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Abstract

Numerous mechanisms have been proposed over the years to explain how the regional L, phase
can be generated by nuclear explosions. Commonly quoted mechanisms include trapped pS phase,

non-geometrical S*, spali, multiple reflections of initial P rays, anisotropy, and various near-source,
near-surface scattering processes. Recent observational studies (e.g., Patton and Taylor, 1995) indi-
cate that R, plays an important role in L, excitation for Yucca Flat explosions. Numerical experiments
by Jih and McLaughlin (1995) readily demonstrate that rough topography and random heterogeneity can
scatter significant R, energy into body waves. In this study, an additional R,-to-L, conversion
mechanism is presented and the relative effectiveness and importance of all three A, —related mechan-
isms are examined.

It might be anticipated intuitively that the net effect of anelasticity in the surface layers is solely to
reduce the amplitude of incident seismic waves. R, wave is particularly susceptible to such a mechan-
ism since it is confined in the uppermost crustal layers. If the anelastic attenuating layer is only thick
enough to dissipate the retrograde rolling near the surface, then the free surface would behave asymp-
totically like a fixed point. Beyond certain distance, the fundamental mode can no longer be sustained by
such a waveguide, and accordingly any undissipated R, energy would have to propagate in other wave
types or modes. Linear finite-difference calculations show that this process couples the undissipated A,
energy into pure shear waves or higher modes, depending on the complexity of the structure. In terms
of R,-to-S to R,-to-P ratio, this process appears to be more efficient than other near-surface R,
scattering mechanisms. Furthermore, in this process, the R, spectrum is naturally imprinted onto the
converted S waves, which could help to explain some recently observed spectral characteristics of L,
waves.

For models embedded with shaliow random heterogeneity, the RMS velocity fluctuation correlates
very well with the R, transmission coefficient. For 1 Hz R, , a 2%—-5% variation in the velocity leads to
an equivalent spatial Q value of several hundreds or larger, regardless which of the three commonly
used random media is embedded. Rough topography typically results in a Q value ranging from 10 to
100, which is approximately equivalent to a random medium with a 10% (or larger) velocity variation.
Incompliete dissipation of R, waves produces a very simple wave field, with almost all of the undissi-
pated energy continues to propagate laterally towards the forward, and hence postcritical, directions.
On the other hand, the scattering by shallow heterogeneity or rough topography would generate a rather
complicated wave field, with a significant fraction of the scattered energy going downward steeply.
Whichever of the three mechanisms is invoked, the S waves converted from R, always dominate the
whole scattered field. The uppermost crust is highly heterogeneous, and in many places very attenuative
and hilly as well. All of the three R, -related mechanisms should therefore contribute to L, and coda
excitation.

1 This research was solely sponsored by the Air Force Technical Applications Center. Key Words: Rg, Lg, wave propaga-
tion, scattering, attenuation, finite-difference modeling.
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Project Objective

The long-term objective of this project is to improve the fundamental understanding of seismic
wave excitation and propagation. The full potential of linear finite-difference [LFD] method and other
techniques shall be exploited in modeling various seismological problems directly related to a CTBT
monitoring.

Research Accomplished

The first task of this project is to improve the capability of modeling Ly, Ry, P,, Py, and S, in
complex geological / geophysical environments, using LFD or hybrid modeling tools. Following the LFD
implementation of a pure L, wave packet (Jih, 1994), which is an ideal tool for investigating certain
wave propagation phenomena (such as L, blockage), our research effort under this project has been
re-directed to several subtasks:

[1] Use synthetic waveforms as an analysis aid to improve the phase-identification capability.?

[2] Explore the physical basis of high-frequency shear wave excitation in the vicinity of explosions due to
cracking or pre-existing cracks.?

[3] Continue to investigate mechanisms responsible for explosion L, excitation.

This paper summarizes our results obtained to date under subtask [3], with emphasis placed on topics
related to R, . A new R,—to-L, conversion mechanism is presented, and the relative effectiveness and
importance of all three R, —related mechanisms are reviewed.

Numerous mechanisms have been proposed over the years to explain how the regional L, phase
can be generated by nuclear explosions. Commonly quoted mechanisms include trapped pS phase,

non-geometrical S*, spall, mutltiple reflections of initial P rays, anisotropy, and various near-source,
near-surface scattering processes. Recent observational studies (e.g., Patton and Taylor, 1995) indi-
cate that R, plays an important role in L, excitation for Yucca Flat explosions. Numerical studies con-
ducted at Teledyne Geotech and Phillips Laboratory (e.g., McLaughlin and Jih, 1986, 1987; Jih, 1993ac,
1994) readily demonstrate that rough topography and random heterogeneity can scatter significant R,
energy into body waves. However, in several cases only a fraction of the scattered energy would be
favorably trapped in the crust as L, or L, coda, with more scattered energy lost to steeply going direc-
tions. In reality some additional Ay -to-S mechanisms may have contributed to the observed L, signal
as well.

It might be anticipated intuitively that the net effect of anelasticity in the surface layers is solely to
reduce the amplitude of incident seismic waves. R, wave is particularly susceptible to such a mechan-
ism since it is confined in the uppermost crustal layers. if the anelastic attenuating layer is only thick
enough to dissipate the retrograde rolling near the surface, then the free surface would behave asymp-
totically like a fixed point. Beyond certain distance, the fundamental mode can no longer be sustained by
such a waveguide, and accordingly any undissipated R, energy would have to propagate in other wave
types or modes. Linear finite-difference calculations show that this process couples the undissipated R,
energy into pure shear waves or higher modes, depends on the complexity of the structure (Figure 1).
In terms of A, -to-S to R, -to-P ratio, this process appears to be far more efficient than other near-
surface R, scattering mechanisms (Figure 5). Furthermore, in this process, the R, spectrum is

2 See Kadinsky, Jih, Dainty, and Cipar (1995) of this issue.
3 In progress with collaboration from A. Dainty and R. Blandford.
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naturally imprinted onto the converted S waves, which could help to explain some recently observed
spectral characteristics of L, waves. Figure 2 compares the propagation of A, waves incident upon an
elastic and an attenuative basin models with identical velocity structures. Both the wave field snapshots
(Figure 2) and the synthetic seismograms (Figure 3) clearly illustrate that R, —to—L, conversion can be
enhanced if the sedimentary rocks are shallow and strongly attenuative.

For the R, waves, rough topography could still be the strongest means of scattering (Jih,
1993abc). Scattering by random heterogeneity in the upper crust (cf. MclLaughlin and Jih, 1987, and
Jih, 1993b), is important in that random variations of velocity are virtually present in any type of crustal
structure. McLaughlin and Jih (1987) made a comparison with Greenfield's (1971) P-coda observations
(at teleseismic distance), and it was concluded that self-similar or Gaussian models with RMS velocity
fluctuation between 7% and 15% in the uppermost 3 km of the crust can produce the observed P-
coda/P power levels reported in Greenfield (1971). With the emphases of treaty-monitoring seismic
research shifted to regional phases, R, scattering by shallow random heterogeneity needs to be re-
examined in order to evaluate its importance and efficiency, with respect to other mechanisms, in excit-
ing Ly waves from explosions. In this study, a suite of forty five models embedded with shallow self-
similar heterogeneous layer of varying randomness and thickness have been tested with LFD. Table 1
summarizes the propagation statistics we measured. Within 15% of velocity variation, the transmission,
reflection, and the scattering loss all exhibit a linear relationship with the RMS velocity fluctuation.
Models with thicker heterogeneities certainly associated with a stronger scattering and reflection, as well
as a weaker transmission, as expected. However, the thickness appears to be less relevant than the
RMS velocity variation (See Figure 4), primarily because R, scattering in the top 1 km is more impor-
tant. These observations are also valid for random media with Gaussian or exponential correlations (see
Frankel and Clayton, 1986, for the definitions of various random models).

Conclusions and Recommendations

There are at least three R, -to-SV(L,) mechanisms: [A] scattering by shallow, random hetero-
geneity, [B] scattering by rough surface topography, and [C] incomplete dissipation by anelastic attenua-
tion. Under this project, forward modeling is used to gain a better understanding of these three mechan-
isms. It is shown that, through extensive LFD modeling, each of these mechanisms can contribute to
L, and coda waves from explosions. In terms of Ry —S / Ry —P power ratio, [C] is the most efficient
one, followed by [B] and then [A]. R, -to-S conversion systematically dominates the scattered wave
field. In terms of equivalent spatial Q’s, rough surface topography typically corresponds to a Qp in the
range between 10 and 100 (Jih, 1993c), which is approximately equivalent to a self-similar random
medium with 10% (or larger) RMS variation in the velocity. An RMS velocity fluctuation between 5%
and 10% would correspond to a Q, value between 100 and 450 (Table 1). Stable shield regions have
been reported to have an RMS velocity fluctuation less than 5%, which would yield a Q, larger than a
few hundreds, regardless which type of random heterogeneity is considered. For all three types of ran-
dom media that are commonly used in numerical studies with RMS velocity variation below 15%, all four
measurable R, propagation statistics correlate extremely well with the RMS velocity fluctuation. Incom-
plete dissipation of R, waves produces a very simple wave field, with almost all of the undissipated
energy continues to propagate laterally towards the forward, and hence postcritical, directions. On the
other hand, the scattering by shallow heterogeneity or rough topography would generate a rather compli-
cated wave field, with a significant fraction of the scattered energy going downward steeply.
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An accurate prediction of the regional phases in areas of high proliferation concern requires a
decent understanding of the attenuatior/scattering mechanisms along the propagation paths. Synthetic
seismograms are particularly useful for regions where earthquake or explosion data are not available.
2D numerical experiments, as described herein and in our previous studies, demonstrate that A, can be
a significant contributor to the formation of L, and coda waves, in support of several observational stu-
dies. It would seem reasonable that, as 3D structure is taken into account, R, ’s possible role in L,
excitation would only become more important. On a long term, however, extending 2D modeling capa-
bility to 3D is definitely useful, as it would add an extra level of realism and complexity to the earth’s
structures that we need to model. In particular, in order to quantify 3D effects of surface topographic
irregularities, the operational 2D formulations of Neumann boundary conditions (Jih et al., 1988) need to
be expanded to a 3D version.
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Table 1. Transmissiorn/Reflection/Scattering Statistics of Self-Similar Models
Model T(1Hz) R{1Hz) 1-T-R Q(1Hz) Y
1km, 2% 0.99 0.01 0.01 10172 0.000
2km, 2% 0.98 0.01 0.01 8018 0.000
5km, 2% 0.98 0.01 0.01 6710 0.000
10km, 2% 0.98 0.01 0.01 6179 0.000
1km, 3% 0.96 0.02 0.03 2000 0.001
2km, 3% 0.95 0.02 0.03 1788 0.001
5km, 3% 0.85 0.02 0.04 1646 0.001
1km, 4% 0.92 0.03 0.06 931 0.001
1km, 5% 0.86 0.04 0.10 548 0.002
2km, 5% 0.85 0.04 0.11 502 0.002
5km, 5% 0.84 0.04 0.12 473 0.002
10km, 5% 0.84 0.04 0.12 457 0.002
15km, 5% 0.83 0.04 0.12 451 0.002
1km, 6% 0.80 0.06 0.14 363 0.003
1km, 7% 0.73 0.07 0.20 258 0.004
1km, 8% 0.66 0.09 0.25 192 0.005
1km, 9% 0.58 0.10 0.31 147 0.007
1km, 10% 0.51 0.12 0.38 116 0.009
2km, 10% 0.47 0.11 0.42 105 0.009
5km, 10% 0.45 0.11 0.44 99 0.010
10km, 10% 0.45 0.11 0.44 99 0.010
15km, 10% 0.45 0.11 0.44 98 0.010
1km, 11% 0.43 0.13 0.44 92 0.011
1km, 12% 0.35 0.14 0.50 75 0.013
1km, 13% 0.28 0.16 0.56 61 0.016
1km, 14% 0.22 0.17 0.61 51 0.020
1km, 15% 0.16 0.18 0.66 42 0.024
2km, 15% 0.13 0.17 0.71 37 0.027
5km, 15% 0.12 0.17 0.72 36 0.028
10km, 15% 0.13 0.16 0.71 38 0.026
15km, 15% 0.13 0.16 0.71 38 0.026
1km, 16% 0.11 0.19 0.70 35 0.028
1km, 17% 0.08 0.20 0.72 30 0.034
1km, 18% 0.05 0.21 0.74 25 0.040
1km, 19% 0.03 0.22 0.76 21 0.048
1km, 20% 0.01 0.22 0.76 17 0.058
2km, 20% 0.01 0.23 0.76 15 0.066
5km, 20% 0.01 0.23 0.77 14 0.069
10km, 20% 0.01 0.23 0.76 15 0.066
15km, 20% 0.01 0.24 0.75 17 0.060
1km, 21% 0.01 0.23 0.77 14 0.070
1km, 22% 0.00 0.23 0.76 12 0.081
1km, 23% 0.00 0.24 0.76 11 0.088
1km, 24% 0.00 0.24 0.76 11 0.091
1km, 25% 0.00 0.24 0.76 10 0.097

T transmitted power, R: reflected power, 1-T-R: scattering loss, 7Y : attenuation coefficient.
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