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Abstract

A simple, consistent, and transportable magnitude scale for regional phases is useful and often
required in order to (A) improve the source discrimination capability, (B) determine the station detection

threshold, and (C) estimate the explosive yield. A convenient, and hence recommended, magnitude for-

mula for L9 phase is: 2

mLg =- 4.0272 - Bias + IogA(A) + Iog(A(km)) + -1log[sin( A(kmne)] + y(A-1) ' [1]

1 111.1 (krn/deg) )I+ ln(1 0)

where the "bias" term is meant to account for the different Lg excitation relative to mb . For instance, a

bias of approximately 0.39 magnitude unit for Iranian Plateau has been suggested by Nuttli. 3

Given a suite of events with Lg phases recorded at a seismic network, we present an iterative pro-
cedure to simultaneously invert for the path y and the event mL values in Equation [1] without using

a priori path y information. Independently derived y (or 0) values, if available, can be utilized to further
constrain the trade-off between the bias term in [1] and the resulting y values. Other constraints can be
easily incorporated into this iterative inversion scheme as well. The procedure is less sensitive to round-
ing errors, and hence it is numerically more accurate than those direct methods based on matrix factori-
zation or Gaussian elimination. When the number of equations becomes large, the iterative approach is
often the only practical means to tackle the inversion. This joint inversion scheme is a natural extension

to crustal phases of the one we previously used in the teleseismic analyses.4

The proposed joint inversion scheme has been tested with Pahute Mesa and Novaya Zemlya

explosions, and the mb -L9 bias at these two sites are inferred to be -0.34 and -0.26 magnitude unit,
respectively. These bias estimates are "optimal" in that the resulting path Q0 values, which are the by-
product of this inversion exercise, would be in best agreement with those derived by the coda-Q

method.5 6 7 This exercise yields twenty and eleven stations calibrated for Lg phase from Pahute Mesa

and Novaya Zemlya regions, respectively.
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5 Nuttli, 0. W. (1986a). Yield estimates of Nevada Test Site explosions obtained from seismic Lg waves, J. Geophys. Res.,

91, 2137-2151.
6 Nuttli, 0. W. (1988). L, magnitudes and yield estimates for underground Novaya Zemlya nuclear explosions, Bull. Seism.

Soc. Am., 78, 873-884.
7 Patton, H. J. (1988). Application of Nuttli's method to estimate yield of Nevada Test Site explosions recorded on

Lawrence Livermore National Laboratory's digital seismic system, Bull. Seism. Soc. Am., 78, 1759-1772.
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Project Objective

Develop simple, transportable magnitude scales for miscellaneous regional phases. Review and
improve inversion techniques currently in use. Some anticipated products/payoffs include:
[1] a more consistent way of calibrating a suite of propagation paths,
[2] refined event magnitudes which have immediate or potential use in (a) source discrimination study,
(b) determination of station detection threshold, and (c) yield estimation.

Research Accomplished

To date the absolute L. magnitude scale is defined on a region-by-region basis. For Eastern U.S.,
Nuttli's (1986ab) two-step formulae are equivalent to the following one-step procedure (Jih and Lynnes,
1993):

mL11 A•km "A1kin)[1
mLg -4.0272 + logA(A) + log(A(km)) + og[sin(111.1 (km/deg) -A + In(1 0)[1

This formula defines a magnitude scale such that a seismic source with 1-sec L9 amplitude of 110
gm at 10 km (extrapolated) epicentral distance would correspond to a mLg of 4.0272 + 2.0414 + 0.3333
- 1.4019 + 0.0000 = 5.000, which was suggested to be appropriate for both eastern North America and
Semipalatinsk. That is to say, a seismic source in these two regions with mb 5.0 would have a mL9

approximately the same.

For Iranian Plateau, Nuttli (1980) reported that seismic sources with the ISC bulletin mb 5.0 excite
Lg amplitudes approximately 270 microns at a 10-km extrapolated distance. If mLg scale is to be "nor-

malized" to mb scale at mb = 5.0, then Equation [1] would have to be revised for Iran as:
mLg - 4.0272 - Bias + logA(A) + 1Iog((km)) + l-og[sin( 1 A(km)r -A + n(A-10) [2

mL .072-3 2 g 1  111.1 (krndeg) In(l 0) [2

where a "bias" of approximately 0.39 magnitude unit [m.u.] is added to account for the different Lg exci-
tation (relative to mb) observed in Iranian Plateau. Two fundamental issues arise immediately:

[A] If we accept Equation [2] as the general definition of mLg scale, what is the "bias" term

appropriate for other places, say western North America (such as NTS) or Novaya Zemlya regions?

[B] The path anelastic attenuation coefficient, -y, is assumed to be known before Equation [1] (or
[2]) can be applied. How should the path attenuation coefficient, y, be determined for regions like
Novaya Zemlya where Lg might be blocked rather than absorbed through the intrinsic attenuation?
Would the coda-Q method still be applicable to those blocked paths?

Using Lg amplitudes collected under a recently completed AFTAC contract F08606-91-C-0005
(Baumstark and Wagner, 1994), these two issues are partially examined with an inversion algorithm
which simultaneously determines the event sizes, the bias term, and the path corrections without utiliz-
ing any a priori path y information. The original formulation of this iterative inversion procedure was first
presented in Jih (1992), and it was tested with some quasi-synthetic data. Its updated version is briefly
described in the Appendix below.

Given a postulated bias value, a system of linear equations (based on Equation [2]) can be solved
for the event mLg and path y values. If the path attenuation coefficients are readily available from other
studies independently, then such extra information can be used to further constrain the bias term for the
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most probable solution. This is exactly the approach to be used in the following exercises.

1. Novaya Zemlya Results

For Novaya Zemlya test site, there are 24 explosions recorded at 13 stations, totaling 92 Lg paths.
The average mG of these 24 events is 5.88, based on the path-corrected / station-corrected mG
reported in Jih and Baumstark (1994) (cf. pages 27-28). This value was used to constrain the inver-
sion. The 00 and 11 values associated with each of five postulated bias terms ranging from 0.0 to 0.40
m.u. are listed in Table 1. It turns out that'adopting a bias of 0.26 m.u. in Equation [21 would lead to the
best agreement between the resulting 00 values and those measured by Nuttli (1988) with the coda-Q
method.

Table 1. Q0 , TI of Novaya Zemlya - WWSSN Paths
Station Nuttli Postulated Lg -mb Bias and Resulting Q0
Code BSSA 1988 .00 .10 .20 .26* .40

COP 633 0.4 802 0.86 745 0.87 697 0.89 670 0.89 615 0.91
DAG 290 0.68 279 0.69 268 0.71 262 0.71 249 0.73
ESK 499 0.67 481 0.69 463 0.70 454 0.71 433 0.73
IST 592 0.71 569 0.72 547 0.73 536 0.74 509 0.75

KBS 3150.5
KEV 252 0.6 314 0.50 292 0.52 274 0.54 263 0.55 242 0.57
KON 496 0.5 454 0.04 433 0.10 421 0.13 396 0.20
NOR 243 0.47 235 0.49 228 0.51 223 0.53 213 0.55
NUR 420 0.5 512 0.64 479 0.66 450 0.67 434 0.68 401 0.70
STU 531 0.5 603 0.62 577 0.64 553 0.65 540 0.66 512 0.68
TRI 521 0.48 502 0.51 485 0.52 475 0.54 454 0.56

UME 391 0.5 456 0.87 427 0.88 401 0.89 386 0.89 358 0.90

2. Pahute Mesa Results

For Pahute Mesa explosions, a L9 -mb bias of 0.34 m.u. (Table 2) appears to give 00 values
most consistent with those Nuttli (1986a) and Patton (1988) obtained. 225 L. signals recorded at 21
Eurasian stations were used in this inversion. The 47 Pahute Mesa events have an average mG of 5.51
(cf. pages 17-18 of Jih and Baumstark, 1994).

413



17th Seismic Symposium 11-15 Sept 1995

Table 2. Qo, 7I of Pahute Mesa - WWSSN Paths

Station Nuttli+Patton Postulated Lg -mb Bias and Resulting 00
Code BSSA 86, 88 .00 .10 .20 .34* .40

AAM 9041.11 8381.11 7821.10 7141.10. 6891.10
ALQ 264 0.86 247 0.87 231 0.88 212 0.89 205 0.90
ATL 360 0.01 352 0.07 340 0.14 336 0.17

BKS 139 0.6 180 0.88 166 0.89 153 0.89 139 0.90 133 0.90
BLA 560 0.38 537 0.42 515 0.45 488 0.48 476 0.50

CMB 138 0.36 125 0.43 115 0.49 102 0.56 98 0.59

COR 203 0.26 193 0.30 184 0.35 173 0.39 168 0.41
ELK 150 0.5 287 0.47 243 0.52 211 0.56 179 0.60 168 0.61
FVM 373 0.12 359 0.17 346 0.21 328 0.26 321 0.28

GOL 234 0.53 221 0.56 209 0.58 195 0.61 190 0.62
JAS 1490.66 1340.69 1230.71 1090.74 1040.75
JCT 456 0.72 428 0.74 402 0.76 371 0.78 359 0.79
KNB 142 0.4 218 0.79 181 0.81 157 0.82 132 0.82 124 0.83

LAC 097 0.7 189 0.53 164 0.59 145 0.65 124 0.71 117 0.73

LON 202 0.58 194 0.60 186 0.62 176 0.65 172 0.66

LUB 423 1.57 393 1.55 367 1.52 337 1.49 325 1.48
MNV 093 0.6 1400.24 1100.45 1000.52
OGD 664 0.48 637 0.52 611 0.55 577 0.58 564 0.59

SCP 520 0.04 514 0.13 506 0.20 491 0.29 484 0.32
WES 12051.02 11141.01 10351.01 9421.00 9081.00

Conclusions and Recommendations

For Pahute Mesa, where the Q0 (and TI) values derived by the coda-Q method are believed to be

appropriate to account for the path attenuation, the Lg -mb bias is estimated as 0.34 m.u. This value
happens to be in agreement with the published mb bias caused by the different upper mantle absorption
in the eastern and western U.S. Thus this Pahute Mesa exercise might be in support of Nuttli's asser-

tion that the same absolute L. magnitude scale can be used for both eastern and western U.S. How-

ever, this is probably an exception rather than a general rule.

Previously only a handful number of stations was analyzed by Nuttli (1986a) and Patton (1988)
with the coda-Q method. We now have 20 "calibrated" stations for L. phases from Pahute Mesa. How-

ever, the proposed calibration is subject to the choice of the "bias" parameter which is not quite obvious

to decide. This indeterminacy of Lg absolute magnitude scale could be a persistent issue encountered
in every attempt of using seismic phases like L9 which is not as transportable as Ms. A (new) feature

of this simultaneous inversion code is that it offers a suite of solutions to choose from. If only a "rela-
tive" Lg scale is of interest, then setting the bias to an arbitrary value, say 0, would suffice. In any case,

the simultaneous inversion can calibrate a suite of stations in a more consistent manner, which is the
typical advantage of GLM inversion schemes.

The same procedure gives a L9 -mb bias of 0.26 m.u. for northern Novaya Zemlya explosions.
Since it is known that L9 blockage does occur for paths crossing the Barents Shelf, there remains a

question whether it is appropriate to use Nuttli's 00 values to constrain our selection of the bias term.
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Based on the t* study, it has been suggested that the upper mantle of Novaya Zemlya is similar to that

of Semipalatinsk. Thus 0.26 m.u. is expected to be the "upper bound" of the bias term. It seems that,
however, the Q0 values based on the coda-Q method can provide a Q map which is qualitatively con-
sistent with that based on the time-domain computation. The L. blockage at Barents Shelf could have

caused the predominant frequency of L9 waves to shift in a way very similar to that due to a stronger
anelastic attenuation. Consequently, Nuttli's Q0 values may be biased low, yielding an over-
compensation of the attenuation effect in computing his Novaya Zemlya mLg . This conjecture can be

tested with numerical modeling experiments using LFD method (e.g., Jih, 1994).

If many stations are deployed along the same azimuth from the shot, i.e., if a profile is available,
then the coda-Q results can be verified independently using the inter-station spectral ratios. This could

be included in future field experiments.
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Appendix A. Joint Inversion Method: Basic Concepts

Consider the case of m explosions recorded at some or all of n stations. For simplicity, we assume
that these m explosions are detonated in the same test site for the moment. The case of multiple test
sites will be discussed later. The linear model for Lg phases can then be written as

E(i) - '(j)(A(ij)-10km)/In(10) + e(ij) = Y(ij) , [3]

where Y(ij) - 4.0272 - Bias + logA(i,j) + 1 + -1log[sin( A(kide)

3Yo(Aij 2 111.1(krrt/deg)
Once the amplitudes and the locations of the events (and hence the epicentral distances, A) are avail-

able, Y would be completely known. Only the event sizes (E) and the path-specific coefficients of ane-
lastic attenuation (y) are the unknown parameters to be determined. The obscuring errors e are
assumed to be uncorrelated and to belong to the same probability distribution, namely a common Gaus-
sian distribution with zero mean and variance e2 .

If all the events are clustered in a small region, then the epicentral distances A(ij) would be almost

identical for a given station j. In this case, our model (Equation [3]) is a special case of a more general

linear system:

E(i) + S(j) + e(ij) = Y(ij) , for i = 1. m ;j = 1 ..., n. [4]

which can be expressed in a matrix formulation:

HX+e=Y, [5]

where H is the design (or observation) matrix. X and Y are the column vectors of unknowns and obser-
vations, respectively. The standard least-squares [LS] solution (viz, the one that minimizes the residual

sum of squares: RSS - (Y - HX)' (Y - HR)) to any linear system with a general form like Equation [5] is

XLS (H'H) 1H'Y, [6]

where H' is the transpose of H. This least-squares estimator has many optimality properties. For

instance, it is unbiased, and it gives minimum variance within the class of linear unbiased estimators.
Furthermore, XLS is also the Maximum-Likelihood Estimate [MLE] under the Gaussian assumption. It is
straightforward to compute the uncertainty by using Var[RLS] a the diagonal of 2(H'H)- 1, which is simply
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scaling the variance of the random perturbations by the number of observations associated with each
unknown.

In our case, however, the matrix H'H in Equation [6] is singular, and hence the least-squares
theory can not be applied immediately unless the linear system of [4] is modified somewhat. Perhaps
the easiest way to illustrate the indeterminacy due to the singularity of the matrix H'H is that given any
set of solution to [4], we can always obtain yet another set of solution by adding a constant to all event
magnitudes, E(i), i = 1,..., m, and subtracting the same constant from each station term S(j) (Jih and
Shumway, 1989). Alternatively, we can verify that the matrix H'H has zero determinant with linear alge-
bra packages such as LINPACK, EISPACK, or LAPACK. In this study, however, a formal proof is
presented below. Without loss of generality, we can assume that each of the m events is fully recorded
at all n stations, then

=_ [E l, E 2 , E 3 , . E m , S 1, S 2 , . . S n' I H 'H = [ n IM m ' nj

where Im is the identity matrix of order m, and all elements of the m-by-n matrix lmxn are 1. For
instance, if m = 3 and n = 2, then

[200111
02011

H'H-= 0 0 2 1 1
111130 3
11103 .

which is a doubly-bordered band diagonal sparse matrix (Tewarson, 1973; Press et al., 1988). After
exactly n row operations eliminating the lower-left submatrix, lnxm, the determinant of H'H can be com-
puted (up to a multiplicative constant) as that of

wher Pn s a quar matix o ordr n ith~M (71)nx1
Onxm Pn MI

where Pn is a square matrix of order n with n_-n-(n-1) on the diagonal and -m elsewhere. For m = 3 and
n n

n = 2, [7] becomes

1 0 0 0.5 0.5
1 0 0.5 0.5
0 1 0.5 0.5
0 0 1.5 -1.5
0 0 -1.5 1.5

It suffices to examine the determinant of this Pn, or, equivalently, to check the determinant of a square
matrix of order n with n-1 on the diagonal and -1 elsewhere:

Fn-1 -1 -1 •-1
|-1 n-1 -1 •-1
-1 -1 n-1 •-1

-1 -1 -1 •n-1

It is straightforward to prove that, by mathematical induction, this matrix has zero determinant for any n
> 2. Thus the matrix H'H in our linear model is always singular regardless how good the observed
amplitudes/magnitudes, Y, might be. We therefore need an extra boundary condition to constrain our
linear model for a unique solution. The most commonly adopted approach in teleseismic magnitude
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determination is to have all station terms sum up to zero. This implies that larger events would tend to

be unchanged whether we apply the station corrections or not, and hence the bulletin magnitudes of
larger events published by ISC and NEIC can be regarded as more or less unbiased. This extra con-

n-'

straint can be incorporated into [4] by replacing all S(n) by -ISO). It not only reduces the number of
j=1

unknowns by one, but, more importantly, regularizes the whole linear system to make H'H invertible.
However, this is not the only plausible constraint. We can impose the extra constraint on E(i) instead, or,

even impose the constraint on some selected stations.

A first glance of Equation [4] might lead to a conclusion that the inversion scheme for crustal

phases is identical to that for teleseismic phase, and hence the algorithms and the constraints suitable

for the teleseismic data reduction would be appropriate for the regional case as well. This is not the

case. There are generally fewer regional stations available for inversions with crustal phases. The
implicit assumption that the recording stations are evenly (and randomly) distributed may not be valid.

Some S(j) terms may carry more weight due to the larger corresponding A(.,j). This implies that the
zero-sum assumption on the S terms may not be appropriate for the L9 inversion. In fact, the S term in

Equation [4], by definition, can not have zero sum across the network because both y and A in Equation

[3] are always non-negative.

Appendix B. Joint Inversion Method: The Iterative Procedure

Once a constraint has been chosen, the inverse matrix of H'H in Equation [61 can be computed
with matrix factorization (such as Singular Value Decomposition, [SVD]) or Gaussian elimination method.

Numerical algorithms of these types are called direct methods. Direct methods can be impractical if H'H
is large. In that case, iterative methods are often the only possible method of solution, as well as being

faster and more accurate than Gaussian elimination and matrix factorization. The largest area for the

application of iterative methods is that of the linear systems arising in the numerical solution of partial

differential equations. Systems of orders 10,000 to 100,000 are not unusual in aerospace sciences,

although the majority of the coefficients of the systems are typically zeros.

The basic idea of iterative methods is that one starts with a trial solution vector X(°) and carries out

some process using H, Y, and X(°) to get a new vector XM. Then one repeats. At the k stage, one uses

the iterative process to get X(k) from H (or H'H), Y, and X(k1-). The specific algorithm for our problem is

summarized in five steps:

Step 0

Set initial value of -(J) for j = 1,..., n.

Step 1

Compute event mLg , E(i), for i = 1,..., m:

E(i) = #-) Y(i,j) + ,y(j)[A(i,j)-10km]/In(10)],

where #(j) is the number of stations used in the summation.

Step 2

Adjust E(i), i = 1,..., m, with the desired boundary condition.

Step 3

Compute the path-specific coefficient of anelastic attenuation, y(j), for j=l ,..., n:
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y(j) = ln(1 O)X[ E(i) - Y(i,j) ]/Y[A(i,j)-lOkm]

Step 4

Fill in missing paths (i,j) with predicted pseudo-observations:

Y(i,j) - E(i) - y(j)(A(i,j)-I Okm)/In(1 0)

Step 5

Repeat steps [1]-[4] to update E and y till convergence.

Although an arbitrary guess of 'y will do at Step 0, picking an initial y close to the average across

the whole area of interest would speed up the convergence. The choice of the extra boundary condition

(at Step 2) is very flexible. Constraining the mean of all event mLg seems to perform extraordinarily

well, however. Note that the pseudo-observations predicted at Step 4 are treated as "good" observa-

tions at steps 1 and 3 except during the first iteration loop.

The iterative procedure described above is a special case of a general algorithm known variously
as the Gaussian-Seidel method, the Liebmann process, or the method of successive displacements

(Bunch and Rose, 1976; Forsythe et aL, 1977; Golub and Van Loan, 1983; Spedicato, 1991). The
major difference between this method and that of Gaussian-Jacobi (viz., the simultaneous displacement

method) is that we solve for one component (viz, E(i) or y(j)) of the new vector X using for each other

component of X its most recently computed value, whereas Gaussian-Jacobi method updates all unk-
nown parameters simultaneously at the end of each iteration loop. In our case, Gaussian-Seidel method
converges faster than does Gaussian-Jacobi method. The first application of this iterative technique to
the magnitude determination problem was Blandford and Shumway (1982), although the methodology
was identified as the E-M [Expectation-Maximization] algorithm (Dempster et aL, 1977) following the

convention in the statistical community.

The advantage of our multi-event joint inversion scheme, as compared to the simple network

averaging for each individual event that Nuttli (1986ab, 1988) used, is that we can have a more con-
sistent network for all events. By "consistent" it means that the joint inversion procedure provides the

best approximation to the network-averaged values that would have been obtained if all the events were
recorded at every station in the network. This advantage may not be very obvious in using direct
methods such as SVD or Gaussian elimination. However, it would become quite natural as revealed by

Step 4 of our iteration scheme.
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