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Abstract

Tomography is well known because of its many applications. Although theoretically
solved, the numerical implementation of tomographic reconstruction algorithms is still a
difficult problem. In this article the numerical implementation of a reconstruction method
using Cesaro-means and Newman-Shapiro operators is described. The key point herein
is the use of suitable quadrature formulae on the sphere. It turns out that in the context
described product Gaussian formulae are best suited. The algorithm is tested at the so
called Shepp-Logan phantom which is a three dimensional model of a human head.

1 Introduction and notation

The problem in tomography is to reconstruct a function F from its Radon transform suf-
ficiently well. Since certain classes of functions can be expanded into series of orthogonal
polynomials it is essential to exploit the action of the Radon transform on orthogonal
polynomials and on polynomials in general.

This approach is the more interesting since the inverse of the Radon transform for
polynomials is known explicitly.

The convergence of orthogonal expansions to the given function is often achieved only
by applying a summability method. The application of such methods can be interpreted
as a kind of "filter technique" which is necessary for sufficiently good reconstructions. The
combination of an expansion of the function and the application of suitable summability
methods leads to promising reconstruction algorithms.

In this article two examples for a summability method and their implementation are
presented - the Cesaro-means and Newman-Shapiro-means. After some introductory
remarks on Laplace-series at the end of this section, in Section 2 the theory of sum-
mability methods needed here is presented. In Section 3 this theory is applied to the
reconstruction of functions from their Radon transform. Section 4 describes the nu-
merical implementation of the reconstruction formula which is tested on the so called
Shepp-Logan phantom of a head in Section 5.

In this article the following notation is used. Let B' denote the unit ball in IV, Sr-1

denote the unit sphere and Zr [-1, 1] x S-. xy denotes the Euclidean product of
x, y E ffJr.
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The spaces of restrictions of r-variate polynomials, homogeneous polynomials and
homogeneous harmonic polynomials of degree M e NO0 onto a subspace X C Jr (X =

Sr-1 or X = BI) are denoted by 1Pr(X), Fr, (X), Hl, (X), respectively. The space
C(Sr-l) of all continuously differentiable functions is provided with the inner product
< F, G >:= fs,_, F(x)G(x)dx. The surface measure of the ýphere is denoted by wr-i =<
1,1 >.

Let Cý' denote the Gegenbauer polynomials of degree /I and index A and CA

C /CA (1) the normalized Gegenbauer polynomials. The reproducing kernel function of
2p + r - 2 r-2

)f-/r (Sr-1) is given by G,(xy)= (rC-2)w-- ' C12 (xy), the normalized reproducing

kernel G0 is defined by G6 := Ga/G (1).

Let Y E {C(Sr-1), L2 (ST-1), LP(Sr-l)}. For f E Y let

L(f,x) = (A~ f)(x) = f(y)G(xy)dy(1.1)
V.=O -- J r--1

be the Laplace-series of f, where (Af) (x) := fs,-1 f(y)G,,(x, y)dy is the orthogonal

projection of f onto Hr, (ST-1) and the partial sums L,(f, x) - Z- 0 (A& ) (x) are the
orthogonal projections of f onto Pr(Sr-1).

Whereas for Y = L 2(S,-l) it is known that the partial sums Lp (f, x) converge to f
in norm, no convergence is obtained for Y = C(Sr-() or Y = LP (Sr-f) for p > 2+ r

r r-2
and p!< 2 - 2 (see e.g. [11p.211). Applying a summability method the situation changes.

r

2 Summability methods

Let A = (ap,)p,,cxVo be an infinite matrix for which the elements alt JR fulfil the
following properties.

(i) a,,=Oforv> p,
(ii) lim,-,_ a,,, = 1 for v E {0, 1},
(iii) Ki(,) > 0 for -1 _< C _< 1, where K,1 := a a

If with the aid of a summability method the kernel G, in (1.1) is substituted by a kernel

K,1= alvGv (2.1)

then the operator LA defined by the transformed series

LA(f,x) = lim f(y)K, (x,y)dy (2.2)
14-'-00ISr-I

can be shown to converge pointwise to the identity provided that for the kernel K,' the
properties (i)-(iii) of the matrix A are valid.
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Remark 2.1 The coefficients aU, can be obtained from

S= (LA&V(t.))(t) = j G,(tx)K,,(tx)dw(x), t E Sr-1.P Isr-1

For A being the matrix of the Cesaro-means the proof was given by Kogbetlianz [4]
first. Berens et al. [1] give a proof for Cesaro-means as well as for Abel-Poisson-means.
They also prove results on the order of convergence and the corresponding saturation
classes. The convergence proof for Newman-Shapiro operators (Y = C(Sr-1)) can be
found in Reimer [7].

2.1 Cesaro-means

For Cesaro-means the coefficients ay, in the summability method have to be chosen as

a (1), (k + 1),_. (2.3)
"" = (k + 1)p (1)j.-v

where (P)q = p (p+ 1)... (p+ q - 1) denotes the Pochammer symbol. Then the kernels
K. in (iii) take on the form

K,, = (1)v Xh (k + 1)_0, (2.4)
(k + 1)- E G.2

Convergence of the transformed Laplace-series (2.2) is valid for k > (r-2)/2; for k > r-1
the operators even are positive (see Kogbetlianz [4]).

2.2 Newman-Shapiro summability method

In [8] Reimer considers kernel polynomials

g ~[ avq-1(•) 1
2  (2.5)K2,+1(ý) := K2v(ý) := g,+1 (2.5)-+l

as used by Newman-Shapiro [5]. Here, 7+, is the largest root of G,+, and
2 ( _T -1= 2

9V+1 = (r I-- 2)-l (2.6)
gv+l=(r--2)wJr-l(2v +-r)2 r - 3 2v + r GV+ 1(1) (

The coefficients a,,, in the Newman-Shapiro operators can be calculated to be

aj-9V+ (2v~ +r)2 Gj(7+,)a( ) (j + \)(1 + A)
a,,=, == g(VZ ., _ ( + l1)2 0' (¢v(v+l))2 Wr-l,\2

minUj,t} (A)k (A)j-k (A)t-k (1)j+t-2k (2A)j+l-k "•~-k 27
kr- (1)k (1)j-k (1)1-k (2A)j+1-2k (A + 1)j+--k.

k=0

where 6v,j+1-2k denotes the Kronecker delta and A = r-2

The matrix A defined by the Newman-Shapiro operators fulfils the properties (i)-(iii)
(see Reimer [8]).
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Remark 2.2 The corresponding partial sum operators LA are nonnegative with positive
a,. For continuous and differentiable functions even more is valid (see Reimer [8]):
whereas for continuous functions the approximation error is of order O(Ar 1 ) , functions
F c Ci (Sr-1), j E {1, 2}, have an error of order O(p-j).

3 Application to tomography
The Radon transform R?: C(BT ) -+ C(ZT ) is defined by

(IZF)(s,t) J F(st + v)dv, F E C(BT ), (s,t) E Z, (3.1)
-LIt

which means that the Radon transform 1Z of F is determined by integrating F over all
hyperplanes of dimension r - 1. This map can also be defined for functions in L'(JR"),
L 2 (BT), the Schwartz space S(JRT) or some Sobolev spaces. 7R is continuous on all of
these spaces, whereas the inverse R?-1 is only continuous on S(RTr) and on the Sobolev
spaces.

For polynomials it is known that

(IZC, (a.))(s, t) - C!(s)C,(at), a E ST1 (st) E ZT  (3.2)

(see Davison, Griinbaum [2]) and, more generally,

(TZPm)(st) = Cý(s)Pm(t), (s,t) E Zr, (3.3)

where the polynomials Pm E1Pi (S'-1) are generated by the Gegenbauer polynomials,

i.e. C.2l C,(ax) = -imi=a m Pm(x). These polynomials Pm", [ml = tt, are known to

constitute a basis for p (Sr-1).

Let V :-- n{Pa : Iml =u )}. Since the Gegenbauer polynomials CO can also be

interpreted as the reproducing kernel of JgT+
2 (Sr+l), the orthogonal projection F, of

F E C(Br) onto Vr7(B T ) can be identified with the orthogonal projection of F onto
*

MH+
2 (ST+l) (see Reimer [7] for details). Thus the theory of Laplace series can be used

here for the reconstruction of F from its Radon transform.
Let A be a matrix transformation as introduced in Section 2 and let F', be the

orthogonal projection of F onto Vr(Br). Then according to the summability theory
of Laplace series F = lim--.,, E=o a,2 FJ. Since the Radon tranform is linear and
continuous there is RZF limt- oo 0 a,-7?F1 ,

It can be shown that (see Reimer [7])

F, (x) = fT WT2 [ (RF) (s,t)C,"(s)C7(tx)d(s,t), (3.4)
r- 1 JZ

where
1)-- C1(1) ( - 82) d- 2v •r

' W--1 " r-2 2 1d) (3.5)
WT.1 WT2 W1
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ZFrom this, after some lengthy calculation using the adjoint operator of 1Z (which essen-
tially is the inverse operator of 7Z), the reconstruction formula follows

F(x) = lim E a,1 rA,_ (1ZF) (s, t)CF (s)C" (tx)dsdt. (3.6)
V=O S' 1fI

Because of the identification of the orthogonal projection of F onto VI(Br) and onto

!rr+2(Sr+l), convergence of the Cesaro-means follows for k > r/2, and positivity of
the operators is valid for k > r + 1. For the same reason the coefficients a,, in the

Newman-Shapiro summability method have to be calculated for A = (r+2)-2 -

2 "•

4 Numerical implementation
For the reconstruction of F formula (3.6) was used. As soon as the Radon transform of
F is known, the numerical implementation in principle reduces to a stable evaluation
of the Gegenbauer polynomials and a suitable approximation of the integrals in (3.6).
The Gegenbauer polynomials were evaluated by their recurrence relation (see Szeg5 [11])
which is known to be numerically very stable. The coefficients aP, for the Cesaro-means
and the Newman-Shapiro operators were computed with the aid of formula (2.3) and
(2.7), respectively. The factor A,,. was obtained by (3.5). Since the calculation of au,, for
the Newman-Shapiro operators is very time consuming (more than 10 hours fory > 100)
these coefficients were stored before the main computation was started.

Since the integrand in (3.6) is a polynomial of degree v + 2 with respect to s (see
(3.6) together with (5.1)), f _ ..ds was approximated by a Gaussian-Legendre quadrat-
ure of degree p/2 + 1. This choice ensures that for the evaluation of TF(s, t) enough
evaluations with respect to s are performed and that the integral is evaluated exactly
within numerical precision.

For the quadrature on S'-1 first an interpolatory quadrature as introduced in [6]p.132
was used. The weights of such a quadrature formula are obtained as solutions of a linear

system of equations GA = e, where e = (1,.. 1)T E R!?N, N = dim 1Pr (Sr-1),

A = (A 1 ,...,AN)T the vector of weights and

G = ( C xf ) +
1 r-(CA(XjXk) 1 I(Xj~k))jkl

The points were chosen to be regularly distributed on latitudes of the sphere.

For p > 70 in the computation of the weights computational problems occured be-
cause of a lack of memory. Apart from this problem, several weights turned out to be
negative which led to oscillations of the reconstruction. Therefore, this interpolatory
quadrature was substituted by a product-Gauss formula for the sphere Sr-1 as sug-
gested by Stroud [10]p. 41. The points and weights of the Gaussian quadrature were
computed by the MATLAB program qrule.m which is available via internet from the
Mathworks Inc. The number of points of the product Gauss formula is N 2Mr-1

where M = p/2 + 1 is the number of points used in each direction, i.e. N - 2M 2 for
r=3.
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All codes for computation were written in MATLAB 6. The actual computation
took place on a SUN UltralO with 256 MB main memory, 691 MB virtual memory and
SUN OS operating system release 5.7. To increase the computatinal speed all parts of the
MATLAB code were written with as few for-loops as possible. This gave an improvement
in speed of a factor > 500.

5 Computational results

The theoretical results have been applied to the so called Shepp-Logan phantom which
is usually used as a test function for tomographic reconstrution algorithms. It is a three
dimensional model of a human head consisting of 10 ellipsoids (see Shepp [9]) which were
shrinked here to fit into the unit sphere S 2 . Figure 1 shows a cut at x3 = 0.2721.Let a(j) (j) -(J)

a,.a.2),3 , j = 1,..., 10, denote the axes of the j-th ellipsoid, d(j) denote its
density value and (s)(j) WS2

2 vs the diameter of the ellipsoid in the direction of t E S2 . Since
the Radon transform is linear, the Radon transform of the Shepp-Logari phantom can
be calculated to be

n F ~ s1 0 A" (-( ~ ( ) , J J " ° J ) ( ( ) - s ) - s j ) \ - 3 / 2

-2F(st)=E- 2) a(S-ol S2 82 (5.1)
j=:1

Figure 2 shows the reconstruction results according to formula (3.6) for Cesaro-means
of index k - 4 and for Newman-Shapiro operators.

The values k = 1.6 and k = 2 were tested, too,

but for high degrees of p no convergent beha-

viour could be observed.

0.5 For Cesaro-means with k = 4 and for Newman-
Shapiro operators Figure 2 clearly shows an im-
proving behaviour of the reconstructions for in-

0 creasing M.
The Newman-Shapiro operators show a better

-0.5 convergence and for p _> 150 even the small
structures in the original head can be detected
in the reconstruction. It can be expected that

-1 for higher degrees of p this behaviour will be-
-1 -0.5 0 0.5 1 come more evident.

FIG. 1. Shepp-Logan phantom.

Unfortunately, for p > 170 the computation of the coefficients a., for the Newman-
Shapiro operators caused some numerical problems so that the calculations were stopped
with p = 160. Although the numerical results look quite promising, the drawback in the
reconstruction is the computational time. For -- = 160 the computation took 27.5 hours
for the Radon transform and 31 hours for the evaluation at the points x E [-1, 1] 2. The
evaluation was done on an equidistant grid of 200 x 200 points.
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FIG. 2. reconstruction of the Shepp-Logan phantom.

In principle there is no problem to produce three dimensional reconstructions. The eval-
uation points x only have to be chosen from a grid in [-1, 1]3. Because of the time
consuming calculations this was not done here, yet.
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