

1

#### TABLE I

(

l

ł

Typical Results at Approximately the Optimum

#### Times at Various Temperatures

| Temperature<br>°C | Time in<br><u>Seconds</u> | Weight<br>Loss % | NaCl | NaClO3 | NaClO4 | NaClO,<br><u>Yield %</u> | Conversion<br>Efficiency |
|-------------------|---------------------------|------------------|------|--------|--------|--------------------------|--------------------------|
| 560               | 90                        | 12.8             | 23.5 | 12.2   | 51.5   | 59.7                     | 68.0                     |
| 550               | 110                       | 11.1             | 21.2 | 15.9   | 51.7   | 60.0                     | 71.3                     |
| 540               | 150                       | 12.0             | 22.4 | 12.7   | 53.0   | 61.4                     | 70.3                     |
| 530               | 210                       | 10.7             | 21.8 | 12.2   | 55.2   | 64.0                     | 72.9                     |
| 520               | 375                       | 10.0             | 20.5 | 13.8   | 55.7   | 64.5                     | 74.8                     |
| 510               | 750                       | 10.6             | 21.4 | 11.5   | 56 . 5 | 65.4                     | 74.0                     |
| 500               | 1200                      | 7.1              | 20,0 | 13.3   | 59.6   | 69.1                     | 79.7                     |
| 490               | 2400                      | 8.6              | 19.7 | 12.7   | 59.0   | 68.4                     | 78.3                     |

In this table the values for % NaCl, NaClO<sub>3</sub>, NaClO<sub>4</sub>, Yield, and Weight Loss are based upon the initial weight of the sodium chlorate. Conversion Efficiencies are calculated from the duantities of sodium chlorate actually destroyed. It is assumed that unchanged chlorate is recoverable for re-use.

#### TABLE II

Typical Compositions of the Mixed Salt Products Obtained at Approximately the Optimum Times at Various Temperatures

| Temperature<br>°C                             | Time in<br><u>Seconds</u>                     | NaCl                                                 | NaC103                                               | NaClO4                                            | % of Weight of<br><u>NaClO<sub>3</sub> Heated</u> |
|-----------------------------------------------|-----------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 560<br>550<br>540<br>530<br>520<br>510<br>500 | 90<br>110<br>150<br>210<br>375<br>750<br>1200 | 27.0<br>23.9<br>25.4<br>24.4<br>22.8<br>24.0<br>21.5 | 14.0<br>17.9<br>14.4<br>13.7<br>15.3<br>12.8<br>14.3 | 59.0<br>58.2<br>61.9<br>61.9<br>61.2<br>61.2<br>2 | 87.2<br>88.9<br>88.0<br>89.3<br>90.0<br>89.4      |
| 490                                           | 2400                                          | 21.6                                                 | 13.9                                                 | 64.5                                              | 91.4                                              |

The effects of various metals and alloys on the course of the conversion, as well as the resistance of the metals to the hot chlorate, were investigated extensively in the search for suitable materials for use in making containers.

Platinum and Tantalum appear to be inert. Platinum is rejected as a suitable material for obvious reasons. Of the lower cost alloys the most promising were Inconel, Nichrome V. Stainless Steel # 316, and Hastelloy C. These were only slightly catalytic initially, and improved with repeated re-use. Methods of passivat. ing, discovered later, have already been mentioned and described.

Nickel, Monel, Silver, Aluminum Bronze, and the usual ferrous metals are strongly catalytic and, in some cases, also strongly attacked by the molten chlorate.

The results of more than a hundred runs made in testing these various materials are tabulated in the First and Second Interim Reports.

#### C. Thermal Decomposition of Perchlorates

(

No conditions have been found under which a perchlorate chloride mixture, substantially free from chlorate, can be made by thermal treatment of a chlorate. It has been demonstrated that the reaction is reversible, and that sodium perchlorate is partially converted to chlorate under conversion conditions. In one of a series of experiments, fully described in the Second Interim Report, it was found that pure sodium perchlorate heated at 530°C 25 minutes produced a salt mixture not essentially different from that formed by heating sodium chlorate at this temperature 4 minutes:

|      |        | Weight<br>Loss % | NaCl | NaClO3 | NaClO4 | ClO <sub>4</sub> /ClO <sub>3</sub><br>Ratio |
|------|--------|------------------|------|--------|--------|---------------------------------------------|
| From | NaClO3 | 14.3             | 25.0 | 8.2    | 52.6   | 6.5:1                                       |
| From | NaClO4 | 21.7             | 19.0 | 6.0    | 53.3   | 9:1                                         |

The ration  $NaClO_4/NaClO_3$  remained constant at about 9:1 when heating was continued for an hour and more than 96% of the perchlorate had decomposed. It is evident that an ecuilibrium between these components exists.

#### D. Conversion of Sodium Chlorate in Metal Pans

A considerable number of batches were made in the course of establishing, by trial and error, the optimum conditions. Each batch size increase required some modification of the conditions and procedure, but it was found comparatively easy to define a set of conditions and repeat the operations with similar results.

Table III of the Sécond Interim Report gives the results from thirty batches of 250 g. and 500 g. Table I of the Fourth Interim Report gives the results from 29 batches of 250, 500, 750, and 900 g. and Table II of the Fourth from 15 batches to 2.5, 3.75, 5.0, 7.5, and 10 Kilograms. The results which have the greatest interest and importance are those showing the highest yields and conversion efficiencies, since it may be assumed that, after further experience and process refinement, these may be consistently reached or exceeded.

Table III of this Final Report contains data representing the results from selected batches showing some of the highest yields obtained under several sets of conditions. In some cases the aver ages of several batches are also shown to indicate the degree of reproducibility.

#### E. Solubilities in the System: NaClO4-NaClO3-NaCl-H2O

The Third Interim Report, a copy of which is included in the Appendix to this Final Report, is devoted, exclusively, to selected published data and unpublished results of solubility studies made in the Research Laboratory of Oldbury Electro-Chemical Co. This material is presented in the form of tables and graphs.

Index to the Third Interim Report:

(

| Table | Solubilities in the System                                 |
|-------|------------------------------------------------------------|
| I     | NaClo <sub>4</sub> - H <sub>p</sub> O                      |
| II    | Nacio <sub>3</sub> - H <sub>2</sub> O                      |
| III   | NaCl - H <sub>2</sub> O                                    |
| Graph | From data of Tables I, II, and III                         |
| IV    | NeClo <sub>4</sub> - NaClo <sub>3</sub> - H <sub>2</sub> O |
| v     | Nacio <sub>4</sub> - Naci - H <sub>2</sub> o               |
| VI    | NaClO <sub>3</sub> - MaCl - H <sub>2</sub> O               |
| VII   | NeClo4 - Naclo3 - Nacl - H2O                               |
| Graph | From data of all Tables at T.=35°C                         |
| Graph | " " " " 50•8°                                              |
| Graph | <u> 80.</u>                                                |

#### F. Attempted Separation of NaClO<sub>4</sub> - NaClO<sub>3</sub> - NaCl

Commercial perchlorate derivatives such as the ammonium or potassium salts are required to be essentially free from chlorate and chloride. The utilization of the mixed salt product obtained by thermal conversion of sodium chlorate therefore requires practical methods for separating the components of the mixture in pure states or, alternatively, using the mixture, with or without partial purification, as the raw material for processes especially developed to utilize it.

## TABLE III

Conversion of Sodium Chlorate in Metal Pans

at Various Temperatures and Times.

| T<br>M | ime in<br><u>inutes</u> | Woight<br>Losa %                    | NaCl                                 | Ma ClO3                              | NaClO4                                 | NaClO4<br><u>Yield 3</u>             | Conv(<br>Effic                       | ersion<br><u>ofenc</u> i             | n<br>Y               |                  |
|--------|-------------------------|-------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------|------------------|
|        |                         |                                     | In                                   | conel -                              | 480°0 -                                | 250 g. ba                            | toh                                  |                                      |                      |                  |
|        | 50<br>50<br>450<br>50   | 10,0<br>10,4<br>10,6<br>8.4<br>10,9 | 19.8<br>19.2<br>19.4<br>16.9<br>20.4 | 15.1<br>19.6<br>19.9<br>25.3<br>20.2 | 55,1<br>50,8<br>50,4<br>50,4<br>50,6   | 63.9<br>59.4<br>58.1<br>59.6<br>58.6 | 75.3<br>73.3<br>72.5<br>77.7<br>71.9 | Best<br>Ave.<br>Ave.<br>Best<br>Ave. | of<br>of<br>of<br>of | 999 <u>7</u> .55 |
|        |                         |                                     | In                                   | conel                                | 480°Ç -                                | 500 g. ba                            | tch                                  |                                      |                      |                  |
|        | 55<br>47                | 10,0<br>8.7                         | 17.1<br>17.4                         | 15.4<br>19.4                         | 57 <sub>2</sub> 5<br>54 <sub>2</sub> 5 | 66.6<br>63.2                         | 78.8<br>78.4                         | Best<br>Sing                         | of<br>le             | 2                |
|        |                         |                                     | Inco                                 | nel - 46                             | 0-470°C                                | - 750 g.                             | batch                                |                                      |                      |                  |
|        | 70                      | 9•9                                 | 15.6                                 | 17.2                                 | 57•3                                   | 66.4                                 | 80.2                                 | Sing:                                | le                   |                  |
|        |                         |                                     | Inco                                 | nel - 47                             | 0-480°C                                | - 900 g.                             | batch                                |                                      |                      |                  |
|        | 52<br>47-90             | 10.9<br>10.0                        | 20.7<br>19.2                         | 9.9<br>15.2                          | 58.5<br>55.6                           | 67.8<br>64.5                         | 75.2<br>76.0                         | Best<br>Ave.<br>Best                 | of<br>of<br>of       | 2<br>6<br>10     |
|        |                         |                                     | Ingon                                | el - 455                             | 5-465°C -                              | 5,000 g.                             | batel                                | n                                    |                      |                  |
|        | Net 100                 | 8.1                                 | 18.1                                 | 16.4                                 | 57•3                                   | 66.5                                 | 79.5                                 | Best                                 | of                   | 8                |
|        |                         |                                     | Incon                                | el - 465                             | -475°C -                               | 5,000 g.                             | batch                                | At va                                | ari(<br>3 Ai         | nd<br>nd         |
|        | Net 50                  | 7.7                                 | 16.2                                 | 20.3                                 | 55.8                                   | 63.7                                 | 81.2                                 | ture                                 | era.<br>B            | 4                |
|        |                         |                                     | Incon                                | el - 465                             | -472°C -                               | 7,500 g.                             | batol                                | נ                                    |                      |                  |
|        | Net 55                  | 7.7                                 | 17.4                                 | 18.9                                 | 56.0                                   | 64.9                                 | 80.1                                 | Best                                 | of                   | 2                |
|        |                         | -                                   | Incon                                | el - 465                             | -472 0 -                               | 10,000 g                             | . bato                               | h                                    |                      |                  |
|        | Net 50                  | 8.6                                 | 19.2                                 | 14.4                                 | <b>57</b> .9                           | 67.1                                 | 78.3                                 | Best                                 | of                   | 2                |
|        | Net 50                  | 8.4                                 | 19.5                                 | 14.9                                 | 57•3                                   | 66.4                                 | 78.0                                 | Ave.                                 | cf                   | 2                |
|        |                         |                                     | Ha                                   | stelloy                              | - 480°0                                | – 250 g. '                           | batch                                |                                      |                      |                  |
|        | 30                      | 12.4                                | 22.6                                 | 10.3                                 | 54.7                                   | 63.4                                 | 70.7                                 | Best                                 | of                   | 4                |
|        |                         | Sta                                 | inless                               | Steel #                              | 316 - 4                                | 80° - 250                            | g. ba                                | tch                                  |                      |                  |
|        | 30                      | 10.2                                | 18.9                                 | 16.5                                 | 54.4                                   | 63.0                                 | 75 5                                 | Beat                                 | <u>م</u> و           | Л.               |

(

ĺ

Complete separation of the components of the mixed salt product has not been achieved in any practical manner. By leaching with water it has been found possible to dissolve practically all of the perchlorate and chlorate salts leaving a major part of the sodium chloride undissolved. Thus a practical separation of the chloride component is possible. No such success can be claimed for the separation of the perchlorate component from the chlorate.

The Second Interim Report contains detailed descriptions of seven experiments in which attempts were made to separate the three salts by fractional crystallization from a composition representing a typical mixed salt product:

NaClo<sub>4</sub> - 62%, NaClo<sub>3</sub> - 13%, NaCl - 25%,

When such a mixture was dissolved in water and boiled at atmospheric pressure to a boiling temperature of about 140°C (equivalent to leaching with the minimum quantity of water at 140°) the composition of the dissolved salt mixture (on the dry basis) approximated:

NaClos - 82% NaClos - 17% NaCl - 1%

Crystallization, by cooling of a hot, saturated solution so obtained, invariably gave a mixture of sodium perchlorate and chlorate containing the two salts in a nearly unchanged ratio. Because of the very high solubility of such a salt mixture it was even difficult to effect a major reduction in the sodium chloride content although, theoretically, the crystels should be uncontaminated with this salt. The mother liquors are syrupy especially when cold.

A minor improvement in the perchlorate/chlorate ratio was achieved by cooling a solution, made as described at 130°, to minus 25°C. Due to the relatively low solubility of sodium chlorate at this sub-zero temperature the NaClO<sub>4</sub>/NaClO<sub>3</sub> ratio in the crystals was somewhat lower, and that in the mother liquor correspondingly higher, as shown by the analyses below:

#### Composition (dry basis)

(

| Crystals | NaCl04 | - | 79.38% | NaClO3 | - | 20.32 | NaCl |   | 0.3% |
|----------|--------|---|--------|--------|---|-------|------|---|------|
| Solution |        | - | 82.98  |        | - | 15.07 |      | - | 1.95 |

The results of relatively large scale leaching experiments are fully described in the Fifth Interim Report, a copy of which is a part of the Appendix to this Final Report.

#### G. Alternative Methods of Utilizing the Mixed Salt

Of several possible alternative methods:

- 1. Use of non-aqueous solvents
- 2. Electrolytic oxidation of residual chlorate
- 3. Chemical oxidation, e. g. by lead dioxide, of the chlorate
- 4. Partial conversion according to the reaction:

 $3 \text{ HClo}_3 = \text{HClo}_4 + 2 \text{ Clo}_8 + \text{H}_80$ 

 5. Destruction of the residual chlorate by reduction
6. Development of metathetical procedures using the mixed salt as the raw material

only (2) and (6) appear economically and technologically attractive. Only (6) has been extensively investigated. Both ammonium perchlorate and potassium perchlorate have been prepared by metathesis from solutions of the mixed salt product obtained by thermal conversion of sodium chlorate and ammonium or potassium chloride.

#### (a) Potassium Ferchlorate

(

ł

1

Simple solution of the mixed salts, without any preliminary separation of sodium chloride, followed by addition of potassium chloride solution in an amount equivalent to the perchlorate content gave the desired salt, slightly contaminated with chlorate, in yields of nearly 90%. The result was similar when all salts were dissolved, by heating the mixture to boiling and adding sufficient water, followed by cooling to crystallize the potassium perchlorate.

| Run No. | KClO. Yield % | <u>Cl' as NaCl</u> | Clos' as NaClos |  |  |
|---------|---------------|--------------------|-----------------|--|--|
| 1       | 89•0          | 0.15               | 0.34            |  |  |
| 2       | 88•0          | 0.19               | 0.31            |  |  |
| 3       | 88•8          | 0.08               | 0.22            |  |  |
| 4       | 20•8          | 0.29               | 0.49            |  |  |

By recrystallization of the product the chlorate, which is apparently present as a mixed crystal and cannot be removed completely by washing, may be reduced to the extent required.

Further processing of the mother liquors to recover the remaining perchlorate and chlorate values has not been investigated.

#### (b) Ammonium Perchlorate

The laboratory work is fully described in the Fifth Interim Report, included in the Appendix, to which reference may be made. This Report also contains a suggested Flow Sheet and Estimated Working Capacities for various items of equipment based on the production of 1,000 lbs. per day of ammonium perchlorate.

### H. Conversion of Potassium Chlorate in Five Gram Batches

The Conversion of potassium chlorate to the perchlorate by thermal treatment follows the pattern found with sodium chlorate except that conversion temperatures are considerably higher and yields and conversion efficiencies somewhat greater.

> Fig. IV Yields of Potassium Perchlorate at Various Temperatures and Times.



ł

i

ĺ

(



C

ŕ

(

- TABLE IV Typical Results at Approximately the Optimum Time at Various Temperatures.
- TABLE V Typical Compositions of the Mixed Salt Products Obtained Under Optimum Conditions.

#### I. Separation of Components of Mixed Salt Product

The separation of the three components, potassium chloride, chlorate, and perchlorate, offers fewer of the difficulties met in the case of the sodium salts because of the very different solubility characteristics. Potassium chloride is relatively soluble and may be extracted by a correspondingly small amount of water. The solubility of potassium perchorate in cold water is low, while that of the chlorate is several fold greater. It is, therefore, possible to effect a nearly complete separation without the use of excessive amounts of water.

Fotassium chlorate and perchlorate tend to form mixed crystals. The perchlorate, when crystallized from a solution containing chlorate, is always slightly contaminated by the latter. Purification to any required extent is, however, possible by repeatedly recrystallizing the product. The process has not been fully investigated.

The solubilities of the three salts: potassium chloride, chlorate, and perchlorate, in water are shown, graphically, in A p p e n d i x l.

(

#### J. Conversion of Sodium Chlorate - Potassium Chloride Mixtures in Approximately Five Gram Batches

Potassium chloride has been reported to "catalyze" the thermal conversion of sodium chlorate to perchlorate. Whatever the mechanism of the reaction there is no doubt that there is a substantial improvement in yields when mixtures of these salts are appropriately heated. Conversion takes place at the temperatures and times characteristic of sodium chlorate but yields and conversion efficiencies are higher than those for either sodium or potassium chlorate.

TABLE VI shows the results from selected batches typical of those recorded in Table VII of the Second Interim Report. For comparison some of the best results obtained with sodium chlorate alone under similar conditions are included.

This process has been investigated very little. It would not be readily adaptable to the preparation of any salt other than potassium perchlorate, and complications may be readily foreseen in this case because of the relatively complex mixture of salts produced.

18

#### TABLE IV

(

(

#### Typical Results at Approximately the Optimum

Times at Various Temperatures

| Temperature<br>°C | Time in<br>Seconds | Weight<br>Loss % | KC1  | KC103       | KC104 | KClO4<br>Yield % | Conversion<br><u>Efficiency</u> |
|-------------------|--------------------|------------------|------|-------------|-------|------------------|---------------------------------|
| 600               | 90                 | 9.6              | 23.7 | 8 <b>.6</b> | 58.1  | 68.6             | 75.1                            |
| 590               | 100                | 7.5              | 20.6 | 14.7        | 57.1  | 67.4             | 79 <sub>1</sub> 1               |
| 570               | 210                | 7.6              | 22.5 | 7,5         | 62.2  | 74.3             | 79.6                            |
| 550               | 600                | 6.2              | 20.3 | 8.6         | 65.0  | 76.7             | 83.8                            |
| 530               | 1800               | 5.9              | 20.5 | 6.2         | 67.5  | 79.6             | 84.9                            |

In this table the values for % KCl, KClO<sub>3</sub>, KClO<sub>4</sub>, Yield, and Weight Loss are based upon the initial weight of the potassium chlorate. Conversion Efficiencies are calculated from the quantities of potassium chlorate actually destroyed. It is assumed that unchanged chlorate is recoverable for re-use.

#### TABLE V

Typical Compositions of the Mixed Salt Products Obtained at Approximately the Optimum Times at Various Temperatures

| Temperature<br>°C | Time in<br><u>Seconds</u> | KCl<br>_%_ | KC103 | KC104 | % of Weight of<br>KClO3 Heated |
|-------------------|---------------------------|------------|-------|-------|--------------------------------|
| 600               | 90                        | 26.2       | 9.5   | 64.3  | 90.4                           |
| 590               | 100                       | 22.3       | 15.9  | 61.8  | 92.4                           |
| 570               | 210                       | 24.3       | 8.5   | 67.2  | 92.6                           |
| 550               | 600                       | 21.6       | 9.2   | 69.2  | 93 <b>•9</b>                   |
| 530               | 1800                      | 21.8       | 6.6   | 71.6  | 94.2                           |

### TABLE VI

. .....

•

(

í

ł

г.

Typical Results from Sodium Chlorate - Potassium Chloride Mixtures. Temperature 530°C, Time 210 Sec.

. ..... .....

- something

50 - F

| Mix<br>KCl<br>% | NaClO3     | Weight<br>Loss % | NaCl<br>% | NaClOs | NaClO. | Yield NaClO. | Conversion<br>Efficiency |
|-----------------|------------|------------------|-----------|--------|--------|--------------|--------------------------|
| 23              | 77         | 7.6              | 17.4      | 13.0   | 62.0   | 71.9         | 82.6                     |
| 29              | 71         | 4.9              | 15.0      | 21.5   | 58,6   | 67.9         | 86.5                     |
| 34              | <b>6</b> 6 | 4.2              | 14.0      | 23.3   | 58•5   | 67.8         | 88.4                     |
| 0               | 100        | 10.7             | 21.8      | 12.2   | 55.2   | 64.0         | 72.9                     |
| 0               | 100        | 10.7             | 20.5      | 15.9   | 53.0   | 61.4         | 73.0                     |
| Temperat        |            |                  | •e —      | 550°   | Ti     | .me - 110 S  | Bec.                     |
| 29              | 71         | 5.2              | 14.2      | 28.6   | 52.1   | 60.4         | 84.6                     |
| 34              | 66         | 4.1              | 10.0      | 4.6.3  | 39.7   | 46.0         | 85.5                     |
| 0               | 100        | 11.1             | 21.2      | 15.9   | 51.7   | 60.0         | 71.3                     |

#### K. Conversion of Potassium Chlcrate in Metal Fens

"Passivated" Inconel and Hastelloy pans were found much less inert to potassium chlorate than to the sodium salt under the conditions required for conversion. Further modification of the process was required before satisfactory results were obtainable.

.

~\**T**\?

In the initial experiments the molten potassium chlorate quickly attacked the passivated metal, both Inconel and Hastelloy, causing severe pitting and dispersion of the corrosion product throughout the melt. The majority of the batches decomposed uncontrollably, and those which could be kept under control gave very poor yields and conversion efficiencies. The mixed salt products were gray or brown.

Although it is known that the addition of substantial ouantities of alkali-metal hydroxides and other alkaline salts has an adverse effect upon the thermal conversion of chlorates to perchlorates the effects of comparatively small amounts was unknown. It was, accordingly, considered worthwhile to investigate the addition of traces of alkaline materials with the hope that corrosion might be prevented, or at least minimized, without greatly diminishing the conversion efficiencies. This modification proved to be successful and led to results comparable to those obtained in the conversion of sodium chlorate.

The use alkaline materials was accomplished in several ways. In some cases potassium hydroxide solution was sprayed over the potassium chlorate prior to melting; recrystallizing the potassium chlorate from a solution containing some potassium hydroxide was equally effective. Simply painting the inside of the pan with solutions of potassium hydroxide, potassium carbonate, or potassium silicate also gave good results.

ſ

Ł

Potassium chlorate has a strong tendency to "creep" over the edge of the metal pan during conversion. The most effective method found to minimize this involves painting the area above the melt with 20% potassium silicate, followed by drying in air. The most satisfactory runs were made by painting the pan as described, weighing in the potassium chlorate, and spraying the desired quantity of 1% KOH over the chlorate.

19

Insufficient data has been obtained to warrant conclusions as to the optimum amount of alkali. Corrosion is not entirely prevented. Mashing of the pans and removal of traces of oxide formed above the melt level was required. Cxide films formed below the melt level remained firmly attached and the passivity of the surface was retained.

;

{

Ē

Unlike the mixed salt product from sodium chlorate, which becomes semi-solid during conversion, the product from potassium chlorate remains liquid throughout, although it solidifies very quickly when removed from the oven.

Conversion efficiencies tend to increase slightly with increasing batch size, as in the case of sodium chlorate conversions.

T a b l e VII of this Final Report contains data representing the results from selected batches showing some of the highest yields obtained under several sets of conditions. A total of about thirty batches were made in trying to establish optimum conditions by trial and error.

20

i
## TABLE VII

- semantic - - - - -

Conversion of Potassium Chlorate in Metal Pans

at Various Temperatures and Times

| Time in<br><u>Minutes</u> | Weight K<br>Loss % | 101<br>%   | KC10a            | KC104        | KClO4<br>Yield % | Conversion<br>Efficiency |            |
|---------------------------|--------------------|------------|------------------|--------------|------------------|--------------------------|------------|
|                           | Hastelloy          | 7          | 495-502          | °C - 50      | n g. Bato        | h                        |            |
| 100                       | 6.5 20             | 0.1        | 10.3             | 63.1         | 74.4             | 82.9                     | (a)        |
|                           | Inconel            | -          | 495-504          | °C - 50      | )n g.            |                          |            |
| 90                        | 7.4 20             | 0.9        | 12.1             | 59.6         | 70.3             | 80.1                     | (a)        |
|                           | Inconel            | -          | 495 <b>-5</b> 09 | °C - 50      | )0 g.            |                          |            |
| 52                        | 7.1 20             | 0.9        | 10.9             | 61.1         | 72.1             | 80.9                     | (b)        |
|                           | Inconel            |            | 495-520          | °C - 5,      | ,000 g.          |                          |            |
| Net 18<br>Net 25          | 4.3 10<br>5.1 18   | 5.0<br>3.9 | 26.7<br>14.9     | 52.9<br>61.1 | 62.4<br>72.1     | 85.2<br>84.7             | (c)<br>(c) |
|                           | Inconel            | •••        | 480-510          | °C - 7,      | ,500 g.          | -                        |            |
| Net 45                    | 4.7 1              | 7.6        | 19.0             | 58.7         | 59.3             | 85.6                     | (0)        |
|                           | Inconel            | -          | 490-505          | 5°0 - 10     | ),000 g.         |                          |            |
| Net 70                    | 5.6 19             | 9.9        | 12.9             | 62.3         | 77.5             | 84.3                     | (0)        |
|                           | Inconel            | -          | 495-505          | °C - 10      | ),000 g.         |                          |            |
| Net 55                    | 4.7 1              | P.1        | 16.6             | 60.7         | 71.6             | 85.9                     | (o)        |

Notes:

ticha et.

(

1

14.17

(

- (a) Pan painted with 20% potassium silicate. The KClO<sub>3</sub> was recrystallized.
- (b) Same as (a) except that KClO<sub>3</sub> was not recrystallized.
- (c) Sides of pan painted with 20% potassium silicate to minimize creeping. Potassium hydroxide added as a 1% solution in amounts equivalent to 0.02% of the KClO3. The solution was sprayed over the dry salt prior to heating.

## IV SUPPLEMENT

Conversion of Sodium Chlorate at Lower Temperatures

Ammonium Perchlorate by Metathesis - Larger Scale Experiments

## V APPENDIX

Solubility in Water of Potassium Perchlorate, Chlorate, and Chloride

Summary of Calculations on Energy Requirements

Third Interim Report - Solubilities in the System: NaClO<sub>4</sub> - NaClO<sub>3</sub> - NaCl - H<sub>2</sub>O

Fifth Interim Report -

**⊨** 2.5

. .

Extraction of Product from Thermally Decomposed Sodium Chlorate

· · · ·

we are the active constitutions

1

f

į

Ammonium Perchlorate by Metathesis

Solubility in Water of Ammonium Perchlorate

Tentative Process Proposal With Flow-Sheet

Discussion and Conclusions

#### IV SUPPLEMENT

#### Conversion of Sodium Chlorate at Lower Temperatures

· -

• •

€

Ć,

Previous work has indicated that improved results are obtained when conversions are carried out at lower temperatures, longer times, and in larger quantities. It was decided, therefore, that it would be of interest to extend the work to the practical limits of available equipment.

· · · · · ·

A further object of the supplementary experiments was to determine whether or not conversions could be satisfactorily made in a constant temperature oven without any provision for cooling to dissipate the heat of reaction. This would, obviously, simplify ' the process.

The oven and Inconel pan previously described were used. A differential thermo-couple was used to measure the temperature rise within the converting mass, one junction being immersed in the melt while the other was adjacent to the controlling thermo-couple. The differential thermo-couple operated a recorder, and a continuous record of the temperature difference was made throughout the run. The sensitivity of the recorder was so adjusted that a temperature rise of 0.5°C could be easily detected.

The converting chlorate did not foam, and creeping was prevented by painting the upper surfaces of the pan with sodium silicate solution. The practical capacity of the pan was fifty pounds sodium chlorate. This quantity filled the  $15 \times 15 \times 4$  inch pan to a level about 3/4 inch below the rim.

Two runs were made using 50 pounds sodium chlorate, the oven temperature being held constant at  $420^{\circ}$ C, heating time 25 hours and 28 1/2 hours, respectively. One run, using 22 pounds sodium chlorate, was made at  $420^{\circ}$ C - 20 hours.

A run was made at an oven temperature of 430°, but is not reported because of trouble encountered with the oven controller. Indications are, however, that a 22 pound batch will not get out of control at this temperature.

A 22 pound batch heated in the oven at 450°C became uncontrollable, the temperature within the mass rising from 420° to 480° in the course of an hour. The rise could not be checked by the usual procedure of opening the oven door, and the pan was removed and quenched in water.

The results from the three most successful batches are shown in the Table on the following page.

These results indicate that continuous conversion of sodium chlorate in some form of tunnel-oven may be practical. There is, as yet, no indication that the use of pans as containers may be eliminated.

## TABLE

|               |                  | NaClO3    | - 22 #,     | Temperatu | are - 420°C.      | •                        |
|---------------|------------------|-----------|-------------|-----------|-------------------|--------------------------|
| Time<br>Hours | Weight<br>Loss % | NaCl<br>% | NaClO3<br>% | NaClO4    | NaClO4<br>Yield % | Conversion<br>Efficiency |
| 20            | 3.7              | 9.8       | 45.7        | 40.9      | 47.4              | 87.3                     |
|               |                  | NaClO3    | - 50 #,     | Temperat  | ure - 420°0       | 2.                       |
| 25            | 5.9              | 15.9      | 17.9        | 60.3      | 69.8              | 85.1                     |
|               |                  | NaClO3    | - 50 #,     | Temperat  | ure - 420°0       |                          |
| 28 1/         | 27.4             | 18.7      | 12.4        | 61.5      | 71.2              | 81.3                     |

The temperature within the converting mass in the 22 # batch rose to 425°C, i. e. 5° above the oven temperature. The time required for the cold pan and contents to reach the oven temperature, 420°, was two hours. The net heating time was therefore about 18 hours.

The temperature within the converting mass in both 50# batches remained at oven temperature for nearly 12 1/2 hours. At this Time it was observed that a solid crust was beginning to form over the melt Thereafter the temperature rose above that of the oven. At 12 1/2 hours it was 423°, i. e. 3° above oven temperature. It soon increased to 433°, i. e. 13° above oven temperature, where it remained until the end of the runs.

ĺ

ĺ

The time required for the cold pan and contents to reach oven temperature was, in the case of the first 50 # batch, five hours. The net heating time was therefore about 20 hours. In the case of the second 50# batch the preliminary heating time was 3 1/2 hours, and the net time 25 hours.

It will be observed that the optimum time appears much less oritical under the conditions described here than at the higher temperatures used previously.

### <u>SUPPLEMENT</u> (continued)

#### Ammonium Perchlorate by Metathesis - Larger Scale Experiments

ŀ

ļ

. . .

í

ĺ

The preparation of ammonium perchlorate from ammonium chloride and the solution made by extraction of the mixed salt product from aodium chlorate conversion was extended to a larger scale. The procedures were similar to those described in the Fifth Interim Report (see Appendix) except for minor changes including centrifugation instead of filtration.

Typically, three liters of extraction liquor was treated with sufficient NH<sub>4</sub>Cl (added as a hot solution containing 475 grams per 1,000 ml H<sub>2</sub>O) to be equivalent to the perchlorate plus 5% excess. The solution was cooled to 0°C and centrifuged. The spun crystals were washed in the centrifuge with 2-400 ml ice-water. Portions of the crystals, filtrate, and washings were analyzed. The results from four batches were similar. Those reported here are typical:

| We <b>ig</b> ht of<br>Moist<br><u>Crystals</u> | NaCl<br>%   | NaClO3<br>%               | NH4C104<br>% | Moisture<br>% | Recovery of<br>NH4ClO4 |
|------------------------------------------------|-------------|---------------------------|--------------|---------------|------------------------|
| 2,040 g.                                       | 1.07        | 1.47                      | 93.3         | 5.2           | 79.3                   |
| Volume of<br>Filtrate                          | NaCl<br>gpl | NaClO <sub>3</sub><br>gpl | NH4ClO4      | NH4C1<br>gpl  |                        |
| 4,820 ml                                       | 237         | 138                       | 94           | 9             |                        |
| Volume of<br>Wash Sol.                         |             |                           |              |               |                        |
| 478 ml                                         | 209         | 61                        | 1.05         | 4             |                        |

### Recrystallization of Crude Anunonium Perchlorate

Typically, 2,060 grams crude crystals, containing 1,875 g. NH<sub>4</sub>ClO<sub>4</sub>, dissolved in 2,300 ml water by heating and subsequent cooling gave 1,715 grams moist crystals after being centrifuged and washed with water.

| Weight Moist Crystals | NaCl %   | NaC103 %  | NH4C104% | H20 %  |
|-----------------------|----------|-----------|----------|--------|
| 1,715 g.              | 0.09     | 0.19      | 95.2     | 4.51   |
| Volume of Filtrate    | NaCl gpl | NaClos gr | DI NH4CI | 04 gpl |
| 2,180 ml              | 13.5     | 14.9      | ı        | 1.1    |
| Volume Wash Liquor    |          |           |          |        |
| 265 ml                | 10.7     | 8.3       | 1        | 09     |

Recovery of  $NH_4ClO_4$  on recrystallization was 87%.

### Second Recrystallization of Ammonium Perchlorate

(

í.

Í

Typically, 2,200 g, of once recrystallized ammonium perchlorate was dissolved in 2,500 ml water, dissolved, cooled, centrifuged, and washed, etc.

| Weight of Precipitate | NaCl 96  | <u>NaClO3 %</u>        | Moisture %  |
|-----------------------|----------|------------------------|-------------|
| 1,880 g.              | 0.005    | 0.033                  | 5.58        |
| Volume of Filtrate    | NaCl gpl | NaClO <sub>3</sub> gpl | NH4ClO4 gpl |
| <b>2,3</b> 50 ml      | 0.85     | 1.62                   | 121         |

## Reduction of Chlorate in NH4ClO4 by Sulfur Dioxide

As a possible alternative method crude ammonium perchlorate was dissolved in water, gassed with SO<sub>2</sub> to remove chlorate by reduction, and crystallized. Specifically, 2,140 g. of the crude salt containing 2,000 g. NH<sub>4</sub>ClO<sub>4</sub> was dissolved in 3,400 ml water at 75°C, gassed with sulfur dioxide until free of chlorate, neutralized with ammonia, and evaporated to about 3,000 ml. When cooled, centrifuged, washed, etc. the product contained no chlorate, but was contaminated with sulfate:

| Weight of Precipitate | NaCl %       | (NH4)2SO4 % Mois | ture %      |
|-----------------------|--------------|------------------|-------------|
| 1,910 g.              | 0.09         | 0.20 5           | •0          |
| Volume of Filtrate    | NaCl gpl     | (NH4)2SO4 gpl    | NH4ClO4 gpl |
| 1,810                 | 24           | 68               | 82          |
| Volume of Wash Liquor |              |                  |             |
| 335 ml                | 11           | 26               | 124         |
| Recover of NHA        | .0104 - 90.5 | 5 %              |             |



ſ

ĺ

(

## APPENDIX II

#### Summary of Calculations on Energy Requirements

In the production of sodium perchlorate by the electrolytic process two steps are involved. Sodium chlorate is first produced, and this salt is further oxidized to sodium perchlorate. The use of electrical energy in each step is essential, and no substitution is possible. From data obtained in the large-scale manufacture of both salts the electrochemical energy requirements of these processes have been accurately calculated.

In the production of sodium perchlorate by the thermal process sodium chlorate would be produced at the same cost in KWH per 1b. as above. It would be necessary, however, to use about 65% more sodium chlorate per 1b. of produced sodium perchlorate in the thermal process than in the electrolytic. By making reasonable assumptions, based upon laboratory results, the electrochemical requirement of this process has been calculated.

Assuming that:

1

ł

î

€.

ł

Electrochemical energy, only, is considered. Thermal conversion of chlorate is at 80% efficiency. Recovery of materials is equal in both processes.

<u>Electrochemical KWH (Thermal Process)</u> = 1.146 Electorchemical KWH (Electrolytic Process)

In the thermal process it is necessary to use heat to melt and raise the temperature of the sodium chlorate. It may be assumed that it is possible to use either electrical energy or a burning fuel for this purpose. Assuming the use of electrical energy at 50% efficiency, using the best available data on the thermal properties of sodium chlorate and maring a reasonable estimate as to the mass of the apparatus to be used, the additional energy requirement has been calculated as KWH per lb. NaClO4:

<u>Total Energy as KWH (Thermal Process)</u> = 1.247 Total Energy as KWH (Electrolytic Process)

Energy used in lighting, heating, motors, and the like. is assumed to be approximately the same in both processes. The advantages, if any, would be with the electrolytic method, since processing of the product from the thermal process will be, unquestionably, more complicated. SECURITY INFORMATION



# THERMAL DECOMPOSITION

## O F

ALKALI METAL CHLORATES

# <u>Third</u> <u>Interim Report</u>

# Oldbury Electro-Chemical Company

Research Laboratory

C

l

September 30, 1952

## INTRODUCTION TO THIRD INTERIM REPORT

In the Second Interim Report it was stated that "The lack of reasonably complete solubility data made it necessary to proceed rather empirically in attempting to separate the components of the salt mixture (obtained by thermal decomposition of sodium chlorate) by fractional crystallization from water."

Solubility determinations have now been made to fill the most important gaps in our knowledge, and to provide the basis for a critical evaluation of the accuracy of published data.

In this Third Interim Report selected published data and/or results from the Research Laboratory of the Oldbury Electro-Chemical Company for the following Systems are recorded:

| TABLE | I     |    | NaCl04 | - | H <sup>2</sup> O   |   |                  |         |
|-------|-------|----|--------|---|--------------------|---|------------------|---------|
| TABLE | II    | -  | NaClO3 | - | H <sub>2</sub> O   |   |                  |         |
| TABLE | III   | -  | NaCl   | - | H <sub>8</sub> 0   |   |                  |         |
| TABLE | IV    | •• | NaCl04 | - | NaClO3             |   | H2O              |         |
| TABLE | V, VA | -  | NaC104 | - | NaCl               | - | H <sub>2</sub> O |         |
| TABLE | VI    | -  | NaC103 | - | NaCl               | - | H20              |         |
| TABLE | VII   | -  | NaClO. | _ | NaClO <sub>2</sub> |   | NaCl             | <br>HaO |

ł

(

The data of TABLES I, II, and III have been plotted as a series of curves which follow TABLE III.

The principal points of TABLES IV, V, VI, and VII, for Temperatures 35, 50.8, and 80 degrees C, are plotted as orthographic projections of regular tetrahedra and follow TABLE VII. The lines joining the principal points have very slight curvatures not shown in the drawings.

### METHODS:

(

The methods used in the OEC Research Laboratory in determining solubility values and other data are entirely conventional and require no description. Sodium perchlorate, due to its high solubility, produces rather viscous, syrupy solution and the handling of these requires more than ordinary skill and patience on the part of the researcher, but no new techniques were found necessary. 120120

The study of the curves and data has resulted in no conclusions different from those derived from the empirical study reported in the Second Interim Report.

## <u>FABLE I</u>

| Temperature | Grams<br>NaClO <sub>4</sub> per<br>100 grams<br><u>HeO</u> | Grams<br>NaClO <sub>4</sub> per<br>100 grams<br>Solution | Grams NaClO <sub>4</sub><br>per Liter | <u>Density</u> | Solid Phase                                                        |
|-------------|------------------------------------------------------------|----------------------------------------------------------|---------------------------------------|----------------|--------------------------------------------------------------------|
| 0           | 169.3                                                      | 62.87                                                    | 1,031                                 | 1.640          | NaClO,:                                                            |
| 10          | 183.3                                                      | 64.7                                                     | 1.070                                 | 1.654          | HoO                                                                |
| 20          | 199.9                                                      | 66.65                                                    | 1.180                                 | 1.673          | The H                                                              |
| 50          | 219.0                                                      | 68.65                                                    | 1.163                                 | 1.694          | u                                                                  |
| 40          | 241.9                                                      | 70.75                                                    | 1.215                                 | 1.718          | ł                                                                  |
| 50          | 272.4                                                      | 73.15                                                    | 1,279                                 | 1.749          | tt                                                                 |
| 50.8        | 274.5                                                      | 73.30                                                    | 1,208                                 | 1.755          | NaClO <sub>4</sub> :<br>H <sub>2</sub> O and<br>NaClO <sub>4</sub> |
| 20          | 257                                                        | 72.0                                                     | 1,265                                 | 1.757          | NeClo.                                                             |
| 30          | 261                                                        | 72.3                                                     | 1.270                                 | 1.757          | 1-4                                                                |
| 40          | 268                                                        | 72.8                                                     | 1,278                                 | 1.756          | Ħ                                                                  |
| 50          | 274                                                        | 73.3                                                     | 1,286                                 | 1.785          | #                                                                  |
| 60          | 283                                                        | 73.9                                                     | 1,298                                 | 1.756          | Ħ                                                                  |
| 70          | 292                                                        | 74.5                                                     | 1,309                                 | 1.757          | 11                                                                 |
| 80          | 303                                                        | 75.2                                                     | 1,321                                 | 1.757          | 2                                                                  |
| 90          | 315                                                        | 75.9                                                     | 1,334                                 | 1.758          | tt                                                                 |
| 100         | 329                                                        | 76.7                                                     | 1,348                                 | 1.758          | tt                                                                 |

# Solubility of Sodium Perchlorate in Water

The values in this table are derived from those published in Seidell - "Solubilities of Inorganic and Metal Organic Compounds" - 3rd Edition. The figures from  $0^{\circ}$  to the transition temperature, 50.8°, are regarded as reliable. Two points, 35° and 50.8°, have been checked in the Research Laboratory of the Oldbury Electro-Chemical Company. The figures are less consistent, and the values are regarded as less reliable, for solutions containing NaClO<sub>4</sub>, anhydrous, as the solid phase, but are adequate for present purposes.

One point, 80°, was checked in the Research Laboratory; the value found was about 1% higher than that given above.

J

4

|                   | Solubility of               | Sodium Chlorat                | e in Water                                  |               |
|-------------------|-----------------------------|-------------------------------|---------------------------------------------|---------------|
| Temperature<br>C. | g. NaClO3 per<br>100 g. Ho0 | g. NaClO3 per<br>100 g. Soln; | g. NaClo <sub>3</sub> per<br>Liter of Soln. | Density       |
| 0                 | 79.6                        | 44. 32                        | 615                                         | 1.389         |
| 10                | 87•6                        | 46.70                         | 658                                         | 1.410         |
| 20                | 95.9                        | 48.95                         | 700                                         | 1.430         |
| 30                | 105.3                       | <b>51.</b> 30                 | 744                                         | 1 <b>.451</b> |
| 40                | 115.2                       | 53.54                         | 788                                         | 1.472         |
| 50                | 126.2                       | 55.8                          | 833                                         | 1.493         |
| 60                | 139.2                       | 58.2                          | 881                                         | 1.514         |
| 70                | 152.5                       | 60.4                          | 928                                         | 1.536         |
| 80                | 167.4                       | 62.6                          | 976                                         | 1.559         |
| 90                | 184.9                       | 64.9                          | 1026                                        | 1.582         |
| 100               | 204.0                       | 67.1                          | 1076                                        | 1.604         |

TABLE II

The values in this table are derived from those published in "Seidell." The figures of Bell are regarded as most reliable. Their accuracy has been confirmed by results obtained in the OEC Co. Research Laboratory.

7

|             | OI DOUTOUT OUTOCIC                     | TO TH HE DOL                   |                               |         |
|-------------|----------------------------------------|--------------------------------|-------------------------------|---------|
|             | -                                      | -                              | -                             |         |
| Temperature | g. NaCl per<br>100 g. H <sub>2</sub> O | g. Načl per<br>100 g. solution | g. NaCl per<br>liter solution | Density |
| 0           | 35 <sub>°</sub> 70                     | 26 <sub>1</sub> 30             | 318                           | 1.2090  |
| 10          | 35.80                                  | 26.35                          | 317                           | 1.2040  |
| 20          | 35.95                                  | 26.45                          | 317                           | 1.2000  |
| 30          | 36.20                                  | 26.55                          | 317                           | 1.1955  |
| 40          | 36.45                                  | 26.70                          | 318                           | 1.1915  |
| 50          | 36.75                                  | 26.85                          | 319                           | 1.1870  |
| 60          | 37.15                                  | 27.05                          | 320                           | 1.1830  |
| 70          | 37.60                                  | 27.30                          | 322                           | 1.1785  |
| 80          | 38.05                                  | 27.55                          | 324                           | 1.1745  |
| 90          | 38.50                                  | 27.80                          | 325                           | 1.1705  |
| 100         | 39.05                                  | 28.10                          | 327                           | 1.1660  |

į

Solubility of Sodium Chloride in Water

TABLE III

The values in this table are derived from those published in "Seidell"--The figures of Berkeley are regarded as most reliable.

ſ.

ł

X



# TABLE IV

# Equilibrium in the System

. 5 厳

5

| Naclo <u>4</u> |                                  | NaClo3           |                           |                         | H <sub>2</sub> O |                    |  |
|----------------|----------------------------------|------------------|---------------------------|-------------------------|------------------|--------------------|--|
| Temperature    | g. per 100<br>NaClO <sub>4</sub> | g. H20<br>NaClO3 | -g. per<br>Solu<br>NaClOA | 100 g<br>tion<br>Na0103 | Density          | Solid Phase        |  |
| 35             | 230.0                            | 0                | 69.7                      | 0                       | 1.704            | Naclo4 H20         |  |
| 35             | 229.6                            | 28.74            | 64.07                     | 8.02                    | 1.744            | N                  |  |
| 35             | 229.6                            | 37.39            | 62.56                     | 10.19                   | 1.755            | n                  |  |
| 35             | 231.0                            | 45.52            | 61.35                     | 12.09                   | 1.769            | NaClo3 + "         |  |
| 35             | 0                                | 109 <b>.9</b>    | 0                         | 52.36                   | 1.457            | I                  |  |
| 50.8           | 274.5                            | 0                | 73.3                      | 0                       | 1.748            | $NaClO_4$          |  |
| 50.8           | 275.6                            | 16.75            | 70.24                     | 4.27                    | 1.771            | N                  |  |
| 50.8           | 272.2                            | <b>3</b> 2.05    | 67,33                     | 7.93                    | 1.787            | tt                 |  |
| 50.8           | 271.0                            | 58.15            | 63.15                     | 13. 55                  | 1.809            | NaClo3 + "         |  |
| 50.8           | 0                                | 127 • 2          | 0                         | 55×9 <b>8</b>           | 1.488            | łł                 |  |
| 80             | 307•3                            | 0                | 75,45                     | 0                       | 1.758            | Nacio <sub>4</sub> |  |
| 80             | 306.1                            | 19.76            | 71.88                     | 4.64                    | 1.777            | 11                 |  |
| 80             | 307.2                            | 97.38            | 60.88                     | 19.30                   | 1.840            | NaClo3 + "         |  |
| 80             | 0                                | 169.8            | 0                         | 62.93                   | 1.551            | <b>II</b>          |  |

Results of O E C Research Laboratory.

ţ

0

(

# TABLE V

Equilibrium in the System

NaClos - NaCl - HaO

| Temperature<br>°C.   | g. per 100<br>NaClO. | gi HgO<br>NaCl     | g. per<br>Solu<br>NaCl4 | 100 g.<br>tion<br>NaCl | Density                  | Sol       | ld Phase                |
|----------------------|----------------------|--------------------|-------------------------|------------------------|--------------------------|-----------|-------------------------|
| 35<br>35<br>35       | 230.0<br>226.7<br>0  | 0<br>3.63<br>3643  | 69.7<br>68.6<br>0       | 0<br>1.10<br>26.6      | 11704<br>11703<br>111935 | NeCl<br># | NaClO4:H20<br>+ "       |
| 50.8<br>50.8<br>50.8 | 274.5<br>272.7<br>0  | 0<br>2.85<br>36.8  | 73-3<br>72-6<br>0       | 0<br>0.76<br>26.9      | 1.748<br>1.749<br>1.187  | NaCl      | Na0104<br>+ "           |
| 80<br>80<br>80       | 307-3<br>303-8<br>0  | 0<br>3.21<br>38.05 | 75-45<br>74.64<br>0     | 0<br>0.79<br>27.55     | 1.758<br>1.757<br>1.1745 | NaCl      | NaClO <sub>4</sub><br>n |

Results of OEC Research Laboratory.

## TABLE VA

# Equilibrium in the System

NaClos - NaCl - HaO

| C | Temperature<br>°C.                      | g. per 100<br>NaClO4                         | ) g, H <sub>2</sub> O<br>NaCl                        | g. per<br>Sol<br>NaClO4                        | 100 g.<br>ution<br>NaCl                                 | Density                                             | Sol                          | ld Phase           |
|---|-----------------------------------------|----------------------------------------------|------------------------------------------------------|------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|------------------------------|--------------------|
|   | 000000000000000000000000000000000000000 | 169.3<br>158.0<br>125.2<br>80.1<br>39.3<br>0 | 0<br>6<br>10<br>12<br>17<br>10<br>25<br>4<br>35<br>7 | 62.87<br>59.69<br>52.82<br>40.65<br>23.86      | 0<br>2:53<br>4:37<br>8:63<br>15:44<br>26:30             | 1,640<br><br>1,209                                  | NaC1<br>11<br>11<br>11<br>11 | NaClO4 ;H20<br>+ " |
|   | 25<br>25<br>25                          | 209.1<br>207.7<br>0                          | 0-<br>4127<br>36105                                  | 67:65<br>66.58<br>0_                           | 0<br>1777<br>26,50                                      | 1.683<br>1.683<br>1.198                             | NaCl<br>#                    | NaCl04 Hg0<br>+ "  |
|   | 50<br>50<br>50                          | 274<br>271<br>0                              | 0<br>3103<br>36175                                   | 73-3<br>72-46<br>0_                            | 0<br>0181<br>26485                                      | 1,749<br>1,749<br>1,1870                            | NaC1                         | NaClO4:H20<br>+ "  |
|   | 75<br>75<br>75                          | 297<br>296<br>0                              | 0<br>3•32<br>37•78                                   | 7418<br>74.15<br>0                             | 0<br>0.83<br>27.42                                      | 11757<br>11757<br>11765                             | NaCl<br>"                    | NaClO4<br>+ "      |
| ( | 100<br>100<br>100<br>100<br>100         | 329<br>325<br>237<br>157<br>83<br>0          | 0<br>3.77<br>4.9<br>8.1<br>17.7<br>39.05             | 76.75<br>75.79<br>69.32<br>59.23<br>47.44<br>0 | 0 <sup>-</sup><br>0.88<br>1.44<br>3.06<br>8.81<br>28.10 | 1.758<br>1.757<br>1.664<br>1.532<br>1.367<br>1.1660 | NaCl<br>"<br>"<br>"          | Na0104<br>+ "      |

Derived from values published in "Seidell".

TABLE VI

Equilibrium in the System NaClOs NaC1 N<sub>2</sub>O g. per 100 g. Temperature g. per 100 g. H<sub>2</sub>O Solution 00. NaCl0a NaC10a Na01 NaOl Density Solid Phase 0<sup>-</sup> 27.3 0-44:32 20.65 79.6 NaCl0s 0 1.389 17.0 NaC1+" 0 33.1 1.350 Ò\_ 35.7 26.3 0 1,209 NaCl 0 25 25 10.0 34.6 1.440 100 NaClOs 0 0 22.7 28.5 NaO1+" 64.8 12.1 1.390 25 33.3 17.6 20.6 NaCl 36.0 26.5 25 0 0 1,198 0 14.6 1.460 NaClO3 35 35 35 35 35 35 110 52.4 0 85.4 7.3 10.2 26.6 1.429 42.7 1.420 20.2 NaCl+" 39.2 36.3 36.3 ਰ 0 1.1935 0 26.6 1.1935 NaOl 0 0 0-16-8 1:495 50.8 127.5 56.0 Ò. Na.010s 45.8 7.8 NaCl+" 98.7 1:461 50.8 1.448 18:3 NaC1 94.0 44.3 8.6 50.8 22.0 1 50.8 68.5 11.5 15.6 1.387 36.0 Ħ 26:6 1.320 43.6 25.6 50.8 IJ 31.7 50.8 20.8 20.7 13.6 1.253 36.8 H. 50.8 0 0 26.9 1.187 0<sup>-</sup> 14.8 NaCLO3 60:4 1:536 70 Ő. 152.5 1:525 NaCl + " 52.9 6.Õ 70 129.1 1.178 70 ٥. 37.6 0 27.3 Ħ 01 62.93 56.5 169.8 Ő 1.559 NaC103 80 1.535 148.1 103.9 64.7 14.1 5.4 NaOl+" 80 8.14 18.1 23.94 46.8 NaCl 80 1.357 34.3 NaCl 80 19.4 29.2 18.2 1.262 11 31:0 80 n

Derived from results obtained in Oldbury Electro-Chemical Co. Research Laboratory. Data in Seidell are not regarded as reliable.

0

27.55 1.1745

38.05

17 × 1

80

0

ψ.

# TABLE VII

...

1

Ì

· · · · · ,

... ...

(

(

(

Equilibrium in the System

NaClo<sub>4</sub> - NaClo<sub>3</sub> - NaCl - H<sub>2</sub>O

-

| Tom  |        | 100 0         | Ч.О  | g• p   | er 100 ( | g.           |         | g                               | -      |
|------|--------|---------------|------|--------|----------|--------------|---------|---------------------------------|--------|
| °G.  | NaCl0. | NaClO3        | NaCl | NaCl04 | NaClos   | NaC1         | Density | Phase                           |        |
| 35   | 225.8  | 15,98         | 3.35 | 65.43  | 4.63     | 0 <b>.97</b> | 1.726   | NaClO4:H2O<br>NaCl              | +      |
| 35   | 226.5  | 27.85         | 3.18 | 63•35  | 7.79     | 0.89         | 1.742   | NaClo4:H <sub>8</sub> O<br>NaCl | +      |
| 35   | 228.9  | 44.39         | 2.97 | 60.83  | 11.80    | 0.79         | 1,766   | NaClO4:H20<br>NaCl<br>NaClO3    | +<br>+ |
| 50.8 | 272.3  | 17.67         | 2.83 | 69.32  | 4.50     | 0.72         | 1.771   | NaClO4<br>NaCl                  | +      |
| 50.8 | 270.2  | 35.68         | 2.74 | 66.13  | 8.73     | 0.67         | 1.788   | NaClO4<br>NaCl                  | +      |
| 50.8 | 270.0  | <b>56.</b> 83 | 2.75 | 62.85  | 13.23    | <b>0.</b> 64 | 1.807   | NaClO4<br>NaCl<br>NaClO3        | +<br>+ |
| 80   | 303.8  | 95.73         | 3+22 | 60.43  | 19.04    | 0,64         | 1.840   | NaClO4<br>NaCl<br>NaClO3        | +<br>+ |

Results of OEC Research Laboratory



.

(

`**(**\_\_\_\_\_

l



(

(

(

1

I



C

C

{





(

(

í



;

1

THERMAL DECOMPOSITION

OF

ALKALI METAL CHLORATES

## Fifth

# Interim Report

Oldbury Electro-Chemical Company

Research Laboratory November 14, 1952

CULTIDENTIAL

17 M

5.7

SF

# SECURITY INFORMATION CONFIDENTIAL

1. INTRODUCTION TO THE FIFTH INTERIM REPORT

It has been demonstrated (Ref: Second Interim Report, Section V) that salt mixtures simulating those obtained by thermal conversion of sodium chlorate may be extracted with water producing solutions which contain all of the perchlorate and chlorate leaving a solid residue containing a large proportion of the sodium chloride.

In this Fifth Interim Report it is shown that the results obtained by extraction of the actual reaction product are similar to those from synthetic mixtures, and that the recovery of perchlorate/ chlorate solutions and solid, nearly pure, sodium chloride is practical and efficient.

45 44 44 44 44 44

It has been demonstrated (Ref: Second Interim Report, Section VI) that ammonium perchlorate may be prepared by metathesis from concentrated solutions of sodium perchlorate, containing chlorate and chloride, and ammonium chloride.

In this Fifth Interim Report these experiments have been greatly extended in number and scope, and results are reported in greater detail. Solutions used were obtained by actual extraction of thermally decomposed sodium chlorate, and not synthetically.

A rather detailed procedure is suggested, together with a flowsheet, for economic evaluation of the proposed process.

This process is believed to contain elements of novelty which may be patentable. Applications for Patents will be made by Oldbury Electro-Chemical Company when clearance is obtainable by declassification or otherwise. **CONFIDENTIAL** 

SECURITY INFORMATION

## 2. EXTRACTION OF PRODUCT FROM THERMALLY DECOMPOSED NaCLO3

Experiment A. In this experiment the principal objective was to prepare a relatively large quantity of the approximately saturated solution of sodium perchlorate/chlorate/chloride as the starting material for further experiments. The behavior of the kibbled product in contact with water was observed.

. ....

A 22 liter flask was nearly filled with broken fragments of the product obtained by converting sodium chlorate in an Inconel pan. Sufficient water was added to cover the solid and solution was allowed to proceed at 25°C with only occasional stirring. The density increase was followed by periodic specific grevity determinations. About 72 hours was required to reach a maximum density. The solution was decanted from the residue, which was again extracted with a further quantity of water. The lumps were observed to disintegrate completely leaving a residue of fine salt. The operations were repeated, adding solidified melt or water as required, until 30 liters of solution had been prepared.

### ANALYSIS:

| Density         | 1.663 |       |      |       |
|-----------------|-------|-------|------|-------|
| Total Solids    | 1.102 | groms | per  | liter |
| Sodium chloride | 29.2  | ·     | - 11 | ŧt    |
| " chlorate      | 245.0 | U U   | ti   | Ħ     |
| " perchlorate   | -     |       |      |       |
| (by difference) | 828.0 | 11    | H    | H     |
| (determined)    | 835.0 | Ħ     | 11   | 11    |

Experiment B. In this experiment accurately weighed or measured quantities were used and further data accumulated. 4.500 grams of the product from a 10,000 gram conversion run, kibbled to pass a 3/8 inch screen, was weighed into a 4 liter bottle. Two litere of water (including wash water from a previous batch) was added. Extraction proceeded 3 days if at room temperature, or 6 hours, if warmed on a steam bath, with occasional shaking of the bottle. The residual salt was filtered off with suction, removing as much solution as possible, and slurreed with 250 ml hot water. After a second filtration, followed by washing with 125 ml additional water, samples of the concentrated solution, wash solution, and salt were analyzed.

| Analytical and Othe                                                                                                                                                                                                           | er Data                                                             |       |                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------|------------------------------------------------------------------------|
| Concentrated Solution                                                                                                                                                                                                         | B                                                                   | Batch | C                                                                      |
| Volume in liters<br>Total Solids, g. p. l.<br>NaCl g. p. l.<br>NaCl % of Total Solids<br>NaClO <sub>3</sub> % of Total Solid<br>NaClO <sub>4</sub> % of Total Solid<br>NaClO <sub>4</sub> % of Total Solid<br>(by difference) | 3.300<br>1,118<br>29.5<br>2.6<br>232.0<br>18 22.7<br>857<br>15 76.7 |       | 3.27<br>1,135<br>29:4<br>260:0<br>22:6<br>260:0<br>22:9<br>845<br>74.5 |
| Wash Solution                                                                                                                                                                                                                 |                                                                     |       | -                                                                      |
| Volume in liters<br>Total Solids, g. p. l.<br>NaCl g. p. l.<br>NaCl % of Total Solid<br>NaClO2 %. p. l.                                                                                                                       | 0.370<br>218<br>65.4<br>18 30.0<br>30.1                             |       | 0.425<br>224<br>54.6<br>24.4                                           |

p. 1.

NaClO4

Salt (dry basis)

NaClOs % of Total Solids

NaClO4 % of Total Solids

(by difference)

**(** 

| Weight,  | grams | 902  | 828  |
|----------|-------|------|------|
| NaCi %   | •     | 96.8 | 96.0 |
| NaC103 % |       | 0.36 | 0.46 |
| NaClos % |       | 2.8  | 3.5  |
|          |       |      |      |

13.8

56.2

122.5

Wash solutions were diluted with water and used in subsequent extractions. Approximately 90% of the NaCl contained in the conversion product was separated as solid. This salt was contaminated by NaClO<sub>3</sub>, amounting to about 0.4% of the total, and by NaClO<sub>4</sub>, amounting to approximately 1.0% of the total.

## 3. AMMONIUM PERCHLORATE BY METATHESIS

It has been demonstrated, in an earlier Report, that substantial yields of ammonium perchlorate are obtainable by mixing ammonium chloride with the sodium perchlorate/chlorate/chloride solution. The solubility of ammonium perchlorate is known to vary with the temperature. It was, therefore, of interest to investigate the effects of temperature on the yields.

A series of metathesis mixtures, all having the same composition, was made and the various batches cooled to different temperatures in the range: -20° to +20°C. Solution obtained as described in Section 2 of this report was mixed with ammonium chloride and sufficient water to prevent precipitation of sodium chloride. The amount of ammonium chloride used was slightly more than one mole per mole of perchlorate:

| Components | of | Meta | thesis | Mixture |
|------------|----|------|--------|---------|
|------------|----|------|--------|---------|

こうてん かんかい かんてい うちかん かいかい ひょうかん 一般 読む ためをめる かんしょう

1

ł,

C

| Sodium Perchlorate Solution                                  |                                             |                                              |                 | Composition    |              |             |          |  |
|--------------------------------------------------------------|---------------------------------------------|----------------------------------------------|-----------------|----------------|--------------|-------------|----------|--|
| Volun<br>Nacic<br>Nacic<br>Nacic<br>Naci<br>H <sub>2</sub> O | 1e<br>(].7 moles)<br>().58 " )<br>().13 " ) | 250 ml<br>209 g.<br>61.5 g.<br>7.5 g.<br>137 |                 | (0.58<br>(1.83 | moles)<br>") | 61.5<br>107 |          |  |
|                                                              | Ammonium Chloride S                         | <u>olution</u>                               |                 |                |              |             |          |  |
| NH <sub>4</sub> C]<br>H <sub>2</sub> O                       | (1.77 moles)                                | 95<br>200                                    | ₹• <sup>1</sup> | (0.07          | ")           | 4.0         | g.       |  |
|                                                              | NH4ClO4<br>H <sub>R</sub> O (total)         | 337                                          |                 | (1.70          | ")           | 200<br>337  | g.<br>g. |  |

After cooling the orystal slurry to the desired temperatures the crystals were, in each case, filtered with suction and analyzed without further purification. Analytical results are reported on the dry basis, but the crystals were not actually dried. The results are shown in <u>TABLE I.</u> Effects of Washing: The crude ammonium perchlorate contained a considerable amount of mother liquor. To determine the extent to which washing with water might be expected to purify the product two batches were slurried with water, 100 ml per batch, cooled to 0°C, and filtered with suction. The extent to which this treatment contributed to the purification of the ammonium perchlorate is indicated by the results shown in <u>TABLE II.</u>

Effects of Water Content of Metathesis Mixture: In a series of experiments similar to those of TABLE I the water content of the mixture was varied in the range 337 g. to 287 g. Frocessing was similar to that previously described, all solutions being cooled to 0°C before filtration. Results are shown in TABLE III.

<u>Processing of Mother Liquors by Evaporation:</u> The mother liquor separated from the crude ammonium perchlorate obtained by metathesis contains, roughly, 20% of the total  $ClO_4$ ', 90% of the  $ClO_3$ ', and 90% of the Cl'. It was anticipated, and experimentally verified, that partial evaporation of the solution would produce a crop of sodium chloride, and that cooling of the concentrated solution would produce a second crop of ammonium perchlorate. The results of these experiments are shown in <u>TABLE IV</u>.

This procedure is not regarded as safe because of the instability of the solutions containing high concentrations of ammonium and chlorate ions. Both the heated solutions and the moist crystals (on standing) became colored greenish-yellow and had a strong odor of chlorine. It is recommended, therefore, that an alternative procedure be considered.

C

<u>Frocessing of Mother Liquors by Removal of Ammonia:</u> A safer procedure for recovery of the values contained in the metathesis mother liquors involves treating the solution with sodium hydroxide in an amount equivalent to the ammonium ion, boiling off and recovering the ammonia, and returning the ammonium-free sodium peroblorate chlorate/chloride solution to the cycle at an appropriate point after evaporation to the extent required to avoid the accumulation of an excessive amount of water.

Ċ,

The results of the experimental verification of this procedure are shown in <u>TABLE V.</u>

# TABLE I

# Ammonium Perchlorate by Metathesis

# Effects of Temperature

| Temp. | Percei<br>Fou | ntage of<br>nd in Pre | Total Anion | Compos<br>Prec |        |      |
|-------|---------------|-----------------------|-------------|----------------|--------|------|
| D.    | ClO4'         | C103'                 | C1'         | NH4C104        | NaClO3 | NaCl |
| -20   | 87.1          | 13.1                  | 18.7        | 86.4           | 3.9    | 9.7  |
| -20   | 87.7          | 15.6                  | 21.8        | 84.6           | 4.4    | 10.9 |
| -12   | 84.8          | 10.2                  | 11.5        | 90.4           | 3.2    | 6.4  |
| -12   | 84.3          | 10.7                  | 10.8        | 90.5           | 3.3    | 6.2  |
| 0     | 80.7          | 9.1                   | 10.7        | 90.6           | 3.0    | 6.4  |
| 0     | 80.5          | 8.6                   | 10.0        | 91.2           | 2.8    | 6.0  |
| 0     | 81.7          | 11.3                  | 12.3        | 89.0           | 3.7    | 7.3  |
| +20   | 71.2          | 7.3                   | 10.3        | 90.4           | 2.7    | 6.9  |
| +20   | 71.8          | 8.5                   | 11.1        | 89.5           | 3.1    | 7.4  |

# Composition of Each Mixture

|                    | Grame | Moles             |
|--------------------|-------|-------------------|
| NH4ClO4            | 200.0 | 1.70              |
| NaClO <sub>3</sub> | 61.5  | 0,58              |
| NaOl               | 107.0 | 1,83              |
| NH&Cl              | 4.0   | 0,07              |
| H <b>2</b> 0       | 3,37  | 600 gain and pair |

1

.

.

## TABLE II

s etc

|                                                            | Net Wt.                       | Wt. Na | 01 % | Wt. Na( | 0103 % | Wt. Nac | 10. % |
|------------------------------------------------------------|-------------------------------|--------|------|---------|--------|---------|-------|
| Composition<br>of Crude<br>Crystals                        | <del>مىمايىلىرىكى ال</del> ەر |        |      |         |        |         |       |
| A                                                          | 476.5 g.                      | 40.9   | 9.7  | 16.2    | 3.9    | 367.1   | 86.4  |
| <b>B</b> .                                                 | 501.0 g.                      | 48.4   | 10.9 | 19.4    | 4.4    | 373.7   | 84.6  |
| Composition<br>of Vashed<br>Crystals                       |                               |        |      |         |        |         | •     |
| A                                                          | 361.0 g.                      | 7.9    | 2.2  | 6.6     | 1.8    | 349.6   | 96.0  |
| Ę,                                                         | 379+5 б•                      | 11.8   | 3.2  | 7,9     | 2.2    | 355.5   | 94.6  |
| Composition<br>of Salts<br>in Wash<br>Water<br>(Dry Basis) |                               |        |      |         |        |         |       |
| A                                                          | وسر ومو همه بادغ التيز        | 31.2   | 56.3 | 9.2     | 16.6   | 14.9    | 27,1  |
| 8                                                          |                               | 31.4   | 54.6 | 10.1    | 17.5   | 16.0    | 27.9  |

## Effects of Washing Upon Crude Ammonium Perchlorate

## TABLE III

# Ammonium Perchlorate by Metathesia

# Effects of Water Content

| Total            | Percentage of Total Anion | Composition of |
|------------------|---------------------------|----------------|
| H <sub>R</sub> O | Found in Precipitate      | Precipitate    |

| Grams | C104' | C103'<br>% | Cl'<br>% | MH4Cl04<br>B | NaC1.03 | NaCl<br>% |
|-------|-------|------------|----------|--------------|---------|-----------|
| 337   | 81.7  | 11.3       | 12.3     | 89,0         | 3.7     | 7.3       |
| 312   | 82.8  | 12,5       | 21.0     | 84.7         | 3.7     | 11.6      |
| 312   | 82.7  | 11.7       | 20.0     | 85.4         | 3.5     | 11.1      |
| 287   | 84.4  | 12.8       | 29.1     | 81.3         | 3.6     | 15.1      |
| 287   | 84.8  | 12.7       | 29.6     | 81.1         | 3.6     | 15.3      |

**T** 

€

## TABLE IV

## Metathesis Followed by Eveporation

## of Mother Liquor

|                                                                  | Weight (Moist) | Compost<br>NH Clos | tion (Dry | v basis)<br>NaCl |
|------------------------------------------------------------------|----------------|--------------------|-----------|------------------|
|                                                                  | (MO1807        |                    |           | \$               |
| Crude NH.ClO.<br>by Metathesis                                   |                |                    |           |                  |
| A                                                                | 195.9          | 91.0               | 3.3       | 5.7              |
| В                                                                | 195.3          | 90.6               | 3•3       | 6.1              |
| NaCl by Evaporation<br>of Mother Liquor to<br>50% of its yolume. |                |                    |           |                  |
| A                                                                | 80.5           | 3.3                | 3.7       | 93.3             |
| В                                                                | 88.5           | 5.2                | 7.5       | 86.3             |
| Crude NH4ClO4 from<br>cooled eveporated<br>Mother Liquor         |                |                    |           |                  |
| A                                                                | 25.0           | 83.2               | 14.4      | 2.4              |
| 8                                                                | 23.5           | 84.1               | 13.1      | 2.8              |
| Filtrate from<br>cooled evaporated<br>Mother Liquor              |                |                    | ·         | •.               |
| A                                                                |                | 20.3               | 53.3      | 26.4             |
| B                                                                |                | 17.5               | 53.6      | 28.9             |

ſ

Ť

<u>Note:</u> Evaporation of Mother Liquor was accompanied by some decomposition, as indicated by development of yellow color and evolution of chlorine-like fumes.

The crude Ammonium perchlorate obtained from the evaporated solution also developed a yellow color when stored moist. The procedure is <u>not recommended</u>.

## TABLE V

#### Recovery of Values by NaOH Treatment

## of Metathesis Mother Liquor

| Salts in NaOH<br>Treated Solu-<br>tion after<br>removal of NH3<br>(Volume - approx-<br>imately 1.5 liters) |       | Selts in<br>NaCl Precip-<br>luate (after<br>evaporation<br>of solution<br>to thick slurry |      | Salte in<br>Wash Solu-<br>tion, (100<br>ml HgO) |      | alta in<br>Inal<br>Iother<br>10uor |          |
|------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------|------|-------------------------------------------------|------|------------------------------------|----------|
|                                                                                                            | zrame | grama                                                                                     | -%   | grama                                           | *    | grams                              | <u>%</u> |
| NaCl                                                                                                       | 333   | 294.7                                                                                     | 0.93 | 13.0                                            | 3.8  | 27.4                               | 8.2      |
| NaClO3                                                                                                     | 202   | 8.2                                                                                       | 4.3  | 23.1                                            | 12.1 | 160.2                              | 83.6     |
| NaCl04                                                                                                     | 107   | 4.5                                                                                       | 4.1  | 12.8                                            | 11.7 | 92.4                               | 84.2     |

Composition (Dry Basis) of Solid, Wash Solution, and Mother Liquor.

|                    | Solid<br>(NaCl) | Wash<br><u>Solution</u> | Mother<br><u>Liquor</u> |
|--------------------|-----------------|-------------------------|-------------------------|
| NaCl               | 95.9%           | 26.6%                   | 13.3%                   |
| Naclo <sub>3</sub> | 2.7             | 47.1                    | 53.7                    |
| Naci.              | 1.4             | 26.3                    | 33.0                    |

Note: It will be observed that perchlorate ion has been removed frim the solution as ammonium perchlorate, and that chloride is here removed as sodium chloride. Chlorate, however, has accumulated. By reference to the solubility data of the Third Interim Report it will be seen that a salt mixture having the composition of that in the Mother Liquor, above, may be further concentrated, separated, and cooled to produce pure sodium chlorate crystals. Ferchlorate, chloride, and chlorate may thus be separated.

C



İ

Į.

.

Ċ.

(

## 4. TENTATIVE PROCESS PROPOSAL VITH FLOW SHEET

In drawing the Flow Sheet which indicates the steps in the preparation of ammonium perchlorate, starting with sodium chlorate and ammonium chloride, certain auxiliary items of equipment which would be necessary for actual operation or for efficiency have been omitted for simplicity.

Estimated Working Capacities. The estimates for the working capacities of the various units are calculated on the basis of a production rate of 1,000 lbs. per eight hour day of finished ammonium perchlorate. Production at a higher rate would, usually, require proportionately larger equipment or multiple units.

Data for these estimates were obtained priniopally from laboratory results, but in part from records of the operation of an ammonium perchlorate plant (based upon the use of ammonium sulfate and sodium perchlorate) designed in this laboratory in 1940 and successfully operated in Canada.


| NaClO <sub>3</sub> re                                                                        | quired for conversion (78% efficiency) 1,900#/day<br>Rate of conversion - 250# per hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.                                                                                           | Size of Conversion Oven                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Conversio                                                                                    | n product to be milled or crushed 1,750 <sup>4</sup> /day<br>Rate of milling - 4 <sup>4</sup> / <sub>4</sub> per minute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.                                                                                           | Size of Mill - ?<br>May be a standard hammer-mill or a crusher.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Volume so                                                                                    | lution required to contain 1,085# NaClO 575 liters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3.                                                                                           | Working Capsoity of Tank - (approx.) 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| •                                                                                            | This would be an open tank equipped with agitator and steam-coil. Cone-bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                              | outlet or discharge via pump.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| POTIC BOG                                                                                    | Spinning cycles (maximum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.                                                                                           | Working capacity of Centrifuge (min.) 100"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                              | This would be a standard centrifuge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Volume of                                                                                    | solution to be cooled to recover NaClO <sub>3</sub> 575 liters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                              | Working capacity of tank (approx.) 575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5•                                                                                           | This would be an open tank equipped with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                              | outlet or pump discharge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b></b>                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Solid sod                                                                                    | Lium chlorate to be centrifuged 325#/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Solid sod<br>6.                                                                              | Lium chlorate to be centrifuged 325#/day<br>Spinning cycles (maximum) 4<br>Same Centrifuge as 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Solid sod<br>6.                                                                              | Lium chlorate to be centrifuged 325#/day<br>Spinning cycles (maximum) 4<br>Same Centrifuge as 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Solid sod<br>6.<br>Volume of                                                                 | Lium chlorate to be centrifuged 325#/day<br>Spinning cycles (maximum)<br>Same Centrifuge as 4.<br>'metathesis liquor and crystals 1,500 liters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Solid sod<br>6.<br>Volume of<br>7.                                                           | Lium chlorate to be centrifuged 325#/day<br>Spinning cycles (maximum)<br>Same Centrifuge as 4.<br>' metathesis liquor and crystals 1,500 liters<br>Working capacity of tank 1,500 "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Solid sod<br>6.<br>Volume of<br>7.                                                           | Lium chlorate to be centrifuged 325#/day<br>Spinning cycles (maximum)<br>Same Centrifuge as 4.<br>'metathesis liquor and crystals 1,500 liters<br>Working capacity of tank 1,500 "<br>This would be an open tank equipped with<br>agitator and refrigerated cooling-coil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Solid sod<br>6.<br>Volume of<br>7.                                                           | ium chlorate to be centrifuged<br>Spinning cycles (maximum)<br>Same Centrifuge as 4.325#/day<br>4'metathesis liquor and crystals<br>Working capacity of tank<br>This would be an open tank equipped with<br>agitator and refrigerated cooling-coil.<br>Cone-bottom outlet or pump discharge.325#/day<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Solid sod<br>6.<br>Volume of<br>7.<br>7a                                                     | Lium chlorate to be centrifuged<br>Spinning cycles (maximum)<br>Same Centrifuge as 4.<br>Metathesis liquor and crystals<br>Working capacity of tank<br>This would be an open tank equipped with<br>agitator and refrigerated cooling-coil.<br>Cone-bottom outlet or pump discharge.<br>Stirred auxiliary tank for making or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Solid sod<br>6.<br>Volume of<br>7.<br>7a                                                     | Jum chlorate to be centrifuged<br>Spinning cycles (maximum)<br>Same Centrifuge as 4.325#/day<br>4' metathesis liquor and crystals<br>Working capacity of tank<br>This would be an open tank equipped with<br>agitator and refrigerated cooling-coil.<br>Cone-bottom outlet or pump discharge.1,500 "Stirred auxiliary tank for making or<br>storing ammonium chloride solution750 "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Solid sod<br>6.<br>Volume of<br>7.<br>7a                                                     | ium chlorate to be centrifuged       325#/day         Spinning cycles (maximum)       4         Same Centrifuge as 4.       4         'metathesis liquor and crystals       1,500 liters         'working capacity of tank       1,500 liters         'This would be an open tank equipped with       1,500 "         'metathesis liquor and crystals       1,500 liters         'Working capacity of tank       1,500 "         'This would be an open tank equipped with       1,500 "         'Gone-bottom outlet or pump discharge.       500         Stirred auxiliary tank for making or<br>storing ammonium chloride solution       750 "                                                                                                                                                                                                                                       |
| Solid sod<br>6.<br>Volume of<br>7.<br>7a<br>Grude amm                                        | ium chlorate to be centrifuged<br>Spinning cycles (maximum)<br>Same Centrifuge as 4.       325#/day<br>4         'metathesis liquor and crystals<br>Working capacity of tank<br>This would be an open tank equipped with<br>agitator and refrigerated cooling-coil.<br>Cone-bottom outlet or pump discharge.       1,500 liters<br>1,500 "         Stirred auxiliary tank for making or<br>storing ammonium chloride solution       750 "         Monium perchlorate to be centrifuged<br>Spinning cycles (maximum)       1,100#/day<br>11                                                                                                                                                                                                                                                                                                                                             |
| Solid sod<br>6.<br>Volume of<br>7.<br>7a<br>Orude amm<br>8.                                  | Spinning cycles (maximum)325#/daySame Centrifuge as 4.325#/day'metathesis liquor and crystals1,500 liters'metathesis liquor and crystals1,500 litersWorking capacity of tank1,500 "This would be an open tank equipped withagitator and refrigerated cooling-coil.Cone-bottom outlet or pump discharge.Stirred auxiliary tank for making or<br>storing ammonium chloride solution750 "monium perchlorate to be centrifuged1,100#/daySpinning cycles (maximum)11Same centrifuge as 4.                                                                                                                                                                                                                                                                                                                                                                                                   |
| Solid sod<br>6.<br>Volume of<br>7.<br>7a<br>Orude amm<br>8.<br>TOTA                          | Lium ohlorate to be centrifuged<br>Spinning cycles (maximum)<br>Same Centrifuge as 4. $325\#/day$<br>4Y metathesis liquor and crystals<br>Working capacity of tank<br>This would be an open tank equipped with<br>agitator and refrigerated cooling-coil.<br>Gone-bottom outlet or pump discharge.1,500 "Stirred auxiliary tank for making or<br>storing ammonium chloride solution750 "Monium perchlorate to be centrifuged<br>Spinning cycles (maximum)<br>Same centrifuge as 4.1,100#/day<br>11Same centrifuge as 4.11                                                                                                                                                                                                                                                                                                                                                              |
| Solid sod<br>6.<br>Volume of<br>7.<br>7a<br>Orude amm<br>8.<br>TOTA                          | Lium chlorate to be centrifuged<br>Spinning cycles (maximum)<br>Same Centrifuge as 4.       325#/day<br>4         ' metathesis liquor and crystals<br>Working capacity of tank       1,500 liters         ' metathesis liquor and crystals       1,500 liters         ' metathesis liquor and refrigerated cooling-coil.       000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                |
| Solid sod<br>6.<br>Volume of<br>7.<br>7a<br>Orude ann<br>8.<br>TOTA<br>Volume of<br>9., 11.  | Jum chlorate to be centrifuged<br>Spinning cycles (maximum)<br>Same Centrifuge as 4.325#/day<br>4Y metathesis liquor and crystals<br>Working capacity of tank<br>This would be an open tank equipped with<br>agitator and refrigerated cooling-coil.<br>Oone-bottom outlet or pump discharge.1,500 #Stirred auxiliary tank for making or<br>storing ammonium chloride solution750 #Monium perchlorate to be centrifuged<br>Spinning cycles (maximum)<br>Same centrifuge as 4.1,100#/day<br>11L CYCLES FOR CENTRIFUGE 4, 6, and 821Y liquor in each crystallizer<br>and 13. Working capacity, each1,500 #                                                                                                                                                                                                                                                                               |
| Solid sod<br>6.<br>Volume of<br>7.<br>7a<br>Grude amm<br>8.<br>TOTA<br>Volume of<br>9., 11., | Jum chlorate to be centrifuged<br>Spinning cycles (maximum)<br>Same Centrifuge as 4.       325#/day<br>4         * metathesis liquor and crystals<br>Working capacity of tank       1,500 liters         * metathesis liquor and crystals       1,500 liters         Working capacity of tank       1,500 liters         This would be an open tank equipped with<br>agitator and refrigerated cooling-coil.       00ne-bottom outlet or pump discharge.         Stirred auxiliary tank for making or<br>storing ammonium chloride solution       750 "         Monium perchlorate to be centrifuged<br>Spinning cycles (maximum)       1,100#/day         Same centrifuge as 4.       1,100#/day         ML CYCLES FOR CENTRIFUGE 4, 6, and 8       21         * liquor in each crystallizer<br>and 13. Working capacity, each<br>Each batch crystallizer would be       1,500 liters |
| Solid sod<br>6.<br>Volume of<br>7.<br>7a<br>Orude amm<br>8.<br>TOTA<br>Volume of<br>9., 11., | <pre>ium chlorate to be centrifuged<br/>Spinning cycles (maximum)<br/>Same Centrifuge as 4.<br/>' metathesis liquor and crystals 1,500 liters<br/>Working capacity of tank 1,500 "<br/>This would be an open tank equipped with<br/>agitator and refrigerated cooling-coil.<br/>Cone-bottom outlet or pump discharge.<br/>Stirred auxiliary tank for making or<br/>storing ammonium chloride solution 750 "<br/>monium perchlorate to be centrifuged 1,100#/day<br/>Spinning cycles (maximum) 11<br/>Same centrifuge as 4.<br/>LL CYCLES FOR CENTRIFUGE 4, 6, and 8 21<br/>'liquor in each crystallizer 1,500 liters<br/>and 13. Working capacity, each 1,500 "<br/>Each batch crystallizer would be<br/>equipped with agitator and cooling-coils.<br/>Open tanks with constant or outlets or</pre>                                                                                    |
| Solid sod<br>6.<br>Volume of<br>7.<br>7a<br>Orude ann<br>8.<br>TOTA<br>Volume of<br>9., 11., | <pre>ium chlorate to be centrifuged 325#/day Spinning cycles (maximum) Same Centrifuge as 4. ' metathesis liquor and crystals 1,500 liters Working capacity of tank 1,500 " This would be an open tank equipped with agitator and refrigerated cooling-coil. Cone-bottom outlet or pump discharge. Stirred auxiliary tank for making er storing ammonium chloride solution 750 " tonium perchlorate to be centrifuged 1,100#/day Spinning cycles (maximum) 11 Same centrifuge as 4. UL CYCLES FOR CENTRIFUGE 4, 6, and 8 21 ' liquor in each crystallizer 1,500 liters and 13. Working capacity, each 1,500 " Each batch crystallizer would be ecuipped with agitator and cooling-coils. Open tanks with cone-bottom outlets or discherge via pumps. The number of</pre>                                                                                                               |

5

(\_

Ľ

3.000#/day Crystallized NH4ClO4 to be centrifuged (max.) Spinning cycles (maximum) 20 10., 12., 14. Working capacity of centrifuge 100-150# This would be a standard centrifuge. The same machine would be used for all crystallizers. It would be more efficient to use a larger centrifuge and reduce the number of cycles. 1,000#/day 125#/hour Purified NH4ClO4 to be dried Drying rate required Tray Dryer, working capacity 1,000# or 15. Rotary Dryer, minimum working capacity about 150% per hour. 2,000 liters Volume of solution to be de-ammoniated (approx.) 2,000 Working capacity of Ammonia Boiler 2,500#/day 400#/hour Water to be evaporated (approx.) 16. Evaporative capacity (minimum) 100#/day Ammonium chloride to be recovered (approx.) 100#/hour Working capacity of NHs absorber Heat of neutralization to be 17. dissipated (roughly) 36.000 Kg Cals 144,000 B.T.U.

£

## Chemicals Required per Day

| Sodium chlorate              | 1,900     | lbs. | (-325=1,575) |
|------------------------------|-----------|------|--------------|
| Ammonium chloride            | 460       |      |              |
| Caustic Soda (NaOH)          | 75        |      |              |
| Hydrochloric acid (35%)      | 200       |      |              |
| Chemicals Recovered          | d per Day |      |              |
| Sodium chlorate              | 325       | lbs  |              |
| Sođium chloriđe              | 500       |      |              |
| Ammonium chloride (recycled) | 100       |      |              |

## CONFIDENTIAL

Ć

ł

In our process, however, contamination of the ammonium perchlorate necessitates recrystallization, the value of the relatively large amount of chlorate necessitates recovery, and destruction of the chlorate (ignoring its value) would be expensive.

Our process is further complicated by the instability of solutions containing relatively high concentrations of ammonium and chlorate ions. This introduces an element of hazard which cannot be ignored. The steps involving the removal of ammonia from the metathesis mother liquor, admittedly economically unsound, are necessary to minimize the hazard.

The process outlined in this Report is considered workable. With due regard to its economic limitations we recommend consideration of the design of a Pilot-Plant based upon the Tentative Proposals and Flow-Sheet of Section 4.

An alternative process should also be considered: The sodium perchlorate/chlorate/chloride solution of Section 2 could, presumably, be "finished" by the conventional electrolytic process to a sodium perchlorate solution essentially identical to the best present commercial product. This suggestion is based upon the opinion of competent operators of the perchlorate plant of Oldbury Electro-Chemical Company, but has not been verified experimentally. It seems obvious that the output of perchlorate per unit of platinum anode area would be greatly increased, but such a process would not, of course, eliminate the use of this metal. The experimental verification of this procedure, to eliminate the element of speculative uncertainty, would be an appropriate subject for fur-SECURITY INFORMATION ther work.