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Abstract

We consider the problem of nonparametric regression. The aim is to get a smooth function
which represents the dataset and has a reasonable number of extreme values. An iterative
method, the QSOR method is introduced. Problems with the slow convergence of the
method are reduced using multigrid techniques.

1 Introduction
Given a dataset {y(ti), i = 1,...., n} which we denote by y, we look for a decomposition

y(ti) = f(ti) + r(ti), (ti = i/n, i = 1,..., n)

where f is a simple function and the {r(ti), (i = 1, ... ,n)} are the resulting residuals
which approximate white noise. We use two different concepts of simplicity. The first
is the number of local extreme values. The second is the smoothness of the function as
measured by the standard smoothness functional11

S(f):= j(f(2)(t))2dt,

where f( 2) is the second derivative of f. The number of local extremes is taken to have pri-
ority over smoothness. The number of local extremes and their locations are determined
by the taut string method developed in [3]. This is described briefly in the next section.
The residuals are required to look like white noise in the sense that the means over certain
dyadic intervals are required to lie within given bounds [3]. The multiresolution coef-
ficients for (n = 2") are defined by: wij := 2(-H/2) 1),=(j+1)2..z-k=j2i+ r(4 k), (i = 0, . , V), (

0,....,2(v-) - 1). The multiresolution condition now requires that -c, < wij < c,,
where c, represents some form of thresholding. The defalilt value of c, which we use is
cn = an1 /2.5 log(n) where a,, = 1.482 . median(fy 2 - Yll,..- , - y,-,I )/v2.
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FIG. 1. The top-left caption shows the original doppler function and the top-right
caption shows the noisy version. The bottom-left caption shows the result of the taut
string algorithm with the resulting residuals being shown in the bottom-right caption.

2 Taut string

A short description of the taut string method is as follows. We write f = (fl, ... , f )T:=

(f(tl),..., f(t.))T e R' and denote the cumulative sums of y and f by Y and F
respectively, Yi = • Y, Fi = fj, (i = 0,... n), with Yo = Fo = 0. We specify

bounds defined by A = (A,,...-, A,)T E Rn and consider the tube

{G: IY- GI < A}. (2.1)

The taut string V(A) is now the function defined by a taut string attatched to the
points (0, Yo) and (n, Yn) and constrained to lie within the tube (2.1). It can be shown
that the taut string minimizes the number of extreme values of the functions g whose
cumulative sums G lie within the tube. The taut string is continuous and piecewise
linear. Its derivative v(A) is taken as a candidate regression functions. The vector A is
determined in a data dependent manner by the requirement that the residuals associated
with v(A) {r(A)i = yi - v(A)i,i = 1,...,n} satisfy the multiresolution condition. If
such a condition fails on an interval then the A-values associated with that interval
are reduced in size. An application of the taut string method to the doppler data of
Donoho and Johnstone (see e.g. [4]) is shown in Figure 1. The function is defined by
f(t) = 21/(v(1 - t)) sin (,+--.05) . The derivative v(A) is piecewise constant as may

be seen from Figure 1. The function v(A) determines the number of local extremes. We
take the midpoints of the intervals associated with a local extremes as the locations of
the local extremes for the smoothing algorithm.
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3 The smoothing problem

We make the smoothing problem precise as follows. The number, locations and type of
extreme values are taken from the taut string as explained in the last section. We further
require the function f to lie in the tube determined by the taut string. This is to prevent
the smoothing procedure from moving too far from the data. These restrictions may be
described in the form

Af >_ b (3.1)

for an appropriate matrix A and vector b. This leads to the following problem:

minimize Z__1 (fi+1 - 2fi + fi1) 2 subject to (3.1),

or equivalently

minimize FTQ 3F subject to (3.1),

for some quadratic form Q3. We denote this latter quadratic programming problem by
QP3. Clearly the matrix associated with the quadratic form '•i(fi+l - 2fi + fi-1) 2

is singular. Nevertheless the solution of QP3 may be unique. We have the following
theorem.

Theorem 3.1 Let V(A) be the result of the taut string method. Assume that V(A) has
one extreme value. We define the bounds L, U by

L := Y - A, U := Y + A.

Let F1 , F2 be two solutions of the corresponding quadratic program. Additionally let P1
touch three bounds alternately

(i.e. Ui,,Li2,U 3 or Lil, Ui2, (il1 < i2 < i3) are active).

Then
P1= 2

We call a problem with a unique solution a nondegenerate problem. From now on we
assume that our problem is nondegenerate.

3.1 Quadratic programming

There are many algorithms which solve quadratic programming problems directly. Un-
fortunately most of them are expensive in terms of memory requirements and are not
feasible for data sets of the order say n = 8196. To overcome this we look for iterative
methods which converge to the solution. Gradient, projection methods (e.g. as defined
in [8], [2] or [9]) are not appropriate for this purpose as the monotonicity constraints
make the projection into the feasible set too expensive. Instead we use a modified ver-
sion of the QSOR (quasi successive over relaxation) method developed by Metzner in
[7]. QSOR is a very cheap iteration and converges to the solution of QP3. Unfortunately
the convergence is very slow on sections where the solution is smooth. To overcome this
we use multigrid methods which have to be adapted to our requirements.
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4 QSOR

The QSOR algorithm is an iterative method which produces a feasible sequence IFk }-o

converging towards the solution of QP3. For simplicity, we describe the iteration only for
a convexity interval. Let F° C R' be an arbitrary feasible vector. The obvious candidate
is the derivative of the taut string. Let Q Q3 and w E (0, 2). The following defines a
QSOR iteration.

"* While convergence not achieved
"* F=Fk

i=1

Fi = Fi - -- (Qf)i, Li = max{2Fi+l - Fi+2 , Li}, Ui= U, = med{Li, Ui, FP}
i=2

Fi = Fi - -'-(Qz)ii, Li = max{2Fi+l - Fi+ 2, Li}

Ui = min{(Fi+1 + Fi- 1 )/2, Ui}, F- = med{Li, UJi, Fi}

"* for (i in 3:(n-2)){
Fý = Fi - '-(Qz)i, Li = max{2F,+1 - Fi+2 , 2Fi-1 - Fi-2 Li

Ui = min{(Fi+l + Fi-1 )/2, Ui}, Fi = med{Li, Ui, Fi}
if(i active) mark i

}
}

F F2 - -- (Qz)ii, L max{2Fi - Fi- 2, Li}, U = U, F = med{Lf, U(, Ft}
i=1

Fi Fi - -- ( Qz )

Li =max{2Fi+l - Fi+2 , Li}

UCT UýFP = med{L,-,F}

9 correct the active intervals:

• Let [F,, F,+k] be an active Interval: Fi = F,, + __ (F,+k - F,). Denoting

the i-th unit vector in R' by ei and a, b defined by
V~k E-{-k iQ i

b Ei-v (Qz)i a : ti(Qz)i

Z '+k E-1Q+k ' jv+k ,. Zv+k ti:v .. j-=, Qij E.i=, "t A.j=v 3"+i3

set F3j := Pj - &(atj + b) with

* Fk ift for all i in other intervals

Theorem 4.1 (convergence) Let (Fk)=0 be the sequence in R] produced by the QSOR
algorithm and let the problem QP3 be nondegenerate. Then

(Fk), 0 converges in Rn.

"* F* := lim Fk is the solution of QP3.
k--oo
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FiG. 2. The captions top-left, top-right, bottom-left, bottom-right show the result of
the QSOR iteration for the doppler data (n = 2048) after 1000, 5000,10000, 20000 steps
respectively.

The slowness of the convergence can be seen by the fact that the doppler data of Figure 1
required two million iterations before a satisfactory solution was obtained. This is shown
in Figure 2. After a small number of iterations the solution does not change any more
on the "left side" where the function oscilates rapidly. After 1000 iterations of QSOR
(which is fast because one QSOR step is very cheap!) the solution looks very smooth
except for a few "buckles" on the "right side" of the solution. The method needs many
iterations (up to two million) to reach an adequate smoothness. The slowness of the
convergence is known from the original SOR method for solving linear equations. In the
standard case of solving linear equations multigrid methods can be used to speed up the
rate of convergence. We now apply this idea to solving the problem QP3.

5 Multigrid QSOR

Multigrid techniques are general techniques to speed up iterative methods which indeed
have other good properties. The ideas are given for example in [1] or [5]. We will give here
a short description of the multgrid idea in our case. First some notation. Given a grid
G = Gf = (t1 0... ,tn) we define the coarse grid G, = (tl,t 2,. ... t 1tn),il = 1,i, =

n with ij E {1,... ,n}. We define the projection down Icx = (F1,Fi 2 ,... ,Fi,,_1 ,Fn)T

and the projection up Ix = y where y, = F, ( E {ijlj 1,... ,m}), and by linear
interpolation elsewhere, i.e.,

tia - tij__

We define now the multigrid QSOR with only two grids, i.e., of level two. The general
case of level v E N is defined similarly. Let QSOR(G, A, b, p, x) denote the result of the
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5000 0SOR htorslonen QSOR & Muitlrild

FIG. 3. The left figure shows the result of QSOR after 5000 iterations. The right figure
shows the result of (1000) multigrid QSOR with one coarsing step (i.e. the right figure
is "cheaper" than 2000 QSOR streps).

QSOR method applied to the problem on the grid G after a iterations on the Grid G
with starting vector x and constraints defined by A, b. Additionally let Fk be given.

e Multigrid QSOR

• while precision not achieved
o F QSOR(G, A, b, p, Fk)
o F ICQSOR(GC, A,, bc, I, IIP)
o Fk+l = QSOR(G, A, b, i, P)
o k•-k+l

where Ac, b, are the corresponding constraints for the coarser grid. The question is now
how to define the projection of the constraints. One can think of an example where
the canonical projection of bounds like Gc can fail. This happens for example if strong
constraints (e.g. tight bounds) are not on the coarse grid. To overcome this problem one
has to think of a method of defining the problem QP3 on the coarser grid in a reasonable
way. One way to handle this problem is to define Li, := max{Lklij-1 < k < ij+1} and
"min" for the upper bounds. Special cases have to be treated but we do not go into
details here. A coarser grid means that the QSOR step on this grid converges much
faster. On the other hand the approximation of the solution gets worse by coarsening
the grid. In our case (see Figure 4) we have n = 2048. The coarsest grid was made by
taking every eighth gridpoint. We iterated until there was no recognizable improvement.

6 Proofs

Proof of Theorem 3.1: We set D = F2 - F1 . One simply verifies that D has to be a
line, i.e., there are a, b E R such that Di = ati + b. Touching three bounds alternately
means that D changes its sign at least two times which leads to D = 0. 0
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Moftlgrd OSOR

FiG. 4. Multigrid QSOR applied to the doppler data with n = 2048. The figure took
less than 6 seconds comparing to three hours without multigrid on the same computer.

Proof of Theorem 4.1: We set Q = Q3. We have to show:

1) (S 3 (Fk))kENo decreases;
2) (Fk)kEN is feasible;
3) If F' is a stationary point of QSOR, then FS minimizes S3 in the feasible set.

* our feasible set is compact, so the sequence has a convergent subsequence,
* a limit of a subsequence of (F")', is a stationary point of QSOR,
* the problem has only one solution.

To the first point, we only remark that a, b as defined in the algorithm, are the minimizers
of the term:

Z- (x~Itiei+yE tiei) ) TQ (z - (x 1:tiei + y 1tie))
i =v i=v i=v i=v

The others are treated as in [6]. The second point is clear, because by the definition we
start with a feasible vector and we retain the feasibility in every single step. It remains
to show the third point. Let F8 be a stationary point of the algorithm. It is sufficient to
show that (QF8 , Z - Fs) > 0 for all feasible vectors z (see [6]), where (,) denotes the
standard inner product in R'. To show this we first note that Q = DTQ 2 D, where

-11 11

and Q2 is the matrix according to QP3, i.e., to the direct problem. So we can deduce
that (QF',Z-F`) = (Z-Fs)TQFs = (Z-Fs)TDTQAIDFS = (QMf',z-fs)(fs :=

DFS, z := DZ). Now we only have to look at the "active points" because (QFS)i is
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zero everywhere else. Let Z be an arbitrary feasible vector and j be an index with
ZJ = Lj and (Qz)j = 0, so -w(QFs) < 0. With the feasibility of Z, it follows that
(QF5 )j(Zj - ZJ) = (QF8 )j(Zj - Lj) > 0. With the same argument we can derive
(QF)j(Zj - Zs) > 0 if FS touches the upper bound. It remains to show the inequality
for the linearity intervals. Let [tv,t,+k] be a linearity interval of F'. Then obviously
[t,+l, tv+k] is a constancy interval for Fs. Furthermore it follows from the stationarity
of FS that a, b as defined in the algorithm are zero. This is equivalent to

v/-k v+k v+k

S-(QF) 0, EtiQFs=1 5iQF5 = 0 (tj = i/n),n
i=v iZ-V i-•v

which implies that

-(QX)= (QMx)z, -i(QX) = -(QMX)i
i=1 i-v i=1

for arbitrary X E Rn and x = DX. So our conditions are

v+k v+k

(QMFs), = 0, -(QMFs)i = 0 =ý E (QMFs)i = 0.
i=v i-=v+1

This case was proved by L6wendick [6]. El
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