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ABSTRACT

The CTBT Integrated Verification System Evaluation Model (IVSEM) is being
developed to provide a tool for evaluation of the relative utility of candidate
monitoring system concepts, for exploring opportunities for synergy among
monitoring technologies, and to help define needed technology thrusts. The goal
is to develop an affordable, portable, and easy to use and understand model which
is flexible enough and fast enough to allow for near real time evaluation of the
relative effectiveness of a wide spectrum of user-definable monitoring and test
configurations. The emphasis is on moderate fidelity modeling of the capabilities
of an integrated monitoring system which combines multiple sensor types, as
opposed to high fidelity monitoring of the individual sensor types (breadth versus
depth). In its current form, the model includes seismic, hydroacoustic, infrasound,
and radionuclide sensors and provides estimates of the detection effectiveness of
a user-defined monitoring configuration against a user-defined test configuration
(yield, location, altitude or depth and decoupling factor). Future efforts include
incorporation of estimates of location and identification effectiveness plus
validation of the model against more detailed single phenomenology models or
experimental data. The model runs in near real-time on a PC or workstation
platform.
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OBJECTIVES:

The goal is to develop an affordable, portable, easy to use and understand model
which is flexible enough and fast enough to allow for near real time evaluation of
the relative effectiveness of a wide spectrum of user-definable CTBT monitoring
and test configurations. It is envisioned that the model will be used to evaluate the
relative utility of candidate monitoring system concepts, for exploring opportunities
for synergy among monitoring technologies, and to help define needed technology
research thrusts.

PRELIMINARY RESEARCH RESULTS:

Fig I depicts the major inputs to the model and the output products it provides.
For each monitoring technology, the user can define the sensor locations, types,
and noise levels and can enable or disable entire sensor types. This information
can be input for immediate use or saved as "canned " files for later use.
Previously generated input files can be edited in near real time. The user can also
specify event parameters (test configurations) such as location, depth or altitude,
and time, as well as other technical parameters such as coupling factors, required
signal-to-noise ratios, fission fractions, etc. Finally, the user can define the criteria
by which the effectiveness of the monitoring system is assessed. This definition
can be in the form of specified criteria for what constitutes a =detected" event (e.g.,
four seismic responses, two seismics and two infrasounds, etc.) in which case the
"=system effectiveness" value assigned by the model is simply the probability of
"detecting" the event. Alternately, the user can assign relative values of various
combinations of station responses (e.g., two seismics are good, three seismics are
better, three seismics and one infrasound are better yet, etc) in which case the
"*system effectiveness' value assigned by the model is a more qualitative, relative
measure of goodness.

For a given set of input conditions, the model will calculate the probability of each
station (sensor) responding and provides several output products. One of the
output products is a map showing which stations responded. The model also
provides a histogram representing the probability that a given number of each
sensor type will respond. Using the user-defined scoring criteria, the system will
calculate and plot a bar chart showing the "effectiveness" of each subsystem
acting alone and of the combined system. Finally, the user can request that the
system run the above calculations for each element of a grid of points across the
globe (spaced at 7.5 degree intervals) and plot the combined results as a contour
of system effective- ness. Single event calculations take a few seconds, the global
contour calculations take about 10 minutes.
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The heart of the model is that portion which takes the user defined inputs and
operates on them to produce the output products. As shown in Fig 2,. the model
uses a generic set of processing steps, common to all monitoring technologies:
First, based on the event specification, the model calculates the signal strength at
the event in each of the relevant phenomenologies, then the model estimates the
attenuation between the source and each station to arrive at a signal strength at
each station. The signal is compared to the noise at each station to calculate the
probability of response of each station, using the user specified criteria for
response (e.g., signal to noise ratio). These individual station response
probabilities are then operated on to generate the various displays and output
products.
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A conscious decision was made to emphasize breadth over depth in this model
and to keep it simple, fast, and portable. Fig 3 summarizes the main simplifying
assumptions made in association with these goals.
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Figure 3

An obvious result of these simplifying assumptions is that the model does not
provide the fidelity or capture all the nuances that individual phenomenology
models can and this leaves open the question of the validity of the model. The
proposed validation approach is not to try to defend the algorithms in terms of their
ability to accurately model all the physics on a first-principles basis, but rather to
benchmark the model against existing, generally accepted single phenomenology
models and experimental data where available. Fig 4 summarizes the planned
validation approach for each of the four subsystems.
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Preliminary validation results for the seismic portion of the model are shown in Fig 5
which compares the probability of detection versus range for IVSEM versus the
more detailed NETSIM model for a Ikt, fully coupled event using low noise, three
axis stations.
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There is as yet no well accepted, comprehensive single phenomenology model for
infrasound, so the IVSEM model results have been compared against a set of
experimental data as shown in Fig 6. There is a wide spread in the experimental
data reflecting the effect of large wind variations. The model does however match
the mean conditions fairly well.
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RECOMMENDATIONS AND FUTURE PLANS:

Fig 7 summarizes the schedule for planned model development efforts, which
include addition of location and identification capability predictions, plus model
validation.
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