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Abstract
Experimental data analysis is an key activity in metrology, the science of measurement.
It involves developing a mathematical model of the physical system in terms of mathem-
atical equations involving parameters that describe all the relevant aspects of the system.
The model specifies how the system is expected to respond to input data and the nature
of the uncertainties in the inputs. Given measurement data, estimates of the model para-
meters are determined by solving the mathematical equations constructed as part of
the model, and this requires developing an algorithm (or estimator) to determine values
for the parameters that best explain the data. In many cases, the parameter estimates
are given by the solution of a least-squares problem. This paper discusses how various
uncertainty structures associated with the measurement data can be taken into consider-
ation and describes the algorithms used to solve the resulting regression problems. Two
applications from NPL are described which require the solution of generalised distance
regression problems: the use of measurements of primary standard natural gas mixtures
to estimate the composition of a new natural gas mixture, and the analysis of calibration
data to estimate the effective area of a pressure balance.

1 Introduction
Many metrology experiments involve determining the behaviour of a response variable y

as a function of a set of independent variables x = {x 1 , x 2 , ... , x}. Model building in-

volves establishing the functional relationship between these quantities, usually involving
a set of model parameters a, i.e.,

y*=¢(*a)

where y* and x* represent exact values of the variables. The terms a parametrize the

range of possible response behaviour and the actual behaviour is specified by determ-
ining values for these parameters from measurement data. In practice, measurements

are subject to error, and the error structure must be taken into account firstly in order
to determine effective methods for obtaining parameter estimates and secondly in de-
termining the uncertainty in the fitted model parameters. For a set of measurement, data
{xi, yi IT,, the data analysis problem involves the accurate estimation of the parameters
a, taking into account knowledge of the uncertainties in {xi} and/or {y,}, and typically

leads to a least-squares problem [4].
This paper describes the various uncertainty structures that arise and corresponding

regressions problems for determining estimates of the model parameters. If the covari-
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ance information associated with the measurements is structured so that only the ith set
of measurement errors are correlated with each other, a generalised distance regression
approach is appropriate. However, some applications have quite general correlation struc-
ture and a full Gauss-Markov estimation approach is required to make efficient use of
the statistical model [7]. This leads to a generalised Gauss-Markov regression problem to
take into account the errors in the variables and the general correlation structure. While
the covariance structure may dictate which solution algorithms are to be employed, the
information required of the model function ¢ is limited to the evaluation of the function
and its derivatives with respect to a and x. This means that solution algorithms can
be based on a compact set of model-dependent modules and a generic set of harnessing
routines that link the models to general purpose least-squares optimisation software.

The layout of the paper is as follows. In Section 2 we consider the various error struc-
tures and corresponding regression problems. Section 3 introduces two measurement
problems encountered at NPL: the use of measurements of primary standard natural
gas mixtures to estimate the composition of a new natural gas mixture; and the ana-
lysis of calibration data to estimate the effective area of a pressure balance. Although
the functional models for these measurement systems are simple, taking the form of
low-order polynomials, the statistical models need to account for (a) uncertainties in
both the dependent and independent variables, and (b) possible correlations between
measurements. These requirements lead us to solve generalised regression problems. An
overview of solution algorithms for the various problems is given in Section 4. Concluding
remarks are made in Section 5.

2 Error structures and regression problems

Within metrology, various error structures arise all of which can be taken into account.
We now consider the main types.

2.1 Error in one variable only

2.1.1 Ordinary (weighted) least squares

The simplest type of error structure occurs when only one of the system variables is
subject to error and there is no correlation between errors. The model is summarised by

y*=¢(x*,a), Yi=Y*+Ci, xi = x,

where it is assumed that

E = o , var(e ) = a? cov(ci, cj) =0, i 0 j. (2.1)

Good estimates of a can be found by solving
m

min Zwý[yi -(xi,a)]2,

where wi =1/ri i =1,...,m.
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2.1.2 Gauss-Markov regression

If instead of (2.1), the measurement errors are correlated so that

E(c) = 0, var(c) = V,

with V full rank, then an estimate of a can be found by solving

min[y - 0(a)]
T V-1 [y - 0(a)], (2.2)

a

where the ith element of 0(a) is ¢(xi, a).

2.2 Errors in more than one variable

In many metrological applications more than one of the measured variables is subject to
error, and this must be taken into account in order to determine estimates of the model
parameters which are statistically efficient and free from major bias.

2.2.1 Orthogonal distance regression

The simplest case arises when the covariance matrix associated with the ith set of meas-
urements is a multiple of the identity matrix and there is no correlation between any of
the errors, summarised by the model

y* =O(xa), yi=Y y+ci, xi=x* +45,

with
E(li)0= 0, var(7) = pI?1, (2.3)

where 77i = (ef, 6T)T. In this case, appropriate estimates of the parameters are determ-
ined by the solution of

mrin VI(X, - x)T (x, - x!) + (y, - O(x*, a))21,
{x*},a 

211

where vi = 1/pi, i = 1,...,m.
Note that this optimisation problem involves m sets of parameters xý as well as the

parameters a specifying the model y = O(x, a).

2.2.2 Generalised distance regression

If we assume that the errors qi are correlated with var(?7i) = Vi with Vi full rank, but
that cov(?/i, 77j) = 0, i $ j, then the appropriate regression problem is

min [ [ - (x,- �,aT ] (2.4)
xi& E =1 Yixi- -(x, x a2

2.2.3 Generalised Gauss-Markov regression

The most complicated error structure arises when all variables are subject to measure-
ment error and there is general correlation between the errors. If 4 (ý*) is the vector of
measurements {xi} (variables {x*}), then the corresponding regression problem is

min [Y - a)IT V-1 [y y- ,a)] (2.5)
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where the ith element of , a) is O(x!, a).

3 Examples from metrology
3.1 Preparation of primary standard natural gas mixtures

Within the Centre for Optical and Analytical Measurement at NPL, one part of the
work of the Environmental Standards Group is to prepare primary standard natural gas
mixtures. These are cylinders containing natural gas prepared gravimetrically to con-
tain known compositions of each of the 11 constituent components (methane, ethane,
propane, 1-butane, n-butane, 1-pentane, n-pentane, neo-pentane, hexane, nitrogen and
carbon dioxide). Mixtures are prepared to cover various concentration ranges, e.g., meth-
ane: 64% - 98%. These primary standard mixtures are used as the basis for determining
the composition of a new mixture and hence its calorific value.

Given a number of primary standard natural gas mixtures containing known con-
centrations of one of the constituent components (e.g., CO 2), the detector response for
each mixture and the detector response for the new mixture, we wish to determine the
concentration of CO 2 in the new mixture.

An approach to solving this problem is firstly to use the calibration data (relating to
the primary gas mixtures) to calibrate the detector and, secondly, to use the calibration
curve so constructed with the new measurement to predict the concentration in the new
mixture.

Errors to be accounted for are:

* the calibration data is known inexactly. The process of preparing the primary stand-
ards means that they are known inexactly, and indeed the errors in the standards
may be correlated (this is a consequence of the gravimetric process used to prepare
the standard mixtures which involves comparing on a balance each standard mix-
ture at each stage of preparation against calibrated masses selected from a common
set of masses),

* the data returned by the detector (which is based on the analytical technique of
chromatography) is subject to measurement error.

Consequently, we wish our data analysis to account for the inexactness of the meas-
urement data and to quantify the resulting uncertainty associated with the final meas-
urement result.

Figure 1 shows a sample set of measurement data, with the ellipses around the calib-
ration points illustrating the errors in the concentrations and detector responses. (The
error ellipses have been magnified greatly for illustrative purposes.) The figure also shows
a calibration curve' which is used to estimate the concentration of the component for
which the detector response (and its uncertainty) is known.

3.2 Calibration of pressure balances

The principal role of the Pressure and Vacuum Section in the Centre for Mechanical and
Acoustical Metrology at NPL is the development and maintenance of primary measure-
ment standards for pressure and vacuum and their dissemination to industry. Pressure
balances are pressure generators and consist essentially of finely-machined pistons moun-
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FIG. 1. Sample data (+), fitted calibration curve and predicted measurement (o).

ted vertically in close-fitting cylinders. The pressure required to support a piston and
associated ring-weights depends on the mass of the piston and ring-weights and the
cross-sectional area of the piston [5]. Due to various fluid dymamic effects, the effective
area A(p, a) of the piston-cylinder assembly is a function of pressure, usually taken to
be a linear function A(p, a) = al + a2p. Many other factors such as temperature and air
buoyancy have to be taken into account but for our purposes here, the pressure generated
satisfies

alp + a 2p2 = y(m),

where a are the instrument parameters and y(m) is a simple function of the applied load
m. This equation determines p implicitly as a function of m and a. Suppose a reference
pressure balance has been calibrated so that estimates of the instrument parameters
a and their uncertainties are known. The reference balance can be used to calibrate a
test balance in a cross-floating experiment in the following way. A load mi is applied
to the reference balance to generate pressure Pi = p(mi, a). A load ni is applied to the
test balance so that the pressures generated are matched. The test calibration curve is
determined from a best fit to the data (ni, pi)

blpý + b2 (Pý) 2 = y(n*), pi = pi +± i, ni = n + ci,

where 6i and Eq represent measurement error associated with the pressures and masses,
respectively. However, the following must be taken into account. Firstly, the pressures
pi all depend on the common estimates a of the instrument parameters of the reference
balance, leading to correlation of the measurement errors 6 j. Secondly, the masses ni
and mi are made up from the same ensemble of masses p = (p 1.. , j) 8so that,

ni = nW/I, mi = MT

i ii
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where ni and mi are binary coefficient vectors. This means that measurement errors
associated with the masses Ak give rise to (further) correlation between 6i and ej. Taking
this general correlation into account, estimates of the the instrument parameters b, are
found from solving

m -1 Y-0 (3.1)
b,p* p-- p* p-- P *P

where the ith elements of 0 and y are blp* + b2 (pý)2 and y(ni), respectively, and V is
the appropriate covariance matrix determined from the dependence of y and 4) on a and
1i. This is a generalised Gauss-Markov regression problem.

4 Algorithms for generalised regression
Algorithms for ordinary least squares problems of the form mina -j7• fj2 (a) are well known
and include QR factorisation methods for linear models or the Gauss-Newton algorithm
for non-linear models; see, e.g., [2, 6]. The latter algorithm requires the user to supply a
software module to evaluate the vector of function values f(a) and the Jacobian matrix
J of partial derivatives

Ofa

If fi (a) = Yj - O(xi, a) as considered above, the user has to supply a module to calculate
O(x, a) and ao/Oaj.

If V is symmetric and strictly positive definite, the Gauss-Markov regression problem
(2.2) can be formulated as an ordinary least squares problem. If V - LLT where L is
lower-triangular, then the problem becomes

min j 2 (a),
a

where f = L- 1 f. The associated Jacobian matrix is J - L- 1 J. If the matrix V is
well-conditioned, matrix operations with V or L- 1 should not lead to unnecessary loss
of precision. However, explicit calculations involving V can be avoided by using the
generalised QR factorisation [2, 8, 9], leading to solution algorithms with good numerical
properties.

The generalised distance regression problem (2.4) can be solved efficiently by making
use of the fact that the parameters x* appear only in the ith summand. The associated
Jacobian matrix has a block-angular structure that can be exploited effectively in the
QR factorisation stage [2, 3]. Alternatively, a separation-of-variables approach can be
adopted in which the parameters x* (a) are first determined as functions of a specified
by the solution of the corresponding footpoint problem

x, i - x* Vi-1 Yi •¢xa

min [*-x, a)1 T  i O-(xý a)1
I Xi - X i

and the problem formulated as a non-linear least squares problem in a [1, 4]. Either ap-
proach yields an algorithm requiring O(mn2 ) flops while a full matrix approach requires
O(m 3 ) flops.
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The generalised Gauss Markov problem (2.5) can be solved as a Gauss-Markov prob-
lem problem in the variables {x* } and a, but ideally, we would like to develop algorithms
that exploit problem structure as in generalised distance regression algorithms. In partic-
ular, while the covariance matrix V may well be full, in many situations it is constructed
from smaller matrices and for which more efficient algorithms could be developed.

From the user's point of view, all the regression algorithms discussed here require only
the calculation of the model function 0 and its derivatives -_- and Thus, a wide

Oxk Oaj u
range of regression problems can be solved using standard optimisation modules along
with generic harness modules that perform the conversion without input from the user
over and above the calculation of ¢ and its derivatives. For example, we have implemented
a generalised Gauss-Markov solver to solve problems such as (3.1) for any explicit model
y = ¢(x, a). However, issues of efficiency and numerical stability need to be taken into
account. As part of the UK Department of Trade and Industry's Software Support for
Metrology programme, NPL is developing and making available to metrologists a suite of
routines for the generalised regression problems discussed above. By combining structure
exploiting linear algebra and numerically stable components such as the orthogonal
factorisation, it is hoped that metrologists will be able to use these routines with the
same confidence and effectiveness that they currently experience with standard, well-
engineered regression modules available in numerical libraries.

5 Concluding remarks
In metrology, we are interested in the determination of accurate estimates of the paramet-
ers that describe a physical process. It is imperative that knowledge of the measurement
system should be used to describe the error structure as accurately as possible. We have
described the five types of regression problems that can occur in metrology depending
on the error structures that are assumed. In all cases it is important that we employ
efficient, numerically stable algorithms and exploit any structure in both the Jacobian
and covariance matrices.
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