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Abstract

Statistical methods are needed to assess the performance of a global seismic monitoring system. This report
considers the problems of estimating the detection capability and identifying misassociations. Detection ca-
pability is expressed empirically through a region- and magnitude-dependent detection probability function.
Regional network information can substantially improve the estimation of the global network's detection
capability. A quantitative measure of the strength of the association of an event is proposed. The proposed
amplitude-based measure can be used to discriminate between real events and false associations. It quantifies
the agreement among the observed and expected amplitudes of detecting and non-detecting stations.
Key words: network detection capability, association, network magnitude, goodness-of-fit.
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Objective

A global seismic monitoring system is judged by its ability to detect and identify suspicious seismic events.
Statistical methods are required to assess empirically the performance of all aspects of the monitoring
system, from detection to discrimination. This report presents some preliminary research results in the areas
of detection and association. Specifically, we report on the use of a catalog of seismic events from a regional
network to help assess the detection capability of a global network in that region (Anderson 1995); and we
propose a quantitative measure of the strength of event association as a way to identify both real events and
false associations.

The global network region-dependent detection capability is expressed as a functional relation between
the event magnitude and the probability of detection. Kelly and Lacoss (1969) and Ringdal (1986) have
both taken this approach, and used the Gaussian probability distribution function as the basic functional
form. We extend these authors' methods and show that event data from regional seismic networks can
substantially improve the estimation of the region-dependent detection capability of the global network.

Automated association processes may result in large numbers of so-called false alarms, random phases
that are associated to "create" an event where there really wasn't one. False alarms (spurious events) can
be a problem for small events detected by relatively few stations. Quantitative measures of the strength of
association can be constructed and used to identify false alarms. We propose one measure which is based
on Ringdal's (1976, 1986) maximum-likelihood estimation of seismic magnitude. The measure quantifies the
agreement among the observed and expected amplitudes of detecting and non-detecting stations.

Preliminary Research Results: Network Detection Probability

The empirically based Gutenberg-Richter magnitude-frequency relation (Gutenberg and Richter 1941) im-
plies that the observed magnitudes of earthquakes in a particular region of homogeneous seismicity are
randomly distributed according to a shifted exponential distribution. That is, the observed magnitudes m
above some lower magnitude limit of interest mmi, are well-modeled as a simple random sample from the
probability density function

0 exp(-/3(m - mmi,n)), m > min (1)

The choice of mmri is important. For the problem of determining the value of 3, a value of mmin is
chosen, such that network detection is complete above it (for example, see Bender 1983). For the problem
of estimating the probability of detection as a function of observed magnitude, a value of mnin below the
magnitude of complete detection is chosen such that the Gutenberg-Richter magnitude-frequency relation
is assumed to hold. This Mmi, value is usually greater than or equal to the magnitude of the smallest
event observed by the network. The assumption that Equation (1) holds is critical because it serves as
"ground-truth" in the estimation of detection probabilities. Non-Gutenberg-Richter frequency-magnitude
relationships have been observed (Taylor et al. 1990).

Kelly and Lacoss (1969) derived a maximum likelihood estimation method for the simultaneous estimation
of the parameters of the Gutenberg-Richter magnitude-frequency relation and the parameters of a probit
model for the probability of detection using continuous magnitude data; that is, they modeled the network
detection probabilities P(m) as a function of magnitude m using the Gaussian distribution function

1 r/(i-c)/d

P(m) = 4((rn - c)/d) - 1 exp(-y 2 /2) dy.

They derived their method assuming that, when grouped into non-overlapping magnitude intervals, the
number of earthquakes occurring in each interval are independent Poisson random variables. Here, we
extend the Kelly and Lacoss (1969) method to provide a joint analysis of two seismic networks.

We assume that two catalogs of seismic events are available covering the same temporal and spatial area;
one from a regional network (A) in the region of interest and the other from a large globally distributed
network (B). We first consider the case where the two networks' detections in the region of interest are
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statistically independent. We assume that event matching between the two catalogs is accurate. We assume
that the data available for analysis is a breakdown by magnitude grouping of the number of events detected
uniquely or jointly. Yij is defined as the number of magnitude mi events of type j, where j = 1, 2, 3
corresponds to events detected by both networks, by network A alone, or by network B alone, respectively;
and the magnitudes range from min. to mmax. Given that the number of earthquakes N has a Poisson
distribution with mean A, the Yij are independent Poisson random variables with means

exp(a - miro)pij,

where
Pil = 1((mi - CA)/dA)4 D((Mi - cB)/dB),

Pi2 = '((mi - CA)/dA)(1 -- ((mi - CB)/dB)),

pia = (1 - (D((mi - cA)/dA))'((mi - CB)/dB).

The parameter a depends on A and fi through

n

exp(a) = A/E exp(-,rmj).
j=l

Each network has its own detection probability parameters subscripted by A and B. The parameter c is the
50% detection magnitude and the parameter d affects the steepness of the probability-of-detection curve.

Estimation of the six parameters and their uncertainties can be accomplished by maximum likelihood or
by using a two-stage nonlinear least squares approach. A goodness-of-fit test to judge the adequacy of the
model can then be performed. Let "hats" indicate parameter estimates, ýij = exp(& - ými)Pij, and

n 3
x2 Z3 Z)2/

i=l j=l

To test the adequacy of the model, X-GOF is compared with a chi-square distribution with (3n - 6) degrees
of freedom. We estimate p x 100% detection thresholds for the two networks as

CA + dA4I-'(p) and cB + dBý-l(P),

where 4>- 1 (.) is the inverse of the Gaussian distribution function.
With a simple modification, we can account for one type of dependent networks. Suppose the networks

are such that if an event is detected by the global network (B), it is also detected by the regional network
(A). In this case, there are no type 3 events, where network B detected, but network A did not; that is, all
Yi3 = 0, i = 1, 2, . . ., n. This type of dependence is easily accounted for by redefining the pij as follows:

Pu = D((Mi - CB)/dB),

Pi2 = 1((ri - CA)/dA)(1 - ¢'((mi - cB)/dB)),

and Pi3 = 0. Using the Poisson model, maximum likelihood estimation or two-stage nonlinear least squares
estimation follows as above. Further extensions or modifications, such as replacing the probit probability-
of-detection models with other models, are possible.

To demonstrate the method developed above, we considered event catalogs from the Pacific Northwest
Seismograph Network (PNSN) and the U. S. Geological Survey (USGS) for 1990-1992 (Anderson 1995). The
PNSN has more than 100 stations in the Pacific Northwest.

The three-year PNSN data set analyzed by Anderson (1995) contained 3032 Washington state earth-
quakes, of which the USGS network detected 123. We determined earthquake matches using location and
origin time. For most of the 123 earthquakes, the USGS catalog did not report a network mb magnitude, so
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the PNSN P-coda magnitudes were used in the analysis. The magnitude distribution of these jointly detected
events is displayed in Figure 1. No earthquakes were detected by only the USGS. The two networks are
not independent, because the USGS receives data from eight PNSN stations by telephone lines in real time
(and, in fact, the locations for most of these 123 USGS catalog events are the PNSN locations). Therefore,
we analyzed the data using the dependent two-network model.

We had to remove one event from the analysis, a magnitude 3.2 event that was not listed in the USGS
catalog. This single "missing" event caused the goodness-of-fit test to reject the model; that earthquake
should have been detected by USGS with high probability. Table 1 contains the results of a two-stage
nonlinear least squares analysis, with that event ignored. The estimates of the 90% detection thresholds
for PNSN and USGS for Washington state are 2.562 and 2.844, with standard errors of 0.224 and 0.028,
respectively.

Some caveats must accompany the 90% detection thresholds given above. The analysis was performed to
illustrate the statistical method. While one 90% detection threshold might adequately describe the detection
capability of the global network in that region, the detection capability of the PNSN regional network is
known to be much more spatially heterogeneous. The one 90% detection threshold given for the PNSN
is a rough spatial average. Further, the USGS processing is not well-understood; the very sharp cutoff at
magnitude 2.5 may merely reflect a procedural decision to exclude events rather than a physical detection
limitation.

Table 1: Dependent two-network analysis results: parameter estimates and standard errors

Method & 6 CPNSN dPNSN CUSGS dUSGS

Two-Stage NLS 9.680 2.407 1.750 0.634 2.607 0.185
(0.611) (0.211) (0.189) (0.031) (0.022) (0.006)

Preliminary Research Results: Measuring Strength of Association

Determining misassociations for a seismic network is challenging. There are two basic types of errors in
association. Events may be missing from a network seismicity catalog because the waveforms were not
associated or the catalog may contain spurious events, those events which were misassociated based on
signals from multiple events. The first type of error, missed association, is different from non-detection. It
represents a failure of the association process when there were enough detections to make an association.
Events which were missed associations can be discovered through comparison with seismicity catalogs from
other networks, or, in the case of explosions, through a ground-truth source. The second type of error,
spurious events, may be detected through visualization methods which allow the analyst access to all the
information which made up the events. The analyst then bases decisions on his prior experience; he "knows
a bad event when he sees one." Quantitative methods of measuring the strength of association are required
to reduce the amount of work the analyst must do "by eye." These methods could be used to remove weakly
associated events from final seismicity catalogs with or without analyst intervention.

When a spurious event is constructed from the waveforms of multiple events, it is usually the case that the
arrival times are consistent, that is, they agree with the expected arrival times from an event placed at the
location of the spurious event. By the somewhat random nature of such misassociations, it is expected that
other parameters of interest, such as amplitudes and azimuths, would be less consistent, and misassociations
could be identified by the larger-than-expected variability among the data from different detecting stations.
In less extreme cases, with only a few of the waveforms associated in error, the effect might only be a slight
increase in the size of the location error ellipses, or increased uncertainty in network parameter estimates.
A goodness-of-fit statistic for the network maximum likelihood magnitude estimate is developed here.

Ringdal (1976) presented a maximum likelihood approach to the estimation of network mb values. The
approach successfully removes the network magnitude bias problem that other studies identified (e.g., Herrin
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Figure 1: Frequency of State of Washington events, 1990-92, detected by the PNSN and the USGS seismic
networks. The unshaded bars represent the number of earthquakes detected by only the PNSN. The shaded
bars represent the number of earthquakes detected by both networks.
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and Tucker (1972)), by including the information from non-detecting stations. We extend that approach to
assess the strength of the association of a seismic event. Since a spurious event may have increased variability
in the distance-corrected amplitudes, and may also have no detections at stations that would have detected
a real event, we develop a goodness-of-fit statistic that is sensitive to deviations from expected amplitudes
and detections.

We assume Ringdal's (1986) model, that for a seismic network of N stations, gi, i = 1, 2,..., N, denotes
the P-wave detection thresholds of the stations and yj, i = 1, 2, ... , N, denotes the P-wave signals of a seismic
event of true bodywave magnitude p.. We assume that gi and yi are Gaussian distributed as follows

gi-N(Gi,)

y. ~ N(p - Qi+ Bi, a)

where Gi is the average station detection threshold, Qi is a distance-depth correction factor (dependent on
the locations of the event and the station), Bi is the average station magnitude bias, and -'- and a, are the
standard deviations.

Ringdal (1986) includes in the network magnitude estimation only those stations within the teleseismic
range of 210 to 1000 from the event. These stations fall into four groups: Group A, stations reporting a
P-wave detection and an associated signal level; Group B, stations reporting a P-wave detection with no
associated signal level; Group C, stations operable but not reporting a P-wave detection; and Group D,
stations which are inoperable or off-line. The Group D stations provide no information and can be omitted
from the analysis. We could have defined a fifth group, stations outside the range of 210 to 1000 from the
event, and subsequently omitted them from the analysis.

The likelihood function L(y) is essentially that described by Ringdal (1986):

L(p) = -i fd(p) f1 hi(y) fI(1 -hi

iEA iEB iEC

where 1
i(p) -4 ((p - Yi - Qi + Bi)/o'i)

O exp(x 2/2)

and 41I(.) is the Gaussian distribution function defined earlier. All parameters but p are known. The network
maximum likelihood estimate P of the event magnitude/p is obtained by numerically maximizing L(/p). The
usual estimate of the variance of P is the reciprocal of the second derivative of the negative-log-likelihood
function evaluated at P.

A goodness-of-fit statistic for the network maximum likelihood magnitude GOF(mb) is

GOF(mb) = -2 log(L(ft)) - E log(2'ro-i).
iEA

This goodness-of-fit statistic is approximately distributed as a chi-square random variable with k = n -
AGOF - 1 degrees of freedom, where n is the number of stations within 210 to 1000 of the event and

AGOF = E X(IiiC) - 0.97) + j X(O00 3 - hi(f,))
iEB lEC

and x(') is the indicator function; if x > 0, then X(x) = 1, else X(x) = 0. The adjustment AGOF reduces
the degrees of freedom for the stations that provide no information relevant to the magnitude. A large value
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of GOF(mb) is evidence that the event is a potential spurious event. Excessive variability in the P-wave
amplitudes or missing detections will increase the value of GOF(rnb). An approximate statistical test of
the null hypothesis that an event is real is to reject if GOF(mb) exceeds the appropriate percentile of the
chi-square distribution with k degrees of freedom. Using the 95th percentile as the cutoff sets the probability
of falsely classifying a true event as spurious at approximately 5 %.

Power studies can be performed to determine the ability of the method to accurately identify spurious
events. The power of a statistical test is the probability of rejecting the null hypothesis when it is false.
In this case, the power is the probability that the goodness-of-fit statistic GOF(mb) will indicate that a
spurious event is indeed spurious. The power of this test for a particular global network depends on the
magnitude and hypocenter of the event, and on how one models a spurious event.

As an example of estimating the power, we considered the globally distributed network of 115 stations
described in Ringdal (1986). We modeled a spurious event with a nominal mb of 3.5 and located at 17'S
and 170°E, under combinations of two factors; the first, that the standard deviations of the amplitudes are
multiplied by an inflation factor in the range of 1 to 2.5 and second, that as many as two "good" stations
did not detect the event, where "good" stations are those that would be expected to detect the event and to
provide amplitudes for the the computation of network magnitude. We set the cutoff at the 95th percentile
of the chi-square distribution. Further details of the Monte Carlo analysis are omitted. The results from
the Monte Carlo analysis are used to generate the three curves in Figure 2. They give the probability of
classifying the spurious event as spurious for the range of standard deviation inflation factors and zero, one,
or two missing good stations.

Interpretation of the curves is as follows. If all of the stations detect the event as expected and the
signal-to-noise ratios are as expected, then the event "looks" real as far as amplitudes are concerned and
the probability of classifying the event as spurious is just 5%, the same as for a real event. If all of the
stations detect the event as expected and the signal-to-noise ratios are about 1.5 times as expected, then
the probability of classifying the event as spurious is about 40%. If two good stations miss the event and
the signal-to-noise ratios are about 1.5 times as expected, then the probability of classifying the event as
spurious is about 80%. These results indicate the goodness-of-fit statistic GOF(mb) can provide reasonable
identification of spurious events.

Recommendations and Future Plans

The method of Kelly and Lacoss (1969) has been used to determine the region-dependent global network
event detection capabilities. We extended the method to include events detected by a regional network. The
joint modeling of the detections of the two networks can provide better estimates of the global network's
detection probabilities, especially if the number of events detected by the global network is small. The global
network's detection capabilities can be tracked in time. The problems associated with matching up events
in the two catalogs were not considered here, but may complicate the two-network analysis. The magnitude
used in analysis can be the global network magnitude, the regional network magnitude, or some combination
of the two.

A goodness-of-fit statistic based on the detection pattern and the amplitudes of the detecting stations
was shown to be a reasonable quantitative measure of the strength of event association. Combined with
current visualization techniques, the GOF(mb) statistic can reliably identify misassociated events. Future
research will consider including amplitudes and detections from stations at regional distances, within 210
from the event. We will also consider goodness-of-fit statistics based on other seismic parameters, such as
azimuth and first motion. The combining of various goodness-of-fit statistics is also an issue. Analysis of
catalogs of events from regional networks can also provide information about missed events and spurious
events.

Acknowledgement. The author thanks Alan Rohay, Don Daly, Rich Hanlen, and Wes Nicholson for
useful discussions. The research was done at the Pacific Northwest Laboratory, a multiprogram laboratory
operated for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830.
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Figure 2: Probability of Identifying Spurious Events.
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