UNCLASSIFIED

Defense Technical Informatipn Center
Compilation Part Notice

ADPO18512

TTTLE: Service Level Agreements as Vehicles for Managing Acquisition of
Software-Intensive Systems

[DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TTTLE: Defense Acquisition Review Journal. Volume 11, Number 3,
[December 2004-March 2005

To order the complete compilation report, use: ADA431012

The component part is provided here to allow users access to individually authored sections
ol proceedings, annals, symposia, etc. However, the component should be considered within
the context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP018509 thru ADP018516

UNCLASSIFIED




SERVICE LEVEL AGREEMENTS
AS VEHICLES FOR
MANAGING ACQUISITION
OF SOFTWARE-INTENSIVE
SYSTEMS

CDR LEONARD T. GAINES, USN AND
DR. JAMES BRET MICHAEL

Service level agreements (SLAs) con be used as a means to manage the
acquisition of software-intensive systems. The SLAs support performance-
based acquisition by stating in measurable terms the service to be per-
formed, the level of service that is acceptable, the way in which the service
level is to be measured, and the incentives for the provider of information
technology products and services to meet the agreed-to target levels of
quality. The SLAs are traditionally used in outsourcing contracts for post-
production support. This article proposes a new approach by using SLAs in
software acquisition to support quality and process control throughout the
entire lifecycle of o software-intensive system. This article defines SLAs,
discusses software quality, and describes how SLAs can be utilized to incor-
porate requirements pertaining to product, process, project, and deploy-
ment quality throughout the software lifecycle.

encourage the adoption of new ways of conducting business, organizations
and end users become ever increasingly dependent upon that technology.
Consequently, the strategic and tactical advantages that IT affords an organization
places pressure on the organization’s IT department to provide quality services and
products. Interruptions to software-intensive systems are having a far greater impact
than before in terms of opportunity loss, revenue loss, customer dissatisfaction,

As advances in information technology (IT) increase worker productivity and

285




and inefficiency. As managers realize that their mission-critical processes are tied
to IT services and products, they are demanding correspondingly greater levels
of both performance and quality in these services and products, despite the fact
that acquiring and maintaining software-intensive systems is increasingly chal-
lenging from both a managerial and technical perspective.

In addition, an organization may not have enough personnel with the right
mix of IT skills, knowledge, and experience within their organization to
provide high-enough quality IT products and services for the organization’s
employees and business partners. Rather than hire IT specialists or invest in
training for its internal staff, the organization may have the option to outsource
to external service providers (ESPs) their IT services and products. This strategy
has been followed by the U.S. Department of Defense (DoD) in procuring large
software-intensive systems such as the well-known Navy/Marine Corps Intranet
(NMCI) and Ballistic Missile Defense System (BMDS). The hope is that ESPs
can readily supply different mixes of IT specialists to meet the ever-changing
requirements an organization has for IT products and services, at a lower cost
than enlarging, shrinking, or retraining its internal IT staff. In addition to pro-
viding access to cutting-edge technology and skilled staff, ESPs share the project

risk and make it possible for organizations to concentrate on core competencies
(King, 2001).

Reliance on outsourcing adds another layer
of complexity onto the management
of information systems.

Reliance on outsourcing adds another layer of complexity onto the management of
information systems. Outsourcing efforts require additional discipline and management
oversight that may not be necessary with in-house development or maintenance of
information systems. Outsourcing requires skill in software acquisition as well as
project management. Program managers need to be accomplished in software-
requirements engineering, software development, the contracting process, requirement-
change management, contract management and oversight, and contractor-relationship
management.

When outsourcing software-intensive programs, the program manager must
be explicit in stating the services to be performed, in addition to identifying the
metrics and means to determine whether the contractor has satisfied those re-
quirements. However, it is challenging to develop, manage, and enforce a con-
tract for software services that will ensure that the contractor delivers the speci-
fied services or end product within prescribed levels of performance and quality.

286




Managing software-intensive information systems can also be challenging.
Utilizing the latest technology to exploit information requires highly developed
intellectual and managerial skills. The difficulty in managing these systems has
been demonstrated by the numerous system development and maintenance
projects within the U.S. Department of Defense. Many of these projects lacked
sound planning, had inadequate controls, were without effective measurements
for success, and failed to meet user expectations (U.S. General Accounting Office
[GAO], 2001; Department of Defense, Office of the Inspector General [DoD
OIG], 2000). However, the private sector also has problems managing IT projects.
The 2003 Standish Groups CHAOS research report indicates that of the 13,522
IT projects studied; only 34 percent of projects were considered a success, and
only 52 percent of required features were incorporated into the released product
(Standish Group, 2003).

Despite software’s increased importance
fo organizations, the quality of software
is often lacking.

Despite software’s increased importance to organizations, the quality of software
is often lacking. Some would argue, such as Mann (2002), that despite the advances
in software engineering theory, processes, methodology, and tools, software quality
is actually getting worse. Mann’s reasons center around four main points: 1) developers
are rushing software to market, 2) software is poorly designed, 3) developers and
testers lack the requisite skills, and 4) programs are not managed well. Given the
difficulties in developing software-intensive systems, performance and quality
requirements should be well defined and monitored throughout the software’ lifecycle.
In this paper we explain how service level agreements (SLAs) can be utilized in
software acquisition to improve the quality and management of software throughout
its lifecycle.

SLAs are a means of incorporating Performance-based Service Contracting (PBSC)
into software acquisition. SLAs are similar to a Quality Assurance Plan (QAP)
in that they define quality and performance requirements, they contain penalties for
non-performance, and they establish quality control methods to ensure compliance.

METHODS

In this atticle we identify areas throughout the lifecycle (requirements genera-
tion through post-production support) of software-intensive systems in which
SLAs can be used to manage the contractual provisions of insourced or outsourced

287




IT services and products. In this section we define terms associated with SLAs and
quality, in addition to describing how SLAs can be utilized in requirements engi-
neering, design, post-production support, and program management to achieve
target levels of performance and quality for IT services and products.

An SLA is a contractual mechanism between a provider of services and a cus-
tomer that defines a level of performance (Sturm, Morris, & Jander, 2000). This
agreement defines in measurable temms the service to be performed, the level of
service that is acceptable, the means to detemine if the service is being provided
at the agreed upon levels, and incentives for meeting agreed upon service levels.
SLAs contain quality-of-service (QoS) requirements, including how QoS is to be
measured. SLAs also set forth the roles and responsibilities—in contractual form—
of both the organization and the provider of the services and products.

...Ever-growing reliance on software-intensive
systems for conducting business and recent
advances in both techniques and tools for

specifying SLAs and monitoring compliance to SLAs
have all contributed to the rise in the acceptance
of SLAs within the public and private sectors.

SLAs are not a new concept: they have been around since the 1960s. However,
ever-growing reliance on software-intensive systems for conducting business and recent
advances in both techniques and tools for specifying SLAs and monitoring compliance
to SLAs have all contributed to the rise in the acceptance of SLAs within the public
and private sectors. If SLAs are not included in a system-acquisition contract, the
acquiring organization has little leverage over the provider of the IT services or prod-
ucts to ensure that the organization’s performance and QoS requirements are met.

There is a subtle distinction between an SLA and a traditional contract requirement.
SLAs are also requirements, but they are different contractually: SLAs contain more
detail, describe incentives for meeting thresholds, and specify incentives for meeting
perfomance and QoS requirements. When SLAs are used, the contracting officer can
withhold incentive payments or levy penalties if quality levels are not met during the
time period stated in the SLA (usually a month or a quarter). Requirements are gen-
erally only measured at the end of a milestone decision. In most contracts, the only
recourse if a requirement is not met is to cancel the contract, terminate any ongoing
contractor support, or give the contractor a poor performance rating. Terminating a
project can be difficult, especially if the software-intensive system to be acquired is
mission-critical. SLAs specify the degree of recourse if a requirement is not met.

288




One of the ways that SLAs can help improve software quality is that they focus the
attention of the acquisition professional on the nonfunctional requirements (e.g., reli-
ability, security, testability) that otherwise might be ignored until the test phase in the
absence of SLAs (Bass, Clements, & Kazman, 1998). SLAs contractually mandate the
performance and quality attributes that users, program managers, and software engi-
neers consider essential for a system to support the underlying business process. They
help make explicit many of the quality factors that users may implicitly assume. SLAs
also specify the quality metrics by which the software quality requirements are mea-
sured. Measuring and monitoring performance and quality of services and products
makes it possible for an organization to judge whether performance and quality
requirements have been met. Measurements also support early detection and resolution
of problems with quality.

Quality can be viewed from numerous
perspectives, and certain atiributes are more
preferable to others depending on the mission the
software-intensive system is supposed to support.
L ]

Before discussing SLAs and how they can improve the performance and quality
in the various phases of a software-intensive system’ lifecycle, we first define the
term software quality. There are numerous definitions of quality. The International
Standards Organization (ISO) standard 9126 defines software quality as the total-
ity of features and characteristics of a software product that bear on its ability to
satisfy stated or implied needs. Another definition is that software quality is con-
formance to explicitly stated functional and performance requirements, explicitly
documented development standards, and implicit characteristics that are expected
of all professionally developed software (Pressman, 2001). Others believe that an
IT system will not be perceived as a quality product if the product does not per-
form according to the end-user’s perspective (Wiegers, 2002). The Institute of
Electrical and Electronics Engineers (IEEE) standard 610-1990 does incorporate
user needs: it defines software quality as the degree to which a system, compo-
nent, or process meets specified requirements and meets customer or user needs
and expectations (Schmidt, 2000).

In this article we adopt the IEEE definition and specialize it to encompass four
specific areas of focus: 1) product quality, 2) project quality, 3) process quality,
and 4) post-production quality. Each of the areas has quality attributes associated
with it that describe the degree to which the software possesses certain characteris-
tics. SLAs utilize quality metrics and threshold levels to assign quantitative measure-
ments to the quality attributes. The quality metrics are then monitored to ensure
compliance.

289




Quality can be viewed from numerous perspectives, and certain attributes are more
preferable to others depending on the mission the software-intensive system is
supposed to support. Numerous quality attributes and quality models have been
developed to measure or predict software quality. Selecting the appropriate quality
attributes for the project is the responsibility of the SLA development team, the
program manager, and stakeholders.

PRODUCT QUALITY

Product quality is concerned with the relationships between the characteristics and
attributes of a product and its ability to satisfy stated requirements and implicit needs;
this area can also be referred to as end-product quality. In addition to the functional
aspects of a system, the end users want the product to exhibit certain quality
characteristics that will assist them in performing their task. From a user’s perspective,
some of the common quality attributes include availability, usability, integrity,
interoperability, and reliability. Personnel involved in the development of software or
its maintenance may be more concemed with the software attributes such as portability;
testability, maintainability, and reusability (Wiegers, 2002).

The ISO standard 9126-1 quality model incorporates
the following quality factors: functionality, reliability,
usability, efficiency, maintainability, and portability.

There are numerous quality models that can be incorporated into SLAs that assign
quantitative measurements to various product quality attributes. Some of the better-
known quality models include those proposed by McCabe in which software complexity
is a function of the number of conditional statements in the code, and those of Halstead
in which software complexity is a function of the number of operators and operands
(Ogasawara, Yamada, & Kojo, 1996). The ISO standard 9126-1 quality model
incorporates the following quality factors: functionality, reliability, usability, efficiency,
maintainability, and portability (Cross, 2002). There are also numerous software qual-
ity models that concentrate on specific quality factors such as complexity. Zuse (1991)
identifies over 90 models for describing software complexity. Other quality models are
specific to object-oriented systems (Coppick & Cheatham, 1992), specific languages
(Pritchett, 2001), commercial off-the-shelf (COTS) components (Bertoa & Vallecillo,
2002), and others, are only applicable at run-time (Bass et al., 1998).

PROJECT QUALITY

Project quality is concerned with metrics that allow an organization to manage,
track, and improve the quality of the software development effort; this area could
be viewed as in-process quality management (Hilburn & Townhidnejad, 2000).




Some of the common project quality metrics that Motorola used to measure its
software development projects included software defect density, adherence to
schedule, estimation accuracy, reliability, requirements tracking, and fault-type
tracking (Daskalantonakis, 1992). Another metric used in assessing project quality
is risk, which can be defined as any variable within a project that results in project
failure. General risk areas are schedule risk, requirements risk, budget risk, and
personnel risk (Padayachee, 2002). There are a number of risk-assessment models
including Gilb’ (1993) risk heuristics, Boehm’ (1991) classification of risk, Noguiera
de Leon’s (2000) risk assessment model, Keil’s identification of risk factors (Keil,
Cule, Lyytinen, & Schmidt, 1998), and risk models associated with enterprise
software projects (Sumner, 2000).

PROCESS QUALITY

Process quality is concerned with the processes, planning, and controls used to
develop and manage the software product. It could be argued that the quality of
the development process is the best predictor of software product quality (Fenton,
Krause, & Neil, 2002). Repeatable software processes such as the Software En-
gineering Institutes Capability Maturity Model for software (SW-CMM also known
as CMM), which lists five levels of organizational maturity, and the ISO 9001, are
designed to improve software quality, productivity, predictability, and time to market
(McGuire, 1996). There is empirical evidence that supports the relationship be-
tween process maturity and software quality (Harter & Slaughter, 2000).

Process quality is concerned with the processes,
planning, and controls used to develop and
manage the software product.

Other models of process quality include the Software Engineering Institute’s new
Capability Maturity Model Integration (CMMI). CMMI integrates three CMM models
into one to eliminate problems with different architecture, semantics, and approaches.
Humphery (1996) also developed a process model called the Personal Software Process
(PSP) to assist software engineers in producing quality software. Other process models
include cleanroom engineering that has shown reduced errors per KLOC for small
projects (Fenton & Neil, 1999), and the quality management metric (QMM)
(Osmundson, Michael, Machniak, & Grossman, 2003). There are also numerous
IEEE and ISO standards that provide processes on everything from software en-
gineering product evaluation (e.g., ISO/IEC 14598) to selecting appropriate qual-
ity metrics (e.g., IEEE Std. 1061-1998).

291




POST-PRODUCTION QUALITY

The last area of focus is on post-production quality or deployed-application
management. Many of the quality models involving deployed applications are
concerned with software maintenance and the quality factors that make maintenance
cost-effective. Some of the maintenance quality factors deal with ease of change
(Royce, 1990), architectural design to promote maintenance (Garlan, 2000), defect
management (Kajko-Mattsson, 1998), organizational structure (Briand, Melo, Seaman,
& Basili, 1995), and change management (Bennett & Rajlich, 2000).

Quality does not only apply to the application itself, it is also concemned with the
IT system as a whole, across distributed components. Part of that distributed system
is the network. There are numerous quality metrics that can be applied to network
QoS (Moeller et al., 2000). Quality metrics are also applied to the host server. Quality
metrics such as application resource utilization (Aries, Banerjee, Brittan, Dillon,
Kowalik, & Lixvar, 2002), bandwidth utilization (Eager, Vernon, & Zahorjan, 2001),
concurrent user management (Aweya, Ouellette, Montuno, Doray, & Felske, 2002),
and server performance (Gama, Meira, Carvalho, Guedes, & Almeida, 2001) are
also utilized to address system-level quality. Other areas where quality metrics are
applied include total cost of operation (TCO), help desk support metrics, backups,
storage, configuration management, and security.

When developing the SlLAs, it is essential that

all stakeholders be represented in this effort,

as the system requiremenis need fo represent
all of their needs for quality.

There are numerous software quality models and metrics that can be incorporated
into SLAs. The models or quality factors chosen will depend upon those quality
attributes that best support the underlying business processes of the organization
acquiring the software-intensive system. SLAs should only incorporate software
metrics that are meaningful, quantitative, and measurable.

When developing the SLAs, it is essential that all stakeholders be represented
in this effort, as the system requirements need to represent all of their needs for
quality. The development team, consisting of representation for all stakeholders,
must resolve a number of issues. These include, for instance, identifying quality
requirements, determining the various levels of service that are needed, detailing
quality metrics that are meaningful and measurable, assessing risk, resolving con-
flicting quality requirements, and prioritizing the quality requirements. When quo-
tations are received from vendors (i.e., the providers of IT services and products),

292




the group also needs to perform a cost-benefit analysis based on the levels of quality
thresholds desired and the budget allotted for the acquisition. The group develop-
ment of SLAs helps the various stakeholders understand each others’ biases, view-
points, concerns, terminology, and perceptions—that understanding is essential in
requirements engineering.

REQUIREMENTS ENGINEERING

Requirements engineering provides the building blocks for all other efforts in the
software-engineering process, so if quality is not addressed in the initial require-
ments analysis, it is usually addressed at the end of the project in the form of testing.
If quality requirements are implemented too late, the architecture that was already
developed will dictate the solution space for addressing quality problems that are
discovered, or the acquisition authority will need to approve major contract modi-
fications to permit changes to the requirements, architecture, and other high-level
system artifacts.

Requirements engineering provides the building
blocks for all other efforts in the software-
engineering process, so if quality is not
addressed in the initial requirements analysis,
it is vsvally addressed at the end of
the project in the form of testing.

The process of developing the SLAs is part of the larger requirement-engineering
process and fosters discussion of the following: the goals of the system that must
be met, the processes and tasks that the system must perform to meet those goals,
and any operational and organizational needs, policies, standards, and constraints.
Discussions necessary to develop the SLAs will generate information about the
application domain, business and organization processes/culture, and the intended
operating environment that the system will be placed in. The discussions will help
the requirements engineer capture tacit knowledge, identify constraints, prioritize
requirements, and justify how quality factors support business needs. Additionally,
SLAs require quantifiable quality metrics, so those quality requirements that cannot
be measured, do not provide value, or are not realistic should not be accepted by
the SLA development team or the requirements engineer.

293




In many organizations, senior management’s involvement in requirements
engineering can be low (Bubenko, 1995), resulting in requirements that may not be
related to business visions and objectives. SLAs help mitigate this problem because
they define specific performance parameters that are tied to business processes. As
such, every SLA performance requirement must be analyzed, and validated to en-
sure that it is meaningful, cost-effective, and that they add to improving overall
performance. Senior management may also take more notice when there are con-
tractual repercussions (i.e., penalties or rewards) associated with the requirements.

Incorporating standards in SLAs provides a common
methodology that makes management easier for
program managers and contracting officers as they
provide the basis against which activities can be
measvred and evalvated (Horch, 1996).

By defining meaningful and measurable metrics in the SLAs, the end-users,
business managers and software engineers have realistic quantifiable requirements
that can be used to develop architectures, designs, and other software artifacts.

DEVELOPMENT

The real contribution of SLAs in obtaining quality software is that the quality
factors addressed in the SLAs drive significant architectural and design decisions.
If developers know which of the characteristics are most critical to project success,
they can select the architecture, design, programming, and verification and valida-
tion approaches that best achieve the specified quality goals. When customer re-
quirements have been collected and specified, architecting and designing translates
the requirements into a blueprint that programmers can use to build the product.
That design can be evaluated and monitored to ensure quality factors are adequately
addressed. In this way, quality is designed in the beginning phases of the lifecycle
where it is most cost-effective to do so.

The architecture of a software system models its structure and behavior (Shaw &
Garlan, 1996). Architecture also shows the correspondence between the system
requirements and the elements of the constructed system; so by analyzing the
architecture it is possible to predict the quality of a product before it has been built.
There are a number of methods to analyze architectures (Bass et al., 1998). How-
ever, these methods do not produce quantifiable quality measurements (Dobrica &

294




Niemela, 2002), although they can provide an estimate of how well the design will
satisfy a particular quality factor.

SLAs also improve software quality in the development phase by contractually
mandating that certain quality-control measures (e.g., adhering to specified stan-
dards and processes) be performed. There are numerous industry-approved stan-
dards that can be incorporated into SLAs. Incorporating standards in SLAs pro-
vides a common methodology that makes management easier for program man-
agers and contracting officers as they provide the basis against which activities
can be measured and evaluated (Horch, 1996). Standards can be applied to all
aspects of development, maintenance, and operation of an information system.

Development processes can be specified in an SLA. Specifying specific pro-
cesses has many of the same advantages of specifying compliance to standards.
Applying well defined, standardized software-development processes can increase
software quality and make the development effort more cost effective and predict-
able (Gnatz, Marschall, Popp, Rausch, & Schwerin, 2003). Specifying the pro-
cesses in the SLA helps to ensure that they are recognized and adhered to.

Applying well defined, standardized software-
development processes can increase software
quality and make the development effort more cost
effective and predictable (Gnatz, Marscahll, Popp,
Rausch, & Schwerin, 2003).

SLAs also assist the testing effort by identifying business-critical processes, defining
quantitative metrics to measure quality factors, identifying testing procedures, and
ensuring testing is conducted throughout the system’ lifecycle. SLAs can ensure
that other audits such as documentation reviews, requirements reviews, design re-
views, test plan reviews, user documentation reviews, and implementation reviews
are conducted (Horch, 1996).

PROGRAM MANAGEMENT

Program managers have to ensure that quality considerations are addressed early
in the lifecycle and they must provide the proper amount of oversight to ensure
those quality factors are incorporated into the final product. SLAs can assist program
managers in many of the tasks necessary to ensure quality is delivered in the final
and future versions of a product.




In order to reduce and manage risk, program managers need to measure or monitor
contractor, project, and system performance throughout the project’s lifecycle. This
will help ensure that standards, processes, and quality requirements are being met.
SLAs mandate monitoring of the quality requirements associated with product,
process, project, and post-production quality. If quality levels are not met, program
managers and the contractor are informed of the violation and potential risks; that
knowledge may lead to closer monitoring or corrective action to reduce risk and
improve quality.

The development of SLAs provides information that will assist the program manager
in managing the project’s finances. SLAs help financial management in determining
the scope of the project (e.g., determining areas of responsibilities in an end-to-end
performance SLA), identifying business-critical processes and functions, they help
to allocate costs among business units, they provide justification for service-related
expenditures, and they help coordinate the IT strategy with business strategies (e.g.,
applying funds toward services to support critical processes).

Contract oversight is easier when SLAs are
established because they can be used to
define the levels of service expected,
explain how the measurement will be
conducted, identify responsibilities,
and set forth escalation procedures.

Quality control consists of the actions necessary to certify that desired standards,
processes, and quality requirements are adhered to during design, implementation,
and production (Tricker & Sherring-Lucas, 2001). SLAs are a quality-control
mechanism. SLAs help the program manager by contractually mandating that cer-
tain quality-control methods be implemented.

Contract oversight is easier when SLAs are established because they can be used
to define the levels of service expected, explain how the measurement will be con-
ducted, identify responsibilities, and set forth escalation procedures. The monitoring
mandated by SLAs helps the program manager determine whether the contractor is
meeting the quality requirements. When determining what quality metrics are in-
cluded in the SLAs, it is helpful to determine the behavior you want from the con-
tractor, and determine what measurements will most likely encourage that behavior
(Kendrick, 2003).

SLAs help institutionalize a change review board to continually review the SLAs,
evaluate new requirements, and ensure maintenance actions do not affect the SLAs.

296




The change review board ensures that only authorized changes are enacted, that
changes are tested against quality levels, that changes conform to architectural
constraints, and those changes are properly documented. SLAs can also be written
to specify quality requirements that deal specifically with the accuracy or effective-
ness of configuration identification, configuration control, configuration account-
ing, and configuration audits.

In addition, SLAs provide a basis for common understanding of the services that
will be performed, the levels of service to be expected, how they will be measured,
as well as define the responsibilities of both parties to an SLA. Both parties must
mutually agree upon contractual SLAs, or there will never be a contract. It is com-
monplace to negotiate on the services and the performance levels that are requested
and ultimately agreed upon. An SLA should contain a definition of service require-
ment that is both achievable by the provider and affordable by the customer. The
customer and the ESP must also define a mutually acceptable set of indicators of
the quality of service (Sturm et al., 2000). Note that SLAs can and should be modified
throughout the lifecycle of a system as requirements change, technology improves,
and efficiencies are gained.

The use of SLAs helps fo ensure that customer
expectations are being met by establishing
performance and quality objectives, and providing
the metrics and a measurement methodology to
ensure that those requirements are being met.

The use of SLAs helps to ensure that customer expectations are being met by
establishing performance and quality objectives, and providing the metrics and a
measurement methodology to ensure that those requirements are being met. An
important part of customer service is monitoring the performance of the system to
ensure that it is supporting the critical business processes in a manner acceptable to
the customer. The fact that SLAs specify what is acceptable makes it easier for program
managers to manage expectations.

SLAs can be valuable to organizations that lack the proper IT skills to contract with
ESPs. Template SLAs, or pre-existing SLAs, which represent best business practices,
can be used as a starting point in formulating SLAs that are unique to specific appli-
cations. SLA templates are a starting point for program managers to develop their own
SLAs. The templates are helpful in generating questions regarding services and service
levels that should be provided to support or develop applications. The program man-
agers only have to modify the existing SLAs to best support their application.

297




DEPLOYMENT SUPPORT

Quality control does not stop once a software product has been deployed. Quality
requirements still need to be applied to the application performance, maintenance
efforts, and hosting services throughout its lifecycle. Monitoring the performance
of the application once it is deployed is essential in quality control and maintaining
customer satisfaction. Much of the application performance monitoring in the
initial phases of deployment is to validate product-quality requirements identified in
the initial requirements. However, in the deployment environment there is also an
emphasis on monitoring system performance in terms of resource utilization,
application security, application reliability, application maintainability, database
performance, and server performance.

Quality requirements associated with deployed software take a holistic view of the
entire system, including distributed components. Quality requirements should be
applied to network performance, host environment security, disaster recovery, stor-
age solutions, problem management, concurrent user management, as well as end-
to-end performance. Monitoring of the network, hardware, operating system, and
the application not only assists in problem resolution, but trend analysis can indicate
potential problems before they become unwieldy.

SLAs can be utilized for maintenance actions when patches or new versions need
to be developed and deployed. SLAs utilized in the development phase may be used
in some circumstances with maintenance actions.

CONCLUSION

SLAs are performance-based instruments for acquiring software. SLLAs can be
used to specify software quality, but they are also useful for specifying perfor-
mance requirements. We have described how SLAs can drive product, process,
project, and deployment quality solutions. SLAs can help ensure that quality re-
quirements are identified and established early in the development cycle in order
to be incorporated into preliminary designs. SLAs can help program managers
establish quality controls to monitor and manage the various aspects of the projects.
SLAs also carry sufficient weight through incentives to focus management and
contractor attention on the quality issues for a software-intensive system that affect
the ability of the acquiring organization to perform its mission.

Future research that can build upon the foundations set forth in this paper in-
clude evaluating SLAs in actual contracting to analyze quality improvements,
determining which quality models and quality attributes are best suited for differ-
ent types of IT systems, and evaluating or generating tools necessary for measur-
ing end-to-end SLA measurements, such as response time and availability.

All organizations want world-class quality levels, but achieving those quality
levels requires a holistic view of quality that incorporates leadership support, re-
peatable and measurable quality processes and controls, resource planning, vision,
customer support, and service-level management. Organizations must do more
than identify and incorporate quality attributes in their requirements: they must

298




also monitor quality metrics to ensure those quality requirements are being met.
SLAs are instruments that can be used to establish quality controls. Quality is not
something that is inherent in the development process; it must be planned, moni-
tored and incorporated as part of standard business practices.

CDR leonard T. Gaines, USN is a Supply Corps Officer currently
assigned fo the Joint Logistics Operation Center at the Defense Logistics
Agency. He has a master’s degrees from the Naval Postgraduate School
and the Industrial College of the Armed Forces. He has served on
three ships and has had shore assignments in logistics, acquisition,
and information technology. He is a member of the Acquisition

Professional Community.
(E-mail address: gaines@dia.mil)

Dr. James Bret Michael is an Associate Professor of Computer
Science and Elecirical & Computer Engineering at the Naval
Postgraduate School. His research and teaching interests center on
distributed computing and software engineering as they apply to
ballistic missile defense and information warfare. He serves on several
government, editorial, and industry advisory boards. Michael has a
doctorate degree from George Mason University and is a senior
member of the Institute of Electical and Electronic Engineers {IEEE).
(E-mail address: bmichael@nps.eduv)

299




REFERENCES

Aries, ], Banerjee, S., Brittan, M., Dillon, E., Kowalik, J., & Lixvar, J. (2002,
June). Capacity and performance analysis of distributed enterprise systems.
Communications of the Association of Computing Machinery (ACM).

Aweya, J., Ouellette, M., Montuno, D., Doray, B., & Felske, K. (2002, January/
February). An adaptive load balancing scheme for web servers. International
Journal of Network Management, 12, 3-39.

Bass, L., Clements, P., & Kazman, R. (1998). Software architecture in practice.
Reading, WA: Addison-Wesley.

Bennett, K., & Rajlich, V. (2000, June). Software maintenance and evolution: A
roadmap. Proceedings of the Conference on the Future of Software Engi-
neering, Limerick, Ireland, 73-87.

Bertoa, M., & Vallecillo, A. (2002, November). Quality attributes for COTS
components. Retrieved October 12, 2004, from http://alarcos.inf-cr.uclm.es/
qaoose2002/docs /QAOOSE-Ber-Val.pdf

Boehm, B. (1991, January). Software risk management: Principles and practice.
IEEE Software, 91, 32-41.

Briand L., Melo, W., Seaman, C., & Basili, V. (1995, April). Characterizing and
assessing a large-scale maintenance organization. Proceedings of the Seven-

teenth International Conference on Software Engineering, Seattle, WA, 133-
143,

Bubenko, J. (1995, March). Challenges in requirements engineering. Second IEEE
Symposium on Requirements Engineering, York, England, 160-162.

Coppick, C., & Cheatham, T. (1992, March). Software metrics for object-oriented
systems. Proceedings of the 1992 ACM Annual Conference on Communica-
tions, Kansas City, MI, 317-322,

Cross, S. (2002, December). A quality doctrine for software: Do it right the first
time. Proceedings of the ninth Asia-Pacific Software Engineering Conference,
Gold Coast, Australia, 187-194.

Daskalantonakis, M. (1992, November). A practical view of software measurement
and implementation experiences within Motorola. IEEE Transactions on Software
Engineering, 18, 998-1010.

300




Department of Defense, Office of the Inspector General. (2000, July 13). Sum-
mary of audits of acquisition of information technology. (DoD OIG Report
D-2000-162). Washington, DC: U.S. Government Printing Office.

Dobrica, L., & Niemela, E. (2002, July). A Survey on software architecture analy-
sis measures. [EEE Transactions on Software Engineering, 28(7), 638—653.

Eager, D., Vemon, M., & Zahorjan, J. (2001, September/October). Minimizing band-
width requirements for on-demand data delivery. IEEE Transactions on Knowledge
and Data Engineering, 15(5), 742-757.

Fenton, N., Krause, P., & Neil, M. (2002, July/August). Software measurement:
Uncertainty and causal modeling. IEEE Software, 116-122.

Fenton, N., & Neil, M. (1999, September/October). A critique of software defect
prediction models. IEEE Transactions on Software Engineering, 25(5), 675-689.

Gama, G., Meira, W,, Carvalho, M., Guedes, D., & Almeida, V. (2001, November).
Resource placement in distributed e-commerce servers. Proceedings of Globecom
2001, San Antonio, TX, 1677-1682.

Garlan, D. (2000, June). Software architecture: A roadmap. Proceedings of the
Conference on the Future of Software Engineering, Limerick, Ireland, 93-101.

Gilb, T. (1993). Risk management: A practical toolkit for identifying analyzing
and coping with project risk. Retrieved October 12, 2004, from http://
www.result-planning.com/Download/Risk.pdf

Gnatz, M., Marschall, F, Popp, G., Rausch, A., & Schwerin, W. (2003, June). The
living software development process. Software Quality Professional, 4-16.

Harter, D., & Slaughter, S., (2000). Process maturity and software quality: A field
study. Proceedings of the Twenty-first International Conference on Information
Systems, Brisbane, Australia, 407-411.

Hilburn, T., & Townhidnejad, M. (2000, March). Software quality: A curriculum
postscript. Proceedings of the Thirty-First SIGCSE Technical Symposium on Com-
puter Science Education, Austin, TX, 167-171.

Horch, J. (1996). Practical guide to software quality management. Boston, MA: Artech
House Publishers.

Humphrey, W. (1996, May). Using a defined and measured personal software process.
IEEE Software, 77-88.

301




Kajko-Mattsson, M. (1998, April). A conceptual model of software maintenance.
Proceedings of the Twentieth International Conference on Software Engineer-
ing, Kyoto, Japan, 422-425.

Keil, M., Cule, P, Lyytinen, K., & Schmidt, R. (1998, November). A framework
for identifying software project risk. Communications of the ACM, 76-83.

Kendrick, T. (2003). Identifying and managing project risk: Essential tools for failure-
proofing your project. New York: AMACOM.

King, W. (2001, February). Guest editorial developing a sourcing strategy for IS: A
behavioral decision process and framework. IEEE Transactions on Engineering
Management, 48(1), 15-24.

Mann, C. (2002, July/August). Why software is so bad. MIT Technology Review, 33-38.

Nogueira de Leon, J. (2000, September). A formal model for risk assessment in
software projects. Unpublished doctoral dissertation, Naval Postgraduate School,
Monterey, CA.

McGuire, E. (1996). Factors affecting the quality of software project management:
An empirical study based on the capability maturity model. Software Quality
Journal, 5, 305-317.

Moeller, M., Hochstetler, S., Glasmacher, P, Jewan, P, Pathre, M., Polacheck, I,
Sampath, V., & Ziller, H. (2000). Tivoli Netview 6.01 and friends. Austin, TX:
IBM Redbook.

Ogasawara, H., Yamada, A., & Kojo, M. (1996, March). Experiences of software
quality management using metrics through the life-cycle. Proceedings of the

Eighteenth International Conference on Software Engineering, Berlin, Germany,
179-188.

Osmundson, J., Michael, J., Machniak, M., & Grossman, M. (2003, September). Quality
management metrics for software development. Information and Management,
40(8), 799-812.

Padayachee, K. (2002, September). An interpretive study of software risk manage-
ment perspectives. Proceedings of the Annual Research Conference of the South
African Institute of Computer Science and Information Technologists on Enablement
through Technology, Port Elizabeth, South Africa, 118-127.

Pressman, R. (2001). Software engineering a practitioner’s approach (5th ed.). New
York: McGraw-Hill.

302




Pritchett, W. (2001, September). An object-oriented metrics suite for Ada 95.
Proceedings of the Annual ACM SIGAda International Conference on Ada,
Bloomington, MN, 117-126.

Royce, W. (1990, November). Pragmatic quality metrics for evolutionary soft-
ware development. Proceedings of the Conference on TRI-ADA 90, Balti-
more, MD, 551-565.

Schmidt, M. (2000). Implementing the IEEE software engineering standards.
Indianapolis, IN: Sams.

Shaw, M., & Garlan, D. (1996). Software architecture perspectives on an emerging
discipline. Upper Saddle River, NJ: Prentice Hall.

Standish Group. (2003). Chaos. In The Standish Group report. West Yarmouth, MA:
The Standish Group.

Sturm, R., Morris, W., & Jander, M. (2000). Foundations of service level management.
Indianapolis, IN: Sams.

Sumner, M. (2000, April). Risk factors in enterprisewide information management
system projects. Proceedings of the SIGCPR Conference on Computer Personnel
Research, Chicago, 180-187.

Tricker, R., & Sherring-Lucas, B. (2001). ISO 9001:2000 in brief. Oxford, MA:
Butterworth Heinemann.

U.S. General Accounting Office. (2001). Major management challenges and program
risks: Department of Defense. (U.S. GAO Report GAO 01-244). Washington, DC:
U.S. Government Printing Office.

Wiegers, K. (2002). Software requirements (2nd ed.). Redmond, WA: Microsoft Press.

Zuse, H. (1991). Software complexity—measures and methods. Berlin, Germany: Walter
De Gruyter & Co.

303




\
]
.
18
h
«
b}

R L S




