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Abstract:

We develop a parametric statistical approach to detecting and estimating the delay and
duration parameters of a ripple-fired signal. Such signals are generated by mining blasts
with roughly equally spaced charges. Detection of the echo structure induced by ripple
firing can serve as a basis for discriminating between mining blasts and nuclear explosions
or earthquakes which, in principle, will not contain such echo effects.

The model assumes a noise corrupted signal that can be written as a convolution of
source, path and instrument responses with a pulse sequence. The underlying responses are
modeled by low order autoregressive moving average (ARMA) models that are consistent
with conventional deterministic formulations of source theory and instrument response.
The pulse sequence is modeled as a seasonal ARMA process, with the period corresponding
to the firing delay and with a model order that is proportional to the signal duration. We
use the cepstrum to suggest a range of values for the duration and delay parameters and
then search all possible seasonal ARMA models within this range. The final model chosen
is the minimizer of the corrected Akaike Information Theory Criterion (AICc).

Limited simulations are given to show that both the duration and delay can be es-
timated effectively with the seasonal ARMA search when the delays are equal and that
reasonable estimators are available when the delays are variable. The methodology is
applied also to the P phase of a single Scandinavian mining explosion where we obtain
reasonable estimators for delay and duration under the assumption of ripple-firing.

Key Words: Mining explosions, duration and delay, echo detection, cepstra, seasonal
ARMA, model selection.
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OBJECTIVE

Regional seismic monitoring and discrimination capabilities that are desirable under a po-
tential Comprehensive Test Ban Treaty (CTBT) can be improved by developing algorithms
and new procedures for distinguishing between earthquakes, nuclear explosions and mining
explosions of various kinds. Much effort in past discrimination studies has concentrated on
extracting various features of the spectrum that are characteristic of earthquakes, nuclear
explosions or mine blasts.

One particular spectral feature that characterizes some mining explosions is periodic
modulation of the spectrum introduced by ripple-firing. A ripple-fired event involves det-
onation of a number of mining explosions that are often regularly grouped in space and
time. Such explosions, known as quarry blasts, have low magnitudes that may be close to
those of nuclear explosions that one might monitor under the CTBT. Hence, procedures
for detecting ripple firing can serve as bases for discriminating between mining blasts and
nuclear explosions or earthquakes. A number of authors have examined various aspects of
this problem and have proposed techniques for analyzing these ripple-fired seismic signals
(see Baumgardt and Ziegler, 1988, Hedlin et al, 1990, Chapman et al 1992).

The objective of this study is to develop robust statistical procedures for detecting
and characterizing the echo structure induced by ripple-firing. This includes developing
maximum likelihood in both the time and frequency domains for the purpose of estimating
the parameters corresponding to the delay and duration of a ripple-fired signal as well as
the spectrum representing source, path and instrument responses that will be convolved
with the ripple-fired signal. We use modern model selection techniques based on Akaike's
Information Theoretic Criterion (AIC) to determine the number of pulses and their dura-
tion.

PRELIMINARY RESEARCH RESULTS

We have developed a time domain approach to the problem of detecting and identifying
the echo parameters associated with a ripple-fired event. The underlying model assumes
that a sequence of n signal pulses st separated by d will produce an observed process of
the form

n

= S aiSt..d + nt (1)
j=1

where nt is an additive noise. The observed data is, therefore, characterized in terms of a
series of scaled replicas of an underlying signal that last for a total duration (n + 1)d and
are observed at delays d, 2d,..., nd. The signal st is an underlying process, assumed to
satisfy a low-order autoregressive moving average model of the form

p q

St -: 5 Ok-Se.k = Wt 5: OWt..k. (2)
k=1 921 k=1



The characteristics of the signal process are determined by the p autoregressive parameters
01, 02,.. . , p, the moving average parameters 01,02,. • •, 0q and the variance o2 of the white
noise process wt. In the usual Box-Jenkins approach (see Shumway, 1988, Chapter 3) the
model determined by (2) is identified as ARMA(p, q). It is convenient to rewrite (1) and
(2) using the backshift operator B, defined as Bxt = xt-i, and we obtain

Yt =: d(B)st + nt (3)

and
O(B)st = O(B)wt, (4)

where
n

ad(B) = 1 + E ajB jd, (5)
j=1

P

O(B) = 1 -L Z Bj, (6)

and
q

O(B) = 1 -L Z9B. (7)
j=1

Now, substituting (4) into (3), we obtain

yt = xt + nt (8)

where
q(B)xt = 9(B)oad(B)wt. (9)

The observed process yt is exhibited in (8) as the sum of noise and a multiplicative ARMA
process with a seasonal moving average ad(B) of order n and season d. The process xt
is identified as the multiplicative seasonal ARMA, ARMA(p, q) x (0, n)d. Under this
model scenario, the process of detecting a ripple-fired signal is reduced to looking for a
multiplicative seasonal moving average component in an ARMA process, where the order
corresponds to the number of pulses and the season corresponds to the delay.

The problem of motivating the model defined by (3) and (4) can be approached by
appealing to Dargahi-Noubary (1995), who shows that most deterministic source models,
including that of Von Seggern and Blandford (1972) can be generated by a stochastic model
of the form (4) with p = 2 or p = 3 corresponding to the w 2 and w.3 models respectively
if we take the operator as (1 - OB)P. We shall not specialize the operator in hopes that
the more general form (6) will help to adjust for instrument response and path effects.
Furthermore, these effects can be further mitigated by adding general moving average
components of order q.

Although the model suggested by (3) and (4) is not exactly ARMA(p, q) x (0, n)d

because of the additive noise term, it is well known that ARMA signal plus noise models
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are equivalent to pure ARMA models with additional moving average components so we
are justified in restricting candidates to models of the multiplicative form. What is required
is estimating the ARMA parameters 01,.. . I, OP, 1, .. , 1q, I2 as well as the amplitudes of
the reflections ... , a,,. This can be done for a fixed p, q, n and d using nonlinear least
squares on the residuals, minimizing

&2 T-1 Et, (10)
t

where wt can be obtained by solving (9) successively, using yt in place of xt. There are
generally, an unlimited number of values of p, q, n and d possible so we need a method
for deciding which values are most reasonable. A common model selection criterion is the
corrected form of Akaike's information criterion (see Hurvich and Tsai, 1989),

AICc=log&2 + T+p+q+n (11)
T-p-q-n-2'

where we choose the model that minimizes AICc. For the large sample used here, this
measure gives the same result as the conventional AIC.

In order to illustrate the above methodology, we consider analyzing two contrived
events and a single mining explosion from Scandinavia shown in Figures 1, 2 and 3. The
contrived events were simulated by generating an ARMA(2, 0) process of the form

st - st-i + .6st-2 = Wt (12)

for the signal with u-2 = 1. This is Equation (2) with p = 2, 01 = 1, 02 = -. 6. The process
was added and delayed using

yt = atxt + nt, (13)

where
xt = St + St-8 + St-16 + St- 2 4 + St-32 (14)

which is just a delayed signal with n = 4, d = 8, i.e. a signal with four pulses separated by
8 points, leading to a duration of 32 points. To make the output resemble an explosion,
the ARMA process was modulated by a function of the form at = 01 exp{-0 2 t} with
log 01 = -7, 02 = .01. The second contrived event, shown in Figure 2 adds five pulses at
irregular delays and noise nt with variance o, = (.01)2. Figure 3 shows a P-phase from
a presumed mining explosion recorded at FINESS in Scandinavia and given by Blandford
(1993) in his Table 1.

To analyze these three examples, we search for the best ARMA(p, q) x (0, n)d model
using AICC and the following general guidelines. The operators (6) and (7) that best
emulate the convolution of source, path and instrument response, i.e. p and q in the model,
are restricted to low orders. In this case, we took p = 2,3, q = 0, 1, corresponding to values
suggested by conventional source models and response functions. These low orders all
do a respectable job of emulating the observed spectra. In order to limit somewhat the
search over the seasonal components n and d, the spectra, log spectra and cepstra were
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Figure 1. Analysis of a contrived signal composed by modulating an ARMA(2,O) process and delaying
using 4 pulses separated by 8 points. Frequency is in cycles/point. Delay is in points.
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Figure 3. Analysis of a P-phase from a presumed mining explosion recorded at FINESS (FlAl) in Scandi-
navia (latitude 59.476, longitude 24.1442) dated 12/10/91 with local magnitude 2.59 (see Blandford, 1993,
Table 1). Frequency is in cycles per point at 40 sec- 1 so that the folding frequency corresponds to 20 Hz.
Delay is in points or .025 seconds.
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computed. The cepstrum, in particular, is helpful in suggesting values for n and d. For
example see Bogert et al (1962) who suggested the cepstrum or Baumgardt and Ziegler
(1988) who showed, by expansion, the periodicities in the spectrum expected when the
spectrum of xt = ad(B)st is computed. Shumway and McQuarrie (1994) show that when

al- -= 2 an, the spectrum of xt is
Px(W) =Id(e )Ip.'(W)

sin 2 (W(n + 1)d)

sin2 (7%d) (15)

where P8 (w) is the spectrum of the signal. The cepstrum, i.e. logP,((w), then will be
the sum of the logarithm of the signal spectrum and two other components with periods
proportional to d, the delay and nd, the duration.

To begin, consider analyzing the first contrived series shown in Figure 1 which we know
to be approximately ARMA(2, 0) x (0, 4)8 by inspecting the generating equations (12)-(14).
This means that there are 4 pulses of length 8 points in the train leading to a duration of
5 x 8 = 40 points. Both the spectrum and the log spectrum show periodicities and we can
see the two distinct components in the log spectrum. Computing the cepstrum shows main
peaks at 8 and 40 corresponding to the delay and duration. To check the seasonal ARMA
search procedure, consider searching the models ARMA(2- 3, 0 - 1) x (0, 3- 8)5-12 which
indicates looking at 2 < p • 3,0 • q •< 1,3 < n < 8,5 < d < 12, i.e. low order ARMA
models with seasonal components between 5 and 12 and orders between 3 and 8. Table 1
shows the results obtained from the best seven models under the column Figure 1. We see
that the minimum corrected AIC is for the correct model.

The best model has the form of (12)-(14) with the estimated parameters substituted,
so that

st - .97st- 1 + .60st-2 = Wt

becomes the signal model and

Xt = st + .99st- + .87st-16 + .80St- 24 + .7 1 St-32

gives the estimated reflection pattern. Note that the coefficients are not all near unity
because of the exponential modulation of the xt in the observed data Yt. Table 1 also
gives the next best six models and we note that all but one has the correct delay but
that the number of pulses and hence, the duration changes. The spectrum implied by this
ARMA(2, 0) x (0,4)8 model is shown in Figure 1 and we note that it agrees quite well
with the narrow band spectrum (1 % bandwidth).
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Table 1. Model Summaries: ARMA(p, q) x (0, n)d

Figure p q n d AICc

1 2 0 4 8 -7.2546
1 2 0 5 8 -7.2543
1 2 0 6 8 -7.2533
1 2 0 8 8 -7.2523
1 2 0 7 8 -7.2513
1 2 0 3 8 -6.8295
1 2 0 6 6 -6.2294
2 2 0 7 8 -5.7271
2 2 0 6 8 -5.7105
2 2 0 5 8 -5.7028
2 2 0 8 6 -5.6993
2 2 0 7 6 -5.6886
2 2 0 6 9 -6.6858
2 2 0 8 9 -5.6848
3 2 1 6 6 14.3649
3 2 1 4 6 14.3706
3 2 1 5 6 14.3714
3 2 1 3 6 14.3773
3 2 1 3 12 14.3830
3 2 1 4 12 14.3848
3 2 1 5 12 14.3865

When some irregularity in the pulse intervals is introduced as in Figure 2, the cep-
strum gives quite ambiguous results. From Table 1, note that the seasonal ARMA search
indicates a model with 7 pulses separated by 8 when the correct model has 5 pulses; 3
are separated by 8 points and 2 are separated by 10 points. The duration predicted is
(7 + 1) x 8 = 64 points as compared with the known duration of 44 points. The ARMA
spectrum shown in Figure 2 is a reasonable version of the narrow band smoothed peri-
odogram. The second best model shows 6 pulses separated by 8 points and an estimated
duration of 56 points which seems somewhat closer to the correct model as is the third
best model with 5 pulses separated by 8 points. This is a case where the cepstrum gives
no insight into the structure but the seasonal ARMA search finds a reasonable model.
Again, note that the spacing is easier to estimate than the duration because the number
of pulses at a given duration all have about the same value for AICc and other durations
have generally larger values.

In Figure 3 is shown the P-phase from a single mining explosion along with the spectra,
log spectra, cepstrum and ARMA spectrum derived from the best seasonal ARMA(2, 1) x
(0, 6)6 model. The sampling rate is 40 points per second, leading to a folding frequency of
20 Hz corresponding to .5 cycles per point as shown on the graphs in Figure 3. Table 1
shows that the four best models all have a duration of 6 points or 6/40 = .15 seconds. A
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delay of 150 milliseconds (msec.) may be somewhat long for most mining explosions (see
Baumgardt and Ziegler, 1988, Hedlin et al, 1990 or Chapman et al, 1992), but it is clear
that this sampling rate may not be high enough to pick up in the range 25-50 msec and
we may be looking at aliases. Hopefully, there will be data available at higher sampling
i'ates that can unequivocally sort out reflections in the desired ranges.

RECOMMENDATIONS AND FUTURE PLANS

A high priority for this study is obtaining more multiple-phase (P and S arrivals) explosion
and earthquake data sampled at a higher rate, say at 100 points per second. We would
also like to obtain high quality signals from an array of elements so as to be able to take
advantage of replication, as is done in stacking, practiced by both Baumgardt and Ziegler
(1988) and Hedlin et al (1990). For this to work, the increased difficulties inherent in
replicated ARMA searching may dictate a more semi-parametric likelihood approach in
the frequency domain.

There, we would replace the ARMA model for the spectrum by a more non-parametric
version, employing the general form

Py,(W) = jad(e_2 7rw)I 2 ps,(W) + p.(W), (16)

where the signal spectrum P,(w) can be estimated non-parametrically using the Whittle
likelihood and assuming that broad-band smoothing will eliminate the duration and spac-
ing ripples. We may also be able to assume that the signal-to-noise ratio is constant over
frequency and write

PY(w) = P+(w)(Iad(e2riw)12 ± (17)

where r 2 = P,(w)/Pn(w) is the signal to noise ratio. If P,(w) is reasonably constant over a
broad band, it can be replaced by the smoothed spectrum over that interval in the Whittle
likelihood. Such likelihoods can be treated for arrays as in Der et al (1992).

In the frequency domain, we may also consider the possible of taking into account
the amplitude modulation function at by considering the Whittle likelihood of the time
varying spectrum or sonogram. Dahlhaus (1995) has shown that local averaging over time
of the Whittle likelihood can be used to estimate parameters of the modulating function.

A final note relates to the fact that the spacing values d will not be the same and, in
fact, may be quite variable. In this case, we must replace jd in (1) by dj so that

n

Yt = ajSt-d. + nt, (18)
j=1

where dj, d2,... ,dn form a sequence of unequal delay times. Estimating these as pa-
rameters seems intractable because of the high dimensionality of the resulting parameter
space. An option that expect to try is letting the delay times be random and possibly
uniformly distributed on the integers if one makes no specific assumptions about the time
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delays. One may also assume that the random time delays are clustered about the points
d, 2d, 3d,... , nd in some specified fashion. The integrated likelihood function can then be
computed for any preset combination of parameters using Monte-Carlo methods.
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