
STATISTICAL METHODS FOR
MONITORING NUCLEAR TESTS

H.L. Gray and W.A. Woodward
Southern Methodist University

F19628-93-C-0199 and F19628-95-C-0098
Sponsored by ARPA

ABSTRACT

In previous papers, these authors have developed general methodology for detecting outliers. In
particular, given a training set of, say, earthquake data, a test of hypothesis for testing whether or
not a new observation should be classified as an earthquake was developed. The method was
based on a generalized likelihood ratio test which did not require normality assumptions or even
continuous data. In the most recent papers the technique was modified to allow missing data. In
this paper the methodology is greatly extended to address a variety of issues that arise in a
multistation environment. In particular, the method is generalized to allow the inclusion of
expert opinion as part of the data and it is extended to allow an outlier to be an outlier to more
than one population. Thus, for example, one might have training data from earthquakes and
mining explosions and desire to know if an observed event should be classified as belonging to
either of these groups or not. With the results of this paper, one can test, at a specified level,
whether or not the new observation belongs to the joint population.

Alternative approaches to the generalized likelihood method are also considered for the problems
addressed. However, in general, the generalized likelihood approach seems to be the best
method of those considered.
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OBJECTIVE:

The goal of this research is to establish the statistical methodology required to automatically
detect the occurrence of a nuclear test anywhere in the world, given suitable discriminants.

PRELIMINARY RESEARCH RESULTS:

In previous papers these authors have developed automated methods for detecting outliers based
on the generalized likelihood ratio (GLR). Although those methods are reasonably general and
robust, they do not address all of the problems which can occur in a multistation, multisensor
environment. In what follows, we list several of the problems and their partial solutions.

A) Does adding m stations with p-discriminants create a computing problem?

Answer: It could, if, for example, M = p x m > 200.

To be more specific, let V = data vector,
where

V' = (X 1 , Xpl, X12, Xp2, Xlm, -. , Xpm),

where Xij denotes the discriminant i measured at station j.

Using the generalized likelihood ratio approach involves inversion of an M x M matrix which
could be near singular if care is not taken in selecting the discriminants and the stations.

Remark: It should be noted that neither stations nor discriminants need to be
seismic. Thus, V can be a mixture of seismic and nonseismic data.

Since M could be large in the most general scenario, alternative approaches have and are being
considered. Two alternatives which we have thoroughly investigated are based on inverse
variance weighting and minimum variance weighting. The advantage of these approaches would
be in the computing area, i.e., the data could be significantly compressed and hence reduce
computing requirements substantially. Unfortunately extensive simulations show these methods
to be unsatisfactory for reasons that are clearly demonstrated by the following example:

Setting: one discriminant, two stations.
Let

Xlj =discriminant measured at station j = 1, 2,
(EQ)=menaAý}E = mean of discriminant at station j for earthquakes,
(EX) = mean of discriminant at station j for explosions,

and
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Y = WxX11 + W2X 12 ,

where W 1 + W 2 = 1 and W, and W2 are chosen so that Y will have minimum variance. Y will be
referred to as a compressed discriminant. The compressed discriminant, Y, would then be used in
the GLR method rather than Xn1 and X 12.

Example: Suppose the earthquake population has

(EQ)= _EQ)=0

(EQ)= (E
E 1, •r UQ 2, p =.75.

(1)

Then it is easily shown that W1 = 1.25, W2 = -. 25.

But suppose V is an observation vector from a population defined by

(,EX) = 10

r(EX) = 1, 0'(EX) = 2 , p = .75. (2)

The observation vector V' = (XII, X 12 ) would almost surely be an obvious outlier by the GLR
method based on V. However

E[Y] = -E[Xn1]-!E[X1 2]

-0. (3)

Consequently the compressed discriminant has a mean which is identical to the compressed
earthquake mean and since it has the same variance, it is clear that Y cannot be used to
discriminate between earthquakes and explosions. Thus the power of a test based on Y in this
case would be virtually zero, even though it does have a much reduced variance. Of course,
variance reduction is not the goal here, outlier detection is. The GLR approach based on the
uncompressed data is effective here and in general because it, in essence, addresses the right
problem. Essentially it classifies Vas an outlier if it is highly unlikely that it belongs to the
hypothesized population.

Having given this example, we should add that it is an extreme one and, in fact, for most cases of
interest, the minimum variance method of compressing the data is an effective one. However,
since such cases as the previous example can occur, and since at this time we believe the
computing requirements for the GLR approach can be handled, we are presently opting to stay
with the GLR method on the noncompressed data. We refer to this as the full vector approach.
In the future if computing becomes a problem, we believe that it will be possible to develop a
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hybrid method based on the Mahalanobis distance that will alleviate the problem described here.
Another possible approach is based on principal components, but at the present we are not
pursuing that method. Thus the short answer to question A is no.

B) In the previous example we posed the question of an outlier in the form "Is the new
observation an earthquake or not?" or "Is the new observation an explosion or not?"
That is, "Is the observation a member of a specified group or not?" Of course, the better question
might be, "Is the new observation an earthquake or a mining explosion or not?" More generally,
the question is, "Is the new observation a member of any one of several groups or not?"

In order to address this problem, we must first make some adjustment to the GLR test. In
previous work, it was assumed that the covariance structure of the outlier was the same as the
training set population. Even though the GLR method is robust to this assumption, inspection of
equation 5 below should make it clear that this would be a poor assumption in this case. To avoid
this, we simply make the noninformative assumption that the outlier has a constant distribution
over the realistic support of a potential outlier, Z. The generalized likelihood ratio statistic then
becomes

supL0(O)

Al = 0(4)sup L,(0)

where
n

Lo(0) = H f(V, O)f(Z, 0)

and
n

L,(O) =c i ff( ,0)1
i=1

where f is the pdf of the vector V, and c is a constant.

The distribution of A, is then obtained by bootstrapping. Note that if n is sufficiently large,
Al - f(Z,0), where 0 = maximum likelihood estimate of 0 from the training sample. In this
event, the bootstrapping can be greatly simplified by just resampling the Z from the training
sample. The table below shows that for samples as large as 50 or 60, very little is lost in
approximating the significance level a by this reduced bootstrapping and there seems to be a small
gain in power.

872



Table 1. Simulation Results (nominal level a =.05)

Approximate Approximate

n Level Power

Full One Full One

15 .065 .118 .568 .729
20 .063 .100 .588 .709
25 .048 .081 .601 .704
30 .051 .084 .609 .718
50 .050 .064 .645 .696
100 .057 .059 .657 .677
150 .061 .057 .664 .703

Suppose we have training data from several different populations. For simplicity, assume training
samples from two populations (earthquakes and explosions, for example). The extension to more
than two will be obvious. In this case the mixture distribution is given by

f(V, 0) = pig1 (V, 0,) + 2g 2 (V, 02), (5)

where 0 = (Pl, 01, 02), Pi + h2 = 1, and p, > 0, p -> 0.

In (5) P, and p2 are the mixing proportions and g, and g2 are the pdfs for populations III
and Hl2, respectively. It follows that f is the pdf of the mixed population H 12 . Now denote the
training sample by the two random samples Vii, V12, .7 -, Vmnj E rIi, and V2 1, V22,
V2, 2 E H2, where n, + n 2 = n. We wish to test the hypothesis

H0 : Z E 1112
vs.

H1 " Z 0 1712,

given the random vectors Vl, V12 , V1,1 E 111, V21 , V22 , -- V2n2 E 112.

This can now be done by using A, in equation (4) and f in equation (5), where Pi and P2 are
either given or estimated by the training samples. This method is currently being coded for
simulation runs and will be ready to apply to actual data sets by September 1, 1995.
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C) The GLR test is essentially a nonparametric test of the hypothesis that I 1 = I2 vs A, 0 /12.

In practice it may be that I1 p•2p, but the deviation is in a direction which doesn't concern us.
To be more specific, suppose we wish to test the hypothesis that a new one dimensional
observation, Z, is an earthquake. Then we test p (EQ) = jLz against p(EQ) _ tiz. However, it
may be for this particular discriminant that pz > p(EQ) is of no interest, so we would not like to
include this possibility in the rejection region. This is not a problem for a small number of events,
but for a large number of events maintaining an acceptable false alarm rate could result in a
substantial loss of power or detection capability. What is needed is a test which allows a more
focused alternative, i.e., in this case the alternative p, < p-2. That is, Mil < /li2 for each i.
Although this is a simple problem in one dimension, it is difficult in p-space. One approach which
we are pursuing to solve this problem is a quasi- Bayesian approach which essentially limits the
support of the distribution to regions which are physically plausible. Problems inhibiting this
approach have been computational and appear to be solved now by a closed form solution.
Confirmation of this will be forthcoming by the time of presentation of this paper. Other
approaches to restricting the critical region are being considered but are not sufficiently underway
to report on here.

CONCLUSIONS and RECOMMENiDATIONS:

Results so far are encouraging. However, one thing is clear: new and better regional
discriminants are needed. For regions in which such discriminants become available, the methods
discussed and developed here make near optimal use of that data for outlier detection from one or
several groups. For regions where such data are lacking, expert opinion may be used in the
"Bayesian" GLR method to partially bridge the gap.
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