
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP015445
TITLE: From Natural Language Requirements to Executable Models of
Software Components

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Workshop on Software Engineering for Embedded Systems [SEES
2003]: From Requirements to Implementation

To order the complete compilation report, use: ADA424148

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP015439 thru ADP015454

UNCLASSIFIED

From Natural Language Requirements to
Executable Models of Software Components

Barrett R. Bryant, Beum-Seuk Lee, Fei Cao, Rajeev R. Raje, Andrew M. Olson
Wei Zhao, Jeffrey G. Gray, Carol C. Burt Indiana University-Purdue University-

University ofAlabama at Birmingham Indianapolis
(bryant, leebs, caof zhaow, gray, cburt} {rraje, aolson}@cs.iupui.edu

@cis.uab.edu

Mikhail Auguston
Naval Postgraduate School
auguston@cs. nps. navy. mil

Abstract Domain logic is typically expressed in natural

language before a model is developed. Standardization
The Unil~rame approach to component-based of domains and their associated components is being

software development assumes that concrete undertaken by the Object Management Group (OMG) 4.

components are developed from a meta-model, called To facilitate the MDA approach to be used in practice,
the Unified Meta-component Model, according' to automated tools are needed to develop the domain-
standardized domain models. Implicit in this specifications from their requirements in natural
development is the existence of a Platform Independent language as well as to enable transformation from PIMs
Model (PIM) that is transformed into a Platform into PSMs. Furthermore, if MDA is to be used for
Specific Model (PSM) under the principles of Model- constructing distributed real-time embedded (DRE)
Driven Architecture (MDA). This position paper software systems, then the models must consider not
advocates natural language as the starting point for only functional aspects of domain logic, but also non-
developing the meta-model and representative domain functional properties, such as Quality-of-Service (QoS)
models. The paper illustrates how natural language is requirements (e.g., latency and bandwidth requirements
mapped through the PIM to PSM using a formal system on a distributed video streaming system [23]). QoS
of rules expressed in a Two-Level Grammar (TLG). attributes are not currently considered in the MDA
This allows software requirements to be progressed framework.
from domain logic to the implementation of UniFrame [31] is an approach for assembling
components. The approach provides sufficient heterogeneous distributed components, developed
automation such that components may be modified at according to MDA principles, into a distributed
the model level, or even the natural language software system with strict QoS requirements.
requirements level, as opposed to the code level. Components are deployed on a network with an

associated requirements specification, expressed as a

1. Introduction Unified Meta-component Model (UMM) [30] in the
Two-Level Grammar (TLG) specification language [4].
The UMM is integrated with generative domain models

Model-Driven Architecture (MDA) [12] is an and generative rules for system assembly [10], which
approach that separates the essence of an pplication may be automatically translated into an implementation
from the specific middleware platform to which it is that realizes an integration of components via
deployed. The basic approach is to define Platform generation of glue and wrapper code. Furthermore, the
Independent Models (PIMs) that express the application glue/wrapper code is instrumented *to enable validation
logic of components conforming to some domain (e.g., of the QoS requirements [32].
mission-computing avionics, safety-critical medical This paper describes a unified method of expressing
devices) and then to derive Platform Specific Models domain models in natural language, translating these
(PSMs) using a specific component technology (e.g. into associated logic rules for that domain, application
CORBA , J2EE2, and .NET3).

2 J2EE- Java 2 Enterprise Edition, http://java.sun.com/j2ee

CORBA - Common Object Request Broker Architecture, 3 http://www.microsoft.com/net
http://www.corba.org 4 http://www.omg.org

51

of the logic rules in building MDA PIMs, and XML to specify the requirements, XML attributes
maintaining these rules through development of PSMs. (meta-data) can be added to the requirements to
The complete mapping takes place using a formal interpret the role of each group of the sentences during
system of rules expressed in TLG. This allows software the conversion. The information of the domain-specific
requirements to be progressed from domain logic to knowledge is specified in XML. The domain-specific
implementation of components. It also provides knowledge describes the relationship between
sufficient automation such that components may be components and other constraints that are presumed to
modified at the model level, or even the natural exist in requirements documents or too implicit to be
language requirements level, as opposed to the code extracted directly from the original documents [22].
level. Section 2 describes our previous work with TLG The XML representation produced for the above
and its use as a specification language. The application specification is:
of this to MDA is discussed in section 3. Finally, we
conclude in section 4. <class title = "Mode" meta = "mode">

<class title = "wait state" meta

2. From Natural Language Requirements = "submode" >

to Formal Models <paragraph meta = "pre cond">
<sentence>

Host is powered up and all
To achieve the conversion from requirements software subsystems are

documents to formal models requires several levels of available

conversion, as shown in Figure 1. First, the original </sentence>
requirements written in natural language are refined as </paragraph>
a preprocessing of the actual conversion. This <paragraph meta = "preexec">
refinement task involves checking spellings, <sentence>
grammatical errors, consistent use of vocabularies, and Patient with IV/pump
organizing the sentences into the appropriate sections. running is placed onto the
The requirements are expected to be organized in a host
well-structured way, e.g. as laid out in [36] or as a </sentence>
collection of use-cases [16], and be part of an <sentence>
ontological domain [21]. Once they are structured in Pump cable is connected to
this way via human preprocessing, the remainder of the the host
conversion occurs automatically. If modifications to </sentence>
requirements are needed, these modifications should be </paragraph>
made to the requirements already preprocessed, not the <paragraph meta = "exec">
original ones. Since we are allowing for specification of <sentence>
components that will be deployed in a distributed HOST now provides power for
environment, Quality-of-Service attributes are also pump
specified [38]. </sentence>

An example requirements specification from [19] is </paragraph>
given below. This is a small piece of the Computer </class>
Assisted Resuscitation Algorithm (CARA) Infusion ...
Pump Control System [37]. </class>

The host is powered up and all A knowledge base is built from the requirements
software subsystems are available, document in XML using natural language processing
The pump software system is now in (NLP) to parse the documentation and to store the
the wait operating state. The patient syntax, semantics, and pragmatics information. Each
with IV/pump running is placed onto sentence is read by the system and each sentence is
the host. The pump cable is connected parsed into words. At the syntactical level, the part of
to the host. The host now provides speech (e.g. noun, verb, adjective) of each word is
power for the pump. determined by bottom-up parsing, whereas the part of

sentence (e.g. subject, object, complement) of each
Next, the refined requirements document is word is determined by top-down parsing [17]. The

automatically converted into XML5 format. By using corpora of statistically ordered parts of speech
(frequently used ones being listed first) of about 85,000

5 XML- eXtensible Markup Language - http://www.w3c.org/xml

52

Preprocessing

tology Formal restrictions

"l Rem Informal

Figure 1. Natural Language Requirements Translation into Executable Models

words from [34] are used to resolve syntactic
ambiguities in this phase. Also, elliptical compoundphrases, comparative phrases, compound nouns, and

relative phrases are handled in this phase as well. The
knowledge base for the above example is shown in ,

Once thKknowldgeebaeais cnstrucedn it

content can be queried in NL. Next, the knowledge •atl
base is converted, with the domain-specific • • :• t~
knowledge, into TLG by removing contextual

dependencies in the knowledge base [20]. TLG is
used as an intermediate representation to build a t
bridge between the informal knowledge base and the.
formal specification language representation. The
name "two-level" in TLG comes fromthe fact that Figure 2: Knowledge Representation
TLG consists of two contextl-free grammars

interacting in a manner such that their combined
computing power is equivalent to that of a Turing

53

machine. Our work has refined this notion into a set class Mode
of domain definitions and the set of function
definitions operating on those domains. In order to instance variables
support object-orientation, TLG domain declarations private host Host
and associated functions may be structured into a private pump Pump
class hierarchy supporting multiple inheritance. The private patient : Patient
TLG specification produced for this example is: private power Power

class Mode. operations
wait state

Host is powered up, public waitState () => ()
Pump SoftwareSystem is waitState () ==

available, host poweredUp (;
Patient with IVPump running pump softwareSystem ()

is placed onto Host, available ();
Pump Cable is connected to Host, patient . ivPump ()

Host provides Power for Pump. . running ();
patient . placedOnto (host);

end class Mode. pump . cable ()
connectedTo (host);

Host, Pump, SoftwareSystem (an attribute of host . provides (power, pump);

Pump), Patient, IVPump (an attribute of Patient),
Cable (an attribute of Pump), and Power have all

been identified as objects in the analysis. In TLG,
object and class names are denoted by being end class Mode

capitalized (and are in fact not distinguished, i.e., an
object may be denoted using the corresponding class The VDM++ class uses one instance variable to
name, as an implicit declaration). Verbs and other represent each object in the TLG specification. This

words are included in TLG to make up functions, e.g. VDM++ specification may be converted into the
"is powered up," "is available," etc. UML model shown in Figure 3. Using the XMI7

As a final step in this process, the TLG code is format, not only the class framework but also its

translated into VDM++, an object-oriented extension detailed functionalities can be specified and
of the Vienna Development Method [11], by data and translated into OCL (Object Constraint Language)
function mappings. VDM++ is chosen as the target [35].

specification language because VDM++ has many
similarities in structure to TLG and also has a good 3. Integration with Model-Driven
collection of tools for analysis and code generation. Architecture
Once the VDM++ representation of the specification
is acquired, prototyping can be performed on the The method of translating requirements in
specification using the VDM++ interpreter to validate natural language into UML models and/or executable
the generated formal specification against the original code (as described in the previous section) may be
requirements. Also, the formal VDM++ used to translate domain logic into formal rules.
representation can be converted into a high level Experts from various application domains may
language such as Java or C++, or into a Rational express their specification in natural language and
Rose model in UML [29] using the VDM++ Toolkit then use UniFrame to translate this into TLG rules
[15]. The VDM++ specification created for the above via natural language processing. These rules are
TLG is: encapsulated in a TLG class hierarchy defining a

knowledge base with the 'domain ontology, domain
feature models (specifying the commonality and
variability among the product instances in that
domain), feature configuration constraints, feature
interdependencies, operational rules, and temporal

7 XMI - XML Metadata Interchange,
6 UML- Unified Modeling Language, http://www.omg.org/uml http://www.omg.org/technology/doeuments/formal/xmi.htm

54

f• Pump

*softwareSystem() SoftwareSystemI~cable() Cable

1 +pumnp

Mode
Pat ien._t 1 n!pump : Pump +powerPo e

Wipatient Patient Power
*vi• p() : IVPump 4:atient Wpower :Power
I ~paced 0nto(host : Host)

+hos 1
Host

1_ýpowe re dU po(

I*provides(power Power, pump Pump)

Figure 3: UML Representation of Requirements

concerns. TLG specifies the complete feature model to component implementation. UMM-PS merely
including the structural syntax and various kinds of indicates the technology of choice (e.g. CORBA).
semantic concerns [39]. For example, assume that our These effectively customize the component model by
application domain is for unmanned aerial vehicles inheriting from the TLG classes representing the
(UAV's). The business domain will then include a domain with new functionality added as desired. In
feature model of a UAV, which includes specification addition to new functionality, we also impose end-to-
of the various attributes and operations a UAV will end Quality-of-Service expectations for our
have, such as responding to external commands and components (e.g., a specification of the minimum
streaming video back to a satellite receiver [23]. In frame-rate in a distributed video streaming application).
related work [8], we have investigated the construction Both the added functionality and QoS requirements are
of Generative Domain Models [10] using the Generic expressed in TLG so there is a unified notation for
Modeling Environment [14]. This tool may also be expressing all the needed information about
extended with a natural language processor as a front components. The translation tool described in the
end, i.e., by applying natural language processing to the previous section may be used to translate UMM-PI into
domain model (represented in natural language), which a PIM represented by a combination of UML and TLG.
can then extract feature model representation rules and Note that TLG is needed as an augmentation of UML to
then interpret those rules to generate a graphical feature define domain logic and other rules that may not be
diagram. convenient to express in UML directly.

Platform Independent Models (PIM's) in MDA are A Platform Specific Model (PSM) is an integration
based upon the domains and associated logic for the of the PIM with technology domain-specific operations
given application. TLG allows these relationships to be (e.g. in CORBA, J2EE, or .NET). These technology
expressed via inheritance. If a software engineer wants domain classes also are expressed in TLG. Each
to design a server component to be used in a distributed domain contains rules that are specific to that
video streaming application, then he/she should write a technology, including how to construct glue/wrapper
natural language requirements specification in the form code for components implemented with that
of a UMM (Unified Meta-component Model) technology. Architectural considerations are also
describing the characteristics of that component. Our specified, such as how to distinguish client code from
natural language requirements processing system will server code. We express PSMs in TLG as an
use the UMM and domain knowledge base to generate inheritance from PIM TLG classes and technology
platform independent and platform specific UMM domain TLG classes. This means that PSMs will then
specifications expressed in TLG (which we will refer to contain not only the application-domain-specific rules,
as UMM-PI and UMM-PS, respectively). UMM-PI but also the technology-domain-specific rules. The
describes the bulk of the information needed to progress PSM will also maintain the QoS characteristics

55

expressed at the PIM level (a related paper [6] explores Figure 4 shows the overall view of the model-
the rules for this maintenance in more detail and [7] driven development from natural language
explores this issue for the QoS aspect of access control requirements into executable code for the previously
in particular). Because the model is expressed in TLG, described distributed video streaming application.
it is executable in the sense that it may be translated
into executable code in a high-level language (e.g. 4. Related Work and Discussion
Java). Furthermore, it supports changes at the model
level, or even requirements level if the model is not
refined following its derivation from the requirements, de a oftusingdatural angaeas th easibecause the code generation itself is automated. developing software dates back at least 20 years.

Abbott [I] pointed out that nouns correspond to the

SVideo server UMM Video domain knowledge Ii L i L

S'i ViTechologyi Doanoweg

PSM iniU L anLTLG

(in TLG) (in TLG

Video server implementation (in Java)

Model Driven Architecture

Figure 4. Integration of Two-Level Grammar with Model Driven Architecture

56

notion of a class in object-oriented programming crosscutting relationships across components and hence
terminology, direct references correspond to objects, improving reusability of components and reasoning
while verb and attributes correspond to class operations, about a collection of components. Such aspects of
and the control flow within those operations is also components as functional pre/post conditions and QoS
often present in the action description. Rolland and properties crosscut component modules and
Proix [33] developed an automated tool called OICSI8, specification of these aspects spread across component
which facilitated the elicitation of requirements from modules. Preliminary work in defining an aspect-
natural language text and accompanying domain oriented specification language is very promising [9].
knowledge. Luisa Mich and her colleagues ([24], [25],
[26]) have used a natural language processing system 5. Acknowledgements
called NL-OOPS to analyze natural language
requirements for the purpose of determining objects and This material is based upon work supported by, or in
their inter-relationships and construction of a part by, the U. S. Army Research Laboratory and the
corresponding object-oriented model. Nanduri and U. S. Army Research Office under contract/grant
Rugaber [27] implemented a similar system for the number DAADI9-00-l-0350, and by the U. S. Office
purpose of validating an object-oriented model against of Naval Research under award number N00014-01-1-
the natural language requirements fom which it was 0746.
derived. Ambriola and Gervasi [2] extended this idea to
incorporate modeling and model checking to achieve a
more formal validation (the authors use the term "semi- 6. References
formal" to describe the validation approach, which
eventually evolved into "lightweight formal methods" [1] Abbott, R. J., "Program Design by Informal English

[13]). LIDA (Linguistic Assistant for Domain Analysis) Descriptions," Commun. ACM 26, 11 (Nov. 1983), 882-
894.

[28] appears to be the most comprehensive system to [2] Ambriola, V. and Gervasi, V., "Processing Natural
date for assisting a software engineer to construct an Language Requirements," Proc. ASE '97, 12'h Int. Conf.
object-oriented model from " natural language Automated Software Engineering, 1997, pp. 36-45.
descriptions, the emphasis being on domain models. [3] Berry, D. M. and Kamsties, E., "Ambiguity in
Daniel Berry and his colleagues (e.g., see [3]) have also Requirements Specification," Perspectives on Software
worked with the problem of analyzing natural language Requirements, eds. J. C. Sampaio do Prado Leite and J.
specifications and have identified a number of difficult H. Doom, Kluwer Academic, 2003, pp. 191-194.
problems in correctly implementing requirements based [4] Bryant, B. R. and Lee, B.-S., "Two-Level Grammar as

upon natural language. an Object-Oriented Requirements Specification
Language," Proc. HICSS-35, 35"' Hawaii Int. Conf

Our work has focused on conversion of natural System Sciences, 2002, http://www.hicss.hawaii.edu/
language to formal specifications in VDM++, which in HICSS_35/HICSSpapers/ PDFdocuments/STDSL0I.pdf.
turn may be converted into UML models or executable [5] Bryant, B. R., Auguston, M., Raje, R. R., Burt, C. C,
code. This paper has described an approach for unifying and Olson, A. M., "Formal Specification of Generative
the ideas of expressing requirements in natural Component Assembly Using Two-Level Grammar,"
language, constructing Platform Independent Models Proc. SEKE 2002, 14th Int. Conf. Software Engineering
for software components, and implementing the Knowledge Engineering, 2002, pp. 209-212.
components via Platform Specific Models. The [6] Burt, C. C., Bryant, B. R., Raje, R. R., Olson, A. M.,

approach is specifically targeted at the construction of Auguston, M., 'Quality of Service Issues Related to
Transforming Platform Independent Models to Platform

heterogeneous distributed software systems where Specific Models," Proc. EDOC 2002, 6th IEEE Int.
interoperability is critical. This interoperability is Enterprise Distributed Object Computing Conf., 2002,
achieved by the formalization of technology domains pp. 212-223.
with rules describing how those technologies may be [7] Burt, C. C., Bryant, B. R., Paje, R. R., Olson, A. M.,
integrated together via the generation of glue and Auguston, M., "Model Driven Security: Unification of
wrapper code. The processing of software requirements, Authorization Models for Fine-Grain Access Control,"
construction of PIMs and PSMs, and specification of Proc. EDOC 2003, 7th IEEE Int. Enterprise Distributed
technology domain rules are all expressed in TLG, Object Computing Conf, 2003, pp. 159-171.

thereby achieving a unification of natural language [8] Cao, F., Bryant, B. R., Burt, C. C., Huang, Z., Raje, R.
twith R., Olson, A. M., Auguston, M., "Automating Feature-

requirements MDA. Oriented Domain Analysis," Proc. SERP 2003, 2003 Int.
For future work, we will investigate aspect-oriented Conf Software Engineering Research and Practice,

technology [18] as a mechanism for specifying 2003 ,pp. 944-949.

French acronym for intelligent tool for information system design,"
also called ALECSI [33]

57

[9] Cao, F., Bryant, B. R., Raje, R. R., Auguston, M., Olson, [25] Mich, L. and Garigliano, R., "The NL-OOPS Project:
A. M., Burt, C. C., "Assembling Components with 00 Modeling using the NLPS LOLITA," Proc. NLDB
Aspect-Oriented Modeling/Specification," Proc. WiSME '99, 4 h Int. Conf Applications of Natural Language to
2003, UML 2003 Workshop Software Model Information Systems, 1999, pp. 215-218.
Engineering, 2003, http://www.metamodel.com/wisme- [26] Mich, L., Mylopoulos, J., and Zeni, N., "Improving the
2003/12.pdf. Quality of Conceptual Models with NLP Tools: An

[10] Czarnecki, K., Eisenecker, U. W., Generative Experiment," Technical Report, Department of
Programming: Methods, Tools, and Applications, Information and Communication Technologies,
Addison-Wesley, 2000. University of Trento, Italy, 2002,

[11] Diirr, E. H., van Katwijk, J., "VDM++ - A Formal http://eprints.biblio.unitn.it/archive/00000127/01/47.pdf.
Specification Language for Object-Oriented Designs," [27] Nanduri, S. and Rugaber, S., "Requirements Validation
Proc. TOOLS USA '92, 1992 Technology of Object- via Automated Natural Language Parsing," J. Manage.
Oriented Languages and Systems USA Conf., 1992, pp. Inf Syst. 12, 2 (1996), 9-19.
263-278. [28] Overmyer, S. P., Lavoie, B., and Rambow, 0.,

[12] Frankel, D.S., Model Driven Architecture: Applying "Conceptual Modeling through Linguistic Analysis using
MDA to Enterprise Computing, Wiley Publishing, Inc., LIDA," Proc. ICSE 2001, 2 3rd Int. Conf Software
2003. Engineering, 200 1, pp. 401-410.

[13] Gervasi, V. and Nuseibeh, B., "Lightweight Validation [29] Quatrani, T., Visual Modeling with Rational Rose 2000
of Natural Language Requirements," Softw. Pract. and UML, Addison-Wesley, Reading, MA, 2000.
Exper. 32(2002), 113-133. [30] Raje, R. R., "UMM: Unified Meta-object Model for

[14] GME 2000 User's Manual, Version 2.0. ISIS, Vanderbilt Open Distributed Systems," Proc. ICA3PP, 41h IEEE Int.
University, 2001, http://www.isis.vanderbilt.edu/ Conf. Algorithms and Architecture for Parallel
publications/archive/LedecziA 12_18_2001_GME_200 Processing, 2000, pp. 454-465.
0_U.pdf. [31] Raje, R. R., Auguston, M., Bryant, B. R., Olson, A. M.,

[15] IFAD, The VDM++ Toolbox User Manual, 2000, and Burt, C. C., "A Unified Approach for the Integration
http://www.ifad.dk. of Distributed Heterogeneous Software Components,"

[16] Jacobson, I., Booch, G., Rumbaugh, J., The Unified Proc. 2001 Monterey Workshop Engineering Automation
Software Development Process, Addison-Wesley, 1999. for Software Intensive System Integration, 2001, pp. 109-

[17] Jurafsky, D., Martin, J., Speech and Language 119.
Processing, Prentice-Hall, 2000. [32] Raje, R. R., Auguston, M., Bryant, B. R., Olson, A. M.,

[18] Kiczales, G., et al., "Aspect-Oriented Programming," Burt, C. C., "A Quality of Service-based Framework for
Proc. ECOOP '97, 1997 European Conf Object- Creating Distributed Heterogeneous Software
Oriented Programming, 1997, pp. 220-242. Components," Concurrency Comput.: Pract. Exp. 14, 12

[19] Lee, B.-S. and Bryant, B. R., "Automation of Software (2002), 1009-1034.
System Development Using Natural Language [33] Rolland, C. and Proix, C., "A Natural Language
Processing and Two-Level Grammar," Proc. 2002 Approach for Requirements Engineering," Proc CAiSE
Monterey Workshop Radical Innovations of Software '92, 4th Int. Conf. Advanced Information Systems, 1992.
and Systems Engineering in the Future, 2002, pp. 244- [34] Ward, G., "Moby Part-of-Speech II (data file)," 1994,
257. http://www.gutenberg.net/extext02/mpospl0.zip.

[20] Lee, B.-S. and Bryant, B. R., "Contextual Knowledge [35] Warmer, J., Kleppe, A., The Object Constraint
Representation for Requirements Documents in Natural Language: Precise Modeling with UML, Addison-
Language," Proc. FLAIRS 2002, 15th Int. Florida AI Wesley, 1999.
Research Symp., 2002, pp. 370-374. [36] Wilson, W. M., "Writing Effective Natural Language

[21] Lee, B.-S. and Bryant, B. R., "Contextual Processing and Requirements Specifications," Naval Research
DAML for Understanding Software Requirements Laboratory, 1999.
Specifications," Proc. COLING 2002, 19 h Int. Conf. [37] Walter Reed Army Institute for Research (WRAIR),
Computational Linguistics, 2002, pp. 516-522. "CARA Specification: Proprietary Document," WRAIR,

[22] Lee, B.-S. and Bryant, B. R., "Applying XML Dept. of Resuscitative Medicine, 2001.
Technology for Implementation of Natural Language [38] Yang, C., Lee, B.-S., Bryant, B. R., Burt, C. C., Raje, R.
Specifications," Comput. Syst., Sci. & Eng. 5 (September R., Olson, A. M., Auguston, M., "Formal Specification
2003), 3-24. of Non-Functional Aspects in Two-Level Grammar,"

[23] Loyall, J., Schantz, R., Atighetchi, M., and Pal, P., Proc. UML 2002 Workshop Component-Based Software
"Packaging Quality of Service Control Behaviors for Engineering and Modeling Non-Functional Aspects
Reuse," Proc. ISORC 2002, 5'h IEEE Int. Symp.Object- (SIVOES-MONA), 2002, http://www-verimag.imag.fr/
Oriented Real-time Distributed Computing, 2002, pp. SIVOES-MONA/uniframe.pdf.
375-385. [39] Zhao, W., Bryant, B. R., Burt, C. C., Gray, J. G., Raje, R.

[24] Mich, L., "NL-OOPS: From Natural Language to R., Olson, A. M., Auguston, M. "A Generative and
Object-Oriented Requirements using the Natural Model Driven Framework for Automated Software
Language Processing System LOLITA," J. Nat. Lang. Product Generation," Proc. CBSE 6, 6th Workshop
Eng. 2, 2 (1996), 161-187. Component-Based Software Engineering, 2003,

http://www.csse.monash.edu.au/-hws/cgi-bin/CBSE6/
Proceedings/papersfinal/p3 I.pdf.

58

